]> git.proxmox.com Git - mirror_qemu.git/blame - hw/i386/intel_iommu.c
exec: make iotlb RCU-friendly
[mirror_qemu.git] / hw / i386 / intel_iommu.c
CommitLineData
1da12ec4
LT
1/*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
4 *
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22#include "hw/sysbus.h"
23#include "exec/address-spaces.h"
24#include "intel_iommu_internal.h"
25
26/*#define DEBUG_INTEL_IOMMU*/
27#ifdef DEBUG_INTEL_IOMMU
28enum {
29 DEBUG_GENERAL, DEBUG_CSR, DEBUG_INV, DEBUG_MMU, DEBUG_FLOG,
d92fa2dc 30 DEBUG_CACHE,
1da12ec4
LT
31};
32#define VTD_DBGBIT(x) (1 << DEBUG_##x)
33static int vtd_dbgflags = VTD_DBGBIT(GENERAL) | VTD_DBGBIT(CSR);
34
35#define VTD_DPRINTF(what, fmt, ...) do { \
36 if (vtd_dbgflags & VTD_DBGBIT(what)) { \
37 fprintf(stderr, "(vtd)%s: " fmt "\n", __func__, \
38 ## __VA_ARGS__); } \
39 } while (0)
40#else
41#define VTD_DPRINTF(what, fmt, ...) do {} while (0)
42#endif
43
44static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
45 uint64_t wmask, uint64_t w1cmask)
46{
47 stq_le_p(&s->csr[addr], val);
48 stq_le_p(&s->wmask[addr], wmask);
49 stq_le_p(&s->w1cmask[addr], w1cmask);
50}
51
52static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
53{
54 stq_le_p(&s->womask[addr], mask);
55}
56
57static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
58 uint32_t wmask, uint32_t w1cmask)
59{
60 stl_le_p(&s->csr[addr], val);
61 stl_le_p(&s->wmask[addr], wmask);
62 stl_le_p(&s->w1cmask[addr], w1cmask);
63}
64
65static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
66{
67 stl_le_p(&s->womask[addr], mask);
68}
69
70/* "External" get/set operations */
71static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
72{
73 uint64_t oldval = ldq_le_p(&s->csr[addr]);
74 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
75 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
76 stq_le_p(&s->csr[addr],
77 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
78}
79
80static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
81{
82 uint32_t oldval = ldl_le_p(&s->csr[addr]);
83 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
84 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
85 stl_le_p(&s->csr[addr],
86 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
87}
88
89static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
90{
91 uint64_t val = ldq_le_p(&s->csr[addr]);
92 uint64_t womask = ldq_le_p(&s->womask[addr]);
93 return val & ~womask;
94}
95
96static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
97{
98 uint32_t val = ldl_le_p(&s->csr[addr]);
99 uint32_t womask = ldl_le_p(&s->womask[addr]);
100 return val & ~womask;
101}
102
103/* "Internal" get/set operations */
104static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
105{
106 return ldq_le_p(&s->csr[addr]);
107}
108
109static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
110{
111 return ldl_le_p(&s->csr[addr]);
112}
113
114static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
115{
116 stq_le_p(&s->csr[addr], val);
117}
118
119static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
120 uint32_t clear, uint32_t mask)
121{
122 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
123 stl_le_p(&s->csr[addr], new_val);
124 return new_val;
125}
126
127static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
128 uint64_t clear, uint64_t mask)
129{
130 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
131 stq_le_p(&s->csr[addr], new_val);
132 return new_val;
133}
134
b5a280c0
LT
135/* GHashTable functions */
136static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
137{
138 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
139}
140
141static guint vtd_uint64_hash(gconstpointer v)
142{
143 return (guint)*(const uint64_t *)v;
144}
145
146static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
147 gpointer user_data)
148{
149 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
150 uint16_t domain_id = *(uint16_t *)user_data;
151 return entry->domain_id == domain_id;
152}
153
154static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
155 gpointer user_data)
156{
157 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
158 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
159 uint64_t gfn = info->gfn & info->mask;
160 return (entry->domain_id == info->domain_id) &&
161 ((entry->gfn & info->mask) == gfn);
162}
163
d92fa2dc
LT
164/* Reset all the gen of VTDAddressSpace to zero and set the gen of
165 * IntelIOMMUState to 1.
166 */
167static void vtd_reset_context_cache(IntelIOMMUState *s)
168{
169 VTDAddressSpace **pvtd_as;
170 VTDAddressSpace *vtd_as;
171 uint32_t bus_it;
172 uint32_t devfn_it;
173
174 VTD_DPRINTF(CACHE, "global context_cache_gen=1");
175 for (bus_it = 0; bus_it < VTD_PCI_BUS_MAX; ++bus_it) {
176 pvtd_as = s->address_spaces[bus_it];
177 if (!pvtd_as) {
178 continue;
179 }
180 for (devfn_it = 0; devfn_it < VTD_PCI_DEVFN_MAX; ++devfn_it) {
181 vtd_as = pvtd_as[devfn_it];
182 if (!vtd_as) {
183 continue;
184 }
185 vtd_as->context_cache_entry.context_cache_gen = 0;
186 }
187 }
188 s->context_cache_gen = 1;
189}
190
b5a280c0
LT
191static void vtd_reset_iotlb(IntelIOMMUState *s)
192{
193 assert(s->iotlb);
194 g_hash_table_remove_all(s->iotlb);
195}
196
197static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
198 hwaddr addr)
199{
200 uint64_t key;
201
202 key = (addr >> VTD_PAGE_SHIFT_4K) |
203 ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT);
204 return g_hash_table_lookup(s->iotlb, &key);
205
206}
207
208static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
209 uint16_t domain_id, hwaddr addr, uint64_t slpte,
210 bool read_flags, bool write_flags)
211{
212 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
213 uint64_t *key = g_malloc(sizeof(*key));
214 uint64_t gfn = addr >> VTD_PAGE_SHIFT_4K;
215
216 VTD_DPRINTF(CACHE, "update iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
217 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr, slpte,
218 domain_id);
219 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
220 VTD_DPRINTF(CACHE, "iotlb exceeds size limit, forced to reset");
221 vtd_reset_iotlb(s);
222 }
223
224 entry->gfn = gfn;
225 entry->domain_id = domain_id;
226 entry->slpte = slpte;
227 entry->read_flags = read_flags;
228 entry->write_flags = write_flags;
229 *key = gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT);
230 g_hash_table_replace(s->iotlb, key, entry);
231}
232
1da12ec4
LT
233/* Given the reg addr of both the message data and address, generate an
234 * interrupt via MSI.
235 */
236static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
237 hwaddr mesg_data_reg)
238{
239 hwaddr addr;
240 uint32_t data;
241
242 assert(mesg_data_reg < DMAR_REG_SIZE);
243 assert(mesg_addr_reg < DMAR_REG_SIZE);
244
245 addr = vtd_get_long_raw(s, mesg_addr_reg);
246 data = vtd_get_long_raw(s, mesg_data_reg);
247
248 VTD_DPRINTF(FLOG, "msi: addr 0x%"PRIx64 " data 0x%"PRIx32, addr, data);
249 stl_le_phys(&address_space_memory, addr, data);
250}
251
252/* Generate a fault event to software via MSI if conditions are met.
253 * Notice that the value of FSTS_REG being passed to it should be the one
254 * before any update.
255 */
256static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
257{
258 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
259 pre_fsts & VTD_FSTS_IQE) {
260 VTD_DPRINTF(FLOG, "there are previous interrupt conditions "
261 "to be serviced by software, fault event is not generated "
262 "(FSTS_REG 0x%"PRIx32 ")", pre_fsts);
263 return;
264 }
265 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
266 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
267 VTD_DPRINTF(FLOG, "Interrupt Mask set, fault event is not generated");
268 } else {
269 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
270 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
271 }
272}
273
274/* Check if the Fault (F) field of the Fault Recording Register referenced by
275 * @index is Set.
276 */
277static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
278{
279 /* Each reg is 128-bit */
280 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
281 addr += 8; /* Access the high 64-bit half */
282
283 assert(index < DMAR_FRCD_REG_NR);
284
285 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
286}
287
288/* Update the PPF field of Fault Status Register.
289 * Should be called whenever change the F field of any fault recording
290 * registers.
291 */
292static void vtd_update_fsts_ppf(IntelIOMMUState *s)
293{
294 uint32_t i;
295 uint32_t ppf_mask = 0;
296
297 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
298 if (vtd_is_frcd_set(s, i)) {
299 ppf_mask = VTD_FSTS_PPF;
300 break;
301 }
302 }
303 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
304 VTD_DPRINTF(FLOG, "set PPF of FSTS_REG to %d", ppf_mask ? 1 : 0);
305}
306
307static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
308{
309 /* Each reg is 128-bit */
310 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
311 addr += 8; /* Access the high 64-bit half */
312
313 assert(index < DMAR_FRCD_REG_NR);
314
315 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
316 vtd_update_fsts_ppf(s);
317}
318
319/* Must not update F field now, should be done later */
320static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
321 uint16_t source_id, hwaddr addr,
322 VTDFaultReason fault, bool is_write)
323{
324 uint64_t hi = 0, lo;
325 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
326
327 assert(index < DMAR_FRCD_REG_NR);
328
329 lo = VTD_FRCD_FI(addr);
330 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
331 if (!is_write) {
332 hi |= VTD_FRCD_T;
333 }
334 vtd_set_quad_raw(s, frcd_reg_addr, lo);
335 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
336 VTD_DPRINTF(FLOG, "record to FRCD_REG #%"PRIu16 ": hi 0x%"PRIx64
337 ", lo 0x%"PRIx64, index, hi, lo);
338}
339
340/* Try to collapse multiple pending faults from the same requester */
341static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
342{
343 uint32_t i;
344 uint64_t frcd_reg;
345 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
346
347 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
348 frcd_reg = vtd_get_quad_raw(s, addr);
349 VTD_DPRINTF(FLOG, "frcd_reg #%d 0x%"PRIx64, i, frcd_reg);
350 if ((frcd_reg & VTD_FRCD_F) &&
351 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
352 return true;
353 }
354 addr += 16; /* 128-bit for each */
355 }
356 return false;
357}
358
359/* Log and report an DMAR (address translation) fault to software */
360static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
361 hwaddr addr, VTDFaultReason fault,
362 bool is_write)
363{
364 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
365
366 assert(fault < VTD_FR_MAX);
367
368 if (fault == VTD_FR_RESERVED_ERR) {
369 /* This is not a normal fault reason case. Drop it. */
370 return;
371 }
372 VTD_DPRINTF(FLOG, "sid 0x%"PRIx16 ", fault %d, addr 0x%"PRIx64
373 ", is_write %d", source_id, fault, addr, is_write);
374 if (fsts_reg & VTD_FSTS_PFO) {
375 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
376 "Primary Fault Overflow");
377 return;
378 }
379 if (vtd_try_collapse_fault(s, source_id)) {
380 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
381 "compression of faults");
382 return;
383 }
384 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
385 VTD_DPRINTF(FLOG, "Primary Fault Overflow and "
386 "new fault is not recorded, set PFO field");
387 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
388 return;
389 }
390
391 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
392
393 if (fsts_reg & VTD_FSTS_PPF) {
394 VTD_DPRINTF(FLOG, "there are pending faults already, "
395 "fault event is not generated");
396 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
397 s->next_frcd_reg++;
398 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
399 s->next_frcd_reg = 0;
400 }
401 } else {
402 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
403 VTD_FSTS_FRI(s->next_frcd_reg));
404 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
405 s->next_frcd_reg++;
406 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
407 s->next_frcd_reg = 0;
408 }
409 /* This case actually cause the PPF to be Set.
410 * So generate fault event (interrupt).
411 */
412 vtd_generate_fault_event(s, fsts_reg);
413 }
414}
415
ed7b8fbc
LT
416/* Handle Invalidation Queue Errors of queued invalidation interface error
417 * conditions.
418 */
419static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
420{
421 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
422
423 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
424 vtd_generate_fault_event(s, fsts_reg);
425}
426
427/* Set the IWC field and try to generate an invalidation completion interrupt */
428static void vtd_generate_completion_event(IntelIOMMUState *s)
429{
430 VTD_DPRINTF(INV, "completes an invalidation wait command with "
431 "Interrupt Flag");
432 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
433 VTD_DPRINTF(INV, "there is a previous interrupt condition to be "
434 "serviced by software, "
435 "new invalidation event is not generated");
436 return;
437 }
438 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
439 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
440 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
441 VTD_DPRINTF(INV, "IM filed in IECTL_REG is set, new invalidation "
442 "event is not generated");
443 return;
444 } else {
445 /* Generate the interrupt event */
446 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
447 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
448 }
449}
450
1da12ec4
LT
451static inline bool vtd_root_entry_present(VTDRootEntry *root)
452{
453 return root->val & VTD_ROOT_ENTRY_P;
454}
455
456static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
457 VTDRootEntry *re)
458{
459 dma_addr_t addr;
460
461 addr = s->root + index * sizeof(*re);
462 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
463 VTD_DPRINTF(GENERAL, "error: fail to access root-entry at 0x%"PRIx64
464 " + %"PRIu8, s->root, index);
465 re->val = 0;
466 return -VTD_FR_ROOT_TABLE_INV;
467 }
468 re->val = le64_to_cpu(re->val);
469 return 0;
470}
471
472static inline bool vtd_context_entry_present(VTDContextEntry *context)
473{
474 return context->lo & VTD_CONTEXT_ENTRY_P;
475}
476
477static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
478 VTDContextEntry *ce)
479{
480 dma_addr_t addr;
481
482 if (!vtd_root_entry_present(root)) {
483 VTD_DPRINTF(GENERAL, "error: root-entry is not present");
484 return -VTD_FR_ROOT_ENTRY_P;
485 }
486 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
487 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
488 VTD_DPRINTF(GENERAL, "error: fail to access context-entry at 0x%"PRIx64
489 " + %"PRIu8,
490 (uint64_t)(root->val & VTD_ROOT_ENTRY_CTP), index);
491 return -VTD_FR_CONTEXT_TABLE_INV;
492 }
493 ce->lo = le64_to_cpu(ce->lo);
494 ce->hi = le64_to_cpu(ce->hi);
495 return 0;
496}
497
498static inline dma_addr_t vtd_get_slpt_base_from_context(VTDContextEntry *ce)
499{
500 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
501}
502
503/* The shift of an addr for a certain level of paging structure */
504static inline uint32_t vtd_slpt_level_shift(uint32_t level)
505{
506 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
507}
508
509static inline uint64_t vtd_get_slpte_addr(uint64_t slpte)
510{
511 return slpte & VTD_SL_PT_BASE_ADDR_MASK;
512}
513
514/* Whether the pte indicates the address of the page frame */
515static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
516{
517 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
518}
519
520/* Get the content of a spte located in @base_addr[@index] */
521static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
522{
523 uint64_t slpte;
524
525 assert(index < VTD_SL_PT_ENTRY_NR);
526
527 if (dma_memory_read(&address_space_memory,
528 base_addr + index * sizeof(slpte), &slpte,
529 sizeof(slpte))) {
530 slpte = (uint64_t)-1;
531 return slpte;
532 }
533 slpte = le64_to_cpu(slpte);
534 return slpte;
535}
536
537/* Given a gpa and the level of paging structure, return the offset of current
538 * level.
539 */
540static inline uint32_t vtd_gpa_level_offset(uint64_t gpa, uint32_t level)
541{
542 return (gpa >> vtd_slpt_level_shift(level)) &
543 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
544}
545
546/* Check Capability Register to see if the @level of page-table is supported */
547static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
548{
549 return VTD_CAP_SAGAW_MASK & s->cap &
550 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
551}
552
553/* Get the page-table level that hardware should use for the second-level
554 * page-table walk from the Address Width field of context-entry.
555 */
556static inline uint32_t vtd_get_level_from_context_entry(VTDContextEntry *ce)
557{
558 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
559}
560
561static inline uint32_t vtd_get_agaw_from_context_entry(VTDContextEntry *ce)
562{
563 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
564}
565
566static const uint64_t vtd_paging_entry_rsvd_field[] = {
567 [0] = ~0ULL,
568 /* For not large page */
569 [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
570 [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
571 [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
572 [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
573 /* For large page */
574 [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
575 [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
576 [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
577 [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
578};
579
580static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
581{
582 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
583 /* Maybe large page */
584 return slpte & vtd_paging_entry_rsvd_field[level + 4];
585 } else {
586 return slpte & vtd_paging_entry_rsvd_field[level];
587 }
588}
589
590/* Given the @gpa, get relevant @slptep. @slpte_level will be the last level
591 * of the translation, can be used for deciding the size of large page.
592 */
593static int vtd_gpa_to_slpte(VTDContextEntry *ce, uint64_t gpa, bool is_write,
594 uint64_t *slptep, uint32_t *slpte_level,
595 bool *reads, bool *writes)
596{
597 dma_addr_t addr = vtd_get_slpt_base_from_context(ce);
598 uint32_t level = vtd_get_level_from_context_entry(ce);
599 uint32_t offset;
600 uint64_t slpte;
601 uint32_t ce_agaw = vtd_get_agaw_from_context_entry(ce);
602 uint64_t access_right_check;
603
604 /* Check if @gpa is above 2^X-1, where X is the minimum of MGAW in CAP_REG
605 * and AW in context-entry.
606 */
607 if (gpa & ~((1ULL << MIN(ce_agaw, VTD_MGAW)) - 1)) {
608 VTD_DPRINTF(GENERAL, "error: gpa 0x%"PRIx64 " exceeds limits", gpa);
609 return -VTD_FR_ADDR_BEYOND_MGAW;
610 }
611
612 /* FIXME: what is the Atomics request here? */
613 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
614
615 while (true) {
616 offset = vtd_gpa_level_offset(gpa, level);
617 slpte = vtd_get_slpte(addr, offset);
618
619 if (slpte == (uint64_t)-1) {
620 VTD_DPRINTF(GENERAL, "error: fail to access second-level paging "
621 "entry at level %"PRIu32 " for gpa 0x%"PRIx64,
622 level, gpa);
623 if (level == vtd_get_level_from_context_entry(ce)) {
624 /* Invalid programming of context-entry */
625 return -VTD_FR_CONTEXT_ENTRY_INV;
626 } else {
627 return -VTD_FR_PAGING_ENTRY_INV;
628 }
629 }
630 *reads = (*reads) && (slpte & VTD_SL_R);
631 *writes = (*writes) && (slpte & VTD_SL_W);
632 if (!(slpte & access_right_check)) {
633 VTD_DPRINTF(GENERAL, "error: lack of %s permission for "
634 "gpa 0x%"PRIx64 " slpte 0x%"PRIx64,
635 (is_write ? "write" : "read"), gpa, slpte);
636 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
637 }
638 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
639 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in second "
640 "level paging entry level %"PRIu32 " slpte 0x%"PRIx64,
641 level, slpte);
642 return -VTD_FR_PAGING_ENTRY_RSVD;
643 }
644
645 if (vtd_is_last_slpte(slpte, level)) {
646 *slptep = slpte;
647 *slpte_level = level;
648 return 0;
649 }
650 addr = vtd_get_slpte_addr(slpte);
651 level--;
652 }
653}
654
655/* Map a device to its corresponding domain (context-entry) */
656static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
657 uint8_t devfn, VTDContextEntry *ce)
658{
659 VTDRootEntry re;
660 int ret_fr;
661
662 ret_fr = vtd_get_root_entry(s, bus_num, &re);
663 if (ret_fr) {
664 return ret_fr;
665 }
666
667 if (!vtd_root_entry_present(&re)) {
668 VTD_DPRINTF(GENERAL, "error: root-entry #%"PRIu8 " is not present",
669 bus_num);
670 return -VTD_FR_ROOT_ENTRY_P;
671 } else if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) {
672 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in root-entry "
673 "hi 0x%"PRIx64 " lo 0x%"PRIx64, re.rsvd, re.val);
674 return -VTD_FR_ROOT_ENTRY_RSVD;
675 }
676
677 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
678 if (ret_fr) {
679 return ret_fr;
680 }
681
682 if (!vtd_context_entry_present(ce)) {
683 VTD_DPRINTF(GENERAL,
684 "error: context-entry #%"PRIu8 "(bus #%"PRIu8 ") "
685 "is not present", devfn, bus_num);
686 return -VTD_FR_CONTEXT_ENTRY_P;
687 } else if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
688 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) {
689 VTD_DPRINTF(GENERAL,
690 "error: non-zero reserved field in context-entry "
691 "hi 0x%"PRIx64 " lo 0x%"PRIx64, ce->hi, ce->lo);
692 return -VTD_FR_CONTEXT_ENTRY_RSVD;
693 }
694 /* Check if the programming of context-entry is valid */
695 if (!vtd_is_level_supported(s, vtd_get_level_from_context_entry(ce))) {
696 VTD_DPRINTF(GENERAL, "error: unsupported Address Width value in "
697 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
698 ce->hi, ce->lo);
699 return -VTD_FR_CONTEXT_ENTRY_INV;
700 } else if (ce->lo & VTD_CONTEXT_ENTRY_TT) {
701 VTD_DPRINTF(GENERAL, "error: unsupported Translation Type in "
702 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
703 ce->hi, ce->lo);
704 return -VTD_FR_CONTEXT_ENTRY_INV;
705 }
706 return 0;
707}
708
709static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
710{
711 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
712}
713
714static const bool vtd_qualified_faults[] = {
715 [VTD_FR_RESERVED] = false,
716 [VTD_FR_ROOT_ENTRY_P] = false,
717 [VTD_FR_CONTEXT_ENTRY_P] = true,
718 [VTD_FR_CONTEXT_ENTRY_INV] = true,
719 [VTD_FR_ADDR_BEYOND_MGAW] = true,
720 [VTD_FR_WRITE] = true,
721 [VTD_FR_READ] = true,
722 [VTD_FR_PAGING_ENTRY_INV] = true,
723 [VTD_FR_ROOT_TABLE_INV] = false,
724 [VTD_FR_CONTEXT_TABLE_INV] = false,
725 [VTD_FR_ROOT_ENTRY_RSVD] = false,
726 [VTD_FR_PAGING_ENTRY_RSVD] = true,
727 [VTD_FR_CONTEXT_ENTRY_TT] = true,
728 [VTD_FR_RESERVED_ERR] = false,
729 [VTD_FR_MAX] = false,
730};
731
732/* To see if a fault condition is "qualified", which is reported to software
733 * only if the FPD field in the context-entry used to process the faulting
734 * request is 0.
735 */
736static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
737{
738 return vtd_qualified_faults[fault];
739}
740
741static inline bool vtd_is_interrupt_addr(hwaddr addr)
742{
743 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
744}
745
746/* Map dev to context-entry then do a paging-structures walk to do a iommu
747 * translation.
748 * @bus_num: The bus number
749 * @devfn: The devfn, which is the combined of device and function number
750 * @is_write: The access is a write operation
751 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
752 */
d92fa2dc 753static void vtd_do_iommu_translate(VTDAddressSpace *vtd_as, uint8_t bus_num,
1da12ec4
LT
754 uint8_t devfn, hwaddr addr, bool is_write,
755 IOMMUTLBEntry *entry)
756{
d92fa2dc 757 IntelIOMMUState *s = vtd_as->iommu_state;
1da12ec4 758 VTDContextEntry ce;
d92fa2dc 759 VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
1da12ec4
LT
760 uint64_t slpte;
761 uint32_t level;
762 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
763 int ret_fr;
764 bool is_fpd_set = false;
765 bool reads = true;
766 bool writes = true;
b5a280c0 767 VTDIOTLBEntry *iotlb_entry;
1da12ec4
LT
768
769 /* Check if the request is in interrupt address range */
770 if (vtd_is_interrupt_addr(addr)) {
771 if (is_write) {
772 /* FIXME: since we don't know the length of the access here, we
773 * treat Non-DWORD length write requests without PASID as
774 * interrupt requests, too. Withoud interrupt remapping support,
775 * we just use 1:1 mapping.
776 */
777 VTD_DPRINTF(MMU, "write request to interrupt address "
778 "gpa 0x%"PRIx64, addr);
779 entry->iova = addr & VTD_PAGE_MASK_4K;
780 entry->translated_addr = addr & VTD_PAGE_MASK_4K;
781 entry->addr_mask = ~VTD_PAGE_MASK_4K;
782 entry->perm = IOMMU_WO;
783 return;
784 } else {
785 VTD_DPRINTF(GENERAL, "error: read request from interrupt address "
786 "gpa 0x%"PRIx64, addr);
787 vtd_report_dmar_fault(s, source_id, addr, VTD_FR_READ, is_write);
788 return;
789 }
790 }
b5a280c0
LT
791 /* Try to fetch slpte form IOTLB */
792 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
793 if (iotlb_entry) {
794 VTD_DPRINTF(CACHE, "hit iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
795 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr,
796 iotlb_entry->slpte, iotlb_entry->domain_id);
797 slpte = iotlb_entry->slpte;
798 reads = iotlb_entry->read_flags;
799 writes = iotlb_entry->write_flags;
800 goto out;
801 }
d92fa2dc
LT
802 /* Try to fetch context-entry from cache first */
803 if (cc_entry->context_cache_gen == s->context_cache_gen) {
804 VTD_DPRINTF(CACHE, "hit context-cache bus %d devfn %d "
805 "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 ")",
806 bus_num, devfn, cc_entry->context_entry.hi,
807 cc_entry->context_entry.lo, cc_entry->context_cache_gen);
808 ce = cc_entry->context_entry;
809 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
810 } else {
811 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
812 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
813 if (ret_fr) {
814 ret_fr = -ret_fr;
815 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
816 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA "
817 "requests through this context-entry "
818 "(with FPD Set)");
819 } else {
820 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
821 }
822 return;
1da12ec4 823 }
d92fa2dc
LT
824 /* Update context-cache */
825 VTD_DPRINTF(CACHE, "update context-cache bus %d devfn %d "
826 "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 "->%"PRIu32 ")",
827 bus_num, devfn, ce.hi, ce.lo,
828 cc_entry->context_cache_gen, s->context_cache_gen);
829 cc_entry->context_entry = ce;
830 cc_entry->context_cache_gen = s->context_cache_gen;
1da12ec4
LT
831 }
832
833 ret_fr = vtd_gpa_to_slpte(&ce, addr, is_write, &slpte, &level,
834 &reads, &writes);
835 if (ret_fr) {
836 ret_fr = -ret_fr;
837 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
838 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA requests "
839 "through this context-entry (with FPD Set)");
840 } else {
841 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
842 }
843 return;
844 }
845
b5a280c0
LT
846 vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
847 reads, writes);
848out:
1da12ec4
LT
849 entry->iova = addr & VTD_PAGE_MASK_4K;
850 entry->translated_addr = vtd_get_slpte_addr(slpte) & VTD_PAGE_MASK_4K;
851 entry->addr_mask = ~VTD_PAGE_MASK_4K;
852 entry->perm = (writes ? 2 : 0) + (reads ? 1 : 0);
853}
854
855static void vtd_root_table_setup(IntelIOMMUState *s)
856{
857 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
858 s->root_extended = s->root & VTD_RTADDR_RTT;
859 s->root &= VTD_RTADDR_ADDR_MASK;
860
861 VTD_DPRINTF(CSR, "root_table addr 0x%"PRIx64 " %s", s->root,
862 (s->root_extended ? "(extended)" : ""));
863}
864
d92fa2dc
LT
865static void vtd_context_global_invalidate(IntelIOMMUState *s)
866{
867 s->context_cache_gen++;
868 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
869 vtd_reset_context_cache(s);
870 }
871}
872
873/* Do a context-cache device-selective invalidation.
874 * @func_mask: FM field after shifting
875 */
876static void vtd_context_device_invalidate(IntelIOMMUState *s,
877 uint16_t source_id,
878 uint16_t func_mask)
879{
880 uint16_t mask;
881 VTDAddressSpace **pvtd_as;
882 VTDAddressSpace *vtd_as;
883 uint16_t devfn;
884 uint16_t devfn_it;
885
886 switch (func_mask & 3) {
887 case 0:
888 mask = 0; /* No bits in the SID field masked */
889 break;
890 case 1:
891 mask = 4; /* Mask bit 2 in the SID field */
892 break;
893 case 2:
894 mask = 6; /* Mask bit 2:1 in the SID field */
895 break;
896 case 3:
897 mask = 7; /* Mask bit 2:0 in the SID field */
898 break;
899 }
900 VTD_DPRINTF(INV, "device-selective invalidation source 0x%"PRIx16
901 " mask %"PRIu16, source_id, mask);
902 pvtd_as = s->address_spaces[VTD_SID_TO_BUS(source_id)];
903 if (pvtd_as) {
904 devfn = VTD_SID_TO_DEVFN(source_id);
905 for (devfn_it = 0; devfn_it < VTD_PCI_DEVFN_MAX; ++devfn_it) {
906 vtd_as = pvtd_as[devfn_it];
907 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
908 VTD_DPRINTF(INV, "invalidate context-cahce of devfn 0x%"PRIx16,
909 devfn_it);
910 vtd_as->context_cache_entry.context_cache_gen = 0;
911 }
912 }
913 }
914}
915
1da12ec4
LT
916/* Context-cache invalidation
917 * Returns the Context Actual Invalidation Granularity.
918 * @val: the content of the CCMD_REG
919 */
920static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
921{
922 uint64_t caig;
923 uint64_t type = val & VTD_CCMD_CIRG_MASK;
924
925 switch (type) {
d92fa2dc
LT
926 case VTD_CCMD_DOMAIN_INVL:
927 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
928 (uint16_t)VTD_CCMD_DID(val));
929 /* Fall through */
1da12ec4 930 case VTD_CCMD_GLOBAL_INVL:
d92fa2dc 931 VTD_DPRINTF(INV, "global invalidation");
1da12ec4 932 caig = VTD_CCMD_GLOBAL_INVL_A;
d92fa2dc 933 vtd_context_global_invalidate(s);
1da12ec4
LT
934 break;
935
936 case VTD_CCMD_DEVICE_INVL:
1da12ec4 937 caig = VTD_CCMD_DEVICE_INVL_A;
d92fa2dc 938 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1da12ec4
LT
939 break;
940
941 default:
d92fa2dc 942 VTD_DPRINTF(GENERAL, "error: invalid granularity");
1da12ec4
LT
943 caig = 0;
944 }
945 return caig;
946}
947
b5a280c0
LT
948static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
949{
950 vtd_reset_iotlb(s);
951}
952
953static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
954{
955 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
956 &domain_id);
957}
958
959static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
960 hwaddr addr, uint8_t am)
961{
962 VTDIOTLBPageInvInfo info;
963
964 assert(am <= VTD_MAMV);
965 info.domain_id = domain_id;
966 info.gfn = addr >> VTD_PAGE_SHIFT_4K;
967 info.mask = ~((1 << am) - 1);
968 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
969}
970
1da12ec4
LT
971/* Flush IOTLB
972 * Returns the IOTLB Actual Invalidation Granularity.
973 * @val: the content of the IOTLB_REG
974 */
975static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
976{
977 uint64_t iaig;
978 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
b5a280c0
LT
979 uint16_t domain_id;
980 hwaddr addr;
981 uint8_t am;
1da12ec4
LT
982
983 switch (type) {
984 case VTD_TLB_GLOBAL_FLUSH:
b5a280c0 985 VTD_DPRINTF(INV, "global invalidation");
1da12ec4 986 iaig = VTD_TLB_GLOBAL_FLUSH_A;
b5a280c0 987 vtd_iotlb_global_invalidate(s);
1da12ec4
LT
988 break;
989
990 case VTD_TLB_DSI_FLUSH:
b5a280c0
LT
991 domain_id = VTD_TLB_DID(val);
992 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
993 domain_id);
1da12ec4 994 iaig = VTD_TLB_DSI_FLUSH_A;
b5a280c0 995 vtd_iotlb_domain_invalidate(s, domain_id);
1da12ec4
LT
996 break;
997
998 case VTD_TLB_PSI_FLUSH:
b5a280c0
LT
999 domain_id = VTD_TLB_DID(val);
1000 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1001 am = VTD_IVA_AM(addr);
1002 addr = VTD_IVA_ADDR(addr);
1003 VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1004 " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1005 if (am > VTD_MAMV) {
1006 VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1007 "%"PRIu8, (uint8_t)VTD_MAMV);
1008 iaig = 0;
1009 break;
1010 }
1da12ec4 1011 iaig = VTD_TLB_PSI_FLUSH_A;
b5a280c0 1012 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1da12ec4
LT
1013 break;
1014
1015 default:
b5a280c0 1016 VTD_DPRINTF(GENERAL, "error: invalid granularity");
1da12ec4
LT
1017 iaig = 0;
1018 }
1019 return iaig;
1020}
1021
ed7b8fbc
LT
1022static inline bool vtd_queued_inv_enable_check(IntelIOMMUState *s)
1023{
1024 return s->iq_tail == 0;
1025}
1026
1027static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1028{
1029 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1030 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1031}
1032
1033static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1034{
1035 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1036
1037 VTD_DPRINTF(INV, "Queued Invalidation Enable %s", (en ? "on" : "off"));
1038 if (en) {
1039 if (vtd_queued_inv_enable_check(s)) {
1040 s->iq = iqa_val & VTD_IQA_IQA_MASK;
1041 /* 2^(x+8) entries */
1042 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1043 s->qi_enabled = true;
1044 VTD_DPRINTF(INV, "DMAR_IQA_REG 0x%"PRIx64, iqa_val);
1045 VTD_DPRINTF(INV, "Invalidation Queue addr 0x%"PRIx64 " size %d",
1046 s->iq, s->iq_size);
1047 /* Ok - report back to driver */
1048 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1049 } else {
1050 VTD_DPRINTF(GENERAL, "error: can't enable Queued Invalidation: "
1051 "tail %"PRIu16, s->iq_tail);
1052 }
1053 } else {
1054 if (vtd_queued_inv_disable_check(s)) {
1055 /* disable Queued Invalidation */
1056 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1057 s->iq_head = 0;
1058 s->qi_enabled = false;
1059 /* Ok - report back to driver */
1060 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1061 } else {
1062 VTD_DPRINTF(GENERAL, "error: can't disable Queued Invalidation: "
1063 "head %"PRIu16 ", tail %"PRIu16
1064 ", last_descriptor %"PRIu8,
1065 s->iq_head, s->iq_tail, s->iq_last_desc_type);
1066 }
1067 }
1068}
1069
1da12ec4
LT
1070/* Set Root Table Pointer */
1071static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1072{
1073 VTD_DPRINTF(CSR, "set Root Table Pointer");
1074
1075 vtd_root_table_setup(s);
1076 /* Ok - report back to driver */
1077 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1078}
1079
1080/* Handle Translation Enable/Disable */
1081static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1082{
1083 VTD_DPRINTF(CSR, "Translation Enable %s", (en ? "on" : "off"));
1084
1085 if (en) {
1086 s->dmar_enabled = true;
1087 /* Ok - report back to driver */
1088 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1089 } else {
1090 s->dmar_enabled = false;
1091
1092 /* Clear the index of Fault Recording Register */
1093 s->next_frcd_reg = 0;
1094 /* Ok - report back to driver */
1095 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1096 }
1097}
1098
1099/* Handle write to Global Command Register */
1100static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1101{
1102 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1103 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1104 uint32_t changed = status ^ val;
1105
1106 VTD_DPRINTF(CSR, "value 0x%"PRIx32 " status 0x%"PRIx32, val, status);
1107 if (changed & VTD_GCMD_TE) {
1108 /* Translation enable/disable */
1109 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1110 }
1111 if (val & VTD_GCMD_SRTP) {
1112 /* Set/update the root-table pointer */
1113 vtd_handle_gcmd_srtp(s);
1114 }
ed7b8fbc
LT
1115 if (changed & VTD_GCMD_QIE) {
1116 /* Queued Invalidation Enable */
1117 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1118 }
1da12ec4
LT
1119}
1120
1121/* Handle write to Context Command Register */
1122static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1123{
1124 uint64_t ret;
1125 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1126
1127 /* Context-cache invalidation request */
1128 if (val & VTD_CCMD_ICC) {
ed7b8fbc
LT
1129 if (s->qi_enabled) {
1130 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1131 "should not use register-based invalidation");
1132 return;
1133 }
1da12ec4
LT
1134 ret = vtd_context_cache_invalidate(s, val);
1135 /* Invalidation completed. Change something to show */
1136 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1137 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1138 ret);
1139 VTD_DPRINTF(INV, "CCMD_REG write-back val: 0x%"PRIx64, ret);
1140 }
1141}
1142
1143/* Handle write to IOTLB Invalidation Register */
1144static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1145{
1146 uint64_t ret;
1147 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1148
1149 /* IOTLB invalidation request */
1150 if (val & VTD_TLB_IVT) {
ed7b8fbc
LT
1151 if (s->qi_enabled) {
1152 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1153 "should not use register-based invalidation");
1154 return;
1155 }
1da12ec4
LT
1156 ret = vtd_iotlb_flush(s, val);
1157 /* Invalidation completed. Change something to show */
1158 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1159 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1160 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1161 VTD_DPRINTF(INV, "IOTLB_REG write-back val: 0x%"PRIx64, ret);
1162 }
1163}
1164
ed7b8fbc
LT
1165/* Fetch an Invalidation Descriptor from the Invalidation Queue */
1166static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1167 VTDInvDesc *inv_desc)
1168{
1169 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1170 if (dma_memory_read(&address_space_memory, addr, inv_desc,
1171 sizeof(*inv_desc))) {
1172 VTD_DPRINTF(GENERAL, "error: fail to fetch Invalidation Descriptor "
1173 "base_addr 0x%"PRIx64 " offset %"PRIu32, base_addr, offset);
1174 inv_desc->lo = 0;
1175 inv_desc->hi = 0;
1176
1177 return false;
1178 }
1179 inv_desc->lo = le64_to_cpu(inv_desc->lo);
1180 inv_desc->hi = le64_to_cpu(inv_desc->hi);
1181 return true;
1182}
1183
1184static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1185{
1186 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1187 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1188 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Invalidation "
1189 "Wait Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1190 inv_desc->hi, inv_desc->lo);
1191 return false;
1192 }
1193 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1194 /* Status Write */
1195 uint32_t status_data = (uint32_t)(inv_desc->lo >>
1196 VTD_INV_DESC_WAIT_DATA_SHIFT);
1197
1198 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1199
1200 /* FIXME: need to be masked with HAW? */
1201 dma_addr_t status_addr = inv_desc->hi;
1202 VTD_DPRINTF(INV, "status data 0x%x, status addr 0x%"PRIx64,
1203 status_data, status_addr);
1204 status_data = cpu_to_le32(status_data);
1205 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1206 sizeof(status_data))) {
1207 VTD_DPRINTF(GENERAL, "error: fail to perform a coherent write");
1208 return false;
1209 }
1210 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1211 /* Interrupt flag */
1212 VTD_DPRINTF(INV, "Invalidation Wait Descriptor interrupt completion");
1213 vtd_generate_completion_event(s);
1214 } else {
1215 VTD_DPRINTF(GENERAL, "error: invalid Invalidation Wait Descriptor: "
1216 "hi 0x%"PRIx64 " lo 0x%"PRIx64, inv_desc->hi, inv_desc->lo);
1217 return false;
1218 }
1219 return true;
1220}
1221
d92fa2dc
LT
1222static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1223 VTDInvDesc *inv_desc)
1224{
1225 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1226 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Context-cache "
1227 "Invalidate Descriptor");
1228 return false;
1229 }
1230 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1231 case VTD_INV_DESC_CC_DOMAIN:
1232 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1233 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1234 /* Fall through */
1235 case VTD_INV_DESC_CC_GLOBAL:
1236 VTD_DPRINTF(INV, "global invalidation");
1237 vtd_context_global_invalidate(s);
1238 break;
1239
1240 case VTD_INV_DESC_CC_DEVICE:
1241 vtd_context_device_invalidate(s, VTD_INV_DESC_CC_SID(inv_desc->lo),
1242 VTD_INV_DESC_CC_FM(inv_desc->lo));
1243 break;
1244
1245 default:
1246 VTD_DPRINTF(GENERAL, "error: invalid granularity in Context-cache "
1247 "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1248 inv_desc->hi, inv_desc->lo);
1249 return false;
1250 }
1251 return true;
1252}
1253
b5a280c0
LT
1254static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1255{
1256 uint16_t domain_id;
1257 uint8_t am;
1258 hwaddr addr;
1259
1260 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1261 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1262 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in IOTLB "
1263 "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1264 inv_desc->hi, inv_desc->lo);
1265 return false;
1266 }
1267
1268 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1269 case VTD_INV_DESC_IOTLB_GLOBAL:
1270 VTD_DPRINTF(INV, "global invalidation");
1271 vtd_iotlb_global_invalidate(s);
1272 break;
1273
1274 case VTD_INV_DESC_IOTLB_DOMAIN:
1275 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1276 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1277 domain_id);
1278 vtd_iotlb_domain_invalidate(s, domain_id);
1279 break;
1280
1281 case VTD_INV_DESC_IOTLB_PAGE:
1282 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1283 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1284 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1285 VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1286 " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1287 if (am > VTD_MAMV) {
1288 VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1289 "%"PRIu8, (uint8_t)VTD_MAMV);
1290 return false;
1291 }
1292 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1293 break;
1294
1295 default:
1296 VTD_DPRINTF(GENERAL, "error: invalid granularity in IOTLB Invalidate "
1297 "Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1298 inv_desc->hi, inv_desc->lo);
1299 return false;
1300 }
1301 return true;
1302}
1303
ed7b8fbc
LT
1304static bool vtd_process_inv_desc(IntelIOMMUState *s)
1305{
1306 VTDInvDesc inv_desc;
1307 uint8_t desc_type;
1308
1309 VTD_DPRINTF(INV, "iq head %"PRIu16, s->iq_head);
1310 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1311 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1312 return false;
1313 }
1314 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1315 /* FIXME: should update at first or at last? */
1316 s->iq_last_desc_type = desc_type;
1317
1318 switch (desc_type) {
1319 case VTD_INV_DESC_CC:
1320 VTD_DPRINTF(INV, "Context-cache Invalidate Descriptor hi 0x%"PRIx64
1321 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
d92fa2dc
LT
1322 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1323 return false;
1324 }
ed7b8fbc
LT
1325 break;
1326
1327 case VTD_INV_DESC_IOTLB:
1328 VTD_DPRINTF(INV, "IOTLB Invalidate Descriptor hi 0x%"PRIx64
1329 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
b5a280c0
LT
1330 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1331 return false;
1332 }
ed7b8fbc
LT
1333 break;
1334
1335 case VTD_INV_DESC_WAIT:
1336 VTD_DPRINTF(INV, "Invalidation Wait Descriptor hi 0x%"PRIx64
1337 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1338 if (!vtd_process_wait_desc(s, &inv_desc)) {
1339 return false;
1340 }
1341 break;
1342
1343 default:
1344 VTD_DPRINTF(GENERAL, "error: unkonw Invalidation Descriptor type "
1345 "hi 0x%"PRIx64 " lo 0x%"PRIx64 " type %"PRIu8,
1346 inv_desc.hi, inv_desc.lo, desc_type);
1347 return false;
1348 }
1349 s->iq_head++;
1350 if (s->iq_head == s->iq_size) {
1351 s->iq_head = 0;
1352 }
1353 return true;
1354}
1355
1356/* Try to fetch and process more Invalidation Descriptors */
1357static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1358{
1359 VTD_DPRINTF(INV, "fetch Invalidation Descriptors");
1360 if (s->iq_tail >= s->iq_size) {
1361 /* Detects an invalid Tail pointer */
1362 VTD_DPRINTF(GENERAL, "error: iq_tail is %"PRIu16
1363 " while iq_size is %"PRIu16, s->iq_tail, s->iq_size);
1364 vtd_handle_inv_queue_error(s);
1365 return;
1366 }
1367 while (s->iq_head != s->iq_tail) {
1368 if (!vtd_process_inv_desc(s)) {
1369 /* Invalidation Queue Errors */
1370 vtd_handle_inv_queue_error(s);
1371 break;
1372 }
1373 /* Must update the IQH_REG in time */
1374 vtd_set_quad_raw(s, DMAR_IQH_REG,
1375 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1376 VTD_IQH_QH_MASK);
1377 }
1378}
1379
1380/* Handle write to Invalidation Queue Tail Register */
1381static void vtd_handle_iqt_write(IntelIOMMUState *s)
1382{
1383 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1384
1385 s->iq_tail = VTD_IQT_QT(val);
1386 VTD_DPRINTF(INV, "set iq tail %"PRIu16, s->iq_tail);
1387 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1388 /* Process Invalidation Queue here */
1389 vtd_fetch_inv_desc(s);
1390 }
1391}
1392
1da12ec4
LT
1393static void vtd_handle_fsts_write(IntelIOMMUState *s)
1394{
1395 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1396 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1397 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1398
1399 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1400 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1401 VTD_DPRINTF(FLOG, "all pending interrupt conditions serviced, clear "
1402 "IP field of FECTL_REG");
1403 }
ed7b8fbc
LT
1404 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1405 * Descriptors if there are any when Queued Invalidation is enabled?
1406 */
1da12ec4
LT
1407}
1408
1409static void vtd_handle_fectl_write(IntelIOMMUState *s)
1410{
1411 uint32_t fectl_reg;
1412 /* FIXME: when software clears the IM field, check the IP field. But do we
1413 * need to compare the old value and the new value to conclude that
1414 * software clears the IM field? Or just check if the IM field is zero?
1415 */
1416 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1417 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1418 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1419 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1420 VTD_DPRINTF(FLOG, "IM field is cleared, generate "
1421 "fault event interrupt");
1422 }
1423}
1424
ed7b8fbc
LT
1425static void vtd_handle_ics_write(IntelIOMMUState *s)
1426{
1427 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1428 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1429
1430 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
1431 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1432 VTD_DPRINTF(INV, "pending completion interrupt condition serviced, "
1433 "clear IP field of IECTL_REG");
1434 }
1435}
1436
1437static void vtd_handle_iectl_write(IntelIOMMUState *s)
1438{
1439 uint32_t iectl_reg;
1440 /* FIXME: when software clears the IM field, check the IP field. But do we
1441 * need to compare the old value and the new value to conclude that
1442 * software clears the IM field? Or just check if the IM field is zero?
1443 */
1444 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1445 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1446 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1447 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1448 VTD_DPRINTF(INV, "IM field is cleared, generate "
1449 "invalidation event interrupt");
1450 }
1451}
1452
1da12ec4
LT
1453static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1454{
1455 IntelIOMMUState *s = opaque;
1456 uint64_t val;
1457
1458 if (addr + size > DMAR_REG_SIZE) {
1459 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1460 ", got 0x%"PRIx64 " %d",
1461 (uint64_t)DMAR_REG_SIZE, addr, size);
1462 return (uint64_t)-1;
1463 }
1464
1465 switch (addr) {
1466 /* Root Table Address Register, 64-bit */
1467 case DMAR_RTADDR_REG:
1468 if (size == 4) {
1469 val = s->root & ((1ULL << 32) - 1);
1470 } else {
1471 val = s->root;
1472 }
1473 break;
1474
1475 case DMAR_RTADDR_REG_HI:
1476 assert(size == 4);
1477 val = s->root >> 32;
1478 break;
1479
ed7b8fbc
LT
1480 /* Invalidation Queue Address Register, 64-bit */
1481 case DMAR_IQA_REG:
1482 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
1483 if (size == 4) {
1484 val = val & ((1ULL << 32) - 1);
1485 }
1486 break;
1487
1488 case DMAR_IQA_REG_HI:
1489 assert(size == 4);
1490 val = s->iq >> 32;
1491 break;
1492
1da12ec4
LT
1493 default:
1494 if (size == 4) {
1495 val = vtd_get_long(s, addr);
1496 } else {
1497 val = vtd_get_quad(s, addr);
1498 }
1499 }
1500 VTD_DPRINTF(CSR, "addr 0x%"PRIx64 " size %d val 0x%"PRIx64,
1501 addr, size, val);
1502 return val;
1503}
1504
1505static void vtd_mem_write(void *opaque, hwaddr addr,
1506 uint64_t val, unsigned size)
1507{
1508 IntelIOMMUState *s = opaque;
1509
1510 if (addr + size > DMAR_REG_SIZE) {
1511 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1512 ", got 0x%"PRIx64 " %d",
1513 (uint64_t)DMAR_REG_SIZE, addr, size);
1514 return;
1515 }
1516
1517 switch (addr) {
1518 /* Global Command Register, 32-bit */
1519 case DMAR_GCMD_REG:
1520 VTD_DPRINTF(CSR, "DMAR_GCMD_REG write addr 0x%"PRIx64
1521 ", size %d, val 0x%"PRIx64, addr, size, val);
1522 vtd_set_long(s, addr, val);
1523 vtd_handle_gcmd_write(s);
1524 break;
1525
1526 /* Context Command Register, 64-bit */
1527 case DMAR_CCMD_REG:
1528 VTD_DPRINTF(CSR, "DMAR_CCMD_REG write addr 0x%"PRIx64
1529 ", size %d, val 0x%"PRIx64, addr, size, val);
1530 if (size == 4) {
1531 vtd_set_long(s, addr, val);
1532 } else {
1533 vtd_set_quad(s, addr, val);
1534 vtd_handle_ccmd_write(s);
1535 }
1536 break;
1537
1538 case DMAR_CCMD_REG_HI:
1539 VTD_DPRINTF(CSR, "DMAR_CCMD_REG_HI write addr 0x%"PRIx64
1540 ", size %d, val 0x%"PRIx64, addr, size, val);
1541 assert(size == 4);
1542 vtd_set_long(s, addr, val);
1543 vtd_handle_ccmd_write(s);
1544 break;
1545
1546 /* IOTLB Invalidation Register, 64-bit */
1547 case DMAR_IOTLB_REG:
1548 VTD_DPRINTF(INV, "DMAR_IOTLB_REG write addr 0x%"PRIx64
1549 ", size %d, val 0x%"PRIx64, addr, size, val);
1550 if (size == 4) {
1551 vtd_set_long(s, addr, val);
1552 } else {
1553 vtd_set_quad(s, addr, val);
1554 vtd_handle_iotlb_write(s);
1555 }
1556 break;
1557
1558 case DMAR_IOTLB_REG_HI:
1559 VTD_DPRINTF(INV, "DMAR_IOTLB_REG_HI write addr 0x%"PRIx64
1560 ", size %d, val 0x%"PRIx64, addr, size, val);
1561 assert(size == 4);
1562 vtd_set_long(s, addr, val);
1563 vtd_handle_iotlb_write(s);
1564 break;
1565
b5a280c0
LT
1566 /* Invalidate Address Register, 64-bit */
1567 case DMAR_IVA_REG:
1568 VTD_DPRINTF(INV, "DMAR_IVA_REG write addr 0x%"PRIx64
1569 ", size %d, val 0x%"PRIx64, addr, size, val);
1570 if (size == 4) {
1571 vtd_set_long(s, addr, val);
1572 } else {
1573 vtd_set_quad(s, addr, val);
1574 }
1575 break;
1576
1577 case DMAR_IVA_REG_HI:
1578 VTD_DPRINTF(INV, "DMAR_IVA_REG_HI write addr 0x%"PRIx64
1579 ", size %d, val 0x%"PRIx64, addr, size, val);
1580 assert(size == 4);
1581 vtd_set_long(s, addr, val);
1582 break;
1583
1da12ec4
LT
1584 /* Fault Status Register, 32-bit */
1585 case DMAR_FSTS_REG:
1586 VTD_DPRINTF(FLOG, "DMAR_FSTS_REG write addr 0x%"PRIx64
1587 ", size %d, val 0x%"PRIx64, addr, size, val);
1588 assert(size == 4);
1589 vtd_set_long(s, addr, val);
1590 vtd_handle_fsts_write(s);
1591 break;
1592
1593 /* Fault Event Control Register, 32-bit */
1594 case DMAR_FECTL_REG:
1595 VTD_DPRINTF(FLOG, "DMAR_FECTL_REG write addr 0x%"PRIx64
1596 ", size %d, val 0x%"PRIx64, addr, size, val);
1597 assert(size == 4);
1598 vtd_set_long(s, addr, val);
1599 vtd_handle_fectl_write(s);
1600 break;
1601
1602 /* Fault Event Data Register, 32-bit */
1603 case DMAR_FEDATA_REG:
1604 VTD_DPRINTF(FLOG, "DMAR_FEDATA_REG write addr 0x%"PRIx64
1605 ", size %d, val 0x%"PRIx64, addr, size, val);
1606 assert(size == 4);
1607 vtd_set_long(s, addr, val);
1608 break;
1609
1610 /* Fault Event Address Register, 32-bit */
1611 case DMAR_FEADDR_REG:
1612 VTD_DPRINTF(FLOG, "DMAR_FEADDR_REG write addr 0x%"PRIx64
1613 ", size %d, val 0x%"PRIx64, addr, size, val);
1614 assert(size == 4);
1615 vtd_set_long(s, addr, val);
1616 break;
1617
1618 /* Fault Event Upper Address Register, 32-bit */
1619 case DMAR_FEUADDR_REG:
1620 VTD_DPRINTF(FLOG, "DMAR_FEUADDR_REG write addr 0x%"PRIx64
1621 ", size %d, val 0x%"PRIx64, addr, size, val);
1622 assert(size == 4);
1623 vtd_set_long(s, addr, val);
1624 break;
1625
1626 /* Protected Memory Enable Register, 32-bit */
1627 case DMAR_PMEN_REG:
1628 VTD_DPRINTF(CSR, "DMAR_PMEN_REG write addr 0x%"PRIx64
1629 ", size %d, val 0x%"PRIx64, addr, size, val);
1630 assert(size == 4);
1631 vtd_set_long(s, addr, val);
1632 break;
1633
1634 /* Root Table Address Register, 64-bit */
1635 case DMAR_RTADDR_REG:
1636 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG write addr 0x%"PRIx64
1637 ", size %d, val 0x%"PRIx64, addr, size, val);
1638 if (size == 4) {
1639 vtd_set_long(s, addr, val);
1640 } else {
1641 vtd_set_quad(s, addr, val);
1642 }
1643 break;
1644
1645 case DMAR_RTADDR_REG_HI:
1646 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG_HI write addr 0x%"PRIx64
1647 ", size %d, val 0x%"PRIx64, addr, size, val);
1648 assert(size == 4);
1649 vtd_set_long(s, addr, val);
1650 break;
1651
ed7b8fbc
LT
1652 /* Invalidation Queue Tail Register, 64-bit */
1653 case DMAR_IQT_REG:
1654 VTD_DPRINTF(INV, "DMAR_IQT_REG write addr 0x%"PRIx64
1655 ", size %d, val 0x%"PRIx64, addr, size, val);
1656 if (size == 4) {
1657 vtd_set_long(s, addr, val);
1658 } else {
1659 vtd_set_quad(s, addr, val);
1660 }
1661 vtd_handle_iqt_write(s);
1662 break;
1663
1664 case DMAR_IQT_REG_HI:
1665 VTD_DPRINTF(INV, "DMAR_IQT_REG_HI write addr 0x%"PRIx64
1666 ", size %d, val 0x%"PRIx64, addr, size, val);
1667 assert(size == 4);
1668 vtd_set_long(s, addr, val);
1669 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
1670 break;
1671
1672 /* Invalidation Queue Address Register, 64-bit */
1673 case DMAR_IQA_REG:
1674 VTD_DPRINTF(INV, "DMAR_IQA_REG write addr 0x%"PRIx64
1675 ", size %d, val 0x%"PRIx64, addr, size, val);
1676 if (size == 4) {
1677 vtd_set_long(s, addr, val);
1678 } else {
1679 vtd_set_quad(s, addr, val);
1680 }
1681 break;
1682
1683 case DMAR_IQA_REG_HI:
1684 VTD_DPRINTF(INV, "DMAR_IQA_REG_HI write addr 0x%"PRIx64
1685 ", size %d, val 0x%"PRIx64, addr, size, val);
1686 assert(size == 4);
1687 vtd_set_long(s, addr, val);
1688 break;
1689
1690 /* Invalidation Completion Status Register, 32-bit */
1691 case DMAR_ICS_REG:
1692 VTD_DPRINTF(INV, "DMAR_ICS_REG write addr 0x%"PRIx64
1693 ", size %d, val 0x%"PRIx64, addr, size, val);
1694 assert(size == 4);
1695 vtd_set_long(s, addr, val);
1696 vtd_handle_ics_write(s);
1697 break;
1698
1699 /* Invalidation Event Control Register, 32-bit */
1700 case DMAR_IECTL_REG:
1701 VTD_DPRINTF(INV, "DMAR_IECTL_REG write addr 0x%"PRIx64
1702 ", size %d, val 0x%"PRIx64, addr, size, val);
1703 assert(size == 4);
1704 vtd_set_long(s, addr, val);
1705 vtd_handle_iectl_write(s);
1706 break;
1707
1708 /* Invalidation Event Data Register, 32-bit */
1709 case DMAR_IEDATA_REG:
1710 VTD_DPRINTF(INV, "DMAR_IEDATA_REG write addr 0x%"PRIx64
1711 ", size %d, val 0x%"PRIx64, addr, size, val);
1712 assert(size == 4);
1713 vtd_set_long(s, addr, val);
1714 break;
1715
1716 /* Invalidation Event Address Register, 32-bit */
1717 case DMAR_IEADDR_REG:
1718 VTD_DPRINTF(INV, "DMAR_IEADDR_REG write addr 0x%"PRIx64
1719 ", size %d, val 0x%"PRIx64, addr, size, val);
1720 assert(size == 4);
1721 vtd_set_long(s, addr, val);
1722 break;
1723
1724 /* Invalidation Event Upper Address Register, 32-bit */
1725 case DMAR_IEUADDR_REG:
1726 VTD_DPRINTF(INV, "DMAR_IEUADDR_REG write addr 0x%"PRIx64
1727 ", size %d, val 0x%"PRIx64, addr, size, val);
1728 assert(size == 4);
1729 vtd_set_long(s, addr, val);
1730 break;
1731
1da12ec4
LT
1732 /* Fault Recording Registers, 128-bit */
1733 case DMAR_FRCD_REG_0_0:
1734 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_0 write addr 0x%"PRIx64
1735 ", size %d, val 0x%"PRIx64, addr, size, val);
1736 if (size == 4) {
1737 vtd_set_long(s, addr, val);
1738 } else {
1739 vtd_set_quad(s, addr, val);
1740 }
1741 break;
1742
1743 case DMAR_FRCD_REG_0_1:
1744 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_1 write addr 0x%"PRIx64
1745 ", size %d, val 0x%"PRIx64, addr, size, val);
1746 assert(size == 4);
1747 vtd_set_long(s, addr, val);
1748 break;
1749
1750 case DMAR_FRCD_REG_0_2:
1751 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_2 write addr 0x%"PRIx64
1752 ", size %d, val 0x%"PRIx64, addr, size, val);
1753 if (size == 4) {
1754 vtd_set_long(s, addr, val);
1755 } else {
1756 vtd_set_quad(s, addr, val);
1757 /* May clear bit 127 (Fault), update PPF */
1758 vtd_update_fsts_ppf(s);
1759 }
1760 break;
1761
1762 case DMAR_FRCD_REG_0_3:
1763 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_3 write addr 0x%"PRIx64
1764 ", size %d, val 0x%"PRIx64, addr, size, val);
1765 assert(size == 4);
1766 vtd_set_long(s, addr, val);
1767 /* May clear bit 127 (Fault), update PPF */
1768 vtd_update_fsts_ppf(s);
1769 break;
1770
1771 default:
1772 VTD_DPRINTF(GENERAL, "error: unhandled reg write addr 0x%"PRIx64
1773 ", size %d, val 0x%"PRIx64, addr, size, val);
1774 if (size == 4) {
1775 vtd_set_long(s, addr, val);
1776 } else {
1777 vtd_set_quad(s, addr, val);
1778 }
1779 }
1780}
1781
1782static IOMMUTLBEntry vtd_iommu_translate(MemoryRegion *iommu, hwaddr addr,
1783 bool is_write)
1784{
1785 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
1786 IntelIOMMUState *s = vtd_as->iommu_state;
1da12ec4
LT
1787 IOMMUTLBEntry ret = {
1788 .target_as = &address_space_memory,
1789 .iova = addr,
1790 .translated_addr = 0,
1791 .addr_mask = ~(hwaddr)0,
1792 .perm = IOMMU_NONE,
1793 };
1794
1795 if (!s->dmar_enabled) {
1796 /* DMAR disabled, passthrough, use 4k-page*/
1797 ret.iova = addr & VTD_PAGE_MASK_4K;
1798 ret.translated_addr = addr & VTD_PAGE_MASK_4K;
1799 ret.addr_mask = ~VTD_PAGE_MASK_4K;
1800 ret.perm = IOMMU_RW;
1801 return ret;
1802 }
1803
d92fa2dc
LT
1804 vtd_do_iommu_translate(vtd_as, vtd_as->bus_num, vtd_as->devfn, addr,
1805 is_write, &ret);
1da12ec4
LT
1806 VTD_DPRINTF(MMU,
1807 "bus %"PRIu8 " slot %"PRIu8 " func %"PRIu8 " devfn %"PRIu8
d92fa2dc
LT
1808 " gpa 0x%"PRIx64 " hpa 0x%"PRIx64, vtd_as->bus_num,
1809 VTD_PCI_SLOT(vtd_as->devfn), VTD_PCI_FUNC(vtd_as->devfn),
1810 vtd_as->devfn, addr, ret.translated_addr);
1da12ec4
LT
1811 return ret;
1812}
1813
1814static const VMStateDescription vtd_vmstate = {
1815 .name = "iommu-intel",
1816 .unmigratable = 1,
1817};
1818
1819static const MemoryRegionOps vtd_mem_ops = {
1820 .read = vtd_mem_read,
1821 .write = vtd_mem_write,
1822 .endianness = DEVICE_LITTLE_ENDIAN,
1823 .impl = {
1824 .min_access_size = 4,
1825 .max_access_size = 8,
1826 },
1827 .valid = {
1828 .min_access_size = 4,
1829 .max_access_size = 8,
1830 },
1831};
1832
1833static Property vtd_properties[] = {
1834 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
1835 DEFINE_PROP_END_OF_LIST(),
1836};
1837
1838/* Do the initialization. It will also be called when reset, so pay
1839 * attention when adding new initialization stuff.
1840 */
1841static void vtd_init(IntelIOMMUState *s)
1842{
1843 memset(s->csr, 0, DMAR_REG_SIZE);
1844 memset(s->wmask, 0, DMAR_REG_SIZE);
1845 memset(s->w1cmask, 0, DMAR_REG_SIZE);
1846 memset(s->womask, 0, DMAR_REG_SIZE);
1847
1848 s->iommu_ops.translate = vtd_iommu_translate;
1849 s->root = 0;
1850 s->root_extended = false;
1851 s->dmar_enabled = false;
1852 s->iq_head = 0;
1853 s->iq_tail = 0;
1854 s->iq = 0;
1855 s->iq_size = 0;
1856 s->qi_enabled = false;
1857 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1858 s->next_frcd_reg = 0;
1859 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW |
b5a280c0 1860 VTD_CAP_SAGAW | VTD_CAP_MAMV | VTD_CAP_PSI;
ed7b8fbc 1861 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
1da12ec4 1862
d92fa2dc 1863 vtd_reset_context_cache(s);
b5a280c0 1864 vtd_reset_iotlb(s);
d92fa2dc 1865
1da12ec4
LT
1866 /* Define registers with default values and bit semantics */
1867 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
1868 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
1869 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
1870 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
1871 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
1872 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
1873 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
1874 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
1875 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
1876
1877 /* Advanced Fault Logging not supported */
1878 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
1879 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
1880 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
1881 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
1882
1883 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
1884 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
1885 */
1886 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
1887
1888 /* Treated as RO for implementations that PLMR and PHMR fields reported
1889 * as Clear in the CAP_REG.
1890 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
1891 */
1892 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
1893
ed7b8fbc
LT
1894 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
1895 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
1896 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
1897 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
1898 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
1899 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
1900 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
1901 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
1902 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
1903
1da12ec4
LT
1904 /* IOTLB registers */
1905 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
1906 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
1907 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
1908
1909 /* Fault Recording Registers, 128-bit */
1910 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
1911 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
1912}
1913
1914/* Should not reset address_spaces when reset because devices will still use
1915 * the address space they got at first (won't ask the bus again).
1916 */
1917static void vtd_reset(DeviceState *dev)
1918{
1919 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
1920
1921 VTD_DPRINTF(GENERAL, "");
1922 vtd_init(s);
1923}
1924
1925static void vtd_realize(DeviceState *dev, Error **errp)
1926{
1927 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
1928
1929 VTD_DPRINTF(GENERAL, "");
1930 memset(s->address_spaces, 0, sizeof(s->address_spaces));
1931 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
1932 "intel_iommu", DMAR_REG_SIZE);
1933 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
b5a280c0
LT
1934 /* No corresponding destroy */
1935 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
1936 g_free, g_free);
1da12ec4
LT
1937 vtd_init(s);
1938}
1939
1940static void vtd_class_init(ObjectClass *klass, void *data)
1941{
1942 DeviceClass *dc = DEVICE_CLASS(klass);
1943
1944 dc->reset = vtd_reset;
1945 dc->realize = vtd_realize;
1946 dc->vmsd = &vtd_vmstate;
1947 dc->props = vtd_properties;
1948}
1949
1950static const TypeInfo vtd_info = {
1951 .name = TYPE_INTEL_IOMMU_DEVICE,
1952 .parent = TYPE_SYS_BUS_DEVICE,
1953 .instance_size = sizeof(IntelIOMMUState),
1954 .class_init = vtd_class_init,
1955};
1956
1957static void vtd_register_types(void)
1958{
1959 VTD_DPRINTF(GENERAL, "");
1960 type_register_static(&vtd_info);
1961}
1962
1963type_init(vtd_register_types)