]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
fix return check for KVM_GET_DIRTY_LOG ioctl
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
83195237 38* QEMU User space emulator::
debc7065 39* compilation:: Compilation from the sources
7544a042 40* License::
debc7065
FB
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
386405f7
FB
48@chapter Introduction
49
debc7065
FB
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
322d0c66 55@section Features
386405f7 56
1f673135
FB
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
1eb20527
FB
59
60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex operating modes
0806e3f6 64
5fafdf24 65@item
7544a042 66@cindex system emulation
1f673135 67Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
5fafdf24 72@item
7544a042 73@cindex user mode emulation
83195237
FB
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
e1b4382c 81QEMU can run without a host kernel driver and yet gives acceptable
5fafdf24 82performance.
322d0c66 83
52c00a5f
FB
84For system emulation, the following hardware targets are supported:
85@itemize
7544a042
SW
86@cindex emulated target systems
87@cindex supported target systems
9d0a8e6f 88@item PC (x86 or x86_64 processor)
3f9f3aa1 89@item ISA PC (old style PC without PCI bus)
52c00a5f 90@item PREP (PowerPC processor)
d45952a0 91@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 92@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 95@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 96@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
0ef849d7 99@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 103@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 105@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 106@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 107@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
48c50a62
EI
110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
3aeaea65 112@item Avnet LX60/LX110/LX200 boards (Xtensa)
52c00a5f 113@end itemize
386405f7 114
7544a042
SW
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 119
debc7065 120@node Installation
5b9f457a
FB
121@chapter Installation
122
15a34c63
FB
123If you want to compile QEMU yourself, see @ref{compilation}.
124
debc7065
FB
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
1f673135 132@section Linux
7544a042 133@cindex installation (Linux)
1f673135 134
7c3fc84d
FB
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
5b9f457a 137
debc7065 138@node install_windows
1f673135 139@section Windows
7544a042 140@cindex installation (Windows)
8cd0ac2f 141
15a34c63 142Download the experimental binary installer at
debc7065 143@url{http://www.free.oszoo.org/@/download.html}.
7544a042 144TODO (no longer available)
d691f669 145
debc7065 146@node install_mac
1f673135 147@section Mac OS X
d691f669 148
15a34c63 149Download the experimental binary installer at
debc7065 150@url{http://www.free.oszoo.org/@/download.html}.
7544a042 151TODO (no longer available)
df0f11a0 152
debc7065 153@node QEMU PC System emulator
3f9f3aa1 154@chapter QEMU PC System emulator
7544a042 155@cindex system emulation (PC)
1eb20527 156
debc7065
FB
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
576fd0a1 165* pcsys_other_devs:: Other Devices
debc7065
FB
166* direct_linux_boot:: Direct Linux Boot
167* pcsys_usb:: USB emulation
f858dcae 168* vnc_security:: VNC security
debc7065
FB
169* gdb_usage:: GDB usage
170* pcsys_os_specific:: Target OS specific information
171@end menu
172
173@node pcsys_introduction
0806e3f6
FB
174@section Introduction
175
176@c man begin DESCRIPTION
177
3f9f3aa1
FB
178The QEMU PC System emulator simulates the
179following peripherals:
0806e3f6
FB
180
181@itemize @minus
5fafdf24 182@item
15a34c63 183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 184@item
15a34c63
FB
185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186extensions (hardware level, including all non standard modes).
0806e3f6
FB
187@item
188PS/2 mouse and keyboard
5fafdf24 189@item
15a34c63 1902 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
191@item
192Floppy disk
5fafdf24 193@item
3a2eeac0 194PCI and ISA network adapters
0806e3f6 195@item
05d5818c
FB
196Serial ports
197@item
c0fe3827
FB
198Creative SoundBlaster 16 sound card
199@item
200ENSONIQ AudioPCI ES1370 sound card
201@item
e5c9a13e
AZ
202Intel 82801AA AC97 Audio compatible sound card
203@item
7d72e762
GH
204Intel HD Audio Controller and HDA codec
205@item
2d983446 206Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 207@item
26463dbc
AZ
208Gravis Ultrasound GF1 sound card
209@item
cc53d26d 210CS4231A compatible sound card
211@item
b389dbfb 212PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
213@end itemize
214
3f9f3aa1
FB
215SMP is supported with up to 255 CPUs.
216
a8ad4159 217QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
218VGA BIOS.
219
c0fe3827
FB
220QEMU uses YM3812 emulation by Tatsuyuki Satoh.
221
2d983446 222QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 223by Tibor "TS" Schütz.
423d65f4 224
1a1a0e20 225Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 226QEMU must be told to not have parallel ports to have working GUS.
720036a5 227
228@example
3804da9d 229qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 230@end example
231
232Alternatively:
233@example
3804da9d 234qemu-system-i386 dos.img -device gus,irq=5
720036a5 235@end example
236
237Or some other unclaimed IRQ.
238
cc53d26d 239CS4231A is the chip used in Windows Sound System and GUSMAX products
240
0806e3f6
FB
241@c man end
242
debc7065 243@node pcsys_quickstart
1eb20527 244@section Quick Start
7544a042 245@cindex quick start
1eb20527 246
285dc330 247Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
248
249@example
3804da9d 250qemu-system-i386 linux.img
0806e3f6
FB
251@end example
252
253Linux should boot and give you a prompt.
254
6cc721cf 255@node sec_invocation
ec410fc9
FB
256@section Invocation
257
258@example
0806e3f6 259@c man begin SYNOPSIS
3804da9d 260usage: qemu-system-i386 [options] [@var{disk_image}]
0806e3f6 261@c man end
ec410fc9
FB
262@end example
263
0806e3f6 264@c man begin OPTIONS
d2c639d6
BS
265@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
266targets do not need a disk image.
ec410fc9 267
5824d651 268@include qemu-options.texi
ec410fc9 269
3e11db9a
FB
270@c man end
271
debc7065 272@node pcsys_keys
3e11db9a
FB
273@section Keys
274
275@c man begin OPTIONS
276
de1db2a1
BH
277During the graphical emulation, you can use special key combinations to change
278modes. The default key mappings are shown below, but if you use @code{-alt-grab}
279then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
280@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
281
a1b74fe8 282@table @key
f9859310 283@item Ctrl-Alt-f
7544a042 284@kindex Ctrl-Alt-f
a1b74fe8 285Toggle full screen
a0a821a4 286
d6a65ba3
JK
287@item Ctrl-Alt-+
288@kindex Ctrl-Alt-+
289Enlarge the screen
290
291@item Ctrl-Alt--
292@kindex Ctrl-Alt--
293Shrink the screen
294
c4a735f9 295@item Ctrl-Alt-u
7544a042 296@kindex Ctrl-Alt-u
c4a735f9 297Restore the screen's un-scaled dimensions
298
f9859310 299@item Ctrl-Alt-n
7544a042 300@kindex Ctrl-Alt-n
a0a821a4
FB
301Switch to virtual console 'n'. Standard console mappings are:
302@table @emph
303@item 1
304Target system display
305@item 2
306Monitor
307@item 3
308Serial port
a1b74fe8
FB
309@end table
310
f9859310 311@item Ctrl-Alt
7544a042 312@kindex Ctrl-Alt
a0a821a4
FB
313Toggle mouse and keyboard grab.
314@end table
315
7544a042
SW
316@kindex Ctrl-Up
317@kindex Ctrl-Down
318@kindex Ctrl-PageUp
319@kindex Ctrl-PageDown
3e11db9a
FB
320In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
321@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
322
7544a042 323@kindex Ctrl-a h
a0a821a4
FB
324During emulation, if you are using the @option{-nographic} option, use
325@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
326
327@table @key
a1b74fe8 328@item Ctrl-a h
7544a042 329@kindex Ctrl-a h
d2c639d6 330@item Ctrl-a ?
7544a042 331@kindex Ctrl-a ?
ec410fc9 332Print this help
3b46e624 333@item Ctrl-a x
7544a042 334@kindex Ctrl-a x
366dfc52 335Exit emulator
3b46e624 336@item Ctrl-a s
7544a042 337@kindex Ctrl-a s
1f47a922 338Save disk data back to file (if -snapshot)
20d8a3ed 339@item Ctrl-a t
7544a042 340@kindex Ctrl-a t
d2c639d6 341Toggle console timestamps
a1b74fe8 342@item Ctrl-a b
7544a042 343@kindex Ctrl-a b
1f673135 344Send break (magic sysrq in Linux)
a1b74fe8 345@item Ctrl-a c
7544a042 346@kindex Ctrl-a c
1f673135 347Switch between console and monitor
a1b74fe8 348@item Ctrl-a Ctrl-a
7544a042 349@kindex Ctrl-a a
a1b74fe8 350Send Ctrl-a
ec410fc9 351@end table
0806e3f6
FB
352@c man end
353
354@ignore
355
1f673135
FB
356@c man begin SEEALSO
357The HTML documentation of QEMU for more precise information and Linux
358user mode emulator invocation.
359@c man end
360
361@c man begin AUTHOR
362Fabrice Bellard
363@c man end
364
365@end ignore
366
debc7065 367@node pcsys_monitor
1f673135 368@section QEMU Monitor
7544a042 369@cindex QEMU monitor
1f673135
FB
370
371The QEMU monitor is used to give complex commands to the QEMU
372emulator. You can use it to:
373
374@itemize @minus
375
376@item
e598752a 377Remove or insert removable media images
89dfe898 378(such as CD-ROM or floppies).
1f673135 379
5fafdf24 380@item
1f673135
FB
381Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
382from a disk file.
383
384@item Inspect the VM state without an external debugger.
385
386@end itemize
387
388@subsection Commands
389
390The following commands are available:
391
2313086a 392@include qemu-monitor.texi
0806e3f6 393
1f673135
FB
394@subsection Integer expressions
395
396The monitor understands integers expressions for every integer
397argument. You can use register names to get the value of specifics
398CPU registers by prefixing them with @emph{$}.
ec410fc9 399
1f47a922
FB
400@node disk_images
401@section Disk Images
402
acd935ef
FB
403Since version 0.6.1, QEMU supports many disk image formats, including
404growable disk images (their size increase as non empty sectors are
13a2e80f
FB
405written), compressed and encrypted disk images. Version 0.8.3 added
406the new qcow2 disk image format which is essential to support VM
407snapshots.
1f47a922 408
debc7065
FB
409@menu
410* disk_images_quickstart:: Quick start for disk image creation
411* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 412* vm_snapshots:: VM snapshots
debc7065 413* qemu_img_invocation:: qemu-img Invocation
975b092b 414* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 415* disk_images_formats:: Disk image file formats
19cb3738 416* host_drives:: Using host drives
debc7065 417* disk_images_fat_images:: Virtual FAT disk images
75818250 418* disk_images_nbd:: NBD access
42af9c30 419* disk_images_sheepdog:: Sheepdog disk images
00984e39 420* disk_images_iscsi:: iSCSI LUNs
8809e289 421* disk_images_gluster:: GlusterFS disk images
0a12ec87 422* disk_images_ssh:: Secure Shell (ssh) disk images
debc7065
FB
423@end menu
424
425@node disk_images_quickstart
acd935ef
FB
426@subsection Quick start for disk image creation
427
428You can create a disk image with the command:
1f47a922 429@example
acd935ef 430qemu-img create myimage.img mysize
1f47a922 431@end example
acd935ef
FB
432where @var{myimage.img} is the disk image filename and @var{mysize} is its
433size in kilobytes. You can add an @code{M} suffix to give the size in
434megabytes and a @code{G} suffix for gigabytes.
435
debc7065 436See @ref{qemu_img_invocation} for more information.
1f47a922 437
debc7065 438@node disk_images_snapshot_mode
1f47a922
FB
439@subsection Snapshot mode
440
441If you use the option @option{-snapshot}, all disk images are
442considered as read only. When sectors in written, they are written in
443a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
444write back to the raw disk images by using the @code{commit} monitor
445command (or @key{C-a s} in the serial console).
1f47a922 446
13a2e80f
FB
447@node vm_snapshots
448@subsection VM snapshots
449
450VM snapshots are snapshots of the complete virtual machine including
451CPU state, RAM, device state and the content of all the writable
452disks. In order to use VM snapshots, you must have at least one non
453removable and writable block device using the @code{qcow2} disk image
454format. Normally this device is the first virtual hard drive.
455
456Use the monitor command @code{savevm} to create a new VM snapshot or
457replace an existing one. A human readable name can be assigned to each
19d36792 458snapshot in addition to its numerical ID.
13a2e80f
FB
459
460Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
461a VM snapshot. @code{info snapshots} lists the available snapshots
462with their associated information:
463
464@example
465(qemu) info snapshots
466Snapshot devices: hda
467Snapshot list (from hda):
468ID TAG VM SIZE DATE VM CLOCK
4691 start 41M 2006-08-06 12:38:02 00:00:14.954
4702 40M 2006-08-06 12:43:29 00:00:18.633
4713 msys 40M 2006-08-06 12:44:04 00:00:23.514
472@end example
473
474A VM snapshot is made of a VM state info (its size is shown in
475@code{info snapshots}) and a snapshot of every writable disk image.
476The VM state info is stored in the first @code{qcow2} non removable
477and writable block device. The disk image snapshots are stored in
478every disk image. The size of a snapshot in a disk image is difficult
479to evaluate and is not shown by @code{info snapshots} because the
480associated disk sectors are shared among all the snapshots to save
19d36792
FB
481disk space (otherwise each snapshot would need a full copy of all the
482disk images).
13a2e80f
FB
483
484When using the (unrelated) @code{-snapshot} option
485(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
486but they are deleted as soon as you exit QEMU.
487
488VM snapshots currently have the following known limitations:
489@itemize
5fafdf24 490@item
13a2e80f
FB
491They cannot cope with removable devices if they are removed or
492inserted after a snapshot is done.
5fafdf24 493@item
13a2e80f
FB
494A few device drivers still have incomplete snapshot support so their
495state is not saved or restored properly (in particular USB).
496@end itemize
497
acd935ef
FB
498@node qemu_img_invocation
499@subsection @code{qemu-img} Invocation
1f47a922 500
acd935ef 501@include qemu-img.texi
05efe46e 502
975b092b
TS
503@node qemu_nbd_invocation
504@subsection @code{qemu-nbd} Invocation
505
506@include qemu-nbd.texi
507
d3067b02
KW
508@node disk_images_formats
509@subsection Disk image file formats
510
511QEMU supports many image file formats that can be used with VMs as well as with
512any of the tools (like @code{qemu-img}). This includes the preferred formats
513raw and qcow2 as well as formats that are supported for compatibility with
514older QEMU versions or other hypervisors.
515
516Depending on the image format, different options can be passed to
517@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
518This section describes each format and the options that are supported for it.
519
520@table @option
521@item raw
522
523Raw disk image format. This format has the advantage of
524being simple and easily exportable to all other emulators. If your
525file system supports @emph{holes} (for example in ext2 or ext3 on
526Linux or NTFS on Windows), then only the written sectors will reserve
527space. Use @code{qemu-img info} to know the real size used by the
528image or @code{ls -ls} on Unix/Linux.
529
530@item qcow2
531QEMU image format, the most versatile format. Use it to have smaller
532images (useful if your filesystem does not supports holes, for example
533on Windows), optional AES encryption, zlib based compression and
534support of multiple VM snapshots.
535
536Supported options:
537@table @code
538@item compat
7fa9e1f9
SH
539Determines the qcow2 version to use. @code{compat=0.10} uses the
540traditional image format that can be read by any QEMU since 0.10.
d3067b02 541@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
7fa9e1f9
SH
542newer understand (this is the default). Amongst others, this includes
543zero clusters, which allow efficient copy-on-read for sparse images.
d3067b02
KW
544
545@item backing_file
546File name of a base image (see @option{create} subcommand)
547@item backing_fmt
548Image format of the base image
549@item encryption
136cd19d 550If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
d3067b02 551
136cd19d
DB
552The use of encryption in qcow and qcow2 images is considered to be flawed by
553modern cryptography standards, suffering from a number of design problems:
554
555@itemize @minus
556@item The AES-CBC cipher is used with predictable initialization vectors based
557on the sector number. This makes it vulnerable to chosen plaintext attacks
558which can reveal the existence of encrypted data.
559@item The user passphrase is directly used as the encryption key. A poorly
560chosen or short passphrase will compromise the security of the encryption.
561@item In the event of the passphrase being compromised there is no way to
562change the passphrase to protect data in any qcow images. The files must
563be cloned, using a different encryption passphrase in the new file. The
564original file must then be securely erased using a program like shred,
565though even this is ineffective with many modern storage technologies.
566@end itemize
567
568Use of qcow / qcow2 encryption is thus strongly discouraged. Users are
569recommended to use an alternative encryption technology such as the
570Linux dm-crypt / LUKS system.
d3067b02
KW
571
572@item cluster_size
573Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
574sizes can improve the image file size whereas larger cluster sizes generally
575provide better performance.
576
577@item preallocation
578Preallocation mode (allowed values: off, metadata). An image with preallocated
579metadata is initially larger but can improve performance when the image needs
580to grow.
581
582@item lazy_refcounts
583If this option is set to @code{on}, reference count updates are postponed with
584the goal of avoiding metadata I/O and improving performance. This is
585particularly interesting with @option{cache=writethrough} which doesn't batch
586metadata updates. The tradeoff is that after a host crash, the reference count
587tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
588check -r all} is required, which may take some time.
589
590This option can only be enabled if @code{compat=1.1} is specified.
591
592@end table
593
594@item qed
595Old QEMU image format with support for backing files and compact image files
596(when your filesystem or transport medium does not support holes).
597
598When converting QED images to qcow2, you might want to consider using the
599@code{lazy_refcounts=on} option to get a more QED-like behaviour.
600
601Supported options:
602@table @code
603@item backing_file
604File name of a base image (see @option{create} subcommand).
605@item backing_fmt
606Image file format of backing file (optional). Useful if the format cannot be
607autodetected because it has no header, like some vhd/vpc files.
608@item cluster_size
609Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
610cluster sizes can improve the image file size whereas larger cluster sizes
611generally provide better performance.
612@item table_size
613Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
614and 16). There is normally no need to change this value but this option can be
615used for performance benchmarking.
616@end table
617
618@item qcow
619Old QEMU image format with support for backing files, compact image files,
620encryption and compression.
621
622Supported options:
623@table @code
624@item backing_file
625File name of a base image (see @option{create} subcommand)
626@item encryption
627If this option is set to @code{on}, the image is encrypted.
628@end table
629
630@item cow
631User Mode Linux Copy On Write image format. It is supported only for
632compatibility with previous versions.
633Supported options:
634@table @code
635@item backing_file
636File name of a base image (see @option{create} subcommand)
637@end table
638
639@item vdi
640VirtualBox 1.1 compatible image format.
641Supported options:
642@table @code
643@item static
644If this option is set to @code{on}, the image is created with metadata
645preallocation.
646@end table
647
648@item vmdk
649VMware 3 and 4 compatible image format.
650
651Supported options:
652@table @code
653@item backing_file
654File name of a base image (see @option{create} subcommand).
655@item compat6
656Create a VMDK version 6 image (instead of version 4)
657@item subformat
658Specifies which VMDK subformat to use. Valid options are
659@code{monolithicSparse} (default),
660@code{monolithicFlat},
661@code{twoGbMaxExtentSparse},
662@code{twoGbMaxExtentFlat} and
663@code{streamOptimized}.
664@end table
665
666@item vpc
667VirtualPC compatible image format (VHD).
668Supported options:
669@table @code
670@item subformat
671Specifies which VHD subformat to use. Valid options are
672@code{dynamic} (default) and @code{fixed}.
673@end table
8282db1b
JC
674
675@item VHDX
676Hyper-V compatible image format (VHDX).
677Supported options:
678@table @code
679@item subformat
680Specifies which VHDX subformat to use. Valid options are
681@code{dynamic} (default) and @code{fixed}.
682@item block_state_zero
683Force use of payload blocks of type 'ZERO'.
684@item block_size
685Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
686@item log_size
687Log size; min 1 MB.
688@end table
d3067b02
KW
689@end table
690
691@subsubsection Read-only formats
692More disk image file formats are supported in a read-only mode.
693@table @option
694@item bochs
695Bochs images of @code{growing} type.
696@item cloop
697Linux Compressed Loop image, useful only to reuse directly compressed
698CD-ROM images present for example in the Knoppix CD-ROMs.
699@item dmg
700Apple disk image.
701@item parallels
702Parallels disk image format.
703@end table
704
705
19cb3738
FB
706@node host_drives
707@subsection Using host drives
708
709In addition to disk image files, QEMU can directly access host
710devices. We describe here the usage for QEMU version >= 0.8.3.
711
712@subsubsection Linux
713
714On Linux, you can directly use the host device filename instead of a
4be456f1 715disk image filename provided you have enough privileges to access
19cb3738
FB
716it. For example, use @file{/dev/cdrom} to access to the CDROM or
717@file{/dev/fd0} for the floppy.
718
f542086d 719@table @code
19cb3738
FB
720@item CD
721You can specify a CDROM device even if no CDROM is loaded. QEMU has
722specific code to detect CDROM insertion or removal. CDROM ejection by
723the guest OS is supported. Currently only data CDs are supported.
724@item Floppy
725You can specify a floppy device even if no floppy is loaded. Floppy
726removal is currently not detected accurately (if you change floppy
727without doing floppy access while the floppy is not loaded, the guest
728OS will think that the same floppy is loaded).
729@item Hard disks
730Hard disks can be used. Normally you must specify the whole disk
731(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
732see it as a partitioned disk. WARNING: unless you know what you do, it
733is better to only make READ-ONLY accesses to the hard disk otherwise
734you may corrupt your host data (use the @option{-snapshot} command
735line option or modify the device permissions accordingly).
736@end table
737
738@subsubsection Windows
739
01781963
FB
740@table @code
741@item CD
4be456f1 742The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
743alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
744supported as an alias to the first CDROM drive.
19cb3738 745
e598752a 746Currently there is no specific code to handle removable media, so it
19cb3738
FB
747is better to use the @code{change} or @code{eject} monitor commands to
748change or eject media.
01781963 749@item Hard disks
89dfe898 750Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
751where @var{N} is the drive number (0 is the first hard disk).
752
753WARNING: unless you know what you do, it is better to only make
754READ-ONLY accesses to the hard disk otherwise you may corrupt your
755host data (use the @option{-snapshot} command line so that the
756modifications are written in a temporary file).
757@end table
758
19cb3738
FB
759
760@subsubsection Mac OS X
761
5fafdf24 762@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 763
e598752a 764Currently there is no specific code to handle removable media, so it
19cb3738
FB
765is better to use the @code{change} or @code{eject} monitor commands to
766change or eject media.
767
debc7065 768@node disk_images_fat_images
2c6cadd4
FB
769@subsection Virtual FAT disk images
770
771QEMU can automatically create a virtual FAT disk image from a
772directory tree. In order to use it, just type:
773
5fafdf24 774@example
3804da9d 775qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
776@end example
777
778Then you access access to all the files in the @file{/my_directory}
779directory without having to copy them in a disk image or to export
780them via SAMBA or NFS. The default access is @emph{read-only}.
781
782Floppies can be emulated with the @code{:floppy:} option:
783
5fafdf24 784@example
3804da9d 785qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
786@end example
787
788A read/write support is available for testing (beta stage) with the
789@code{:rw:} option:
790
5fafdf24 791@example
3804da9d 792qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
793@end example
794
795What you should @emph{never} do:
796@itemize
797@item use non-ASCII filenames ;
798@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
799@item expect it to work when loadvm'ing ;
800@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
801@end itemize
802
75818250
TS
803@node disk_images_nbd
804@subsection NBD access
805
806QEMU can access directly to block device exported using the Network Block Device
807protocol.
808
809@example
1d7d2a9d 810qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
811@end example
812
813If the NBD server is located on the same host, you can use an unix socket instead
814of an inet socket:
815
816@example
1d7d2a9d 817qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
818@end example
819
820In this case, the block device must be exported using qemu-nbd:
821
822@example
823qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
824@end example
825
826The use of qemu-nbd allows to share a disk between several guests:
827@example
828qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
829@end example
830
1d7d2a9d 831@noindent
75818250
TS
832and then you can use it with two guests:
833@example
1d7d2a9d
PB
834qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
835qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
836@end example
837
1d7d2a9d
PB
838If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
839own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 840@example
1d7d2a9d
PB
841qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
842qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
843@end example
844
845The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
846also available. Here are some example of the older syntax:
847@example
848qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
849qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
850qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
851@end example
852
42af9c30
MK
853@node disk_images_sheepdog
854@subsection Sheepdog disk images
855
856Sheepdog is a distributed storage system for QEMU. It provides highly
857available block level storage volumes that can be attached to
858QEMU-based virtual machines.
859
860You can create a Sheepdog disk image with the command:
861@example
5d6768e3 862qemu-img create sheepdog:///@var{image} @var{size}
42af9c30
MK
863@end example
864where @var{image} is the Sheepdog image name and @var{size} is its
865size.
866
867To import the existing @var{filename} to Sheepdog, you can use a
868convert command.
869@example
5d6768e3 870qemu-img convert @var{filename} sheepdog:///@var{image}
42af9c30
MK
871@end example
872
873You can boot from the Sheepdog disk image with the command:
874@example
5d6768e3 875qemu-system-i386 sheepdog:///@var{image}
42af9c30
MK
876@end example
877
878You can also create a snapshot of the Sheepdog image like qcow2.
879@example
5d6768e3 880qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
42af9c30
MK
881@end example
882where @var{tag} is a tag name of the newly created snapshot.
883
884To boot from the Sheepdog snapshot, specify the tag name of the
885snapshot.
886@example
5d6768e3 887qemu-system-i386 sheepdog:///@var{image}#@var{tag}
42af9c30
MK
888@end example
889
890You can create a cloned image from the existing snapshot.
891@example
5d6768e3 892qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
42af9c30
MK
893@end example
894where @var{base} is a image name of the source snapshot and @var{tag}
895is its tag name.
896
1b8bbb46
MK
897You can use an unix socket instead of an inet socket:
898
899@example
900qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
901@end example
902
42af9c30
MK
903If the Sheepdog daemon doesn't run on the local host, you need to
904specify one of the Sheepdog servers to connect to.
905@example
5d6768e3
MK
906qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
907qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
42af9c30
MK
908@end example
909
00984e39
RS
910@node disk_images_iscsi
911@subsection iSCSI LUNs
912
913iSCSI is a popular protocol used to access SCSI devices across a computer
914network.
915
916There are two different ways iSCSI devices can be used by QEMU.
917
918The first method is to mount the iSCSI LUN on the host, and make it appear as
919any other ordinary SCSI device on the host and then to access this device as a
920/dev/sd device from QEMU. How to do this differs between host OSes.
921
922The second method involves using the iSCSI initiator that is built into
923QEMU. This provides a mechanism that works the same way regardless of which
924host OS you are running QEMU on. This section will describe this second method
925of using iSCSI together with QEMU.
926
927In QEMU, iSCSI devices are described using special iSCSI URLs
928
929@example
930URL syntax:
931iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
932@end example
933
934Username and password are optional and only used if your target is set up
935using CHAP authentication for access control.
936Alternatively the username and password can also be set via environment
937variables to have these not show up in the process list
938
939@example
940export LIBISCSI_CHAP_USERNAME=<username>
941export LIBISCSI_CHAP_PASSWORD=<password>
942iscsi://<host>/<target-iqn-name>/<lun>
943@end example
944
f9dadc98
RS
945Various session related parameters can be set via special options, either
946in a configuration file provided via '-readconfig' or directly on the
947command line.
948
31459f46
RS
949If the initiator-name is not specified qemu will use a default name
950of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
951virtual machine.
952
953
f9dadc98
RS
954@example
955Setting a specific initiator name to use when logging in to the target
956-iscsi initiator-name=iqn.qemu.test:my-initiator
957@end example
958
959@example
960Controlling which type of header digest to negotiate with the target
961-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
962@end example
963
964These can also be set via a configuration file
965@example
966[iscsi]
967 user = "CHAP username"
968 password = "CHAP password"
969 initiator-name = "iqn.qemu.test:my-initiator"
970 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
971 header-digest = "CRC32C"
972@end example
973
974
975Setting the target name allows different options for different targets
976@example
977[iscsi "iqn.target.name"]
978 user = "CHAP username"
979 password = "CHAP password"
980 initiator-name = "iqn.qemu.test:my-initiator"
981 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
982 header-digest = "CRC32C"
983@end example
984
985
986Howto use a configuration file to set iSCSI configuration options:
987@example
988cat >iscsi.conf <<EOF
989[iscsi]
990 user = "me"
991 password = "my password"
992 initiator-name = "iqn.qemu.test:my-initiator"
993 header-digest = "CRC32C"
994EOF
995
996qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
997 -readconfig iscsi.conf
998@end example
999
1000
00984e39
RS
1001Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1002@example
1003This example shows how to set up an iSCSI target with one CDROM and one DISK
1004using the Linux STGT software target. This target is available on Red Hat based
1005systems as the package 'scsi-target-utils'.
1006
1007tgtd --iscsi portal=127.0.0.1:3260
1008tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1009tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1010 -b /IMAGES/disk.img --device-type=disk
1011tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1012 -b /IMAGES/cd.iso --device-type=cd
1013tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1014
f9dadc98
RS
1015qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1016 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
1017 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1018@end example
1019
8809e289
BR
1020@node disk_images_gluster
1021@subsection GlusterFS disk images
00984e39 1022
8809e289
BR
1023GlusterFS is an user space distributed file system.
1024
1025You can boot from the GlusterFS disk image with the command:
1026@example
1027qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1028@end example
1029
1030@var{gluster} is the protocol.
1031
1032@var{transport} specifies the transport type used to connect to gluster
1033management daemon (glusterd). Valid transport types are
1034tcp, unix and rdma. If a transport type isn't specified, then tcp
1035type is assumed.
1036
1037@var{server} specifies the server where the volume file specification for
1038the given volume resides. This can be either hostname, ipv4 address
1039or ipv6 address. ipv6 address needs to be within square brackets [ ].
1040If transport type is unix, then @var{server} field should not be specifed.
1041Instead @var{socket} field needs to be populated with the path to unix domain
1042socket.
1043
1044@var{port} is the port number on which glusterd is listening. This is optional
1045and if not specified, QEMU will send 0 which will make gluster to use the
1046default port. If the transport type is unix, then @var{port} should not be
1047specified.
1048
1049@var{volname} is the name of the gluster volume which contains the disk image.
1050
1051@var{image} is the path to the actual disk image that resides on gluster volume.
1052
1053You can create a GlusterFS disk image with the command:
1054@example
1055qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1056@end example
1057
1058Examples
1059@example
1060qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1061qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1062qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1063qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1064qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1065qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1066qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1067qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1068@end example
00984e39 1069
0a12ec87
RJ
1070@node disk_images_ssh
1071@subsection Secure Shell (ssh) disk images
1072
1073You can access disk images located on a remote ssh server
1074by using the ssh protocol:
1075
1076@example
1077qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1078@end example
1079
1080Alternative syntax using properties:
1081
1082@example
1083qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1084@end example
1085
1086@var{ssh} is the protocol.
1087
1088@var{user} is the remote user. If not specified, then the local
1089username is tried.
1090
1091@var{server} specifies the remote ssh server. Any ssh server can be
1092used, but it must implement the sftp-server protocol. Most Unix/Linux
1093systems should work without requiring any extra configuration.
1094
1095@var{port} is the port number on which sshd is listening. By default
1096the standard ssh port (22) is used.
1097
1098@var{path} is the path to the disk image.
1099
1100The optional @var{host_key_check} parameter controls how the remote
1101host's key is checked. The default is @code{yes} which means to use
1102the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1103turns off known-hosts checking. Or you can check that the host key
1104matches a specific fingerprint:
1105@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1106(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1107tools only use MD5 to print fingerprints).
1108
1109Currently authentication must be done using ssh-agent. Other
1110authentication methods may be supported in future.
1111
9a2d462e
RJ
1112Note: Many ssh servers do not support an @code{fsync}-style operation.
1113The ssh driver cannot guarantee that disk flush requests are
1114obeyed, and this causes a risk of disk corruption if the remote
1115server or network goes down during writes. The driver will
1116print a warning when @code{fsync} is not supported:
1117
1118warning: ssh server @code{ssh.example.com:22} does not support fsync
1119
1120With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1121supported.
0a12ec87 1122
debc7065 1123@node pcsys_network
9d4fb82e
FB
1124@section Network emulation
1125
4be456f1 1126QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1127target) and can connect them to an arbitrary number of Virtual Local
1128Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1129VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1130simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1131network stack can replace the TAP device to have a basic network
1132connection.
1133
1134@subsection VLANs
9d4fb82e 1135
41d03949
FB
1136QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1137connection between several network devices. These devices can be for
1138example QEMU virtual Ethernet cards or virtual Host ethernet devices
1139(TAP devices).
9d4fb82e 1140
41d03949
FB
1141@subsection Using TAP network interfaces
1142
1143This is the standard way to connect QEMU to a real network. QEMU adds
1144a virtual network device on your host (called @code{tapN}), and you
1145can then configure it as if it was a real ethernet card.
9d4fb82e 1146
8f40c388
FB
1147@subsubsection Linux host
1148
9d4fb82e
FB
1149As an example, you can download the @file{linux-test-xxx.tar.gz}
1150archive and copy the script @file{qemu-ifup} in @file{/etc} and
1151configure properly @code{sudo} so that the command @code{ifconfig}
1152contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1153that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1154device @file{/dev/net/tun} must be present.
1155
ee0f4751
FB
1156See @ref{sec_invocation} to have examples of command lines using the
1157TAP network interfaces.
9d4fb82e 1158
8f40c388
FB
1159@subsubsection Windows host
1160
1161There is a virtual ethernet driver for Windows 2000/XP systems, called
1162TAP-Win32. But it is not included in standard QEMU for Windows,
1163so you will need to get it separately. It is part of OpenVPN package,
1164so download OpenVPN from : @url{http://openvpn.net/}.
1165
9d4fb82e
FB
1166@subsection Using the user mode network stack
1167
41d03949
FB
1168By using the option @option{-net user} (default configuration if no
1169@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1170network stack (you don't need root privilege to use the virtual
41d03949 1171network). The virtual network configuration is the following:
9d4fb82e
FB
1172
1173@example
1174
41d03949
FB
1175 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1176 | (10.0.2.2)
9d4fb82e 1177 |
2518bd0d 1178 ----> DNS server (10.0.2.3)
3b46e624 1179 |
2518bd0d 1180 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1181@end example
1182
1183The QEMU VM behaves as if it was behind a firewall which blocks all
1184incoming connections. You can use a DHCP client to automatically
41d03949
FB
1185configure the network in the QEMU VM. The DHCP server assign addresses
1186to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1187
1188In order to check that the user mode network is working, you can ping
1189the address 10.0.2.2 and verify that you got an address in the range
119010.0.2.x from the QEMU virtual DHCP server.
1191
b415a407 1192Note that @code{ping} is not supported reliably to the internet as it
4be456f1 1193would require root privileges. It means you can only ping the local
b415a407
FB
1194router (10.0.2.2).
1195
9bf05444
FB
1196When using the built-in TFTP server, the router is also the TFTP
1197server.
1198
1199When using the @option{-redir} option, TCP or UDP connections can be
1200redirected from the host to the guest. It allows for example to
1201redirect X11, telnet or SSH connections.
443f1376 1202
41d03949
FB
1203@subsection Connecting VLANs between QEMU instances
1204
1205Using the @option{-net socket} option, it is possible to make VLANs
1206that span several QEMU instances. See @ref{sec_invocation} to have a
1207basic example.
1208
576fd0a1 1209@node pcsys_other_devs
6cbf4c8c
CM
1210@section Other Devices
1211
1212@subsection Inter-VM Shared Memory device
1213
1214With KVM enabled on a Linux host, a shared memory device is available. Guests
1215map a POSIX shared memory region into the guest as a PCI device that enables
1216zero-copy communication to the application level of the guests. The basic
1217syntax is:
1218
1219@example
3804da9d 1220qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
6cbf4c8c
CM
1221@end example
1222
1223If desired, interrupts can be sent between guest VMs accessing the same shared
1224memory region. Interrupt support requires using a shared memory server and
1225using a chardev socket to connect to it. The code for the shared memory server
1226is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1227memory server is:
1228
1229@example
3804da9d
SW
1230qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
1231 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
1232qemu-system-i386 -chardev socket,path=<path>,id=<id>
6cbf4c8c
CM
1233@end example
1234
1235When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1236using the same server to communicate via interrupts. Guests can read their
1237VM ID from a device register (see example code). Since receiving the shared
1238memory region from the server is asynchronous, there is a (small) chance the
1239guest may boot before the shared memory is attached. To allow an application
1240to ensure shared memory is attached, the VM ID register will return -1 (an
1241invalid VM ID) until the memory is attached. Once the shared memory is
1242attached, the VM ID will return the guest's valid VM ID. With these semantics,
1243the guest application can check to ensure the shared memory is attached to the
1244guest before proceeding.
1245
1246The @option{role} argument can be set to either master or peer and will affect
1247how the shared memory is migrated. With @option{role=master}, the guest will
1248copy the shared memory on migration to the destination host. With
1249@option{role=peer}, the guest will not be able to migrate with the device attached.
1250With the @option{peer} case, the device should be detached and then reattached
1251after migration using the PCI hotplug support.
1252
9d4fb82e
FB
1253@node direct_linux_boot
1254@section Direct Linux Boot
1f673135
FB
1255
1256This section explains how to launch a Linux kernel inside QEMU without
1257having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1258kernel testing.
1f673135 1259
ee0f4751 1260The syntax is:
1f673135 1261@example
3804da9d 1262qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1263@end example
1264
ee0f4751
FB
1265Use @option{-kernel} to provide the Linux kernel image and
1266@option{-append} to give the kernel command line arguments. The
1267@option{-initrd} option can be used to provide an INITRD image.
1f673135 1268
ee0f4751
FB
1269When using the direct Linux boot, a disk image for the first hard disk
1270@file{hda} is required because its boot sector is used to launch the
1271Linux kernel.
1f673135 1272
ee0f4751
FB
1273If you do not need graphical output, you can disable it and redirect
1274the virtual serial port and the QEMU monitor to the console with the
1275@option{-nographic} option. The typical command line is:
1f673135 1276@example
3804da9d
SW
1277qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1278 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1279@end example
1280
ee0f4751
FB
1281Use @key{Ctrl-a c} to switch between the serial console and the
1282monitor (@pxref{pcsys_keys}).
1f673135 1283
debc7065 1284@node pcsys_usb
b389dbfb
FB
1285@section USB emulation
1286
0aff66b5
PB
1287QEMU emulates a PCI UHCI USB controller. You can virtually plug
1288virtual USB devices or real host USB devices (experimental, works only
071c9394 1289on Linux hosts). QEMU will automatically create and connect virtual USB hubs
f542086d 1290as necessary to connect multiple USB devices.
b389dbfb 1291
0aff66b5
PB
1292@menu
1293* usb_devices::
1294* host_usb_devices::
1295@end menu
1296@node usb_devices
1297@subsection Connecting USB devices
b389dbfb 1298
0aff66b5
PB
1299USB devices can be connected with the @option{-usbdevice} commandline option
1300or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1301
db380c06
AZ
1302@table @code
1303@item mouse
0aff66b5 1304Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1305@item tablet
c6d46c20 1306Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1307This means QEMU is able to report the mouse position without having
0aff66b5 1308to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1309@item disk:@var{file}
0aff66b5 1310Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1311@item host:@var{bus.addr}
0aff66b5
PB
1312Pass through the host device identified by @var{bus.addr}
1313(Linux only)
db380c06 1314@item host:@var{vendor_id:product_id}
0aff66b5
PB
1315Pass through the host device identified by @var{vendor_id:product_id}
1316(Linux only)
db380c06 1317@item wacom-tablet
f6d2a316
AZ
1318Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1319above but it can be used with the tslib library because in addition to touch
1320coordinates it reports touch pressure.
db380c06 1321@item keyboard
47b2d338 1322Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1323@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1324Serial converter. This emulates an FTDI FT232BM chip connected to host character
1325device @var{dev}. The available character devices are the same as for the
1326@code{-serial} option. The @code{vendorid} and @code{productid} options can be
0d6753e5 1327used to override the default 0403:6001. For instance,
db380c06
AZ
1328@example
1329usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1330@end example
1331will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1332serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1333@item braille
1334Braille device. This will use BrlAPI to display the braille output on a real
1335or fake device.
9ad97e65
AZ
1336@item net:@var{options}
1337Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1338specifies NIC options as with @code{-net nic,}@var{options} (see description).
1339For instance, user-mode networking can be used with
6c9f886c 1340@example
3804da9d 1341qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1342@end example
1343Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1344@item bt[:@var{hci-type}]
1345Bluetooth dongle whose type is specified in the same format as with
1346the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1347no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1348This USB device implements the USB Transport Layer of HCI. Example
1349usage:
1350@example
3804da9d 1351qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
2d564691 1352@end example
0aff66b5 1353@end table
b389dbfb 1354
0aff66b5 1355@node host_usb_devices
b389dbfb
FB
1356@subsection Using host USB devices on a Linux host
1357
1358WARNING: this is an experimental feature. QEMU will slow down when
1359using it. USB devices requiring real time streaming (i.e. USB Video
1360Cameras) are not supported yet.
1361
1362@enumerate
5fafdf24 1363@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1364is actually using the USB device. A simple way to do that is simply to
1365disable the corresponding kernel module by renaming it from @file{mydriver.o}
1366to @file{mydriver.o.disabled}.
1367
1368@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1369@example
1370ls /proc/bus/usb
1371001 devices drivers
1372@end example
1373
1374@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1375@example
1376chown -R myuid /proc/bus/usb
1377@end example
1378
1379@item Launch QEMU and do in the monitor:
5fafdf24 1380@example
b389dbfb
FB
1381info usbhost
1382 Device 1.2, speed 480 Mb/s
1383 Class 00: USB device 1234:5678, USB DISK
1384@end example
1385You should see the list of the devices you can use (Never try to use
1386hubs, it won't work).
1387
1388@item Add the device in QEMU by using:
5fafdf24 1389@example
b389dbfb
FB
1390usb_add host:1234:5678
1391@end example
1392
1393Normally the guest OS should report that a new USB device is
1394plugged. You can use the option @option{-usbdevice} to do the same.
1395
1396@item Now you can try to use the host USB device in QEMU.
1397
1398@end enumerate
1399
1400When relaunching QEMU, you may have to unplug and plug again the USB
1401device to make it work again (this is a bug).
1402
f858dcae
TS
1403@node vnc_security
1404@section VNC security
1405
1406The VNC server capability provides access to the graphical console
1407of the guest VM across the network. This has a number of security
1408considerations depending on the deployment scenarios.
1409
1410@menu
1411* vnc_sec_none::
1412* vnc_sec_password::
1413* vnc_sec_certificate::
1414* vnc_sec_certificate_verify::
1415* vnc_sec_certificate_pw::
2f9606b3
AL
1416* vnc_sec_sasl::
1417* vnc_sec_certificate_sasl::
f858dcae 1418* vnc_generate_cert::
2f9606b3 1419* vnc_setup_sasl::
f858dcae
TS
1420@end menu
1421@node vnc_sec_none
1422@subsection Without passwords
1423
1424The simplest VNC server setup does not include any form of authentication.
1425For this setup it is recommended to restrict it to listen on a UNIX domain
1426socket only. For example
1427
1428@example
3804da9d 1429qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1430@end example
1431
1432This ensures that only users on local box with read/write access to that
1433path can access the VNC server. To securely access the VNC server from a
1434remote machine, a combination of netcat+ssh can be used to provide a secure
1435tunnel.
1436
1437@node vnc_sec_password
1438@subsection With passwords
1439
1440The VNC protocol has limited support for password based authentication. Since
1441the protocol limits passwords to 8 characters it should not be considered
1442to provide high security. The password can be fairly easily brute-forced by
1443a client making repeat connections. For this reason, a VNC server using password
1444authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1445or UNIX domain sockets. Password authentication is not supported when operating
1446in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1447authentication is requested with the @code{password} option, and then once QEMU
1448is running the password is set with the monitor. Until the monitor is used to
1449set the password all clients will be rejected.
f858dcae
TS
1450
1451@example
3804da9d 1452qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1453(qemu) change vnc password
1454Password: ********
1455(qemu)
1456@end example
1457
1458@node vnc_sec_certificate
1459@subsection With x509 certificates
1460
1461The QEMU VNC server also implements the VeNCrypt extension allowing use of
1462TLS for encryption of the session, and x509 certificates for authentication.
1463The use of x509 certificates is strongly recommended, because TLS on its
1464own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1465support provides a secure session, but no authentication. This allows any
1466client to connect, and provides an encrypted session.
1467
1468@example
3804da9d 1469qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1470@end example
1471
1472In the above example @code{/etc/pki/qemu} should contain at least three files,
1473@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1474users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1475NB the @code{server-key.pem} file should be protected with file mode 0600 to
1476only be readable by the user owning it.
1477
1478@node vnc_sec_certificate_verify
1479@subsection With x509 certificates and client verification
1480
1481Certificates can also provide a means to authenticate the client connecting.
1482The server will request that the client provide a certificate, which it will
1483then validate against the CA certificate. This is a good choice if deploying
1484in an environment with a private internal certificate authority.
1485
1486@example
3804da9d 1487qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1488@end example
1489
1490
1491@node vnc_sec_certificate_pw
1492@subsection With x509 certificates, client verification and passwords
1493
1494Finally, the previous method can be combined with VNC password authentication
1495to provide two layers of authentication for clients.
1496
1497@example
3804da9d 1498qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1499(qemu) change vnc password
1500Password: ********
1501(qemu)
1502@end example
1503
2f9606b3
AL
1504
1505@node vnc_sec_sasl
1506@subsection With SASL authentication
1507
1508The SASL authentication method is a VNC extension, that provides an
1509easily extendable, pluggable authentication method. This allows for
1510integration with a wide range of authentication mechanisms, such as
1511PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1512The strength of the authentication depends on the exact mechanism
1513configured. If the chosen mechanism also provides a SSF layer, then
1514it will encrypt the datastream as well.
1515
1516Refer to the later docs on how to choose the exact SASL mechanism
1517used for authentication, but assuming use of one supporting SSF,
1518then QEMU can be launched with:
1519
1520@example
3804da9d 1521qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1522@end example
1523
1524@node vnc_sec_certificate_sasl
1525@subsection With x509 certificates and SASL authentication
1526
1527If the desired SASL authentication mechanism does not supported
1528SSF layers, then it is strongly advised to run it in combination
1529with TLS and x509 certificates. This provides securely encrypted
1530data stream, avoiding risk of compromising of the security
1531credentials. This can be enabled, by combining the 'sasl' option
1532with the aforementioned TLS + x509 options:
1533
1534@example
3804da9d 1535qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1536@end example
1537
1538
f858dcae
TS
1539@node vnc_generate_cert
1540@subsection Generating certificates for VNC
1541
1542The GNU TLS packages provides a command called @code{certtool} which can
1543be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1544is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1545each server. If using certificates for authentication, then each client
1546will also need to be issued a certificate. The recommendation is for the
1547server to keep its certificates in either @code{/etc/pki/qemu} or for
1548unprivileged users in @code{$HOME/.pki/qemu}.
1549
1550@menu
1551* vnc_generate_ca::
1552* vnc_generate_server::
1553* vnc_generate_client::
1554@end menu
1555@node vnc_generate_ca
1556@subsubsection Setup the Certificate Authority
1557
1558This step only needs to be performed once per organization / organizational
1559unit. First the CA needs a private key. This key must be kept VERY secret
1560and secure. If this key is compromised the entire trust chain of the certificates
1561issued with it is lost.
1562
1563@example
1564# certtool --generate-privkey > ca-key.pem
1565@end example
1566
1567A CA needs to have a public certificate. For simplicity it can be a self-signed
1568certificate, or one issue by a commercial certificate issuing authority. To
1569generate a self-signed certificate requires one core piece of information, the
1570name of the organization.
1571
1572@example
1573# cat > ca.info <<EOF
1574cn = Name of your organization
1575ca
1576cert_signing_key
1577EOF
1578# certtool --generate-self-signed \
1579 --load-privkey ca-key.pem
1580 --template ca.info \
1581 --outfile ca-cert.pem
1582@end example
1583
1584The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1585TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1586
1587@node vnc_generate_server
1588@subsubsection Issuing server certificates
1589
1590Each server (or host) needs to be issued with a key and certificate. When connecting
1591the certificate is sent to the client which validates it against the CA certificate.
1592The core piece of information for a server certificate is the hostname. This should
1593be the fully qualified hostname that the client will connect with, since the client
1594will typically also verify the hostname in the certificate. On the host holding the
1595secure CA private key:
1596
1597@example
1598# cat > server.info <<EOF
1599organization = Name of your organization
1600cn = server.foo.example.com
1601tls_www_server
1602encryption_key
1603signing_key
1604EOF
1605# certtool --generate-privkey > server-key.pem
1606# certtool --generate-certificate \
1607 --load-ca-certificate ca-cert.pem \
1608 --load-ca-privkey ca-key.pem \
1609 --load-privkey server server-key.pem \
1610 --template server.info \
1611 --outfile server-cert.pem
1612@end example
1613
1614The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1615to the server for which they were generated. The @code{server-key.pem} is security
1616sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1617
1618@node vnc_generate_client
1619@subsubsection Issuing client certificates
1620
1621If the QEMU VNC server is to use the @code{x509verify} option to validate client
1622certificates as its authentication mechanism, each client also needs to be issued
1623a certificate. The client certificate contains enough metadata to uniquely identify
1624the client, typically organization, state, city, building, etc. On the host holding
1625the secure CA private key:
1626
1627@example
1628# cat > client.info <<EOF
1629country = GB
1630state = London
1631locality = London
1632organiazation = Name of your organization
1633cn = client.foo.example.com
1634tls_www_client
1635encryption_key
1636signing_key
1637EOF
1638# certtool --generate-privkey > client-key.pem
1639# certtool --generate-certificate \
1640 --load-ca-certificate ca-cert.pem \
1641 --load-ca-privkey ca-key.pem \
1642 --load-privkey client-key.pem \
1643 --template client.info \
1644 --outfile client-cert.pem
1645@end example
1646
1647The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1648copied to the client for which they were generated.
1649
2f9606b3
AL
1650
1651@node vnc_setup_sasl
1652
1653@subsection Configuring SASL mechanisms
1654
1655The following documentation assumes use of the Cyrus SASL implementation on a
1656Linux host, but the principals should apply to any other SASL impl. When SASL
1657is enabled, the mechanism configuration will be loaded from system default
1658SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1659unprivileged user, an environment variable SASL_CONF_PATH can be used
1660to make it search alternate locations for the service config.
1661
1662The default configuration might contain
1663
1664@example
1665mech_list: digest-md5
1666sasldb_path: /etc/qemu/passwd.db
1667@end example
1668
1669This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1670Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1671in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1672command. While this mechanism is easy to configure and use, it is not
1673considered secure by modern standards, so only suitable for developers /
1674ad-hoc testing.
1675
1676A more serious deployment might use Kerberos, which is done with the 'gssapi'
1677mechanism
1678
1679@example
1680mech_list: gssapi
1681keytab: /etc/qemu/krb5.tab
1682@end example
1683
1684For this to work the administrator of your KDC must generate a Kerberos
1685principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1686replacing 'somehost.example.com' with the fully qualified host name of the
40c5c6cd 1687machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3
AL
1688
1689Other configurations will be left as an exercise for the reader. It should
1690be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1691encryption. For all other mechanisms, VNC should always be configured to
1692use TLS and x509 certificates to protect security credentials from snooping.
1693
0806e3f6 1694@node gdb_usage
da415d54
FB
1695@section GDB usage
1696
1697QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1698'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1699
b65ee4fa 1700In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1701gdb connection:
1702@example
3804da9d
SW
1703qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1704 -append "root=/dev/hda"
da415d54
FB
1705Connected to host network interface: tun0
1706Waiting gdb connection on port 1234
1707@end example
1708
1709Then launch gdb on the 'vmlinux' executable:
1710@example
1711> gdb vmlinux
1712@end example
1713
1714In gdb, connect to QEMU:
1715@example
6c9bf893 1716(gdb) target remote localhost:1234
da415d54
FB
1717@end example
1718
1719Then you can use gdb normally. For example, type 'c' to launch the kernel:
1720@example
1721(gdb) c
1722@end example
1723
0806e3f6
FB
1724Here are some useful tips in order to use gdb on system code:
1725
1726@enumerate
1727@item
1728Use @code{info reg} to display all the CPU registers.
1729@item
1730Use @code{x/10i $eip} to display the code at the PC position.
1731@item
1732Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1733@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1734@end enumerate
1735
60897d36
EI
1736Advanced debugging options:
1737
1738The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1739@table @code
60897d36
EI
1740@item maintenance packet qqemu.sstepbits
1741
1742This will display the MASK bits used to control the single stepping IE:
1743@example
1744(gdb) maintenance packet qqemu.sstepbits
1745sending: "qqemu.sstepbits"
1746received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1747@end example
1748@item maintenance packet qqemu.sstep
1749
1750This will display the current value of the mask used when single stepping IE:
1751@example
1752(gdb) maintenance packet qqemu.sstep
1753sending: "qqemu.sstep"
1754received: "0x7"
1755@end example
1756@item maintenance packet Qqemu.sstep=HEX_VALUE
1757
1758This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1759@example
1760(gdb) maintenance packet Qqemu.sstep=0x5
1761sending: "qemu.sstep=0x5"
1762received: "OK"
1763@end example
94d45e44 1764@end table
60897d36 1765
debc7065 1766@node pcsys_os_specific
1a084f3d
FB
1767@section Target OS specific information
1768
1769@subsection Linux
1770
15a34c63
FB
1771To have access to SVGA graphic modes under X11, use the @code{vesa} or
1772the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1773color depth in the guest and the host OS.
1a084f3d 1774
e3371e62
FB
1775When using a 2.6 guest Linux kernel, you should add the option
1776@code{clock=pit} on the kernel command line because the 2.6 Linux
1777kernels make very strict real time clock checks by default that QEMU
1778cannot simulate exactly.
1779
7c3fc84d
FB
1780When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1781not activated because QEMU is slower with this patch. The QEMU
1782Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1783Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1784patch by default. Newer kernels don't have it.
1785
1a084f3d
FB
1786@subsection Windows
1787
1788If you have a slow host, using Windows 95 is better as it gives the
1789best speed. Windows 2000 is also a good choice.
1790
e3371e62
FB
1791@subsubsection SVGA graphic modes support
1792
1793QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1794card. All Windows versions starting from Windows 95 should recognize
1795and use this graphic card. For optimal performances, use 16 bit color
1796depth in the guest and the host OS.
1a084f3d 1797
3cb0853a
FB
1798If you are using Windows XP as guest OS and if you want to use high
1799resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
18001280x1024x16), then you should use the VESA VBE virtual graphic card
1801(option @option{-std-vga}).
1802
e3371e62
FB
1803@subsubsection CPU usage reduction
1804
1805Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1806instruction. The result is that it takes host CPU cycles even when
1807idle. You can install the utility from
1808@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1809problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1810
9d0a8e6f 1811@subsubsection Windows 2000 disk full problem
e3371e62 1812
9d0a8e6f
FB
1813Windows 2000 has a bug which gives a disk full problem during its
1814installation. When installing it, use the @option{-win2k-hack} QEMU
1815option to enable a specific workaround. After Windows 2000 is
1816installed, you no longer need this option (this option slows down the
1817IDE transfers).
e3371e62 1818
6cc721cf
FB
1819@subsubsection Windows 2000 shutdown
1820
1821Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1822can. It comes from the fact that Windows 2000 does not automatically
1823use the APM driver provided by the BIOS.
1824
1825In order to correct that, do the following (thanks to Struan
1826Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1827Add/Troubleshoot a device => Add a new device & Next => No, select the
1828hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1829(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1830correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1831
1832@subsubsection Share a directory between Unix and Windows
1833
1834See @ref{sec_invocation} about the help of the option @option{-smb}.
1835
2192c332 1836@subsubsection Windows XP security problem
e3371e62
FB
1837
1838Some releases of Windows XP install correctly but give a security
1839error when booting:
1840@example
1841A problem is preventing Windows from accurately checking the
1842license for this computer. Error code: 0x800703e6.
1843@end example
e3371e62 1844
2192c332
FB
1845The workaround is to install a service pack for XP after a boot in safe
1846mode. Then reboot, and the problem should go away. Since there is no
1847network while in safe mode, its recommended to download the full
1848installation of SP1 or SP2 and transfer that via an ISO or using the
1849vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1850
a0a821a4
FB
1851@subsection MS-DOS and FreeDOS
1852
1853@subsubsection CPU usage reduction
1854
1855DOS does not correctly use the CPU HLT instruction. The result is that
1856it takes host CPU cycles even when idle. You can install the utility
1857from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1858problem.
1859
debc7065 1860@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1861@chapter QEMU System emulator for non PC targets
1862
1863QEMU is a generic emulator and it emulates many non PC
1864machines. Most of the options are similar to the PC emulator. The
4be456f1 1865differences are mentioned in the following sections.
3f9f3aa1 1866
debc7065 1867@menu
7544a042 1868* PowerPC System emulator::
24d4de45
TS
1869* Sparc32 System emulator::
1870* Sparc64 System emulator::
1871* MIPS System emulator::
1872* ARM System emulator::
1873* ColdFire System emulator::
7544a042
SW
1874* Cris System emulator::
1875* Microblaze System emulator::
1876* SH4 System emulator::
3aeaea65 1877* Xtensa System emulator::
debc7065
FB
1878@end menu
1879
7544a042
SW
1880@node PowerPC System emulator
1881@section PowerPC System emulator
1882@cindex system emulation (PowerPC)
1a084f3d 1883
15a34c63
FB
1884Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1885or PowerMac PowerPC system.
1a084f3d 1886
b671f9ed 1887QEMU emulates the following PowerMac peripherals:
1a084f3d 1888
15a34c63 1889@itemize @minus
5fafdf24 1890@item
006f3a48 1891UniNorth or Grackle PCI Bridge
15a34c63
FB
1892@item
1893PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1894@item
15a34c63 18952 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1896@item
15a34c63
FB
1897NE2000 PCI adapters
1898@item
1899Non Volatile RAM
1900@item
1901VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1902@end itemize
1903
b671f9ed 1904QEMU emulates the following PREP peripherals:
52c00a5f
FB
1905
1906@itemize @minus
5fafdf24 1907@item
15a34c63
FB
1908PCI Bridge
1909@item
1910PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1911@item
52c00a5f
FB
19122 IDE interfaces with hard disk and CD-ROM support
1913@item
1914Floppy disk
5fafdf24 1915@item
15a34c63 1916NE2000 network adapters
52c00a5f
FB
1917@item
1918Serial port
1919@item
1920PREP Non Volatile RAM
15a34c63
FB
1921@item
1922PC compatible keyboard and mouse.
52c00a5f
FB
1923@end itemize
1924
15a34c63 1925QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1926@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1927
992e5acd 1928Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1929for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1930v2) portable firmware implementation. The goal is to implement a 100%
1931IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1932
15a34c63
FB
1933@c man begin OPTIONS
1934
1935The following options are specific to the PowerPC emulation:
1936
1937@table @option
1938
4e257e5e 1939@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63
FB
1940
1941Set the initial VGA graphic mode. The default is 800x600x15.
1942
4e257e5e 1943@item -prom-env @var{string}
95efd11c
BS
1944
1945Set OpenBIOS variables in NVRAM, for example:
1946
1947@example
1948qemu-system-ppc -prom-env 'auto-boot?=false' \
1949 -prom-env 'boot-device=hd:2,\yaboot' \
1950 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1951@end example
1952
1953These variables are not used by Open Hack'Ware.
1954
15a34c63
FB
1955@end table
1956
5fafdf24 1957@c man end
15a34c63
FB
1958
1959
52c00a5f 1960More information is available at
3f9f3aa1 1961@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1962
24d4de45
TS
1963@node Sparc32 System emulator
1964@section Sparc32 System emulator
7544a042 1965@cindex system emulation (Sparc32)
e80cfcfc 1966
34a3d239
BS
1967Use the executable @file{qemu-system-sparc} to simulate the following
1968Sun4m architecture machines:
1969@itemize @minus
1970@item
1971SPARCstation 4
1972@item
1973SPARCstation 5
1974@item
1975SPARCstation 10
1976@item
1977SPARCstation 20
1978@item
1979SPARCserver 600MP
1980@item
1981SPARCstation LX
1982@item
1983SPARCstation Voyager
1984@item
1985SPARCclassic
1986@item
1987SPARCbook
1988@end itemize
1989
1990The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1991but Linux limits the number of usable CPUs to 4.
e80cfcfc 1992
6a4e1771 1993QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
1994
1995@itemize @minus
3475187d 1996@item
6a4e1771 1997IOMMU
e80cfcfc
FB
1998@item
1999TCX Frame buffer
5fafdf24 2000@item
e80cfcfc
FB
2001Lance (Am7990) Ethernet
2002@item
34a3d239 2003Non Volatile RAM M48T02/M48T08
e80cfcfc 2004@item
3475187d
FB
2005Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2006and power/reset logic
2007@item
2008ESP SCSI controller with hard disk and CD-ROM support
2009@item
6a3b9cc9 2010Floppy drive (not on SS-600MP)
a2502b58
BS
2011@item
2012CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2013@end itemize
2014
6a3b9cc9
BS
2015The number of peripherals is fixed in the architecture. Maximum
2016memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2017others 2047MB.
3475187d 2018
30a604f3 2019Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2020@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2021firmware implementation. The goal is to implement a 100% IEEE
20221275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2023
2024A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239
BS
2025the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2026some kernel versions work. Please note that currently Solaris kernels
2027don't work probably due to interface issues between OpenBIOS and
2028Solaris.
3475187d
FB
2029
2030@c man begin OPTIONS
2031
a2502b58 2032The following options are specific to the Sparc32 emulation:
3475187d
FB
2033
2034@table @option
2035
4e257e5e 2036@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 2037
a2502b58
BS
2038Set the initial TCX graphic mode. The default is 1024x768x8, currently
2039the only other possible mode is 1024x768x24.
3475187d 2040
4e257e5e 2041@item -prom-env @var{string}
66508601
BS
2042
2043Set OpenBIOS variables in NVRAM, for example:
2044
2045@example
2046qemu-system-sparc -prom-env 'auto-boot?=false' \
2047 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2048@end example
2049
6a4e1771 2050@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
2051
2052Set the emulated machine type. Default is SS-5.
2053
3475187d
FB
2054@end table
2055
5fafdf24 2056@c man end
3475187d 2057
24d4de45
TS
2058@node Sparc64 System emulator
2059@section Sparc64 System emulator
7544a042 2060@cindex system emulation (Sparc64)
e80cfcfc 2061
34a3d239
BS
2062Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2063(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2064Niagara (T1) machine. The emulator is not usable for anything yet, but
2065it can launch some kernels.
b756921a 2066
c7ba218d 2067QEMU emulates the following peripherals:
83469015
FB
2068
2069@itemize @minus
2070@item
5fafdf24 2071UltraSparc IIi APB PCI Bridge
83469015
FB
2072@item
2073PCI VGA compatible card with VESA Bochs Extensions
2074@item
34a3d239
BS
2075PS/2 mouse and keyboard
2076@item
83469015
FB
2077Non Volatile RAM M48T59
2078@item
2079PC-compatible serial ports
c7ba218d
BS
2080@item
20812 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2082@item
2083Floppy disk
83469015
FB
2084@end itemize
2085
c7ba218d
BS
2086@c man begin OPTIONS
2087
2088The following options are specific to the Sparc64 emulation:
2089
2090@table @option
2091
4e257e5e 2092@item -prom-env @var{string}
34a3d239
BS
2093
2094Set OpenBIOS variables in NVRAM, for example:
2095
2096@example
2097qemu-system-sparc64 -prom-env 'auto-boot?=false'
2098@end example
2099
2100@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
2101
2102Set the emulated machine type. The default is sun4u.
2103
2104@end table
2105
2106@c man end
2107
24d4de45
TS
2108@node MIPS System emulator
2109@section MIPS System emulator
7544a042 2110@cindex system emulation (MIPS)
9d0a8e6f 2111
d9aedc32
TS
2112Four executables cover simulation of 32 and 64-bit MIPS systems in
2113both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2114@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2115Five different machine types are emulated:
24d4de45
TS
2116
2117@itemize @minus
2118@item
2119A generic ISA PC-like machine "mips"
2120@item
2121The MIPS Malta prototype board "malta"
2122@item
d9aedc32 2123An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2124@item
f0fc6f8f 2125MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2126@item
2127A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2128@end itemize
2129
2130The generic emulation is supported by Debian 'Etch' and is able to
2131install Debian into a virtual disk image. The following devices are
2132emulated:
3f9f3aa1
FB
2133
2134@itemize @minus
5fafdf24 2135@item
6bf5b4e8 2136A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2137@item
2138PC style serial port
2139@item
24d4de45
TS
2140PC style IDE disk
2141@item
3f9f3aa1
FB
2142NE2000 network card
2143@end itemize
2144
24d4de45
TS
2145The Malta emulation supports the following devices:
2146
2147@itemize @minus
2148@item
0b64d008 2149Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2150@item
2151PIIX4 PCI/USB/SMbus controller
2152@item
2153The Multi-I/O chip's serial device
2154@item
3a2eeac0 2155PCI network cards (PCnet32 and others)
24d4de45
TS
2156@item
2157Malta FPGA serial device
2158@item
1f605a76 2159Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2160@end itemize
2161
2162The ACER Pica emulation supports:
2163
2164@itemize @minus
2165@item
2166MIPS R4000 CPU
2167@item
2168PC-style IRQ and DMA controllers
2169@item
2170PC Keyboard
2171@item
2172IDE controller
2173@end itemize
3f9f3aa1 2174
b5e4946f 2175The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2176to what the proprietary MIPS emulator uses for running Linux.
2177It supports:
6bf5b4e8
TS
2178
2179@itemize @minus
2180@item
2181A range of MIPS CPUs, default is the 24Kf
2182@item
2183PC style serial port
2184@item
2185MIPSnet network emulation
2186@end itemize
2187
88cb0a02
AJ
2188The MIPS Magnum R4000 emulation supports:
2189
2190@itemize @minus
2191@item
2192MIPS R4000 CPU
2193@item
2194PC-style IRQ controller
2195@item
2196PC Keyboard
2197@item
2198SCSI controller
2199@item
2200G364 framebuffer
2201@end itemize
2202
2203
24d4de45
TS
2204@node ARM System emulator
2205@section ARM System emulator
7544a042 2206@cindex system emulation (ARM)
3f9f3aa1
FB
2207
2208Use the executable @file{qemu-system-arm} to simulate a ARM
2209machine. The ARM Integrator/CP board is emulated with the following
2210devices:
2211
2212@itemize @minus
2213@item
9ee6e8bb 2214ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2215@item
2216Two PL011 UARTs
5fafdf24 2217@item
3f9f3aa1 2218SMC 91c111 Ethernet adapter
00a9bf19
PB
2219@item
2220PL110 LCD controller
2221@item
2222PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2223@item
2224PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2225@end itemize
2226
2227The ARM Versatile baseboard is emulated with the following devices:
2228
2229@itemize @minus
2230@item
9ee6e8bb 2231ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2232@item
2233PL190 Vectored Interrupt Controller
2234@item
2235Four PL011 UARTs
5fafdf24 2236@item
00a9bf19
PB
2237SMC 91c111 Ethernet adapter
2238@item
2239PL110 LCD controller
2240@item
2241PL050 KMI with PS/2 keyboard and mouse.
2242@item
2243PCI host bridge. Note the emulated PCI bridge only provides access to
2244PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2245This means some devices (eg. ne2k_pci NIC) are not usable, and others
2246(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2247mapped control registers.
e6de1bad
PB
2248@item
2249PCI OHCI USB controller.
2250@item
2251LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2252@item
2253PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2254@end itemize
2255
21a88941
PB
2256Several variants of the ARM RealView baseboard are emulated,
2257including the EB, PB-A8 and PBX-A9. Due to interactions with the
2258bootloader, only certain Linux kernel configurations work out
2259of the box on these boards.
2260
2261Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2262enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2263should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2264disabled and expect 1024M RAM.
2265
40c5c6cd 2266The following devices are emulated:
d7739d75
PB
2267
2268@itemize @minus
2269@item
f7c70325 2270ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2271@item
2272ARM AMBA Generic/Distributed Interrupt Controller
2273@item
2274Four PL011 UARTs
5fafdf24 2275@item
0ef849d7 2276SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2277@item
2278PL110 LCD controller
2279@item
2280PL050 KMI with PS/2 keyboard and mouse
2281@item
2282PCI host bridge
2283@item
2284PCI OHCI USB controller
2285@item
2286LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2287@item
2288PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2289@end itemize
2290
b00052e4
AZ
2291The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2292and "Terrier") emulation includes the following peripherals:
2293
2294@itemize @minus
2295@item
2296Intel PXA270 System-on-chip (ARM V5TE core)
2297@item
2298NAND Flash memory
2299@item
2300IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2301@item
2302On-chip OHCI USB controller
2303@item
2304On-chip LCD controller
2305@item
2306On-chip Real Time Clock
2307@item
2308TI ADS7846 touchscreen controller on SSP bus
2309@item
2310Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2311@item
2312GPIO-connected keyboard controller and LEDs
2313@item
549444e1 2314Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2315@item
2316Three on-chip UARTs
2317@item
2318WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2319@end itemize
2320
02645926
AZ
2321The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2322following elements:
2323
2324@itemize @minus
2325@item
2326Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2327@item
2328ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2329@item
2330On-chip LCD controller
2331@item
2332On-chip Real Time Clock
2333@item
2334TI TSC2102i touchscreen controller / analog-digital converter / Audio
2335CODEC, connected through MicroWire and I@math{^2}S busses
2336@item
2337GPIO-connected matrix keypad
2338@item
2339Secure Digital card connected to OMAP MMC/SD host
2340@item
2341Three on-chip UARTs
2342@end itemize
2343
c30bb264
AZ
2344Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2345emulation supports the following elements:
2346
2347@itemize @minus
2348@item
2349Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2350@item
2351RAM and non-volatile OneNAND Flash memories
2352@item
2353Display connected to EPSON remote framebuffer chip and OMAP on-chip
2354display controller and a LS041y3 MIPI DBI-C controller
2355@item
2356TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2357driven through SPI bus
2358@item
2359National Semiconductor LM8323-controlled qwerty keyboard driven
2360through I@math{^2}C bus
2361@item
2362Secure Digital card connected to OMAP MMC/SD host
2363@item
2364Three OMAP on-chip UARTs and on-chip STI debugging console
2365@item
40c5c6cd 2366A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2367@item
c30bb264
AZ
2368Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2369TUSB6010 chip - only USB host mode is supported
2370@item
2371TI TMP105 temperature sensor driven through I@math{^2}C bus
2372@item
2373TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2374@item
2375Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2376through CBUS
2377@end itemize
2378
9ee6e8bb
PB
2379The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2380devices:
2381
2382@itemize @minus
2383@item
2384Cortex-M3 CPU core.
2385@item
238664k Flash and 8k SRAM.
2387@item
2388Timers, UARTs, ADC and I@math{^2}C interface.
2389@item
2390OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2391@end itemize
2392
2393The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2394devices:
2395
2396@itemize @minus
2397@item
2398Cortex-M3 CPU core.
2399@item
2400256k Flash and 64k SRAM.
2401@item
2402Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2403@item
2404OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2405@end itemize
2406
57cd6e97
AZ
2407The Freecom MusicPal internet radio emulation includes the following
2408elements:
2409
2410@itemize @minus
2411@item
2412Marvell MV88W8618 ARM core.
2413@item
241432 MB RAM, 256 KB SRAM, 8 MB flash.
2415@item
2416Up to 2 16550 UARTs
2417@item
2418MV88W8xx8 Ethernet controller
2419@item
2420MV88W8618 audio controller, WM8750 CODEC and mixer
2421@item
e080e785 2422128×64 display with brightness control
57cd6e97
AZ
2423@item
24242 buttons, 2 navigation wheels with button function
2425@end itemize
2426
997641a8 2427The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2428The emulation includes the following elements:
997641a8
AZ
2429
2430@itemize @minus
2431@item
2432Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2433@item
2434ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2435V1
24361 Flash of 16MB and 1 Flash of 8MB
2437V2
24381 Flash of 32MB
2439@item
2440On-chip LCD controller
2441@item
2442On-chip Real Time Clock
2443@item
2444Secure Digital card connected to OMAP MMC/SD host
2445@item
2446Three on-chip UARTs
2447@end itemize
2448
3f9f3aa1
FB
2449A Linux 2.6 test image is available on the QEMU web site. More
2450information is available in the QEMU mailing-list archive.
9d0a8e6f 2451
d2c639d6
BS
2452@c man begin OPTIONS
2453
2454The following options are specific to the ARM emulation:
2455
2456@table @option
2457
2458@item -semihosting
2459Enable semihosting syscall emulation.
2460
2461On ARM this implements the "Angel" interface.
2462
2463Note that this allows guest direct access to the host filesystem,
2464so should only be used with trusted guest OS.
2465
2466@end table
2467
24d4de45
TS
2468@node ColdFire System emulator
2469@section ColdFire System emulator
7544a042
SW
2470@cindex system emulation (ColdFire)
2471@cindex system emulation (M68K)
209a4e69
PB
2472
2473Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2474The emulator is able to boot a uClinux kernel.
707e011b
PB
2475
2476The M5208EVB emulation includes the following devices:
2477
2478@itemize @minus
5fafdf24 2479@item
707e011b
PB
2480MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2481@item
2482Three Two on-chip UARTs.
2483@item
2484Fast Ethernet Controller (FEC)
2485@end itemize
2486
2487The AN5206 emulation includes the following devices:
209a4e69
PB
2488
2489@itemize @minus
5fafdf24 2490@item
209a4e69
PB
2491MCF5206 ColdFire V2 Microprocessor.
2492@item
2493Two on-chip UARTs.
2494@end itemize
2495
d2c639d6
BS
2496@c man begin OPTIONS
2497
7544a042 2498The following options are specific to the ColdFire emulation:
d2c639d6
BS
2499
2500@table @option
2501
2502@item -semihosting
2503Enable semihosting syscall emulation.
2504
2505On M68K this implements the "ColdFire GDB" interface used by libgloss.
2506
2507Note that this allows guest direct access to the host filesystem,
2508so should only be used with trusted guest OS.
2509
2510@end table
2511
7544a042
SW
2512@node Cris System emulator
2513@section Cris System emulator
2514@cindex system emulation (Cris)
2515
2516TODO
2517
2518@node Microblaze System emulator
2519@section Microblaze System emulator
2520@cindex system emulation (Microblaze)
2521
2522TODO
2523
2524@node SH4 System emulator
2525@section SH4 System emulator
2526@cindex system emulation (SH4)
2527
2528TODO
2529
3aeaea65
MF
2530@node Xtensa System emulator
2531@section Xtensa System emulator
2532@cindex system emulation (Xtensa)
2533
2534Two executables cover simulation of both Xtensa endian options,
2535@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2536Two different machine types are emulated:
2537
2538@itemize @minus
2539@item
2540Xtensa emulator pseudo board "sim"
2541@item
2542Avnet LX60/LX110/LX200 board
2543@end itemize
2544
b5e4946f 2545The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2546to one provided by the proprietary Tensilica ISS.
2547It supports:
2548
2549@itemize @minus
2550@item
2551A range of Xtensa CPUs, default is the DC232B
2552@item
2553Console and filesystem access via semihosting calls
2554@end itemize
2555
2556The Avnet LX60/LX110/LX200 emulation supports:
2557
2558@itemize @minus
2559@item
2560A range of Xtensa CPUs, default is the DC232B
2561@item
256216550 UART
2563@item
2564OpenCores 10/100 Mbps Ethernet MAC
2565@end itemize
2566
2567@c man begin OPTIONS
2568
2569The following options are specific to the Xtensa emulation:
2570
2571@table @option
2572
2573@item -semihosting
2574Enable semihosting syscall emulation.
2575
2576Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2577Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2578
2579Note that this allows guest direct access to the host filesystem,
2580so should only be used with trusted guest OS.
2581
2582@end table
5fafdf24
TS
2583@node QEMU User space emulator
2584@chapter QEMU User space emulator
83195237
FB
2585
2586@menu
2587* Supported Operating Systems ::
2588* Linux User space emulator::
84778508 2589* BSD User space emulator ::
83195237
FB
2590@end menu
2591
2592@node Supported Operating Systems
2593@section Supported Operating Systems
2594
2595The following OS are supported in user space emulation:
2596
2597@itemize @minus
2598@item
4be456f1 2599Linux (referred as qemu-linux-user)
83195237 2600@item
84778508 2601BSD (referred as qemu-bsd-user)
83195237
FB
2602@end itemize
2603
2604@node Linux User space emulator
2605@section Linux User space emulator
386405f7 2606
debc7065
FB
2607@menu
2608* Quick Start::
2609* Wine launch::
2610* Command line options::
79737e4a 2611* Other binaries::
debc7065
FB
2612@end menu
2613
2614@node Quick Start
83195237 2615@subsection Quick Start
df0f11a0 2616
1f673135 2617In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2618itself and all the target (x86) dynamic libraries used by it.
386405f7 2619
1f673135 2620@itemize
386405f7 2621
1f673135
FB
2622@item On x86, you can just try to launch any process by using the native
2623libraries:
386405f7 2624
5fafdf24 2625@example
1f673135
FB
2626qemu-i386 -L / /bin/ls
2627@end example
386405f7 2628
1f673135
FB
2629@code{-L /} tells that the x86 dynamic linker must be searched with a
2630@file{/} prefix.
386405f7 2631
b65ee4fa
SW
2632@item Since QEMU is also a linux process, you can launch QEMU with
2633QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2634
5fafdf24 2635@example
1f673135
FB
2636qemu-i386 -L / qemu-i386 -L / /bin/ls
2637@end example
386405f7 2638
1f673135
FB
2639@item On non x86 CPUs, you need first to download at least an x86 glibc
2640(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2641@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2642
1f673135 2643@example
5fafdf24 2644unset LD_LIBRARY_PATH
1f673135 2645@end example
1eb87257 2646
1f673135 2647Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2648
1f673135
FB
2649@example
2650qemu-i386 tests/i386/ls
2651@end example
4c3b5a48 2652You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2653QEMU is automatically launched by the Linux kernel when you try to
2654launch x86 executables. It requires the @code{binfmt_misc} module in the
2655Linux kernel.
1eb87257 2656
1f673135
FB
2657@item The x86 version of QEMU is also included. You can try weird things such as:
2658@example
debc7065
FB
2659qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2660 /usr/local/qemu-i386/bin/ls-i386
1f673135 2661@end example
1eb20527 2662
1f673135 2663@end itemize
1eb20527 2664
debc7065 2665@node Wine launch
83195237 2666@subsection Wine launch
1eb20527 2667
1f673135 2668@itemize
386405f7 2669
1f673135
FB
2670@item Ensure that you have a working QEMU with the x86 glibc
2671distribution (see previous section). In order to verify it, you must be
2672able to do:
386405f7 2673
1f673135
FB
2674@example
2675qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2676@end example
386405f7 2677
1f673135 2678@item Download the binary x86 Wine install
5fafdf24 2679(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2680
1f673135 2681@item Configure Wine on your account. Look at the provided script
debc7065 2682@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2683@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2684
1f673135 2685@item Then you can try the example @file{putty.exe}:
386405f7 2686
1f673135 2687@example
debc7065
FB
2688qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2689 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2690@end example
386405f7 2691
1f673135 2692@end itemize
fd429f2f 2693
debc7065 2694@node Command line options
83195237 2695@subsection Command line options
1eb20527 2696
1f673135 2697@example
68a1c816 2698usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
1f673135 2699@end example
1eb20527 2700
1f673135
FB
2701@table @option
2702@item -h
2703Print the help
3b46e624 2704@item -L path
1f673135
FB
2705Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2706@item -s size
2707Set the x86 stack size in bytes (default=524288)
34a3d239 2708@item -cpu model
c8057f95 2709Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2710@item -E @var{var}=@var{value}
2711Set environment @var{var} to @var{value}.
2712@item -U @var{var}
2713Remove @var{var} from the environment.
379f6698
PB
2714@item -B offset
2715Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2716the address region required by guest applications is reserved on the host.
2717This option is currently only supported on some hosts.
68a1c816
PB
2718@item -R size
2719Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2720"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2721@end table
2722
1f673135 2723Debug options:
386405f7 2724
1f673135 2725@table @option
989b697d
PM
2726@item -d item1,...
2727Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2728@item -p pagesize
2729Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2730@item -g port
2731Wait gdb connection to port
1b530a6d
AJ
2732@item -singlestep
2733Run the emulation in single step mode.
1f673135 2734@end table
386405f7 2735
b01bcae6
AZ
2736Environment variables:
2737
2738@table @env
2739@item QEMU_STRACE
2740Print system calls and arguments similar to the 'strace' program
2741(NOTE: the actual 'strace' program will not work because the user
2742space emulator hasn't implemented ptrace). At the moment this is
2743incomplete. All system calls that don't have a specific argument
2744format are printed with information for six arguments. Many
2745flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2746@end table
b01bcae6 2747
79737e4a 2748@node Other binaries
83195237 2749@subsection Other binaries
79737e4a 2750
7544a042
SW
2751@cindex user mode (Alpha)
2752@command{qemu-alpha} TODO.
2753
2754@cindex user mode (ARM)
2755@command{qemu-armeb} TODO.
2756
2757@cindex user mode (ARM)
79737e4a
PB
2758@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2759binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2760configurations), and arm-uclinux bFLT format binaries.
2761
7544a042
SW
2762@cindex user mode (ColdFire)
2763@cindex user mode (M68K)
e6e5906b
PB
2764@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2765(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2766coldfire uClinux bFLT format binaries.
2767
79737e4a
PB
2768The binary format is detected automatically.
2769
7544a042
SW
2770@cindex user mode (Cris)
2771@command{qemu-cris} TODO.
2772
2773@cindex user mode (i386)
2774@command{qemu-i386} TODO.
2775@command{qemu-x86_64} TODO.
2776
2777@cindex user mode (Microblaze)
2778@command{qemu-microblaze} TODO.
2779
2780@cindex user mode (MIPS)
2781@command{qemu-mips} TODO.
2782@command{qemu-mipsel} TODO.
2783
2784@cindex user mode (PowerPC)
2785@command{qemu-ppc64abi32} TODO.
2786@command{qemu-ppc64} TODO.
2787@command{qemu-ppc} TODO.
2788
2789@cindex user mode (SH4)
2790@command{qemu-sh4eb} TODO.
2791@command{qemu-sh4} TODO.
2792
2793@cindex user mode (SPARC)
34a3d239
BS
2794@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2795
a785e42e
BS
2796@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2797(Sparc64 CPU, 32 bit ABI).
2798
2799@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2800SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2801
84778508
BS
2802@node BSD User space emulator
2803@section BSD User space emulator
2804
2805@menu
2806* BSD Status::
2807* BSD Quick Start::
2808* BSD Command line options::
2809@end menu
2810
2811@node BSD Status
2812@subsection BSD Status
2813
2814@itemize @minus
2815@item
2816target Sparc64 on Sparc64: Some trivial programs work.
2817@end itemize
2818
2819@node BSD Quick Start
2820@subsection Quick Start
2821
2822In order to launch a BSD process, QEMU needs the process executable
2823itself and all the target dynamic libraries used by it.
2824
2825@itemize
2826
2827@item On Sparc64, you can just try to launch any process by using the native
2828libraries:
2829
2830@example
2831qemu-sparc64 /bin/ls
2832@end example
2833
2834@end itemize
2835
2836@node BSD Command line options
2837@subsection Command line options
2838
2839@example
2840usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2841@end example
2842
2843@table @option
2844@item -h
2845Print the help
2846@item -L path
2847Set the library root path (default=/)
2848@item -s size
2849Set the stack size in bytes (default=524288)
f66724c9
SW
2850@item -ignore-environment
2851Start with an empty environment. Without this option,
40c5c6cd 2852the initial environment is a copy of the caller's environment.
f66724c9
SW
2853@item -E @var{var}=@var{value}
2854Set environment @var{var} to @var{value}.
2855@item -U @var{var}
2856Remove @var{var} from the environment.
84778508
BS
2857@item -bsd type
2858Set the type of the emulated BSD Operating system. Valid values are
2859FreeBSD, NetBSD and OpenBSD (default).
2860@end table
2861
2862Debug options:
2863
2864@table @option
989b697d
PM
2865@item -d item1,...
2866Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2867@item -p pagesize
2868Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2869@item -singlestep
2870Run the emulation in single step mode.
84778508
BS
2871@end table
2872
15a34c63
FB
2873@node compilation
2874@chapter Compilation from the sources
2875
debc7065
FB
2876@menu
2877* Linux/Unix::
2878* Windows::
2879* Cross compilation for Windows with Linux::
2880* Mac OS X::
47eacb4f 2881* Make targets::
debc7065
FB
2882@end menu
2883
2884@node Linux/Unix
7c3fc84d
FB
2885@section Linux/Unix
2886
2887@subsection Compilation
2888
2889First you must decompress the sources:
2890@example
2891cd /tmp
2892tar zxvf qemu-x.y.z.tar.gz
2893cd qemu-x.y.z
2894@end example
2895
2896Then you configure QEMU and build it (usually no options are needed):
2897@example
2898./configure
2899make
2900@end example
2901
2902Then type as root user:
2903@example
2904make install
2905@end example
2906to install QEMU in @file{/usr/local}.
2907
debc7065 2908@node Windows
15a34c63
FB
2909@section Windows
2910
2911@itemize
2912@item Install the current versions of MSYS and MinGW from
2913@url{http://www.mingw.org/}. You can find detailed installation
2914instructions in the download section and the FAQ.
2915
5fafdf24 2916@item Download
15a34c63 2917the MinGW development library of SDL 1.2.x
debc7065 2918(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
d0a96f3d
ST
2919@url{http://www.libsdl.org}. Unpack it in a temporary place and
2920edit the @file{sdl-config} script so that it gives the
15a34c63
FB
2921correct SDL directory when invoked.
2922
d0a96f3d
ST
2923@item Install the MinGW version of zlib and make sure
2924@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2925MinGW's default header and linker search paths.
d0a96f3d 2926
15a34c63 2927@item Extract the current version of QEMU.
5fafdf24 2928
15a34c63
FB
2929@item Start the MSYS shell (file @file{msys.bat}).
2930
5fafdf24 2931@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
2932@file{make}. If you have problems using SDL, verify that
2933@file{sdl-config} can be launched from the MSYS command line.
2934
c5ec15ea 2935@item You can install QEMU in @file{Program Files/QEMU} by typing
15a34c63 2936@file{make install}. Don't forget to copy @file{SDL.dll} in
c5ec15ea 2937@file{Program Files/QEMU}.
15a34c63
FB
2938
2939@end itemize
2940
debc7065 2941@node Cross compilation for Windows with Linux
15a34c63
FB
2942@section Cross compilation for Windows with Linux
2943
2944@itemize
2945@item
2946Install the MinGW cross compilation tools available at
2947@url{http://www.mingw.org/}.
2948
d0a96f3d
ST
2949@item Download
2950the MinGW development library of SDL 1.2.x
2951(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2952@url{http://www.libsdl.org}. Unpack it in a temporary place and
2953edit the @file{sdl-config} script so that it gives the
2954correct SDL directory when invoked. Set up the @code{PATH} environment
2955variable so that @file{sdl-config} can be launched by
15a34c63
FB
2956the QEMU configuration script.
2957
d0a96f3d
ST
2958@item Install the MinGW version of zlib and make sure
2959@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2960MinGW's default header and linker search paths.
d0a96f3d 2961
5fafdf24 2962@item
15a34c63
FB
2963Configure QEMU for Windows cross compilation:
2964@example
d0a96f3d
ST
2965PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2966@end example
2967The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2968MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
40c5c6cd 2969We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
d0a96f3d 2970use --cross-prefix to specify the name of the cross compiler.
c5ec15ea 2971You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
d0a96f3d
ST
2972
2973Under Fedora Linux, you can run:
2974@example
2975yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
15a34c63 2976@end example
d0a96f3d 2977to get a suitable cross compilation environment.
15a34c63 2978
5fafdf24 2979@item You can install QEMU in the installation directory by typing
d0a96f3d 2980@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
5fafdf24 2981installation directory.
15a34c63
FB
2982
2983@end itemize
2984
3804da9d
SW
2985Wine can be used to launch the resulting qemu-system-i386.exe
2986and all other qemu-system-@var{target}.exe compiled for Win32.
15a34c63 2987
debc7065 2988@node Mac OS X
15a34c63
FB
2989@section Mac OS X
2990
2991The Mac OS X patches are not fully merged in QEMU, so you should look
2992at the QEMU mailing list archive to have all the necessary
2993information.
2994
47eacb4f
SW
2995@node Make targets
2996@section Make targets
2997
2998@table @code
2999
3000@item make
3001@item make all
3002Make everything which is typically needed.
3003
3004@item install
3005TODO
3006
3007@item install-doc
3008TODO
3009
3010@item make clean
3011Remove most files which were built during make.
3012
3013@item make distclean
3014Remove everything which was built during make.
3015
3016@item make dvi
3017@item make html
3018@item make info
3019@item make pdf
3020Create documentation in dvi, html, info or pdf format.
3021
3022@item make cscope
3023TODO
3024
3025@item make defconfig
3026(Re-)create some build configuration files.
3027User made changes will be overwritten.
3028
3029@item tar
3030@item tarbin
3031TODO
3032
3033@end table
3034
7544a042
SW
3035@node License
3036@appendix License
3037
3038QEMU is a trademark of Fabrice Bellard.
3039
3040QEMU is released under the GNU General Public License (TODO: add link).
3041Parts of QEMU have specific licenses, see file LICENSE.
3042
3043TODO (refer to file LICENSE, include it, include the GPL?)
3044
debc7065 3045@node Index
7544a042
SW
3046@appendix Index
3047@menu
3048* Concept Index::
3049* Function Index::
3050* Keystroke Index::
3051* Program Index::
3052* Data Type Index::
3053* Variable Index::
3054@end menu
3055
3056@node Concept Index
3057@section Concept Index
3058This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
3059@printindex cp
3060
7544a042
SW
3061@node Function Index
3062@section Function Index
3063This index could be used for command line options and monitor functions.
3064@printindex fn
3065
3066@node Keystroke Index
3067@section Keystroke Index
3068
3069This is a list of all keystrokes which have a special function
3070in system emulation.
3071
3072@printindex ky
3073
3074@node Program Index
3075@section Program Index
3076@printindex pg
3077
3078@node Data Type Index
3079@section Data Type Index
3080
3081This index could be used for qdev device names and options.
3082
3083@printindex tp
3084
3085@node Variable Index
3086@section Variable Index
3087@printindex vr
3088
debc7065 3089@bye