]> git.proxmox.com Git - mirror_qemu.git/blame - softmmu/physmem.c
Do not include cpu.h if it's not really necessary
[mirror_qemu.git] / softmmu / physmem.c
CommitLineData
54936004 1/*
d9f24bf5 2 * RAM allocation and memory access
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
61f3c91a 9 * version 2.1 of the License, or (at your option) any later version.
54936004
FB
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
14a48c1d 19
7b31bbc2 20#include "qemu/osdep.h"
a8d25326 21#include "qemu-common.h"
da34e65c 22#include "qapi/error.h"
54936004 23
f348b6d1 24#include "qemu/cutils.h"
084cfca1 25#include "qemu/cacheflush.h"
78271684
CF
26
27#ifdef CONFIG_TCG
28#include "hw/core/tcg-cpu-ops.h"
29#endif /* CONFIG_TCG */
30
63c91552 31#include "exec/exec-all.h"
51180423 32#include "exec/target_page.h"
741da0d3 33#include "hw/qdev-core.h"
c7e002c5 34#include "hw/qdev-properties.h"
47c8ca53 35#include "hw/boards.h"
33c11879 36#include "hw/xen/xen.h"
9c17d615 37#include "sysemu/kvm.h"
14a48c1d 38#include "sysemu/tcg.h"
a028edea 39#include "sysemu/qtest.h"
1de7afc9
PB
40#include "qemu/timer.h"
41#include "qemu/config-file.h"
75a34036 42#include "qemu/error-report.h"
b6b71cb5 43#include "qemu/qemu-print.h"
741da0d3 44#include "exec/memory.h"
df43d49c 45#include "exec/ioport.h"
741da0d3 46#include "sysemu/dma.h"
b58c5c2d 47#include "sysemu/hostmem.h"
79ca7a1b 48#include "sysemu/hw_accel.h"
741da0d3 49#include "exec/address-spaces.h"
9c17d615 50#include "sysemu/xen-mapcache.h"
243af022 51#include "trace/trace-root.h"
d3a5038c 52
e2fa71f5 53#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
54#include <linux/falloc.h>
55#endif
56
0dc3f44a 57#include "qemu/rcu_queue.h"
4840f10e 58#include "qemu/main-loop.h"
3b9bd3f4 59#include "exec/translate-all.h"
7615936e 60#include "sysemu/replay.h"
0cac1b66 61
022c62cb 62#include "exec/memory-internal.h"
220c3ebd 63#include "exec/ram_addr.h"
508127e2 64#include "exec/log.h"
67d95c15 65
61c490e2
BM
66#include "qemu/pmem.h"
67
9dfeca7c
BR
68#include "migration/vmstate.h"
69
b35ba30f 70#include "qemu/range.h"
794e8f30
MT
71#ifndef _WIN32
72#include "qemu/mmap-alloc.h"
73#endif
b35ba30f 74
be9b23c4
PX
75#include "monitor/monitor.h"
76
ce317be9
JL
77#ifdef CONFIG_LIBDAXCTL
78#include <daxctl/libdaxctl.h>
79#endif
80
db7b5426 81//#define DEBUG_SUBPAGE
1196be37 82
0dc3f44a
MD
83/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
84 * are protected by the ramlist lock.
85 */
0d53d9fe 86RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
87
88static MemoryRegion *system_memory;
309cb471 89static MemoryRegion *system_io;
62152b8a 90
f6790af6
AK
91AddressSpace address_space_io;
92AddressSpace address_space_memory;
2673a5da 93
acc9d80b 94static MemoryRegion io_mem_unassigned;
4346ae3e 95
1db8abb1
PB
96typedef struct PhysPageEntry PhysPageEntry;
97
98struct PhysPageEntry {
9736e55b 99 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 100 uint32_t skip : 6;
9736e55b 101 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 102 uint32_t ptr : 26;
1db8abb1
PB
103};
104
8b795765
MT
105#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
106
03f49957 107/* Size of the L2 (and L3, etc) page tables. */
57271d63 108#define ADDR_SPACE_BITS 64
03f49957 109
026736ce 110#define P_L2_BITS 9
03f49957
PB
111#define P_L2_SIZE (1 << P_L2_BITS)
112
113#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
114
115typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 116
53cb28cb 117typedef struct PhysPageMap {
79e2b9ae
PB
118 struct rcu_head rcu;
119
53cb28cb
MA
120 unsigned sections_nb;
121 unsigned sections_nb_alloc;
122 unsigned nodes_nb;
123 unsigned nodes_nb_alloc;
124 Node *nodes;
125 MemoryRegionSection *sections;
126} PhysPageMap;
127
1db8abb1 128struct AddressSpaceDispatch {
729633c2 129 MemoryRegionSection *mru_section;
1db8abb1
PB
130 /* This is a multi-level map on the physical address space.
131 * The bottom level has pointers to MemoryRegionSections.
132 */
133 PhysPageEntry phys_map;
53cb28cb 134 PhysPageMap map;
1db8abb1
PB
135};
136
90260c6c
JK
137#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
138typedef struct subpage_t {
139 MemoryRegion iomem;
16620684 140 FlatView *fv;
90260c6c 141 hwaddr base;
2615fabd 142 uint16_t sub_section[];
90260c6c
JK
143} subpage_t;
144
b41aac4f 145#define PHYS_SECTION_UNASSIGNED 0
5312bd8b 146
e2eef170 147static void io_mem_init(void);
62152b8a 148static void memory_map_init(void);
9458a9a1 149static void tcg_log_global_after_sync(MemoryListener *listener);
09daed84 150static void tcg_commit(MemoryListener *listener);
e2eef170 151
32857f4d
PM
152/**
153 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
154 * @cpu: the CPU whose AddressSpace this is
155 * @as: the AddressSpace itself
156 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
157 * @tcg_as_listener: listener for tracking changes to the AddressSpace
158 */
159struct CPUAddressSpace {
160 CPUState *cpu;
161 AddressSpace *as;
162 struct AddressSpaceDispatch *memory_dispatch;
163 MemoryListener tcg_as_listener;
164};
165
8deaf12c
GH
166struct DirtyBitmapSnapshot {
167 ram_addr_t start;
168 ram_addr_t end;
169 unsigned long dirty[];
170};
171
53cb28cb 172static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 173{
101420b8 174 static unsigned alloc_hint = 16;
53cb28cb 175 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
c95cfd04 176 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
53cb28cb 177 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 178 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 179 }
f7bf5461
AK
180}
181
db94604b 182static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
183{
184 unsigned i;
8b795765 185 uint32_t ret;
db94604b
PB
186 PhysPageEntry e;
187 PhysPageEntry *p;
f7bf5461 188
53cb28cb 189 ret = map->nodes_nb++;
db94604b 190 p = map->nodes[ret];
f7bf5461 191 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 192 assert(ret != map->nodes_nb_alloc);
db94604b
PB
193
194 e.skip = leaf ? 0 : 1;
195 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 196 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 197 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 198 }
f7bf5461 199 return ret;
d6f2ea22
AK
200}
201
53cb28cb 202static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
56b15076 203 hwaddr *index, uint64_t *nb, uint16_t leaf,
2999097b 204 int level)
f7bf5461
AK
205{
206 PhysPageEntry *p;
03f49957 207 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 208
9736e55b 209 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 210 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 211 }
db94604b 212 p = map->nodes[lp->ptr];
03f49957 213 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 214
03f49957 215 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 216 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 217 lp->skip = 0;
c19e8800 218 lp->ptr = leaf;
07f07b31
AK
219 *index += step;
220 *nb -= step;
2999097b 221 } else {
53cb28cb 222 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
223 }
224 ++lp;
f7bf5461
AK
225 }
226}
227
ac1970fb 228static void phys_page_set(AddressSpaceDispatch *d,
56b15076 229 hwaddr index, uint64_t nb,
2999097b 230 uint16_t leaf)
f7bf5461 231{
2999097b 232 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 233 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 234
53cb28cb 235 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
236}
237
b35ba30f
MT
238/* Compact a non leaf page entry. Simply detect that the entry has a single child,
239 * and update our entry so we can skip it and go directly to the destination.
240 */
efee678d 241static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
242{
243 unsigned valid_ptr = P_L2_SIZE;
244 int valid = 0;
245 PhysPageEntry *p;
246 int i;
247
248 if (lp->ptr == PHYS_MAP_NODE_NIL) {
249 return;
250 }
251
252 p = nodes[lp->ptr];
253 for (i = 0; i < P_L2_SIZE; i++) {
254 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
255 continue;
256 }
257
258 valid_ptr = i;
259 valid++;
260 if (p[i].skip) {
efee678d 261 phys_page_compact(&p[i], nodes);
b35ba30f
MT
262 }
263 }
264
265 /* We can only compress if there's only one child. */
266 if (valid != 1) {
267 return;
268 }
269
270 assert(valid_ptr < P_L2_SIZE);
271
272 /* Don't compress if it won't fit in the # of bits we have. */
526ca236
WY
273 if (P_L2_LEVELS >= (1 << 6) &&
274 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
b35ba30f
MT
275 return;
276 }
277
278 lp->ptr = p[valid_ptr].ptr;
279 if (!p[valid_ptr].skip) {
280 /* If our only child is a leaf, make this a leaf. */
281 /* By design, we should have made this node a leaf to begin with so we
282 * should never reach here.
283 * But since it's so simple to handle this, let's do it just in case we
284 * change this rule.
285 */
286 lp->skip = 0;
287 } else {
288 lp->skip += p[valid_ptr].skip;
289 }
290}
291
8629d3fc 292void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 293{
b35ba30f 294 if (d->phys_map.skip) {
efee678d 295 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
296 }
297}
298
29cb533d
FZ
299static inline bool section_covers_addr(const MemoryRegionSection *section,
300 hwaddr addr)
301{
302 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
303 * the section must cover the entire address space.
304 */
258dfaaa 305 return int128_gethi(section->size) ||
29cb533d 306 range_covers_byte(section->offset_within_address_space,
258dfaaa 307 int128_getlo(section->size), addr);
29cb533d
FZ
308}
309
003a0cf2 310static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 311{
003a0cf2
PX
312 PhysPageEntry lp = d->phys_map, *p;
313 Node *nodes = d->map.nodes;
314 MemoryRegionSection *sections = d->map.sections;
97115a8d 315 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 316 int i;
f1f6e3b8 317
9736e55b 318 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 319 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 320 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 321 }
9affd6fc 322 p = nodes[lp.ptr];
03f49957 323 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 324 }
b35ba30f 325
29cb533d 326 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
327 return &sections[lp.ptr];
328 } else {
329 return &sections[PHYS_SECTION_UNASSIGNED];
330 }
f3705d53
AK
331}
332
79e2b9ae 333/* Called from RCU critical section */
c7086b4a 334static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
335 hwaddr addr,
336 bool resolve_subpage)
9f029603 337{
d73415a3 338 MemoryRegionSection *section = qatomic_read(&d->mru_section);
90260c6c
JK
339 subpage_t *subpage;
340
07c114bb
PB
341 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
342 !section_covers_addr(section, addr)) {
003a0cf2 343 section = phys_page_find(d, addr);
d73415a3 344 qatomic_set(&d->mru_section, section);
729633c2 345 }
90260c6c
JK
346 if (resolve_subpage && section->mr->subpage) {
347 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 348 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
349 }
350 return section;
9f029603
JK
351}
352
79e2b9ae 353/* Called from RCU critical section */
90260c6c 354static MemoryRegionSection *
c7086b4a 355address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 356 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
357{
358 MemoryRegionSection *section;
965eb2fc 359 MemoryRegion *mr;
a87f3954 360 Int128 diff;
149f54b5 361
c7086b4a 362 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
363 /* Compute offset within MemoryRegionSection */
364 addr -= section->offset_within_address_space;
365
366 /* Compute offset within MemoryRegion */
367 *xlat = addr + section->offset_within_region;
368
965eb2fc 369 mr = section->mr;
b242e0e0
PB
370
371 /* MMIO registers can be expected to perform full-width accesses based only
372 * on their address, without considering adjacent registers that could
373 * decode to completely different MemoryRegions. When such registers
374 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
375 * regions overlap wildly. For this reason we cannot clamp the accesses
376 * here.
377 *
378 * If the length is small (as is the case for address_space_ldl/stl),
379 * everything works fine. If the incoming length is large, however,
380 * the caller really has to do the clamping through memory_access_size.
381 */
965eb2fc 382 if (memory_region_is_ram(mr)) {
e4a511f8 383 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
384 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
385 }
149f54b5
PB
386 return section;
387}
90260c6c 388
a411c84b
PB
389/**
390 * address_space_translate_iommu - translate an address through an IOMMU
391 * memory region and then through the target address space.
392 *
393 * @iommu_mr: the IOMMU memory region that we start the translation from
394 * @addr: the address to be translated through the MMU
395 * @xlat: the translated address offset within the destination memory region.
396 * It cannot be %NULL.
397 * @plen_out: valid read/write length of the translated address. It
398 * cannot be %NULL.
399 * @page_mask_out: page mask for the translated address. This
400 * should only be meaningful for IOMMU translated
401 * addresses, since there may be huge pages that this bit
402 * would tell. It can be %NULL if we don't care about it.
403 * @is_write: whether the translation operation is for write
404 * @is_mmio: whether this can be MMIO, set true if it can
405 * @target_as: the address space targeted by the IOMMU
2f7b009c 406 * @attrs: transaction attributes
a411c84b
PB
407 *
408 * This function is called from RCU critical section. It is the common
409 * part of flatview_do_translate and address_space_translate_cached.
410 */
411static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
412 hwaddr *xlat,
413 hwaddr *plen_out,
414 hwaddr *page_mask_out,
415 bool is_write,
416 bool is_mmio,
2f7b009c
PM
417 AddressSpace **target_as,
418 MemTxAttrs attrs)
a411c84b
PB
419{
420 MemoryRegionSection *section;
421 hwaddr page_mask = (hwaddr)-1;
422
423 do {
424 hwaddr addr = *xlat;
425 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
2c91bcf2
PM
426 int iommu_idx = 0;
427 IOMMUTLBEntry iotlb;
428
429 if (imrc->attrs_to_index) {
430 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
431 }
432
433 iotlb = imrc->translate(iommu_mr, addr, is_write ?
434 IOMMU_WO : IOMMU_RO, iommu_idx);
a411c84b
PB
435
436 if (!(iotlb.perm & (1 << is_write))) {
437 goto unassigned;
438 }
439
440 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
441 | (addr & iotlb.addr_mask));
442 page_mask &= iotlb.addr_mask;
443 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
444 *target_as = iotlb.target_as;
445
446 section = address_space_translate_internal(
447 address_space_to_dispatch(iotlb.target_as), addr, xlat,
448 plen_out, is_mmio);
449
450 iommu_mr = memory_region_get_iommu(section->mr);
451 } while (unlikely(iommu_mr));
452
453 if (page_mask_out) {
454 *page_mask_out = page_mask;
455 }
456 return *section;
457
458unassigned:
459 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
460}
461
d5e5fafd
PX
462/**
463 * flatview_do_translate - translate an address in FlatView
464 *
465 * @fv: the flat view that we want to translate on
466 * @addr: the address to be translated in above address space
467 * @xlat: the translated address offset within memory region. It
468 * cannot be @NULL.
469 * @plen_out: valid read/write length of the translated address. It
470 * can be @NULL when we don't care about it.
471 * @page_mask_out: page mask for the translated address. This
472 * should only be meaningful for IOMMU translated
473 * addresses, since there may be huge pages that this bit
474 * would tell. It can be @NULL if we don't care about it.
475 * @is_write: whether the translation operation is for write
476 * @is_mmio: whether this can be MMIO, set true if it can
ad2804d9 477 * @target_as: the address space targeted by the IOMMU
49e14aa8 478 * @attrs: memory transaction attributes
d5e5fafd
PX
479 *
480 * This function is called from RCU critical section
481 */
16620684
AK
482static MemoryRegionSection flatview_do_translate(FlatView *fv,
483 hwaddr addr,
484 hwaddr *xlat,
d5e5fafd
PX
485 hwaddr *plen_out,
486 hwaddr *page_mask_out,
16620684
AK
487 bool is_write,
488 bool is_mmio,
49e14aa8
PM
489 AddressSpace **target_as,
490 MemTxAttrs attrs)
052c8fa9 491{
052c8fa9 492 MemoryRegionSection *section;
3df9d748 493 IOMMUMemoryRegion *iommu_mr;
d5e5fafd
PX
494 hwaddr plen = (hwaddr)(-1);
495
ad2804d9
PB
496 if (!plen_out) {
497 plen_out = &plen;
d5e5fafd 498 }
052c8fa9 499
a411c84b
PB
500 section = address_space_translate_internal(
501 flatview_to_dispatch(fv), addr, xlat,
502 plen_out, is_mmio);
052c8fa9 503
a411c84b
PB
504 iommu_mr = memory_region_get_iommu(section->mr);
505 if (unlikely(iommu_mr)) {
506 return address_space_translate_iommu(iommu_mr, xlat,
507 plen_out, page_mask_out,
508 is_write, is_mmio,
2f7b009c 509 target_as, attrs);
052c8fa9 510 }
d5e5fafd 511 if (page_mask_out) {
a411c84b
PB
512 /* Not behind an IOMMU, use default page size. */
513 *page_mask_out = ~TARGET_PAGE_MASK;
d5e5fafd
PX
514 }
515
a764040c 516 return *section;
052c8fa9
JW
517}
518
519/* Called from RCU critical section */
a764040c 520IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
7446eb07 521 bool is_write, MemTxAttrs attrs)
90260c6c 522{
a764040c 523 MemoryRegionSection section;
076a93d7 524 hwaddr xlat, page_mask;
30951157 525
076a93d7
PX
526 /*
527 * This can never be MMIO, and we don't really care about plen,
528 * but page mask.
529 */
530 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
49e14aa8
PM
531 NULL, &page_mask, is_write, false, &as,
532 attrs);
30951157 533
a764040c
PX
534 /* Illegal translation */
535 if (section.mr == &io_mem_unassigned) {
536 goto iotlb_fail;
537 }
30951157 538
a764040c
PX
539 /* Convert memory region offset into address space offset */
540 xlat += section.offset_within_address_space -
541 section.offset_within_region;
542
a764040c 543 return (IOMMUTLBEntry) {
e76bb18f 544 .target_as = as,
076a93d7
PX
545 .iova = addr & ~page_mask,
546 .translated_addr = xlat & ~page_mask,
547 .addr_mask = page_mask,
a764040c
PX
548 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
549 .perm = IOMMU_RW,
550 };
551
552iotlb_fail:
553 return (IOMMUTLBEntry) {0};
554}
555
556/* Called from RCU critical section */
16620684 557MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
efa99a2f
PM
558 hwaddr *plen, bool is_write,
559 MemTxAttrs attrs)
a764040c
PX
560{
561 MemoryRegion *mr;
562 MemoryRegionSection section;
16620684 563 AddressSpace *as = NULL;
a764040c
PX
564
565 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd 566 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
49e14aa8 567 is_write, true, &as, attrs);
a764040c
PX
568 mr = section.mr;
569
fe680d0d 570 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 571 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 572 *plen = MIN(page, *plen);
a87f3954
PB
573 }
574
30951157 575 return mr;
90260c6c
JK
576}
577
1f871c5e
PM
578typedef struct TCGIOMMUNotifier {
579 IOMMUNotifier n;
580 MemoryRegion *mr;
581 CPUState *cpu;
582 int iommu_idx;
583 bool active;
584} TCGIOMMUNotifier;
585
586static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
587{
588 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
589
590 if (!notifier->active) {
591 return;
592 }
593 tlb_flush(notifier->cpu);
594 notifier->active = false;
595 /* We leave the notifier struct on the list to avoid reallocating it later.
596 * Generally the number of IOMMUs a CPU deals with will be small.
597 * In any case we can't unregister the iommu notifier from a notify
598 * callback.
599 */
600}
601
602static void tcg_register_iommu_notifier(CPUState *cpu,
603 IOMMUMemoryRegion *iommu_mr,
604 int iommu_idx)
605{
606 /* Make sure this CPU has an IOMMU notifier registered for this
607 * IOMMU/IOMMU index combination, so that we can flush its TLB
608 * when the IOMMU tells us the mappings we've cached have changed.
609 */
610 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
bbf90191 611 TCGIOMMUNotifier *notifier = NULL;
805d4496 612 int i;
1f871c5e
PM
613
614 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 615 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e
PM
616 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
617 break;
618 }
619 }
620 if (i == cpu->iommu_notifiers->len) {
621 /* Not found, add a new entry at the end of the array */
622 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
5601be3b
PM
623 notifier = g_new0(TCGIOMMUNotifier, 1);
624 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
1f871c5e
PM
625
626 notifier->mr = mr;
627 notifier->iommu_idx = iommu_idx;
628 notifier->cpu = cpu;
629 /* Rather than trying to register interest in the specific part
630 * of the iommu's address space that we've accessed and then
631 * expand it later as subsequent accesses touch more of it, we
632 * just register interest in the whole thing, on the assumption
633 * that iommu reconfiguration will be rare.
634 */
635 iommu_notifier_init(&notifier->n,
636 tcg_iommu_unmap_notify,
637 IOMMU_NOTIFIER_UNMAP,
638 0,
639 HWADDR_MAX,
640 iommu_idx);
805d4496
MA
641 memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
642 &error_fatal);
1f871c5e
PM
643 }
644
645 if (!notifier->active) {
646 notifier->active = true;
647 }
648}
649
d9f24bf5 650void tcg_iommu_free_notifier_list(CPUState *cpu)
1f871c5e
PM
651{
652 /* Destroy the CPU's notifier list */
653 int i;
654 TCGIOMMUNotifier *notifier;
655
656 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 657 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e 658 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
5601be3b 659 g_free(notifier);
1f871c5e
PM
660 }
661 g_array_free(cpu->iommu_notifiers, true);
662}
663
d9f24bf5
PB
664void tcg_iommu_init_notifier_list(CPUState *cpu)
665{
666 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
667}
668
79e2b9ae 669/* Called from RCU critical section */
90260c6c 670MemoryRegionSection *
d7898cda 671address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
1f871c5e
PM
672 hwaddr *xlat, hwaddr *plen,
673 MemTxAttrs attrs, int *prot)
90260c6c 674{
30951157 675 MemoryRegionSection *section;
1f871c5e
PM
676 IOMMUMemoryRegion *iommu_mr;
677 IOMMUMemoryRegionClass *imrc;
678 IOMMUTLBEntry iotlb;
679 int iommu_idx;
d73415a3
SH
680 AddressSpaceDispatch *d =
681 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda 682
1f871c5e
PM
683 for (;;) {
684 section = address_space_translate_internal(d, addr, &addr, plen, false);
685
686 iommu_mr = memory_region_get_iommu(section->mr);
687 if (!iommu_mr) {
688 break;
689 }
690
691 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
692
693 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
694 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
695 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
696 * doesn't short-cut its translation table walk.
697 */
698 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
699 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
700 | (addr & iotlb.addr_mask));
701 /* Update the caller's prot bits to remove permissions the IOMMU
702 * is giving us a failure response for. If we get down to no
703 * permissions left at all we can give up now.
704 */
705 if (!(iotlb.perm & IOMMU_RO)) {
706 *prot &= ~(PAGE_READ | PAGE_EXEC);
707 }
708 if (!(iotlb.perm & IOMMU_WO)) {
709 *prot &= ~PAGE_WRITE;
710 }
711
712 if (!*prot) {
713 goto translate_fail;
714 }
715
716 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
717 }
30951157 718
3df9d748 719 assert(!memory_region_is_iommu(section->mr));
1f871c5e 720 *xlat = addr;
30951157 721 return section;
1f871c5e
PM
722
723translate_fail:
724 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
90260c6c 725}
1a1562f5 726
80ceb07a
PX
727void cpu_address_space_init(CPUState *cpu, int asidx,
728 const char *prefix, MemoryRegion *mr)
09daed84 729{
12ebc9a7 730 CPUAddressSpace *newas;
80ceb07a 731 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 732 char *as_name;
80ceb07a
PX
733
734 assert(mr);
87a621d8
PX
735 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
736 address_space_init(as, mr, as_name);
737 g_free(as_name);
12ebc9a7
PM
738
739 /* Target code should have set num_ases before calling us */
740 assert(asidx < cpu->num_ases);
741
56943e8c
PM
742 if (asidx == 0) {
743 /* address space 0 gets the convenience alias */
744 cpu->as = as;
745 }
746
12ebc9a7
PM
747 /* KVM cannot currently support multiple address spaces. */
748 assert(asidx == 0 || !kvm_enabled());
09daed84 749
12ebc9a7
PM
750 if (!cpu->cpu_ases) {
751 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 752 }
32857f4d 753
12ebc9a7
PM
754 newas = &cpu->cpu_ases[asidx];
755 newas->cpu = cpu;
756 newas->as = as;
56943e8c 757 if (tcg_enabled()) {
9458a9a1 758 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
12ebc9a7
PM
759 newas->tcg_as_listener.commit = tcg_commit;
760 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 761 }
09daed84 762}
651a5bc0
PM
763
764AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
765{
766 /* Return the AddressSpace corresponding to the specified index */
767 return cpu->cpu_ases[asidx].as;
768}
8bca9a03 769
6658ffb8 770/* Add a watchpoint. */
75a34036 771int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 772 int flags, CPUWatchpoint **watchpoint)
6658ffb8 773{
c0ce998e 774 CPUWatchpoint *wp;
2e886a24 775 vaddr in_page;
6658ffb8 776
05068c0d 777 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 778 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
779 error_report("tried to set invalid watchpoint at %"
780 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
781 return -EINVAL;
782 }
7267c094 783 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
784
785 wp->vaddr = addr;
05068c0d 786 wp->len = len;
a1d1bb31
AL
787 wp->flags = flags;
788
2dc9f411 789 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
790 if (flags & BP_GDB) {
791 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
792 } else {
793 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
794 }
6658ffb8 795
2e886a24
AB
796 in_page = -(addr | TARGET_PAGE_MASK);
797 if (len <= in_page) {
798 tlb_flush_page(cpu, addr);
799 } else {
800 tlb_flush(cpu);
801 }
a1d1bb31
AL
802
803 if (watchpoint)
804 *watchpoint = wp;
805 return 0;
6658ffb8
PB
806}
807
a1d1bb31 808/* Remove a specific watchpoint. */
75a34036 809int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 810 int flags)
6658ffb8 811{
a1d1bb31 812 CPUWatchpoint *wp;
6658ffb8 813
ff4700b0 814 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 815 if (addr == wp->vaddr && len == wp->len
6e140f28 816 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 817 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
818 return 0;
819 }
820 }
a1d1bb31 821 return -ENOENT;
6658ffb8
PB
822}
823
a1d1bb31 824/* Remove a specific watchpoint by reference. */
75a34036 825void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 826{
ff4700b0 827 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 828
31b030d4 829 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 830
7267c094 831 g_free(watchpoint);
a1d1bb31
AL
832}
833
834/* Remove all matching watchpoints. */
75a34036 835void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 836{
c0ce998e 837 CPUWatchpoint *wp, *next;
a1d1bb31 838
ff4700b0 839 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
840 if (wp->flags & mask) {
841 cpu_watchpoint_remove_by_ref(cpu, wp);
842 }
c0ce998e 843 }
7d03f82f 844}
05068c0d 845
79fc8d45 846#ifdef CONFIG_TCG
05068c0d
PM
847/* Return true if this watchpoint address matches the specified
848 * access (ie the address range covered by the watchpoint overlaps
849 * partially or completely with the address range covered by the
850 * access).
851 */
56ad8b00
RH
852static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
853 vaddr addr, vaddr len)
05068c0d
PM
854{
855 /* We know the lengths are non-zero, but a little caution is
856 * required to avoid errors in the case where the range ends
857 * exactly at the top of the address space and so addr + len
858 * wraps round to zero.
859 */
860 vaddr wpend = wp->vaddr + wp->len - 1;
861 vaddr addrend = addr + len - 1;
862
863 return !(addr > wpend || wp->vaddr > addrend);
864}
865
56ad8b00
RH
866/* Return flags for watchpoints that match addr + prot. */
867int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
868{
869 CPUWatchpoint *wp;
870 int ret = 0;
871
872 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
9835936d 873 if (watchpoint_address_matches(wp, addr, len)) {
56ad8b00
RH
874 ret |= wp->flags;
875 }
876 }
877 return ret;
878}
7d03f82f 879
79fc8d45
CF
880/* Generate a debug exception if a watchpoint has been hit. */
881void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
882 MemTxAttrs attrs, int flags, uintptr_t ra)
883{
884 CPUClass *cc = CPU_GET_CLASS(cpu);
885 CPUWatchpoint *wp;
886
887 assert(tcg_enabled());
888 if (cpu->watchpoint_hit) {
889 /*
890 * We re-entered the check after replacing the TB.
891 * Now raise the debug interrupt so that it will
892 * trigger after the current instruction.
893 */
894 qemu_mutex_lock_iothread();
895 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
896 qemu_mutex_unlock_iothread();
897 return;
898 }
899
78271684 900 if (cc->tcg_ops->adjust_watchpoint_address) {
9ea9087b 901 /* this is currently used only by ARM BE32 */
78271684 902 addr = cc->tcg_ops->adjust_watchpoint_address(cpu, addr, len);
9ea9087b 903 }
79fc8d45
CF
904 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
905 if (watchpoint_address_matches(wp, addr, len)
906 && (wp->flags & flags)) {
907 if (replay_running_debug()) {
908 /*
909 * Don't process the watchpoints when we are
910 * in a reverse debugging operation.
911 */
912 replay_breakpoint();
913 return;
914 }
915 if (flags == BP_MEM_READ) {
916 wp->flags |= BP_WATCHPOINT_HIT_READ;
917 } else {
918 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
919 }
920 wp->hitaddr = MAX(addr, wp->vaddr);
921 wp->hitattrs = attrs;
922 if (!cpu->watchpoint_hit) {
78271684
CF
923 if (wp->flags & BP_CPU && cc->tcg_ops->debug_check_watchpoint &&
924 !cc->tcg_ops->debug_check_watchpoint(cpu, wp)) {
79fc8d45
CF
925 wp->flags &= ~BP_WATCHPOINT_HIT;
926 continue;
927 }
928 cpu->watchpoint_hit = wp;
929
930 mmap_lock();
931 tb_check_watchpoint(cpu, ra);
932 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
933 cpu->exception_index = EXCP_DEBUG;
934 mmap_unlock();
935 cpu_loop_exit_restore(cpu, ra);
936 } else {
937 /* Force execution of one insn next time. */
c0ae396a 938 cpu->cflags_next_tb = 1 | curr_cflags(cpu);
79fc8d45
CF
939 mmap_unlock();
940 if (ra) {
941 cpu_restore_state(cpu, ra, true);
942 }
943 cpu_loop_exit_noexc(cpu);
944 }
945 }
946 } else {
947 wp->flags &= ~BP_WATCHPOINT_HIT;
948 }
949 }
950}
951
952#endif /* CONFIG_TCG */
953
0dc3f44a 954/* Called from RCU critical section */
041603fe
PB
955static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
956{
957 RAMBlock *block;
958
d73415a3 959 block = qatomic_rcu_read(&ram_list.mru_block);
9b8424d5 960 if (block && addr - block->offset < block->max_length) {
68851b98 961 return block;
041603fe 962 }
99e15582 963 RAMBLOCK_FOREACH(block) {
9b8424d5 964 if (addr - block->offset < block->max_length) {
041603fe
PB
965 goto found;
966 }
967 }
968
969 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
970 abort();
971
972found:
43771539
PB
973 /* It is safe to write mru_block outside the iothread lock. This
974 * is what happens:
975 *
976 * mru_block = xxx
977 * rcu_read_unlock()
978 * xxx removed from list
979 * rcu_read_lock()
980 * read mru_block
981 * mru_block = NULL;
982 * call_rcu(reclaim_ramblock, xxx);
983 * rcu_read_unlock()
984 *
d73415a3 985 * qatomic_rcu_set is not needed here. The block was already published
43771539
PB
986 * when it was placed into the list. Here we're just making an extra
987 * copy of the pointer.
988 */
041603fe
PB
989 ram_list.mru_block = block;
990 return block;
991}
992
a2f4d5be 993static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 994{
9a13565d 995 CPUState *cpu;
041603fe 996 ram_addr_t start1;
a2f4d5be
JQ
997 RAMBlock *block;
998 ram_addr_t end;
999
f28d0dfd 1000 assert(tcg_enabled());
a2f4d5be
JQ
1001 end = TARGET_PAGE_ALIGN(start + length);
1002 start &= TARGET_PAGE_MASK;
d24981d3 1003
694ea274 1004 RCU_READ_LOCK_GUARD();
041603fe
PB
1005 block = qemu_get_ram_block(start);
1006 assert(block == qemu_get_ram_block(end - 1));
1240be24 1007 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1008 CPU_FOREACH(cpu) {
1009 tlb_reset_dirty(cpu, start1, length);
1010 }
d24981d3
JQ
1011}
1012
5579c7f3 1013/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1014bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1015 ram_addr_t length,
1016 unsigned client)
1ccde1cb 1017{
5b82b703 1018 DirtyMemoryBlocks *blocks;
25aa6b37 1019 unsigned long end, page, start_page;
5b82b703 1020 bool dirty = false;
077874e0
PX
1021 RAMBlock *ramblock;
1022 uint64_t mr_offset, mr_size;
03eebc9e
SH
1023
1024 if (length == 0) {
1025 return false;
1026 }
f23db169 1027
03eebc9e 1028 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
25aa6b37
MB
1029 start_page = start >> TARGET_PAGE_BITS;
1030 page = start_page;
5b82b703 1031
694ea274 1032 WITH_RCU_READ_LOCK_GUARD() {
d73415a3 1033 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
694ea274
DDAG
1034 ramblock = qemu_get_ram_block(start);
1035 /* Range sanity check on the ramblock */
1036 assert(start >= ramblock->offset &&
1037 start + length <= ramblock->offset + ramblock->used_length);
5b82b703 1038
694ea274
DDAG
1039 while (page < end) {
1040 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1041 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1042 unsigned long num = MIN(end - page,
1043 DIRTY_MEMORY_BLOCK_SIZE - offset);
5b82b703 1044
694ea274
DDAG
1045 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1046 offset, num);
1047 page += num;
1048 }
5b82b703 1049
25aa6b37
MB
1050 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1051 mr_size = (end - start_page) << TARGET_PAGE_BITS;
694ea274 1052 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
5b82b703
SH
1053 }
1054
03eebc9e 1055 if (dirty && tcg_enabled()) {
a2f4d5be 1056 tlb_reset_dirty_range_all(start, length);
5579c7f3 1057 }
03eebc9e
SH
1058
1059 return dirty;
1ccde1cb
FB
1060}
1061
8deaf12c 1062DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
5dea4079 1063 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
8deaf12c
GH
1064{
1065 DirtyMemoryBlocks *blocks;
5dea4079 1066 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
8deaf12c
GH
1067 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1068 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1069 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1070 DirtyBitmapSnapshot *snap;
1071 unsigned long page, end, dest;
1072
1073 snap = g_malloc0(sizeof(*snap) +
1074 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1075 snap->start = first;
1076 snap->end = last;
1077
1078 page = first >> TARGET_PAGE_BITS;
1079 end = last >> TARGET_PAGE_BITS;
1080 dest = 0;
1081
694ea274 1082 WITH_RCU_READ_LOCK_GUARD() {
d73415a3 1083 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
8deaf12c 1084
694ea274
DDAG
1085 while (page < end) {
1086 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1087 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1088 unsigned long num = MIN(end - page,
1089 DIRTY_MEMORY_BLOCK_SIZE - offset);
8deaf12c 1090
694ea274
DDAG
1091 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1092 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1093 offset >>= BITS_PER_LEVEL;
8deaf12c 1094
694ea274
DDAG
1095 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1096 blocks->blocks[idx] + offset,
1097 num);
1098 page += num;
1099 dest += num >> BITS_PER_LEVEL;
1100 }
8deaf12c
GH
1101 }
1102
8deaf12c
GH
1103 if (tcg_enabled()) {
1104 tlb_reset_dirty_range_all(start, length);
1105 }
1106
077874e0
PX
1107 memory_region_clear_dirty_bitmap(mr, offset, length);
1108
8deaf12c
GH
1109 return snap;
1110}
1111
1112bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1113 ram_addr_t start,
1114 ram_addr_t length)
1115{
1116 unsigned long page, end;
1117
1118 assert(start >= snap->start);
1119 assert(start + length <= snap->end);
1120
1121 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1122 page = (start - snap->start) >> TARGET_PAGE_BITS;
1123
1124 while (page < end) {
1125 if (test_bit(page, snap->dirty)) {
1126 return true;
1127 }
1128 page++;
1129 }
1130 return false;
1131}
1132
79e2b9ae 1133/* Called from RCU critical section */
bb0e627a 1134hwaddr memory_region_section_get_iotlb(CPUState *cpu,
8f5db641 1135 MemoryRegionSection *section)
e5548617 1136{
8f5db641
RH
1137 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1138 return section - d->map.sections;
e5548617 1139}
8da3ff18 1140
b797ab1a
WY
1141static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1142 uint16_t section);
16620684 1143static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1144
53cb28cb
MA
1145static uint16_t phys_section_add(PhysPageMap *map,
1146 MemoryRegionSection *section)
5312bd8b 1147{
68f3f65b
PB
1148 /* The physical section number is ORed with a page-aligned
1149 * pointer to produce the iotlb entries. Thus it should
1150 * never overflow into the page-aligned value.
1151 */
53cb28cb 1152 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1153
53cb28cb
MA
1154 if (map->sections_nb == map->sections_nb_alloc) {
1155 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1156 map->sections = g_renew(MemoryRegionSection, map->sections,
1157 map->sections_nb_alloc);
5312bd8b 1158 }
53cb28cb 1159 map->sections[map->sections_nb] = *section;
dfde4e6e 1160 memory_region_ref(section->mr);
53cb28cb 1161 return map->sections_nb++;
5312bd8b
AK
1162}
1163
058bc4b5
PB
1164static void phys_section_destroy(MemoryRegion *mr)
1165{
55b4e80b
DS
1166 bool have_sub_page = mr->subpage;
1167
dfde4e6e
PB
1168 memory_region_unref(mr);
1169
55b4e80b 1170 if (have_sub_page) {
058bc4b5 1171 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1172 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1173 g_free(subpage);
1174 }
1175}
1176
6092666e 1177static void phys_sections_free(PhysPageMap *map)
5312bd8b 1178{
9affd6fc
PB
1179 while (map->sections_nb > 0) {
1180 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1181 phys_section_destroy(section->mr);
1182 }
9affd6fc
PB
1183 g_free(map->sections);
1184 g_free(map->nodes);
5312bd8b
AK
1185}
1186
9950322a 1187static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1188{
9950322a 1189 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1190 subpage_t *subpage;
a8170e5e 1191 hwaddr base = section->offset_within_address_space
0f0cb164 1192 & TARGET_PAGE_MASK;
003a0cf2 1193 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1194 MemoryRegionSection subsection = {
1195 .offset_within_address_space = base,
052e87b0 1196 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1197 };
a8170e5e 1198 hwaddr start, end;
0f0cb164 1199
f3705d53 1200 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1201
f3705d53 1202 if (!(existing->mr->subpage)) {
16620684
AK
1203 subpage = subpage_init(fv, base);
1204 subsection.fv = fv;
0f0cb164 1205 subsection.mr = &subpage->iomem;
ac1970fb 1206 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1207 phys_section_add(&d->map, &subsection));
0f0cb164 1208 } else {
f3705d53 1209 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1210 }
1211 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1212 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1213 subpage_register(subpage, start, end,
1214 phys_section_add(&d->map, section));
0f0cb164
AK
1215}
1216
1217
9950322a 1218static void register_multipage(FlatView *fv,
052e87b0 1219 MemoryRegionSection *section)
33417e70 1220{
9950322a 1221 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1222 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1223 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1224 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1225 TARGET_PAGE_BITS));
dd81124b 1226
733d5ef5
PB
1227 assert(num_pages);
1228 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1229}
1230
494d1997
WY
1231/*
1232 * The range in *section* may look like this:
1233 *
1234 * |s|PPPPPPP|s|
1235 *
1236 * where s stands for subpage and P for page.
1237 */
8629d3fc 1238void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1239{
494d1997 1240 MemoryRegionSection remain = *section;
052e87b0 1241 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1242
494d1997
WY
1243 /* register first subpage */
1244 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1245 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1246 - remain.offset_within_address_space;
733d5ef5 1247
494d1997 1248 MemoryRegionSection now = remain;
052e87b0 1249 now.size = int128_min(int128_make64(left), now.size);
9950322a 1250 register_subpage(fv, &now);
494d1997
WY
1251 if (int128_eq(remain.size, now.size)) {
1252 return;
1253 }
052e87b0
PB
1254 remain.size = int128_sub(remain.size, now.size);
1255 remain.offset_within_address_space += int128_get64(now.size);
1256 remain.offset_within_region += int128_get64(now.size);
494d1997
WY
1257 }
1258
1259 /* register whole pages */
1260 if (int128_ge(remain.size, page_size)) {
1261 MemoryRegionSection now = remain;
1262 now.size = int128_and(now.size, int128_neg(page_size));
1263 register_multipage(fv, &now);
1264 if (int128_eq(remain.size, now.size)) {
1265 return;
69b67646 1266 }
494d1997
WY
1267 remain.size = int128_sub(remain.size, now.size);
1268 remain.offset_within_address_space += int128_get64(now.size);
1269 remain.offset_within_region += int128_get64(now.size);
0f0cb164 1270 }
494d1997
WY
1271
1272 /* register last subpage */
1273 register_subpage(fv, &remain);
0f0cb164
AK
1274}
1275
62a2744c
SY
1276void qemu_flush_coalesced_mmio_buffer(void)
1277{
1278 if (kvm_enabled())
1279 kvm_flush_coalesced_mmio_buffer();
1280}
1281
b2a8658e
UD
1282void qemu_mutex_lock_ramlist(void)
1283{
1284 qemu_mutex_lock(&ram_list.mutex);
1285}
1286
1287void qemu_mutex_unlock_ramlist(void)
1288{
1289 qemu_mutex_unlock(&ram_list.mutex);
1290}
1291
be9b23c4
PX
1292void ram_block_dump(Monitor *mon)
1293{
1294 RAMBlock *block;
1295 char *psize;
1296
694ea274 1297 RCU_READ_LOCK_GUARD();
be9b23c4
PX
1298 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1299 "Block Name", "PSize", "Offset", "Used", "Total");
1300 RAMBLOCK_FOREACH(block) {
1301 psize = size_to_str(block->page_size);
1302 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1303 " 0x%016" PRIx64 "\n", block->idstr, psize,
1304 (uint64_t)block->offset,
1305 (uint64_t)block->used_length,
1306 (uint64_t)block->max_length);
1307 g_free(psize);
1308 }
be9b23c4
PX
1309}
1310
9c607668
AK
1311#ifdef __linux__
1312/*
1313 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1314 * may or may not name the same files / on the same filesystem now as
1315 * when we actually open and map them. Iterate over the file
1316 * descriptors instead, and use qemu_fd_getpagesize().
1317 */
905b7ee4 1318static int find_min_backend_pagesize(Object *obj, void *opaque)
9c607668 1319{
9c607668
AK
1320 long *hpsize_min = opaque;
1321
1322 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
7d5489e6
DG
1323 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1324 long hpsize = host_memory_backend_pagesize(backend);
2b108085 1325
7d5489e6 1326 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
0de6e2a3 1327 *hpsize_min = hpsize;
9c607668
AK
1328 }
1329 }
1330
1331 return 0;
1332}
1333
905b7ee4
DH
1334static int find_max_backend_pagesize(Object *obj, void *opaque)
1335{
1336 long *hpsize_max = opaque;
1337
1338 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1339 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1340 long hpsize = host_memory_backend_pagesize(backend);
1341
1342 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1343 *hpsize_max = hpsize;
1344 }
1345 }
1346
1347 return 0;
1348}
1349
1350/*
1351 * TODO: We assume right now that all mapped host memory backends are
1352 * used as RAM, however some might be used for different purposes.
1353 */
1354long qemu_minrampagesize(void)
9c607668
AK
1355{
1356 long hpsize = LONG_MAX;
ad1172d8 1357 Object *memdev_root = object_resolve_path("/objects", NULL);
9c607668 1358
ad1172d8 1359 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
9c607668
AK
1360 return hpsize;
1361}
905b7ee4
DH
1362
1363long qemu_maxrampagesize(void)
1364{
ad1172d8 1365 long pagesize = 0;
905b7ee4
DH
1366 Object *memdev_root = object_resolve_path("/objects", NULL);
1367
ad1172d8 1368 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
905b7ee4
DH
1369 return pagesize;
1370}
9c607668 1371#else
905b7ee4
DH
1372long qemu_minrampagesize(void)
1373{
038adc2f 1374 return qemu_real_host_page_size;
905b7ee4
DH
1375}
1376long qemu_maxrampagesize(void)
9c607668 1377{
038adc2f 1378 return qemu_real_host_page_size;
9c607668
AK
1379}
1380#endif
1381
d5dbde46 1382#ifdef CONFIG_POSIX
d6af99c9
HZ
1383static int64_t get_file_size(int fd)
1384{
72d41eb4
SH
1385 int64_t size;
1386#if defined(__linux__)
1387 struct stat st;
1388
1389 if (fstat(fd, &st) < 0) {
1390 return -errno;
1391 }
1392
1393 /* Special handling for devdax character devices */
1394 if (S_ISCHR(st.st_mode)) {
1395 g_autofree char *subsystem_path = NULL;
1396 g_autofree char *subsystem = NULL;
1397
1398 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1399 major(st.st_rdev), minor(st.st_rdev));
1400 subsystem = g_file_read_link(subsystem_path, NULL);
1401
1402 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1403 g_autofree char *size_path = NULL;
1404 g_autofree char *size_str = NULL;
1405
1406 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1407 major(st.st_rdev), minor(st.st_rdev));
1408
1409 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1410 return g_ascii_strtoll(size_str, NULL, 0);
1411 }
1412 }
1413 }
1414#endif /* defined(__linux__) */
1415
1416 /* st.st_size may be zero for special files yet lseek(2) works */
1417 size = lseek(fd, 0, SEEK_END);
d6af99c9
HZ
1418 if (size < 0) {
1419 return -errno;
1420 }
1421 return size;
1422}
1423
ce317be9
JL
1424static int64_t get_file_align(int fd)
1425{
1426 int64_t align = -1;
1427#if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1428 struct stat st;
1429
1430 if (fstat(fd, &st) < 0) {
1431 return -errno;
1432 }
1433
1434 /* Special handling for devdax character devices */
1435 if (S_ISCHR(st.st_mode)) {
1436 g_autofree char *path = NULL;
1437 g_autofree char *rpath = NULL;
1438 struct daxctl_ctx *ctx;
1439 struct daxctl_region *region;
1440 int rc = 0;
1441
1442 path = g_strdup_printf("/sys/dev/char/%d:%d",
1443 major(st.st_rdev), minor(st.st_rdev));
1444 rpath = realpath(path, NULL);
1445
1446 rc = daxctl_new(&ctx);
1447 if (rc) {
1448 return -1;
1449 }
1450
1451 daxctl_region_foreach(ctx, region) {
1452 if (strstr(rpath, daxctl_region_get_path(region))) {
1453 align = daxctl_region_get_align(region);
1454 break;
1455 }
1456 }
1457 daxctl_unref(ctx);
1458 }
1459#endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1460
1461 return align;
1462}
1463
8d37b030
MAL
1464static int file_ram_open(const char *path,
1465 const char *region_name,
369d6dc4 1466 bool readonly,
8d37b030
MAL
1467 bool *created,
1468 Error **errp)
c902760f
MT
1469{
1470 char *filename;
8ca761f6
PF
1471 char *sanitized_name;
1472 char *c;
5c3ece79 1473 int fd = -1;
c902760f 1474
8d37b030 1475 *created = false;
fd97fd44 1476 for (;;) {
369d6dc4 1477 fd = open(path, readonly ? O_RDONLY : O_RDWR);
fd97fd44
MA
1478 if (fd >= 0) {
1479 /* @path names an existing file, use it */
1480 break;
8d31d6b6 1481 }
fd97fd44
MA
1482 if (errno == ENOENT) {
1483 /* @path names a file that doesn't exist, create it */
1484 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1485 if (fd >= 0) {
8d37b030 1486 *created = true;
fd97fd44
MA
1487 break;
1488 }
1489 } else if (errno == EISDIR) {
1490 /* @path names a directory, create a file there */
1491 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1492 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1493 for (c = sanitized_name; *c != '\0'; c++) {
1494 if (*c == '/') {
1495 *c = '_';
1496 }
1497 }
8ca761f6 1498
fd97fd44
MA
1499 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1500 sanitized_name);
1501 g_free(sanitized_name);
8d31d6b6 1502
fd97fd44
MA
1503 fd = mkstemp(filename);
1504 if (fd >= 0) {
1505 unlink(filename);
1506 g_free(filename);
1507 break;
1508 }
1509 g_free(filename);
8d31d6b6 1510 }
fd97fd44
MA
1511 if (errno != EEXIST && errno != EINTR) {
1512 error_setg_errno(errp, errno,
1513 "can't open backing store %s for guest RAM",
1514 path);
8d37b030 1515 return -1;
fd97fd44
MA
1516 }
1517 /*
1518 * Try again on EINTR and EEXIST. The latter happens when
1519 * something else creates the file between our two open().
1520 */
8d31d6b6 1521 }
c902760f 1522
8d37b030
MAL
1523 return fd;
1524}
1525
1526static void *file_ram_alloc(RAMBlock *block,
1527 ram_addr_t memory,
1528 int fd,
369d6dc4 1529 bool readonly,
8d37b030 1530 bool truncate,
44a4ff31 1531 off_t offset,
8d37b030
MAL
1532 Error **errp)
1533{
1534 void *area;
1535
863e9621 1536 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1537 if (block->mr->align % block->page_size) {
1538 error_setg(errp, "alignment 0x%" PRIx64
1539 " must be multiples of page size 0x%zx",
1540 block->mr->align, block->page_size);
1541 return NULL;
61362b71
DH
1542 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1543 error_setg(errp, "alignment 0x%" PRIx64
1544 " must be a power of two", block->mr->align);
1545 return NULL;
98376843
HZ
1546 }
1547 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1548#if defined(__s390x__)
1549 if (kvm_enabled()) {
1550 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1551 }
1552#endif
fd97fd44 1553
863e9621 1554 if (memory < block->page_size) {
fd97fd44 1555 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1556 "or larger than page size 0x%zx",
1557 memory, block->page_size);
8d37b030 1558 return NULL;
1775f111
HZ
1559 }
1560
863e9621 1561 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1562
1563 /*
1564 * ftruncate is not supported by hugetlbfs in older
1565 * hosts, so don't bother bailing out on errors.
1566 * If anything goes wrong with it under other filesystems,
1567 * mmap will fail.
d6af99c9
HZ
1568 *
1569 * Do not truncate the non-empty backend file to avoid corrupting
1570 * the existing data in the file. Disabling shrinking is not
1571 * enough. For example, the current vNVDIMM implementation stores
1572 * the guest NVDIMM labels at the end of the backend file. If the
1573 * backend file is later extended, QEMU will not be able to find
1574 * those labels. Therefore, extending the non-empty backend file
1575 * is disabled as well.
c902760f 1576 */
8d37b030 1577 if (truncate && ftruncate(fd, memory)) {
9742bf26 1578 perror("ftruncate");
7f56e740 1579 }
c902760f 1580
369d6dc4 1581 area = qemu_ram_mmap(fd, memory, block->mr->align, readonly,
44a4ff31
JR
1582 block->flags & RAM_SHARED, block->flags & RAM_PMEM,
1583 offset);
c902760f 1584 if (area == MAP_FAILED) {
7f56e740 1585 error_setg_errno(errp, errno,
fd97fd44 1586 "unable to map backing store for guest RAM");
8d37b030 1587 return NULL;
c902760f 1588 }
ef36fa14 1589
04b16653 1590 block->fd = fd;
c902760f
MT
1591 return area;
1592}
1593#endif
1594
154cc9ea
DDAG
1595/* Allocate space within the ram_addr_t space that governs the
1596 * dirty bitmaps.
1597 * Called with the ramlist lock held.
1598 */
d17b5288 1599static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1600{
1601 RAMBlock *block, *next_block;
3e837b2c 1602 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1603
49cd9ac6
SH
1604 assert(size != 0); /* it would hand out same offset multiple times */
1605
0dc3f44a 1606 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1607 return 0;
0d53d9fe 1608 }
04b16653 1609
99e15582 1610 RAMBLOCK_FOREACH(block) {
154cc9ea 1611 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1612
801110ab
DDAG
1613 /* Align blocks to start on a 'long' in the bitmap
1614 * which makes the bitmap sync'ing take the fast path.
1615 */
154cc9ea 1616 candidate = block->offset + block->max_length;
801110ab 1617 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1618
154cc9ea
DDAG
1619 /* Search for the closest following block
1620 * and find the gap.
1621 */
99e15582 1622 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1623 if (next_block->offset >= candidate) {
04b16653
AW
1624 next = MIN(next, next_block->offset);
1625 }
1626 }
154cc9ea
DDAG
1627
1628 /* If it fits remember our place and remember the size
1629 * of gap, but keep going so that we might find a smaller
1630 * gap to fill so avoiding fragmentation.
1631 */
1632 if (next - candidate >= size && next - candidate < mingap) {
1633 offset = candidate;
1634 mingap = next - candidate;
04b16653 1635 }
154cc9ea
DDAG
1636
1637 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 1638 }
3e837b2c
AW
1639
1640 if (offset == RAM_ADDR_MAX) {
1641 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1642 (uint64_t)size);
1643 abort();
1644 }
1645
154cc9ea
DDAG
1646 trace_find_ram_offset(size, offset);
1647
04b16653
AW
1648 return offset;
1649}
1650
c136180c 1651static unsigned long last_ram_page(void)
d17b5288
AW
1652{
1653 RAMBlock *block;
1654 ram_addr_t last = 0;
1655
694ea274 1656 RCU_READ_LOCK_GUARD();
99e15582 1657 RAMBLOCK_FOREACH(block) {
62be4e3a 1658 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1659 }
b8c48993 1660 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1661}
1662
ddb97f1d
JB
1663static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1664{
1665 int ret;
ddb97f1d
JB
1666
1667 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1668 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1669 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1670 if (ret) {
1671 perror("qemu_madvise");
1672 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1673 "but dump_guest_core=off specified\n");
1674 }
1675 }
1676}
1677
422148d3
DDAG
1678const char *qemu_ram_get_idstr(RAMBlock *rb)
1679{
1680 return rb->idstr;
1681}
1682
754cb9c0
YK
1683void *qemu_ram_get_host_addr(RAMBlock *rb)
1684{
1685 return rb->host;
1686}
1687
1688ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1689{
1690 return rb->offset;
1691}
1692
1693ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1694{
1695 return rb->used_length;
1696}
1697
463a4ac2
DDAG
1698bool qemu_ram_is_shared(RAMBlock *rb)
1699{
1700 return rb->flags & RAM_SHARED;
1701}
1702
2ce16640
DDAG
1703/* Note: Only set at the start of postcopy */
1704bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1705{
1706 return rb->flags & RAM_UF_ZEROPAGE;
1707}
1708
1709void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1710{
1711 rb->flags |= RAM_UF_ZEROPAGE;
1712}
1713
b895de50
CLG
1714bool qemu_ram_is_migratable(RAMBlock *rb)
1715{
1716 return rb->flags & RAM_MIGRATABLE;
1717}
1718
1719void qemu_ram_set_migratable(RAMBlock *rb)
1720{
1721 rb->flags |= RAM_MIGRATABLE;
1722}
1723
1724void qemu_ram_unset_migratable(RAMBlock *rb)
1725{
1726 rb->flags &= ~RAM_MIGRATABLE;
1727}
1728
ae3a7047 1729/* Called with iothread lock held. */
fa53a0e5 1730void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 1731{
fa53a0e5 1732 RAMBlock *block;
20cfe881 1733
c5705a77
AK
1734 assert(new_block);
1735 assert(!new_block->idstr[0]);
84b89d78 1736
09e5ab63
AL
1737 if (dev) {
1738 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1739 if (id) {
1740 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1741 g_free(id);
84b89d78
CM
1742 }
1743 }
1744 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1745
694ea274 1746 RCU_READ_LOCK_GUARD();
99e15582 1747 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
1748 if (block != new_block &&
1749 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1750 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1751 new_block->idstr);
1752 abort();
1753 }
1754 }
c5705a77
AK
1755}
1756
ae3a7047 1757/* Called with iothread lock held. */
fa53a0e5 1758void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 1759{
ae3a7047
MD
1760 /* FIXME: arch_init.c assumes that this is not called throughout
1761 * migration. Ignore the problem since hot-unplug during migration
1762 * does not work anyway.
1763 */
20cfe881
HT
1764 if (block) {
1765 memset(block->idstr, 0, sizeof(block->idstr));
1766 }
1767}
1768
863e9621
DDAG
1769size_t qemu_ram_pagesize(RAMBlock *rb)
1770{
1771 return rb->page_size;
1772}
1773
67f11b5c
DDAG
1774/* Returns the largest size of page in use */
1775size_t qemu_ram_pagesize_largest(void)
1776{
1777 RAMBlock *block;
1778 size_t largest = 0;
1779
99e15582 1780 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
1781 largest = MAX(largest, qemu_ram_pagesize(block));
1782 }
1783
1784 return largest;
1785}
1786
8490fc78
LC
1787static int memory_try_enable_merging(void *addr, size_t len)
1788{
75cc7f01 1789 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1790 /* disabled by the user */
1791 return 0;
1792 }
1793
1794 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1795}
1796
62be4e3a
MT
1797/* Only legal before guest might have detected the memory size: e.g. on
1798 * incoming migration, or right after reset.
1799 *
1800 * As memory core doesn't know how is memory accessed, it is up to
1801 * resize callback to update device state and/or add assertions to detect
1802 * misuse, if necessary.
1803 */
fa53a0e5 1804int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 1805{
ce4adc0b
DH
1806 const ram_addr_t unaligned_size = newsize;
1807
62be4e3a
MT
1808 assert(block);
1809
4ed023ce 1810 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1811
62be4e3a 1812 if (block->used_length == newsize) {
ce4adc0b
DH
1813 /*
1814 * We don't have to resize the ram block (which only knows aligned
1815 * sizes), however, we have to notify if the unaligned size changed.
1816 */
1817 if (unaligned_size != memory_region_size(block->mr)) {
1818 memory_region_set_size(block->mr, unaligned_size);
1819 if (block->resized) {
1820 block->resized(block->idstr, unaligned_size, block->host);
1821 }
1822 }
62be4e3a
MT
1823 return 0;
1824 }
1825
1826 if (!(block->flags & RAM_RESIZEABLE)) {
1827 error_setg_errno(errp, EINVAL,
a3a92908
PG
1828 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1829 " != 0x" RAM_ADDR_FMT, block->idstr,
62be4e3a
MT
1830 newsize, block->used_length);
1831 return -EINVAL;
1832 }
1833
1834 if (block->max_length < newsize) {
1835 error_setg_errno(errp, EINVAL,
a3a92908 1836 "Size too large: %s: 0x" RAM_ADDR_FMT
62be4e3a
MT
1837 " > 0x" RAM_ADDR_FMT, block->idstr,
1838 newsize, block->max_length);
1839 return -EINVAL;
1840 }
1841
1842 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1843 block->used_length = newsize;
58d2707e
PB
1844 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1845 DIRTY_CLIENTS_ALL);
ce4adc0b 1846 memory_region_set_size(block->mr, unaligned_size);
62be4e3a 1847 if (block->resized) {
ce4adc0b 1848 block->resized(block->idstr, unaligned_size, block->host);
62be4e3a
MT
1849 }
1850 return 0;
1851}
1852
61c490e2
BM
1853/*
1854 * Trigger sync on the given ram block for range [start, start + length]
1855 * with the backing store if one is available.
1856 * Otherwise no-op.
1857 * @Note: this is supposed to be a synchronous op.
1858 */
ab7e41e6 1859void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
61c490e2 1860{
61c490e2
BM
1861 /* The requested range should fit in within the block range */
1862 g_assert((start + length) <= block->used_length);
1863
1864#ifdef CONFIG_LIBPMEM
1865 /* The lack of support for pmem should not block the sync */
1866 if (ramblock_is_pmem(block)) {
5d4c9549 1867 void *addr = ramblock_ptr(block, start);
61c490e2
BM
1868 pmem_persist(addr, length);
1869 return;
1870 }
1871#endif
1872 if (block->fd >= 0) {
1873 /**
1874 * Case there is no support for PMEM or the memory has not been
1875 * specified as persistent (or is not one) - use the msync.
1876 * Less optimal but still achieves the same goal
1877 */
5d4c9549 1878 void *addr = ramblock_ptr(block, start);
61c490e2
BM
1879 if (qemu_msync(addr, length, block->fd)) {
1880 warn_report("%s: failed to sync memory range: start: "
1881 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1882 __func__, start, length);
1883 }
1884 }
1885}
1886
5b82b703
SH
1887/* Called with ram_list.mutex held */
1888static void dirty_memory_extend(ram_addr_t old_ram_size,
1889 ram_addr_t new_ram_size)
1890{
1891 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1892 DIRTY_MEMORY_BLOCK_SIZE);
1893 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1894 DIRTY_MEMORY_BLOCK_SIZE);
1895 int i;
1896
1897 /* Only need to extend if block count increased */
1898 if (new_num_blocks <= old_num_blocks) {
1899 return;
1900 }
1901
1902 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1903 DirtyMemoryBlocks *old_blocks;
1904 DirtyMemoryBlocks *new_blocks;
1905 int j;
1906
d73415a3 1907 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
5b82b703
SH
1908 new_blocks = g_malloc(sizeof(*new_blocks) +
1909 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1910
1911 if (old_num_blocks) {
1912 memcpy(new_blocks->blocks, old_blocks->blocks,
1913 old_num_blocks * sizeof(old_blocks->blocks[0]));
1914 }
1915
1916 for (j = old_num_blocks; j < new_num_blocks; j++) {
1917 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1918 }
1919
d73415a3 1920 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
5b82b703
SH
1921
1922 if (old_blocks) {
1923 g_free_rcu(old_blocks, rcu);
1924 }
1925 }
1926}
1927
06329cce 1928static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
c5705a77 1929{
e1c57ab8 1930 RAMBlock *block;
0d53d9fe 1931 RAMBlock *last_block = NULL;
2152f5ca 1932 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1933 Error *err = NULL;
2152f5ca 1934
b8c48993 1935 old_ram_size = last_ram_page();
c5705a77 1936
b2a8658e 1937 qemu_mutex_lock_ramlist();
9b8424d5 1938 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1939
1940 if (!new_block->host) {
1941 if (xen_enabled()) {
9b8424d5 1942 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1943 new_block->mr, &err);
1944 if (err) {
1945 error_propagate(errp, err);
1946 qemu_mutex_unlock_ramlist();
39c350ee 1947 return;
37aa7a0e 1948 }
e1c57ab8 1949 } else {
25459eb7
DH
1950 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1951 &new_block->mr->align,
1952 shared);
39228250 1953 if (!new_block->host) {
ef701d7b
HT
1954 error_setg_errno(errp, errno,
1955 "cannot set up guest memory '%s'",
1956 memory_region_name(new_block->mr));
1957 qemu_mutex_unlock_ramlist();
39c350ee 1958 return;
39228250 1959 }
9b8424d5 1960 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1961 }
c902760f 1962 }
94a6b54f 1963
dd631697
LZ
1964 new_ram_size = MAX(old_ram_size,
1965 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1966 if (new_ram_size > old_ram_size) {
5b82b703 1967 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1968 }
0d53d9fe
MD
1969 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1970 * QLIST (which has an RCU-friendly variant) does not have insertion at
1971 * tail, so save the last element in last_block.
1972 */
99e15582 1973 RAMBLOCK_FOREACH(block) {
0d53d9fe 1974 last_block = block;
9b8424d5 1975 if (block->max_length < new_block->max_length) {
abb26d63
PB
1976 break;
1977 }
1978 }
1979 if (block) {
0dc3f44a 1980 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1981 } else if (last_block) {
0dc3f44a 1982 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1983 } else { /* list is empty */
0dc3f44a 1984 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1985 }
0d6d3c87 1986 ram_list.mru_block = NULL;
94a6b54f 1987
0dc3f44a
MD
1988 /* Write list before version */
1989 smp_wmb();
f798b07f 1990 ram_list.version++;
b2a8658e 1991 qemu_mutex_unlock_ramlist();
f798b07f 1992
9b8424d5 1993 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1994 new_block->used_length,
1995 DIRTY_CLIENTS_ALL);
94a6b54f 1996
a904c911
PB
1997 if (new_block->host) {
1998 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1999 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
a028edea
AB
2000 /*
2001 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2002 * Configure it unless the machine is a qtest server, in which case
2003 * KVM is not used and it may be forked (eg for fuzzing purposes).
2004 */
2005 if (!qtest_enabled()) {
2006 qemu_madvise(new_block->host, new_block->max_length,
2007 QEMU_MADV_DONTFORK);
2008 }
0987d735 2009 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 2010 }
94a6b54f 2011}
e9a1ab19 2012
d5dbde46 2013#ifdef CONFIG_POSIX
38b3362d 2014RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
44a4ff31
JR
2015 uint32_t ram_flags, int fd, off_t offset,
2016 bool readonly, Error **errp)
e1c57ab8
PB
2017{
2018 RAMBlock *new_block;
ef701d7b 2019 Error *local_err = NULL;
ce317be9 2020 int64_t file_size, file_align;
e1c57ab8 2021
a4de8552
JH
2022 /* Just support these ram flags by now. */
2023 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2024
e1c57ab8 2025 if (xen_enabled()) {
7f56e740 2026 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2027 return NULL;
e1c57ab8
PB
2028 }
2029
e45e7ae2
MAL
2030 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2031 error_setg(errp,
2032 "host lacks kvm mmu notifiers, -mem-path unsupported");
2033 return NULL;
2034 }
2035
4ed023ce 2036 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2037 file_size = get_file_size(fd);
2038 if (file_size > 0 && file_size < size) {
c001c3b3 2039 error_setg(errp, "backing store size 0x%" PRIx64
8d37b030 2040 " does not match 'size' option 0x" RAM_ADDR_FMT,
c001c3b3 2041 file_size, size);
8d37b030
MAL
2042 return NULL;
2043 }
2044
ce317be9
JL
2045 file_align = get_file_align(fd);
2046 if (file_align > 0 && mr && file_align > mr->align) {
2047 error_setg(errp, "backing store align 0x%" PRIx64
5f509751 2048 " is larger than 'align' option 0x%" PRIx64,
ce317be9
JL
2049 file_align, mr->align);
2050 return NULL;
2051 }
2052
e1c57ab8
PB
2053 new_block = g_malloc0(sizeof(*new_block));
2054 new_block->mr = mr;
9b8424d5
MT
2055 new_block->used_length = size;
2056 new_block->max_length = size;
cbfc0171 2057 new_block->flags = ram_flags;
369d6dc4 2058 new_block->host = file_ram_alloc(new_block, size, fd, readonly,
44a4ff31 2059 !file_size, offset, errp);
7f56e740
PB
2060 if (!new_block->host) {
2061 g_free(new_block);
528f46af 2062 return NULL;
7f56e740
PB
2063 }
2064
cbfc0171 2065 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
ef701d7b
HT
2066 if (local_err) {
2067 g_free(new_block);
2068 error_propagate(errp, local_err);
528f46af 2069 return NULL;
ef701d7b 2070 }
528f46af 2071 return new_block;
38b3362d
MAL
2072
2073}
2074
2075
2076RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2077 uint32_t ram_flags, const char *mem_path,
369d6dc4 2078 bool readonly, Error **errp)
38b3362d
MAL
2079{
2080 int fd;
2081 bool created;
2082 RAMBlock *block;
2083
369d6dc4
SH
2084 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
2085 errp);
38b3362d
MAL
2086 if (fd < 0) {
2087 return NULL;
2088 }
2089
44a4ff31 2090 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp);
38b3362d
MAL
2091 if (!block) {
2092 if (created) {
2093 unlink(mem_path);
2094 }
2095 close(fd);
2096 return NULL;
2097 }
2098
2099 return block;
e1c57ab8 2100}
0b183fc8 2101#endif
e1c57ab8 2102
62be4e3a 2103static
528f46af
FZ
2104RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2105 void (*resized)(const char*,
2106 uint64_t length,
2107 void *host),
06329cce 2108 void *host, bool resizeable, bool share,
528f46af 2109 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2110{
2111 RAMBlock *new_block;
ef701d7b 2112 Error *local_err = NULL;
e1c57ab8 2113
4ed023ce
DDAG
2114 size = HOST_PAGE_ALIGN(size);
2115 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2116 new_block = g_malloc0(sizeof(*new_block));
2117 new_block->mr = mr;
62be4e3a 2118 new_block->resized = resized;
9b8424d5
MT
2119 new_block->used_length = size;
2120 new_block->max_length = max_size;
62be4e3a 2121 assert(max_size >= size);
e1c57ab8 2122 new_block->fd = -1;
038adc2f 2123 new_block->page_size = qemu_real_host_page_size;
e1c57ab8
PB
2124 new_block->host = host;
2125 if (host) {
7bd4f430 2126 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2127 }
62be4e3a
MT
2128 if (resizeable) {
2129 new_block->flags |= RAM_RESIZEABLE;
2130 }
06329cce 2131 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2132 if (local_err) {
2133 g_free(new_block);
2134 error_propagate(errp, local_err);
528f46af 2135 return NULL;
ef701d7b 2136 }
528f46af 2137 return new_block;
e1c57ab8
PB
2138}
2139
528f46af 2140RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2141 MemoryRegion *mr, Error **errp)
2142{
06329cce
MA
2143 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2144 false, mr, errp);
62be4e3a
MT
2145}
2146
06329cce
MA
2147RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2148 MemoryRegion *mr, Error **errp)
6977dfe6 2149{
06329cce
MA
2150 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2151 share, mr, errp);
62be4e3a
MT
2152}
2153
528f46af 2154RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2155 void (*resized)(const char*,
2156 uint64_t length,
2157 void *host),
2158 MemoryRegion *mr, Error **errp)
2159{
06329cce
MA
2160 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2161 false, mr, errp);
6977dfe6
YT
2162}
2163
43771539
PB
2164static void reclaim_ramblock(RAMBlock *block)
2165{
2166 if (block->flags & RAM_PREALLOC) {
2167 ;
2168 } else if (xen_enabled()) {
2169 xen_invalidate_map_cache_entry(block->host);
2170#ifndef _WIN32
2171 } else if (block->fd >= 0) {
53adb9d4 2172 qemu_ram_munmap(block->fd, block->host, block->max_length);
43771539
PB
2173 close(block->fd);
2174#endif
2175 } else {
2176 qemu_anon_ram_free(block->host, block->max_length);
2177 }
2178 g_free(block);
2179}
2180
f1060c55 2181void qemu_ram_free(RAMBlock *block)
e9a1ab19 2182{
85bc2a15
MAL
2183 if (!block) {
2184 return;
2185 }
2186
0987d735
PB
2187 if (block->host) {
2188 ram_block_notify_remove(block->host, block->max_length);
2189 }
2190
b2a8658e 2191 qemu_mutex_lock_ramlist();
f1060c55
FZ
2192 QLIST_REMOVE_RCU(block, next);
2193 ram_list.mru_block = NULL;
2194 /* Write list before version */
2195 smp_wmb();
2196 ram_list.version++;
2197 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2198 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2199}
2200
cd19cfa2
HY
2201#ifndef _WIN32
2202void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2203{
2204 RAMBlock *block;
2205 ram_addr_t offset;
2206 int flags;
2207 void *area, *vaddr;
2208
99e15582 2209 RAMBLOCK_FOREACH(block) {
cd19cfa2 2210 offset = addr - block->offset;
9b8424d5 2211 if (offset < block->max_length) {
1240be24 2212 vaddr = ramblock_ptr(block, offset);
7bd4f430 2213 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2214 ;
dfeaf2ab
MA
2215 } else if (xen_enabled()) {
2216 abort();
cd19cfa2
HY
2217 } else {
2218 flags = MAP_FIXED;
3435f395 2219 if (block->fd >= 0) {
dbcb8981
PB
2220 flags |= (block->flags & RAM_SHARED ?
2221 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2222 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2223 flags, block->fd, offset);
cd19cfa2 2224 } else {
cd19cfa2
HY
2225 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2226 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2227 flags, -1, 0);
cd19cfa2
HY
2228 }
2229 if (area != vaddr) {
493d89bf
AF
2230 error_report("Could not remap addr: "
2231 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2232 length, addr);
cd19cfa2
HY
2233 exit(1);
2234 }
8490fc78 2235 memory_try_enable_merging(vaddr, length);
ddb97f1d 2236 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2237 }
cd19cfa2
HY
2238 }
2239 }
2240}
2241#endif /* !_WIN32 */
2242
1b5ec234 2243/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2244 * This should not be used for general purpose DMA. Use address_space_map
2245 * or address_space_rw instead. For local memory (e.g. video ram) that the
2246 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2247 *
49b24afc 2248 * Called within RCU critical section.
1b5ec234 2249 */
0878d0e1 2250void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2251{
3655cb9c
GA
2252 RAMBlock *block = ram_block;
2253
2254 if (block == NULL) {
2255 block = qemu_get_ram_block(addr);
0878d0e1 2256 addr -= block->offset;
3655cb9c 2257 }
ae3a7047
MD
2258
2259 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2260 /* We need to check if the requested address is in the RAM
2261 * because we don't want to map the entire memory in QEMU.
2262 * In that case just map until the end of the page.
2263 */
2264 if (block->offset == 0) {
1ff7c598 2265 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2266 }
ae3a7047 2267
1ff7c598 2268 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2269 }
0878d0e1 2270 return ramblock_ptr(block, addr);
dc828ca1
PB
2271}
2272
0878d0e1 2273/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2274 * but takes a size argument.
0dc3f44a 2275 *
e81bcda5 2276 * Called within RCU critical section.
ae3a7047 2277 */
3655cb9c 2278static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2279 hwaddr *size, bool lock)
38bee5dc 2280{
3655cb9c 2281 RAMBlock *block = ram_block;
8ab934f9
SS
2282 if (*size == 0) {
2283 return NULL;
2284 }
e81bcda5 2285
3655cb9c
GA
2286 if (block == NULL) {
2287 block = qemu_get_ram_block(addr);
0878d0e1 2288 addr -= block->offset;
3655cb9c 2289 }
0878d0e1 2290 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2291
2292 if (xen_enabled() && block->host == NULL) {
2293 /* We need to check if the requested address is in the RAM
2294 * because we don't want to map the entire memory in QEMU.
2295 * In that case just map the requested area.
2296 */
2297 if (block->offset == 0) {
f5aa69bd 2298 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2299 }
2300
f5aa69bd 2301 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2302 }
e81bcda5 2303
0878d0e1 2304 return ramblock_ptr(block, addr);
38bee5dc
SS
2305}
2306
f90bb71b
DDAG
2307/* Return the offset of a hostpointer within a ramblock */
2308ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2309{
2310 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2311 assert((uintptr_t)host >= (uintptr_t)rb->host);
2312 assert(res < rb->max_length);
2313
2314 return res;
2315}
2316
422148d3
DDAG
2317/*
2318 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2319 * in that RAMBlock.
2320 *
2321 * ptr: Host pointer to look up
2322 * round_offset: If true round the result offset down to a page boundary
2323 * *ram_addr: set to result ram_addr
2324 * *offset: set to result offset within the RAMBlock
2325 *
2326 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2327 *
2328 * By the time this function returns, the returned pointer is not protected
2329 * by RCU anymore. If the caller is not within an RCU critical section and
2330 * does not hold the iothread lock, it must have other means of protecting the
2331 * pointer, such as a reference to the region that includes the incoming
2332 * ram_addr_t.
2333 */
422148d3 2334RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2335 ram_addr_t *offset)
5579c7f3 2336{
94a6b54f
PB
2337 RAMBlock *block;
2338 uint8_t *host = ptr;
2339
868bb33f 2340 if (xen_enabled()) {
f615f396 2341 ram_addr_t ram_addr;
694ea274 2342 RCU_READ_LOCK_GUARD();
f615f396
PB
2343 ram_addr = xen_ram_addr_from_mapcache(ptr);
2344 block = qemu_get_ram_block(ram_addr);
422148d3 2345 if (block) {
d6b6aec4 2346 *offset = ram_addr - block->offset;
422148d3 2347 }
422148d3 2348 return block;
712c2b41
SS
2349 }
2350
694ea274 2351 RCU_READ_LOCK_GUARD();
d73415a3 2352 block = qatomic_rcu_read(&ram_list.mru_block);
9b8424d5 2353 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2354 goto found;
2355 }
2356
99e15582 2357 RAMBLOCK_FOREACH(block) {
432d268c
JN
2358 /* This case append when the block is not mapped. */
2359 if (block->host == NULL) {
2360 continue;
2361 }
9b8424d5 2362 if (host - block->host < block->max_length) {
23887b79 2363 goto found;
f471a17e 2364 }
94a6b54f 2365 }
432d268c 2366
1b5ec234 2367 return NULL;
23887b79
PB
2368
2369found:
422148d3
DDAG
2370 *offset = (host - block->host);
2371 if (round_offset) {
2372 *offset &= TARGET_PAGE_MASK;
2373 }
422148d3
DDAG
2374 return block;
2375}
2376
e3dd7493
DDAG
2377/*
2378 * Finds the named RAMBlock
2379 *
2380 * name: The name of RAMBlock to find
2381 *
2382 * Returns: RAMBlock (or NULL if not found)
2383 */
2384RAMBlock *qemu_ram_block_by_name(const char *name)
2385{
2386 RAMBlock *block;
2387
99e15582 2388 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2389 if (!strcmp(name, block->idstr)) {
2390 return block;
2391 }
2392 }
2393
2394 return NULL;
2395}
2396
422148d3
DDAG
2397/* Some of the softmmu routines need to translate from a host pointer
2398 (typically a TLB entry) back to a ram offset. */
07bdaa41 2399ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2400{
2401 RAMBlock *block;
f615f396 2402 ram_addr_t offset;
422148d3 2403
f615f396 2404 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2405 if (!block) {
07bdaa41 2406 return RAM_ADDR_INVALID;
422148d3
DDAG
2407 }
2408
07bdaa41 2409 return block->offset + offset;
e890261f 2410}
f471a17e 2411
b2a44fca 2412static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
a152be43 2413 MemTxAttrs attrs, void *buf, hwaddr len);
16620684 2414static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
a152be43 2415 const void *buf, hwaddr len);
0c249ff7 2416static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 2417 bool is_write, MemTxAttrs attrs);
16620684 2418
f25a49e0
PM
2419static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2420 unsigned len, MemTxAttrs attrs)
db7b5426 2421{
acc9d80b 2422 subpage_t *subpage = opaque;
ff6cff75 2423 uint8_t buf[8];
5c9eb028 2424 MemTxResult res;
791af8c8 2425
db7b5426 2426#if defined(DEBUG_SUBPAGE)
016e9d62 2427 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2428 subpage, len, addr);
db7b5426 2429#endif
16620684 2430 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2431 if (res) {
2432 return res;
f25a49e0 2433 }
6d3ede54
PM
2434 *data = ldn_p(buf, len);
2435 return MEMTX_OK;
db7b5426
BS
2436}
2437
f25a49e0
PM
2438static MemTxResult subpage_write(void *opaque, hwaddr addr,
2439 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2440{
acc9d80b 2441 subpage_t *subpage = opaque;
ff6cff75 2442 uint8_t buf[8];
acc9d80b 2443
db7b5426 2444#if defined(DEBUG_SUBPAGE)
016e9d62 2445 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2446 " value %"PRIx64"\n",
2447 __func__, subpage, len, addr, value);
db7b5426 2448#endif
6d3ede54 2449 stn_p(buf, len, value);
16620684 2450 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2451}
2452
c353e4cc 2453static bool subpage_accepts(void *opaque, hwaddr addr,
8372d383
PM
2454 unsigned len, bool is_write,
2455 MemTxAttrs attrs)
c353e4cc 2456{
acc9d80b 2457 subpage_t *subpage = opaque;
c353e4cc 2458#if defined(DEBUG_SUBPAGE)
016e9d62 2459 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2460 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2461#endif
2462
16620684 2463 return flatview_access_valid(subpage->fv, addr + subpage->base,
eace72b7 2464 len, is_write, attrs);
c353e4cc
PB
2465}
2466
70c68e44 2467static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2468 .read_with_attrs = subpage_read,
2469 .write_with_attrs = subpage_write,
ff6cff75
PB
2470 .impl.min_access_size = 1,
2471 .impl.max_access_size = 8,
2472 .valid.min_access_size = 1,
2473 .valid.max_access_size = 8,
c353e4cc 2474 .valid.accepts = subpage_accepts,
70c68e44 2475 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2476};
2477
b797ab1a
WY
2478static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2479 uint16_t section)
db7b5426
BS
2480{
2481 int idx, eidx;
2482
2483 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2484 return -1;
2485 idx = SUBPAGE_IDX(start);
2486 eidx = SUBPAGE_IDX(end);
2487#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2488 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2489 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2490#endif
db7b5426 2491 for (; idx <= eidx; idx++) {
5312bd8b 2492 mmio->sub_section[idx] = section;
db7b5426
BS
2493 }
2494
2495 return 0;
2496}
2497
16620684 2498static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2499{
c227f099 2500 subpage_t *mmio;
db7b5426 2501
b797ab1a 2502 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2615fabd 2503 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2504 mmio->fv = fv;
1eec614b 2505 mmio->base = base;
2c9b15ca 2506 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2507 NULL, TARGET_PAGE_SIZE);
b3b00c78 2508 mmio->iomem.subpage = true;
db7b5426 2509#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2510 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2511 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2512#endif
db7b5426
BS
2513
2514 return mmio;
2515}
2516
16620684 2517static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2518{
16620684 2519 assert(fv);
5312bd8b 2520 MemoryRegionSection section = {
16620684 2521 .fv = fv,
5312bd8b
AK
2522 .mr = mr,
2523 .offset_within_address_space = 0,
2524 .offset_within_region = 0,
052e87b0 2525 .size = int128_2_64(),
5312bd8b
AK
2526 };
2527
53cb28cb 2528 return phys_section_add(map, &section);
5312bd8b
AK
2529}
2530
2d54f194
PM
2531MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2532 hwaddr index, MemTxAttrs attrs)
aa102231 2533{
a54c87b6
PM
2534 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2535 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
d73415a3 2536 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2537 MemoryRegionSection *sections = d->map.sections;
9d82b5a7 2538
2d54f194 2539 return &sections[index & ~TARGET_PAGE_MASK];
aa102231
AK
2540}
2541
e9179ce1
AK
2542static void io_mem_init(void)
2543{
2c9b15ca 2544 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2545 NULL, UINT64_MAX);
e9179ce1
AK
2546}
2547
8629d3fc 2548AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 2549{
53cb28cb
MA
2550 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2551 uint16_t n;
2552
16620684 2553 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 2554 assert(n == PHYS_SECTION_UNASSIGNED);
00752703 2555
9736e55b 2556 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
2557
2558 return d;
00752703
PB
2559}
2560
66a6df1d 2561void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
2562{
2563 phys_sections_free(&d->map);
2564 g_free(d);
2565}
2566
9458a9a1
PB
2567static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2568{
2569}
2570
2571static void tcg_log_global_after_sync(MemoryListener *listener)
2572{
2573 CPUAddressSpace *cpuas;
2574
2575 /* Wait for the CPU to end the current TB. This avoids the following
2576 * incorrect race:
2577 *
2578 * vCPU migration
2579 * ---------------------- -------------------------
2580 * TLB check -> slow path
2581 * notdirty_mem_write
2582 * write to RAM
2583 * mark dirty
2584 * clear dirty flag
2585 * TLB check -> fast path
2586 * read memory
2587 * write to RAM
2588 *
2589 * by pushing the migration thread's memory read after the vCPU thread has
2590 * written the memory.
2591 */
86cf9e15
PD
2592 if (replay_mode == REPLAY_MODE_NONE) {
2593 /*
2594 * VGA can make calls to this function while updating the screen.
2595 * In record/replay mode this causes a deadlock, because
2596 * run_on_cpu waits for rr mutex. Therefore no races are possible
2597 * in this case and no need for making run_on_cpu when
2598 * record/replay is not enabled.
2599 */
2600 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2601 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2602 }
9458a9a1
PB
2603}
2604
1d71148e 2605static void tcg_commit(MemoryListener *listener)
50c1e149 2606{
32857f4d
PM
2607 CPUAddressSpace *cpuas;
2608 AddressSpaceDispatch *d;
117712c3 2609
f28d0dfd 2610 assert(tcg_enabled());
117712c3
AK
2611 /* since each CPU stores ram addresses in its TLB cache, we must
2612 reset the modified entries */
32857f4d
PM
2613 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2614 cpu_reloading_memory_map();
2615 /* The CPU and TLB are protected by the iothread lock.
2616 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2617 * may have split the RCU critical section.
2618 */
66a6df1d 2619 d = address_space_to_dispatch(cpuas->as);
d73415a3 2620 qatomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2621 tlb_flush(cpuas->cpu);
50c1e149
AK
2622}
2623
62152b8a
AK
2624static void memory_map_init(void)
2625{
7267c094 2626 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2627
57271d63 2628 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2629 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2630
7267c094 2631 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2632 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2633 65536);
7dca8043 2634 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2635}
2636
2637MemoryRegion *get_system_memory(void)
2638{
2639 return system_memory;
2640}
2641
309cb471
AK
2642MemoryRegion *get_system_io(void)
2643{
2644 return system_io;
2645}
2646
845b6214 2647static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2648 hwaddr length)
51d7a9eb 2649{
e87f7778 2650 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
2651 addr += memory_region_get_ram_addr(mr);
2652
e87f7778
PB
2653 /* No early return if dirty_log_mask is or becomes 0, because
2654 * cpu_physical_memory_set_dirty_range will still call
2655 * xen_modified_memory.
2656 */
2657 if (dirty_log_mask) {
2658 dirty_log_mask =
2659 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2660 }
2661 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 2662 assert(tcg_enabled());
e87f7778
PB
2663 tb_invalidate_phys_range(addr, addr + length);
2664 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2665 }
e87f7778 2666 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2667}
2668
047be4ed
SH
2669void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2670{
2671 /*
2672 * In principle this function would work on other memory region types too,
2673 * but the ROM device use case is the only one where this operation is
2674 * necessary. Other memory regions should use the
2675 * address_space_read/write() APIs.
2676 */
2677 assert(memory_region_is_romd(mr));
2678
2679 invalidate_and_set_dirty(mr, addr, size);
2680}
2681
23326164 2682static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2683{
e1622f4b 2684 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2685
2686 /* Regions are assumed to support 1-4 byte accesses unless
2687 otherwise specified. */
23326164
RH
2688 if (access_size_max == 0) {
2689 access_size_max = 4;
2690 }
2691
2692 /* Bound the maximum access by the alignment of the address. */
2693 if (!mr->ops->impl.unaligned) {
2694 unsigned align_size_max = addr & -addr;
2695 if (align_size_max != 0 && align_size_max < access_size_max) {
2696 access_size_max = align_size_max;
2697 }
82f2563f 2698 }
23326164
RH
2699
2700 /* Don't attempt accesses larger than the maximum. */
2701 if (l > access_size_max) {
2702 l = access_size_max;
82f2563f 2703 }
6554f5c0 2704 l = pow2floor(l);
23326164
RH
2705
2706 return l;
82f2563f
PB
2707}
2708
4840f10e 2709static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2710{
4840f10e
JK
2711 bool release_lock = false;
2712
37921851 2713 if (!qemu_mutex_iothread_locked()) {
4840f10e 2714 qemu_mutex_lock_iothread();
4840f10e
JK
2715 release_lock = true;
2716 }
125b3806
PB
2717 if (mr->flush_coalesced_mmio) {
2718 qemu_flush_coalesced_mmio_buffer();
2719 }
4840f10e
JK
2720
2721 return release_lock;
125b3806
PB
2722}
2723
a203ac70 2724/* Called within RCU critical section. */
16620684
AK
2725static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2726 MemTxAttrs attrs,
a152be43 2727 const void *ptr,
0c249ff7 2728 hwaddr len, hwaddr addr1,
16620684 2729 hwaddr l, MemoryRegion *mr)
13eb76e0 2730{
20804676 2731 uint8_t *ram_ptr;
791af8c8 2732 uint64_t val;
3b643495 2733 MemTxResult result = MEMTX_OK;
4840f10e 2734 bool release_lock = false;
a152be43 2735 const uint8_t *buf = ptr;
3b46e624 2736
a203ac70 2737 for (;;) {
eb7eeb88
PB
2738 if (!memory_access_is_direct(mr, true)) {
2739 release_lock |= prepare_mmio_access(mr);
2740 l = memory_access_size(mr, l, addr1);
2741 /* XXX: could force current_cpu to NULL to avoid
2742 potential bugs */
9bf825bf 2743 val = ldn_he_p(buf, l);
3d9e7c3e 2744 result |= memory_region_dispatch_write(mr, addr1, val,
9bf825bf 2745 size_memop(l), attrs);
13eb76e0 2746 } else {
eb7eeb88 2747 /* RAM case */
20804676
PMD
2748 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2749 memcpy(ram_ptr, buf, l);
eb7eeb88 2750 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2751 }
4840f10e
JK
2752
2753 if (release_lock) {
2754 qemu_mutex_unlock_iothread();
2755 release_lock = false;
2756 }
2757
13eb76e0
FB
2758 len -= l;
2759 buf += l;
2760 addr += l;
a203ac70
PB
2761
2762 if (!len) {
2763 break;
2764 }
2765
2766 l = len;
efa99a2f 2767 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
13eb76e0 2768 }
fd8aaa76 2769
3b643495 2770 return result;
13eb76e0 2771}
8df1cd07 2772
4c6ebbb3 2773/* Called from RCU critical section. */
16620684 2774static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
a152be43 2775 const void *buf, hwaddr len)
ac1970fb 2776{
eb7eeb88 2777 hwaddr l;
eb7eeb88
PB
2778 hwaddr addr1;
2779 MemoryRegion *mr;
2780 MemTxResult result = MEMTX_OK;
eb7eeb88 2781
4c6ebbb3 2782 l = len;
efa99a2f 2783 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
4c6ebbb3
PB
2784 result = flatview_write_continue(fv, addr, attrs, buf, len,
2785 addr1, l, mr);
a203ac70
PB
2786
2787 return result;
2788}
2789
2790/* Called within RCU critical section. */
16620684 2791MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
a152be43 2792 MemTxAttrs attrs, void *ptr,
0c249ff7 2793 hwaddr len, hwaddr addr1, hwaddr l,
16620684 2794 MemoryRegion *mr)
a203ac70 2795{
20804676 2796 uint8_t *ram_ptr;
a203ac70
PB
2797 uint64_t val;
2798 MemTxResult result = MEMTX_OK;
2799 bool release_lock = false;
a152be43 2800 uint8_t *buf = ptr;
eb7eeb88 2801
7cac7fea 2802 fuzz_dma_read_cb(addr, len, mr);
a203ac70 2803 for (;;) {
eb7eeb88
PB
2804 if (!memory_access_is_direct(mr, false)) {
2805 /* I/O case */
2806 release_lock |= prepare_mmio_access(mr);
2807 l = memory_access_size(mr, l, addr1);
3d9e7c3e 2808 result |= memory_region_dispatch_read(mr, addr1, &val,
9bf825bf
TN
2809 size_memop(l), attrs);
2810 stn_he_p(buf, l, val);
eb7eeb88
PB
2811 } else {
2812 /* RAM case */
20804676
PMD
2813 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2814 memcpy(buf, ram_ptr, l);
eb7eeb88
PB
2815 }
2816
2817 if (release_lock) {
2818 qemu_mutex_unlock_iothread();
2819 release_lock = false;
2820 }
2821
2822 len -= l;
2823 buf += l;
2824 addr += l;
a203ac70
PB
2825
2826 if (!len) {
2827 break;
2828 }
2829
2830 l = len;
efa99a2f 2831 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
a203ac70
PB
2832 }
2833
2834 return result;
2835}
2836
b2a44fca
PB
2837/* Called from RCU critical section. */
2838static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
a152be43 2839 MemTxAttrs attrs, void *buf, hwaddr len)
a203ac70
PB
2840{
2841 hwaddr l;
2842 hwaddr addr1;
2843 MemoryRegion *mr;
eb7eeb88 2844
b2a44fca 2845 l = len;
efa99a2f 2846 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
b2a44fca
PB
2847 return flatview_read_continue(fv, addr, attrs, buf, len,
2848 addr1, l, mr);
ac1970fb
AK
2849}
2850
b2a44fca 2851MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
daa3dda4 2852 MemTxAttrs attrs, void *buf, hwaddr len)
b2a44fca
PB
2853{
2854 MemTxResult result = MEMTX_OK;
2855 FlatView *fv;
2856
2857 if (len > 0) {
694ea274 2858 RCU_READ_LOCK_GUARD();
b2a44fca
PB
2859 fv = address_space_to_flatview(as);
2860 result = flatview_read(fv, addr, attrs, buf, len);
b2a44fca
PB
2861 }
2862
2863 return result;
2864}
2865
4c6ebbb3
PB
2866MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2867 MemTxAttrs attrs,
daa3dda4 2868 const void *buf, hwaddr len)
4c6ebbb3
PB
2869{
2870 MemTxResult result = MEMTX_OK;
2871 FlatView *fv;
2872
2873 if (len > 0) {
694ea274 2874 RCU_READ_LOCK_GUARD();
4c6ebbb3
PB
2875 fv = address_space_to_flatview(as);
2876 result = flatview_write(fv, addr, attrs, buf, len);
4c6ebbb3
PB
2877 }
2878
2879 return result;
2880}
2881
db84fd97 2882MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
daa3dda4 2883 void *buf, hwaddr len, bool is_write)
db84fd97
PB
2884{
2885 if (is_write) {
2886 return address_space_write(as, addr, attrs, buf, len);
2887 } else {
2888 return address_space_read_full(as, addr, attrs, buf, len);
2889 }
2890}
2891
d7ef71ef 2892void cpu_physical_memory_rw(hwaddr addr, void *buf,
28c80bfe 2893 hwaddr len, bool is_write)
ac1970fb 2894{
5c9eb028
PM
2895 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2896 buf, len, is_write);
ac1970fb
AK
2897}
2898
582b55a9
AG
2899enum write_rom_type {
2900 WRITE_DATA,
2901 FLUSH_CACHE,
2902};
2903
75693e14
PM
2904static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2905 hwaddr addr,
2906 MemTxAttrs attrs,
daa3dda4 2907 const void *ptr,
0c249ff7 2908 hwaddr len,
75693e14 2909 enum write_rom_type type)
d0ecd2aa 2910{
149f54b5 2911 hwaddr l;
20804676 2912 uint8_t *ram_ptr;
149f54b5 2913 hwaddr addr1;
5c8a00ce 2914 MemoryRegion *mr;
daa3dda4 2915 const uint8_t *buf = ptr;
3b46e624 2916
694ea274 2917 RCU_READ_LOCK_GUARD();
d0ecd2aa 2918 while (len > 0) {
149f54b5 2919 l = len;
75693e14 2920 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3b46e624 2921
5c8a00ce
PB
2922 if (!(memory_region_is_ram(mr) ||
2923 memory_region_is_romd(mr))) {
b242e0e0 2924 l = memory_access_size(mr, l, addr1);
d0ecd2aa 2925 } else {
d0ecd2aa 2926 /* ROM/RAM case */
20804676 2927 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
2928 switch (type) {
2929 case WRITE_DATA:
20804676 2930 memcpy(ram_ptr, buf, l);
845b6214 2931 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
2932 break;
2933 case FLUSH_CACHE:
1da8de39 2934 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
582b55a9
AG
2935 break;
2936 }
d0ecd2aa
FB
2937 }
2938 len -= l;
2939 buf += l;
2940 addr += l;
2941 }
75693e14 2942 return MEMTX_OK;
d0ecd2aa
FB
2943}
2944
582b55a9 2945/* used for ROM loading : can write in RAM and ROM */
3c8133f9
PM
2946MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2947 MemTxAttrs attrs,
daa3dda4 2948 const void *buf, hwaddr len)
582b55a9 2949{
3c8133f9
PM
2950 return address_space_write_rom_internal(as, addr, attrs,
2951 buf, len, WRITE_DATA);
582b55a9
AG
2952}
2953
0c249ff7 2954void cpu_flush_icache_range(hwaddr start, hwaddr len)
582b55a9
AG
2955{
2956 /*
2957 * This function should do the same thing as an icache flush that was
2958 * triggered from within the guest. For TCG we are always cache coherent,
2959 * so there is no need to flush anything. For KVM / Xen we need to flush
2960 * the host's instruction cache at least.
2961 */
2962 if (tcg_enabled()) {
2963 return;
2964 }
2965
75693e14
PM
2966 address_space_write_rom_internal(&address_space_memory,
2967 start, MEMTXATTRS_UNSPECIFIED,
2968 NULL, len, FLUSH_CACHE);
582b55a9
AG
2969}
2970
6d16c2f8 2971typedef struct {
d3e71559 2972 MemoryRegion *mr;
6d16c2f8 2973 void *buffer;
a8170e5e
AK
2974 hwaddr addr;
2975 hwaddr len;
c2cba0ff 2976 bool in_use;
6d16c2f8
AL
2977} BounceBuffer;
2978
2979static BounceBuffer bounce;
2980
ba223c29 2981typedef struct MapClient {
e95205e1 2982 QEMUBH *bh;
72cf2d4f 2983 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2984} MapClient;
2985
38e047b5 2986QemuMutex map_client_list_lock;
b58deb34 2987static QLIST_HEAD(, MapClient) map_client_list
72cf2d4f 2988 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 2989
e95205e1
FZ
2990static void cpu_unregister_map_client_do(MapClient *client)
2991{
2992 QLIST_REMOVE(client, link);
2993 g_free(client);
2994}
2995
33b6c2ed
FZ
2996static void cpu_notify_map_clients_locked(void)
2997{
2998 MapClient *client;
2999
3000 while (!QLIST_EMPTY(&map_client_list)) {
3001 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3002 qemu_bh_schedule(client->bh);
3003 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3004 }
3005}
3006
e95205e1 3007void cpu_register_map_client(QEMUBH *bh)
ba223c29 3008{
7267c094 3009 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3010
38e047b5 3011 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3012 client->bh = bh;
72cf2d4f 3013 QLIST_INSERT_HEAD(&map_client_list, client, link);
d73415a3 3014 if (!qatomic_read(&bounce.in_use)) {
33b6c2ed
FZ
3015 cpu_notify_map_clients_locked();
3016 }
38e047b5 3017 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3018}
3019
38e047b5 3020void cpu_exec_init_all(void)
ba223c29 3021{
38e047b5 3022 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3023 /* The data structures we set up here depend on knowing the page size,
3024 * so no more changes can be made after this point.
3025 * In an ideal world, nothing we did before we had finished the
3026 * machine setup would care about the target page size, and we could
3027 * do this much later, rather than requiring board models to state
3028 * up front what their requirements are.
3029 */
3030 finalize_target_page_bits();
38e047b5 3031 io_mem_init();
680a4783 3032 memory_map_init();
38e047b5 3033 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3034}
3035
e95205e1 3036void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3037{
3038 MapClient *client;
3039
e95205e1
FZ
3040 qemu_mutex_lock(&map_client_list_lock);
3041 QLIST_FOREACH(client, &map_client_list, link) {
3042 if (client->bh == bh) {
3043 cpu_unregister_map_client_do(client);
3044 break;
3045 }
ba223c29 3046 }
e95205e1 3047 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3048}
3049
3050static void cpu_notify_map_clients(void)
3051{
38e047b5 3052 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3053 cpu_notify_map_clients_locked();
38e047b5 3054 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3055}
3056
0c249ff7 3057static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 3058 bool is_write, MemTxAttrs attrs)
51644ab7 3059{
5c8a00ce 3060 MemoryRegion *mr;
51644ab7
PB
3061 hwaddr l, xlat;
3062
3063 while (len > 0) {
3064 l = len;
efa99a2f 3065 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
5c8a00ce
PB
3066 if (!memory_access_is_direct(mr, is_write)) {
3067 l = memory_access_size(mr, l, addr);
eace72b7 3068 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
51644ab7
PB
3069 return false;
3070 }
3071 }
3072
3073 len -= l;
3074 addr += l;
3075 }
3076 return true;
3077}
3078
16620684 3079bool address_space_access_valid(AddressSpace *as, hwaddr addr,
0c249ff7 3080 hwaddr len, bool is_write,
fddffa42 3081 MemTxAttrs attrs)
16620684 3082{
11e732a5
PB
3083 FlatView *fv;
3084 bool result;
3085
694ea274 3086 RCU_READ_LOCK_GUARD();
11e732a5 3087 fv = address_space_to_flatview(as);
eace72b7 3088 result = flatview_access_valid(fv, addr, len, is_write, attrs);
11e732a5 3089 return result;
16620684
AK
3090}
3091
715c31ec 3092static hwaddr
16620684 3093flatview_extend_translation(FlatView *fv, hwaddr addr,
53d0790d
PM
3094 hwaddr target_len,
3095 MemoryRegion *mr, hwaddr base, hwaddr len,
3096 bool is_write, MemTxAttrs attrs)
715c31ec
PB
3097{
3098 hwaddr done = 0;
3099 hwaddr xlat;
3100 MemoryRegion *this_mr;
3101
3102 for (;;) {
3103 target_len -= len;
3104 addr += len;
3105 done += len;
3106 if (target_len == 0) {
3107 return done;
3108 }
3109
3110 len = target_len;
16620684 3111 this_mr = flatview_translate(fv, addr, &xlat,
efa99a2f 3112 &len, is_write, attrs);
715c31ec
PB
3113 if (this_mr != mr || xlat != base + done) {
3114 return done;
3115 }
3116 }
3117}
3118
6d16c2f8
AL
3119/* Map a physical memory region into a host virtual address.
3120 * May map a subset of the requested range, given by and returned in *plen.
3121 * May return NULL if resources needed to perform the mapping are exhausted.
3122 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3123 * Use cpu_register_map_client() to know when retrying the map operation is
3124 * likely to succeed.
6d16c2f8 3125 */
ac1970fb 3126void *address_space_map(AddressSpace *as,
a8170e5e
AK
3127 hwaddr addr,
3128 hwaddr *plen,
f26404fb
PM
3129 bool is_write,
3130 MemTxAttrs attrs)
6d16c2f8 3131{
a8170e5e 3132 hwaddr len = *plen;
715c31ec
PB
3133 hwaddr l, xlat;
3134 MemoryRegion *mr;
e81bcda5 3135 void *ptr;
ad0c60fa 3136 FlatView *fv;
6d16c2f8 3137
e3127ae0
PB
3138 if (len == 0) {
3139 return NULL;
3140 }
38bee5dc 3141
e3127ae0 3142 l = len;
694ea274 3143 RCU_READ_LOCK_GUARD();
ad0c60fa 3144 fv = address_space_to_flatview(as);
efa99a2f 3145 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
41063e1e 3146
e3127ae0 3147 if (!memory_access_is_direct(mr, is_write)) {
d73415a3 3148 if (qatomic_xchg(&bounce.in_use, true)) {
77f55eac 3149 *plen = 0;
e3127ae0 3150 return NULL;
6d16c2f8 3151 }
e85d9db5
KW
3152 /* Avoid unbounded allocations */
3153 l = MIN(l, TARGET_PAGE_SIZE);
3154 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3155 bounce.addr = addr;
3156 bounce.len = l;
d3e71559
PB
3157
3158 memory_region_ref(mr);
3159 bounce.mr = mr;
e3127ae0 3160 if (!is_write) {
16620684 3161 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3162 bounce.buffer, l);
8ab934f9 3163 }
6d16c2f8 3164
e3127ae0
PB
3165 *plen = l;
3166 return bounce.buffer;
3167 }
3168
e3127ae0 3169
d3e71559 3170 memory_region_ref(mr);
16620684 3171 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
53d0790d 3172 l, is_write, attrs);
fc1c8344 3173 fuzz_dma_read_cb(addr, *plen, mr);
f5aa69bd 3174 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3175
3176 return ptr;
6d16c2f8
AL
3177}
3178
ac1970fb 3179/* Unmaps a memory region previously mapped by address_space_map().
ae5883ab 3180 * Will also mark the memory as dirty if is_write is true. access_len gives
6d16c2f8
AL
3181 * the amount of memory that was actually read or written by the caller.
3182 */
a8170e5e 3183void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
ae5883ab 3184 bool is_write, hwaddr access_len)
6d16c2f8
AL
3185{
3186 if (buffer != bounce.buffer) {
d3e71559
PB
3187 MemoryRegion *mr;
3188 ram_addr_t addr1;
3189
07bdaa41 3190 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3191 assert(mr != NULL);
6d16c2f8 3192 if (is_write) {
845b6214 3193 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3194 }
868bb33f 3195 if (xen_enabled()) {
e41d7c69 3196 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3197 }
d3e71559 3198 memory_region_unref(mr);
6d16c2f8
AL
3199 return;
3200 }
3201 if (is_write) {
5c9eb028
PM
3202 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3203 bounce.buffer, access_len);
6d16c2f8 3204 }
f8a83245 3205 qemu_vfree(bounce.buffer);
6d16c2f8 3206 bounce.buffer = NULL;
d3e71559 3207 memory_region_unref(bounce.mr);
d73415a3 3208 qatomic_mb_set(&bounce.in_use, false);
ba223c29 3209 cpu_notify_map_clients();
6d16c2f8 3210}
d0ecd2aa 3211
a8170e5e
AK
3212void *cpu_physical_memory_map(hwaddr addr,
3213 hwaddr *plen,
28c80bfe 3214 bool is_write)
ac1970fb 3215{
f26404fb
PM
3216 return address_space_map(&address_space_memory, addr, plen, is_write,
3217 MEMTXATTRS_UNSPECIFIED);
ac1970fb
AK
3218}
3219
a8170e5e 3220void cpu_physical_memory_unmap(void *buffer, hwaddr len,
28c80bfe 3221 bool is_write, hwaddr access_len)
ac1970fb
AK
3222{
3223 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3224}
3225
0ce265ff
PB
3226#define ARG1_DECL AddressSpace *as
3227#define ARG1 as
3228#define SUFFIX
3229#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
0ce265ff
PB
3230#define RCU_READ_LOCK(...) rcu_read_lock()
3231#define RCU_READ_UNLOCK(...) rcu_read_unlock()
139c1837 3232#include "memory_ldst.c.inc"
1e78bcc1 3233
1f4e496e
PB
3234int64_t address_space_cache_init(MemoryRegionCache *cache,
3235 AddressSpace *as,
3236 hwaddr addr,
3237 hwaddr len,
3238 bool is_write)
3239{
48564041
PB
3240 AddressSpaceDispatch *d;
3241 hwaddr l;
3242 MemoryRegion *mr;
4bfb024b 3243 Int128 diff;
48564041
PB
3244
3245 assert(len > 0);
3246
3247 l = len;
3248 cache->fv = address_space_get_flatview(as);
3249 d = flatview_to_dispatch(cache->fv);
3250 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3251
4bfb024b
PB
3252 /*
3253 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3254 * Take that into account to compute how many bytes are there between
3255 * cache->xlat and the end of the section.
3256 */
3257 diff = int128_sub(cache->mrs.size,
3258 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3259 l = int128_get64(int128_min(diff, int128_make64(l)));
3260
48564041
PB
3261 mr = cache->mrs.mr;
3262 memory_region_ref(mr);
3263 if (memory_access_is_direct(mr, is_write)) {
53d0790d
PM
3264 /* We don't care about the memory attributes here as we're only
3265 * doing this if we found actual RAM, which behaves the same
3266 * regardless of attributes; so UNSPECIFIED is fine.
3267 */
48564041 3268 l = flatview_extend_translation(cache->fv, addr, len, mr,
53d0790d
PM
3269 cache->xlat, l, is_write,
3270 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3271 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3272 } else {
3273 cache->ptr = NULL;
3274 }
3275
3276 cache->len = l;
3277 cache->is_write = is_write;
3278 return l;
1f4e496e
PB
3279}
3280
3281void address_space_cache_invalidate(MemoryRegionCache *cache,
3282 hwaddr addr,
3283 hwaddr access_len)
3284{
48564041
PB
3285 assert(cache->is_write);
3286 if (likely(cache->ptr)) {
3287 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3288 }
1f4e496e
PB
3289}
3290
3291void address_space_cache_destroy(MemoryRegionCache *cache)
3292{
48564041
PB
3293 if (!cache->mrs.mr) {
3294 return;
3295 }
3296
3297 if (xen_enabled()) {
3298 xen_invalidate_map_cache_entry(cache->ptr);
3299 }
3300 memory_region_unref(cache->mrs.mr);
3301 flatview_unref(cache->fv);
3302 cache->mrs.mr = NULL;
3303 cache->fv = NULL;
3304}
3305
3306/* Called from RCU critical section. This function has the same
3307 * semantics as address_space_translate, but it only works on a
3308 * predefined range of a MemoryRegion that was mapped with
3309 * address_space_cache_init.
3310 */
3311static inline MemoryRegion *address_space_translate_cached(
3312 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
bc6b1cec 3313 hwaddr *plen, bool is_write, MemTxAttrs attrs)
48564041
PB
3314{
3315 MemoryRegionSection section;
3316 MemoryRegion *mr;
3317 IOMMUMemoryRegion *iommu_mr;
3318 AddressSpace *target_as;
3319
3320 assert(!cache->ptr);
3321 *xlat = addr + cache->xlat;
3322
3323 mr = cache->mrs.mr;
3324 iommu_mr = memory_region_get_iommu(mr);
3325 if (!iommu_mr) {
3326 /* MMIO region. */
3327 return mr;
3328 }
3329
3330 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3331 NULL, is_write, true,
2f7b009c 3332 &target_as, attrs);
48564041
PB
3333 return section.mr;
3334}
3335
3336/* Called from RCU critical section. address_space_read_cached uses this
3337 * out of line function when the target is an MMIO or IOMMU region.
3338 */
38df19fa 3339MemTxResult
48564041 3340address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3341 void *buf, hwaddr len)
48564041
PB
3342{
3343 hwaddr addr1, l;
3344 MemoryRegion *mr;
3345
3346 l = len;
bc6b1cec
PM
3347 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3348 MEMTXATTRS_UNSPECIFIED);
38df19fa
PMD
3349 return flatview_read_continue(cache->fv,
3350 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3351 addr1, l, mr);
48564041
PB
3352}
3353
3354/* Called from RCU critical section. address_space_write_cached uses this
3355 * out of line function when the target is an MMIO or IOMMU region.
3356 */
38df19fa 3357MemTxResult
48564041 3358address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3359 const void *buf, hwaddr len)
48564041
PB
3360{
3361 hwaddr addr1, l;
3362 MemoryRegion *mr;
3363
3364 l = len;
bc6b1cec
PM
3365 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3366 MEMTXATTRS_UNSPECIFIED);
38df19fa
PMD
3367 return flatview_write_continue(cache->fv,
3368 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3369 addr1, l, mr);
1f4e496e
PB
3370}
3371
3372#define ARG1_DECL MemoryRegionCache *cache
3373#define ARG1 cache
48564041
PB
3374#define SUFFIX _cached_slow
3375#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
48564041
PB
3376#define RCU_READ_LOCK() ((void)0)
3377#define RCU_READ_UNLOCK() ((void)0)
139c1837 3378#include "memory_ldst.c.inc"
1f4e496e 3379
5e2972fd 3380/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3381int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
28c80bfe 3382 void *ptr, target_ulong len, bool is_write)
13eb76e0 3383{
a8170e5e 3384 hwaddr phys_addr;
0c249ff7 3385 target_ulong l, page;
d7ef71ef 3386 uint8_t *buf = ptr;
13eb76e0 3387
79ca7a1b 3388 cpu_synchronize_state(cpu);
13eb76e0 3389 while (len > 0) {
5232e4c7
PM
3390 int asidx;
3391 MemTxAttrs attrs;
ddfc8b96 3392 MemTxResult res;
5232e4c7 3393
13eb76e0 3394 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3395 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3396 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3397 /* if no physical page mapped, return an error */
3398 if (phys_addr == -1)
3399 return -1;
3400 l = (page + TARGET_PAGE_SIZE) - addr;
3401 if (l > len)
3402 l = len;
5e2972fd 3403 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3404 if (is_write) {
ddfc8b96
PMD
3405 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3406 attrs, buf, l);
2e38847b 3407 } else {
ddfc8b96
PMD
3408 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3409 attrs, buf, l);
3410 }
3411 if (res != MEMTX_OK) {
3412 return -1;
2e38847b 3413 }
13eb76e0
FB
3414 len -= l;
3415 buf += l;
3416 addr += l;
3417 }
3418 return 0;
3419}
038629a6
DDAG
3420
3421/*
3422 * Allows code that needs to deal with migration bitmaps etc to still be built
3423 * target independent.
3424 */
20afaed9 3425size_t qemu_target_page_size(void)
038629a6 3426{
20afaed9 3427 return TARGET_PAGE_SIZE;
038629a6
DDAG
3428}
3429
46d702b1
JQ
3430int qemu_target_page_bits(void)
3431{
3432 return TARGET_PAGE_BITS;
3433}
3434
3435int qemu_target_page_bits_min(void)
3436{
3437 return TARGET_PAGE_BITS_MIN;
3438}
8e4a424b 3439
a8170e5e 3440bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3441{
5c8a00ce 3442 MemoryRegion*mr;
149f54b5 3443 hwaddr l = 1;
41063e1e 3444 bool res;
76f35538 3445
694ea274 3446 RCU_READ_LOCK_GUARD();
5c8a00ce 3447 mr = address_space_translate(&address_space_memory,
bc6b1cec
PM
3448 phys_addr, &phys_addr, &l, false,
3449 MEMTXATTRS_UNSPECIFIED);
76f35538 3450
41063e1e 3451 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
41063e1e 3452 return res;
76f35538 3453}
bd2fa51f 3454
e3807054 3455int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3456{
3457 RAMBlock *block;
e3807054 3458 int ret = 0;
bd2fa51f 3459
694ea274 3460 RCU_READ_LOCK_GUARD();
99e15582 3461 RAMBLOCK_FOREACH(block) {
754cb9c0 3462 ret = func(block, opaque);
e3807054
DDAG
3463 if (ret) {
3464 break;
3465 }
bd2fa51f 3466 }
e3807054 3467 return ret;
bd2fa51f 3468}
d3a5038c
DDAG
3469
3470/*
3471 * Unmap pages of memory from start to start+length such that
3472 * they a) read as 0, b) Trigger whatever fault mechanism
3473 * the OS provides for postcopy.
3474 * The pages must be unmapped by the end of the function.
3475 * Returns: 0 on success, none-0 on failure
3476 *
3477 */
3478int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3479{
3480 int ret = -1;
3481
3482 uint8_t *host_startaddr = rb->host + start;
3483
619bd31d 3484 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
d3a5038c
DDAG
3485 error_report("ram_block_discard_range: Unaligned start address: %p",
3486 host_startaddr);
3487 goto err;
3488 }
3489
3490 if ((start + length) <= rb->used_length) {
db144f70 3491 bool need_madvise, need_fallocate;
619bd31d 3492 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
72821d93
WY
3493 error_report("ram_block_discard_range: Unaligned length: %zx",
3494 length);
d3a5038c
DDAG
3495 goto err;
3496 }
3497
3498 errno = ENOTSUP; /* If we are missing MADVISE etc */
3499
db144f70
DDAG
3500 /* The logic here is messy;
3501 * madvise DONTNEED fails for hugepages
3502 * fallocate works on hugepages and shmem
3503 */
3504 need_madvise = (rb->page_size == qemu_host_page_size);
3505 need_fallocate = rb->fd != -1;
3506 if (need_fallocate) {
3507 /* For a file, this causes the area of the file to be zero'd
3508 * if read, and for hugetlbfs also causes it to be unmapped
3509 * so a userfault will trigger.
e2fa71f5
DDAG
3510 */
3511#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3512 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3513 start, length);
db144f70
DDAG
3514 if (ret) {
3515 ret = -errno;
3516 error_report("ram_block_discard_range: Failed to fallocate "
3517 "%s:%" PRIx64 " +%zx (%d)",
3518 rb->idstr, start, length, ret);
3519 goto err;
3520 }
3521#else
3522 ret = -ENOSYS;
3523 error_report("ram_block_discard_range: fallocate not available/file"
3524 "%s:%" PRIx64 " +%zx (%d)",
3525 rb->idstr, start, length, ret);
3526 goto err;
e2fa71f5
DDAG
3527#endif
3528 }
db144f70
DDAG
3529 if (need_madvise) {
3530 /* For normal RAM this causes it to be unmapped,
3531 * for shared memory it causes the local mapping to disappear
3532 * and to fall back on the file contents (which we just
3533 * fallocate'd away).
3534 */
3535#if defined(CONFIG_MADVISE)
3536 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3537 if (ret) {
3538 ret = -errno;
3539 error_report("ram_block_discard_range: Failed to discard range "
3540 "%s:%" PRIx64 " +%zx (%d)",
3541 rb->idstr, start, length, ret);
3542 goto err;
3543 }
3544#else
3545 ret = -ENOSYS;
3546 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
3547 "%s:%" PRIx64 " +%zx (%d)",
3548 rb->idstr, start, length, ret);
db144f70
DDAG
3549 goto err;
3550#endif
d3a5038c 3551 }
db144f70
DDAG
3552 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3553 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
3554 } else {
3555 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3556 "/%zx/" RAM_ADDR_FMT")",
3557 rb->idstr, start, length, rb->used_length);
3558 }
3559
3560err:
3561 return ret;
3562}
3563
a4de8552
JH
3564bool ramblock_is_pmem(RAMBlock *rb)
3565{
3566 return rb->flags & RAM_PMEM;
3567}
3568
b6b71cb5 3569static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
5e8fd947
AK
3570{
3571 if (start == end - 1) {
b6b71cb5 3572 qemu_printf("\t%3d ", start);
5e8fd947 3573 } else {
b6b71cb5 3574 qemu_printf("\t%3d..%-3d ", start, end - 1);
5e8fd947 3575 }
b6b71cb5 3576 qemu_printf(" skip=%d ", skip);
5e8fd947 3577 if (ptr == PHYS_MAP_NODE_NIL) {
b6b71cb5 3578 qemu_printf(" ptr=NIL");
5e8fd947 3579 } else if (!skip) {
b6b71cb5 3580 qemu_printf(" ptr=#%d", ptr);
5e8fd947 3581 } else {
b6b71cb5 3582 qemu_printf(" ptr=[%d]", ptr);
5e8fd947 3583 }
b6b71cb5 3584 qemu_printf("\n");
5e8fd947
AK
3585}
3586
3587#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3588 int128_sub((size), int128_one())) : 0)
3589
b6b71cb5 3590void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
5e8fd947
AK
3591{
3592 int i;
3593
b6b71cb5
MA
3594 qemu_printf(" Dispatch\n");
3595 qemu_printf(" Physical sections\n");
5e8fd947
AK
3596
3597 for (i = 0; i < d->map.sections_nb; ++i) {
3598 MemoryRegionSection *s = d->map.sections + i;
3599 const char *names[] = { " [unassigned]", " [not dirty]",
3600 " [ROM]", " [watch]" };
3601
b6b71cb5
MA
3602 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
3603 " %s%s%s%s%s",
5e8fd947
AK
3604 i,
3605 s->offset_within_address_space,
3606 s->offset_within_address_space + MR_SIZE(s->mr->size),
3607 s->mr->name ? s->mr->name : "(noname)",
3608 i < ARRAY_SIZE(names) ? names[i] : "",
3609 s->mr == root ? " [ROOT]" : "",
3610 s == d->mru_section ? " [MRU]" : "",
3611 s->mr->is_iommu ? " [iommu]" : "");
3612
3613 if (s->mr->alias) {
b6b71cb5 3614 qemu_printf(" alias=%s", s->mr->alias->name ?
5e8fd947
AK
3615 s->mr->alias->name : "noname");
3616 }
b6b71cb5 3617 qemu_printf("\n");
5e8fd947
AK
3618 }
3619
b6b71cb5 3620 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
5e8fd947
AK
3621 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3622 for (i = 0; i < d->map.nodes_nb; ++i) {
3623 int j, jprev;
3624 PhysPageEntry prev;
3625 Node *n = d->map.nodes + i;
3626
b6b71cb5 3627 qemu_printf(" [%d]\n", i);
5e8fd947
AK
3628
3629 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3630 PhysPageEntry *pe = *n + j;
3631
3632 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3633 continue;
3634 }
3635
b6b71cb5 3636 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
3637
3638 jprev = j;
3639 prev = *pe;
3640 }
3641
3642 if (jprev != ARRAY_SIZE(*n)) {
b6b71cb5 3643 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
3644 }
3645 }
3646}
3647
d24f31db
DH
3648/*
3649 * If positive, discarding RAM is disabled. If negative, discarding RAM is
3650 * required to work and cannot be disabled.
3651 */
3652static int ram_block_discard_disabled;
3653
3654int ram_block_discard_disable(bool state)
3655{
3656 int old;
3657
3658 if (!state) {
d73415a3 3659 qatomic_dec(&ram_block_discard_disabled);
d24f31db
DH
3660 return 0;
3661 }
3662
3663 do {
d73415a3 3664 old = qatomic_read(&ram_block_discard_disabled);
d24f31db
DH
3665 if (old < 0) {
3666 return -EBUSY;
3667 }
d73415a3
SH
3668 } while (qatomic_cmpxchg(&ram_block_discard_disabled,
3669 old, old + 1) != old);
d24f31db
DH
3670 return 0;
3671}
3672
3673int ram_block_discard_require(bool state)
3674{
3675 int old;
3676
3677 if (!state) {
d73415a3 3678 qatomic_inc(&ram_block_discard_disabled);
d24f31db
DH
3679 return 0;
3680 }
3681
3682 do {
d73415a3 3683 old = qatomic_read(&ram_block_discard_disabled);
d24f31db
DH
3684 if (old > 0) {
3685 return -EBUSY;
3686 }
d73415a3
SH
3687 } while (qatomic_cmpxchg(&ram_block_discard_disabled,
3688 old, old - 1) != old);
d24f31db
DH
3689 return 0;
3690}
3691
3692bool ram_block_discard_is_disabled(void)
3693{
d73415a3 3694 return qatomic_read(&ram_block_discard_disabled) > 0;
d24f31db
DH
3695}
3696
3697bool ram_block_discard_is_required(void)
3698{
d73415a3 3699 return qatomic_read(&ram_block_discard_disabled) < 0;
d24f31db 3700}