]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: Move GTimer definitions to new 'gtimer.h' header
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
50f57e09 9 * version 2.1 of the License, or (at your option) any later version.
2c0262af
FB
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
69242e7e 24#include "qemu/cpu-float.h"
2c4da50d 25#include "hw/registerfields.h"
74433bf0
RH
26#include "cpu-qom.h"
27#include "exec/cpu-defs.h"
68970d1e 28#include "qapi/qapi-types-common.h"
e2d8cf9b 29#include "target/arm/multiprocessing.h"
f4f318b4 30#include "target/arm/gtimer.h"
9042c0e2 31
ca759f9e
AB
32/* ARM processors have a weak memory model */
33#define TCG_GUEST_DEFAULT_MO (0)
34
e24fd076
DG
35#ifdef TARGET_AARCH64
36#define KVM_HAVE_MCE_INJECTION 1
37#endif
38
b8a9e8f1
FB
39#define EXCP_UDEF 1 /* undefined instruction */
40#define EXCP_SWI 2 /* software interrupt */
41#define EXCP_PREFETCH_ABORT 3
42#define EXCP_DATA_ABORT 4
b5ff1b31
FB
43#define EXCP_IRQ 5
44#define EXCP_FIQ 6
06c949e6 45#define EXCP_BKPT 7
9ee6e8bb 46#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 47#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 48#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 49#define EXCP_HYP_TRAP 12
e0d6e6a5 50#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
51#define EXCP_VIRQ 14
52#define EXCP_VFIQ 15
19a6e31c 53#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 54#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 55#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 56#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 57#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
58#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
59#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
e5346292 60#define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
3c29632f 61#define EXCP_VSERR 24
11b76fda 62#define EXCP_GPC 25 /* v9 Granule Protection Check Fault */
2c4a7cc5 63/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
64
65#define ARMV7M_EXCP_RESET 1
66#define ARMV7M_EXCP_NMI 2
67#define ARMV7M_EXCP_HARD 3
68#define ARMV7M_EXCP_MEM 4
69#define ARMV7M_EXCP_BUS 5
70#define ARMV7M_EXCP_USAGE 6
1e577cc7 71#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
72#define ARMV7M_EXCP_SVC 11
73#define ARMV7M_EXCP_DEBUG 12
74#define ARMV7M_EXCP_PENDSV 14
75#define ARMV7M_EXCP_SYSTICK 15
2c0262af 76
403946c0
RH
77/* ARM-specific interrupt pending bits. */
78#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
79#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
80#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
3c29632f 81#define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
403946c0 82
e4fe830b
PM
83/* The usual mapping for an AArch64 system register to its AArch32
84 * counterpart is for the 32 bit world to have access to the lower
85 * half only (with writes leaving the upper half untouched). It's
86 * therefore useful to be able to pass TCG the offset of the least
87 * significant half of a uint64_t struct member.
88 */
e03b5686 89#if HOST_BIG_ENDIAN
5cd8a118 90#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 91#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
92#else
93#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 94#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
95#endif
96
aaa1f954
EI
97/* ARM-specific extra insn start words:
98 * 1: Conditional execution bits
99 * 2: Partial exception syndrome for data aborts
100 */
101#define TARGET_INSN_START_EXTRA_WORDS 2
102
103/* The 2nd extra word holding syndrome info for data aborts does not use
674e5345 104 * the upper 6 bits nor the lower 13 bits. We mask and shift it down to
aaa1f954
EI
105 * help the sleb128 encoder do a better job.
106 * When restoring the CPU state, we shift it back up.
107 */
108#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
674e5345 109#define ARM_INSN_START_WORD2_SHIFT 13
6ebbf390 110
b7bcbe95
FB
111/* We currently assume float and double are IEEE single and double
112 precision respectively.
113 Doing runtime conversions is tricky because VFP registers may contain
114 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
115 s<2n> maps to the least significant half of d<n>
116 s<2n+1> maps to the most significant half of d<n>
117 */
b7bcbe95 118
200bf5b7
AB
119/**
120 * DynamicGDBXMLInfo:
121 * @desc: Contains the XML descriptions.
448d4d14
AB
122 * @num: Number of the registers in this XML seen by GDB.
123 * @data: A union with data specific to the set of registers
124 * @cpregs_keys: Array that contains the corresponding Key of
125 * a given cpreg with the same order of the cpreg
126 * in the XML description.
200bf5b7
AB
127 */
128typedef struct DynamicGDBXMLInfo {
129 char *desc;
448d4d14
AB
130 int num;
131 union {
132 struct {
133 uint32_t *keys;
134 } cpregs;
135 } data;
200bf5b7
AB
136} DynamicGDBXMLInfo;
137
55d284af
PM
138/* CPU state for each instance of a generic timer (in cp15 c14) */
139typedef struct ARMGenericTimer {
140 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 141 uint64_t ctl; /* Timer Control register */
55d284af
PM
142} ARMGenericTimer;
143
e9152ee9
RDC
144#define VTCR_NSW (1u << 29)
145#define VTCR_NSA (1u << 30)
146#define VSTCR_SW VTCR_NSW
147#define VSTCR_SA VTCR_NSA
148
c39c2b90
RH
149/* Define a maximum sized vector register.
150 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
151 * For 64-bit, this is a 2048-bit SVE register.
152 *
153 * Note that the mapping between S, D, and Q views of the register bank
154 * differs between AArch64 and AArch32.
155 * In AArch32:
156 * Qn = regs[n].d[1]:regs[n].d[0]
157 * Dn = regs[n / 2].d[n & 1]
158 * Sn = regs[n / 4].d[n % 4 / 2],
159 * bits 31..0 for even n, and bits 63..32 for odd n
160 * (and regs[16] to regs[31] are inaccessible)
161 * In AArch64:
162 * Zn = regs[n].d[*]
163 * Qn = regs[n].d[1]:regs[n].d[0]
164 * Dn = regs[n].d[0]
165 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 166 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
167 *
168 * This corresponds to the architecturally defined mapping between
169 * the two execution states, and means we do not need to explicitly
170 * map these registers when changing states.
171 *
172 * Align the data for use with TCG host vector operations.
173 */
174
175#ifdef TARGET_AARCH64
176# define ARM_MAX_VQ 16
177#else
178# define ARM_MAX_VQ 1
179#endif
180
181typedef struct ARMVectorReg {
182 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
183} ARMVectorReg;
184
3c7d3086 185#ifdef TARGET_AARCH64
991ad91b 186/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 187typedef struct ARMPredicateReg {
46417784 188 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 189} ARMPredicateReg;
991ad91b
RH
190
191/* In AArch32 mode, PAC keys do not exist at all. */
192typedef struct ARMPACKey {
193 uint64_t lo, hi;
194} ARMPACKey;
3c7d3086
RH
195#endif
196
3902bfc6
RH
197/* See the commentary above the TBFLAG field definitions. */
198typedef struct CPUARMTBFlags {
199 uint32_t flags;
a378206a 200 target_ulong flags2;
3902bfc6 201} CPUARMTBFlags;
c39c2b90 202
f3639a64
RH
203typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
204
8f4e07c9
PMD
205typedef struct NVICState NVICState;
206
1ea4a06a 207typedef struct CPUArchState {
b5ff1b31 208 /* Regs for current mode. */
2c0262af 209 uint32_t regs[16];
3926cc84
AG
210
211 /* 32/64 switch only happens when taking and returning from
212 * exceptions so the overlap semantics are taken care of then
213 * instead of having a complicated union.
214 */
215 /* Regs for A64 mode. */
216 uint64_t xregs[32];
217 uint64_t pc;
d356312f
PM
218 /* PSTATE isn't an architectural register for ARMv8. However, it is
219 * convenient for us to assemble the underlying state into a 32 bit format
220 * identical to the architectural format used for the SPSR. (This is also
221 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
222 * 'pstate' register are.) Of the PSTATE bits:
223 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
224 * semantics as for AArch32, as described in the comments on each field)
225 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 226 * DAIF (exception masks) are kept in env->daif
f6e52eaa 227 * BTYPE is kept in env->btype
c37e6ac9 228 * SM and ZA are kept in env->svcr
d356312f 229 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
230 */
231 uint32_t pstate;
53221552 232 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
063bbd80 233 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */
3926cc84 234
fdd1b228 235 /* Cached TBFLAGS state. See below for which bits are included. */
3902bfc6 236 CPUARMTBFlags hflags;
fdd1b228 237
b90372ad 238 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 239 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
240 the whole CPSR. */
241 uint32_t uncached_cpsr;
242 uint32_t spsr;
243
244 /* Banked registers. */
28c9457d 245 uint64_t banked_spsr[8];
0b7d409d
FA
246 uint32_t banked_r13[8];
247 uint32_t banked_r14[8];
3b46e624 248
b5ff1b31
FB
249 /* These hold r8-r12. */
250 uint32_t usr_regs[5];
251 uint32_t fiq_regs[5];
3b46e624 252
2c0262af
FB
253 /* cpsr flag cache for faster execution */
254 uint32_t CF; /* 0 or 1 */
255 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
256 uint32_t NF; /* N is bit 31. All other bits are undefined. */
257 uint32_t ZF; /* Z set if zero. */
99c475ab 258 uint32_t QF; /* 0 or 1 */
9ee6e8bb 259 uint32_t GE; /* cpsr[19:16] */
9ee6e8bb 260 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 261 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 262 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
c37e6ac9 263 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
2c0262af 264
1b174238 265 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 266 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 267
b5ff1b31
FB
268 /* System control coprocessor (cp15) */
269 struct {
40f137e1 270 uint32_t c0_cpuid;
b85a1fd6
FA
271 union { /* Cache size selection */
272 struct {
273 uint64_t _unused_csselr0;
274 uint64_t csselr_ns;
275 uint64_t _unused_csselr1;
276 uint64_t csselr_s;
277 };
278 uint64_t csselr_el[4];
279 };
137feaa9
FA
280 union { /* System control register. */
281 struct {
282 uint64_t _unused_sctlr;
283 uint64_t sctlr_ns;
284 uint64_t hsctlr;
285 uint64_t sctlr_s;
286 };
287 uint64_t sctlr_el[4];
288 };
761c4642 289 uint64_t vsctlr; /* Virtualization System control register. */
7ebd5f2e 290 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 291 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 292 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 293 uint64_t sder; /* Secure debug enable register. */
77022576 294 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
295 union { /* MMU translation table base 0. */
296 struct {
297 uint64_t _unused_ttbr0_0;
298 uint64_t ttbr0_ns;
299 uint64_t _unused_ttbr0_1;
300 uint64_t ttbr0_s;
301 };
302 uint64_t ttbr0_el[4];
303 };
304 union { /* MMU translation table base 1. */
305 struct {
306 uint64_t _unused_ttbr1_0;
307 uint64_t ttbr1_ns;
308 uint64_t _unused_ttbr1_1;
309 uint64_t ttbr1_s;
310 };
311 uint64_t ttbr1_el[4];
312 };
b698e9cf 313 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
e9152ee9 314 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
11f136ee 315 /* MMU translation table base control. */
cb4a0a34 316 uint64_t tcr_el[4];
988cc190
PM
317 uint64_t vtcr_el2; /* Virtualization Translation Control. */
318 uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
67cc32eb
VL
319 uint32_t c2_data; /* MPU data cacheable bits. */
320 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
321 union { /* MMU domain access control register
322 * MPU write buffer control.
323 */
324 struct {
325 uint64_t dacr_ns;
326 uint64_t dacr_s;
327 };
328 struct {
329 uint64_t dacr32_el2;
330 };
331 };
7e09797c
PM
332 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
333 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 334 uint64_t hcr_el2; /* Hypervisor configuration register */
5814d587 335 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
64e0e2de 336 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
337 union { /* Fault status registers. */
338 struct {
339 uint64_t ifsr_ns;
340 uint64_t ifsr_s;
341 };
342 struct {
343 uint64_t ifsr32_el2;
344 };
345 };
4a7e2d73
FA
346 union {
347 struct {
348 uint64_t _unused_dfsr;
349 uint64_t dfsr_ns;
350 uint64_t hsr;
351 uint64_t dfsr_s;
352 };
353 uint64_t esr_el[4];
354 };
ce819861 355 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
356 union { /* Fault address registers. */
357 struct {
358 uint64_t _unused_far0;
e03b5686 359#if HOST_BIG_ENDIAN
b848ce2b
FA
360 uint32_t ifar_ns;
361 uint32_t dfar_ns;
362 uint32_t ifar_s;
363 uint32_t dfar_s;
364#else
365 uint32_t dfar_ns;
366 uint32_t ifar_ns;
367 uint32_t dfar_s;
368 uint32_t ifar_s;
369#endif
370 uint64_t _unused_far3;
371 };
372 uint64_t far_el[4];
373 };
59e05530 374 uint64_t hpfar_el2;
2a5a9abd 375 uint64_t hstr_el2;
01c097f7
FA
376 union { /* Translation result. */
377 struct {
378 uint64_t _unused_par_0;
379 uint64_t par_ns;
380 uint64_t _unused_par_1;
381 uint64_t par_s;
382 };
383 uint64_t par_el[4];
384 };
6cb0b013 385
b5ff1b31
FB
386 uint32_t c9_insn; /* Cache lockdown registers. */
387 uint32_t c9_data;
8521466b
AF
388 uint64_t c9_pmcr; /* performance monitor control register */
389 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
390 uint64_t c9_pmovsr; /* perf monitor overflow status */
391 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 392 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 393 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
394 union { /* Memory attribute redirection */
395 struct {
e03b5686 396#if HOST_BIG_ENDIAN
be693c87
GB
397 uint64_t _unused_mair_0;
398 uint32_t mair1_ns;
399 uint32_t mair0_ns;
400 uint64_t _unused_mair_1;
401 uint32_t mair1_s;
402 uint32_t mair0_s;
403#else
404 uint64_t _unused_mair_0;
405 uint32_t mair0_ns;
406 uint32_t mair1_ns;
407 uint64_t _unused_mair_1;
408 uint32_t mair0_s;
409 uint32_t mair1_s;
410#endif
411 };
412 uint64_t mair_el[4];
413 };
fb6c91ba
GB
414 union { /* vector base address register */
415 struct {
416 uint64_t _unused_vbar;
417 uint64_t vbar_ns;
418 uint64_t hvbar;
419 uint64_t vbar_s;
420 };
421 uint64_t vbar_el[4];
422 };
e89e51a1 423 uint32_t mvbar; /* (monitor) vector base address register */
4a7319b7 424 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
54bf36ed
FA
425 struct { /* FCSE PID. */
426 uint32_t fcseidr_ns;
427 uint32_t fcseidr_s;
428 };
429 union { /* Context ID. */
430 struct {
431 uint64_t _unused_contextidr_0;
432 uint64_t contextidr_ns;
433 uint64_t _unused_contextidr_1;
434 uint64_t contextidr_s;
435 };
436 uint64_t contextidr_el[4];
437 };
438 union { /* User RW Thread register. */
439 struct {
440 uint64_t tpidrurw_ns;
441 uint64_t tpidrprw_ns;
442 uint64_t htpidr;
443 uint64_t _tpidr_el3;
444 };
445 uint64_t tpidr_el[4];
446 };
9e5ec745 447 uint64_t tpidr2_el0;
54bf36ed
FA
448 /* The secure banks of these registers don't map anywhere */
449 uint64_t tpidrurw_s;
450 uint64_t tpidrprw_s;
451 uint64_t tpidruro_s;
452
453 union { /* User RO Thread register. */
454 uint64_t tpidruro_ns;
455 uint64_t tpidrro_el[1];
456 };
a7adc4b7
PM
457 uint64_t c14_cntfrq; /* Counter Frequency register */
458 uint64_t c14_cntkctl; /* Timer Control register */
bb461330 459 uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 460 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 461 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 462 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
463 uint32_t c15_ticonfig; /* TI925T configuration byte. */
464 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
465 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
466 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
467 uint32_t c15_config_base_address; /* SCU base address. */
468 uint32_t c15_diagnostic; /* diagnostic register */
469 uint32_t c15_power_diagnostic;
470 uint32_t c15_power_control; /* power control */
0b45451e
PM
471 uint64_t dbgbvr[16]; /* breakpoint value registers */
472 uint64_t dbgbcr[16]; /* breakpoint control registers */
473 uint64_t dbgwvr[16]; /* watchpoint value registers */
474 uint64_t dbgwcr[16]; /* watchpoint control registers */
5fc83f11 475 uint64_t dbgclaim; /* DBGCLAIM bits */
3a298203 476 uint64_t mdscr_el1;
1424ca8d 477 uint64_t oslsr_el1; /* OS Lock Status */
f94a6df5 478 uint64_t osdlr_el1; /* OS DoubleLock status */
14cc7b54 479 uint64_t mdcr_el2;
5513c3ab 480 uint64_t mdcr_el3;
5d05b9d4
AL
481 /* Stores the architectural value of the counter *the last time it was
482 * updated* by pmccntr_op_start. Accesses should always be surrounded
483 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
484 * architecturally-correct value is being read/set.
7c2cb42b 485 */
c92c0687 486 uint64_t c15_ccnt;
5d05b9d4
AL
487 /* Stores the delta between the architectural value and the underlying
488 * cycle count during normal operation. It is used to update c15_ccnt
489 * to be the correct architectural value before accesses. During
490 * accesses, c15_ccnt_delta contains the underlying count being used
491 * for the access, after which it reverts to the delta value in
492 * pmccntr_op_finish.
493 */
494 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
495 uint64_t c14_pmevcntr[31];
496 uint64_t c14_pmevcntr_delta[31];
497 uint64_t c14_pmevtyper[31];
8521466b 498 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 499 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 500 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
4b779ceb
RH
501 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
502 uint64_t gcr_el1;
503 uint64_t rgsr_el1;
58e93b48
RH
504
505 /* Minimal RAS registers */
506 uint64_t disr_el1;
507 uint64_t vdisr_el2;
508 uint64_t vsesr_el2;
15126d9c
PM
509
510 /*
511 * Fine-Grained Trap registers. We store these as arrays so the
512 * access checking code doesn't have to manually select
513 * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
514 * FEAT_FGT2 will add more elements to these arrays.
515 */
516 uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
517 uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
518 uint64_t fgt_exec[1]; /* HFGITR */
ef1febe7
RH
519
520 /* RME registers */
521 uint64_t gpccr_el3;
522 uint64_t gptbr_el3;
523 uint64_t mfar_el3;
b5ba6c99
PM
524
525 /* NV2 register */
526 uint64_t vncr_el2;
b5ff1b31 527 } cp15;
40f137e1 528
9ee6e8bb 529 struct {
fb602cb7
PM
530 /* M profile has up to 4 stack pointers:
531 * a Main Stack Pointer and a Process Stack Pointer for each
532 * of the Secure and Non-Secure states. (If the CPU doesn't support
533 * the security extension then it has only two SPs.)
534 * In QEMU we always store the currently active SP in regs[13],
535 * and the non-active SP for the current security state in
536 * v7m.other_sp. The stack pointers for the inactive security state
537 * are stored in other_ss_msp and other_ss_psp.
538 * switch_v7m_security_state() is responsible for rearranging them
539 * when we change security state.
540 */
9ee6e8bb 541 uint32_t other_sp;
fb602cb7
PM
542 uint32_t other_ss_msp;
543 uint32_t other_ss_psp;
4a16724f
PM
544 uint32_t vecbase[M_REG_NUM_BANKS];
545 uint32_t basepri[M_REG_NUM_BANKS];
546 uint32_t control[M_REG_NUM_BANKS];
547 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
548 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
549 uint32_t hfsr; /* HardFault Status */
550 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 551 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 552 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 553 uint32_t bfar; /* BusFault Address */
bed079da 554 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 555 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 556 int exception;
4a16724f
PM
557 uint32_t primask[M_REG_NUM_BANKS];
558 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 559 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 560 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 561 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 562 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
563 uint32_t msplim[M_REG_NUM_BANKS];
564 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
565 uint32_t fpcar[M_REG_NUM_BANKS];
566 uint32_t fpccr[M_REG_NUM_BANKS];
567 uint32_t fpdscr[M_REG_NUM_BANKS];
568 uint32_t cpacr[M_REG_NUM_BANKS];
569 uint32_t nsacr;
b26b5629 570 uint32_t ltpsize;
7c3d47da 571 uint32_t vpr;
9ee6e8bb
PB
572 } v7m;
573
abf1172f
PM
574 /* Information associated with an exception about to be taken:
575 * code which raises an exception must set cs->exception_index and
576 * the relevant parts of this structure; the cpu_do_interrupt function
577 * will then set the guest-visible registers as part of the exception
578 * entry process.
579 */
580 struct {
581 uint32_t syndrome; /* AArch64 format syndrome register */
582 uint32_t fsr; /* AArch32 format fault status register info */
583 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 584 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
585 /* If we implement EL2 we will also need to store information
586 * about the intermediate physical address for stage 2 faults.
587 */
588 } exception;
589
202ccb6b
DG
590 /* Information associated with an SError */
591 struct {
592 uint8_t pending;
593 uint8_t has_esr;
594 uint64_t esr;
595 } serror;
596
1711bfa5
BM
597 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
598
ed89f078
PM
599 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
600 uint32_t irq_line_state;
601
fe1479c3
PB
602 /* Thumb-2 EE state. */
603 uint32_t teecr;
604 uint32_t teehbr;
605
b7bcbe95
FB
606 /* VFP coprocessor state. */
607 struct {
c39c2b90 608 ARMVectorReg zregs[32];
b7bcbe95 609
3c7d3086
RH
610#ifdef TARGET_AARCH64
611 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 612#define FFR_PRED_NUM 16
3c7d3086 613 ARMPredicateReg pregs[17];
516e246a
RH
614 /* Scratch space for aa64 sve predicate temporary. */
615 ARMPredicateReg preg_tmp;
3c7d3086
RH
616#endif
617
b7bcbe95 618 /* We store these fpcsr fields separately for convenience. */
a4d58462 619 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
620 int vec_len;
621 int vec_stride;
622
a4d58462
RH
623 uint32_t xregs[16];
624
516e246a 625 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 626 uint32_t scratch[8];
3b46e624 627
d81ce0ef
AB
628 /* There are a number of distinct float control structures:
629 *
630 * fp_status: is the "normal" fp status.
631 * fp_status_fp16: used for half-precision calculations
632 * standard_fp_status : the ARM "Standard FPSCR Value"
aaae563b
PM
633 * standard_fp_status_fp16 : used for half-precision
634 * calculations with the ARM "Standard FPSCR Value"
d81ce0ef
AB
635 *
636 * Half-precision operations are governed by a separate
637 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
638 * status structure to control this.
639 *
640 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
641 * round-to-nearest and is used by any operations (generally
642 * Neon) which the architecture defines as controlled by the
643 * standard FPSCR value rather than the FPSCR.
3a492f3a 644 *
aaae563b
PM
645 * The "standard FPSCR but for fp16 ops" is needed because
646 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
647 * using a fixed value for it.
648 *
3a492f3a
PM
649 * To avoid having to transfer exception bits around, we simply
650 * say that the FPSCR cumulative exception flags are the logical
aaae563b 651 * OR of the flags in the four fp statuses. This relies on the
3a492f3a
PM
652 * only thing which needs to read the exception flags being
653 * an explicit FPSCR read.
654 */
53cd6637 655 float_status fp_status;
d81ce0ef 656 float_status fp_status_f16;
3a492f3a 657 float_status standard_fp_status;
aaae563b 658 float_status standard_fp_status_f16;
5be5e8ed 659
de561988
RH
660 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */
661 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */
b7bcbe95 662 } vfp;
0f08429c 663
03d05e2d
PM
664 uint64_t exclusive_addr;
665 uint64_t exclusive_val;
0f08429c
RH
666 /*
667 * Contains the 'val' for the second 64-bit register of LDXP, which comes
668 * from the higher address, not the high part of a complete 128-bit value.
669 * In some ways it might be more convenient to record the exclusive value
670 * as the low and high halves of a 128 bit data value, but the current
671 * semantics of these fields are baked into the migration format.
672 */
03d05e2d 673 uint64_t exclusive_high;
b7bcbe95 674
18c9b560
AZ
675 /* iwMMXt coprocessor state. */
676 struct {
677 uint64_t regs[16];
678 uint64_t val;
679
680 uint32_t cregs[16];
681 } iwmmxt;
682
991ad91b 683#ifdef TARGET_AARCH64
108b3ba8
RH
684 struct {
685 ARMPACKey apia;
686 ARMPACKey apib;
687 ARMPACKey apda;
688 ARMPACKey apdb;
689 ARMPACKey apga;
690 } keys;
7cb1e618
RH
691
692 uint64_t scxtnum_el[4];
dc993a01
RH
693
694 /*
695 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
696 * as we do with vfp.zregs[]. This corresponds to the architectural ZA
697 * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
698 * When SVL is less than the architectural maximum, the accessible
699 * storage is restricted, such that if the SVL is X bytes the guest can
700 * see only the bottom X elements of zarray[], and only the least
701 * significant X bytes of each element of the array. (In other words,
702 * the observable part is always square.)
703 *
704 * The ZA storage can also be considered as a set of square tiles of
705 * elements of different sizes. The mapping from tiles to the ZA array
706 * is architecturally defined, such that for tiles of elements of esz
707 * bytes, the Nth row (or "horizontal slice") of tile T is in
708 * ZA[T + N * esz]. Note that this means that each tile is not contiguous
709 * in the ZA storage, because its rows are striped through the ZA array.
710 *
711 * Because this is so large, keep this toward the end of the reset area,
712 * to keep the offsets into the rest of the structure smaller.
713 */
714 ARMVectorReg zarray[ARM_MAX_VQ * 16];
991ad91b
RH
715#endif
716
46747d15 717 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
718 struct CPUWatchpoint *cpu_watchpoint[16];
719
f3639a64
RH
720 /* Optional fault info across tlb lookup. */
721 ARMMMUFaultInfo *tlb_fi;
722
1f5c00cf
AB
723 /* Fields up to this point are cleared by a CPU reset */
724 struct {} end_reset_fields;
725
e8b5fae5 726 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 727
581be094 728 /* Internal CPU feature flags. */
918f5dca 729 uint64_t features;
581be094 730
6cb0b013
PC
731 /* PMSAv7 MPU */
732 struct {
733 uint32_t *drbar;
734 uint32_t *drsr;
735 uint32_t *dracr;
4a16724f 736 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
737 } pmsav7;
738
0e1a46bb
PM
739 /* PMSAv8 MPU */
740 struct {
741 /* The PMSAv8 implementation also shares some PMSAv7 config
742 * and state:
743 * pmsav7.rnr (region number register)
744 * pmsav7_dregion (number of configured regions)
745 */
4a16724f
PM
746 uint32_t *rbar[M_REG_NUM_BANKS];
747 uint32_t *rlar[M_REG_NUM_BANKS];
761c4642
TR
748 uint32_t *hprbar;
749 uint32_t *hprlar;
4a16724f
PM
750 uint32_t mair0[M_REG_NUM_BANKS];
751 uint32_t mair1[M_REG_NUM_BANKS];
761c4642 752 uint32_t hprselr;
0e1a46bb
PM
753 } pmsav8;
754
9901c576
PM
755 /* v8M SAU */
756 struct {
757 uint32_t *rbar;
758 uint32_t *rlar;
759 uint32_t rnr;
760 uint32_t ctrl;
761 } sau;
762
1701d70e 763#if !defined(CONFIG_USER_ONLY)
8f4e07c9 764 NVICState *nvic;
2a94a507 765 const struct arm_boot_info *boot_info;
d3a3e529
VK
766 /* Store GICv3CPUState to access from this struct */
767 void *gicv3state;
1701d70e 768#else /* CONFIG_USER_ONLY */
26f08561
PMD
769 /* For usermode syscall translation. */
770 bool eabi;
771#endif /* CONFIG_USER_ONLY */
0e0c030c
RH
772
773#ifdef TARGET_TAGGED_ADDRESSES
774 /* Linux syscall tagged address support */
775 bool tagged_addr_enable;
776#endif
2c0262af
FB
777} CPUARMState;
778
5fda9504
TH
779static inline void set_feature(CPUARMState *env, int feature)
780{
781 env->features |= 1ULL << feature;
782}
783
784static inline void unset_feature(CPUARMState *env, int feature)
785{
786 env->features &= ~(1ULL << feature);
787}
788
bd7d00fc 789/**
08267487 790 * ARMELChangeHookFn:
bd7d00fc
PM
791 * type of a function which can be registered via arm_register_el_change_hook()
792 * to get callbacks when the CPU changes its exception level or mode.
793 */
08267487
AL
794typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
795typedef struct ARMELChangeHook ARMELChangeHook;
796struct ARMELChangeHook {
797 ARMELChangeHookFn *hook;
798 void *opaque;
799 QLIST_ENTRY(ARMELChangeHook) node;
800};
062ba099
AB
801
802/* These values map onto the return values for
803 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
804typedef enum ARMPSCIState {
d5affb0d
AJ
805 PSCI_ON = 0,
806 PSCI_OFF = 1,
062ba099
AB
807 PSCI_ON_PENDING = 2
808} ARMPSCIState;
809
962fcbf2
RH
810typedef struct ARMISARegisters ARMISARegisters;
811
7f9e25a6
RH
812/*
813 * In map, each set bit is a supported vector length of (bit-number + 1) * 16
814 * bytes, i.e. each bit number + 1 is the vector length in quadwords.
815 *
816 * While processing properties during initialization, corresponding init bits
817 * are set for bits in sve_vq_map that have been set by properties.
818 *
819 * Bits set in supported represent valid vector lengths for the CPU type.
820 */
821typedef struct {
822 uint32_t map, init, supported;
823} ARMVQMap;
824
74e75564
PB
825/**
826 * ARMCPU:
827 * @env: #CPUARMState
828 *
829 * An ARM CPU core.
830 */
b36e239e 831struct ArchCPU {
74e75564 832 CPUState parent_obj;
74e75564
PB
833
834 CPUARMState env;
835
836 /* Coprocessor information */
837 GHashTable *cp_regs;
838 /* For marshalling (mostly coprocessor) register state between the
839 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
840 * we use these arrays.
841 */
842 /* List of register indexes managed via these arrays; (full KVM style
843 * 64 bit indexes, not CPRegInfo 32 bit indexes)
844 */
845 uint64_t *cpreg_indexes;
846 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
847 uint64_t *cpreg_values;
848 /* Length of the indexes, values, reset_values arrays */
849 int32_t cpreg_array_len;
850 /* These are used only for migration: incoming data arrives in
851 * these fields and is sanity checked in post_load before copying
852 * to the working data structures above.
853 */
854 uint64_t *cpreg_vmstate_indexes;
855 uint64_t *cpreg_vmstate_values;
856 int32_t cpreg_vmstate_array_len;
857
448d4d14 858 DynamicGDBXMLInfo dyn_sysreg_xml;
d12379c5 859 DynamicGDBXMLInfo dyn_svereg_xml;
7d8b28b8
RH
860 DynamicGDBXMLInfo dyn_m_systemreg_xml;
861 DynamicGDBXMLInfo dyn_m_secextreg_xml;
200bf5b7 862
74e75564
PB
863 /* Timers used by the generic (architected) timer */
864 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
865 /*
866 * Timer used by the PMU. Its state is restored after migration by
867 * pmu_op_finish() - it does not need other handling during migration
868 */
869 QEMUTimer *pmu_timer;
74e75564
PB
870 /* GPIO outputs for generic timer */
871 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
872 /* GPIO output for GICv3 maintenance interrupt signal */
873 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
874 /* GPIO output for the PMU interrupt */
875 qemu_irq pmu_interrupt;
74e75564
PB
876
877 /* MemoryRegion to use for secure physical accesses */
878 MemoryRegion *secure_memory;
879
8bce44a2
RH
880 /* MemoryRegion to use for allocation tag accesses */
881 MemoryRegion *tag_memory;
882 MemoryRegion *secure_tag_memory;
883
181962fd
PM
884 /* For v8M, pointer to the IDAU interface provided by board/SoC */
885 Object *idau;
886
74e75564
PB
887 /* 'compatible' string for this CPU for Linux device trees */
888 const char *dtb_compatible;
889
890 /* PSCI version for this CPU
891 * Bits[31:16] = Major Version
892 * Bits[15:0] = Minor Version
893 */
894 uint32_t psci_version;
895
062ba099
AB
896 /* Current power state, access guarded by BQL */
897 ARMPSCIState power_state;
898
c25bd18a
PM
899 /* CPU has virtualization extension */
900 bool has_el2;
74e75564
PB
901 /* CPU has security extension */
902 bool has_el3;
5c0a3819
SZ
903 /* CPU has PMU (Performance Monitor Unit) */
904 bool has_pmu;
97a28b0e
PM
905 /* CPU has VFP */
906 bool has_vfp;
42bea956
CLG
907 /* CPU has 32 VFP registers */
908 bool has_vfp_d32;
97a28b0e
PM
909 /* CPU has Neon */
910 bool has_neon;
ea90db0a
PM
911 /* CPU has M-profile DSP extension */
912 bool has_dsp;
74e75564
PB
913
914 /* CPU has memory protection unit */
915 bool has_mpu;
916 /* PMSAv7 MPU number of supported regions */
917 uint32_t pmsav7_dregion;
761c4642
TR
918 /* PMSAv8 MPU number of supported hyp regions */
919 uint32_t pmsav8r_hdregion;
9901c576
PM
920 /* v8M SAU number of supported regions */
921 uint32_t sau_sregion;
74e75564
PB
922
923 /* PSCI conduit used to invoke PSCI methods
924 * 0 - disabled, 1 - smc, 2 - hvc
925 */
926 uint32_t psci_conduit;
927
38e2a77c
PM
928 /* For v8M, initial value of the Secure VTOR */
929 uint32_t init_svtor;
7cda2149
PM
930 /* For v8M, initial value of the Non-secure VTOR */
931 uint32_t init_nsvtor;
38e2a77c 932
74e75564
PB
933 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
934 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
935 */
936 uint32_t kvm_target;
937
cf43b5b6 938#ifdef CONFIG_KVM
74e75564
PB
939 /* KVM init features for this CPU */
940 uint32_t kvm_init_features[7];
941
e5ac4200
AJ
942 /* KVM CPU state */
943
944 /* KVM virtual time adjustment */
945 bool kvm_adjvtime;
946 bool kvm_vtime_dirty;
947 uint64_t kvm_vtime;
948
68970d1e
AJ
949 /* KVM steal time */
950 OnOffAuto kvm_steal_time;
cf43b5b6 951#endif /* CONFIG_KVM */
68970d1e 952
74e75564
PB
953 /* Uniprocessor system with MP extensions */
954 bool mp_is_up;
955
c4487d76
PM
956 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
957 * and the probe failed (so we need to report the error in realize)
958 */
959 bool host_cpu_probe_failed;
960
f9a69711
AF
961 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
962 * register.
963 */
964 int32_t core_count;
965
74e75564
PB
966 /* The instance init functions for implementation-specific subclasses
967 * set these fields to specify the implementation-dependent values of
968 * various constant registers and reset values of non-constant
969 * registers.
970 * Some of these might become QOM properties eventually.
971 * Field names match the official register names as defined in the
972 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
973 * is used for reset values of non-constant registers; no reset_
974 * prefix means a constant register.
47576b94
RH
975 * Some of these registers are split out into a substructure that
976 * is shared with the translators to control the ISA.
1548a7b2
PM
977 *
978 * Note that if you add an ID register to the ARMISARegisters struct
979 * you need to also update the 32-bit and 64-bit versions of the
980 * kvm_arm_get_host_cpu_features() function to correctly populate the
981 * field by reading the value from the KVM vCPU.
74e75564 982 */
47576b94
RH
983 struct ARMISARegisters {
984 uint32_t id_isar0;
985 uint32_t id_isar1;
986 uint32_t id_isar2;
987 uint32_t id_isar3;
988 uint32_t id_isar4;
989 uint32_t id_isar5;
990 uint32_t id_isar6;
10054016
PM
991 uint32_t id_mmfr0;
992 uint32_t id_mmfr1;
993 uint32_t id_mmfr2;
994 uint32_t id_mmfr3;
995 uint32_t id_mmfr4;
32957aad 996 uint32_t id_mmfr5;
8a130a7b
PM
997 uint32_t id_pfr0;
998 uint32_t id_pfr1;
1d51bc96 999 uint32_t id_pfr2;
47576b94
RH
1000 uint32_t mvfr0;
1001 uint32_t mvfr1;
1002 uint32_t mvfr2;
a6179538 1003 uint32_t id_dfr0;
d22c5649 1004 uint32_t id_dfr1;
4426d361 1005 uint32_t dbgdidr;
09754ca8
PM
1006 uint32_t dbgdevid;
1007 uint32_t dbgdevid1;
47576b94
RH
1008 uint64_t id_aa64isar0;
1009 uint64_t id_aa64isar1;
a969fe97 1010 uint64_t id_aa64isar2;
47576b94
RH
1011 uint64_t id_aa64pfr0;
1012 uint64_t id_aa64pfr1;
3dc91ddb
PM
1013 uint64_t id_aa64mmfr0;
1014 uint64_t id_aa64mmfr1;
64761e10 1015 uint64_t id_aa64mmfr2;
2a609df8
PM
1016 uint64_t id_aa64dfr0;
1017 uint64_t id_aa64dfr1;
2dc10fa2 1018 uint64_t id_aa64zfr0;
414c54d5 1019 uint64_t id_aa64smfr0;
24526bb9 1020 uint64_t reset_pmcr_el0;
47576b94 1021 } isar;
e544f800 1022 uint64_t midr;
74e75564
PB
1023 uint32_t revidr;
1024 uint32_t reset_fpsid;
a5fd319a 1025 uint64_t ctr;
74e75564 1026 uint32_t reset_sctlr;
cad86737
AL
1027 uint64_t pmceid0;
1028 uint64_t pmceid1;
74e75564 1029 uint32_t id_afr0;
74e75564
PB
1030 uint64_t id_aa64afr0;
1031 uint64_t id_aa64afr1;
f6450bcb 1032 uint64_t clidr;
74e75564
PB
1033 uint64_t mp_affinity; /* MP ID without feature bits */
1034 /* The elements of this array are the CCSIDR values for each cache,
1035 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1036 */
957e6155 1037 uint64_t ccsidr[16];
74e75564
PB
1038 uint64_t reset_cbar;
1039 uint32_t reset_auxcr;
1040 bool reset_hivecs;
ef1febe7 1041 uint8_t reset_l0gptsz;
eb94284d
RH
1042
1043 /*
1044 * Intermediate values used during property parsing.
69b2265d 1045 * Once finalized, the values should be read from ID_AA64*.
eb94284d
RH
1046 */
1047 bool prop_pauth;
1048 bool prop_pauth_impdef;
399e5e71 1049 bool prop_pauth_qarma3;
69b2265d 1050 bool prop_lpa2;
eb94284d 1051
74e75564 1052 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
ae4acc69 1053 uint8_t dcz_blocksize;
851ec6eb
RH
1054 /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1055 uint8_t gm_blocksize;
ae4acc69 1056
4a7319b7 1057 uint64_t rvbar_prop; /* Property/input signals. */
bd7d00fc 1058
e45868a3
PM
1059 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1060 int gic_num_lrs; /* number of list registers */
1061 int gic_vpribits; /* number of virtual priority bits */
1062 int gic_vprebits; /* number of virtual preemption bits */
39f29e59 1063 int gic_pribits; /* number of physical priority bits */
e45868a3 1064
3a062d57
JB
1065 /* Whether the cfgend input is high (i.e. this CPU should reset into
1066 * big-endian mode). This setting isn't used directly: instead it modifies
1067 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1068 * architecture version.
1069 */
1070 bool cfgend;
1071
b5c53d1b 1072 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 1073 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
1074
1075 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
1076
1077 /* Used to synchronize KVM and QEMU in-kernel device levels */
1078 uint8_t device_irq_level;
adf92eab
RH
1079
1080 /* Used to set the maximum vector length the cpu will support. */
1081 uint32_t sve_max_vq;
0df9142d 1082
b3d52804
RH
1083#ifdef CONFIG_USER_ONLY
1084 /* Used to set the default vector length at process start. */
1085 uint32_t sve_default_vq;
e74c0976 1086 uint32_t sme_default_vq;
b3d52804
RH
1087#endif
1088
7f9e25a6 1089 ARMVQMap sve_vq;
e74c0976 1090 ARMVQMap sme_vq;
7def8754
AJ
1091
1092 /* Generic timer counter frequency, in Hz */
1093 uint64_t gt_cntfrq_hz;
74e75564
PB
1094};
1095
9348028e
PMD
1096typedef struct ARMCPUInfo {
1097 const char *name;
1098 void (*initfn)(Object *obj);
1099 void (*class_init)(ObjectClass *oc, void *data);
1100} ARMCPUInfo;
1101
1102/**
1103 * ARMCPUClass:
1104 * @parent_realize: The parent class' realize handler.
1105 * @parent_phases: The parent class' reset phase handlers.
1106 *
1107 * An ARM CPU model.
1108 */
1109struct ARMCPUClass {
1110 CPUClass parent_class;
1111
1112 const ARMCPUInfo *info;
1113 DeviceRealize parent_realize;
1114 ResettablePhases parent_phases;
1115};
1116
1117struct AArch64CPUClass {
1118 ARMCPUClass parent_class;
1119};
1120
f6524ddf
PMD
1121/* Callback functions for the generic timer's timers. */
1122void arm_gt_ptimer_cb(void *opaque);
1123void arm_gt_vtimer_cb(void *opaque);
1124void arm_gt_htimer_cb(void *opaque);
1125void arm_gt_stimer_cb(void *opaque);
1126void arm_gt_hvtimer_cb(void *opaque);
1127
7def8754 1128unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
f6fc36de 1129void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
7def8754 1130
51e5ef45
MAL
1131void arm_cpu_post_init(Object *obj);
1132
f6524ddf
PMD
1133#define ARM_AFF0_SHIFT 0
1134#define ARM_AFF0_MASK (0xFFULL << ARM_AFF0_SHIFT)
1135#define ARM_AFF1_SHIFT 8
1136#define ARM_AFF1_MASK (0xFFULL << ARM_AFF1_SHIFT)
1137#define ARM_AFF2_SHIFT 16
1138#define ARM_AFF2_MASK (0xFFULL << ARM_AFF2_SHIFT)
1139#define ARM_AFF3_SHIFT 32
1140#define ARM_AFF3_MASK (0xFFULL << ARM_AFF3_SHIFT)
1141#define ARM_DEFAULT_CPUS_PER_CLUSTER 8
1142
1143#define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK)
1144#define ARM64_AFFINITY_MASK \
1145 (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK)
1146#define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK)
1147
750245ed 1148uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz);
46de5913 1149
74e75564 1150#ifndef CONFIG_USER_ONLY
8a9358cc 1151extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
1152
1153void arm_cpu_do_interrupt(CPUState *cpu);
1154void arm_v7m_cpu_do_interrupt(CPUState *cpu);
74e75564 1155
74e75564
PB
1156hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1157 MemTxAttrs *attrs);
6d2d454a 1158#endif /* !CONFIG_USER_ONLY */
74e75564 1159
a010bdbe 1160int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564
PB
1161int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1162
200bf5b7
AB
1163/* Returns the dynamically generated XML for the gdb stub.
1164 * Returns a pointer to the XML contents for the specified XML file or NULL
1165 * if the XML name doesn't match the predefined one.
1166 */
1167const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1168
74e75564 1169int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1af0006a 1170 int cpuid, DumpState *s);
74e75564 1171int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1af0006a 1172 int cpuid, DumpState *s);
74e75564 1173
3a45f4f5
PM
1174/**
1175 * arm_emulate_firmware_reset: Emulate firmware CPU reset handling
1176 * @cpu: CPU (which must have been freshly reset)
1177 * @target_el: exception level to put the CPU into
1178 * @secure: whether to put the CPU in secure state
1179 *
1180 * When QEMU is directly running a guest kernel at a lower level than
1181 * EL3 it implicitly emulates some aspects of the guest firmware.
1182 * This includes that on reset we need to configure the parts of the
1183 * CPU corresponding to EL3 so that the real guest code can run at its
1184 * lower exception level. This function does that post-reset CPU setup,
1185 * for when we do direct boot of a guest kernel, and for when we
1186 * emulate PSCI and similar firmware interfaces starting a CPU at a
1187 * lower exception level.
1188 *
1189 * @target_el must be an EL implemented by the CPU between 1 and 3.
1190 * We do not support dropping into a Secure EL other than 3.
1191 *
1192 * It is the responsibility of the caller to call arm_rebuild_hflags().
1193 */
1194void arm_emulate_firmware_reset(CPUState *cpustate, int target_el);
1195
74e75564 1196#ifdef TARGET_AARCH64
a010bdbe 1197int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564 1198int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 1199void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
1200void aarch64_sve_change_el(CPUARMState *env, int old_el,
1201 int new_el, bool el0_a64);
2a8af382 1202void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
538baab2
AJ
1203
1204/*
1205 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1206 * The byte at offset i from the start of the in-memory representation contains
1207 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1208 * lowest offsets are stored in the lowest memory addresses, then that nearly
1209 * matches QEMU's representation, which is to use an array of host-endian
1210 * uint64_t's, where the lower offsets are at the lower indices. To complete
1211 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1212 */
1213static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1214{
e03b5686 1215#if HOST_BIG_ENDIAN
538baab2
AJ
1216 int i;
1217
1218 for (i = 0; i < nr; ++i) {
1219 dst[i] = bswap64(src[i]);
1220 }
1221
1222 return dst;
1223#else
1224 return src;
1225#endif
1226}
1227
0ab5953b
RH
1228#else
1229static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1230static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1231 int n, bool a)
1232{ }
74e75564 1233#endif
778c3a06 1234
ce02049d
GB
1235void aarch64_sync_32_to_64(CPUARMState *env);
1236void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1237
ced31551
RH
1238int fp_exception_el(CPUARMState *env, int cur_el);
1239int sve_exception_el(CPUARMState *env, int cur_el);
6b2ca83e 1240int sme_exception_el(CPUARMState *env, int cur_el);
5ef3cc56
RH
1241
1242/**
6ca54aa9 1243 * sve_vqm1_for_el_sm:
5ef3cc56
RH
1244 * @env: CPUARMState
1245 * @el: exception level
6ca54aa9 1246 * @sm: streaming mode
5ef3cc56 1247 *
6ca54aa9 1248 * Compute the current vector length for @el & @sm, in units of
5ef3cc56 1249 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
6ca54aa9 1250 * If @sm, compute for SVL, otherwise NVL.
5ef3cc56 1251 */
6ca54aa9
RH
1252uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1253
1254/* Likewise, but using @sm = PSTATE.SM. */
5ef3cc56 1255uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
ced31551 1256
3926cc84
AG
1257static inline bool is_a64(CPUARMState *env)
1258{
1259 return env->aarch64;
1260}
1261
5d05b9d4
AL
1262/**
1263 * pmu_op_start/finish
ec7b4ce4
AF
1264 * @env: CPUARMState
1265 *
5d05b9d4
AL
1266 * Convert all PMU counters between their delta form (the typical mode when
1267 * they are enabled) and the guest-visible values. These two calls must
1268 * surround any action which might affect the counters.
ec7b4ce4 1269 */
5d05b9d4
AL
1270void pmu_op_start(CPUARMState *env);
1271void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1272
4e7beb0c
AL
1273/*
1274 * Called when a PMU counter is due to overflow
1275 */
1276void arm_pmu_timer_cb(void *opaque);
1277
033614c4
AL
1278/**
1279 * Functions to register as EL change hooks for PMU mode filtering
1280 */
1281void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1282void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1283
57a4a11b 1284/*
bf8d0969
AL
1285 * pmu_init
1286 * @cpu: ARMCPU
57a4a11b 1287 *
bf8d0969
AL
1288 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1289 * for the current configuration
57a4a11b 1290 */
bf8d0969 1291void pmu_init(ARMCPU *cpu);
57a4a11b 1292
76e3e1bc
PM
1293/* SCTLR bit meanings. Several bits have been reused in newer
1294 * versions of the architecture; in that case we define constants
1295 * for both old and new bit meanings. Code which tests against those
1296 * bits should probably check or otherwise arrange that the CPU
1297 * is the architectural version it expects.
1298 */
1299#define SCTLR_M (1U << 0)
1300#define SCTLR_A (1U << 1)
1301#define SCTLR_C (1U << 2)
1302#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1303#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1304#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1305#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1306#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1307#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1308#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1309#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1310#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
83f624d9 1311#define SCTLR_nAA (1U << 6) /* when FEAT_LSE2 is implemented */
76e3e1bc
PM
1312#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1313#define SCTLR_ITD (1U << 7) /* v8 onward */
1314#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1315#define SCTLR_SED (1U << 8) /* v8 onward */
1316#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1317#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1318#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1319#define SCTLR_SW (1U << 10) /* v7 */
1320#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1321#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1322#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1323#define SCTLR_I (1U << 12)
b2af69d0
RH
1324#define SCTLR_V (1U << 13) /* AArch32 only */
1325#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1326#define SCTLR_RR (1U << 14) /* up to v7 */
1327#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1328#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1329#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1330#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1331#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1332#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1333#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1334#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1335#define SCTLR_nTWE (1U << 18) /* v8 onward */
1336#define SCTLR_WXN (1U << 19)
1337#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0 1338#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
7cb1e618 1339#define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
b2af69d0
RH
1340#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1341#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1342#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1343#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1344#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1345#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1346#define SCTLR_VE (1U << 24) /* up to v7 */
1347#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1348#define SCTLR_EE (1U << 25)
1349#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1350#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1351#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1352#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1353#define SCTLR_TRE (1U << 28) /* AArch32 only */
1354#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1355#define SCTLR_AFE (1U << 29) /* AArch32 only */
1356#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1357#define SCTLR_TE (1U << 30) /* AArch32 only */
1358#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1359#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
f2f68a78 1360#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
dbc678f9 1361#define SCTLR_MSCEN (1ULL << 33) /* FEAT_MOPS */
b2af69d0
RH
1362#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1363#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1364#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1365#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1366#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1367#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1368#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
f2f68a78 1369#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
ad1e6018
RH
1370#define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */
1371#define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */
1372#define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */
1373#define SCTLR_TMT (1ULL << 51) /* FEAT_TME */
1374#define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */
1375#define SCTLR_TME (1ULL << 53) /* FEAT_TME */
1376#define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */
1377#define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */
1378#define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */
1379#define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */
1380#define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */
1381#define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */
1382#define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1383#define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */
76e3e1bc 1384
fab8ad39
RH
1385/* Bit definitions for CPACR (AArch32 only) */
1386FIELD(CPACR, CP10, 20, 2)
1387FIELD(CPACR, CP11, 22, 2)
1388FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */
1389FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */
1390FIELD(CPACR, ASEDIS, 31, 1)
1391
1392/* Bit definitions for CPACR_EL1 (AArch64 only) */
1393FIELD(CPACR_EL1, ZEN, 16, 2)
1394FIELD(CPACR_EL1, FPEN, 20, 2)
1395FIELD(CPACR_EL1, SMEN, 24, 2)
1396FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */
1397
1398/* Bit definitions for HCPTR (AArch32 only) */
1399FIELD(HCPTR, TCP10, 10, 1)
1400FIELD(HCPTR, TCP11, 11, 1)
1401FIELD(HCPTR, TASE, 15, 1)
1402FIELD(HCPTR, TTA, 20, 1)
1403FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */
1404FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */
1405
1406/* Bit definitions for CPTR_EL2 (AArch64 only) */
1407FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */
1408FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */
1409FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */
1410FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */
1411FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */
1412FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */
1413FIELD(CPTR_EL2, TTA, 28, 1)
1414FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */
1415FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */
1416
1417/* Bit definitions for CPTR_EL3 (AArch64 only) */
1418FIELD(CPTR_EL3, EZ, 8, 1)
1419FIELD(CPTR_EL3, TFP, 10, 1)
1420FIELD(CPTR_EL3, ESM, 12, 1)
1421FIELD(CPTR_EL3, TTA, 20, 1)
1422FIELD(CPTR_EL3, TAM, 30, 1)
1423FIELD(CPTR_EL3, TCPAC, 31, 1)
c6f19164 1424
f190bd1d
PM
1425#define MDCR_MTPME (1U << 28)
1426#define MDCR_TDCC (1U << 27)
47b385da 1427#define MDCR_HLP (1U << 26) /* MDCR_EL2 */
0b42f4fa
PM
1428#define MDCR_SCCD (1U << 23) /* MDCR_EL3 */
1429#define MDCR_HCCD (1U << 23) /* MDCR_EL2 */
187f678d
PM
1430#define MDCR_EPMAD (1U << 21)
1431#define MDCR_EDAD (1U << 20)
f190bd1d
PM
1432#define MDCR_TTRF (1U << 19)
1433#define MDCR_STE (1U << 18) /* MDCR_EL3 */
033614c4
AL
1434#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1435#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1436#define MDCR_SDD (1U << 16)
a8d64e73 1437#define MDCR_SPD (3U << 14)
187f678d
PM
1438#define MDCR_TDRA (1U << 11)
1439#define MDCR_TDOSA (1U << 10)
1440#define MDCR_TDA (1U << 9)
1441#define MDCR_TDE (1U << 8)
1442#define MDCR_HPME (1U << 7)
1443#define MDCR_TPM (1U << 6)
1444#define MDCR_TPMCR (1U << 5)
033614c4 1445#define MDCR_HPMN (0x1fU)
187f678d 1446
a8d64e73 1447/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
f190bd1d
PM
1448#define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
1449 MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
1450 MDCR_STE | MDCR_SPME | MDCR_SPD)
a8d64e73 1451
78dbbbe4
PM
1452#define CPSR_M (0x1fU)
1453#define CPSR_T (1U << 5)
1454#define CPSR_F (1U << 6)
1455#define CPSR_I (1U << 7)
1456#define CPSR_A (1U << 8)
1457#define CPSR_E (1U << 9)
1458#define CPSR_IT_2_7 (0xfc00U)
1459#define CPSR_GE (0xfU << 16)
4051e12c 1460#define CPSR_IL (1U << 20)
dc8b1853 1461#define CPSR_DIT (1U << 21)
220f508f 1462#define CPSR_PAN (1U << 22)
f2f68a78 1463#define CPSR_SSBS (1U << 23)
78dbbbe4
PM
1464#define CPSR_J (1U << 24)
1465#define CPSR_IT_0_1 (3U << 25)
1466#define CPSR_Q (1U << 27)
1467#define CPSR_V (1U << 28)
1468#define CPSR_C (1U << 29)
1469#define CPSR_Z (1U << 30)
1470#define CPSR_N (1U << 31)
9ee6e8bb 1471#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1472#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1473
1474#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1475#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1476 | CPSR_NZCV)
9ee6e8bb 1477/* Bits writable in user mode. */
268b1b3d 1478#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
9ee6e8bb 1479/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1480#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1481
987ab45e
PM
1482/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1483#define XPSR_EXCP 0x1ffU
1484#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1485#define XPSR_IT_2_7 CPSR_IT_2_7
1486#define XPSR_GE CPSR_GE
1487#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1488#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1489#define XPSR_IT_0_1 CPSR_IT_0_1
1490#define XPSR_Q CPSR_Q
1491#define XPSR_V CPSR_V
1492#define XPSR_C CPSR_C
1493#define XPSR_Z CPSR_Z
1494#define XPSR_N CPSR_N
1495#define XPSR_NZCV CPSR_NZCV
1496#define XPSR_IT CPSR_IT
1497
e389be16
FA
1498#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1499#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1500#define TTBCR_PD0 (1U << 4)
1501#define TTBCR_PD1 (1U << 5)
1502#define TTBCR_EPD0 (1U << 7)
1503#define TTBCR_IRGN0 (3U << 8)
1504#define TTBCR_ORGN0 (3U << 10)
1505#define TTBCR_SH0 (3U << 12)
1506#define TTBCR_T1SZ (3U << 16)
1507#define TTBCR_A1 (1U << 22)
1508#define TTBCR_EPD1 (1U << 23)
1509#define TTBCR_IRGN1 (3U << 24)
1510#define TTBCR_ORGN1 (3U << 26)
1511#define TTBCR_SH1 (1U << 28)
1512#define TTBCR_EAE (1U << 31)
1513
f04383e7
PM
1514FIELD(VTCR, T0SZ, 0, 6)
1515FIELD(VTCR, SL0, 6, 2)
1516FIELD(VTCR, IRGN0, 8, 2)
1517FIELD(VTCR, ORGN0, 10, 2)
1518FIELD(VTCR, SH0, 12, 2)
1519FIELD(VTCR, TG0, 14, 2)
1520FIELD(VTCR, PS, 16, 3)
1521FIELD(VTCR, VS, 19, 1)
1522FIELD(VTCR, HA, 21, 1)
1523FIELD(VTCR, HD, 22, 1)
1524FIELD(VTCR, HWU59, 25, 1)
1525FIELD(VTCR, HWU60, 26, 1)
1526FIELD(VTCR, HWU61, 27, 1)
1527FIELD(VTCR, HWU62, 28, 1)
1528FIELD(VTCR, NSW, 29, 1)
1529FIELD(VTCR, NSA, 30, 1)
1530FIELD(VTCR, DS, 32, 1)
1531FIELD(VTCR, SL2, 33, 1)
1532
d356312f
PM
1533/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1534 * Only these are valid when in AArch64 mode; in
1535 * AArch32 mode SPSRs are basically CPSR-format.
1536 */
f502cfc2 1537#define PSTATE_SP (1U)
d356312f
PM
1538#define PSTATE_M (0xFU)
1539#define PSTATE_nRW (1U << 4)
1540#define PSTATE_F (1U << 6)
1541#define PSTATE_I (1U << 7)
1542#define PSTATE_A (1U << 8)
1543#define PSTATE_D (1U << 9)
f6e52eaa 1544#define PSTATE_BTYPE (3U << 10)
f2f68a78 1545#define PSTATE_SSBS (1U << 12)
d356312f
PM
1546#define PSTATE_IL (1U << 20)
1547#define PSTATE_SS (1U << 21)
220f508f 1548#define PSTATE_PAN (1U << 22)
9eeb7a1c 1549#define PSTATE_UAO (1U << 23)
dc8b1853 1550#define PSTATE_DIT (1U << 24)
4b779ceb 1551#define PSTATE_TCO (1U << 25)
d356312f
PM
1552#define PSTATE_V (1U << 28)
1553#define PSTATE_C (1U << 29)
1554#define PSTATE_Z (1U << 30)
1555#define PSTATE_N (1U << 31)
1556#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1557#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1558#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1559/* Mode values for AArch64 */
1560#define PSTATE_MODE_EL3h 13
1561#define PSTATE_MODE_EL3t 12
1562#define PSTATE_MODE_EL2h 9
1563#define PSTATE_MODE_EL2t 8
1564#define PSTATE_MODE_EL1h 5
1565#define PSTATE_MODE_EL1t 4
1566#define PSTATE_MODE_EL0t 0
1567
c37e6ac9
RH
1568/* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1569FIELD(SVCR, SM, 0, 1)
1570FIELD(SVCR, ZA, 1, 1)
1571
de561988
RH
1572/* Fields for SMCR_ELx. */
1573FIELD(SMCR, LEN, 0, 4)
1574FIELD(SMCR, FA64, 31, 1)
1575
de2db7ec
PM
1576/* Write a new value to v7m.exception, thus transitioning into or out
1577 * of Handler mode; this may result in a change of active stack pointer.
1578 */
1579void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1580
9e729b57
EI
1581/* Map EL and handler into a PSTATE_MODE. */
1582static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1583{
1584 return (el << 2) | handler;
1585}
1586
d356312f
PM
1587/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1588 * interprocessing, so we don't attempt to sync with the cpsr state used by
1589 * the 32 bit decoder.
1590 */
1591static inline uint32_t pstate_read(CPUARMState *env)
1592{
1593 int ZF;
1594
1595 ZF = (env->ZF == 0);
1596 return (env->NF & 0x80000000) | (ZF << 30)
1597 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1598 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1599}
1600
1601static inline void pstate_write(CPUARMState *env, uint32_t val)
1602{
1603 env->ZF = (~val) & PSTATE_Z;
1604 env->NF = val;
1605 env->CF = (val >> 29) & 1;
1606 env->VF = (val << 3) & 0x80000000;
4cc35614 1607 env->daif = val & PSTATE_DAIF;
f6e52eaa 1608 env->btype = (val >> 10) & 3;
d356312f
PM
1609 env->pstate = val & ~CACHED_PSTATE_BITS;
1610}
1611
b5ff1b31 1612/* Return the current CPSR value. */
2f4a40e5 1613uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1614
1615typedef enum CPSRWriteType {
1616 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1617 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
e784807c
PM
1618 CPSRWriteRaw = 2,
1619 /* trust values, no reg bank switch, no hflags rebuild */
50866ba5
PM
1620 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1621} CPSRWriteType;
1622
e784807c
PM
1623/*
1624 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1625 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1626 * correspond to TB flags bits cached in the hflags, unless @write_type
1627 * is CPSRWriteRaw.
1628 */
50866ba5
PM
1629void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1630 CPSRWriteType write_type);
9ee6e8bb
PB
1631
1632/* Return the current xPSR value. */
1633static inline uint32_t xpsr_read(CPUARMState *env)
1634{
1635 int ZF;
6fbe23d5
PB
1636 ZF = (env->ZF == 0);
1637 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1638 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1639 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1640 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1641 | (env->GE << 16)
9ee6e8bb 1642 | env->v7m.exception;
b5ff1b31
FB
1643}
1644
9ee6e8bb
PB
1645/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1646static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1647{
987ab45e
PM
1648 if (mask & XPSR_NZCV) {
1649 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1650 env->NF = val;
9ee6e8bb
PB
1651 env->CF = (val >> 29) & 1;
1652 env->VF = (val << 3) & 0x80000000;
1653 }
987ab45e
PM
1654 if (mask & XPSR_Q) {
1655 env->QF = ((val & XPSR_Q) != 0);
1656 }
f1e2598c
PM
1657 if (mask & XPSR_GE) {
1658 env->GE = (val & XPSR_GE) >> 16;
1659 }
04c9c81b 1660#ifndef CONFIG_USER_ONLY
987ab45e
PM
1661 if (mask & XPSR_T) {
1662 env->thumb = ((val & XPSR_T) != 0);
1663 }
1664 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1665 env->condexec_bits &= ~3;
1666 env->condexec_bits |= (val >> 25) & 3;
1667 }
987ab45e 1668 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1669 env->condexec_bits &= 3;
1670 env->condexec_bits |= (val >> 8) & 0xfc;
1671 }
987ab45e 1672 if (mask & XPSR_EXCP) {
de2db7ec
PM
1673 /* Note that this only happens on exception exit */
1674 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1675 }
04c9c81b 1676#endif
9ee6e8bb
PB
1677}
1678
f149e3e8
EI
1679#define HCR_VM (1ULL << 0)
1680#define HCR_SWIO (1ULL << 1)
1681#define HCR_PTW (1ULL << 2)
1682#define HCR_FMO (1ULL << 3)
1683#define HCR_IMO (1ULL << 4)
1684#define HCR_AMO (1ULL << 5)
1685#define HCR_VF (1ULL << 6)
1686#define HCR_VI (1ULL << 7)
1687#define HCR_VSE (1ULL << 8)
1688#define HCR_FB (1ULL << 9)
1689#define HCR_BSU_MASK (3ULL << 10)
1690#define HCR_DC (1ULL << 12)
1691#define HCR_TWI (1ULL << 13)
1692#define HCR_TWE (1ULL << 14)
1693#define HCR_TID0 (1ULL << 15)
1694#define HCR_TID1 (1ULL << 16)
1695#define HCR_TID2 (1ULL << 17)
1696#define HCR_TID3 (1ULL << 18)
1697#define HCR_TSC (1ULL << 19)
1698#define HCR_TIDCP (1ULL << 20)
1699#define HCR_TACR (1ULL << 21)
1700#define HCR_TSW (1ULL << 22)
099bf53b 1701#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1702#define HCR_TPU (1ULL << 24)
1703#define HCR_TTLB (1ULL << 25)
1704#define HCR_TVM (1ULL << 26)
1705#define HCR_TGE (1ULL << 27)
1706#define HCR_TDZ (1ULL << 28)
1707#define HCR_HCD (1ULL << 29)
1708#define HCR_TRVM (1ULL << 30)
1709#define HCR_RW (1ULL << 31)
1710#define HCR_CD (1ULL << 32)
1711#define HCR_ID (1ULL << 33)
ac656b16 1712#define HCR_E2H (1ULL << 34)
099bf53b
RH
1713#define HCR_TLOR (1ULL << 35)
1714#define HCR_TERR (1ULL << 36)
1715#define HCR_TEA (1ULL << 37)
1716#define HCR_MIOCNCE (1ULL << 38)
aa3cc42c 1717#define HCR_TME (1ULL << 39)
099bf53b
RH
1718#define HCR_APK (1ULL << 40)
1719#define HCR_API (1ULL << 41)
1720#define HCR_NV (1ULL << 42)
1721#define HCR_NV1 (1ULL << 43)
1722#define HCR_AT (1ULL << 44)
1723#define HCR_NV2 (1ULL << 45)
1724#define HCR_FWB (1ULL << 46)
1725#define HCR_FIEN (1ULL << 47)
aa3cc42c 1726#define HCR_GPF (1ULL << 48)
099bf53b
RH
1727#define HCR_TID4 (1ULL << 49)
1728#define HCR_TICAB (1ULL << 50)
e0a38bb3 1729#define HCR_AMVOFFEN (1ULL << 51)
099bf53b 1730#define HCR_TOCU (1ULL << 52)
e0a38bb3 1731#define HCR_ENSCXT (1ULL << 53)
099bf53b
RH
1732#define HCR_TTLBIS (1ULL << 54)
1733#define HCR_TTLBOS (1ULL << 55)
1734#define HCR_ATA (1ULL << 56)
1735#define HCR_DCT (1ULL << 57)
e0a38bb3
RH
1736#define HCR_TID5 (1ULL << 58)
1737#define HCR_TWEDEN (1ULL << 59)
1738#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
099bf53b 1739
5814d587
RH
1740#define HCRX_ENAS0 (1ULL << 0)
1741#define HCRX_ENALS (1ULL << 1)
1742#define HCRX_ENASR (1ULL << 2)
1743#define HCRX_FNXS (1ULL << 3)
1744#define HCRX_FGTNXS (1ULL << 4)
1745#define HCRX_SMPME (1ULL << 5)
1746#define HCRX_TALLINT (1ULL << 6)
1747#define HCRX_VINMI (1ULL << 7)
1748#define HCRX_VFNMI (1ULL << 8)
1749#define HCRX_CMOW (1ULL << 9)
1750#define HCRX_MCE2 (1ULL << 10)
1751#define HCRX_MSCEN (1ULL << 11)
1752
9861248f
RDC
1753#define HPFAR_NS (1ULL << 63)
1754
06f2adcc
JF
1755#define SCR_NS (1ULL << 0)
1756#define SCR_IRQ (1ULL << 1)
1757#define SCR_FIQ (1ULL << 2)
1758#define SCR_EA (1ULL << 3)
1759#define SCR_FW (1ULL << 4)
1760#define SCR_AW (1ULL << 5)
1761#define SCR_NET (1ULL << 6)
1762#define SCR_SMD (1ULL << 7)
1763#define SCR_HCE (1ULL << 8)
1764#define SCR_SIF (1ULL << 9)
1765#define SCR_RW (1ULL << 10)
1766#define SCR_ST (1ULL << 11)
1767#define SCR_TWI (1ULL << 12)
1768#define SCR_TWE (1ULL << 13)
1769#define SCR_TLOR (1ULL << 14)
1770#define SCR_TERR (1ULL << 15)
1771#define SCR_APK (1ULL << 16)
1772#define SCR_API (1ULL << 17)
1773#define SCR_EEL2 (1ULL << 18)
1774#define SCR_EASE (1ULL << 19)
1775#define SCR_NMEA (1ULL << 20)
1776#define SCR_FIEN (1ULL << 21)
1777#define SCR_ENSCXT (1ULL << 25)
1778#define SCR_ATA (1ULL << 26)
1779#define SCR_FGTEN (1ULL << 27)
1780#define SCR_ECVEN (1ULL << 28)
1781#define SCR_TWEDEN (1ULL << 29)
f527d661
RH
1782#define SCR_TWEDEL MAKE_64BIT_MASK(30, 4)
1783#define SCR_TME (1ULL << 34)
1784#define SCR_AMVOFFEN (1ULL << 35)
1785#define SCR_ENAS0 (1ULL << 36)
1786#define SCR_ADEN (1ULL << 37)
1787#define SCR_HXEN (1ULL << 38)
1788#define SCR_TRNDR (1ULL << 40)
1789#define SCR_ENTP2 (1ULL << 41)
1790#define SCR_GPF (1ULL << 48)
aa3cc42c 1791#define SCR_NSE (1ULL << 62)
64e0e2de 1792
cc7613bf 1793#define HSTR_TTEE (1 << 16)
8e228c9e 1794#define HSTR_TJDBX (1 << 17)
cc7613bf 1795
f6fc36de
JPB
1796#define CNTHCTL_CNTVMASK (1 << 18)
1797#define CNTHCTL_CNTPMASK (1 << 19)
1798
01653295
PM
1799/* Return the current FPSCR value. */
1800uint32_t vfp_get_fpscr(CPUARMState *env);
1801void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1802
d81ce0ef
AB
1803/* FPCR, Floating Point Control Register
1804 * FPSR, Floating Poiht Status Register
1805 *
1806 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1807 * FPCR and FPSR. However since they still use non-overlapping bits
1808 * we store the underlying state in fpscr and just mask on read/write.
1809 */
1810#define FPSR_MASK 0xf800009f
0b62159b 1811#define FPCR_MASK 0x07ff9f00
d81ce0ef 1812
a15945d9
PM
1813#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1814#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1815#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1816#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1817#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1818#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef 1819#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
99c7834f 1820#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
d81ce0ef
AB
1821#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1822#define FPCR_DN (1 << 25) /* Default NaN enable bit */
99c7834f 1823#define FPCR_AHP (1 << 26) /* Alternative half-precision */
a4d58462 1824#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
9542c30b
PM
1825#define FPCR_V (1 << 28) /* FP overflow flag */
1826#define FPCR_C (1 << 29) /* FP carry flag */
1827#define FPCR_Z (1 << 30) /* FP zero flag */
1828#define FPCR_N (1 << 31) /* FP negative flag */
1829
99c7834f
PM
1830#define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1831#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
b26b5629 1832#define FPCR_LTPSIZE_LENGTH 3
99c7834f 1833
9542c30b
PM
1834#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1835#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
d81ce0ef 1836
f903fa22
PM
1837static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1838{
1839 return vfp_get_fpscr(env) & FPSR_MASK;
1840}
1841
1842static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1843{
1844 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1845 vfp_set_fpscr(env, new_fpscr);
1846}
1847
1848static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1849{
1850 return vfp_get_fpscr(env) & FPCR_MASK;
1851}
1852
1853static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1854{
1855 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1856 vfp_set_fpscr(env, new_fpscr);
1857}
1858
b5ff1b31
FB
1859enum arm_cpu_mode {
1860 ARM_CPU_MODE_USR = 0x10,
1861 ARM_CPU_MODE_FIQ = 0x11,
1862 ARM_CPU_MODE_IRQ = 0x12,
1863 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1864 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1865 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1866 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1867 ARM_CPU_MODE_UND = 0x1b,
1868 ARM_CPU_MODE_SYS = 0x1f
1869};
1870
40f137e1
PB
1871/* VFP system registers. */
1872#define ARM_VFP_FPSID 0
1873#define ARM_VFP_FPSCR 1
a50c0f51 1874#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1875#define ARM_VFP_MVFR1 6
1876#define ARM_VFP_MVFR0 7
40f137e1
PB
1877#define ARM_VFP_FPEXC 8
1878#define ARM_VFP_FPINST 9
1879#define ARM_VFP_FPINST2 10
9542c30b
PM
1880/* These ones are M-profile only */
1881#define ARM_VFP_FPSCR_NZCVQC 2
1882#define ARM_VFP_VPR 12
1883#define ARM_VFP_P0 13
1884#define ARM_VFP_FPCXT_NS 14
1885#define ARM_VFP_FPCXT_S 15
40f137e1 1886
32a290b8
PM
1887/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1888#define QEMU_VFP_FPSCR_NZCV 0xffff
1889
18c9b560 1890/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1891#define ARM_IWMMXT_wCID 0
1892#define ARM_IWMMXT_wCon 1
1893#define ARM_IWMMXT_wCSSF 2
1894#define ARM_IWMMXT_wCASF 3
1895#define ARM_IWMMXT_wCGR0 8
1896#define ARM_IWMMXT_wCGR1 9
1897#define ARM_IWMMXT_wCGR2 10
1898#define ARM_IWMMXT_wCGR3 11
18c9b560 1899
2c4da50d
PM
1900/* V7M CCR bits */
1901FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1902FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1903FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1904FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1905FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1906FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1907FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1908FIELD(V7M_CCR, DC, 16, 1)
1909FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1910FIELD(V7M_CCR, BP, 18, 1)
0e83f905
PM
1911FIELD(V7M_CCR, LOB, 19, 1)
1912FIELD(V7M_CCR, TRD, 20, 1)
2c4da50d 1913
24ac0fb1
PM
1914/* V7M SCR bits */
1915FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1916FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1917FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1918FIELD(V7M_SCR, SEVONPEND, 4, 1)
1919
3b2e9344
PM
1920/* V7M AIRCR bits */
1921FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1922FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1923FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1924FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1925FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1926FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1927FIELD(V7M_AIRCR, PRIS, 14, 1)
1928FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1929FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1930
2c4da50d
PM
1931/* V7M CFSR bits for MMFSR */
1932FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1933FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1934FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1935FIELD(V7M_CFSR, MSTKERR, 4, 1)
1936FIELD(V7M_CFSR, MLSPERR, 5, 1)
1937FIELD(V7M_CFSR, MMARVALID, 7, 1)
1938
1939/* V7M CFSR bits for BFSR */
1940FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1941FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1942FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1943FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1944FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1945FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1946FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1947
1948/* V7M CFSR bits for UFSR */
1949FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1950FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1951FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1952FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1953FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1954FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1955FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1956
334e8dad
PM
1957/* V7M CFSR bit masks covering all of the subregister bits */
1958FIELD(V7M_CFSR, MMFSR, 0, 8)
1959FIELD(V7M_CFSR, BFSR, 8, 8)
1960FIELD(V7M_CFSR, UFSR, 16, 16)
1961
2c4da50d
PM
1962/* V7M HFSR bits */
1963FIELD(V7M_HFSR, VECTTBL, 1, 1)
1964FIELD(V7M_HFSR, FORCED, 30, 1)
1965FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1966
1967/* V7M DFSR bits */
1968FIELD(V7M_DFSR, HALTED, 0, 1)
1969FIELD(V7M_DFSR, BKPT, 1, 1)
1970FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1971FIELD(V7M_DFSR, VCATCH, 3, 1)
1972FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1973
bed079da
PM
1974/* V7M SFSR bits */
1975FIELD(V7M_SFSR, INVEP, 0, 1)
1976FIELD(V7M_SFSR, INVIS, 1, 1)
1977FIELD(V7M_SFSR, INVER, 2, 1)
1978FIELD(V7M_SFSR, AUVIOL, 3, 1)
1979FIELD(V7M_SFSR, INVTRAN, 4, 1)
1980FIELD(V7M_SFSR, LSPERR, 5, 1)
1981FIELD(V7M_SFSR, SFARVALID, 6, 1)
1982FIELD(V7M_SFSR, LSERR, 7, 1)
1983
29c483a5
MD
1984/* v7M MPU_CTRL bits */
1985FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1986FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1987FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1988
43bbce7f
PM
1989/* v7M CLIDR bits */
1990FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1991FIELD(V7M_CLIDR, LOUIS, 21, 3)
1992FIELD(V7M_CLIDR, LOC, 24, 3)
1993FIELD(V7M_CLIDR, LOUU, 27, 3)
1994FIELD(V7M_CLIDR, ICB, 30, 2)
1995
1996FIELD(V7M_CSSELR, IND, 0, 1)
1997FIELD(V7M_CSSELR, LEVEL, 1, 3)
1998/* We use the combination of InD and Level to index into cpu->ccsidr[];
1999 * define a mask for this and check that it doesn't permit running off
2000 * the end of the array.
2001 */
2002FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
2003
2004/* v7M FPCCR bits */
2005FIELD(V7M_FPCCR, LSPACT, 0, 1)
2006FIELD(V7M_FPCCR, USER, 1, 1)
2007FIELD(V7M_FPCCR, S, 2, 1)
2008FIELD(V7M_FPCCR, THREAD, 3, 1)
2009FIELD(V7M_FPCCR, HFRDY, 4, 1)
2010FIELD(V7M_FPCCR, MMRDY, 5, 1)
2011FIELD(V7M_FPCCR, BFRDY, 6, 1)
2012FIELD(V7M_FPCCR, SFRDY, 7, 1)
2013FIELD(V7M_FPCCR, MONRDY, 8, 1)
2014FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
2015FIELD(V7M_FPCCR, UFRDY, 10, 1)
2016FIELD(V7M_FPCCR, RES0, 11, 15)
2017FIELD(V7M_FPCCR, TS, 26, 1)
2018FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
2019FIELD(V7M_FPCCR, CLRONRET, 28, 1)
2020FIELD(V7M_FPCCR, LSPENS, 29, 1)
2021FIELD(V7M_FPCCR, LSPEN, 30, 1)
2022FIELD(V7M_FPCCR, ASPEN, 31, 1)
2023/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
2024#define R_V7M_FPCCR_BANKED_MASK \
2025 (R_V7M_FPCCR_LSPACT_MASK | \
2026 R_V7M_FPCCR_USER_MASK | \
2027 R_V7M_FPCCR_THREAD_MASK | \
2028 R_V7M_FPCCR_MMRDY_MASK | \
2029 R_V7M_FPCCR_SPLIMVIOL_MASK | \
2030 R_V7M_FPCCR_UFRDY_MASK | \
2031 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 2032
7c3d47da
PM
2033/* v7M VPR bits */
2034FIELD(V7M_VPR, P0, 0, 16)
2035FIELD(V7M_VPR, MASK01, 16, 4)
2036FIELD(V7M_VPR, MASK23, 20, 4)
2037
a62e62af
RH
2038/*
2039 * System register ID fields.
2040 */
2a14526a
LL
2041FIELD(CLIDR_EL1, CTYPE1, 0, 3)
2042FIELD(CLIDR_EL1, CTYPE2, 3, 3)
2043FIELD(CLIDR_EL1, CTYPE3, 6, 3)
2044FIELD(CLIDR_EL1, CTYPE4, 9, 3)
2045FIELD(CLIDR_EL1, CTYPE5, 12, 3)
2046FIELD(CLIDR_EL1, CTYPE6, 15, 3)
2047FIELD(CLIDR_EL1, CTYPE7, 18, 3)
2048FIELD(CLIDR_EL1, LOUIS, 21, 3)
2049FIELD(CLIDR_EL1, LOC, 24, 3)
2050FIELD(CLIDR_EL1, LOUU, 27, 3)
2051FIELD(CLIDR_EL1, ICB, 30, 3)
2052
2053/* When FEAT_CCIDX is implemented */
2054FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
2055FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
2056FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
2057
2058/* When FEAT_CCIDX is not implemented */
2059FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
2060FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
2061FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
2062
2063FIELD(CTR_EL0, IMINLINE, 0, 4)
2064FIELD(CTR_EL0, L1IP, 14, 2)
2065FIELD(CTR_EL0, DMINLINE, 16, 4)
2066FIELD(CTR_EL0, ERG, 20, 4)
2067FIELD(CTR_EL0, CWG, 24, 4)
2068FIELD(CTR_EL0, IDC, 28, 1)
2069FIELD(CTR_EL0, DIC, 29, 1)
2070FIELD(CTR_EL0, TMINLINE, 32, 6)
2071
2bd5f41c
AB
2072FIELD(MIDR_EL1, REVISION, 0, 4)
2073FIELD(MIDR_EL1, PARTNUM, 4, 12)
2074FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2075FIELD(MIDR_EL1, VARIANT, 20, 4)
2076FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2077
a62e62af
RH
2078FIELD(ID_ISAR0, SWAP, 0, 4)
2079FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2080FIELD(ID_ISAR0, BITFIELD, 8, 4)
2081FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2082FIELD(ID_ISAR0, COPROC, 16, 4)
2083FIELD(ID_ISAR0, DEBUG, 20, 4)
2084FIELD(ID_ISAR0, DIVIDE, 24, 4)
2085
2086FIELD(ID_ISAR1, ENDIAN, 0, 4)
2087FIELD(ID_ISAR1, EXCEPT, 4, 4)
2088FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2089FIELD(ID_ISAR1, EXTEND, 12, 4)
2090FIELD(ID_ISAR1, IFTHEN, 16, 4)
2091FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2092FIELD(ID_ISAR1, INTERWORK, 24, 4)
2093FIELD(ID_ISAR1, JAZELLE, 28, 4)
2094
2095FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2096FIELD(ID_ISAR2, MEMHINT, 4, 4)
2097FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2098FIELD(ID_ISAR2, MULT, 12, 4)
2099FIELD(ID_ISAR2, MULTS, 16, 4)
2100FIELD(ID_ISAR2, MULTU, 20, 4)
2101FIELD(ID_ISAR2, PSR_AR, 24, 4)
2102FIELD(ID_ISAR2, REVERSAL, 28, 4)
2103
2104FIELD(ID_ISAR3, SATURATE, 0, 4)
2105FIELD(ID_ISAR3, SIMD, 4, 4)
2106FIELD(ID_ISAR3, SVC, 8, 4)
2107FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2108FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2109FIELD(ID_ISAR3, T32COPY, 20, 4)
2110FIELD(ID_ISAR3, TRUENOP, 24, 4)
2111FIELD(ID_ISAR3, T32EE, 28, 4)
2112
2113FIELD(ID_ISAR4, UNPRIV, 0, 4)
2114FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2115FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2116FIELD(ID_ISAR4, SMC, 12, 4)
2117FIELD(ID_ISAR4, BARRIER, 16, 4)
2118FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2119FIELD(ID_ISAR4, PSR_M, 24, 4)
2120FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2121
2122FIELD(ID_ISAR5, SEVL, 0, 4)
2123FIELD(ID_ISAR5, AES, 4, 4)
2124FIELD(ID_ISAR5, SHA1, 8, 4)
2125FIELD(ID_ISAR5, SHA2, 12, 4)
2126FIELD(ID_ISAR5, CRC32, 16, 4)
2127FIELD(ID_ISAR5, RDM, 24, 4)
2128FIELD(ID_ISAR5, VCMA, 28, 4)
2129
2130FIELD(ID_ISAR6, JSCVT, 0, 4)
2131FIELD(ID_ISAR6, DP, 4, 4)
2132FIELD(ID_ISAR6, FHM, 8, 4)
2133FIELD(ID_ISAR6, SB, 12, 4)
2134FIELD(ID_ISAR6, SPECRES, 16, 4)
bd78b6be
LL
2135FIELD(ID_ISAR6, BF16, 20, 4)
2136FIELD(ID_ISAR6, I8MM, 24, 4)
a62e62af 2137
0ae0326b
PM
2138FIELD(ID_MMFR0, VMSA, 0, 4)
2139FIELD(ID_MMFR0, PMSA, 4, 4)
2140FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2141FIELD(ID_MMFR0, SHARELVL, 12, 4)
2142FIELD(ID_MMFR0, TCM, 16, 4)
2143FIELD(ID_MMFR0, AUXREG, 20, 4)
2144FIELD(ID_MMFR0, FCSE, 24, 4)
2145FIELD(ID_MMFR0, INNERSHR, 28, 4)
2146
bd78b6be
LL
2147FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2148FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2149FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2150FIELD(ID_MMFR1, L1UNISW, 12, 4)
2151FIELD(ID_MMFR1, L1HVD, 16, 4)
2152FIELD(ID_MMFR1, L1UNI, 20, 4)
2153FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2154FIELD(ID_MMFR1, BPRED, 28, 4)
2155
2156FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2157FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2158FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2159FIELD(ID_MMFR2, HVDTLB, 12, 4)
2160FIELD(ID_MMFR2, UNITLB, 16, 4)
2161FIELD(ID_MMFR2, MEMBARR, 20, 4)
2162FIELD(ID_MMFR2, WFISTALL, 24, 4)
2163FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2164
3d6ad6bb
RH
2165FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2166FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2167FIELD(ID_MMFR3, BPMAINT, 8, 4)
2168FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2169FIELD(ID_MMFR3, PAN, 16, 4)
2170FIELD(ID_MMFR3, COHWALK, 20, 4)
2171FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2172FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2173
ab638a32
RH
2174FIELD(ID_MMFR4, SPECSEI, 0, 4)
2175FIELD(ID_MMFR4, AC2, 4, 4)
2176FIELD(ID_MMFR4, XNX, 8, 4)
2177FIELD(ID_MMFR4, CNP, 12, 4)
2178FIELD(ID_MMFR4, HPDS, 16, 4)
2179FIELD(ID_MMFR4, LSM, 20, 4)
2180FIELD(ID_MMFR4, CCIDX, 24, 4)
2181FIELD(ID_MMFR4, EVT, 28, 4)
2182
bd78b6be 2183FIELD(ID_MMFR5, ETS, 0, 4)
c42fb26b 2184FIELD(ID_MMFR5, NTLBPA, 4, 4)
bd78b6be 2185
46f4976f
PM
2186FIELD(ID_PFR0, STATE0, 0, 4)
2187FIELD(ID_PFR0, STATE1, 4, 4)
2188FIELD(ID_PFR0, STATE2, 8, 4)
2189FIELD(ID_PFR0, STATE3, 12, 4)
2190FIELD(ID_PFR0, CSV2, 16, 4)
2191FIELD(ID_PFR0, AMU, 20, 4)
2192FIELD(ID_PFR0, DIT, 24, 4)
2193FIELD(ID_PFR0, RAS, 28, 4)
2194
dfc523a8
PM
2195FIELD(ID_PFR1, PROGMOD, 0, 4)
2196FIELD(ID_PFR1, SECURITY, 4, 4)
2197FIELD(ID_PFR1, MPROGMOD, 8, 4)
2198FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2199FIELD(ID_PFR1, GENTIMER, 16, 4)
2200FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2201FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2202FIELD(ID_PFR1, GIC, 28, 4)
2203
bd78b6be
LL
2204FIELD(ID_PFR2, CSV3, 0, 4)
2205FIELD(ID_PFR2, SSBS, 4, 4)
2206FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2207
a62e62af
RH
2208FIELD(ID_AA64ISAR0, AES, 4, 4)
2209FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2210FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2211FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2212FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
4d9eb296 2213FIELD(ID_AA64ISAR0, TME, 24, 4)
a62e62af
RH
2214FIELD(ID_AA64ISAR0, RDM, 28, 4)
2215FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2216FIELD(ID_AA64ISAR0, SM3, 36, 4)
2217FIELD(ID_AA64ISAR0, SM4, 40, 4)
2218FIELD(ID_AA64ISAR0, DP, 44, 4)
2219FIELD(ID_AA64ISAR0, FHM, 48, 4)
2220FIELD(ID_AA64ISAR0, TS, 52, 4)
2221FIELD(ID_AA64ISAR0, TLB, 56, 4)
2222FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2223
2224FIELD(ID_AA64ISAR1, DPB, 0, 4)
2225FIELD(ID_AA64ISAR1, APA, 4, 4)
2226FIELD(ID_AA64ISAR1, API, 8, 4)
2227FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2228FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2229FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2230FIELD(ID_AA64ISAR1, GPA, 24, 4)
2231FIELD(ID_AA64ISAR1, GPI, 28, 4)
2232FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2233FIELD(ID_AA64ISAR1, SB, 36, 4)
2234FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
00a92832
LL
2235FIELD(ID_AA64ISAR1, BF16, 44, 4)
2236FIELD(ID_AA64ISAR1, DGH, 48, 4)
2237FIELD(ID_AA64ISAR1, I8MM, 52, 4)
c42fb26b
RH
2238FIELD(ID_AA64ISAR1, XS, 56, 4)
2239FIELD(ID_AA64ISAR1, LS64, 60, 4)
2240
2241FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2242FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2243FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2244FIELD(ID_AA64ISAR2, APA3, 12, 4)
2245FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2246FIELD(ID_AA64ISAR2, BC, 20, 4)
2247FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
4d9eb296
PM
2248FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2249FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2250FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2251FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2252FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2253FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2254FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
a62e62af 2255
cd208a1c
RH
2256FIELD(ID_AA64PFR0, EL0, 0, 4)
2257FIELD(ID_AA64PFR0, EL1, 4, 4)
2258FIELD(ID_AA64PFR0, EL2, 8, 4)
2259FIELD(ID_AA64PFR0, EL3, 12, 4)
2260FIELD(ID_AA64PFR0, FP, 16, 4)
2261FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2262FIELD(ID_AA64PFR0, GIC, 24, 4)
2263FIELD(ID_AA64PFR0, RAS, 28, 4)
2264FIELD(ID_AA64PFR0, SVE, 32, 4)
00a92832
LL
2265FIELD(ID_AA64PFR0, SEL2, 36, 4)
2266FIELD(ID_AA64PFR0, MPAM, 40, 4)
2267FIELD(ID_AA64PFR0, AMU, 44, 4)
2268FIELD(ID_AA64PFR0, DIT, 48, 4)
b9f335c2 2269FIELD(ID_AA64PFR0, RME, 52, 4)
00a92832
LL
2270FIELD(ID_AA64PFR0, CSV2, 56, 4)
2271FIELD(ID_AA64PFR0, CSV3, 60, 4)
cd208a1c 2272
be53b6f4 2273FIELD(ID_AA64PFR1, BT, 0, 4)
9a286bcd 2274FIELD(ID_AA64PFR1, SSBS, 4, 4)
be53b6f4
RH
2275FIELD(ID_AA64PFR1, MTE, 8, 4)
2276FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
00a92832 2277FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
c42fb26b
RH
2278FIELD(ID_AA64PFR1, SME, 24, 4)
2279FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2280FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2281FIELD(ID_AA64PFR1, NMI, 36, 4)
4d9eb296
PM
2282FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2283FIELD(ID_AA64PFR1, GCS, 44, 4)
2284FIELD(ID_AA64PFR1, THE, 48, 4)
2285FIELD(ID_AA64PFR1, MTEX, 52, 4)
2286FIELD(ID_AA64PFR1, DF2, 56, 4)
2287FIELD(ID_AA64PFR1, PFAR, 60, 4)
be53b6f4 2288
3dc91ddb
PM
2289FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2290FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2291FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2292FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2293FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2294FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2295FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2296FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2297FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2298FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2299FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2300FIELD(ID_AA64MMFR0, EXS, 44, 4)
00a92832
LL
2301FIELD(ID_AA64MMFR0, FGT, 56, 4)
2302FIELD(ID_AA64MMFR0, ECV, 60, 4)
3dc91ddb
PM
2303
2304FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2305FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2306FIELD(ID_AA64MMFR1, VH, 8, 4)
2307FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2308FIELD(ID_AA64MMFR1, LO, 16, 4)
2309FIELD(ID_AA64MMFR1, PAN, 20, 4)
2310FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2311FIELD(ID_AA64MMFR1, XNX, 28, 4)
00a92832
LL
2312FIELD(ID_AA64MMFR1, TWED, 32, 4)
2313FIELD(ID_AA64MMFR1, ETS, 36, 4)
c42fb26b
RH
2314FIELD(ID_AA64MMFR1, HCX, 40, 4)
2315FIELD(ID_AA64MMFR1, AFP, 44, 4)
2316FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2317FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2318FIELD(ID_AA64MMFR1, CMOW, 56, 4)
4d9eb296 2319FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
3dc91ddb 2320
64761e10
RH
2321FIELD(ID_AA64MMFR2, CNP, 0, 4)
2322FIELD(ID_AA64MMFR2, UAO, 4, 4)
2323FIELD(ID_AA64MMFR2, LSM, 8, 4)
2324FIELD(ID_AA64MMFR2, IESB, 12, 4)
2325FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2326FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2327FIELD(ID_AA64MMFR2, NV, 24, 4)
2328FIELD(ID_AA64MMFR2, ST, 28, 4)
2329FIELD(ID_AA64MMFR2, AT, 32, 4)
2330FIELD(ID_AA64MMFR2, IDS, 36, 4)
2331FIELD(ID_AA64MMFR2, FWB, 40, 4)
2332FIELD(ID_AA64MMFR2, TTL, 48, 4)
2333FIELD(ID_AA64MMFR2, BBM, 52, 4)
2334FIELD(ID_AA64MMFR2, EVT, 56, 4)
2335FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2336
ceb2744b
PM
2337FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2338FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2339FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2340FIELD(ID_AA64DFR0, BRPS, 12, 4)
4d9eb296 2341FIELD(ID_AA64DFR0, PMSS, 16, 4)
ceb2744b 2342FIELD(ID_AA64DFR0, WRPS, 20, 4)
4d9eb296 2343FIELD(ID_AA64DFR0, SEBEP, 24, 4)
ceb2744b
PM
2344FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2345FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2346FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2347FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
c42fb26b 2348FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
00a92832 2349FIELD(ID_AA64DFR0, MTPMU, 48, 4)
c42fb26b 2350FIELD(ID_AA64DFR0, BRBE, 52, 4)
4d9eb296 2351FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
c42fb26b 2352FIELD(ID_AA64DFR0, HPMN0, 60, 4)
ceb2744b 2353
2dc10fa2
RH
2354FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2355FIELD(ID_AA64ZFR0, AES, 4, 4)
2356FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2357FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
4d9eb296 2358FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2dc10fa2
RH
2359FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2360FIELD(ID_AA64ZFR0, SM4, 40, 4)
2361FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2362FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2363FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2364
414c54d5 2365FIELD(ID_AA64SMFR0, F32F32, 32, 1)
4d9eb296 2366FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
414c54d5
RH
2367FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2368FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2369FIELD(ID_AA64SMFR0, I8I32, 36, 4)
4d9eb296
PM
2370FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2371FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2372FIELD(ID_AA64SMFR0, I16I32, 44, 4)
414c54d5
RH
2373FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2374FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2375FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2376FIELD(ID_AA64SMFR0, FA64, 63, 1)
2377
beceb99c
AL
2378FIELD(ID_DFR0, COPDBG, 0, 4)
2379FIELD(ID_DFR0, COPSDBG, 4, 4)
2380FIELD(ID_DFR0, MMAPDBG, 8, 4)
2381FIELD(ID_DFR0, COPTRC, 12, 4)
2382FIELD(ID_DFR0, MMAPTRC, 16, 4)
2383FIELD(ID_DFR0, MPROFDBG, 20, 4)
2384FIELD(ID_DFR0, PERFMON, 24, 4)
2385FIELD(ID_DFR0, TRACEFILT, 28, 4)
2386
bd78b6be 2387FIELD(ID_DFR1, MTPMU, 0, 4)
c42fb26b 2388FIELD(ID_DFR1, HPMN0, 4, 4)
bd78b6be 2389
88ce6c6e
PM
2390FIELD(DBGDIDR, SE_IMP, 12, 1)
2391FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2392FIELD(DBGDIDR, VERSION, 16, 4)
2393FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2394FIELD(DBGDIDR, BRPS, 24, 4)
2395FIELD(DBGDIDR, WRPS, 28, 4)
2396
f94a6df5
PM
2397FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2398FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2399FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2400FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2401FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2402FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2403FIELD(DBGDEVID, AUXREGS, 24, 4)
2404FIELD(DBGDEVID, CIDMASK, 28, 4)
2405
602f6e42
PM
2406FIELD(MVFR0, SIMDREG, 0, 4)
2407FIELD(MVFR0, FPSP, 4, 4)
2408FIELD(MVFR0, FPDP, 8, 4)
2409FIELD(MVFR0, FPTRAP, 12, 4)
2410FIELD(MVFR0, FPDIVIDE, 16, 4)
2411FIELD(MVFR0, FPSQRT, 20, 4)
2412FIELD(MVFR0, FPSHVEC, 24, 4)
2413FIELD(MVFR0, FPROUND, 28, 4)
2414
2415FIELD(MVFR1, FPFTZ, 0, 4)
2416FIELD(MVFR1, FPDNAN, 4, 4)
dfc523a8
PM
2417FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2418FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2419FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2420FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2421FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2422FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
602f6e42
PM
2423FIELD(MVFR1, FPHP, 24, 4)
2424FIELD(MVFR1, SIMDFMAC, 28, 4)
2425
2426FIELD(MVFR2, SIMDMISC, 0, 4)
2427FIELD(MVFR2, FPMISC, 4, 4)
2428
ef1febe7
RH
2429FIELD(GPCCR, PPS, 0, 3)
2430FIELD(GPCCR, IRGN, 8, 2)
2431FIELD(GPCCR, ORGN, 10, 2)
2432FIELD(GPCCR, SH, 12, 2)
2433FIELD(GPCCR, PGS, 14, 2)
2434FIELD(GPCCR, GPC, 16, 1)
2435FIELD(GPCCR, GPCP, 17, 1)
2436FIELD(GPCCR, L0GPTSZ, 20, 4)
2437
2438FIELD(MFAR, FPA, 12, 40)
2439FIELD(MFAR, NSE, 62, 1)
2440FIELD(MFAR, NS, 63, 1)
2441
43bbce7f
PM
2442QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2443
ce854d7c
BC
2444/* If adding a feature bit which corresponds to a Linux ELF
2445 * HWCAP bit, remember to update the feature-bit-to-hwcap
2446 * mapping in linux-user/elfload.c:get_elf_hwcap().
2447 */
40f137e1 2448enum arm_features {
c1713132
AZ
2449 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2450 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 2451 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
2452 ARM_FEATURE_V6,
2453 ARM_FEATURE_V6K,
2454 ARM_FEATURE_V7,
2455 ARM_FEATURE_THUMB2,
452a0955 2456 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 2457 ARM_FEATURE_NEON,
9ee6e8bb 2458 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 2459 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 2460 ARM_FEATURE_THUMB2EE,
be5e7a76 2461 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 2462 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
2463 ARM_FEATURE_V4T,
2464 ARM_FEATURE_V5,
5bc95aa2 2465 ARM_FEATURE_STRONGARM,
906879a9 2466 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 2467 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 2468 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 2469 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
2470 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2471 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2472 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 2473 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8 2474 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 2475 ARM_FEATURE_V8,
3926cc84 2476 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 2477 ARM_FEATURE_CBAR, /* has cp15 CBAR */
f318cec6 2478 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 2479 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 2480 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 2481 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 2482 ARM_FEATURE_PMU, /* has PMU support */
91db4642 2483 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 2484 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 2485 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
5d2555a1 2486 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
40f137e1
PB
2487};
2488
2489static inline int arm_feature(CPUARMState *env, int feature)
2490{
918f5dca 2491 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
2492}
2493
0df9142d
AJ
2494void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2495
fcc7404e 2496/*
5d28ac0c
RH
2497 * ARM v9 security states.
2498 * The ordering of the enumeration corresponds to the low 2 bits
2499 * of the GPI value, and (except for Root) the concat of NSE:NS.
2500 */
2501
2502typedef enum ARMSecuritySpace {
2503 ARMSS_Secure = 0,
2504 ARMSS_NonSecure = 1,
2505 ARMSS_Root = 2,
2506 ARMSS_Realm = 3,
2507} ARMSecuritySpace;
2508
2509/* Return true if @space is secure, in the pre-v9 sense. */
2510static inline bool arm_space_is_secure(ARMSecuritySpace space)
2511{
2512 return space == ARMSS_Secure || space == ARMSS_Root;
2513}
2514
2515/* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2516static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2517{
2518 return secure ? ARMSS_Secure : ARMSS_NonSecure;
2519}
2520
2521#if !defined(CONFIG_USER_ONLY)
2522/**
2523 * arm_security_space_below_el3:
2524 * @env: cpu context
2525 *
2526 * Return the security space of exception levels below EL3, following
2527 * an exception return to those levels. Unlike arm_security_space,
2528 * this doesn't care about the current EL.
2529 */
2530ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2531
2532/**
2533 * arm_is_secure_below_el3:
2534 * @env: cpu context
2535 *
fcc7404e 2536 * Return true if exception levels below EL3 are in secure state,
5d28ac0c 2537 * or would be following an exception return to those levels.
19e0fefa
FA
2538 */
2539static inline bool arm_is_secure_below_el3(CPUARMState *env)
2540{
5d28ac0c
RH
2541 ARMSecuritySpace ss = arm_security_space_below_el3(env);
2542 return ss == ARMSS_Secure;
19e0fefa
FA
2543}
2544
71205876
PM
2545/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2546static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa 2547{
fcc7404e 2548 assert(!arm_feature(env, ARM_FEATURE_M));
19e0fefa
FA
2549 if (arm_feature(env, ARM_FEATURE_EL3)) {
2550 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2551 /* CPU currently in AArch64 state and EL3 */
2552 return true;
2553 } else if (!is_a64(env) &&
2554 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2555 /* CPU currently in AArch32 state and monitor mode */
2556 return true;
2557 }
2558 }
71205876
PM
2559 return false;
2560}
2561
5d28ac0c
RH
2562/**
2563 * arm_security_space:
2564 * @env: cpu context
2565 *
2566 * Return the current security space of the cpu.
2567 */
2568ARMSecuritySpace arm_security_space(CPUARMState *env);
2569
2570/**
2571 * arm_is_secure:
2572 * @env: cpu context
2573 *
2574 * Return true if the processor is in secure state.
2575 */
71205876
PM
2576static inline bool arm_is_secure(CPUARMState *env)
2577{
5d28ac0c 2578 return arm_space_is_secure(arm_security_space(env));
19e0fefa
FA
2579}
2580
f3ee5160
RDC
2581/*
2582 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
4477020d 2583 * This corresponds to the pseudocode EL2Enabled().
f3ee5160 2584 */
4477020d
PM
2585static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2586 ARMSecuritySpace space)
b74c0443 2587{
4477020d 2588 assert(space != ARMSS_Root);
b74c0443 2589 return arm_feature(env, ARM_FEATURE_EL2)
4477020d 2590 && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
b74c0443
RH
2591}
2592
f3ee5160
RDC
2593static inline bool arm_is_el2_enabled(CPUARMState *env)
2594{
4477020d 2595 return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
f3ee5160
RDC
2596}
2597
19e0fefa 2598#else
5d28ac0c
RH
2599static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2600{
2601 return ARMSS_NonSecure;
2602}
2603
19e0fefa
FA
2604static inline bool arm_is_secure_below_el3(CPUARMState *env)
2605{
2606 return false;
2607}
2608
5d28ac0c
RH
2609static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2610{
2611 return ARMSS_NonSecure;
2612}
2613
19e0fefa
FA
2614static inline bool arm_is_secure(CPUARMState *env)
2615{
2616 return false;
2617}
f3ee5160 2618
4477020d
PM
2619static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2620 ARMSecuritySpace space)
b74c0443
RH
2621{
2622 return false;
2623}
2624
f3ee5160
RDC
2625static inline bool arm_is_el2_enabled(CPUARMState *env)
2626{
2627 return false;
2628}
19e0fefa
FA
2629#endif
2630
f7778444
RH
2631/**
2632 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2633 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2634 * "for all purposes other than a direct read or write access of HCR_EL2."
2635 * Not included here is HCR_RW.
2636 */
2d12bb96 2637uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
f7778444 2638uint64_t arm_hcr_el2_eff(CPUARMState *env);
5814d587 2639uint64_t arm_hcrx_el2_eff(CPUARMState *env);
f7778444 2640
1f79ee32
PM
2641/* Return true if the specified exception level is running in AArch64 state. */
2642static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2643{
446c81ab
PM
2644 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2645 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2646 */
446c81ab
PM
2647 assert(el >= 1 && el <= 3);
2648 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2649
446c81ab
PM
2650 /* The highest exception level is always at the maximum supported
2651 * register width, and then lower levels have a register width controlled
2652 * by bits in the SCR or HCR registers.
1f79ee32 2653 */
446c81ab
PM
2654 if (el == 3) {
2655 return aa64;
2656 }
2657
926c1b97
RDC
2658 if (arm_feature(env, ARM_FEATURE_EL3) &&
2659 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
446c81ab
PM
2660 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2661 }
2662
2663 if (el == 2) {
2664 return aa64;
2665 }
2666
e6ef0169 2667 if (arm_is_el2_enabled(env)) {
446c81ab
PM
2668 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2669 }
2670
2671 return aa64;
1f79ee32
PM
2672}
2673
673d8215 2674/* Function for determining whether guest cp register reads and writes should
3f342b9e
SF
2675 * access the secure or non-secure bank of a cp register. When EL3 is
2676 * operating in AArch32 state, the NS-bit determines whether the secure
2677 * instance of a cp register should be used. When EL3 is AArch64 (or if
2678 * it doesn't exist at all) then there is no register banking, and all
2679 * accesses are to the non-secure version.
2680 */
2681static inline bool access_secure_reg(CPUARMState *env)
2682{
2683 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2684 !arm_el_is_aa64(env, 3) &&
2685 !(env->cp15.scr_el3 & SCR_NS));
2686
2687 return ret;
2688}
2689
ea30a4b8
FA
2690/* Macros for accessing a specified CP register bank */
2691#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2692 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2693
2694#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2695 do { \
2696 if (_secure) { \
2697 (_env)->cp15._regname##_s = (_val); \
2698 } else { \
2699 (_env)->cp15._regname##_ns = (_val); \
2700 } \
2701 } while (0)
2702
2703/* Macros for automatically accessing a specific CP register bank depending on
2704 * the current secure state of the system. These macros are not intended for
2705 * supporting instruction translation reads/writes as these are dependent
2706 * solely on the SCR.NS bit and not the mode.
2707 */
2708#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2709 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2710 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2711
2712#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2713 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2714 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2715 (_val))
2716
012a906b
GB
2717uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2718 uint32_t cur_el, bool secure);
40f137e1 2719
75502672
PM
2720/* Return the highest implemented Exception Level */
2721static inline int arm_highest_el(CPUARMState *env)
2722{
2723 if (arm_feature(env, ARM_FEATURE_EL3)) {
2724 return 3;
2725 }
2726 if (arm_feature(env, ARM_FEATURE_EL2)) {
2727 return 2;
2728 }
2729 return 1;
2730}
2731
15b3f556
PM
2732/* Return true if a v7M CPU is in Handler mode */
2733static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2734{
2735 return env->v7m.exception != 0;
2736}
2737
dcbff19b
GB
2738/* Return the current Exception Level (as per ARMv8; note that this differs
2739 * from the ARMv7 Privilege Level).
2740 */
2741static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2742{
6d54ed3c 2743 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2744 return arm_v7m_is_handler_mode(env) ||
2745 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2746 }
2747
592125f8 2748 if (is_a64(env)) {
f5a0a5a5
PM
2749 return extract32(env->pstate, 2, 2);
2750 }
2751
592125f8
FA
2752 switch (env->uncached_cpsr & 0x1f) {
2753 case ARM_CPU_MODE_USR:
4b6a83fb 2754 return 0;
592125f8
FA
2755 case ARM_CPU_MODE_HYP:
2756 return 2;
2757 case ARM_CPU_MODE_MON:
2758 return 3;
2759 default:
2760 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2761 /* If EL3 is 32-bit then all secure privileged modes run in
2762 * EL3
2763 */
2764 return 3;
2765 }
2766
2767 return 1;
4b6a83fb 2768 }
4b6a83fb
PM
2769}
2770
721fae12
PM
2771/**
2772 * write_list_to_cpustate
2773 * @cpu: ARMCPU
2774 *
2775 * For each register listed in the ARMCPU cpreg_indexes list, write
2776 * its value from the cpreg_values list into the ARMCPUState structure.
2777 * This updates TCG's working data structures from KVM data or
2778 * from incoming migration state.
2779 *
2780 * Returns: true if all register values were updated correctly,
2781 * false if some register was unknown or could not be written.
2782 * Note that we do not stop early on failure -- we will attempt
2783 * writing all registers in the list.
2784 */
2785bool write_list_to_cpustate(ARMCPU *cpu);
2786
2787/**
2788 * write_cpustate_to_list:
2789 * @cpu: ARMCPU
b698e4ee 2790 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2791 *
2792 * For each register listed in the ARMCPU cpreg_indexes list, write
2793 * its value from the ARMCPUState structure into the cpreg_values list.
2794 * This is used to copy info from TCG's working data structures into
2795 * KVM or for outbound migration.
2796 *
b698e4ee
PM
2797 * @kvm_sync is true if we are doing this in order to sync the
2798 * register state back to KVM. In this case we will only update
2799 * values in the list if the previous list->cpustate sync actually
2800 * successfully wrote the CPU state. Otherwise we will keep the value
2801 * that is in the list.
2802 *
721fae12
PM
2803 * Returns: true if all register values were read correctly,
2804 * false if some register was unknown or could not be read.
2805 * Note that we do not stop early on failure -- we will attempt
2806 * reading all registers in the list.
2807 */
b698e4ee 2808bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2809
9ee6e8bb
PB
2810#define ARM_CPUID_TI915T 0x54029152
2811#define ARM_CPUID_TI925T 0x54029252
40f137e1 2812
0dacec87 2813#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2814
585df85e
PM
2815#define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2816
c1e37810
PM
2817/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2818 *
2819 * If EL3 is 64-bit:
2820 * + NonSecure EL1 & 0 stage 1
2821 * + NonSecure EL1 & 0 stage 2
2822 * + NonSecure EL2
b9f6033c
RH
2823 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2824 * + Secure EL1 & 0
c1e37810
PM
2825 * + Secure EL3
2826 * If EL3 is 32-bit:
2827 * + NonSecure PL1 & 0 stage 1
2828 * + NonSecure PL1 & 0 stage 2
2829 * + NonSecure PL2
b9f6033c
RH
2830 * + Secure PL0
2831 * + Secure PL1
c1e37810
PM
2832 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2833 *
2834 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
2835 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2836 * because they may differ in access permissions even if the VA->PA map is
2837 * the same
c1e37810
PM
2838 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2839 * translation, which means that we have one mmu_idx that deals with two
2840 * concatenated translation regimes [this sort of combined s1+2 TLB is
2841 * architecturally permitted]
2842 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2843 * handling via the TLB. The only way to do a stage 1 translation without
2844 * the immediate stage 2 translation is via the ATS or AT system insns,
2845 * which can be slow-pathed and always do a page table walk.
bf05340c
PM
2846 * The only use of stage 2 translations is either as part of an s1+2
2847 * lookup or when loading the descriptors during a stage 1 page table walk,
2848 * and in both those cases we don't use the TLB.
c1e37810
PM
2849 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2850 * translation regimes, because they map reasonably well to each other
2851 * and they can't both be active at the same time.
b9f6033c
RH
2852 * 5. we want to be able to use the TLB for accesses done as part of a
2853 * stage1 page table walk, rather than having to walk the stage2 page
2854 * table over and over.
452ef8cb
RH
2855 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2856 * Never (PAN) bit within PSTATE.
d902ae75
RH
2857 * 7. we fold together the secure and non-secure regimes for A-profile,
2858 * because there are no banked system registers for aarch64, so the
2859 * process of switching between secure and non-secure is
2860 * already heavyweight.
c1e37810 2861 *
b9f6033c
RH
2862 * This gives us the following list of cases:
2863 *
d902ae75
RH
2864 * EL0 EL1&0 stage 1+2 (aka NS PL0)
2865 * EL1 EL1&0 stage 1+2 (aka NS PL1)
2866 * EL1 EL1&0 stage 1+2 +PAN
2867 * EL0 EL2&0
2868 * EL2 EL2&0
2869 * EL2 EL2&0 +PAN
2870 * EL2 (aka NS PL2)
2871 * EL3 (aka S PL1)
a1ce3084 2872 * Physical (NS & S)
575a94af 2873 * Stage2 (NS & S)
c1e37810 2874 *
575a94af 2875 * for a total of 12 different mmu_idx.
c1e37810 2876 *
3bef7012 2877 * R profile CPUs have an MPU, but can use the same set of MMU indexes
d902ae75
RH
2878 * as A profile. They only need to distinguish EL0 and EL1 (and
2879 * EL2 if we ever model a Cortex-R52).
3bef7012
PM
2880 *
2881 * M profile CPUs are rather different as they do not have a true MMU.
2882 * They have the following different MMU indexes:
2883 * User
2884 * Privileged
62593718
PM
2885 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2886 * Privileged, execution priority negative (ditto)
66787c78
PM
2887 * If the CPU supports the v8M Security Extension then there are also:
2888 * Secure User
2889 * Secure Privileged
62593718
PM
2890 * Secure User, execution priority negative
2891 * Secure Privileged, execution priority negative
3bef7012 2892 *
8bd5c820
PM
2893 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2894 * are not quite the same -- different CPU types (most notably M profile
2895 * vs A/R profile) would like to use MMU indexes with different semantics,
2896 * but since we don't ever need to use all of those in a single CPU we
bf05340c
PM
2897 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2898 * modes + total number of M profile MMU modes". The lower bits of
8bd5c820
PM
2899 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2900 * the same for any particular CPU.
2901 * Variables of type ARMMUIdx are always full values, and the core
2902 * index values are in variables of type 'int'.
2903 *
c1e37810
PM
2904 * Our enumeration includes at the end some entries which are not "true"
2905 * mmu_idx values in that they don't have corresponding TLBs and are only
2906 * valid for doing slow path page table walks.
2907 *
2908 * The constant names here are patterned after the general style of the names
2909 * of the AT/ATS operations.
2910 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2911 * For M profile we arrange them to have a bit for priv, a bit for negpri
2912 * and a bit for secure.
c1e37810 2913 */
b9f6033c
RH
2914#define ARM_MMU_IDX_A 0x10 /* A profile */
2915#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2916#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2917
b9f6033c
RH
2918/* Meanings of the bits for M profile mmu idx values */
2919#define ARM_MMU_IDX_M_PRIV 0x1
62593718 2920#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 2921#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 2922
b9f6033c
RH
2923#define ARM_MMU_IDX_TYPE_MASK \
2924 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2925#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 2926
c1e37810 2927typedef enum ARMMMUIdx {
b9f6033c
RH
2928 /*
2929 * A-profile.
2930 */
d902ae75
RH
2931 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2932 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
2933 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
2934 ARMMMUIdx_E20_2 = 3 | ARM_MMU_IDX_A,
2935 ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2936 ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2937 ARMMMUIdx_E2 = 6 | ARM_MMU_IDX_A,
2938 ARMMMUIdx_E3 = 7 | ARM_MMU_IDX_A,
b9f6033c 2939
575a94af
RH
2940 /*
2941 * Used for second stage of an S12 page table walk, or for descriptor
2942 * loads during first stage of an S1 page table walk. Note that both
2943 * are in use simultaneously for SecureEL2: the security state for
2944 * the S2 ptw is selected by the NS bit from the S1 ptw.
2945 */
d38fa967
RH
2946 ARMMMUIdx_Stage2_S = 8 | ARM_MMU_IDX_A,
2947 ARMMMUIdx_Stage2 = 9 | ARM_MMU_IDX_A,
2948
2949 /* TLBs with 1-1 mapping to the physical address spaces. */
bb5cc2c8
RH
2950 ARMMMUIdx_Phys_S = 10 | ARM_MMU_IDX_A,
2951 ARMMMUIdx_Phys_NS = 11 | ARM_MMU_IDX_A,
2952 ARMMMUIdx_Phys_Root = 12 | ARM_MMU_IDX_A,
2953 ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A,
575a94af 2954
b9f6033c
RH
2955 /*
2956 * These are not allocated TLBs and are used only for AT system
2957 * instructions or for the first stage of an S12 page table walk.
2958 */
2959 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2960 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 2961 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
2962
2963 /*
2964 * M-profile.
2965 */
25568316
RH
2966 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2967 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2968 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2969 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2970 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2971 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2972 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2973 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
2974} ARMMMUIdx;
2975
5f09a6df
RH
2976/*
2977 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
2978 * for use when calling tlb_flush_by_mmuidx() and friends.
2979 */
5f09a6df
RH
2980#define TO_CORE_BIT(NAME) \
2981 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2982
8bd5c820 2983typedef enum ARMMMUIdxBit {
5f09a6df 2984 TO_CORE_BIT(E10_0),
b9f6033c 2985 TO_CORE_BIT(E20_0),
5f09a6df 2986 TO_CORE_BIT(E10_1),
452ef8cb 2987 TO_CORE_BIT(E10_1_PAN),
5f09a6df 2988 TO_CORE_BIT(E2),
b9f6033c 2989 TO_CORE_BIT(E20_2),
452ef8cb 2990 TO_CORE_BIT(E20_2_PAN),
d902ae75 2991 TO_CORE_BIT(E3),
575a94af
RH
2992 TO_CORE_BIT(Stage2),
2993 TO_CORE_BIT(Stage2_S),
5f09a6df
RH
2994
2995 TO_CORE_BIT(MUser),
2996 TO_CORE_BIT(MPriv),
2997 TO_CORE_BIT(MUserNegPri),
2998 TO_CORE_BIT(MPrivNegPri),
2999 TO_CORE_BIT(MSUser),
3000 TO_CORE_BIT(MSPriv),
3001 TO_CORE_BIT(MSUserNegPri),
3002 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
3003} ARMMMUIdxBit;
3004
5f09a6df
RH
3005#undef TO_CORE_BIT
3006
f79fbf39 3007#define MMU_USER_IDX 0
c1e37810 3008
9e273ef2
PM
3009/* Indexes used when registering address spaces with cpu_address_space_init */
3010typedef enum ARMASIdx {
3011 ARMASIdx_NS = 0,
3012 ARMASIdx_S = 1,
8bce44a2
RH
3013 ARMASIdx_TagNS = 2,
3014 ARMASIdx_TagS = 3,
9e273ef2
PM
3015} ARMASIdx;
3016
bb5cc2c8
RH
3017static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
3018{
3019 /* Assert the relative order of the physical mmu indexes. */
3020 QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
3021 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
3022 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
3023 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
3024
3025 return ARMMMUIdx_Phys_S + space;
3026}
3027
3028static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
3029{
3030 assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
3031 return idx - ARMMMUIdx_Phys_S;
3032}
3033
43bbce7f
PM
3034static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3035{
3036 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3037 * CSSELR is RAZ/WI.
3038 */
3039 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3040}
3041
f9fd40eb
PB
3042static inline bool arm_sctlr_b(CPUARMState *env)
3043{
3044 return
3045 /* We need not implement SCTLR.ITD in user-mode emulation, so
3046 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3047 * This lets people run BE32 binaries with "-cpu any".
3048 */
3049#ifndef CONFIG_USER_ONLY
3050 !arm_feature(env, ARM_FEATURE_V7) &&
3051#endif
3052 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3053}
3054
aaec1432 3055uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 3056
8061a649
RH
3057static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3058 bool sctlr_b)
3059{
3060#ifdef CONFIG_USER_ONLY
3061 /*
3062 * In system mode, BE32 is modelled in line with the
3063 * architecture (as word-invariant big-endianness), where loads
3064 * and stores are done little endian but from addresses which
3065 * are adjusted by XORing with the appropriate constant. So the
3066 * endianness to use for the raw data access is not affected by
3067 * SCTLR.B.
3068 * In user mode, however, we model BE32 as byte-invariant
3069 * big-endianness (because user-only code cannot tell the
3070 * difference), and so we need to use a data access endianness
3071 * that depends on SCTLR.B.
3072 */
3073 if (sctlr_b) {
3074 return true;
3075 }
3076#endif
3077 /* In 32bit endianness is determined by looking at CPSR's E bit */
3078 return env->uncached_cpsr & CPSR_E;
3079}
3080
3081static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3082{
3083 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3084}
64e40755 3085
ed50ff78
PC
3086/* Return true if the processor is in big-endian mode. */
3087static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3088{
ed50ff78 3089 if (!is_a64(env)) {
8061a649 3090 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3091 } else {
3092 int cur_el = arm_current_el(env);
3093 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3094 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3095 }
ed50ff78
PC
3096}
3097
022c62cb 3098#include "exec/cpu-all.h"
622ed360 3099
fdd1b228 3100/*
a378206a
RH
3101 * We have more than 32-bits worth of state per TB, so we split the data
3102 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3103 * We collect these two parts in CPUARMTBFlags where they are named
3104 * flags and flags2 respectively.
fdd1b228 3105 *
a378206a
RH
3106 * The flags that are shared between all execution modes, TBFLAG_ANY,
3107 * are stored in flags. The flags that are specific to a given mode
3108 * are stores in flags2. Since cs_base is sized on the configured
3109 * address size, flags2 always has 64-bits for A64, and a minimum of
3110 * 32-bits for A32 and M32.
3111 *
3112 * The bits for 32-bit A-profile and M-profile partially overlap:
3113 *
5896f392
RH
3114 * 31 23 11 10 0
3115 * +-------------+----------+----------------+
3116 * | | | TBFLAG_A32 |
3117 * | TBFLAG_AM32 | +-----+----------+
3118 * | | |TBFLAG_M32|
3119 * +-------------+----------------+----------+
26702213 3120 * 31 23 6 5 0
79cabf1f 3121 *
fdd1b228 3122 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3123 */
eee81d41
RH
3124FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3125FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3126FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
3127FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3128FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
9dbbc748 3129/* Target EL if we take a floating-point-disabled exception */
eee81d41 3130FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
4479ec30 3131/* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
8480e933
RH
3132FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3133FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
361c33f6 3134FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
34a8a07e 3135FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
79cabf1f 3136
8bd587c1 3137/*
79cabf1f 3138 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3139 */
5896f392
RH
3140FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
3141FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3926cc84 3142
79cabf1f
RH
3143/*
3144 * Bit usage when in AArch32 state, for A-profile only.
3145 */
5896f392
RH
3146FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
3147FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
ea7ac69d
PM
3148/*
3149 * We store the bottom two bits of the CPAR as TB flags and handle
3150 * checks on the other bits at runtime. This shares the same bits as
3151 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3152 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3153 */
5896f392
RH
3154FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3155FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3156FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
3157FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
7fbb535f
PM
3158/*
3159 * Indicates whether cp register reads and writes by guest code should access
3160 * the secure or nonsecure bank of banked registers; note that this is not
3161 * the same thing as the current security state of the processor!
3162 */
5896f392 3163FIELD(TBFLAG_A32, NS, 10, 1)
75fe8356
RH
3164/*
3165 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3166 * This requires an SME trap from AArch32 mode when using NEON.
3167 */
3168FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
79cabf1f
RH
3169
3170/*
3171 * Bit usage when in AArch32 state, for M-profile only.
3172 */
3173/* Handler (ie not Thread) mode */
5896f392 3174FIELD(TBFLAG_M32, HANDLER, 0, 1)
79cabf1f 3175/* Whether we should generate stack-limit checks */
5896f392 3176FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
79cabf1f 3177/* Set if FPCCR.LSPACT is set */
5896f392 3178FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
79cabf1f 3179/* Set if we must create a new FP context */
5896f392 3180FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
79cabf1f 3181/* Set if FPCCR.S does not match current security state */
5896f392 3182FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
26702213
PM
3183/* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3184FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
a393dee0
RH
3185/* Set if in secure mode */
3186FIELD(TBFLAG_M32, SECURE, 6, 1)
79cabf1f
RH
3187
3188/*
3189 * Bit usage when in AArch64 state
3190 */
476a4692 3191FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac 3192FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
f45ce4c3
RH
3193/* The current vector length, either NVL or SVL. */
3194FIELD(TBFLAG_A64, VL, 4, 4)
0816ef1b 3195FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3196FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3197FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3198FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3199FIELD(TBFLAG_A64, UNPRIV, 14, 1)
81ae05fa
RH
3200FIELD(TBFLAG_A64, ATA, 15, 1)
3201FIELD(TBFLAG_A64, TCMA, 16, 2)
3202FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3203FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
6b2ca83e 3204FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
a3637e88
RH
3205FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3206FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
5d7953ad 3207FIELD(TBFLAG_A64, SVL, 24, 4)
75fe8356
RH
3208/* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3209FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
e37e98b7 3210FIELD(TBFLAG_A64, TRAP_ERET, 29, 1)
83f624d9 3211FIELD(TBFLAG_A64, NAA, 30, 1)
179e9a3b 3212FIELD(TBFLAG_A64, ATA0, 31, 1)
67d10fc4 3213FIELD(TBFLAG_A64, NV, 32, 1)
c35da11d
PM
3214FIELD(TBFLAG_A64, NV1, 33, 1)
3215FIELD(TBFLAG_A64, NV2, 34, 1)
daf9b4a0
PM
3216/* Set if FEAT_NV2 RAM accesses use the EL2&0 translation regime */
3217FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1)
3218/* Set if FEAT_NV2 RAM accesses are big-endian */
3219FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1)
a1705768 3220
a729a46b 3221/*
29a15a61
PM
3222 * Helpers for using the above. Note that only the A64 accessors use
3223 * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags
3224 * word either is or might be 32 bits only.
a729a46b
RH
3225 */
3226#define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3902bfc6 3227 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
a729a46b 3228#define DP_TBFLAG_A64(DST, WHICH, VAL) \
29a15a61 3229 (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL))
a729a46b 3230#define DP_TBFLAG_A32(DST, WHICH, VAL) \
a378206a 3231 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
a729a46b 3232#define DP_TBFLAG_M32(DST, WHICH, VAL) \
a378206a 3233 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
a729a46b 3234#define DP_TBFLAG_AM32(DST, WHICH, VAL) \
a378206a 3235 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
a729a46b 3236
3902bfc6 3237#define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
29a15a61 3238#define EX_TBFLAG_A64(IN, WHICH) FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH)
a378206a
RH
3239#define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3240#define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3241#define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
a729a46b 3242
fb901c90
RH
3243/**
3244 * cpu_mmu_index:
3245 * @env: The cpu environment
3246 * @ifetch: True for code access, false for data access.
3247 *
3248 * Return the core mmu index for the current translation regime.
3249 * This function is used by generic TCG code paths.
3250 */
3251static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3252{
a729a46b 3253 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
fb901c90
RH
3254}
3255
8b599e5c
RH
3256/**
3257 * sve_vq
3258 * @env: the cpu context
3259 *
3260 * Return the VL cached within env->hflags, in units of quadwords.
3261 */
3262static inline int sve_vq(CPUARMState *env)
3263{
3264 return EX_TBFLAG_A64(env->hflags, VL) + 1;
3265}
3266
5d7953ad
RH
3267/**
3268 * sme_vq
3269 * @env: the cpu context
3270 *
3271 * Return the SVL cached within env->hflags, in units of quadwords.
3272 */
3273static inline int sme_vq(CPUARMState *env)
3274{
3275 return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3276}
3277
f9fd40eb
PB
3278static inline bool bswap_code(bool sctlr_b)
3279{
3280#ifdef CONFIG_USER_ONLY
ee3eb3a7
MAL
3281 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3282 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
f9fd40eb
PB
3283 * would also end up as a mixed-endian mode with BE code, LE data.
3284 */
ded625e7 3285 return TARGET_BIG_ENDIAN ^ sctlr_b;
f9fd40eb 3286#else
e334bd31
PB
3287 /* All code access in ARM is little endian, and there are no loaders
3288 * doing swaps that need to be reversed
f9fd40eb
PB
3289 */
3290 return 0;
3291#endif
3292}
3293
c3ae85fc
PB
3294#ifdef CONFIG_USER_ONLY
3295static inline bool arm_cpu_bswap_data(CPUARMState *env)
3296{
ded625e7 3297 return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
c3ae85fc
PB
3298}
3299#endif
3300
bb5de525
AJ
3301void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3302 uint64_t *cs_base, uint32_t *flags);
6b917547 3303
98128601
RH
3304enum {
3305 QEMU_PSCI_CONDUIT_DISABLED = 0,
3306 QEMU_PSCI_CONDUIT_SMC = 1,
3307 QEMU_PSCI_CONDUIT_HVC = 2,
3308};
3309
017518c1
PM
3310#ifndef CONFIG_USER_ONLY
3311/* Return the address space index to use for a memory access */
3312static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3313{
3314 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3315}
5ce4ff65
PM
3316
3317/* Return the AddressSpace to use for a memory access
3318 * (which depends on whether the access is S or NS, and whether
3319 * the board gave us a separate AddressSpace for S accesses).
3320 */
3321static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3322{
3323 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3324}
017518c1
PM
3325#endif
3326
bd7d00fc 3327/**
b5c53d1b
AL
3328 * arm_register_pre_el_change_hook:
3329 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3330 * CPU changes exception level or mode. The hook function will be
3331 * passed a pointer to the ARMCPU and the opaque data pointer passed
3332 * to this function when the hook was registered.
b5c53d1b
AL
3333 *
3334 * Note that if a pre-change hook is called, any registered post-change hooks
3335 * are guaranteed to subsequently be called.
bd7d00fc 3336 */
b5c53d1b 3337void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3338 void *opaque);
b5c53d1b
AL
3339/**
3340 * arm_register_el_change_hook:
3341 * Register a hook function which will be called immediately after this
3342 * CPU changes exception level or mode. The hook function will be
3343 * passed a pointer to the ARMCPU and the opaque data pointer passed
3344 * to this function when the hook was registered.
3345 *
3346 * Note that any registered hooks registered here are guaranteed to be called
3347 * if pre-change hooks have been.
3348 */
3349void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3350 *opaque);
bd7d00fc 3351
3d74e2e9
RH
3352/**
3353 * arm_rebuild_hflags:
3354 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3355 */
3356void arm_rebuild_hflags(CPUARMState *env);
3357
9a2b5256
RH
3358/**
3359 * aa32_vfp_dreg:
3360 * Return a pointer to the Dn register within env in 32-bit mode.
3361 */
3362static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3363{
c39c2b90 3364 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3365}
3366
3367/**
3368 * aa32_vfp_qreg:
3369 * Return a pointer to the Qn register within env in 32-bit mode.
3370 */
3371static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3372{
c39c2b90 3373 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3374}
3375
3376/**
3377 * aa64_vfp_qreg:
3378 * Return a pointer to the Qn register within env in 64-bit mode.
3379 */
3380static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3381{
c39c2b90 3382 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3383}
3384
028e2a7b 3385/* Shared between translate-sve.c and sve_helper.c. */
fca75f60 3386extern const uint64_t pred_esz_masks[5];
028e2a7b 3387
be5d6f48
RH
3388/*
3389 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
7f2cf760
RH
3390 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3391 * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR.
be5d6f48 3392 */
7f2cf760
RH
3393#define PAGE_BTI PAGE_TARGET_1
3394#define PAGE_MTE PAGE_TARGET_2
3395#define PAGE_TARGET_STICKY PAGE_MTE
be5d6f48 3396
50d4c8c1
RH
3397/* We associate one allocation tag per 16 bytes, the minimum. */
3398#define LOG2_TAG_GRANULE 4
3399#define TAG_GRANULE (1 << LOG2_TAG_GRANULE)
3400
3401#ifdef CONFIG_USER_ONLY
3402#define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3403#endif
3404
0e0c030c
RH
3405#ifdef TARGET_TAGGED_ADDRESSES
3406/**
3407 * cpu_untagged_addr:
3408 * @cs: CPU context
3409 * @x: tagged address
3410 *
3411 * Remove any address tag from @x. This is explicitly related to the
3412 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3413 *
3414 * There should be a better place to put this, but we need this in
3415 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3416 */
3417static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3418{
3419 ARMCPU *cpu = ARM_CPU(cs);
3420 if (cpu->env.tagged_addr_enable) {
3421 /*
3422 * TBI is enabled for userspace but not kernelspace addresses.
3423 * Only clear the tag if bit 55 is clear.
3424 */
3425 x &= sextract64(x, 0, 56);
3426 }
3427 return x;
3428}
3429#endif
3430
2c0262af 3431#endif