]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/hvf/hvf.c
target/arm: Move GTimer definitions to new 'gtimer.h' header
[mirror_qemu.git] / target / arm / hvf / hvf.c
CommitLineData
a1477da3
AG
1/*
2 * QEMU Hypervisor.framework support for Apple Silicon
3
4 * Copyright 2020 Alexander Graf <agraf@csgraf.de>
219c101f 5 * Copyright 2020 Google LLC
a1477da3
AG
6 *
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
9 *
10 */
11
12#include "qemu/osdep.h"
a1477da3
AG
13#include "qemu/error-report.h"
14
15#include "sysemu/runstate.h"
16#include "sysemu/hvf.h"
17#include "sysemu/hvf_int.h"
18#include "sysemu/hw_accel.h"
585df85e 19#include "hvf_arm.h"
b5fb359c 20#include "cpregs.h"
a1477da3
AG
21
22#include <mach/mach_time.h>
23
24#include "exec/address-spaces.h"
25#include "hw/irq.h"
26#include "qemu/main-loop.h"
27#include "sysemu/cpus.h"
2c9c0bf9 28#include "arm-powerctl.h"
a1477da3
AG
29#include "target/arm/cpu.h"
30#include "target/arm/internals.h"
e2d8cf9b 31#include "target/arm/multiprocessing.h"
f4f318b4 32#include "target/arm/gtimer.h"
a1477da3
AG
33#include "trace/trace-target_arm_hvf.h"
34#include "migration/vmstate.h"
35
f4152040
FC
36#include "exec/gdbstub.h"
37
eb2edc42
FC
38#define MDSCR_EL1_SS_SHIFT 0
39#define MDSCR_EL1_MDE_SHIFT 15
40
f49986ae 41static const uint16_t dbgbcr_regs[] = {
eb2edc42
FC
42 HV_SYS_REG_DBGBCR0_EL1,
43 HV_SYS_REG_DBGBCR1_EL1,
44 HV_SYS_REG_DBGBCR2_EL1,
45 HV_SYS_REG_DBGBCR3_EL1,
46 HV_SYS_REG_DBGBCR4_EL1,
47 HV_SYS_REG_DBGBCR5_EL1,
48 HV_SYS_REG_DBGBCR6_EL1,
49 HV_SYS_REG_DBGBCR7_EL1,
50 HV_SYS_REG_DBGBCR8_EL1,
51 HV_SYS_REG_DBGBCR9_EL1,
52 HV_SYS_REG_DBGBCR10_EL1,
53 HV_SYS_REG_DBGBCR11_EL1,
54 HV_SYS_REG_DBGBCR12_EL1,
55 HV_SYS_REG_DBGBCR13_EL1,
56 HV_SYS_REG_DBGBCR14_EL1,
57 HV_SYS_REG_DBGBCR15_EL1,
58};
f49986ae
RH
59
60static const uint16_t dbgbvr_regs[] = {
eb2edc42
FC
61 HV_SYS_REG_DBGBVR0_EL1,
62 HV_SYS_REG_DBGBVR1_EL1,
63 HV_SYS_REG_DBGBVR2_EL1,
64 HV_SYS_REG_DBGBVR3_EL1,
65 HV_SYS_REG_DBGBVR4_EL1,
66 HV_SYS_REG_DBGBVR5_EL1,
67 HV_SYS_REG_DBGBVR6_EL1,
68 HV_SYS_REG_DBGBVR7_EL1,
69 HV_SYS_REG_DBGBVR8_EL1,
70 HV_SYS_REG_DBGBVR9_EL1,
71 HV_SYS_REG_DBGBVR10_EL1,
72 HV_SYS_REG_DBGBVR11_EL1,
73 HV_SYS_REG_DBGBVR12_EL1,
74 HV_SYS_REG_DBGBVR13_EL1,
75 HV_SYS_REG_DBGBVR14_EL1,
76 HV_SYS_REG_DBGBVR15_EL1,
77};
f49986ae
RH
78
79static const uint16_t dbgwcr_regs[] = {
eb2edc42
FC
80 HV_SYS_REG_DBGWCR0_EL1,
81 HV_SYS_REG_DBGWCR1_EL1,
82 HV_SYS_REG_DBGWCR2_EL1,
83 HV_SYS_REG_DBGWCR3_EL1,
84 HV_SYS_REG_DBGWCR4_EL1,
85 HV_SYS_REG_DBGWCR5_EL1,
86 HV_SYS_REG_DBGWCR6_EL1,
87 HV_SYS_REG_DBGWCR7_EL1,
88 HV_SYS_REG_DBGWCR8_EL1,
89 HV_SYS_REG_DBGWCR9_EL1,
90 HV_SYS_REG_DBGWCR10_EL1,
91 HV_SYS_REG_DBGWCR11_EL1,
92 HV_SYS_REG_DBGWCR12_EL1,
93 HV_SYS_REG_DBGWCR13_EL1,
94 HV_SYS_REG_DBGWCR14_EL1,
95 HV_SYS_REG_DBGWCR15_EL1,
96};
f49986ae
RH
97
98static const uint16_t dbgwvr_regs[] = {
eb2edc42
FC
99 HV_SYS_REG_DBGWVR0_EL1,
100 HV_SYS_REG_DBGWVR1_EL1,
101 HV_SYS_REG_DBGWVR2_EL1,
102 HV_SYS_REG_DBGWVR3_EL1,
103 HV_SYS_REG_DBGWVR4_EL1,
104 HV_SYS_REG_DBGWVR5_EL1,
105 HV_SYS_REG_DBGWVR6_EL1,
106 HV_SYS_REG_DBGWVR7_EL1,
107 HV_SYS_REG_DBGWVR8_EL1,
108 HV_SYS_REG_DBGWVR9_EL1,
109 HV_SYS_REG_DBGWVR10_EL1,
110 HV_SYS_REG_DBGWVR11_EL1,
111 HV_SYS_REG_DBGWVR12_EL1,
112 HV_SYS_REG_DBGWVR13_EL1,
113 HV_SYS_REG_DBGWVR14_EL1,
114 HV_SYS_REG_DBGWVR15_EL1,
115};
116
117static inline int hvf_arm_num_brps(hv_vcpu_config_t config)
118{
119 uint64_t val;
120 hv_return_t ret;
121 ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
122 &val);
123 assert_hvf_ok(ret);
124 return FIELD_EX64(val, ID_AA64DFR0, BRPS) + 1;
125}
126
127static inline int hvf_arm_num_wrps(hv_vcpu_config_t config)
128{
129 uint64_t val;
130 hv_return_t ret;
131 ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
132 &val);
133 assert_hvf_ok(ret);
134 return FIELD_EX64(val, ID_AA64DFR0, WRPS) + 1;
135}
136
137void hvf_arm_init_debug(void)
138{
139 hv_vcpu_config_t config;
140 config = hv_vcpu_config_create();
141
142 max_hw_bps = hvf_arm_num_brps(config);
143 hw_breakpoints =
144 g_array_sized_new(true, true, sizeof(HWBreakpoint), max_hw_bps);
145
146 max_hw_wps = hvf_arm_num_wrps(config);
147 hw_watchpoints =
148 g_array_sized_new(true, true, sizeof(HWWatchpoint), max_hw_wps);
149}
150
a1477da3
AG
151#define HVF_SYSREG(crn, crm, op0, op1, op2) \
152 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
153#define PL1_WRITE_MASK 0x4
154
ad99f64f
AG
155#define SYSREG_OP0_SHIFT 20
156#define SYSREG_OP0_MASK 0x3
157#define SYSREG_OP0(sysreg) ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK)
158#define SYSREG_OP1_SHIFT 14
159#define SYSREG_OP1_MASK 0x7
160#define SYSREG_OP1(sysreg) ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK)
161#define SYSREG_CRN_SHIFT 10
162#define SYSREG_CRN_MASK 0xf
163#define SYSREG_CRN(sysreg) ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK)
164#define SYSREG_CRM_SHIFT 1
165#define SYSREG_CRM_MASK 0xf
166#define SYSREG_CRM(sysreg) ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK)
167#define SYSREG_OP2_SHIFT 17
168#define SYSREG_OP2_MASK 0x7
169#define SYSREG_OP2(sysreg) ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK)
170
a1477da3 171#define SYSREG(op0, op1, crn, crm, op2) \
ad99f64f
AG
172 ((op0 << SYSREG_OP0_SHIFT) | \
173 (op1 << SYSREG_OP1_SHIFT) | \
174 (crn << SYSREG_CRN_SHIFT) | \
175 (crm << SYSREG_CRM_SHIFT) | \
176 (op2 << SYSREG_OP2_SHIFT))
177#define SYSREG_MASK \
178 SYSREG(SYSREG_OP0_MASK, \
179 SYSREG_OP1_MASK, \
180 SYSREG_CRN_MASK, \
181 SYSREG_CRM_MASK, \
182 SYSREG_OP2_MASK)
a1477da3
AG
183#define SYSREG_OSLAR_EL1 SYSREG(2, 0, 1, 0, 4)
184#define SYSREG_OSLSR_EL1 SYSREG(2, 0, 1, 1, 4)
185#define SYSREG_OSDLR_EL1 SYSREG(2, 0, 1, 3, 4)
186#define SYSREG_CNTPCT_EL0 SYSREG(3, 3, 14, 0, 1)
dd43ac07
AG
187#define SYSREG_PMCR_EL0 SYSREG(3, 3, 9, 12, 0)
188#define SYSREG_PMUSERENR_EL0 SYSREG(3, 3, 9, 14, 0)
189#define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
190#define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
191#define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
192#define SYSREG_PMOVSCLR_EL0 SYSREG(3, 3, 9, 12, 3)
193#define SYSREG_PMSWINC_EL0 SYSREG(3, 3, 9, 12, 4)
194#define SYSREG_PMSELR_EL0 SYSREG(3, 3, 9, 12, 5)
195#define SYSREG_PMCEID0_EL0 SYSREG(3, 3, 9, 12, 6)
196#define SYSREG_PMCEID1_EL0 SYSREG(3, 3, 9, 12, 7)
197#define SYSREG_PMCCNTR_EL0 SYSREG(3, 3, 9, 13, 0)
198#define SYSREG_PMCCFILTR_EL0 SYSREG(3, 3, 14, 15, 7)
a1477da3 199
a2260983
AG
200#define SYSREG_ICC_AP0R0_EL1 SYSREG(3, 0, 12, 8, 4)
201#define SYSREG_ICC_AP0R1_EL1 SYSREG(3, 0, 12, 8, 5)
202#define SYSREG_ICC_AP0R2_EL1 SYSREG(3, 0, 12, 8, 6)
203#define SYSREG_ICC_AP0R3_EL1 SYSREG(3, 0, 12, 8, 7)
204#define SYSREG_ICC_AP1R0_EL1 SYSREG(3, 0, 12, 9, 0)
205#define SYSREG_ICC_AP1R1_EL1 SYSREG(3, 0, 12, 9, 1)
206#define SYSREG_ICC_AP1R2_EL1 SYSREG(3, 0, 12, 9, 2)
207#define SYSREG_ICC_AP1R3_EL1 SYSREG(3, 0, 12, 9, 3)
208#define SYSREG_ICC_ASGI1R_EL1 SYSREG(3, 0, 12, 11, 6)
209#define SYSREG_ICC_BPR0_EL1 SYSREG(3, 0, 12, 8, 3)
210#define SYSREG_ICC_BPR1_EL1 SYSREG(3, 0, 12, 12, 3)
211#define SYSREG_ICC_CTLR_EL1 SYSREG(3, 0, 12, 12, 4)
212#define SYSREG_ICC_DIR_EL1 SYSREG(3, 0, 12, 11, 1)
213#define SYSREG_ICC_EOIR0_EL1 SYSREG(3, 0, 12, 8, 1)
214#define SYSREG_ICC_EOIR1_EL1 SYSREG(3, 0, 12, 12, 1)
215#define SYSREG_ICC_HPPIR0_EL1 SYSREG(3, 0, 12, 8, 2)
216#define SYSREG_ICC_HPPIR1_EL1 SYSREG(3, 0, 12, 12, 2)
217#define SYSREG_ICC_IAR0_EL1 SYSREG(3, 0, 12, 8, 0)
218#define SYSREG_ICC_IAR1_EL1 SYSREG(3, 0, 12, 12, 0)
219#define SYSREG_ICC_IGRPEN0_EL1 SYSREG(3, 0, 12, 12, 6)
220#define SYSREG_ICC_IGRPEN1_EL1 SYSREG(3, 0, 12, 12, 7)
221#define SYSREG_ICC_PMR_EL1 SYSREG(3, 0, 4, 6, 0)
222#define SYSREG_ICC_RPR_EL1 SYSREG(3, 0, 12, 11, 3)
223#define SYSREG_ICC_SGI0R_EL1 SYSREG(3, 0, 12, 11, 7)
224#define SYSREG_ICC_SGI1R_EL1 SYSREG(3, 0, 12, 11, 5)
225#define SYSREG_ICC_SRE_EL1 SYSREG(3, 0, 12, 12, 5)
226
ce799a04
FC
227#define SYSREG_MDSCR_EL1 SYSREG(2, 0, 0, 2, 2)
228#define SYSREG_DBGBVR0_EL1 SYSREG(2, 0, 0, 0, 4)
229#define SYSREG_DBGBCR0_EL1 SYSREG(2, 0, 0, 0, 5)
230#define SYSREG_DBGWVR0_EL1 SYSREG(2, 0, 0, 0, 6)
231#define SYSREG_DBGWCR0_EL1 SYSREG(2, 0, 0, 0, 7)
232#define SYSREG_DBGBVR1_EL1 SYSREG(2, 0, 0, 1, 4)
233#define SYSREG_DBGBCR1_EL1 SYSREG(2, 0, 0, 1, 5)
234#define SYSREG_DBGWVR1_EL1 SYSREG(2, 0, 0, 1, 6)
235#define SYSREG_DBGWCR1_EL1 SYSREG(2, 0, 0, 1, 7)
236#define SYSREG_DBGBVR2_EL1 SYSREG(2, 0, 0, 2, 4)
237#define SYSREG_DBGBCR2_EL1 SYSREG(2, 0, 0, 2, 5)
238#define SYSREG_DBGWVR2_EL1 SYSREG(2, 0, 0, 2, 6)
239#define SYSREG_DBGWCR2_EL1 SYSREG(2, 0, 0, 2, 7)
240#define SYSREG_DBGBVR3_EL1 SYSREG(2, 0, 0, 3, 4)
241#define SYSREG_DBGBCR3_EL1 SYSREG(2, 0, 0, 3, 5)
242#define SYSREG_DBGWVR3_EL1 SYSREG(2, 0, 0, 3, 6)
243#define SYSREG_DBGWCR3_EL1 SYSREG(2, 0, 0, 3, 7)
244#define SYSREG_DBGBVR4_EL1 SYSREG(2, 0, 0, 4, 4)
245#define SYSREG_DBGBCR4_EL1 SYSREG(2, 0, 0, 4, 5)
246#define SYSREG_DBGWVR4_EL1 SYSREG(2, 0, 0, 4, 6)
247#define SYSREG_DBGWCR4_EL1 SYSREG(2, 0, 0, 4, 7)
248#define SYSREG_DBGBVR5_EL1 SYSREG(2, 0, 0, 5, 4)
249#define SYSREG_DBGBCR5_EL1 SYSREG(2, 0, 0, 5, 5)
250#define SYSREG_DBGWVR5_EL1 SYSREG(2, 0, 0, 5, 6)
251#define SYSREG_DBGWCR5_EL1 SYSREG(2, 0, 0, 5, 7)
252#define SYSREG_DBGBVR6_EL1 SYSREG(2, 0, 0, 6, 4)
253#define SYSREG_DBGBCR6_EL1 SYSREG(2, 0, 0, 6, 5)
254#define SYSREG_DBGWVR6_EL1 SYSREG(2, 0, 0, 6, 6)
255#define SYSREG_DBGWCR6_EL1 SYSREG(2, 0, 0, 6, 7)
256#define SYSREG_DBGBVR7_EL1 SYSREG(2, 0, 0, 7, 4)
257#define SYSREG_DBGBCR7_EL1 SYSREG(2, 0, 0, 7, 5)
258#define SYSREG_DBGWVR7_EL1 SYSREG(2, 0, 0, 7, 6)
259#define SYSREG_DBGWCR7_EL1 SYSREG(2, 0, 0, 7, 7)
260#define SYSREG_DBGBVR8_EL1 SYSREG(2, 0, 0, 8, 4)
261#define SYSREG_DBGBCR8_EL1 SYSREG(2, 0, 0, 8, 5)
262#define SYSREG_DBGWVR8_EL1 SYSREG(2, 0, 0, 8, 6)
263#define SYSREG_DBGWCR8_EL1 SYSREG(2, 0, 0, 8, 7)
264#define SYSREG_DBGBVR9_EL1 SYSREG(2, 0, 0, 9, 4)
265#define SYSREG_DBGBCR9_EL1 SYSREG(2, 0, 0, 9, 5)
266#define SYSREG_DBGWVR9_EL1 SYSREG(2, 0, 0, 9, 6)
267#define SYSREG_DBGWCR9_EL1 SYSREG(2, 0, 0, 9, 7)
268#define SYSREG_DBGBVR10_EL1 SYSREG(2, 0, 0, 10, 4)
269#define SYSREG_DBGBCR10_EL1 SYSREG(2, 0, 0, 10, 5)
270#define SYSREG_DBGWVR10_EL1 SYSREG(2, 0, 0, 10, 6)
271#define SYSREG_DBGWCR10_EL1 SYSREG(2, 0, 0, 10, 7)
272#define SYSREG_DBGBVR11_EL1 SYSREG(2, 0, 0, 11, 4)
273#define SYSREG_DBGBCR11_EL1 SYSREG(2, 0, 0, 11, 5)
274#define SYSREG_DBGWVR11_EL1 SYSREG(2, 0, 0, 11, 6)
275#define SYSREG_DBGWCR11_EL1 SYSREG(2, 0, 0, 11, 7)
276#define SYSREG_DBGBVR12_EL1 SYSREG(2, 0, 0, 12, 4)
277#define SYSREG_DBGBCR12_EL1 SYSREG(2, 0, 0, 12, 5)
278#define SYSREG_DBGWVR12_EL1 SYSREG(2, 0, 0, 12, 6)
279#define SYSREG_DBGWCR12_EL1 SYSREG(2, 0, 0, 12, 7)
280#define SYSREG_DBGBVR13_EL1 SYSREG(2, 0, 0, 13, 4)
281#define SYSREG_DBGBCR13_EL1 SYSREG(2, 0, 0, 13, 5)
282#define SYSREG_DBGWVR13_EL1 SYSREG(2, 0, 0, 13, 6)
283#define SYSREG_DBGWCR13_EL1 SYSREG(2, 0, 0, 13, 7)
284#define SYSREG_DBGBVR14_EL1 SYSREG(2, 0, 0, 14, 4)
285#define SYSREG_DBGBCR14_EL1 SYSREG(2, 0, 0, 14, 5)
286#define SYSREG_DBGWVR14_EL1 SYSREG(2, 0, 0, 14, 6)
287#define SYSREG_DBGWCR14_EL1 SYSREG(2, 0, 0, 14, 7)
288#define SYSREG_DBGBVR15_EL1 SYSREG(2, 0, 0, 15, 4)
289#define SYSREG_DBGBCR15_EL1 SYSREG(2, 0, 0, 15, 5)
290#define SYSREG_DBGWVR15_EL1 SYSREG(2, 0, 0, 15, 6)
291#define SYSREG_DBGWCR15_EL1 SYSREG(2, 0, 0, 15, 7)
292
a1477da3
AG
293#define WFX_IS_WFE (1 << 0)
294
295#define TMR_CTL_ENABLE (1 << 0)
296#define TMR_CTL_IMASK (1 << 1)
297#define TMR_CTL_ISTATUS (1 << 2)
298
2c9c0bf9
AG
299static void hvf_wfi(CPUState *cpu);
300
a1477da3
AG
301typedef struct HVFVTimer {
302 /* Vtimer value during migration and paused state */
303 uint64_t vtimer_val;
304} HVFVTimer;
305
306static HVFVTimer vtimer;
307
585df85e
PM
308typedef struct ARMHostCPUFeatures {
309 ARMISARegisters isar;
310 uint64_t features;
311 uint64_t midr;
312 uint32_t reset_sctlr;
313 const char *dtb_compatible;
314} ARMHostCPUFeatures;
315
316static ARMHostCPUFeatures arm_host_cpu_features;
317
a1477da3
AG
318struct hvf_reg_match {
319 int reg;
320 uint64_t offset;
321};
322
323static const struct hvf_reg_match hvf_reg_match[] = {
324 { HV_REG_X0, offsetof(CPUARMState, xregs[0]) },
325 { HV_REG_X1, offsetof(CPUARMState, xregs[1]) },
326 { HV_REG_X2, offsetof(CPUARMState, xregs[2]) },
327 { HV_REG_X3, offsetof(CPUARMState, xregs[3]) },
328 { HV_REG_X4, offsetof(CPUARMState, xregs[4]) },
329 { HV_REG_X5, offsetof(CPUARMState, xregs[5]) },
330 { HV_REG_X6, offsetof(CPUARMState, xregs[6]) },
331 { HV_REG_X7, offsetof(CPUARMState, xregs[7]) },
332 { HV_REG_X8, offsetof(CPUARMState, xregs[8]) },
333 { HV_REG_X9, offsetof(CPUARMState, xregs[9]) },
334 { HV_REG_X10, offsetof(CPUARMState, xregs[10]) },
335 { HV_REG_X11, offsetof(CPUARMState, xregs[11]) },
336 { HV_REG_X12, offsetof(CPUARMState, xregs[12]) },
337 { HV_REG_X13, offsetof(CPUARMState, xregs[13]) },
338 { HV_REG_X14, offsetof(CPUARMState, xregs[14]) },
339 { HV_REG_X15, offsetof(CPUARMState, xregs[15]) },
340 { HV_REG_X16, offsetof(CPUARMState, xregs[16]) },
341 { HV_REG_X17, offsetof(CPUARMState, xregs[17]) },
342 { HV_REG_X18, offsetof(CPUARMState, xregs[18]) },
343 { HV_REG_X19, offsetof(CPUARMState, xregs[19]) },
344 { HV_REG_X20, offsetof(CPUARMState, xregs[20]) },
345 { HV_REG_X21, offsetof(CPUARMState, xregs[21]) },
346 { HV_REG_X22, offsetof(CPUARMState, xregs[22]) },
347 { HV_REG_X23, offsetof(CPUARMState, xregs[23]) },
348 { HV_REG_X24, offsetof(CPUARMState, xregs[24]) },
349 { HV_REG_X25, offsetof(CPUARMState, xregs[25]) },
350 { HV_REG_X26, offsetof(CPUARMState, xregs[26]) },
351 { HV_REG_X27, offsetof(CPUARMState, xregs[27]) },
352 { HV_REG_X28, offsetof(CPUARMState, xregs[28]) },
353 { HV_REG_X29, offsetof(CPUARMState, xregs[29]) },
354 { HV_REG_X30, offsetof(CPUARMState, xregs[30]) },
355 { HV_REG_PC, offsetof(CPUARMState, pc) },
356};
357
358static const struct hvf_reg_match hvf_fpreg_match[] = {
359 { HV_SIMD_FP_REG_Q0, offsetof(CPUARMState, vfp.zregs[0]) },
360 { HV_SIMD_FP_REG_Q1, offsetof(CPUARMState, vfp.zregs[1]) },
361 { HV_SIMD_FP_REG_Q2, offsetof(CPUARMState, vfp.zregs[2]) },
362 { HV_SIMD_FP_REG_Q3, offsetof(CPUARMState, vfp.zregs[3]) },
363 { HV_SIMD_FP_REG_Q4, offsetof(CPUARMState, vfp.zregs[4]) },
364 { HV_SIMD_FP_REG_Q5, offsetof(CPUARMState, vfp.zregs[5]) },
365 { HV_SIMD_FP_REG_Q6, offsetof(CPUARMState, vfp.zregs[6]) },
366 { HV_SIMD_FP_REG_Q7, offsetof(CPUARMState, vfp.zregs[7]) },
367 { HV_SIMD_FP_REG_Q8, offsetof(CPUARMState, vfp.zregs[8]) },
368 { HV_SIMD_FP_REG_Q9, offsetof(CPUARMState, vfp.zregs[9]) },
369 { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
370 { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
371 { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
372 { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
373 { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
374 { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
375 { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
376 { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
377 { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
378 { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
379 { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
380 { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
381 { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
382 { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
383 { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
384 { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
385 { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
386 { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
387 { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
388 { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
389 { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
390 { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
391};
392
393struct hvf_sreg_match {
394 int reg;
395 uint32_t key;
396 uint32_t cp_idx;
397};
398
399static struct hvf_sreg_match hvf_sreg_match[] = {
400 { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) },
401 { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) },
402 { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) },
403 { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) },
404
405 { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) },
406 { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) },
407 { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) },
408 { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) },
409
410 { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) },
411 { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) },
412 { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) },
413 { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) },
414
415 { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) },
416 { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) },
417 { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) },
418 { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) },
419
420 { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) },
421 { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) },
422 { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) },
423 { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) },
424
425 { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) },
426 { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) },
427 { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) },
428 { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) },
429
430 { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) },
431 { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) },
432 { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) },
433 { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) },
434
435 { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) },
436 { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) },
437 { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) },
438 { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) },
439
440 { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) },
441 { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) },
442 { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) },
443 { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) },
444
445 { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) },
446 { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) },
447 { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) },
448 { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) },
449
450 { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) },
451 { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) },
452 { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) },
453 { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) },
454
455 { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) },
456 { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) },
457 { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) },
458 { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) },
459
460 { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) },
461 { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) },
462 { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) },
463 { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) },
464
465 { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) },
466 { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) },
467 { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) },
468 { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) },
469
470 { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) },
471 { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) },
472 { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) },
473 { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) },
474
475 { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) },
476 { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) },
477 { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) },
478 { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) },
479
480#ifdef SYNC_NO_RAW_REGS
481 /*
482 * The registers below are manually synced on init because they are
483 * marked as NO_RAW. We still list them to make number space sync easier.
484 */
485 { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
486 { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
487 { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
488 { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
489#endif
490 { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) },
491 { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
492 { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
493 { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
494 { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
495#ifdef SYNC_NO_MMFR0
496 /* We keep the hardware MMFR0 around. HW limits are there anyway */
497 { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
498#endif
499 { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
500 { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
501
502 { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
503 { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
504 { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
505 { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
506 { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
507 { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
508
509 { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
510 { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
511 { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
512 { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
513 { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
514 { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
515 { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
516 { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
517 { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
518 { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
519
520 { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
521 { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
522 { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
523 { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
524 { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
525 { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
526 { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
527 { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
528 { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
529 { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
530 { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
531 { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
532 { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
533 { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
534 { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
535 { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
536 { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
537 { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
538 { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
539 { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
540};
541
542int hvf_get_registers(CPUState *cpu)
543{
544 ARMCPU *arm_cpu = ARM_CPU(cpu);
545 CPUARMState *env = &arm_cpu->env;
546 hv_return_t ret;
547 uint64_t val;
548 hv_simd_fp_uchar16_t fpval;
549 int i;
550
551 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
3b295bcb 552 ret = hv_vcpu_get_reg(cpu->accel->fd, hvf_reg_match[i].reg, &val);
a1477da3
AG
553 *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
554 assert_hvf_ok(ret);
555 }
556
557 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
3b295bcb 558 ret = hv_vcpu_get_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
a1477da3
AG
559 &fpval);
560 memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
561 assert_hvf_ok(ret);
562 }
563
564 val = 0;
3b295bcb 565 ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPCR, &val);
a1477da3
AG
566 assert_hvf_ok(ret);
567 vfp_set_fpcr(env, val);
568
569 val = 0;
3b295bcb 570 ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPSR, &val);
a1477da3
AG
571 assert_hvf_ok(ret);
572 vfp_set_fpsr(env, val);
573
3b295bcb 574 ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_CPSR, &val);
a1477da3
AG
575 assert_hvf_ok(ret);
576 pstate_write(env, val);
577
578 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
579 if (hvf_sreg_match[i].cp_idx == -1) {
580 continue;
581 }
582
3b295bcb 583 if (cpu->accel->guest_debug_enabled) {
eb2edc42
FC
584 /* Handle debug registers */
585 switch (hvf_sreg_match[i].reg) {
586 case HV_SYS_REG_DBGBVR0_EL1:
587 case HV_SYS_REG_DBGBCR0_EL1:
588 case HV_SYS_REG_DBGWVR0_EL1:
589 case HV_SYS_REG_DBGWCR0_EL1:
590 case HV_SYS_REG_DBGBVR1_EL1:
591 case HV_SYS_REG_DBGBCR1_EL1:
592 case HV_SYS_REG_DBGWVR1_EL1:
593 case HV_SYS_REG_DBGWCR1_EL1:
594 case HV_SYS_REG_DBGBVR2_EL1:
595 case HV_SYS_REG_DBGBCR2_EL1:
596 case HV_SYS_REG_DBGWVR2_EL1:
597 case HV_SYS_REG_DBGWCR2_EL1:
598 case HV_SYS_REG_DBGBVR3_EL1:
599 case HV_SYS_REG_DBGBCR3_EL1:
600 case HV_SYS_REG_DBGWVR3_EL1:
601 case HV_SYS_REG_DBGWCR3_EL1:
602 case HV_SYS_REG_DBGBVR4_EL1:
603 case HV_SYS_REG_DBGBCR4_EL1:
604 case HV_SYS_REG_DBGWVR4_EL1:
605 case HV_SYS_REG_DBGWCR4_EL1:
606 case HV_SYS_REG_DBGBVR5_EL1:
607 case HV_SYS_REG_DBGBCR5_EL1:
608 case HV_SYS_REG_DBGWVR5_EL1:
609 case HV_SYS_REG_DBGWCR5_EL1:
610 case HV_SYS_REG_DBGBVR6_EL1:
611 case HV_SYS_REG_DBGBCR6_EL1:
612 case HV_SYS_REG_DBGWVR6_EL1:
613 case HV_SYS_REG_DBGWCR6_EL1:
614 case HV_SYS_REG_DBGBVR7_EL1:
615 case HV_SYS_REG_DBGBCR7_EL1:
616 case HV_SYS_REG_DBGWVR7_EL1:
617 case HV_SYS_REG_DBGWCR7_EL1:
618 case HV_SYS_REG_DBGBVR8_EL1:
619 case HV_SYS_REG_DBGBCR8_EL1:
620 case HV_SYS_REG_DBGWVR8_EL1:
621 case HV_SYS_REG_DBGWCR8_EL1:
622 case HV_SYS_REG_DBGBVR9_EL1:
623 case HV_SYS_REG_DBGBCR9_EL1:
624 case HV_SYS_REG_DBGWVR9_EL1:
625 case HV_SYS_REG_DBGWCR9_EL1:
626 case HV_SYS_REG_DBGBVR10_EL1:
627 case HV_SYS_REG_DBGBCR10_EL1:
628 case HV_SYS_REG_DBGWVR10_EL1:
629 case HV_SYS_REG_DBGWCR10_EL1:
630 case HV_SYS_REG_DBGBVR11_EL1:
631 case HV_SYS_REG_DBGBCR11_EL1:
632 case HV_SYS_REG_DBGWVR11_EL1:
633 case HV_SYS_REG_DBGWCR11_EL1:
634 case HV_SYS_REG_DBGBVR12_EL1:
635 case HV_SYS_REG_DBGBCR12_EL1:
636 case HV_SYS_REG_DBGWVR12_EL1:
637 case HV_SYS_REG_DBGWCR12_EL1:
638 case HV_SYS_REG_DBGBVR13_EL1:
639 case HV_SYS_REG_DBGBCR13_EL1:
640 case HV_SYS_REG_DBGWVR13_EL1:
641 case HV_SYS_REG_DBGWCR13_EL1:
642 case HV_SYS_REG_DBGBVR14_EL1:
643 case HV_SYS_REG_DBGBCR14_EL1:
644 case HV_SYS_REG_DBGWVR14_EL1:
645 case HV_SYS_REG_DBGWCR14_EL1:
646 case HV_SYS_REG_DBGBVR15_EL1:
647 case HV_SYS_REG_DBGBCR15_EL1:
648 case HV_SYS_REG_DBGWVR15_EL1:
649 case HV_SYS_REG_DBGWCR15_EL1: {
650 /*
651 * If the guest is being debugged, the vCPU's debug registers
652 * are holding the gdbstub's view of the registers (set in
653 * hvf_arch_update_guest_debug()).
654 * Since the environment is used to store only the guest's view
655 * of the registers, don't update it with the values from the
656 * vCPU but simply keep the values from the previous
657 * environment.
658 */
659 const ARMCPRegInfo *ri;
660 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_sreg_match[i].key);
661 val = read_raw_cp_reg(env, ri);
662
663 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
664 continue;
665 }
666 }
667 }
668
3b295bcb 669 ret = hv_vcpu_get_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, &val);
a1477da3
AG
670 assert_hvf_ok(ret);
671
672 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
673 }
674 assert(write_list_to_cpustate(arm_cpu));
675
676 aarch64_restore_sp(env, arm_current_el(env));
677
678 return 0;
679}
680
681int hvf_put_registers(CPUState *cpu)
682{
683 ARMCPU *arm_cpu = ARM_CPU(cpu);
684 CPUARMState *env = &arm_cpu->env;
685 hv_return_t ret;
686 uint64_t val;
687 hv_simd_fp_uchar16_t fpval;
688 int i;
689
690 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
691 val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
3b295bcb 692 ret = hv_vcpu_set_reg(cpu->accel->fd, hvf_reg_match[i].reg, val);
a1477da3
AG
693 assert_hvf_ok(ret);
694 }
695
696 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
697 memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
3b295bcb 698 ret = hv_vcpu_set_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
a1477da3
AG
699 fpval);
700 assert_hvf_ok(ret);
701 }
702
3b295bcb 703 ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPCR, vfp_get_fpcr(env));
a1477da3
AG
704 assert_hvf_ok(ret);
705
3b295bcb 706 ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPSR, vfp_get_fpsr(env));
a1477da3
AG
707 assert_hvf_ok(ret);
708
3b295bcb 709 ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_CPSR, pstate_read(env));
a1477da3
AG
710 assert_hvf_ok(ret);
711
712 aarch64_save_sp(env, arm_current_el(env));
713
714 assert(write_cpustate_to_list(arm_cpu, false));
715 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
716 if (hvf_sreg_match[i].cp_idx == -1) {
717 continue;
718 }
719
3b295bcb 720 if (cpu->accel->guest_debug_enabled) {
eb2edc42
FC
721 /* Handle debug registers */
722 switch (hvf_sreg_match[i].reg) {
723 case HV_SYS_REG_DBGBVR0_EL1:
724 case HV_SYS_REG_DBGBCR0_EL1:
725 case HV_SYS_REG_DBGWVR0_EL1:
726 case HV_SYS_REG_DBGWCR0_EL1:
727 case HV_SYS_REG_DBGBVR1_EL1:
728 case HV_SYS_REG_DBGBCR1_EL1:
729 case HV_SYS_REG_DBGWVR1_EL1:
730 case HV_SYS_REG_DBGWCR1_EL1:
731 case HV_SYS_REG_DBGBVR2_EL1:
732 case HV_SYS_REG_DBGBCR2_EL1:
733 case HV_SYS_REG_DBGWVR2_EL1:
734 case HV_SYS_REG_DBGWCR2_EL1:
735 case HV_SYS_REG_DBGBVR3_EL1:
736 case HV_SYS_REG_DBGBCR3_EL1:
737 case HV_SYS_REG_DBGWVR3_EL1:
738 case HV_SYS_REG_DBGWCR3_EL1:
739 case HV_SYS_REG_DBGBVR4_EL1:
740 case HV_SYS_REG_DBGBCR4_EL1:
741 case HV_SYS_REG_DBGWVR4_EL1:
742 case HV_SYS_REG_DBGWCR4_EL1:
743 case HV_SYS_REG_DBGBVR5_EL1:
744 case HV_SYS_REG_DBGBCR5_EL1:
745 case HV_SYS_REG_DBGWVR5_EL1:
746 case HV_SYS_REG_DBGWCR5_EL1:
747 case HV_SYS_REG_DBGBVR6_EL1:
748 case HV_SYS_REG_DBGBCR6_EL1:
749 case HV_SYS_REG_DBGWVR6_EL1:
750 case HV_SYS_REG_DBGWCR6_EL1:
751 case HV_SYS_REG_DBGBVR7_EL1:
752 case HV_SYS_REG_DBGBCR7_EL1:
753 case HV_SYS_REG_DBGWVR7_EL1:
754 case HV_SYS_REG_DBGWCR7_EL1:
755 case HV_SYS_REG_DBGBVR8_EL1:
756 case HV_SYS_REG_DBGBCR8_EL1:
757 case HV_SYS_REG_DBGWVR8_EL1:
758 case HV_SYS_REG_DBGWCR8_EL1:
759 case HV_SYS_REG_DBGBVR9_EL1:
760 case HV_SYS_REG_DBGBCR9_EL1:
761 case HV_SYS_REG_DBGWVR9_EL1:
762 case HV_SYS_REG_DBGWCR9_EL1:
763 case HV_SYS_REG_DBGBVR10_EL1:
764 case HV_SYS_REG_DBGBCR10_EL1:
765 case HV_SYS_REG_DBGWVR10_EL1:
766 case HV_SYS_REG_DBGWCR10_EL1:
767 case HV_SYS_REG_DBGBVR11_EL1:
768 case HV_SYS_REG_DBGBCR11_EL1:
769 case HV_SYS_REG_DBGWVR11_EL1:
770 case HV_SYS_REG_DBGWCR11_EL1:
771 case HV_SYS_REG_DBGBVR12_EL1:
772 case HV_SYS_REG_DBGBCR12_EL1:
773 case HV_SYS_REG_DBGWVR12_EL1:
774 case HV_SYS_REG_DBGWCR12_EL1:
775 case HV_SYS_REG_DBGBVR13_EL1:
776 case HV_SYS_REG_DBGBCR13_EL1:
777 case HV_SYS_REG_DBGWVR13_EL1:
778 case HV_SYS_REG_DBGWCR13_EL1:
779 case HV_SYS_REG_DBGBVR14_EL1:
780 case HV_SYS_REG_DBGBCR14_EL1:
781 case HV_SYS_REG_DBGWVR14_EL1:
782 case HV_SYS_REG_DBGWCR14_EL1:
783 case HV_SYS_REG_DBGBVR15_EL1:
784 case HV_SYS_REG_DBGBCR15_EL1:
785 case HV_SYS_REG_DBGWVR15_EL1:
786 case HV_SYS_REG_DBGWCR15_EL1:
787 /*
788 * If the guest is being debugged, the vCPU's debug registers
789 * are already holding the gdbstub's view of the registers (set
790 * in hvf_arch_update_guest_debug()).
791 */
792 continue;
793 }
794 }
795
a1477da3 796 val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
3b295bcb 797 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, val);
a1477da3
AG
798 assert_hvf_ok(ret);
799 }
800
3b295bcb 801 ret = hv_vcpu_set_vtimer_offset(cpu->accel->fd, hvf_state->vtimer_offset);
a1477da3
AG
802 assert_hvf_ok(ret);
803
804 return 0;
805}
806
807static void flush_cpu_state(CPUState *cpu)
808{
809 if (cpu->vcpu_dirty) {
810 hvf_put_registers(cpu);
811 cpu->vcpu_dirty = false;
812 }
813}
814
815static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
816{
817 hv_return_t r;
818
819 flush_cpu_state(cpu);
820
821 if (rt < 31) {
3b295bcb 822 r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_X0 + rt, val);
a1477da3
AG
823 assert_hvf_ok(r);
824 }
825}
826
827static uint64_t hvf_get_reg(CPUState *cpu, int rt)
828{
829 uint64_t val = 0;
830 hv_return_t r;
831
832 flush_cpu_state(cpu);
833
834 if (rt < 31) {
3b295bcb 835 r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_X0 + rt, &val);
a1477da3
AG
836 assert_hvf_ok(r);
837 }
838
839 return val;
840}
841
585df85e
PM
842static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
843{
844 ARMISARegisters host_isar = {};
845 const struct isar_regs {
846 int reg;
847 uint64_t *val;
848 } regs[] = {
849 { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
850 { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
851 { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
852 { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
853 { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
854 { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
a969fe97 855 /* Add ID_AA64ISAR2_EL1 here when HVF supports it */
585df85e
PM
856 { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
857 { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
858 { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
859 };
860 hv_vcpu_t fd;
861 hv_return_t r = HV_SUCCESS;
862 hv_vcpu_exit_t *exit;
863 int i;
864
865 ahcf->dtb_compatible = "arm,arm-v8";
866 ahcf->features = (1ULL << ARM_FEATURE_V8) |
867 (1ULL << ARM_FEATURE_NEON) |
868 (1ULL << ARM_FEATURE_AARCH64) |
869 (1ULL << ARM_FEATURE_PMU) |
870 (1ULL << ARM_FEATURE_GENERIC_TIMER);
871
872 /* We set up a small vcpu to extract host registers */
873
874 if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
875 return false;
876 }
877
878 for (i = 0; i < ARRAY_SIZE(regs); i++) {
879 r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
880 }
881 r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
882 r |= hv_vcpu_destroy(fd);
883
884 ahcf->isar = host_isar;
885
886 /*
887 * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
888 * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
889 */
890 ahcf->reset_sctlr = 0x30100180;
891 /*
892 * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
893 * let's disable it on boot and then allow guest software to turn it on by
894 * setting it to 0.
895 */
896 ahcf->reset_sctlr |= 0x00800000;
897
898 /* Make sure we don't advertise AArch32 support for EL0/EL1 */
899 if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
900 return false;
901 }
902
903 return r == HV_SUCCESS;
904}
905
906void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
907{
908 if (!arm_host_cpu_features.dtb_compatible) {
909 if (!hvf_enabled() ||
910 !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
911 /*
912 * We can't report this error yet, so flag that we need to
913 * in arm_cpu_realizefn().
914 */
915 cpu->host_cpu_probe_failed = true;
916 return;
917 }
918 }
919
920 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
921 cpu->isar = arm_host_cpu_features.isar;
922 cpu->env.features = arm_host_cpu_features.features;
923 cpu->midr = arm_host_cpu_features.midr;
924 cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
925}
926
a1477da3
AG
927void hvf_arch_vcpu_destroy(CPUState *cpu)
928{
929}
930
931int hvf_arch_init_vcpu(CPUState *cpu)
932{
933 ARMCPU *arm_cpu = ARM_CPU(cpu);
934 CPUARMState *env = &arm_cpu->env;
935 uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
936 uint32_t sregs_cnt = 0;
937 uint64_t pfr;
938 hv_return_t ret;
939 int i;
940
53221552 941 env->aarch64 = true;
a1477da3
AG
942 asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
943
944 /* Allocate enough space for our sysreg sync */
945 arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
946 sregs_match_len);
947 arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
948 sregs_match_len);
949 arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
950 arm_cpu->cpreg_vmstate_indexes,
951 sregs_match_len);
952 arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
953 arm_cpu->cpreg_vmstate_values,
954 sregs_match_len);
955
956 memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
957
958 /* Populate cp list for all known sysregs */
959 for (i = 0; i < sregs_match_len; i++) {
960 const ARMCPRegInfo *ri;
961 uint32_t key = hvf_sreg_match[i].key;
962
963 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
964 if (ri) {
965 assert(!(ri->type & ARM_CP_NO_RAW));
966 hvf_sreg_match[i].cp_idx = sregs_cnt;
967 arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
968 } else {
969 hvf_sreg_match[i].cp_idx = -1;
970 }
971 }
972 arm_cpu->cpreg_array_len = sregs_cnt;
973 arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
974
975 assert(write_cpustate_to_list(arm_cpu, false));
976
977 /* Set CP_NO_RAW system registers on init */
3b295bcb 978 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MIDR_EL1,
a1477da3
AG
979 arm_cpu->midr);
980 assert_hvf_ok(ret);
981
3b295bcb 982 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MPIDR_EL1,
a1477da3
AG
983 arm_cpu->mp_affinity);
984 assert_hvf_ok(ret);
985
3b295bcb 986 ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
a1477da3
AG
987 assert_hvf_ok(ret);
988 pfr |= env->gicv3state ? (1 << 24) : 0;
3b295bcb 989 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
a1477da3
AG
990 assert_hvf_ok(ret);
991
992 /* We're limited to underlying hardware caps, override internal versions */
3b295bcb 993 ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
a1477da3
AG
994 &arm_cpu->isar.id_aa64mmfr0);
995 assert_hvf_ok(ret);
996
997 return 0;
998}
999
1000void hvf_kick_vcpu_thread(CPUState *cpu)
1001{
219c101f 1002 cpus_kick_thread(cpu);
3b295bcb 1003 hv_vcpus_exit(&cpu->accel->fd, 1);
a1477da3
AG
1004}
1005
1006static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
1007 uint32_t syndrome)
1008{
1009 ARMCPU *arm_cpu = ARM_CPU(cpu);
1010 CPUARMState *env = &arm_cpu->env;
1011
1012 cpu->exception_index = excp;
1013 env->exception.target_el = 1;
1014 env->exception.syndrome = syndrome;
1015
1016 arm_cpu_do_interrupt(cpu);
1017}
1018
2c9c0bf9
AG
1019static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
1020{
c4380f7b 1021 int32_t ret = arm_set_cpu_off(arm_cpu_mp_affinity(arm_cpu));
2c9c0bf9
AG
1022 assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
1023}
1024
1025/*
1026 * Handle a PSCI call.
1027 *
1028 * Returns 0 on success
1029 * -1 when the PSCI call is unknown,
1030 */
1031static bool hvf_handle_psci_call(CPUState *cpu)
1032{
1033 ARMCPU *arm_cpu = ARM_CPU(cpu);
1034 CPUARMState *env = &arm_cpu->env;
1035 uint64_t param[4] = {
1036 env->xregs[0],
1037 env->xregs[1],
1038 env->xregs[2],
1039 env->xregs[3]
1040 };
1041 uint64_t context_id, mpidr;
1042 bool target_aarch64 = true;
1043 CPUState *target_cpu_state;
1044 ARMCPU *target_cpu;
1045 target_ulong entry;
1046 int target_el = 1;
1047 int32_t ret = 0;
1048
1049 trace_hvf_psci_call(param[0], param[1], param[2], param[3],
c4380f7b 1050 arm_cpu_mp_affinity(arm_cpu));
2c9c0bf9
AG
1051
1052 switch (param[0]) {
1053 case QEMU_PSCI_0_2_FN_PSCI_VERSION:
0dc71c70 1054 ret = QEMU_PSCI_VERSION_1_1;
2c9c0bf9
AG
1055 break;
1056 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
1057 ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
1058 break;
1059 case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
1060 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
1061 mpidr = param[1];
1062
1063 switch (param[2]) {
1064 case 0:
1065 target_cpu_state = arm_get_cpu_by_id(mpidr);
1066 if (!target_cpu_state) {
1067 ret = QEMU_PSCI_RET_INVALID_PARAMS;
1068 break;
1069 }
1070 target_cpu = ARM_CPU(target_cpu_state);
1071
1072 ret = target_cpu->power_state;
1073 break;
1074 default:
1075 /* Everything above affinity level 0 is always on. */
1076 ret = 0;
1077 }
1078 break;
1079 case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
1080 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1081 /*
1082 * QEMU reset and shutdown are async requests, but PSCI
1083 * mandates that we never return from the reset/shutdown
1084 * call, so power the CPU off now so it doesn't execute
1085 * anything further.
1086 */
1087 hvf_psci_cpu_off(arm_cpu);
1088 break;
1089 case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
1090 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1091 hvf_psci_cpu_off(arm_cpu);
1092 break;
1093 case QEMU_PSCI_0_1_FN_CPU_ON:
1094 case QEMU_PSCI_0_2_FN_CPU_ON:
1095 case QEMU_PSCI_0_2_FN64_CPU_ON:
1096 mpidr = param[1];
1097 entry = param[2];
1098 context_id = param[3];
1099 ret = arm_set_cpu_on(mpidr, entry, context_id,
1100 target_el, target_aarch64);
1101 break;
1102 case QEMU_PSCI_0_1_FN_CPU_OFF:
1103 case QEMU_PSCI_0_2_FN_CPU_OFF:
1104 hvf_psci_cpu_off(arm_cpu);
1105 break;
1106 case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
1107 case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
1108 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
1109 /* Affinity levels are not supported in QEMU */
1110 if (param[1] & 0xfffe0000) {
1111 ret = QEMU_PSCI_RET_INVALID_PARAMS;
1112 break;
1113 }
1114 /* Powerdown is not supported, we always go into WFI */
1115 env->xregs[0] = 0;
1116 hvf_wfi(cpu);
1117 break;
1118 case QEMU_PSCI_0_1_FN_MIGRATE:
1119 case QEMU_PSCI_0_2_FN_MIGRATE:
1120 ret = QEMU_PSCI_RET_NOT_SUPPORTED;
1121 break;
0dc71c70
AO
1122 case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
1123 switch (param[1]) {
1124 case QEMU_PSCI_0_2_FN_PSCI_VERSION:
1125 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
1126 case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
1127 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
1128 case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
1129 case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
1130 case QEMU_PSCI_0_1_FN_CPU_ON:
1131 case QEMU_PSCI_0_2_FN_CPU_ON:
1132 case QEMU_PSCI_0_2_FN64_CPU_ON:
1133 case QEMU_PSCI_0_1_FN_CPU_OFF:
1134 case QEMU_PSCI_0_2_FN_CPU_OFF:
1135 case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
1136 case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
1137 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
1138 case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
1139 ret = 0;
1140 break;
1141 case QEMU_PSCI_0_1_FN_MIGRATE:
1142 case QEMU_PSCI_0_2_FN_MIGRATE:
1143 default:
1144 ret = QEMU_PSCI_RET_NOT_SUPPORTED;
1145 }
1146 break;
2c9c0bf9
AG
1147 default:
1148 return false;
1149 }
1150
1151 env->xregs[0] = ret;
1152 return true;
1153}
1154
7f6c295c
AG
1155static bool is_id_sysreg(uint32_t reg)
1156{
1157 return SYSREG_OP0(reg) == 3 &&
1158 SYSREG_OP1(reg) == 0 &&
1159 SYSREG_CRN(reg) == 0 &&
1160 SYSREG_CRM(reg) >= 1 &&
1161 SYSREG_CRM(reg) < 8;
1162}
1163
a2260983
AG
1164static uint32_t hvf_reg2cp_reg(uint32_t reg)
1165{
1166 return ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1167 (reg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK,
1168 (reg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK,
1169 (reg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK,
1170 (reg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK,
1171 (reg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK);
1172}
1173
1174static bool hvf_sysreg_read_cp(CPUState *cpu, uint32_t reg, uint64_t *val)
1175{
1176 ARMCPU *arm_cpu = ARM_CPU(cpu);
1177 CPUARMState *env = &arm_cpu->env;
1178 const ARMCPRegInfo *ri;
1179
1180 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1181 if (ri) {
1182 if (ri->accessfn) {
1183 if (ri->accessfn(env, ri, true) != CP_ACCESS_OK) {
1184 return false;
1185 }
1186 }
1187 if (ri->type & ARM_CP_CONST) {
1188 *val = ri->resetvalue;
1189 } else if (ri->readfn) {
1190 *val = ri->readfn(env, ri);
1191 } else {
1192 *val = CPREG_FIELD64(env, ri);
1193 }
1194 trace_hvf_vgic_read(ri->name, *val);
1195 return true;
1196 }
1197
1198 return false;
1199}
1200
a1477da3
AG
1201static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt)
1202{
1203 ARMCPU *arm_cpu = ARM_CPU(cpu);
1204 CPUARMState *env = &arm_cpu->env;
1205 uint64_t val = 0;
1206
1207 switch (reg) {
1208 case SYSREG_CNTPCT_EL0:
1209 val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
1210 gt_cntfrq_period_ns(arm_cpu);
1211 break;
dd43ac07
AG
1212 case SYSREG_PMCR_EL0:
1213 val = env->cp15.c9_pmcr;
1214 break;
1215 case SYSREG_PMCCNTR_EL0:
1216 pmu_op_start(env);
1217 val = env->cp15.c15_ccnt;
1218 pmu_op_finish(env);
1219 break;
1220 case SYSREG_PMCNTENCLR_EL0:
1221 val = env->cp15.c9_pmcnten;
1222 break;
1223 case SYSREG_PMOVSCLR_EL0:
1224 val = env->cp15.c9_pmovsr;
1225 break;
1226 case SYSREG_PMSELR_EL0:
1227 val = env->cp15.c9_pmselr;
1228 break;
1229 case SYSREG_PMINTENCLR_EL1:
1230 val = env->cp15.c9_pminten;
1231 break;
1232 case SYSREG_PMCCFILTR_EL0:
1233 val = env->cp15.pmccfiltr_el0;
1234 break;
1235 case SYSREG_PMCNTENSET_EL0:
1236 val = env->cp15.c9_pmcnten;
1237 break;
1238 case SYSREG_PMUSERENR_EL0:
1239 val = env->cp15.c9_pmuserenr;
1240 break;
1241 case SYSREG_PMCEID0_EL0:
1242 case SYSREG_PMCEID1_EL0:
1243 /* We can't really count anything yet, declare all events invalid */
1244 val = 0;
1245 break;
a1477da3
AG
1246 case SYSREG_OSLSR_EL1:
1247 val = env->cp15.oslsr_el1;
1248 break;
1249 case SYSREG_OSDLR_EL1:
1250 /* Dummy register */
1251 break;
a2260983
AG
1252 case SYSREG_ICC_AP0R0_EL1:
1253 case SYSREG_ICC_AP0R1_EL1:
1254 case SYSREG_ICC_AP0R2_EL1:
1255 case SYSREG_ICC_AP0R3_EL1:
1256 case SYSREG_ICC_AP1R0_EL1:
1257 case SYSREG_ICC_AP1R1_EL1:
1258 case SYSREG_ICC_AP1R2_EL1:
1259 case SYSREG_ICC_AP1R3_EL1:
1260 case SYSREG_ICC_ASGI1R_EL1:
1261 case SYSREG_ICC_BPR0_EL1:
1262 case SYSREG_ICC_BPR1_EL1:
1263 case SYSREG_ICC_DIR_EL1:
1264 case SYSREG_ICC_EOIR0_EL1:
1265 case SYSREG_ICC_EOIR1_EL1:
1266 case SYSREG_ICC_HPPIR0_EL1:
1267 case SYSREG_ICC_HPPIR1_EL1:
1268 case SYSREG_ICC_IAR0_EL1:
1269 case SYSREG_ICC_IAR1_EL1:
1270 case SYSREG_ICC_IGRPEN0_EL1:
1271 case SYSREG_ICC_IGRPEN1_EL1:
1272 case SYSREG_ICC_PMR_EL1:
1273 case SYSREG_ICC_SGI0R_EL1:
1274 case SYSREG_ICC_SGI1R_EL1:
1275 case SYSREG_ICC_SRE_EL1:
1276 case SYSREG_ICC_CTLR_EL1:
1277 /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1278 if (!hvf_sysreg_read_cp(cpu, reg, &val)) {
1279 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1280 }
1281 break;
ce799a04
FC
1282 case SYSREG_DBGBVR0_EL1:
1283 case SYSREG_DBGBVR1_EL1:
1284 case SYSREG_DBGBVR2_EL1:
1285 case SYSREG_DBGBVR3_EL1:
1286 case SYSREG_DBGBVR4_EL1:
1287 case SYSREG_DBGBVR5_EL1:
1288 case SYSREG_DBGBVR6_EL1:
1289 case SYSREG_DBGBVR7_EL1:
1290 case SYSREG_DBGBVR8_EL1:
1291 case SYSREG_DBGBVR9_EL1:
1292 case SYSREG_DBGBVR10_EL1:
1293 case SYSREG_DBGBVR11_EL1:
1294 case SYSREG_DBGBVR12_EL1:
1295 case SYSREG_DBGBVR13_EL1:
1296 case SYSREG_DBGBVR14_EL1:
1297 case SYSREG_DBGBVR15_EL1:
1298 val = env->cp15.dbgbvr[SYSREG_CRM(reg)];
1299 break;
1300 case SYSREG_DBGBCR0_EL1:
1301 case SYSREG_DBGBCR1_EL1:
1302 case SYSREG_DBGBCR2_EL1:
1303 case SYSREG_DBGBCR3_EL1:
1304 case SYSREG_DBGBCR4_EL1:
1305 case SYSREG_DBGBCR5_EL1:
1306 case SYSREG_DBGBCR6_EL1:
1307 case SYSREG_DBGBCR7_EL1:
1308 case SYSREG_DBGBCR8_EL1:
1309 case SYSREG_DBGBCR9_EL1:
1310 case SYSREG_DBGBCR10_EL1:
1311 case SYSREG_DBGBCR11_EL1:
1312 case SYSREG_DBGBCR12_EL1:
1313 case SYSREG_DBGBCR13_EL1:
1314 case SYSREG_DBGBCR14_EL1:
1315 case SYSREG_DBGBCR15_EL1:
1316 val = env->cp15.dbgbcr[SYSREG_CRM(reg)];
1317 break;
1318 case SYSREG_DBGWVR0_EL1:
1319 case SYSREG_DBGWVR1_EL1:
1320 case SYSREG_DBGWVR2_EL1:
1321 case SYSREG_DBGWVR3_EL1:
1322 case SYSREG_DBGWVR4_EL1:
1323 case SYSREG_DBGWVR5_EL1:
1324 case SYSREG_DBGWVR6_EL1:
1325 case SYSREG_DBGWVR7_EL1:
1326 case SYSREG_DBGWVR8_EL1:
1327 case SYSREG_DBGWVR9_EL1:
1328 case SYSREG_DBGWVR10_EL1:
1329 case SYSREG_DBGWVR11_EL1:
1330 case SYSREG_DBGWVR12_EL1:
1331 case SYSREG_DBGWVR13_EL1:
1332 case SYSREG_DBGWVR14_EL1:
1333 case SYSREG_DBGWVR15_EL1:
1334 val = env->cp15.dbgwvr[SYSREG_CRM(reg)];
1335 break;
1336 case SYSREG_DBGWCR0_EL1:
1337 case SYSREG_DBGWCR1_EL1:
1338 case SYSREG_DBGWCR2_EL1:
1339 case SYSREG_DBGWCR3_EL1:
1340 case SYSREG_DBGWCR4_EL1:
1341 case SYSREG_DBGWCR5_EL1:
1342 case SYSREG_DBGWCR6_EL1:
1343 case SYSREG_DBGWCR7_EL1:
1344 case SYSREG_DBGWCR8_EL1:
1345 case SYSREG_DBGWCR9_EL1:
1346 case SYSREG_DBGWCR10_EL1:
1347 case SYSREG_DBGWCR11_EL1:
1348 case SYSREG_DBGWCR12_EL1:
1349 case SYSREG_DBGWCR13_EL1:
1350 case SYSREG_DBGWCR14_EL1:
1351 case SYSREG_DBGWCR15_EL1:
1352 val = env->cp15.dbgwcr[SYSREG_CRM(reg)];
1353 break;
a1477da3 1354 default:
7f6c295c
AG
1355 if (is_id_sysreg(reg)) {
1356 /* ID system registers read as RES0 */
1357 val = 0;
1358 break;
1359 }
a1477da3
AG
1360 cpu_synchronize_state(cpu);
1361 trace_hvf_unhandled_sysreg_read(env->pc, reg,
ad99f64f
AG
1362 SYSREG_OP0(reg),
1363 SYSREG_OP1(reg),
1364 SYSREG_CRN(reg),
1365 SYSREG_CRM(reg),
1366 SYSREG_OP2(reg));
a1477da3
AG
1367 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1368 return 1;
1369 }
1370
1371 trace_hvf_sysreg_read(reg,
ad99f64f
AG
1372 SYSREG_OP0(reg),
1373 SYSREG_OP1(reg),
1374 SYSREG_CRN(reg),
1375 SYSREG_CRM(reg),
1376 SYSREG_OP2(reg),
a1477da3
AG
1377 val);
1378 hvf_set_reg(cpu, rt, val);
1379
1380 return 0;
1381}
1382
dd43ac07
AG
1383static void pmu_update_irq(CPUARMState *env)
1384{
1385 ARMCPU *cpu = env_archcpu(env);
1386 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1387 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1388}
1389
1390static bool pmu_event_supported(uint16_t number)
1391{
1392 return false;
1393}
1394
1395/* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1396 * the current EL, security state, and register configuration.
1397 */
1398static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1399{
1400 uint64_t filter;
1401 bool enabled, filtered = true;
1402 int el = arm_current_el(env);
1403
1404 enabled = (env->cp15.c9_pmcr & PMCRE) &&
1405 (env->cp15.c9_pmcnten & (1 << counter));
1406
1407 if (counter == 31) {
1408 filter = env->cp15.pmccfiltr_el0;
1409 } else {
1410 filter = env->cp15.c14_pmevtyper[counter];
1411 }
1412
1413 if (el == 0) {
1414 filtered = filter & PMXEVTYPER_U;
1415 } else if (el == 1) {
1416 filtered = filter & PMXEVTYPER_P;
1417 }
1418
1419 if (counter != 31) {
1420 /*
1421 * If not checking PMCCNTR, ensure the counter is setup to an event we
1422 * support
1423 */
1424 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1425 if (!pmu_event_supported(event)) {
1426 return false;
1427 }
1428 }
1429
1430 return enabled && !filtered;
1431}
1432
1433static void pmswinc_write(CPUARMState *env, uint64_t value)
1434{
1435 unsigned int i;
1436 for (i = 0; i < pmu_num_counters(env); i++) {
1437 /* Increment a counter's count iff: */
1438 if ((value & (1 << i)) && /* counter's bit is set */
1439 /* counter is enabled and not filtered */
1440 pmu_counter_enabled(env, i) &&
1441 /* counter is SW_INCR */
1442 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1443 /*
1444 * Detect if this write causes an overflow since we can't predict
1445 * PMSWINC overflows like we can for other events
1446 */
1447 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1448
1449 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1450 env->cp15.c9_pmovsr |= (1 << i);
1451 pmu_update_irq(env);
1452 }
1453
1454 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1455 }
1456 }
1457}
1458
a2260983
AG
1459static bool hvf_sysreg_write_cp(CPUState *cpu, uint32_t reg, uint64_t val)
1460{
1461 ARMCPU *arm_cpu = ARM_CPU(cpu);
1462 CPUARMState *env = &arm_cpu->env;
1463 const ARMCPRegInfo *ri;
1464
1465 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1466
1467 if (ri) {
1468 if (ri->accessfn) {
1469 if (ri->accessfn(env, ri, false) != CP_ACCESS_OK) {
1470 return false;
1471 }
1472 }
1473 if (ri->writefn) {
1474 ri->writefn(env, ri, val);
1475 } else {
1476 CPREG_FIELD64(env, ri) = val;
1477 }
1478
1479 trace_hvf_vgic_write(ri->name, val);
1480 return true;
1481 }
1482
1483 return false;
1484}
1485
a1477da3
AG
1486static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
1487{
1488 ARMCPU *arm_cpu = ARM_CPU(cpu);
1489 CPUARMState *env = &arm_cpu->env;
1490
1491 trace_hvf_sysreg_write(reg,
ad99f64f
AG
1492 SYSREG_OP0(reg),
1493 SYSREG_OP1(reg),
1494 SYSREG_CRN(reg),
1495 SYSREG_CRM(reg),
1496 SYSREG_OP2(reg),
a1477da3
AG
1497 val);
1498
1499 switch (reg) {
dd43ac07
AG
1500 case SYSREG_PMCCNTR_EL0:
1501 pmu_op_start(env);
1502 env->cp15.c15_ccnt = val;
1503 pmu_op_finish(env);
1504 break;
1505 case SYSREG_PMCR_EL0:
1506 pmu_op_start(env);
1507
1508 if (val & PMCRC) {
1509 /* The counter has been reset */
1510 env->cp15.c15_ccnt = 0;
1511 }
1512
1513 if (val & PMCRP) {
1514 unsigned int i;
1515 for (i = 0; i < pmu_num_counters(env); i++) {
1516 env->cp15.c14_pmevcntr[i] = 0;
1517 }
1518 }
1519
9323e79f
PM
1520 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1521 env->cp15.c9_pmcr |= (val & PMCR_WRITABLE_MASK);
dd43ac07
AG
1522
1523 pmu_op_finish(env);
1524 break;
1525 case SYSREG_PMUSERENR_EL0:
1526 env->cp15.c9_pmuserenr = val & 0xf;
1527 break;
1528 case SYSREG_PMCNTENSET_EL0:
1529 env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
1530 break;
1531 case SYSREG_PMCNTENCLR_EL0:
1532 env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
1533 break;
1534 case SYSREG_PMINTENCLR_EL1:
1535 pmu_op_start(env);
1536 env->cp15.c9_pminten |= val;
1537 pmu_op_finish(env);
1538 break;
1539 case SYSREG_PMOVSCLR_EL0:
1540 pmu_op_start(env);
1541 env->cp15.c9_pmovsr &= ~val;
1542 pmu_op_finish(env);
1543 break;
1544 case SYSREG_PMSWINC_EL0:
1545 pmu_op_start(env);
1546 pmswinc_write(env, val);
1547 pmu_op_finish(env);
1548 break;
1549 case SYSREG_PMSELR_EL0:
1550 env->cp15.c9_pmselr = val & 0x1f;
1551 break;
1552 case SYSREG_PMCCFILTR_EL0:
1553 pmu_op_start(env);
1554 env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
1555 pmu_op_finish(env);
1556 break;
a1477da3
AG
1557 case SYSREG_OSLAR_EL1:
1558 env->cp15.oslsr_el1 = val & 1;
1559 break;
1560 case SYSREG_OSDLR_EL1:
1561 /* Dummy register */
1562 break;
a2260983
AG
1563 case SYSREG_ICC_AP0R0_EL1:
1564 case SYSREG_ICC_AP0R1_EL1:
1565 case SYSREG_ICC_AP0R2_EL1:
1566 case SYSREG_ICC_AP0R3_EL1:
1567 case SYSREG_ICC_AP1R0_EL1:
1568 case SYSREG_ICC_AP1R1_EL1:
1569 case SYSREG_ICC_AP1R2_EL1:
1570 case SYSREG_ICC_AP1R3_EL1:
1571 case SYSREG_ICC_ASGI1R_EL1:
1572 case SYSREG_ICC_BPR0_EL1:
1573 case SYSREG_ICC_BPR1_EL1:
1574 case SYSREG_ICC_CTLR_EL1:
1575 case SYSREG_ICC_DIR_EL1:
1576 case SYSREG_ICC_EOIR0_EL1:
1577 case SYSREG_ICC_EOIR1_EL1:
1578 case SYSREG_ICC_HPPIR0_EL1:
1579 case SYSREG_ICC_HPPIR1_EL1:
1580 case SYSREG_ICC_IAR0_EL1:
1581 case SYSREG_ICC_IAR1_EL1:
1582 case SYSREG_ICC_IGRPEN0_EL1:
1583 case SYSREG_ICC_IGRPEN1_EL1:
1584 case SYSREG_ICC_PMR_EL1:
1585 case SYSREG_ICC_SGI0R_EL1:
1586 case SYSREG_ICC_SGI1R_EL1:
1587 case SYSREG_ICC_SRE_EL1:
1588 /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1589 if (!hvf_sysreg_write_cp(cpu, reg, val)) {
1590 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1591 }
1592 break;
ce799a04
FC
1593 case SYSREG_MDSCR_EL1:
1594 env->cp15.mdscr_el1 = val;
1595 break;
1596 case SYSREG_DBGBVR0_EL1:
1597 case SYSREG_DBGBVR1_EL1:
1598 case SYSREG_DBGBVR2_EL1:
1599 case SYSREG_DBGBVR3_EL1:
1600 case SYSREG_DBGBVR4_EL1:
1601 case SYSREG_DBGBVR5_EL1:
1602 case SYSREG_DBGBVR6_EL1:
1603 case SYSREG_DBGBVR7_EL1:
1604 case SYSREG_DBGBVR8_EL1:
1605 case SYSREG_DBGBVR9_EL1:
1606 case SYSREG_DBGBVR10_EL1:
1607 case SYSREG_DBGBVR11_EL1:
1608 case SYSREG_DBGBVR12_EL1:
1609 case SYSREG_DBGBVR13_EL1:
1610 case SYSREG_DBGBVR14_EL1:
1611 case SYSREG_DBGBVR15_EL1:
1612 env->cp15.dbgbvr[SYSREG_CRM(reg)] = val;
1613 break;
1614 case SYSREG_DBGBCR0_EL1:
1615 case SYSREG_DBGBCR1_EL1:
1616 case SYSREG_DBGBCR2_EL1:
1617 case SYSREG_DBGBCR3_EL1:
1618 case SYSREG_DBGBCR4_EL1:
1619 case SYSREG_DBGBCR5_EL1:
1620 case SYSREG_DBGBCR6_EL1:
1621 case SYSREG_DBGBCR7_EL1:
1622 case SYSREG_DBGBCR8_EL1:
1623 case SYSREG_DBGBCR9_EL1:
1624 case SYSREG_DBGBCR10_EL1:
1625 case SYSREG_DBGBCR11_EL1:
1626 case SYSREG_DBGBCR12_EL1:
1627 case SYSREG_DBGBCR13_EL1:
1628 case SYSREG_DBGBCR14_EL1:
1629 case SYSREG_DBGBCR15_EL1:
1630 env->cp15.dbgbcr[SYSREG_CRM(reg)] = val;
1631 break;
1632 case SYSREG_DBGWVR0_EL1:
1633 case SYSREG_DBGWVR1_EL1:
1634 case SYSREG_DBGWVR2_EL1:
1635 case SYSREG_DBGWVR3_EL1:
1636 case SYSREG_DBGWVR4_EL1:
1637 case SYSREG_DBGWVR5_EL1:
1638 case SYSREG_DBGWVR6_EL1:
1639 case SYSREG_DBGWVR7_EL1:
1640 case SYSREG_DBGWVR8_EL1:
1641 case SYSREG_DBGWVR9_EL1:
1642 case SYSREG_DBGWVR10_EL1:
1643 case SYSREG_DBGWVR11_EL1:
1644 case SYSREG_DBGWVR12_EL1:
1645 case SYSREG_DBGWVR13_EL1:
1646 case SYSREG_DBGWVR14_EL1:
1647 case SYSREG_DBGWVR15_EL1:
1648 env->cp15.dbgwvr[SYSREG_CRM(reg)] = val;
1649 break;
1650 case SYSREG_DBGWCR0_EL1:
1651 case SYSREG_DBGWCR1_EL1:
1652 case SYSREG_DBGWCR2_EL1:
1653 case SYSREG_DBGWCR3_EL1:
1654 case SYSREG_DBGWCR4_EL1:
1655 case SYSREG_DBGWCR5_EL1:
1656 case SYSREG_DBGWCR6_EL1:
1657 case SYSREG_DBGWCR7_EL1:
1658 case SYSREG_DBGWCR8_EL1:
1659 case SYSREG_DBGWCR9_EL1:
1660 case SYSREG_DBGWCR10_EL1:
1661 case SYSREG_DBGWCR11_EL1:
1662 case SYSREG_DBGWCR12_EL1:
1663 case SYSREG_DBGWCR13_EL1:
1664 case SYSREG_DBGWCR14_EL1:
1665 case SYSREG_DBGWCR15_EL1:
1666 env->cp15.dbgwcr[SYSREG_CRM(reg)] = val;
1667 break;
a1477da3
AG
1668 default:
1669 cpu_synchronize_state(cpu);
1670 trace_hvf_unhandled_sysreg_write(env->pc, reg,
ad99f64f
AG
1671 SYSREG_OP0(reg),
1672 SYSREG_OP1(reg),
1673 SYSREG_CRN(reg),
1674 SYSREG_CRM(reg),
1675 SYSREG_OP2(reg));
a1477da3
AG
1676 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1677 return 1;
1678 }
1679
1680 return 0;
1681}
1682
1683static int hvf_inject_interrupts(CPUState *cpu)
1684{
1685 if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
1686 trace_hvf_inject_fiq();
3b295bcb 1687 hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_FIQ,
a1477da3
AG
1688 true);
1689 }
1690
1691 if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
1692 trace_hvf_inject_irq();
3b295bcb 1693 hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_IRQ,
a1477da3
AG
1694 true);
1695 }
1696
1697 return 0;
1698}
1699
1700static uint64_t hvf_vtimer_val_raw(void)
1701{
1702 /*
1703 * mach_absolute_time() returns the vtimer value without the VM
1704 * offset that we define. Add our own offset on top.
1705 */
1706 return mach_absolute_time() - hvf_state->vtimer_offset;
1707}
1708
219c101f
PC
1709static uint64_t hvf_vtimer_val(void)
1710{
1711 if (!runstate_is_running()) {
1712 /* VM is paused, the vtimer value is in vtimer.vtimer_val */
1713 return vtimer.vtimer_val;
1714 }
1715
1716 return hvf_vtimer_val_raw();
1717}
1718
1719static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
1720{
1721 /*
1722 * Use pselect to sleep so that other threads can IPI us while we're
1723 * sleeping.
1724 */
06831001 1725 qatomic_set_mb(&cpu->thread_kicked, false);
195801d7 1726 bql_unlock();
3b295bcb 1727 pselect(0, 0, 0, 0, ts, &cpu->accel->unblock_ipi_mask);
195801d7 1728 bql_lock();
219c101f
PC
1729}
1730
1731static void hvf_wfi(CPUState *cpu)
1732{
1733 ARMCPU *arm_cpu = ARM_CPU(cpu);
1734 struct timespec ts;
1735 hv_return_t r;
1736 uint64_t ctl;
1737 uint64_t cval;
1738 int64_t ticks_to_sleep;
1739 uint64_t seconds;
1740 uint64_t nanos;
1741 uint32_t cntfrq;
1742
1743 if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
1744 /* Interrupt pending, no need to wait */
1745 return;
1746 }
1747
3b295bcb 1748 r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
219c101f
PC
1749 assert_hvf_ok(r);
1750
1751 if (!(ctl & 1) || (ctl & 2)) {
1752 /* Timer disabled or masked, just wait for an IPI. */
1753 hvf_wait_for_ipi(cpu, NULL);
1754 return;
1755 }
1756
3b295bcb 1757 r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
219c101f
PC
1758 assert_hvf_ok(r);
1759
1760 ticks_to_sleep = cval - hvf_vtimer_val();
1761 if (ticks_to_sleep < 0) {
1762 return;
1763 }
1764
1765 cntfrq = gt_cntfrq_period_ns(arm_cpu);
1766 seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
1767 ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
1768 nanos = ticks_to_sleep * cntfrq;
1769
1770 /*
1771 * Don't sleep for less than the time a context switch would take,
1772 * so that we can satisfy fast timer requests on the same CPU.
1773 * Measurements on M1 show the sweet spot to be ~2ms.
1774 */
1775 if (!seconds && nanos < (2 * SCALE_MS)) {
1776 return;
1777 }
1778
1779 ts = (struct timespec) { seconds, nanos };
1780 hvf_wait_for_ipi(cpu, &ts);
1781}
1782
a1477da3
AG
1783static void hvf_sync_vtimer(CPUState *cpu)
1784{
1785 ARMCPU *arm_cpu = ARM_CPU(cpu);
1786 hv_return_t r;
1787 uint64_t ctl;
1788 bool irq_state;
1789
3b295bcb 1790 if (!cpu->accel->vtimer_masked) {
a1477da3
AG
1791 /* We will get notified on vtimer changes by hvf, nothing to do */
1792 return;
1793 }
1794
3b295bcb 1795 r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
a1477da3
AG
1796 assert_hvf_ok(r);
1797
1798 irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
1799 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
1800 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
1801
1802 if (!irq_state) {
1803 /* Timer no longer asserting, we can unmask it */
3b295bcb
PMD
1804 hv_vcpu_set_vtimer_mask(cpu->accel->fd, false);
1805 cpu->accel->vtimer_masked = false;
a1477da3
AG
1806 }
1807}
1808
1809int hvf_vcpu_exec(CPUState *cpu)
1810{
1811 ARMCPU *arm_cpu = ARM_CPU(cpu);
1812 CPUARMState *env = &arm_cpu->env;
eb2edc42 1813 int ret;
3b295bcb 1814 hv_vcpu_exit_t *hvf_exit = cpu->accel->exit;
a1477da3
AG
1815 hv_return_t r;
1816 bool advance_pc = false;
1817
eb2edc42
FC
1818 if (!(cpu->singlestep_enabled & SSTEP_NOIRQ) &&
1819 hvf_inject_interrupts(cpu)) {
a1477da3
AG
1820 return EXCP_INTERRUPT;
1821 }
1822
1823 if (cpu->halted) {
1824 return EXCP_HLT;
1825 }
1826
1827 flush_cpu_state(cpu);
1828
195801d7 1829 bql_unlock();
3b295bcb 1830 assert_hvf_ok(hv_vcpu_run(cpu->accel->fd));
a1477da3
AG
1831
1832 /* handle VMEXIT */
1833 uint64_t exit_reason = hvf_exit->reason;
1834 uint64_t syndrome = hvf_exit->exception.syndrome;
1835 uint32_t ec = syn_get_ec(syndrome);
1836
eb2edc42 1837 ret = 0;
195801d7 1838 bql_lock();
a1477da3
AG
1839 switch (exit_reason) {
1840 case HV_EXIT_REASON_EXCEPTION:
1841 /* This is the main one, handle below. */
1842 break;
1843 case HV_EXIT_REASON_VTIMER_ACTIVATED:
1844 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
3b295bcb 1845 cpu->accel->vtimer_masked = true;
a1477da3
AG
1846 return 0;
1847 case HV_EXIT_REASON_CANCELED:
1848 /* we got kicked, no exit to process */
1849 return 0;
1850 default:
d385a605 1851 g_assert_not_reached();
a1477da3
AG
1852 }
1853
1854 hvf_sync_vtimer(cpu);
1855
1856 switch (ec) {
eb2edc42
FC
1857 case EC_SOFTWARESTEP: {
1858 ret = EXCP_DEBUG;
1859
1860 if (!cpu->singlestep_enabled) {
1861 error_report("EC_SOFTWARESTEP but single-stepping not enabled");
1862 }
1863 break;
1864 }
1865 case EC_AA64_BKPT: {
1866 ret = EXCP_DEBUG;
1867
1868 cpu_synchronize_state(cpu);
1869
1870 if (!hvf_find_sw_breakpoint(cpu, env->pc)) {
1871 /* Re-inject into the guest */
1872 ret = 0;
1873 hvf_raise_exception(cpu, EXCP_BKPT, syn_aa64_bkpt(0));
1874 }
1875 break;
1876 }
1877 case EC_BREAKPOINT: {
1878 ret = EXCP_DEBUG;
1879
1880 cpu_synchronize_state(cpu);
1881
1882 if (!find_hw_breakpoint(cpu, env->pc)) {
1883 error_report("EC_BREAKPOINT but unknown hw breakpoint");
1884 }
1885 break;
1886 }
1887 case EC_WATCHPOINT: {
1888 ret = EXCP_DEBUG;
1889
1890 cpu_synchronize_state(cpu);
1891
1892 CPUWatchpoint *wp =
1893 find_hw_watchpoint(cpu, hvf_exit->exception.virtual_address);
1894 if (!wp) {
1895 error_report("EXCP_DEBUG but unknown hw watchpoint");
1896 }
1897 cpu->watchpoint_hit = wp;
1898 break;
1899 }
a1477da3
AG
1900 case EC_DATAABORT: {
1901 bool isv = syndrome & ARM_EL_ISV;
1902 bool iswrite = (syndrome >> 6) & 1;
1903 bool s1ptw = (syndrome >> 7) & 1;
1904 uint32_t sas = (syndrome >> 22) & 3;
1905 uint32_t len = 1 << sas;
1906 uint32_t srt = (syndrome >> 16) & 0x1f;
5fd6a3e2 1907 uint32_t cm = (syndrome >> 8) & 0x1;
a1477da3
AG
1908 uint64_t val = 0;
1909
1910 trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
1911 hvf_exit->exception.physical_address, isv,
1912 iswrite, s1ptw, len, srt);
1913
5fd6a3e2
AG
1914 if (cm) {
1915 /* We don't cache MMIO regions */
1916 advance_pc = true;
1917 break;
1918 }
1919
a1477da3
AG
1920 assert(isv);
1921
1922 if (iswrite) {
1923 val = hvf_get_reg(cpu, srt);
1924 address_space_write(&address_space_memory,
1925 hvf_exit->exception.physical_address,
1926 MEMTXATTRS_UNSPECIFIED, &val, len);
1927 } else {
1928 address_space_read(&address_space_memory,
1929 hvf_exit->exception.physical_address,
1930 MEMTXATTRS_UNSPECIFIED, &val, len);
1931 hvf_set_reg(cpu, srt, val);
1932 }
1933
1934 advance_pc = true;
1935 break;
1936 }
1937 case EC_SYSTEMREGISTERTRAP: {
1938 bool isread = (syndrome >> 0) & 1;
1939 uint32_t rt = (syndrome >> 5) & 0x1f;
1940 uint32_t reg = syndrome & SYSREG_MASK;
1941 uint64_t val;
5a3d2c35 1942 int sysreg_ret = 0;
a1477da3
AG
1943
1944 if (isread) {
5a3d2c35 1945 sysreg_ret = hvf_sysreg_read(cpu, reg, rt);
a1477da3
AG
1946 } else {
1947 val = hvf_get_reg(cpu, rt);
5a3d2c35 1948 sysreg_ret = hvf_sysreg_write(cpu, reg, val);
a1477da3
AG
1949 }
1950
5a3d2c35 1951 advance_pc = !sysreg_ret;
a1477da3
AG
1952 break;
1953 }
1954 case EC_WFX_TRAP:
1955 advance_pc = true;
219c101f
PC
1956 if (!(syndrome & WFX_IS_WFE)) {
1957 hvf_wfi(cpu);
1958 }
a1477da3
AG
1959 break;
1960 case EC_AA64_HVC:
1961 cpu_synchronize_state(cpu);
2c9c0bf9
AG
1962 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
1963 if (!hvf_handle_psci_call(cpu)) {
1964 trace_hvf_unknown_hvc(env->xregs[0]);
1965 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1966 env->xregs[0] = -1;
1967 }
1968 } else {
1969 trace_hvf_unknown_hvc(env->xregs[0]);
1970 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1971 }
a1477da3
AG
1972 break;
1973 case EC_AA64_SMC:
1974 cpu_synchronize_state(cpu);
2c9c0bf9
AG
1975 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
1976 advance_pc = true;
1977
1978 if (!hvf_handle_psci_call(cpu)) {
1979 trace_hvf_unknown_smc(env->xregs[0]);
1980 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1981 env->xregs[0] = -1;
1982 }
1983 } else {
1984 trace_hvf_unknown_smc(env->xregs[0]);
1985 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1986 }
a1477da3
AG
1987 break;
1988 default:
1989 cpu_synchronize_state(cpu);
1990 trace_hvf_exit(syndrome, ec, env->pc);
1991 error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
1992 }
1993
1994 if (advance_pc) {
1995 uint64_t pc;
1996
1997 flush_cpu_state(cpu);
1998
3b295bcb 1999 r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_PC, &pc);
a1477da3
AG
2000 assert_hvf_ok(r);
2001 pc += 4;
3b295bcb 2002 r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_PC, pc);
a1477da3 2003 assert_hvf_ok(r);
eb2edc42
FC
2004
2005 /* Handle single-stepping over instructions which trigger a VM exit */
2006 if (cpu->singlestep_enabled) {
2007 ret = EXCP_DEBUG;
2008 }
a1477da3
AG
2009 }
2010
eb2edc42 2011 return ret;
a1477da3
AG
2012}
2013
2014static const VMStateDescription vmstate_hvf_vtimer = {
2015 .name = "hvf-vtimer",
2016 .version_id = 1,
2017 .minimum_version_id = 1,
f49986ae 2018 .fields = (const VMStateField[]) {
a1477da3
AG
2019 VMSTATE_UINT64(vtimer_val, HVFVTimer),
2020 VMSTATE_END_OF_LIST()
2021 },
2022};
2023
2024static void hvf_vm_state_change(void *opaque, bool running, RunState state)
2025{
2026 HVFVTimer *s = opaque;
2027
2028 if (running) {
2029 /* Update vtimer offset on all CPUs */
2030 hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
2031 cpu_synchronize_all_states();
2032 } else {
2033 /* Remember vtimer value on every pause */
2034 s->vtimer_val = hvf_vtimer_val_raw();
2035 }
2036}
2037
2038int hvf_arch_init(void)
2039{
2040 hvf_state->vtimer_offset = mach_absolute_time();
2041 vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
2042 qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
eb2edc42
FC
2043
2044 hvf_arm_init_debug();
2045
a1477da3
AG
2046 return 0;
2047}
f4152040
FC
2048
2049static const uint32_t brk_insn = 0xd4200000;
2050
2051int hvf_arch_insert_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
2052{
2053 if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2054 cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2055 return -EINVAL;
2056 }
a1477da3
AG
2057 return 0;
2058}
f4152040
FC
2059
2060int hvf_arch_remove_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
2061{
2062 static uint32_t brk;
2063
2064 if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk, 4, 0) ||
2065 brk != brk_insn ||
2066 cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2067 return -EINVAL;
2068 }
2069 return 0;
2070}
2071
d447a624 2072int hvf_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
f4152040
FC
2073{
2074 switch (type) {
2075 case GDB_BREAKPOINT_HW:
2076 return insert_hw_breakpoint(addr);
2077 case GDB_WATCHPOINT_READ:
2078 case GDB_WATCHPOINT_WRITE:
2079 case GDB_WATCHPOINT_ACCESS:
2080 return insert_hw_watchpoint(addr, len, type);
2081 default:
2082 return -ENOSYS;
2083 }
2084}
2085
d447a624 2086int hvf_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
f4152040
FC
2087{
2088 switch (type) {
2089 case GDB_BREAKPOINT_HW:
2090 return delete_hw_breakpoint(addr);
2091 case GDB_WATCHPOINT_READ:
2092 case GDB_WATCHPOINT_WRITE:
2093 case GDB_WATCHPOINT_ACCESS:
2094 return delete_hw_watchpoint(addr, len, type);
2095 default:
2096 return -ENOSYS;
2097 }
2098}
2099
2100void hvf_arch_remove_all_hw_breakpoints(void)
2101{
2102 if (cur_hw_wps > 0) {
2103 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
2104 }
2105 if (cur_hw_bps > 0) {
2106 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
2107 }
2108}
eb2edc42
FC
2109
2110/*
2111 * Update the vCPU with the gdbstub's view of debug registers. This view
2112 * consists of all hardware breakpoints and watchpoints inserted so far while
2113 * debugging the guest.
2114 */
2115static void hvf_put_gdbstub_debug_registers(CPUState *cpu)
2116{
2117 hv_return_t r = HV_SUCCESS;
2118 int i;
2119
2120 for (i = 0; i < cur_hw_bps; i++) {
2121 HWBreakpoint *bp = get_hw_bp(i);
3b295bcb 2122 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], bp->bcr);
eb2edc42 2123 assert_hvf_ok(r);
3b295bcb 2124 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], bp->bvr);
eb2edc42
FC
2125 assert_hvf_ok(r);
2126 }
2127 for (i = cur_hw_bps; i < max_hw_bps; i++) {
3b295bcb 2128 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], 0);
eb2edc42 2129 assert_hvf_ok(r);
3b295bcb 2130 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], 0);
eb2edc42
FC
2131 assert_hvf_ok(r);
2132 }
2133
2134 for (i = 0; i < cur_hw_wps; i++) {
2135 HWWatchpoint *wp = get_hw_wp(i);
3b295bcb 2136 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], wp->wcr);
eb2edc42 2137 assert_hvf_ok(r);
3b295bcb 2138 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], wp->wvr);
eb2edc42
FC
2139 assert_hvf_ok(r);
2140 }
2141 for (i = cur_hw_wps; i < max_hw_wps; i++) {
3b295bcb 2142 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], 0);
eb2edc42 2143 assert_hvf_ok(r);
3b295bcb 2144 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], 0);
eb2edc42
FC
2145 assert_hvf_ok(r);
2146 }
2147}
2148
2149/*
2150 * Update the vCPU with the guest's view of debug registers. This view is kept
2151 * in the environment at all times.
2152 */
2153static void hvf_put_guest_debug_registers(CPUState *cpu)
2154{
2155 ARMCPU *arm_cpu = ARM_CPU(cpu);
2156 CPUARMState *env = &arm_cpu->env;
2157 hv_return_t r = HV_SUCCESS;
2158 int i;
2159
2160 for (i = 0; i < max_hw_bps; i++) {
3b295bcb 2161 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i],
eb2edc42
FC
2162 env->cp15.dbgbcr[i]);
2163 assert_hvf_ok(r);
3b295bcb 2164 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i],
eb2edc42
FC
2165 env->cp15.dbgbvr[i]);
2166 assert_hvf_ok(r);
2167 }
2168
2169 for (i = 0; i < max_hw_wps; i++) {
3b295bcb 2170 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i],
eb2edc42
FC
2171 env->cp15.dbgwcr[i]);
2172 assert_hvf_ok(r);
3b295bcb 2173 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i],
eb2edc42
FC
2174 env->cp15.dbgwvr[i]);
2175 assert_hvf_ok(r);
2176 }
2177}
2178
2179static inline bool hvf_arm_hw_debug_active(CPUState *cpu)
2180{
2181 return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
2182}
2183
2184static void hvf_arch_set_traps(void)
2185{
2186 CPUState *cpu;
2187 bool should_enable_traps = false;
2188 hv_return_t r = HV_SUCCESS;
2189
2190 /* Check whether guest debugging is enabled for at least one vCPU; if it
2191 * is, enable exiting the guest on all vCPUs */
2192 CPU_FOREACH(cpu) {
3b295bcb 2193 should_enable_traps |= cpu->accel->guest_debug_enabled;
eb2edc42
FC
2194 }
2195 CPU_FOREACH(cpu) {
2196 /* Set whether debug exceptions exit the guest */
3b295bcb 2197 r = hv_vcpu_set_trap_debug_exceptions(cpu->accel->fd,
eb2edc42
FC
2198 should_enable_traps);
2199 assert_hvf_ok(r);
2200
2201 /* Set whether accesses to debug registers exit the guest */
3b295bcb 2202 r = hv_vcpu_set_trap_debug_reg_accesses(cpu->accel->fd,
eb2edc42
FC
2203 should_enable_traps);
2204 assert_hvf_ok(r);
2205 }
2206}
2207
2208void hvf_arch_update_guest_debug(CPUState *cpu)
2209{
2210 ARMCPU *arm_cpu = ARM_CPU(cpu);
2211 CPUARMState *env = &arm_cpu->env;
2212
2213 /* Check whether guest debugging is enabled */
3b295bcb 2214 cpu->accel->guest_debug_enabled = cpu->singlestep_enabled ||
eb2edc42
FC
2215 hvf_sw_breakpoints_active(cpu) ||
2216 hvf_arm_hw_debug_active(cpu);
2217
2218 /* Update debug registers */
3b295bcb 2219 if (cpu->accel->guest_debug_enabled) {
eb2edc42
FC
2220 hvf_put_gdbstub_debug_registers(cpu);
2221 } else {
2222 hvf_put_guest_debug_registers(cpu);
2223 }
2224
2225 cpu_synchronize_state(cpu);
2226
2227 /* Enable/disable single-stepping */
2228 if (cpu->singlestep_enabled) {
2229 env->cp15.mdscr_el1 =
2230 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 1);
2231 pstate_write(env, pstate_read(env) | PSTATE_SS);
2232 } else {
2233 env->cp15.mdscr_el1 =
2234 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 0);
2235 }
2236
2237 /* Enable/disable Breakpoint exceptions */
2238 if (hvf_arm_hw_debug_active(cpu)) {
2239 env->cp15.mdscr_el1 =
2240 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 1);
2241 } else {
2242 env->cp15.mdscr_el1 =
2243 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 0);
2244 }
2245
2246 hvf_arch_set_traps();
2247}
2248
2249inline bool hvf_arch_supports_guest_debug(void)
2250{
2251 return true;
2252}