]> git.proxmox.com Git - mirror_qemu.git/blame - target-i386/kvm.c
kvm: reset state from the CPU's reset method
[mirror_qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
5802e066 21#include <linux/kvm_para.h>
05330448
AL
22
23#include "qemu-common.h"
9c17d615
PB
24#include "sysemu/sysemu.h"
25#include "sysemu/kvm.h"
1d31f66b 26#include "kvm_i386.h"
05330448 27#include "cpu.h"
022c62cb 28#include "exec/gdbstub.h"
1de7afc9
PB
29#include "qemu/host-utils.h"
30#include "qemu/config-file.h"
0d09e41a
PB
31#include "hw/i386/pc.h"
32#include "hw/i386/apic.h"
022c62cb 33#include "exec/ioport.h"
92067bf4 34#include <asm/hyperv.h>
a2cb15b0 35#include "hw/pci/pci.h"
05330448
AL
36
37//#define DEBUG_KVM
38
39#ifdef DEBUG_KVM
8c0d577e 40#define DPRINTF(fmt, ...) \
05330448
AL
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42#else
8c0d577e 43#define DPRINTF(fmt, ...) \
05330448
AL
44 do { } while (0)
45#endif
46
1a03675d
GC
47#define MSR_KVM_WALL_CLOCK 0x11
48#define MSR_KVM_SYSTEM_TIME 0x12
49
c0532a76
MT
50#ifndef BUS_MCEERR_AR
51#define BUS_MCEERR_AR 4
52#endif
53#ifndef BUS_MCEERR_AO
54#define BUS_MCEERR_AO 5
55#endif
56
94a8d39a
JK
57const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
61 KVM_CAP_LAST_INFO
62};
25d2e361 63
c3a3a7d3
JK
64static bool has_msr_star;
65static bool has_msr_hsave_pa;
f28558d3 66static bool has_msr_tsc_adjust;
aa82ba54 67static bool has_msr_tsc_deadline;
df67696e 68static bool has_msr_feature_control;
c5999bfc 69static bool has_msr_async_pf_en;
bc9a839d 70static bool has_msr_pv_eoi_en;
21e87c46 71static bool has_msr_misc_enable;
79e9ebeb 72static bool has_msr_bndcfgs;
917367aa 73static bool has_msr_kvm_steal_time;
25d2e361 74static int lm_capable_kernel;
7bc3d711
PB
75static bool has_msr_hv_hypercall;
76static bool has_msr_hv_vapic;
48a5f3bc 77static bool has_msr_hv_tsc;
b827df58 78
0d894367
PB
79static bool has_msr_architectural_pmu;
80static uint32_t num_architectural_pmu_counters;
81
1d31f66b
PM
82bool kvm_allows_irq0_override(void)
83{
84 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
85}
86
b827df58
AK
87static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
88{
89 struct kvm_cpuid2 *cpuid;
90 int r, size;
91
92 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
7267c094 93 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
b827df58
AK
94 cpuid->nent = max;
95 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
96 if (r == 0 && cpuid->nent >= max) {
97 r = -E2BIG;
98 }
b827df58
AK
99 if (r < 0) {
100 if (r == -E2BIG) {
7267c094 101 g_free(cpuid);
b827df58
AK
102 return NULL;
103 } else {
104 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
105 strerror(-r));
106 exit(1);
107 }
108 }
109 return cpuid;
110}
111
dd87f8a6
EH
112/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
113 * for all entries.
114 */
115static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
116{
117 struct kvm_cpuid2 *cpuid;
118 int max = 1;
119 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
120 max *= 2;
121 }
122 return cpuid;
123}
124
a443bc34 125static const struct kvm_para_features {
0c31b744
GC
126 int cap;
127 int feature;
128} para_features[] = {
129 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
130 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
131 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
0c31b744 132 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
0c31b744
GC
133};
134
ba9bc59e 135static int get_para_features(KVMState *s)
0c31b744
GC
136{
137 int i, features = 0;
138
8e03c100 139 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
ba9bc59e 140 if (kvm_check_extension(s, para_features[i].cap)) {
0c31b744
GC
141 features |= (1 << para_features[i].feature);
142 }
143 }
144
145 return features;
146}
0c31b744
GC
147
148
829ae2f9
EH
149/* Returns the value for a specific register on the cpuid entry
150 */
151static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
152{
153 uint32_t ret = 0;
154 switch (reg) {
155 case R_EAX:
156 ret = entry->eax;
157 break;
158 case R_EBX:
159 ret = entry->ebx;
160 break;
161 case R_ECX:
162 ret = entry->ecx;
163 break;
164 case R_EDX:
165 ret = entry->edx;
166 break;
167 }
168 return ret;
169}
170
4fb73f1d
EH
171/* Find matching entry for function/index on kvm_cpuid2 struct
172 */
173static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
174 uint32_t function,
175 uint32_t index)
176{
177 int i;
178 for (i = 0; i < cpuid->nent; ++i) {
179 if (cpuid->entries[i].function == function &&
180 cpuid->entries[i].index == index) {
181 return &cpuid->entries[i];
182 }
183 }
184 /* not found: */
185 return NULL;
186}
187
ba9bc59e 188uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 189 uint32_t index, int reg)
b827df58
AK
190{
191 struct kvm_cpuid2 *cpuid;
b827df58
AK
192 uint32_t ret = 0;
193 uint32_t cpuid_1_edx;
8c723b79 194 bool found = false;
b827df58 195
dd87f8a6 196 cpuid = get_supported_cpuid(s);
b827df58 197
4fb73f1d
EH
198 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
199 if (entry) {
200 found = true;
201 ret = cpuid_entry_get_reg(entry, reg);
b827df58
AK
202 }
203
7b46e5ce
EH
204 /* Fixups for the data returned by KVM, below */
205
c2acb022
EH
206 if (function == 1 && reg == R_EDX) {
207 /* KVM before 2.6.30 misreports the following features */
208 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
84bd945c
EH
209 } else if (function == 1 && reg == R_ECX) {
210 /* We can set the hypervisor flag, even if KVM does not return it on
211 * GET_SUPPORTED_CPUID
212 */
213 ret |= CPUID_EXT_HYPERVISOR;
ac67ee26
EH
214 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
215 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
216 * and the irqchip is in the kernel.
217 */
218 if (kvm_irqchip_in_kernel() &&
219 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
220 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
221 }
41e5e76d
EH
222
223 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
224 * without the in-kernel irqchip
225 */
226 if (!kvm_irqchip_in_kernel()) {
227 ret &= ~CPUID_EXT_X2APIC;
b827df58 228 }
c2acb022
EH
229 } else if (function == 0x80000001 && reg == R_EDX) {
230 /* On Intel, kvm returns cpuid according to the Intel spec,
231 * so add missing bits according to the AMD spec:
232 */
233 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
234 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
b827df58
AK
235 }
236
7267c094 237 g_free(cpuid);
b827df58 238
0c31b744 239 /* fallback for older kernels */
8c723b79 240 if ((function == KVM_CPUID_FEATURES) && !found) {
ba9bc59e 241 ret = get_para_features(s);
b9bec74b 242 }
0c31b744
GC
243
244 return ret;
bb0300dc 245}
bb0300dc 246
3c85e74f
HY
247typedef struct HWPoisonPage {
248 ram_addr_t ram_addr;
249 QLIST_ENTRY(HWPoisonPage) list;
250} HWPoisonPage;
251
252static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
253 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
254
255static void kvm_unpoison_all(void *param)
256{
257 HWPoisonPage *page, *next_page;
258
259 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
260 QLIST_REMOVE(page, list);
261 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
7267c094 262 g_free(page);
3c85e74f
HY
263 }
264}
265
3c85e74f
HY
266static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
267{
268 HWPoisonPage *page;
269
270 QLIST_FOREACH(page, &hwpoison_page_list, list) {
271 if (page->ram_addr == ram_addr) {
272 return;
273 }
274 }
7267c094 275 page = g_malloc(sizeof(HWPoisonPage));
3c85e74f
HY
276 page->ram_addr = ram_addr;
277 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
278}
279
e7701825
MT
280static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
281 int *max_banks)
282{
283 int r;
284
14a09518 285 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
286 if (r > 0) {
287 *max_banks = r;
288 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
289 }
290 return -ENOSYS;
291}
292
bee615d4 293static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
e7701825 294{
bee615d4 295 CPUX86State *env = &cpu->env;
c34d440a
JK
296 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
297 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
298 uint64_t mcg_status = MCG_STATUS_MCIP;
e7701825 299
c34d440a
JK
300 if (code == BUS_MCEERR_AR) {
301 status |= MCI_STATUS_AR | 0x134;
302 mcg_status |= MCG_STATUS_EIPV;
303 } else {
304 status |= 0xc0;
305 mcg_status |= MCG_STATUS_RIPV;
419fb20a 306 }
8c5cf3b6 307 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
c34d440a
JK
308 (MCM_ADDR_PHYS << 6) | 0xc,
309 cpu_x86_support_mca_broadcast(env) ?
310 MCE_INJECT_BROADCAST : 0);
419fb20a 311}
419fb20a
JK
312
313static void hardware_memory_error(void)
314{
315 fprintf(stderr, "Hardware memory error!\n");
316 exit(1);
317}
318
20d695a9 319int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
419fb20a 320{
20d695a9
AF
321 X86CPU *cpu = X86_CPU(c);
322 CPUX86State *env = &cpu->env;
419fb20a 323 ram_addr_t ram_addr;
a8170e5e 324 hwaddr paddr;
419fb20a
JK
325
326 if ((env->mcg_cap & MCG_SER_P) && addr
c34d440a 327 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
1b5ec234 328 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
a60f24b5 329 !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
419fb20a
JK
330 fprintf(stderr, "Hardware memory error for memory used by "
331 "QEMU itself instead of guest system!\n");
332 /* Hope we are lucky for AO MCE */
333 if (code == BUS_MCEERR_AO) {
334 return 0;
335 } else {
336 hardware_memory_error();
337 }
338 }
3c85e74f 339 kvm_hwpoison_page_add(ram_addr);
bee615d4 340 kvm_mce_inject(cpu, paddr, code);
e56ff191 341 } else {
419fb20a
JK
342 if (code == BUS_MCEERR_AO) {
343 return 0;
344 } else if (code == BUS_MCEERR_AR) {
345 hardware_memory_error();
346 } else {
347 return 1;
348 }
349 }
350 return 0;
351}
352
353int kvm_arch_on_sigbus(int code, void *addr)
354{
182735ef
AF
355 X86CPU *cpu = X86_CPU(first_cpu);
356
357 if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
419fb20a 358 ram_addr_t ram_addr;
a8170e5e 359 hwaddr paddr;
419fb20a
JK
360
361 /* Hope we are lucky for AO MCE */
1b5ec234 362 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
182735ef 363 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state,
a60f24b5 364 addr, &paddr)) {
419fb20a
JK
365 fprintf(stderr, "Hardware memory error for memory used by "
366 "QEMU itself instead of guest system!: %p\n", addr);
367 return 0;
368 }
3c85e74f 369 kvm_hwpoison_page_add(ram_addr);
182735ef 370 kvm_mce_inject(X86_CPU(first_cpu), paddr, code);
e56ff191 371 } else {
419fb20a
JK
372 if (code == BUS_MCEERR_AO) {
373 return 0;
374 } else if (code == BUS_MCEERR_AR) {
375 hardware_memory_error();
376 } else {
377 return 1;
378 }
379 }
380 return 0;
381}
e7701825 382
1bc22652 383static int kvm_inject_mce_oldstyle(X86CPU *cpu)
ab443475 384{
1bc22652
AF
385 CPUX86State *env = &cpu->env;
386
ab443475
JK
387 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
388 unsigned int bank, bank_num = env->mcg_cap & 0xff;
389 struct kvm_x86_mce mce;
390
391 env->exception_injected = -1;
392
393 /*
394 * There must be at least one bank in use if an MCE is pending.
395 * Find it and use its values for the event injection.
396 */
397 for (bank = 0; bank < bank_num; bank++) {
398 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
399 break;
400 }
401 }
402 assert(bank < bank_num);
403
404 mce.bank = bank;
405 mce.status = env->mce_banks[bank * 4 + 1];
406 mce.mcg_status = env->mcg_status;
407 mce.addr = env->mce_banks[bank * 4 + 2];
408 mce.misc = env->mce_banks[bank * 4 + 3];
409
1bc22652 410 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
ab443475 411 }
ab443475
JK
412 return 0;
413}
414
1dfb4dd9 415static void cpu_update_state(void *opaque, int running, RunState state)
b8cc45d6 416{
317ac620 417 CPUX86State *env = opaque;
b8cc45d6
GC
418
419 if (running) {
420 env->tsc_valid = false;
421 }
422}
423
83b17af5 424unsigned long kvm_arch_vcpu_id(CPUState *cs)
b164e48e 425{
83b17af5
EH
426 X86CPU *cpu = X86_CPU(cs);
427 return cpu->env.cpuid_apic_id;
b164e48e
EH
428}
429
92067bf4
IM
430#ifndef KVM_CPUID_SIGNATURE_NEXT
431#define KVM_CPUID_SIGNATURE_NEXT 0x40000100
432#endif
433
434static bool hyperv_hypercall_available(X86CPU *cpu)
435{
436 return cpu->hyperv_vapic ||
437 (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
438}
439
440static bool hyperv_enabled(X86CPU *cpu)
441{
7bc3d711
PB
442 CPUState *cs = CPU(cpu);
443 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
444 (hyperv_hypercall_available(cpu) ||
48a5f3bc 445 cpu->hyperv_time ||
7bc3d711 446 cpu->hyperv_relaxed_timing);
92067bf4
IM
447}
448
f8bb0565 449#define KVM_MAX_CPUID_ENTRIES 100
0893d460 450
20d695a9 451int kvm_arch_init_vcpu(CPUState *cs)
05330448
AL
452{
453 struct {
486bd5a2 454 struct kvm_cpuid2 cpuid;
f8bb0565 455 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
541dc0d4 456 } QEMU_PACKED cpuid_data;
20d695a9
AF
457 X86CPU *cpu = X86_CPU(cs);
458 CPUX86State *env = &cpu->env;
486bd5a2 459 uint32_t limit, i, j, cpuid_i;
a33609ca 460 uint32_t unused;
bb0300dc 461 struct kvm_cpuid_entry2 *c;
bb0300dc 462 uint32_t signature[3];
234cc647 463 int kvm_base = KVM_CPUID_SIGNATURE;
e7429073 464 int r;
05330448 465
ef4cbe14
SW
466 memset(&cpuid_data, 0, sizeof(cpuid_data));
467
05330448
AL
468 cpuid_i = 0;
469
bb0300dc 470 /* Paravirtualization CPUIDs */
234cc647
PB
471 if (hyperv_enabled(cpu)) {
472 c = &cpuid_data.entries[cpuid_i++];
473 c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
eab70139
VR
474 memcpy(signature, "Microsoft Hv", 12);
475 c->eax = HYPERV_CPUID_MIN;
234cc647
PB
476 c->ebx = signature[0];
477 c->ecx = signature[1];
478 c->edx = signature[2];
0c31b744 479
234cc647
PB
480 c = &cpuid_data.entries[cpuid_i++];
481 c->function = HYPERV_CPUID_INTERFACE;
eab70139
VR
482 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
483 c->eax = signature[0];
234cc647
PB
484 c->ebx = 0;
485 c->ecx = 0;
486 c->edx = 0;
eab70139
VR
487
488 c = &cpuid_data.entries[cpuid_i++];
eab70139
VR
489 c->function = HYPERV_CPUID_VERSION;
490 c->eax = 0x00001bbc;
491 c->ebx = 0x00060001;
492
493 c = &cpuid_data.entries[cpuid_i++];
eab70139 494 c->function = HYPERV_CPUID_FEATURES;
92067bf4 495 if (cpu->hyperv_relaxed_timing) {
eab70139
VR
496 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
497 }
92067bf4 498 if (cpu->hyperv_vapic) {
eab70139
VR
499 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
500 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
7bc3d711 501 has_msr_hv_vapic = true;
eab70139 502 }
48a5f3bc
VR
503 if (cpu->hyperv_time &&
504 kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
505 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
506 c->eax |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE;
507 c->eax |= 0x200;
508 has_msr_hv_tsc = true;
509 }
eab70139 510 c = &cpuid_data.entries[cpuid_i++];
eab70139 511 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
92067bf4 512 if (cpu->hyperv_relaxed_timing) {
eab70139
VR
513 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
514 }
7bc3d711 515 if (has_msr_hv_vapic) {
eab70139
VR
516 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
517 }
92067bf4 518 c->ebx = cpu->hyperv_spinlock_attempts;
eab70139
VR
519
520 c = &cpuid_data.entries[cpuid_i++];
eab70139
VR
521 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
522 c->eax = 0x40;
523 c->ebx = 0x40;
524
234cc647 525 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
7bc3d711 526 has_msr_hv_hypercall = true;
eab70139
VR
527 }
528
234cc647
PB
529 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
530 c = &cpuid_data.entries[cpuid_i++];
531 c->function = KVM_CPUID_SIGNATURE | kvm_base;
532 c->eax = 0;
533 c->ebx = signature[0];
534 c->ecx = signature[1];
535 c->edx = signature[2];
536
537 c = &cpuid_data.entries[cpuid_i++];
538 c->function = KVM_CPUID_FEATURES | kvm_base;
539 c->eax = env->features[FEAT_KVM];
540
0c31b744 541 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
bb0300dc 542
bc9a839d
MT
543 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
544
917367aa
MT
545 has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME);
546
a33609ca 547 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
548
549 for (i = 0; i <= limit; i++) {
f8bb0565
IM
550 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
551 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
552 abort();
553 }
bb0300dc 554 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
555
556 switch (i) {
a36b1029
AL
557 case 2: {
558 /* Keep reading function 2 till all the input is received */
559 int times;
560
a36b1029 561 c->function = i;
a33609ca
AL
562 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
563 KVM_CPUID_FLAG_STATE_READ_NEXT;
564 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
565 times = c->eax & 0xff;
a36b1029
AL
566
567 for (j = 1; j < times; ++j) {
f8bb0565
IM
568 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
569 fprintf(stderr, "cpuid_data is full, no space for "
570 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
571 abort();
572 }
a33609ca 573 c = &cpuid_data.entries[cpuid_i++];
a36b1029 574 c->function = i;
a33609ca
AL
575 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
576 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
577 }
578 break;
579 }
486bd5a2
AL
580 case 4:
581 case 0xb:
582 case 0xd:
583 for (j = 0; ; j++) {
31e8c696
AP
584 if (i == 0xd && j == 64) {
585 break;
586 }
486bd5a2
AL
587 c->function = i;
588 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
589 c->index = j;
a33609ca 590 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 591
b9bec74b 592 if (i == 4 && c->eax == 0) {
486bd5a2 593 break;
b9bec74b
JK
594 }
595 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 596 break;
b9bec74b
JK
597 }
598 if (i == 0xd && c->eax == 0) {
31e8c696 599 continue;
b9bec74b 600 }
f8bb0565
IM
601 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
602 fprintf(stderr, "cpuid_data is full, no space for "
603 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
604 abort();
605 }
a33609ca 606 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
607 }
608 break;
609 default:
486bd5a2 610 c->function = i;
a33609ca
AL
611 c->flags = 0;
612 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
613 break;
614 }
05330448 615 }
0d894367
PB
616
617 if (limit >= 0x0a) {
618 uint32_t ver;
619
620 cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused);
621 if ((ver & 0xff) > 0) {
622 has_msr_architectural_pmu = true;
623 num_architectural_pmu_counters = (ver & 0xff00) >> 8;
624
625 /* Shouldn't be more than 32, since that's the number of bits
626 * available in EBX to tell us _which_ counters are available.
627 * Play it safe.
628 */
629 if (num_architectural_pmu_counters > MAX_GP_COUNTERS) {
630 num_architectural_pmu_counters = MAX_GP_COUNTERS;
631 }
632 }
633 }
634
a33609ca 635 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
636
637 for (i = 0x80000000; i <= limit; i++) {
f8bb0565
IM
638 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
639 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
640 abort();
641 }
bb0300dc 642 c = &cpuid_data.entries[cpuid_i++];
05330448 643
05330448 644 c->function = i;
a33609ca
AL
645 c->flags = 0;
646 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
647 }
648
b3baa152
BW
649 /* Call Centaur's CPUID instructions they are supported. */
650 if (env->cpuid_xlevel2 > 0) {
b3baa152
BW
651 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
652
653 for (i = 0xC0000000; i <= limit; i++) {
f8bb0565
IM
654 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
655 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
656 abort();
657 }
b3baa152
BW
658 c = &cpuid_data.entries[cpuid_i++];
659
660 c->function = i;
661 c->flags = 0;
662 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
663 }
664 }
665
05330448
AL
666 cpuid_data.cpuid.nent = cpuid_i;
667
e7701825 668 if (((env->cpuid_version >> 8)&0xF) >= 6
0514ef2f 669 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
fc7a504c 670 (CPUID_MCE | CPUID_MCA)
a60f24b5 671 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
e7701825
MT
672 uint64_t mcg_cap;
673 int banks;
32a42024 674 int ret;
e7701825 675
a60f24b5 676 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
75d49497
JK
677 if (ret < 0) {
678 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
679 return ret;
e7701825 680 }
75d49497
JK
681
682 if (banks > MCE_BANKS_DEF) {
683 banks = MCE_BANKS_DEF;
684 }
685 mcg_cap &= MCE_CAP_DEF;
686 mcg_cap |= banks;
1bc22652 687 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap);
75d49497
JK
688 if (ret < 0) {
689 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
690 return ret;
691 }
692
693 env->mcg_cap = mcg_cap;
e7701825 694 }
e7701825 695
b8cc45d6
GC
696 qemu_add_vm_change_state_handler(cpu_update_state, env);
697
df67696e
LJ
698 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
699 if (c) {
700 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
701 !!(c->ecx & CPUID_EXT_SMX);
702 }
703
7e680753 704 cpuid_data.cpuid.padding = 0;
1bc22652 705 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
fdc9c41a
JK
706 if (r) {
707 return r;
708 }
e7429073 709
a60f24b5 710 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
e7429073 711 if (r && env->tsc_khz) {
1bc22652 712 r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
e7429073
JR
713 if (r < 0) {
714 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
715 return r;
716 }
717 }
e7429073 718
fabacc0f
JK
719 if (kvm_has_xsave()) {
720 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
721 }
722
e7429073 723 return 0;
05330448
AL
724}
725
50a2c6e5 726void kvm_arch_reset_vcpu(X86CPU *cpu)
caa5af0f 727{
20d695a9 728 CPUX86State *env = &cpu->env;
dd673288 729
e73223a5 730 env->exception_injected = -1;
0e607a80 731 env->interrupt_injected = -1;
1a5e9d2f 732 env->xcr0 = 1;
ddced198 733 if (kvm_irqchip_in_kernel()) {
dd673288 734 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
735 KVM_MP_STATE_UNINITIALIZED;
736 } else {
737 env->mp_state = KVM_MP_STATE_RUNNABLE;
738 }
caa5af0f
JK
739}
740
c3a3a7d3 741static int kvm_get_supported_msrs(KVMState *s)
05330448 742{
75b10c43 743 static int kvm_supported_msrs;
c3a3a7d3 744 int ret = 0;
05330448
AL
745
746 /* first time */
75b10c43 747 if (kvm_supported_msrs == 0) {
05330448
AL
748 struct kvm_msr_list msr_list, *kvm_msr_list;
749
75b10c43 750 kvm_supported_msrs = -1;
05330448
AL
751
752 /* Obtain MSR list from KVM. These are the MSRs that we must
753 * save/restore */
4c9f7372 754 msr_list.nmsrs = 0;
c3a3a7d3 755 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 756 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 757 return ret;
6fb6d245 758 }
d9db889f
JK
759 /* Old kernel modules had a bug and could write beyond the provided
760 memory. Allocate at least a safe amount of 1K. */
7267c094 761 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
d9db889f
JK
762 msr_list.nmsrs *
763 sizeof(msr_list.indices[0])));
05330448 764
55308450 765 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 766 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
767 if (ret >= 0) {
768 int i;
769
770 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
771 if (kvm_msr_list->indices[i] == MSR_STAR) {
c3a3a7d3 772 has_msr_star = true;
75b10c43
MT
773 continue;
774 }
775 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
c3a3a7d3 776 has_msr_hsave_pa = true;
75b10c43 777 continue;
05330448 778 }
f28558d3
WA
779 if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
780 has_msr_tsc_adjust = true;
781 continue;
782 }
aa82ba54
LJ
783 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
784 has_msr_tsc_deadline = true;
785 continue;
786 }
21e87c46
AK
787 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
788 has_msr_misc_enable = true;
789 continue;
790 }
79e9ebeb
LJ
791 if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) {
792 has_msr_bndcfgs = true;
793 continue;
794 }
05330448
AL
795 }
796 }
797
7267c094 798 g_free(kvm_msr_list);
05330448
AL
799 }
800
c3a3a7d3 801 return ret;
05330448
AL
802}
803
cad1e282 804int kvm_arch_init(KVMState *s)
20420430 805{
11076198 806 uint64_t identity_base = 0xfffbc000;
39d6960a 807 uint64_t shadow_mem;
20420430 808 int ret;
25d2e361 809 struct utsname utsname;
20420430 810
c3a3a7d3 811 ret = kvm_get_supported_msrs(s);
20420430 812 if (ret < 0) {
20420430
SY
813 return ret;
814 }
25d2e361
MT
815
816 uname(&utsname);
817 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
818
4c5b10b7 819 /*
11076198
JK
820 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
821 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
822 * Since these must be part of guest physical memory, we need to allocate
823 * them, both by setting their start addresses in the kernel and by
824 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
825 *
826 * Older KVM versions may not support setting the identity map base. In
827 * that case we need to stick with the default, i.e. a 256K maximum BIOS
828 * size.
4c5b10b7 829 */
11076198
JK
830 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
831 /* Allows up to 16M BIOSes. */
832 identity_base = 0xfeffc000;
833
834 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
835 if (ret < 0) {
836 return ret;
837 }
4c5b10b7 838 }
e56ff191 839
11076198
JK
840 /* Set TSS base one page after EPT identity map. */
841 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
842 if (ret < 0) {
843 return ret;
844 }
845
11076198
JK
846 /* Tell fw_cfg to notify the BIOS to reserve the range. */
847 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 848 if (ret < 0) {
11076198 849 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
850 return ret;
851 }
3c85e74f 852 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 853
36ad0e94
MA
854 shadow_mem = qemu_opt_get_size(qemu_get_machine_opts(),
855 "kvm_shadow_mem", -1);
856 if (shadow_mem != -1) {
857 shadow_mem /= 4096;
858 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
859 if (ret < 0) {
860 return ret;
39d6960a
JK
861 }
862 }
11076198 863 return 0;
05330448 864}
b9bec74b 865
05330448
AL
866static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
867{
868 lhs->selector = rhs->selector;
869 lhs->base = rhs->base;
870 lhs->limit = rhs->limit;
871 lhs->type = 3;
872 lhs->present = 1;
873 lhs->dpl = 3;
874 lhs->db = 0;
875 lhs->s = 1;
876 lhs->l = 0;
877 lhs->g = 0;
878 lhs->avl = 0;
879 lhs->unusable = 0;
880}
881
882static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
883{
884 unsigned flags = rhs->flags;
885 lhs->selector = rhs->selector;
886 lhs->base = rhs->base;
887 lhs->limit = rhs->limit;
888 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
889 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 890 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
891 lhs->db = (flags >> DESC_B_SHIFT) & 1;
892 lhs->s = (flags & DESC_S_MASK) != 0;
893 lhs->l = (flags >> DESC_L_SHIFT) & 1;
894 lhs->g = (flags & DESC_G_MASK) != 0;
895 lhs->avl = (flags & DESC_AVL_MASK) != 0;
896 lhs->unusable = 0;
7e680753 897 lhs->padding = 0;
05330448
AL
898}
899
900static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
901{
902 lhs->selector = rhs->selector;
903 lhs->base = rhs->base;
904 lhs->limit = rhs->limit;
b9bec74b
JK
905 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
906 (rhs->present * DESC_P_MASK) |
907 (rhs->dpl << DESC_DPL_SHIFT) |
908 (rhs->db << DESC_B_SHIFT) |
909 (rhs->s * DESC_S_MASK) |
910 (rhs->l << DESC_L_SHIFT) |
911 (rhs->g * DESC_G_MASK) |
912 (rhs->avl * DESC_AVL_MASK);
05330448
AL
913}
914
915static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
916{
b9bec74b 917 if (set) {
05330448 918 *kvm_reg = *qemu_reg;
b9bec74b 919 } else {
05330448 920 *qemu_reg = *kvm_reg;
b9bec74b 921 }
05330448
AL
922}
923
1bc22652 924static int kvm_getput_regs(X86CPU *cpu, int set)
05330448 925{
1bc22652 926 CPUX86State *env = &cpu->env;
05330448
AL
927 struct kvm_regs regs;
928 int ret = 0;
929
930 if (!set) {
1bc22652 931 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
b9bec74b 932 if (ret < 0) {
05330448 933 return ret;
b9bec74b 934 }
05330448
AL
935 }
936
937 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
938 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
939 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
940 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
941 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
942 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
943 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
944 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
945#ifdef TARGET_X86_64
946 kvm_getput_reg(&regs.r8, &env->regs[8], set);
947 kvm_getput_reg(&regs.r9, &env->regs[9], set);
948 kvm_getput_reg(&regs.r10, &env->regs[10], set);
949 kvm_getput_reg(&regs.r11, &env->regs[11], set);
950 kvm_getput_reg(&regs.r12, &env->regs[12], set);
951 kvm_getput_reg(&regs.r13, &env->regs[13], set);
952 kvm_getput_reg(&regs.r14, &env->regs[14], set);
953 kvm_getput_reg(&regs.r15, &env->regs[15], set);
954#endif
955
956 kvm_getput_reg(&regs.rflags, &env->eflags, set);
957 kvm_getput_reg(&regs.rip, &env->eip, set);
958
b9bec74b 959 if (set) {
1bc22652 960 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
b9bec74b 961 }
05330448
AL
962
963 return ret;
964}
965
1bc22652 966static int kvm_put_fpu(X86CPU *cpu)
05330448 967{
1bc22652 968 CPUX86State *env = &cpu->env;
05330448
AL
969 struct kvm_fpu fpu;
970 int i;
971
972 memset(&fpu, 0, sizeof fpu);
973 fpu.fsw = env->fpus & ~(7 << 11);
974 fpu.fsw |= (env->fpstt & 7) << 11;
975 fpu.fcw = env->fpuc;
42cc8fa6
JK
976 fpu.last_opcode = env->fpop;
977 fpu.last_ip = env->fpip;
978 fpu.last_dp = env->fpdp;
b9bec74b
JK
979 for (i = 0; i < 8; ++i) {
980 fpu.ftwx |= (!env->fptags[i]) << i;
981 }
05330448
AL
982 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
983 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
984 fpu.mxcsr = env->mxcsr;
985
1bc22652 986 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
05330448
AL
987}
988
6b42494b
JK
989#define XSAVE_FCW_FSW 0
990#define XSAVE_FTW_FOP 1
f1665b21
SY
991#define XSAVE_CWD_RIP 2
992#define XSAVE_CWD_RDP 4
993#define XSAVE_MXCSR 6
994#define XSAVE_ST_SPACE 8
995#define XSAVE_XMM_SPACE 40
996#define XSAVE_XSTATE_BV 128
997#define XSAVE_YMMH_SPACE 144
79e9ebeb
LJ
998#define XSAVE_BNDREGS 240
999#define XSAVE_BNDCSR 256
f1665b21 1000
1bc22652 1001static int kvm_put_xsave(X86CPU *cpu)
f1665b21 1002{
1bc22652 1003 CPUX86State *env = &cpu->env;
fabacc0f 1004 struct kvm_xsave* xsave = env->kvm_xsave_buf;
42cc8fa6 1005 uint16_t cwd, swd, twd;
fabacc0f 1006 int i, r;
f1665b21 1007
b9bec74b 1008 if (!kvm_has_xsave()) {
1bc22652 1009 return kvm_put_fpu(cpu);
b9bec74b 1010 }
f1665b21 1011
f1665b21 1012 memset(xsave, 0, sizeof(struct kvm_xsave));
6115c0a8 1013 twd = 0;
f1665b21
SY
1014 swd = env->fpus & ~(7 << 11);
1015 swd |= (env->fpstt & 7) << 11;
1016 cwd = env->fpuc;
b9bec74b 1017 for (i = 0; i < 8; ++i) {
f1665b21 1018 twd |= (!env->fptags[i]) << i;
b9bec74b 1019 }
6b42494b
JK
1020 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
1021 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
42cc8fa6
JK
1022 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
1023 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
f1665b21
SY
1024 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
1025 sizeof env->fpregs);
1026 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
1027 sizeof env->xmm_regs);
1028 xsave->region[XSAVE_MXCSR] = env->mxcsr;
1029 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
1030 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
1031 sizeof env->ymmh_regs);
79e9ebeb
LJ
1032 memcpy(&xsave->region[XSAVE_BNDREGS], env->bnd_regs,
1033 sizeof env->bnd_regs);
1034 memcpy(&xsave->region[XSAVE_BNDCSR], &env->bndcs_regs,
1035 sizeof(env->bndcs_regs));
1bc22652 1036 r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
0f53994f 1037 return r;
f1665b21
SY
1038}
1039
1bc22652 1040static int kvm_put_xcrs(X86CPU *cpu)
f1665b21 1041{
1bc22652 1042 CPUX86State *env = &cpu->env;
f1665b21
SY
1043 struct kvm_xcrs xcrs;
1044
b9bec74b 1045 if (!kvm_has_xcrs()) {
f1665b21 1046 return 0;
b9bec74b 1047 }
f1665b21
SY
1048
1049 xcrs.nr_xcrs = 1;
1050 xcrs.flags = 0;
1051 xcrs.xcrs[0].xcr = 0;
1052 xcrs.xcrs[0].value = env->xcr0;
1bc22652 1053 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
f1665b21
SY
1054}
1055
1bc22652 1056static int kvm_put_sregs(X86CPU *cpu)
05330448 1057{
1bc22652 1058 CPUX86State *env = &cpu->env;
05330448
AL
1059 struct kvm_sregs sregs;
1060
0e607a80
JK
1061 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1062 if (env->interrupt_injected >= 0) {
1063 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1064 (uint64_t)1 << (env->interrupt_injected % 64);
1065 }
05330448
AL
1066
1067 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
1068 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1069 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1070 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1071 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1072 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1073 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 1074 } else {
b9bec74b
JK
1075 set_seg(&sregs.cs, &env->segs[R_CS]);
1076 set_seg(&sregs.ds, &env->segs[R_DS]);
1077 set_seg(&sregs.es, &env->segs[R_ES]);
1078 set_seg(&sregs.fs, &env->segs[R_FS]);
1079 set_seg(&sregs.gs, &env->segs[R_GS]);
1080 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
1081 }
1082
1083 set_seg(&sregs.tr, &env->tr);
1084 set_seg(&sregs.ldt, &env->ldt);
1085
1086 sregs.idt.limit = env->idt.limit;
1087 sregs.idt.base = env->idt.base;
7e680753 1088 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
1089 sregs.gdt.limit = env->gdt.limit;
1090 sregs.gdt.base = env->gdt.base;
7e680753 1091 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
1092
1093 sregs.cr0 = env->cr[0];
1094 sregs.cr2 = env->cr[2];
1095 sregs.cr3 = env->cr[3];
1096 sregs.cr4 = env->cr[4];
1097
02e51483
CF
1098 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
1099 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
05330448
AL
1100
1101 sregs.efer = env->efer;
1102
1bc22652 1103 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
05330448
AL
1104}
1105
1106static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1107 uint32_t index, uint64_t value)
1108{
1109 entry->index = index;
1110 entry->data = value;
1111}
1112
7477cd38
MT
1113static int kvm_put_tscdeadline_msr(X86CPU *cpu)
1114{
1115 CPUX86State *env = &cpu->env;
1116 struct {
1117 struct kvm_msrs info;
1118 struct kvm_msr_entry entries[1];
1119 } msr_data;
1120 struct kvm_msr_entry *msrs = msr_data.entries;
1121
1122 if (!has_msr_tsc_deadline) {
1123 return 0;
1124 }
1125
1126 kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1127
1128 msr_data.info.nmsrs = 1;
1129
1130 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1131}
1132
6bdf863d
JK
1133/*
1134 * Provide a separate write service for the feature control MSR in order to
1135 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1136 * before writing any other state because forcibly leaving nested mode
1137 * invalidates the VCPU state.
1138 */
1139static int kvm_put_msr_feature_control(X86CPU *cpu)
1140{
1141 struct {
1142 struct kvm_msrs info;
1143 struct kvm_msr_entry entry;
1144 } msr_data;
1145
1146 kvm_msr_entry_set(&msr_data.entry, MSR_IA32_FEATURE_CONTROL,
1147 cpu->env.msr_ia32_feature_control);
1148 msr_data.info.nmsrs = 1;
1149 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1150}
1151
1bc22652 1152static int kvm_put_msrs(X86CPU *cpu, int level)
05330448 1153{
1bc22652 1154 CPUX86State *env = &cpu->env;
05330448
AL
1155 struct {
1156 struct kvm_msrs info;
1157 struct kvm_msr_entry entries[100];
1158 } msr_data;
1159 struct kvm_msr_entry *msrs = msr_data.entries;
0d894367 1160 int n = 0, i;
05330448
AL
1161
1162 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1163 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1164 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
0c03266a 1165 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
c3a3a7d3 1166 if (has_msr_star) {
b9bec74b
JK
1167 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1168 }
c3a3a7d3 1169 if (has_msr_hsave_pa) {
75b10c43 1170 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 1171 }
f28558d3
WA
1172 if (has_msr_tsc_adjust) {
1173 kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1174 }
21e87c46
AK
1175 if (has_msr_misc_enable) {
1176 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1177 env->msr_ia32_misc_enable);
1178 }
439d19f2
PB
1179 if (has_msr_bndcfgs) {
1180 kvm_msr_entry_set(&msrs[n++], MSR_IA32_BNDCFGS, env->msr_bndcfgs);
1181 }
05330448 1182#ifdef TARGET_X86_64
25d2e361
MT
1183 if (lm_capable_kernel) {
1184 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1185 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1186 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1187 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1188 }
05330448 1189#endif
ff5c186b 1190 /*
0d894367
PB
1191 * The following MSRs have side effects on the guest or are too heavy
1192 * for normal writeback. Limit them to reset or full state updates.
ff5c186b
JK
1193 */
1194 if (level >= KVM_PUT_RESET_STATE) {
0522604b 1195 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
ea643051
JK
1196 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1197 env->system_time_msr);
1198 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
c5999bfc
JK
1199 if (has_msr_async_pf_en) {
1200 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1201 env->async_pf_en_msr);
1202 }
bc9a839d
MT
1203 if (has_msr_pv_eoi_en) {
1204 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1205 env->pv_eoi_en_msr);
1206 }
917367aa
MT
1207 if (has_msr_kvm_steal_time) {
1208 kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME,
1209 env->steal_time_msr);
1210 }
0d894367
PB
1211 if (has_msr_architectural_pmu) {
1212 /* Stop the counter. */
1213 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
1214 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0);
1215
1216 /* Set the counter values. */
1217 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1218 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i,
1219 env->msr_fixed_counters[i]);
1220 }
1221 for (i = 0; i < num_architectural_pmu_counters; i++) {
1222 kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i,
1223 env->msr_gp_counters[i]);
1224 kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i,
1225 env->msr_gp_evtsel[i]);
1226 }
1227 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS,
1228 env->msr_global_status);
1229 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1230 env->msr_global_ovf_ctrl);
1231
1232 /* Now start the PMU. */
1233 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL,
1234 env->msr_fixed_ctr_ctrl);
1235 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL,
1236 env->msr_global_ctrl);
1237 }
7bc3d711 1238 if (has_msr_hv_hypercall) {
1c90ef26
VR
1239 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID,
1240 env->msr_hv_guest_os_id);
1241 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL,
1242 env->msr_hv_hypercall);
eab70139 1243 }
7bc3d711 1244 if (has_msr_hv_vapic) {
5ef68987
VR
1245 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE,
1246 env->msr_hv_vapic);
eab70139 1247 }
48a5f3bc
VR
1248 if (has_msr_hv_tsc) {
1249 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_REFERENCE_TSC,
1250 env->msr_hv_tsc);
1251 }
6bdf863d
JK
1252
1253 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1254 * kvm_put_msr_feature_control. */
ea643051 1255 }
57780495 1256 if (env->mcg_cap) {
d8da8574 1257 int i;
b9bec74b 1258
c34d440a
JK
1259 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1260 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1261 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1262 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
1263 }
1264 }
1a03675d 1265
05330448
AL
1266 msr_data.info.nmsrs = n;
1267
1bc22652 1268 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
05330448
AL
1269
1270}
1271
1272
1bc22652 1273static int kvm_get_fpu(X86CPU *cpu)
05330448 1274{
1bc22652 1275 CPUX86State *env = &cpu->env;
05330448
AL
1276 struct kvm_fpu fpu;
1277 int i, ret;
1278
1bc22652 1279 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
b9bec74b 1280 if (ret < 0) {
05330448 1281 return ret;
b9bec74b 1282 }
05330448
AL
1283
1284 env->fpstt = (fpu.fsw >> 11) & 7;
1285 env->fpus = fpu.fsw;
1286 env->fpuc = fpu.fcw;
42cc8fa6
JK
1287 env->fpop = fpu.last_opcode;
1288 env->fpip = fpu.last_ip;
1289 env->fpdp = fpu.last_dp;
b9bec74b
JK
1290 for (i = 0; i < 8; ++i) {
1291 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1292 }
05330448
AL
1293 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1294 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1295 env->mxcsr = fpu.mxcsr;
1296
1297 return 0;
1298}
1299
1bc22652 1300static int kvm_get_xsave(X86CPU *cpu)
f1665b21 1301{
1bc22652 1302 CPUX86State *env = &cpu->env;
fabacc0f 1303 struct kvm_xsave* xsave = env->kvm_xsave_buf;
f1665b21 1304 int ret, i;
42cc8fa6 1305 uint16_t cwd, swd, twd;
f1665b21 1306
b9bec74b 1307 if (!kvm_has_xsave()) {
1bc22652 1308 return kvm_get_fpu(cpu);
b9bec74b 1309 }
f1665b21 1310
1bc22652 1311 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
0f53994f 1312 if (ret < 0) {
f1665b21 1313 return ret;
0f53994f 1314 }
f1665b21 1315
6b42494b
JK
1316 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1317 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1318 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1319 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
f1665b21
SY
1320 env->fpstt = (swd >> 11) & 7;
1321 env->fpus = swd;
1322 env->fpuc = cwd;
b9bec74b 1323 for (i = 0; i < 8; ++i) {
f1665b21 1324 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 1325 }
42cc8fa6
JK
1326 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1327 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
f1665b21
SY
1328 env->mxcsr = xsave->region[XSAVE_MXCSR];
1329 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1330 sizeof env->fpregs);
1331 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1332 sizeof env->xmm_regs);
1333 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1334 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1335 sizeof env->ymmh_regs);
79e9ebeb
LJ
1336 memcpy(env->bnd_regs, &xsave->region[XSAVE_BNDREGS],
1337 sizeof env->bnd_regs);
1338 memcpy(&env->bndcs_regs, &xsave->region[XSAVE_BNDCSR],
1339 sizeof(env->bndcs_regs));
f1665b21 1340 return 0;
f1665b21
SY
1341}
1342
1bc22652 1343static int kvm_get_xcrs(X86CPU *cpu)
f1665b21 1344{
1bc22652 1345 CPUX86State *env = &cpu->env;
f1665b21
SY
1346 int i, ret;
1347 struct kvm_xcrs xcrs;
1348
b9bec74b 1349 if (!kvm_has_xcrs()) {
f1665b21 1350 return 0;
b9bec74b 1351 }
f1665b21 1352
1bc22652 1353 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
b9bec74b 1354 if (ret < 0) {
f1665b21 1355 return ret;
b9bec74b 1356 }
f1665b21 1357
b9bec74b 1358 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21 1359 /* Only support xcr0 now */
0fd53fec
PB
1360 if (xcrs.xcrs[i].xcr == 0) {
1361 env->xcr0 = xcrs.xcrs[i].value;
f1665b21
SY
1362 break;
1363 }
b9bec74b 1364 }
f1665b21 1365 return 0;
f1665b21
SY
1366}
1367
1bc22652 1368static int kvm_get_sregs(X86CPU *cpu)
05330448 1369{
1bc22652 1370 CPUX86State *env = &cpu->env;
05330448
AL
1371 struct kvm_sregs sregs;
1372 uint32_t hflags;
0e607a80 1373 int bit, i, ret;
05330448 1374
1bc22652 1375 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
b9bec74b 1376 if (ret < 0) {
05330448 1377 return ret;
b9bec74b 1378 }
05330448 1379
0e607a80
JK
1380 /* There can only be one pending IRQ set in the bitmap at a time, so try
1381 to find it and save its number instead (-1 for none). */
1382 env->interrupt_injected = -1;
1383 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1384 if (sregs.interrupt_bitmap[i]) {
1385 bit = ctz64(sregs.interrupt_bitmap[i]);
1386 env->interrupt_injected = i * 64 + bit;
1387 break;
1388 }
1389 }
05330448
AL
1390
1391 get_seg(&env->segs[R_CS], &sregs.cs);
1392 get_seg(&env->segs[R_DS], &sregs.ds);
1393 get_seg(&env->segs[R_ES], &sregs.es);
1394 get_seg(&env->segs[R_FS], &sregs.fs);
1395 get_seg(&env->segs[R_GS], &sregs.gs);
1396 get_seg(&env->segs[R_SS], &sregs.ss);
1397
1398 get_seg(&env->tr, &sregs.tr);
1399 get_seg(&env->ldt, &sregs.ldt);
1400
1401 env->idt.limit = sregs.idt.limit;
1402 env->idt.base = sregs.idt.base;
1403 env->gdt.limit = sregs.gdt.limit;
1404 env->gdt.base = sregs.gdt.base;
1405
1406 env->cr[0] = sregs.cr0;
1407 env->cr[2] = sregs.cr2;
1408 env->cr[3] = sregs.cr3;
1409 env->cr[4] = sregs.cr4;
1410
05330448 1411 env->efer = sregs.efer;
cce47516
JK
1412
1413 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
05330448 1414
b9bec74b
JK
1415#define HFLAG_COPY_MASK \
1416 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1417 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1418 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1419 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448
AL
1420
1421 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1422 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1423 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1424 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448
AL
1425 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1426 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
b9bec74b 1427 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
05330448
AL
1428
1429 if (env->efer & MSR_EFER_LMA) {
1430 hflags |= HF_LMA_MASK;
1431 }
1432
1433 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1434 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1435 } else {
1436 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1437 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1438 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1439 (DESC_B_SHIFT - HF_SS32_SHIFT);
1440 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1441 !(hflags & HF_CS32_MASK)) {
1442 hflags |= HF_ADDSEG_MASK;
1443 } else {
1444 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1445 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1446 }
05330448
AL
1447 }
1448 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
1449
1450 return 0;
1451}
1452
1bc22652 1453static int kvm_get_msrs(X86CPU *cpu)
05330448 1454{
1bc22652 1455 CPUX86State *env = &cpu->env;
05330448
AL
1456 struct {
1457 struct kvm_msrs info;
1458 struct kvm_msr_entry entries[100];
1459 } msr_data;
1460 struct kvm_msr_entry *msrs = msr_data.entries;
1461 int ret, i, n;
1462
1463 n = 0;
1464 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1465 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1466 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
0c03266a 1467 msrs[n++].index = MSR_PAT;
c3a3a7d3 1468 if (has_msr_star) {
b9bec74b
JK
1469 msrs[n++].index = MSR_STAR;
1470 }
c3a3a7d3 1471 if (has_msr_hsave_pa) {
75b10c43 1472 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1473 }
f28558d3
WA
1474 if (has_msr_tsc_adjust) {
1475 msrs[n++].index = MSR_TSC_ADJUST;
1476 }
aa82ba54
LJ
1477 if (has_msr_tsc_deadline) {
1478 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1479 }
21e87c46
AK
1480 if (has_msr_misc_enable) {
1481 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1482 }
df67696e
LJ
1483 if (has_msr_feature_control) {
1484 msrs[n++].index = MSR_IA32_FEATURE_CONTROL;
1485 }
79e9ebeb
LJ
1486 if (has_msr_bndcfgs) {
1487 msrs[n++].index = MSR_IA32_BNDCFGS;
1488 }
b8cc45d6
GC
1489
1490 if (!env->tsc_valid) {
1491 msrs[n++].index = MSR_IA32_TSC;
1354869c 1492 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
1493 }
1494
05330448 1495#ifdef TARGET_X86_64
25d2e361
MT
1496 if (lm_capable_kernel) {
1497 msrs[n++].index = MSR_CSTAR;
1498 msrs[n++].index = MSR_KERNELGSBASE;
1499 msrs[n++].index = MSR_FMASK;
1500 msrs[n++].index = MSR_LSTAR;
1501 }
05330448 1502#endif
1a03675d
GC
1503 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1504 msrs[n++].index = MSR_KVM_WALL_CLOCK;
c5999bfc
JK
1505 if (has_msr_async_pf_en) {
1506 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1507 }
bc9a839d
MT
1508 if (has_msr_pv_eoi_en) {
1509 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1510 }
917367aa
MT
1511 if (has_msr_kvm_steal_time) {
1512 msrs[n++].index = MSR_KVM_STEAL_TIME;
1513 }
0d894367
PB
1514 if (has_msr_architectural_pmu) {
1515 msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL;
1516 msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL;
1517 msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS;
1518 msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL;
1519 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1520 msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i;
1521 }
1522 for (i = 0; i < num_architectural_pmu_counters; i++) {
1523 msrs[n++].index = MSR_P6_PERFCTR0 + i;
1524 msrs[n++].index = MSR_P6_EVNTSEL0 + i;
1525 }
1526 }
1a03675d 1527
57780495
MT
1528 if (env->mcg_cap) {
1529 msrs[n++].index = MSR_MCG_STATUS;
1530 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 1531 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1532 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 1533 }
57780495 1534 }
57780495 1535
1c90ef26
VR
1536 if (has_msr_hv_hypercall) {
1537 msrs[n++].index = HV_X64_MSR_HYPERCALL;
1538 msrs[n++].index = HV_X64_MSR_GUEST_OS_ID;
1539 }
5ef68987
VR
1540 if (has_msr_hv_vapic) {
1541 msrs[n++].index = HV_X64_MSR_APIC_ASSIST_PAGE;
1542 }
48a5f3bc
VR
1543 if (has_msr_hv_tsc) {
1544 msrs[n++].index = HV_X64_MSR_REFERENCE_TSC;
1545 }
5ef68987 1546
05330448 1547 msr_data.info.nmsrs = n;
1bc22652 1548 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
b9bec74b 1549 if (ret < 0) {
05330448 1550 return ret;
b9bec74b 1551 }
05330448
AL
1552
1553 for (i = 0; i < ret; i++) {
0d894367
PB
1554 uint32_t index = msrs[i].index;
1555 switch (index) {
05330448
AL
1556 case MSR_IA32_SYSENTER_CS:
1557 env->sysenter_cs = msrs[i].data;
1558 break;
1559 case MSR_IA32_SYSENTER_ESP:
1560 env->sysenter_esp = msrs[i].data;
1561 break;
1562 case MSR_IA32_SYSENTER_EIP:
1563 env->sysenter_eip = msrs[i].data;
1564 break;
0c03266a
JK
1565 case MSR_PAT:
1566 env->pat = msrs[i].data;
1567 break;
05330448
AL
1568 case MSR_STAR:
1569 env->star = msrs[i].data;
1570 break;
1571#ifdef TARGET_X86_64
1572 case MSR_CSTAR:
1573 env->cstar = msrs[i].data;
1574 break;
1575 case MSR_KERNELGSBASE:
1576 env->kernelgsbase = msrs[i].data;
1577 break;
1578 case MSR_FMASK:
1579 env->fmask = msrs[i].data;
1580 break;
1581 case MSR_LSTAR:
1582 env->lstar = msrs[i].data;
1583 break;
1584#endif
1585 case MSR_IA32_TSC:
1586 env->tsc = msrs[i].data;
1587 break;
f28558d3
WA
1588 case MSR_TSC_ADJUST:
1589 env->tsc_adjust = msrs[i].data;
1590 break;
aa82ba54
LJ
1591 case MSR_IA32_TSCDEADLINE:
1592 env->tsc_deadline = msrs[i].data;
1593 break;
aa851e36
MT
1594 case MSR_VM_HSAVE_PA:
1595 env->vm_hsave = msrs[i].data;
1596 break;
1a03675d
GC
1597 case MSR_KVM_SYSTEM_TIME:
1598 env->system_time_msr = msrs[i].data;
1599 break;
1600 case MSR_KVM_WALL_CLOCK:
1601 env->wall_clock_msr = msrs[i].data;
1602 break;
57780495
MT
1603 case MSR_MCG_STATUS:
1604 env->mcg_status = msrs[i].data;
1605 break;
1606 case MSR_MCG_CTL:
1607 env->mcg_ctl = msrs[i].data;
1608 break;
21e87c46
AK
1609 case MSR_IA32_MISC_ENABLE:
1610 env->msr_ia32_misc_enable = msrs[i].data;
1611 break;
0779caeb
ACL
1612 case MSR_IA32_FEATURE_CONTROL:
1613 env->msr_ia32_feature_control = msrs[i].data;
df67696e 1614 break;
79e9ebeb
LJ
1615 case MSR_IA32_BNDCFGS:
1616 env->msr_bndcfgs = msrs[i].data;
1617 break;
57780495 1618 default:
57780495
MT
1619 if (msrs[i].index >= MSR_MC0_CTL &&
1620 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1621 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 1622 }
d8da8574 1623 break;
f6584ee2
GN
1624 case MSR_KVM_ASYNC_PF_EN:
1625 env->async_pf_en_msr = msrs[i].data;
1626 break;
bc9a839d
MT
1627 case MSR_KVM_PV_EOI_EN:
1628 env->pv_eoi_en_msr = msrs[i].data;
1629 break;
917367aa
MT
1630 case MSR_KVM_STEAL_TIME:
1631 env->steal_time_msr = msrs[i].data;
1632 break;
0d894367
PB
1633 case MSR_CORE_PERF_FIXED_CTR_CTRL:
1634 env->msr_fixed_ctr_ctrl = msrs[i].data;
1635 break;
1636 case MSR_CORE_PERF_GLOBAL_CTRL:
1637 env->msr_global_ctrl = msrs[i].data;
1638 break;
1639 case MSR_CORE_PERF_GLOBAL_STATUS:
1640 env->msr_global_status = msrs[i].data;
1641 break;
1642 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
1643 env->msr_global_ovf_ctrl = msrs[i].data;
1644 break;
1645 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
1646 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
1647 break;
1648 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
1649 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
1650 break;
1651 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
1652 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
1653 break;
1c90ef26
VR
1654 case HV_X64_MSR_HYPERCALL:
1655 env->msr_hv_hypercall = msrs[i].data;
1656 break;
1657 case HV_X64_MSR_GUEST_OS_ID:
1658 env->msr_hv_guest_os_id = msrs[i].data;
1659 break;
5ef68987
VR
1660 case HV_X64_MSR_APIC_ASSIST_PAGE:
1661 env->msr_hv_vapic = msrs[i].data;
1662 break;
48a5f3bc
VR
1663 case HV_X64_MSR_REFERENCE_TSC:
1664 env->msr_hv_tsc = msrs[i].data;
1665 break;
05330448
AL
1666 }
1667 }
1668
1669 return 0;
1670}
1671
1bc22652 1672static int kvm_put_mp_state(X86CPU *cpu)
9bdbe550 1673{
1bc22652 1674 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
9bdbe550 1675
1bc22652 1676 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
9bdbe550
HB
1677}
1678
23d02d9b 1679static int kvm_get_mp_state(X86CPU *cpu)
9bdbe550 1680{
259186a7 1681 CPUState *cs = CPU(cpu);
23d02d9b 1682 CPUX86State *env = &cpu->env;
9bdbe550
HB
1683 struct kvm_mp_state mp_state;
1684 int ret;
1685
259186a7 1686 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
9bdbe550
HB
1687 if (ret < 0) {
1688 return ret;
1689 }
1690 env->mp_state = mp_state.mp_state;
c14750e8 1691 if (kvm_irqchip_in_kernel()) {
259186a7 1692 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
c14750e8 1693 }
9bdbe550
HB
1694 return 0;
1695}
1696
1bc22652 1697static int kvm_get_apic(X86CPU *cpu)
680c1c6f 1698{
02e51483 1699 DeviceState *apic = cpu->apic_state;
680c1c6f
JK
1700 struct kvm_lapic_state kapic;
1701 int ret;
1702
3d4b2649 1703 if (apic && kvm_irqchip_in_kernel()) {
1bc22652 1704 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
680c1c6f
JK
1705 if (ret < 0) {
1706 return ret;
1707 }
1708
1709 kvm_get_apic_state(apic, &kapic);
1710 }
1711 return 0;
1712}
1713
1bc22652 1714static int kvm_put_apic(X86CPU *cpu)
680c1c6f 1715{
02e51483 1716 DeviceState *apic = cpu->apic_state;
680c1c6f
JK
1717 struct kvm_lapic_state kapic;
1718
3d4b2649 1719 if (apic && kvm_irqchip_in_kernel()) {
680c1c6f
JK
1720 kvm_put_apic_state(apic, &kapic);
1721
1bc22652 1722 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
680c1c6f
JK
1723 }
1724 return 0;
1725}
1726
1bc22652 1727static int kvm_put_vcpu_events(X86CPU *cpu, int level)
a0fb002c 1728{
1bc22652 1729 CPUX86State *env = &cpu->env;
a0fb002c
JK
1730 struct kvm_vcpu_events events;
1731
1732 if (!kvm_has_vcpu_events()) {
1733 return 0;
1734 }
1735
31827373
JK
1736 events.exception.injected = (env->exception_injected >= 0);
1737 events.exception.nr = env->exception_injected;
a0fb002c
JK
1738 events.exception.has_error_code = env->has_error_code;
1739 events.exception.error_code = env->error_code;
7e680753 1740 events.exception.pad = 0;
a0fb002c
JK
1741
1742 events.interrupt.injected = (env->interrupt_injected >= 0);
1743 events.interrupt.nr = env->interrupt_injected;
1744 events.interrupt.soft = env->soft_interrupt;
1745
1746 events.nmi.injected = env->nmi_injected;
1747 events.nmi.pending = env->nmi_pending;
1748 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
7e680753 1749 events.nmi.pad = 0;
a0fb002c
JK
1750
1751 events.sipi_vector = env->sipi_vector;
1752
ea643051
JK
1753 events.flags = 0;
1754 if (level >= KVM_PUT_RESET_STATE) {
1755 events.flags |=
1756 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1757 }
aee028b9 1758
1bc22652 1759 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
1760}
1761
1bc22652 1762static int kvm_get_vcpu_events(X86CPU *cpu)
a0fb002c 1763{
1bc22652 1764 CPUX86State *env = &cpu->env;
a0fb002c
JK
1765 struct kvm_vcpu_events events;
1766 int ret;
1767
1768 if (!kvm_has_vcpu_events()) {
1769 return 0;
1770 }
1771
1bc22652 1772 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
a0fb002c
JK
1773 if (ret < 0) {
1774 return ret;
1775 }
31827373 1776 env->exception_injected =
a0fb002c
JK
1777 events.exception.injected ? events.exception.nr : -1;
1778 env->has_error_code = events.exception.has_error_code;
1779 env->error_code = events.exception.error_code;
1780
1781 env->interrupt_injected =
1782 events.interrupt.injected ? events.interrupt.nr : -1;
1783 env->soft_interrupt = events.interrupt.soft;
1784
1785 env->nmi_injected = events.nmi.injected;
1786 env->nmi_pending = events.nmi.pending;
1787 if (events.nmi.masked) {
1788 env->hflags2 |= HF2_NMI_MASK;
1789 } else {
1790 env->hflags2 &= ~HF2_NMI_MASK;
1791 }
1792
1793 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
1794
1795 return 0;
1796}
1797
1bc22652 1798static int kvm_guest_debug_workarounds(X86CPU *cpu)
b0b1d690 1799{
ed2803da 1800 CPUState *cs = CPU(cpu);
1bc22652 1801 CPUX86State *env = &cpu->env;
b0b1d690 1802 int ret = 0;
b0b1d690
JK
1803 unsigned long reinject_trap = 0;
1804
1805 if (!kvm_has_vcpu_events()) {
1806 if (env->exception_injected == 1) {
1807 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1808 } else if (env->exception_injected == 3) {
1809 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1810 }
1811 env->exception_injected = -1;
1812 }
1813
1814 /*
1815 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1816 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1817 * by updating the debug state once again if single-stepping is on.
1818 * Another reason to call kvm_update_guest_debug here is a pending debug
1819 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1820 * reinject them via SET_GUEST_DEBUG.
1821 */
1822 if (reinject_trap ||
ed2803da 1823 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
38e478ec 1824 ret = kvm_update_guest_debug(cs, reinject_trap);
b0b1d690 1825 }
b0b1d690
JK
1826 return ret;
1827}
1828
1bc22652 1829static int kvm_put_debugregs(X86CPU *cpu)
ff44f1a3 1830{
1bc22652 1831 CPUX86State *env = &cpu->env;
ff44f1a3
JK
1832 struct kvm_debugregs dbgregs;
1833 int i;
1834
1835 if (!kvm_has_debugregs()) {
1836 return 0;
1837 }
1838
1839 for (i = 0; i < 4; i++) {
1840 dbgregs.db[i] = env->dr[i];
1841 }
1842 dbgregs.dr6 = env->dr[6];
1843 dbgregs.dr7 = env->dr[7];
1844 dbgregs.flags = 0;
1845
1bc22652 1846 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
1847}
1848
1bc22652 1849static int kvm_get_debugregs(X86CPU *cpu)
ff44f1a3 1850{
1bc22652 1851 CPUX86State *env = &cpu->env;
ff44f1a3
JK
1852 struct kvm_debugregs dbgregs;
1853 int i, ret;
1854
1855 if (!kvm_has_debugregs()) {
1856 return 0;
1857 }
1858
1bc22652 1859 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
ff44f1a3 1860 if (ret < 0) {
b9bec74b 1861 return ret;
ff44f1a3
JK
1862 }
1863 for (i = 0; i < 4; i++) {
1864 env->dr[i] = dbgregs.db[i];
1865 }
1866 env->dr[4] = env->dr[6] = dbgregs.dr6;
1867 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
1868
1869 return 0;
1870}
1871
20d695a9 1872int kvm_arch_put_registers(CPUState *cpu, int level)
05330448 1873{
20d695a9 1874 X86CPU *x86_cpu = X86_CPU(cpu);
05330448
AL
1875 int ret;
1876
2fa45344 1877 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
dbaa07c4 1878
6bdf863d
JK
1879 if (level >= KVM_PUT_RESET_STATE && has_msr_feature_control) {
1880 ret = kvm_put_msr_feature_control(x86_cpu);
1881 if (ret < 0) {
1882 return ret;
1883 }
1884 }
1885
1bc22652 1886 ret = kvm_getput_regs(x86_cpu, 1);
b9bec74b 1887 if (ret < 0) {
05330448 1888 return ret;
b9bec74b 1889 }
1bc22652 1890 ret = kvm_put_xsave(x86_cpu);
b9bec74b 1891 if (ret < 0) {
f1665b21 1892 return ret;
b9bec74b 1893 }
1bc22652 1894 ret = kvm_put_xcrs(x86_cpu);
b9bec74b 1895 if (ret < 0) {
05330448 1896 return ret;
b9bec74b 1897 }
1bc22652 1898 ret = kvm_put_sregs(x86_cpu);
b9bec74b 1899 if (ret < 0) {
05330448 1900 return ret;
b9bec74b 1901 }
ab443475 1902 /* must be before kvm_put_msrs */
1bc22652 1903 ret = kvm_inject_mce_oldstyle(x86_cpu);
ab443475
JK
1904 if (ret < 0) {
1905 return ret;
1906 }
1bc22652 1907 ret = kvm_put_msrs(x86_cpu, level);
b9bec74b 1908 if (ret < 0) {
05330448 1909 return ret;
b9bec74b 1910 }
ea643051 1911 if (level >= KVM_PUT_RESET_STATE) {
1bc22652 1912 ret = kvm_put_mp_state(x86_cpu);
b9bec74b 1913 if (ret < 0) {
ea643051 1914 return ret;
b9bec74b 1915 }
1bc22652 1916 ret = kvm_put_apic(x86_cpu);
680c1c6f
JK
1917 if (ret < 0) {
1918 return ret;
1919 }
ea643051 1920 }
7477cd38
MT
1921
1922 ret = kvm_put_tscdeadline_msr(x86_cpu);
1923 if (ret < 0) {
1924 return ret;
1925 }
1926
1bc22652 1927 ret = kvm_put_vcpu_events(x86_cpu, level);
b9bec74b 1928 if (ret < 0) {
a0fb002c 1929 return ret;
b9bec74b 1930 }
1bc22652 1931 ret = kvm_put_debugregs(x86_cpu);
b9bec74b 1932 if (ret < 0) {
b0b1d690 1933 return ret;
b9bec74b 1934 }
b0b1d690 1935 /* must be last */
1bc22652 1936 ret = kvm_guest_debug_workarounds(x86_cpu);
b9bec74b 1937 if (ret < 0) {
ff44f1a3 1938 return ret;
b9bec74b 1939 }
05330448
AL
1940 return 0;
1941}
1942
20d695a9 1943int kvm_arch_get_registers(CPUState *cs)
05330448 1944{
20d695a9 1945 X86CPU *cpu = X86_CPU(cs);
05330448
AL
1946 int ret;
1947
20d695a9 1948 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
dbaa07c4 1949
1bc22652 1950 ret = kvm_getput_regs(cpu, 0);
b9bec74b 1951 if (ret < 0) {
05330448 1952 return ret;
b9bec74b 1953 }
1bc22652 1954 ret = kvm_get_xsave(cpu);
b9bec74b 1955 if (ret < 0) {
f1665b21 1956 return ret;
b9bec74b 1957 }
1bc22652 1958 ret = kvm_get_xcrs(cpu);
b9bec74b 1959 if (ret < 0) {
05330448 1960 return ret;
b9bec74b 1961 }
1bc22652 1962 ret = kvm_get_sregs(cpu);
b9bec74b 1963 if (ret < 0) {
05330448 1964 return ret;
b9bec74b 1965 }
1bc22652 1966 ret = kvm_get_msrs(cpu);
b9bec74b 1967 if (ret < 0) {
05330448 1968 return ret;
b9bec74b 1969 }
23d02d9b 1970 ret = kvm_get_mp_state(cpu);
b9bec74b 1971 if (ret < 0) {
5a2e3c2e 1972 return ret;
b9bec74b 1973 }
1bc22652 1974 ret = kvm_get_apic(cpu);
680c1c6f
JK
1975 if (ret < 0) {
1976 return ret;
1977 }
1bc22652 1978 ret = kvm_get_vcpu_events(cpu);
b9bec74b 1979 if (ret < 0) {
a0fb002c 1980 return ret;
b9bec74b 1981 }
1bc22652 1982 ret = kvm_get_debugregs(cpu);
b9bec74b 1983 if (ret < 0) {
ff44f1a3 1984 return ret;
b9bec74b 1985 }
05330448
AL
1986 return 0;
1987}
1988
20d695a9 1989void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
05330448 1990{
20d695a9
AF
1991 X86CPU *x86_cpu = X86_CPU(cpu);
1992 CPUX86State *env = &x86_cpu->env;
ce377af3
JK
1993 int ret;
1994
276ce815 1995 /* Inject NMI */
259186a7
AF
1996 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
1997 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
276ce815 1998 DPRINTF("injected NMI\n");
1bc22652 1999 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
ce377af3
JK
2000 if (ret < 0) {
2001 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
2002 strerror(-ret));
2003 }
276ce815
LJ
2004 }
2005
db1669bc 2006 if (!kvm_irqchip_in_kernel()) {
d362e757
JK
2007 /* Force the VCPU out of its inner loop to process any INIT requests
2008 * or pending TPR access reports. */
259186a7 2009 if (cpu->interrupt_request &
d362e757 2010 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
fcd7d003 2011 cpu->exit_request = 1;
05330448 2012 }
05330448 2013
db1669bc
JK
2014 /* Try to inject an interrupt if the guest can accept it */
2015 if (run->ready_for_interrupt_injection &&
259186a7 2016 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
db1669bc
JK
2017 (env->eflags & IF_MASK)) {
2018 int irq;
2019
259186a7 2020 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
db1669bc
JK
2021 irq = cpu_get_pic_interrupt(env);
2022 if (irq >= 0) {
2023 struct kvm_interrupt intr;
2024
2025 intr.irq = irq;
db1669bc 2026 DPRINTF("injected interrupt %d\n", irq);
1bc22652 2027 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
ce377af3
JK
2028 if (ret < 0) {
2029 fprintf(stderr,
2030 "KVM: injection failed, interrupt lost (%s)\n",
2031 strerror(-ret));
2032 }
db1669bc
JK
2033 }
2034 }
05330448 2035
db1669bc
JK
2036 /* If we have an interrupt but the guest is not ready to receive an
2037 * interrupt, request an interrupt window exit. This will
2038 * cause a return to userspace as soon as the guest is ready to
2039 * receive interrupts. */
259186a7 2040 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
db1669bc
JK
2041 run->request_interrupt_window = 1;
2042 } else {
2043 run->request_interrupt_window = 0;
2044 }
2045
2046 DPRINTF("setting tpr\n");
02e51483 2047 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
db1669bc 2048 }
05330448
AL
2049}
2050
20d695a9 2051void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
05330448 2052{
20d695a9
AF
2053 X86CPU *x86_cpu = X86_CPU(cpu);
2054 CPUX86State *env = &x86_cpu->env;
2055
b9bec74b 2056 if (run->if_flag) {
05330448 2057 env->eflags |= IF_MASK;
b9bec74b 2058 } else {
05330448 2059 env->eflags &= ~IF_MASK;
b9bec74b 2060 }
02e51483
CF
2061 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
2062 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
05330448
AL
2063}
2064
20d695a9 2065int kvm_arch_process_async_events(CPUState *cs)
0af691d7 2066{
20d695a9
AF
2067 X86CPU *cpu = X86_CPU(cs);
2068 CPUX86State *env = &cpu->env;
232fc23b 2069
259186a7 2070 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
ab443475
JK
2071 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2072 assert(env->mcg_cap);
2073
259186a7 2074 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
ab443475 2075
dd1750d7 2076 kvm_cpu_synchronize_state(cs);
ab443475
JK
2077
2078 if (env->exception_injected == EXCP08_DBLE) {
2079 /* this means triple fault */
2080 qemu_system_reset_request();
fcd7d003 2081 cs->exit_request = 1;
ab443475
JK
2082 return 0;
2083 }
2084 env->exception_injected = EXCP12_MCHK;
2085 env->has_error_code = 0;
2086
259186a7 2087 cs->halted = 0;
ab443475
JK
2088 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
2089 env->mp_state = KVM_MP_STATE_RUNNABLE;
2090 }
2091 }
2092
db1669bc
JK
2093 if (kvm_irqchip_in_kernel()) {
2094 return 0;
2095 }
2096
259186a7
AF
2097 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
2098 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
02e51483 2099 apic_poll_irq(cpu->apic_state);
5d62c43a 2100 }
259186a7 2101 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4601f7b0 2102 (env->eflags & IF_MASK)) ||
259186a7
AF
2103 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2104 cs->halted = 0;
6792a57b 2105 }
259186a7 2106 if (cs->interrupt_request & CPU_INTERRUPT_INIT) {
dd1750d7 2107 kvm_cpu_synchronize_state(cs);
232fc23b 2108 do_cpu_init(cpu);
0af691d7 2109 }
259186a7 2110 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
dd1750d7 2111 kvm_cpu_synchronize_state(cs);
232fc23b 2112 do_cpu_sipi(cpu);
0af691d7 2113 }
259186a7
AF
2114 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
2115 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
dd1750d7 2116 kvm_cpu_synchronize_state(cs);
02e51483 2117 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
d362e757
JK
2118 env->tpr_access_type);
2119 }
0af691d7 2120
259186a7 2121 return cs->halted;
0af691d7
MT
2122}
2123
839b5630 2124static int kvm_handle_halt(X86CPU *cpu)
05330448 2125{
259186a7 2126 CPUState *cs = CPU(cpu);
839b5630
AF
2127 CPUX86State *env = &cpu->env;
2128
259186a7 2129 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
05330448 2130 (env->eflags & IF_MASK)) &&
259186a7
AF
2131 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2132 cs->halted = 1;
bb4ea393 2133 return EXCP_HLT;
05330448
AL
2134 }
2135
bb4ea393 2136 return 0;
05330448
AL
2137}
2138
f7575c96 2139static int kvm_handle_tpr_access(X86CPU *cpu)
d362e757 2140{
f7575c96
AF
2141 CPUState *cs = CPU(cpu);
2142 struct kvm_run *run = cs->kvm_run;
d362e757 2143
02e51483 2144 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
d362e757
JK
2145 run->tpr_access.is_write ? TPR_ACCESS_WRITE
2146 : TPR_ACCESS_READ);
2147 return 1;
2148}
2149
f17ec444 2150int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9 2151{
38972938 2152 static const uint8_t int3 = 0xcc;
64bf3f4e 2153
f17ec444
AF
2154 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
2155 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 2156 return -EINVAL;
b9bec74b 2157 }
e22a25c9
AL
2158 return 0;
2159}
2160
f17ec444 2161int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
2162{
2163 uint8_t int3;
2164
f17ec444
AF
2165 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
2166 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 2167 return -EINVAL;
b9bec74b 2168 }
e22a25c9
AL
2169 return 0;
2170}
2171
2172static struct {
2173 target_ulong addr;
2174 int len;
2175 int type;
2176} hw_breakpoint[4];
2177
2178static int nb_hw_breakpoint;
2179
2180static int find_hw_breakpoint(target_ulong addr, int len, int type)
2181{
2182 int n;
2183
b9bec74b 2184 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 2185 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 2186 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 2187 return n;
b9bec74b
JK
2188 }
2189 }
e22a25c9
AL
2190 return -1;
2191}
2192
2193int kvm_arch_insert_hw_breakpoint(target_ulong addr,
2194 target_ulong len, int type)
2195{
2196 switch (type) {
2197 case GDB_BREAKPOINT_HW:
2198 len = 1;
2199 break;
2200 case GDB_WATCHPOINT_WRITE:
2201 case GDB_WATCHPOINT_ACCESS:
2202 switch (len) {
2203 case 1:
2204 break;
2205 case 2:
2206 case 4:
2207 case 8:
b9bec74b 2208 if (addr & (len - 1)) {
e22a25c9 2209 return -EINVAL;
b9bec74b 2210 }
e22a25c9
AL
2211 break;
2212 default:
2213 return -EINVAL;
2214 }
2215 break;
2216 default:
2217 return -ENOSYS;
2218 }
2219
b9bec74b 2220 if (nb_hw_breakpoint == 4) {
e22a25c9 2221 return -ENOBUFS;
b9bec74b
JK
2222 }
2223 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 2224 return -EEXIST;
b9bec74b 2225 }
e22a25c9
AL
2226 hw_breakpoint[nb_hw_breakpoint].addr = addr;
2227 hw_breakpoint[nb_hw_breakpoint].len = len;
2228 hw_breakpoint[nb_hw_breakpoint].type = type;
2229 nb_hw_breakpoint++;
2230
2231 return 0;
2232}
2233
2234int kvm_arch_remove_hw_breakpoint(target_ulong addr,
2235 target_ulong len, int type)
2236{
2237 int n;
2238
2239 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 2240 if (n < 0) {
e22a25c9 2241 return -ENOENT;
b9bec74b 2242 }
e22a25c9
AL
2243 nb_hw_breakpoint--;
2244 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
2245
2246 return 0;
2247}
2248
2249void kvm_arch_remove_all_hw_breakpoints(void)
2250{
2251 nb_hw_breakpoint = 0;
2252}
2253
2254static CPUWatchpoint hw_watchpoint;
2255
a60f24b5 2256static int kvm_handle_debug(X86CPU *cpu,
48405526 2257 struct kvm_debug_exit_arch *arch_info)
e22a25c9 2258{
ed2803da 2259 CPUState *cs = CPU(cpu);
a60f24b5 2260 CPUX86State *env = &cpu->env;
f2574737 2261 int ret = 0;
e22a25c9
AL
2262 int n;
2263
2264 if (arch_info->exception == 1) {
2265 if (arch_info->dr6 & (1 << 14)) {
ed2803da 2266 if (cs->singlestep_enabled) {
f2574737 2267 ret = EXCP_DEBUG;
b9bec74b 2268 }
e22a25c9 2269 } else {
b9bec74b
JK
2270 for (n = 0; n < 4; n++) {
2271 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
2272 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2273 case 0x0:
f2574737 2274 ret = EXCP_DEBUG;
e22a25c9
AL
2275 break;
2276 case 0x1:
f2574737 2277 ret = EXCP_DEBUG;
ff4700b0 2278 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
2279 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2280 hw_watchpoint.flags = BP_MEM_WRITE;
2281 break;
2282 case 0x3:
f2574737 2283 ret = EXCP_DEBUG;
ff4700b0 2284 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
2285 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2286 hw_watchpoint.flags = BP_MEM_ACCESS;
2287 break;
2288 }
b9bec74b
JK
2289 }
2290 }
e22a25c9 2291 }
ff4700b0 2292 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
f2574737 2293 ret = EXCP_DEBUG;
b9bec74b 2294 }
f2574737 2295 if (ret == 0) {
ff4700b0 2296 cpu_synchronize_state(cs);
48405526 2297 assert(env->exception_injected == -1);
b0b1d690 2298
f2574737 2299 /* pass to guest */
48405526
BS
2300 env->exception_injected = arch_info->exception;
2301 env->has_error_code = 0;
b0b1d690 2302 }
e22a25c9 2303
f2574737 2304 return ret;
e22a25c9
AL
2305}
2306
20d695a9 2307void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
e22a25c9
AL
2308{
2309 const uint8_t type_code[] = {
2310 [GDB_BREAKPOINT_HW] = 0x0,
2311 [GDB_WATCHPOINT_WRITE] = 0x1,
2312 [GDB_WATCHPOINT_ACCESS] = 0x3
2313 };
2314 const uint8_t len_code[] = {
2315 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2316 };
2317 int n;
2318
a60f24b5 2319 if (kvm_sw_breakpoints_active(cpu)) {
e22a25c9 2320 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 2321 }
e22a25c9
AL
2322 if (nb_hw_breakpoint > 0) {
2323 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2324 dbg->arch.debugreg[7] = 0x0600;
2325 for (n = 0; n < nb_hw_breakpoint; n++) {
2326 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2327 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2328 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 2329 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
2330 }
2331 }
2332}
4513d923 2333
2a4dac83
JK
2334static bool host_supports_vmx(void)
2335{
2336 uint32_t ecx, unused;
2337
2338 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2339 return ecx & CPUID_EXT_VMX;
2340}
2341
2342#define VMX_INVALID_GUEST_STATE 0x80000021
2343
20d695a9 2344int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2a4dac83 2345{
20d695a9 2346 X86CPU *cpu = X86_CPU(cs);
2a4dac83
JK
2347 uint64_t code;
2348 int ret;
2349
2350 switch (run->exit_reason) {
2351 case KVM_EXIT_HLT:
2352 DPRINTF("handle_hlt\n");
839b5630 2353 ret = kvm_handle_halt(cpu);
2a4dac83
JK
2354 break;
2355 case KVM_EXIT_SET_TPR:
2356 ret = 0;
2357 break;
d362e757 2358 case KVM_EXIT_TPR_ACCESS:
f7575c96 2359 ret = kvm_handle_tpr_access(cpu);
d362e757 2360 break;
2a4dac83
JK
2361 case KVM_EXIT_FAIL_ENTRY:
2362 code = run->fail_entry.hardware_entry_failure_reason;
2363 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2364 code);
2365 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2366 fprintf(stderr,
12619721 2367 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
2368 "unrestricted mode\n"
2369 "support, the failure can be most likely due to the guest "
2370 "entering an invalid\n"
2371 "state for Intel VT. For example, the guest maybe running "
2372 "in big real mode\n"
2373 "which is not supported on less recent Intel processors."
2374 "\n\n");
2375 }
2376 ret = -1;
2377 break;
2378 case KVM_EXIT_EXCEPTION:
2379 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2380 run->ex.exception, run->ex.error_code);
2381 ret = -1;
2382 break;
f2574737
JK
2383 case KVM_EXIT_DEBUG:
2384 DPRINTF("kvm_exit_debug\n");
a60f24b5 2385 ret = kvm_handle_debug(cpu, &run->debug.arch);
f2574737 2386 break;
2a4dac83
JK
2387 default:
2388 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2389 ret = -1;
2390 break;
2391 }
2392
2393 return ret;
2394}
2395
20d695a9 2396bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4513d923 2397{
20d695a9
AF
2398 X86CPU *cpu = X86_CPU(cs);
2399 CPUX86State *env = &cpu->env;
2400
dd1750d7 2401 kvm_cpu_synchronize_state(cs);
b9bec74b
JK
2402 return !(env->cr[0] & CR0_PE_MASK) ||
2403 ((env->segs[R_CS].selector & 3) != 3);
4513d923 2404}
84b058d7
JK
2405
2406void kvm_arch_init_irq_routing(KVMState *s)
2407{
2408 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2409 /* If kernel can't do irq routing, interrupt source
2410 * override 0->2 cannot be set up as required by HPET.
2411 * So we have to disable it.
2412 */
2413 no_hpet = 1;
2414 }
cc7e0ddf 2415 /* We know at this point that we're using the in-kernel
614e41bc 2416 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 2417 * we can use msi via irqfd and GSI routing.
cc7e0ddf
PM
2418 */
2419 kvm_irqfds_allowed = true;
614e41bc 2420 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 2421 kvm_gsi_routing_allowed = true;
84b058d7 2422}
b139bd30
JK
2423
2424/* Classic KVM device assignment interface. Will remain x86 only. */
2425int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2426 uint32_t flags, uint32_t *dev_id)
2427{
2428 struct kvm_assigned_pci_dev dev_data = {
2429 .segnr = dev_addr->domain,
2430 .busnr = dev_addr->bus,
2431 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2432 .flags = flags,
2433 };
2434 int ret;
2435
2436 dev_data.assigned_dev_id =
2437 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2438
2439 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2440 if (ret < 0) {
2441 return ret;
2442 }
2443
2444 *dev_id = dev_data.assigned_dev_id;
2445
2446 return 0;
2447}
2448
2449int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2450{
2451 struct kvm_assigned_pci_dev dev_data = {
2452 .assigned_dev_id = dev_id,
2453 };
2454
2455 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2456}
2457
2458static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2459 uint32_t irq_type, uint32_t guest_irq)
2460{
2461 struct kvm_assigned_irq assigned_irq = {
2462 .assigned_dev_id = dev_id,
2463 .guest_irq = guest_irq,
2464 .flags = irq_type,
2465 };
2466
2467 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2468 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2469 } else {
2470 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2471 }
2472}
2473
2474int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2475 uint32_t guest_irq)
2476{
2477 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2478 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2479
2480 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2481}
2482
2483int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2484{
2485 struct kvm_assigned_pci_dev dev_data = {
2486 .assigned_dev_id = dev_id,
2487 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2488 };
2489
2490 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2491}
2492
2493static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2494 uint32_t type)
2495{
2496 struct kvm_assigned_irq assigned_irq = {
2497 .assigned_dev_id = dev_id,
2498 .flags = type,
2499 };
2500
2501 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2502}
2503
2504int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2505{
2506 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2507 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2508}
2509
2510int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2511{
2512 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2513 KVM_DEV_IRQ_GUEST_MSI, virq);
2514}
2515
2516int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2517{
2518 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2519 KVM_DEV_IRQ_HOST_MSI);
2520}
2521
2522bool kvm_device_msix_supported(KVMState *s)
2523{
2524 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2525 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2526 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2527}
2528
2529int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2530 uint32_t nr_vectors)
2531{
2532 struct kvm_assigned_msix_nr msix_nr = {
2533 .assigned_dev_id = dev_id,
2534 .entry_nr = nr_vectors,
2535 };
2536
2537 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2538}
2539
2540int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2541 int virq)
2542{
2543 struct kvm_assigned_msix_entry msix_entry = {
2544 .assigned_dev_id = dev_id,
2545 .gsi = virq,
2546 .entry = vector,
2547 };
2548
2549 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2550}
2551
2552int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2553{
2554 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2555 KVM_DEV_IRQ_GUEST_MSIX, 0);
2556}
2557
2558int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2559{
2560 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2561 KVM_DEV_IRQ_HOST_MSIX);
2562}