]> git.proxmox.com Git - mirror_qemu.git/blob - accel/kvm/kvm-all.c
general: Replace global smp variables with smp machine properties
[mirror_qemu.git] / accel / kvm / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18
19 #include <linux/kvm.h>
20
21 #include "qemu/atomic.h"
22 #include "qemu/option.h"
23 #include "qemu/config-file.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/hw.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/cpus.h"
33 #include "qemu/bswap.h"
34 #include "exec/memory.h"
35 #include "exec/ram_addr.h"
36 #include "exec/address-spaces.h"
37 #include "qemu/event_notifier.h"
38 #include "trace.h"
39 #include "hw/irq.h"
40 #include "sysemu/sev.h"
41 #include "sysemu/balloon.h"
42
43 #include "hw/boards.h"
44
45 /* This check must be after config-host.h is included */
46 #ifdef CONFIG_EVENTFD
47 #include <sys/eventfd.h>
48 #endif
49
50 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
51 * need to use the real host PAGE_SIZE, as that's what KVM will use.
52 */
53 #define PAGE_SIZE getpagesize()
54
55 //#define DEBUG_KVM
56
57 #ifdef DEBUG_KVM
58 #define DPRINTF(fmt, ...) \
59 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
60 #else
61 #define DPRINTF(fmt, ...) \
62 do { } while (0)
63 #endif
64
65 #define KVM_MSI_HASHTAB_SIZE 256
66
67 struct KVMParkedVcpu {
68 unsigned long vcpu_id;
69 int kvm_fd;
70 QLIST_ENTRY(KVMParkedVcpu) node;
71 };
72
73 struct KVMState
74 {
75 AccelState parent_obj;
76
77 int nr_slots;
78 int fd;
79 int vmfd;
80 int coalesced_mmio;
81 int coalesced_pio;
82 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
83 bool coalesced_flush_in_progress;
84 int vcpu_events;
85 int robust_singlestep;
86 int debugregs;
87 #ifdef KVM_CAP_SET_GUEST_DEBUG
88 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
89 #endif
90 int max_nested_state_len;
91 int many_ioeventfds;
92 int intx_set_mask;
93 bool sync_mmu;
94 /* The man page (and posix) say ioctl numbers are signed int, but
95 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
96 * unsigned, and treating them as signed here can break things */
97 unsigned irq_set_ioctl;
98 unsigned int sigmask_len;
99 GHashTable *gsimap;
100 #ifdef KVM_CAP_IRQ_ROUTING
101 struct kvm_irq_routing *irq_routes;
102 int nr_allocated_irq_routes;
103 unsigned long *used_gsi_bitmap;
104 unsigned int gsi_count;
105 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
106 #endif
107 KVMMemoryListener memory_listener;
108 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
109
110 /* memory encryption */
111 void *memcrypt_handle;
112 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len);
113 };
114
115 KVMState *kvm_state;
116 bool kvm_kernel_irqchip;
117 bool kvm_split_irqchip;
118 bool kvm_async_interrupts_allowed;
119 bool kvm_halt_in_kernel_allowed;
120 bool kvm_eventfds_allowed;
121 bool kvm_irqfds_allowed;
122 bool kvm_resamplefds_allowed;
123 bool kvm_msi_via_irqfd_allowed;
124 bool kvm_gsi_routing_allowed;
125 bool kvm_gsi_direct_mapping;
126 bool kvm_allowed;
127 bool kvm_readonly_mem_allowed;
128 bool kvm_vm_attributes_allowed;
129 bool kvm_direct_msi_allowed;
130 bool kvm_ioeventfd_any_length_allowed;
131 bool kvm_msi_use_devid;
132 static bool kvm_immediate_exit;
133
134 static const KVMCapabilityInfo kvm_required_capabilites[] = {
135 KVM_CAP_INFO(USER_MEMORY),
136 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
137 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
138 KVM_CAP_LAST_INFO
139 };
140
141 int kvm_get_max_memslots(void)
142 {
143 KVMState *s = KVM_STATE(current_machine->accelerator);
144
145 return s->nr_slots;
146 }
147
148 bool kvm_memcrypt_enabled(void)
149 {
150 if (kvm_state && kvm_state->memcrypt_handle) {
151 return true;
152 }
153
154 return false;
155 }
156
157 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len)
158 {
159 if (kvm_state->memcrypt_handle &&
160 kvm_state->memcrypt_encrypt_data) {
161 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle,
162 ptr, len);
163 }
164
165 return 1;
166 }
167
168 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
169 {
170 KVMState *s = kvm_state;
171 int i;
172
173 for (i = 0; i < s->nr_slots; i++) {
174 if (kml->slots[i].memory_size == 0) {
175 return &kml->slots[i];
176 }
177 }
178
179 return NULL;
180 }
181
182 bool kvm_has_free_slot(MachineState *ms)
183 {
184 KVMState *s = KVM_STATE(ms->accelerator);
185
186 return kvm_get_free_slot(&s->memory_listener);
187 }
188
189 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
190 {
191 KVMSlot *slot = kvm_get_free_slot(kml);
192
193 if (slot) {
194 return slot;
195 }
196
197 fprintf(stderr, "%s: no free slot available\n", __func__);
198 abort();
199 }
200
201 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
202 hwaddr start_addr,
203 hwaddr size)
204 {
205 KVMState *s = kvm_state;
206 int i;
207
208 for (i = 0; i < s->nr_slots; i++) {
209 KVMSlot *mem = &kml->slots[i];
210
211 if (start_addr == mem->start_addr && size == mem->memory_size) {
212 return mem;
213 }
214 }
215
216 return NULL;
217 }
218
219 /*
220 * Calculate and align the start address and the size of the section.
221 * Return the size. If the size is 0, the aligned section is empty.
222 */
223 static hwaddr kvm_align_section(MemoryRegionSection *section,
224 hwaddr *start)
225 {
226 hwaddr size = int128_get64(section->size);
227 hwaddr delta, aligned;
228
229 /* kvm works in page size chunks, but the function may be called
230 with sub-page size and unaligned start address. Pad the start
231 address to next and truncate size to previous page boundary. */
232 aligned = ROUND_UP(section->offset_within_address_space,
233 qemu_real_host_page_size);
234 delta = aligned - section->offset_within_address_space;
235 *start = aligned;
236 if (delta > size) {
237 return 0;
238 }
239
240 return (size - delta) & qemu_real_host_page_mask;
241 }
242
243 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
244 hwaddr *phys_addr)
245 {
246 KVMMemoryListener *kml = &s->memory_listener;
247 int i;
248
249 for (i = 0; i < s->nr_slots; i++) {
250 KVMSlot *mem = &kml->slots[i];
251
252 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
253 *phys_addr = mem->start_addr + (ram - mem->ram);
254 return 1;
255 }
256 }
257
258 return 0;
259 }
260
261 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
262 {
263 KVMState *s = kvm_state;
264 struct kvm_userspace_memory_region mem;
265 int ret;
266
267 mem.slot = slot->slot | (kml->as_id << 16);
268 mem.guest_phys_addr = slot->start_addr;
269 mem.userspace_addr = (unsigned long)slot->ram;
270 mem.flags = slot->flags;
271
272 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
273 /* Set the slot size to 0 before setting the slot to the desired
274 * value. This is needed based on KVM commit 75d61fbc. */
275 mem.memory_size = 0;
276 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
277 }
278 mem.memory_size = slot->memory_size;
279 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
280 slot->old_flags = mem.flags;
281 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
282 mem.memory_size, mem.userspace_addr, ret);
283 return ret;
284 }
285
286 int kvm_destroy_vcpu(CPUState *cpu)
287 {
288 KVMState *s = kvm_state;
289 long mmap_size;
290 struct KVMParkedVcpu *vcpu = NULL;
291 int ret = 0;
292
293 DPRINTF("kvm_destroy_vcpu\n");
294
295 ret = kvm_arch_destroy_vcpu(cpu);
296 if (ret < 0) {
297 goto err;
298 }
299
300 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
301 if (mmap_size < 0) {
302 ret = mmap_size;
303 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
304 goto err;
305 }
306
307 ret = munmap(cpu->kvm_run, mmap_size);
308 if (ret < 0) {
309 goto err;
310 }
311
312 vcpu = g_malloc0(sizeof(*vcpu));
313 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
314 vcpu->kvm_fd = cpu->kvm_fd;
315 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
316 err:
317 return ret;
318 }
319
320 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
321 {
322 struct KVMParkedVcpu *cpu;
323
324 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
325 if (cpu->vcpu_id == vcpu_id) {
326 int kvm_fd;
327
328 QLIST_REMOVE(cpu, node);
329 kvm_fd = cpu->kvm_fd;
330 g_free(cpu);
331 return kvm_fd;
332 }
333 }
334
335 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
336 }
337
338 int kvm_init_vcpu(CPUState *cpu)
339 {
340 KVMState *s = kvm_state;
341 long mmap_size;
342 int ret;
343
344 DPRINTF("kvm_init_vcpu\n");
345
346 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
347 if (ret < 0) {
348 DPRINTF("kvm_create_vcpu failed\n");
349 goto err;
350 }
351
352 cpu->kvm_fd = ret;
353 cpu->kvm_state = s;
354 cpu->vcpu_dirty = true;
355
356 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
357 if (mmap_size < 0) {
358 ret = mmap_size;
359 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
360 goto err;
361 }
362
363 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
364 cpu->kvm_fd, 0);
365 if (cpu->kvm_run == MAP_FAILED) {
366 ret = -errno;
367 DPRINTF("mmap'ing vcpu state failed\n");
368 goto err;
369 }
370
371 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
372 s->coalesced_mmio_ring =
373 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
374 }
375
376 ret = kvm_arch_init_vcpu(cpu);
377 err:
378 return ret;
379 }
380
381 /*
382 * dirty pages logging control
383 */
384
385 static int kvm_mem_flags(MemoryRegion *mr)
386 {
387 bool readonly = mr->readonly || memory_region_is_romd(mr);
388 int flags = 0;
389
390 if (memory_region_get_dirty_log_mask(mr) != 0) {
391 flags |= KVM_MEM_LOG_DIRTY_PAGES;
392 }
393 if (readonly && kvm_readonly_mem_allowed) {
394 flags |= KVM_MEM_READONLY;
395 }
396 return flags;
397 }
398
399 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
400 MemoryRegion *mr)
401 {
402 mem->flags = kvm_mem_flags(mr);
403
404 /* If nothing changed effectively, no need to issue ioctl */
405 if (mem->flags == mem->old_flags) {
406 return 0;
407 }
408
409 return kvm_set_user_memory_region(kml, mem, false);
410 }
411
412 static int kvm_section_update_flags(KVMMemoryListener *kml,
413 MemoryRegionSection *section)
414 {
415 hwaddr start_addr, size;
416 KVMSlot *mem;
417
418 size = kvm_align_section(section, &start_addr);
419 if (!size) {
420 return 0;
421 }
422
423 mem = kvm_lookup_matching_slot(kml, start_addr, size);
424 if (!mem) {
425 /* We don't have a slot if we want to trap every access. */
426 return 0;
427 }
428
429 return kvm_slot_update_flags(kml, mem, section->mr);
430 }
431
432 static void kvm_log_start(MemoryListener *listener,
433 MemoryRegionSection *section,
434 int old, int new)
435 {
436 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
437 int r;
438
439 if (old != 0) {
440 return;
441 }
442
443 r = kvm_section_update_flags(kml, section);
444 if (r < 0) {
445 abort();
446 }
447 }
448
449 static void kvm_log_stop(MemoryListener *listener,
450 MemoryRegionSection *section,
451 int old, int new)
452 {
453 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
454 int r;
455
456 if (new != 0) {
457 return;
458 }
459
460 r = kvm_section_update_flags(kml, section);
461 if (r < 0) {
462 abort();
463 }
464 }
465
466 /* get kvm's dirty pages bitmap and update qemu's */
467 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
468 unsigned long *bitmap)
469 {
470 ram_addr_t start = section->offset_within_region +
471 memory_region_get_ram_addr(section->mr);
472 ram_addr_t pages = int128_get64(section->size) / getpagesize();
473
474 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
475 return 0;
476 }
477
478 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
479
480 /**
481 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
482 * This function updates qemu's dirty bitmap using
483 * memory_region_set_dirty(). This means all bits are set
484 * to dirty.
485 *
486 * @start_add: start of logged region.
487 * @end_addr: end of logged region.
488 */
489 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
490 MemoryRegionSection *section)
491 {
492 KVMState *s = kvm_state;
493 struct kvm_dirty_log d = {};
494 KVMSlot *mem;
495 hwaddr start_addr, size;
496
497 size = kvm_align_section(section, &start_addr);
498 if (size) {
499 mem = kvm_lookup_matching_slot(kml, start_addr, size);
500 if (!mem) {
501 /* We don't have a slot if we want to trap every access. */
502 return 0;
503 }
504
505 /* XXX bad kernel interface alert
506 * For dirty bitmap, kernel allocates array of size aligned to
507 * bits-per-long. But for case when the kernel is 64bits and
508 * the userspace is 32bits, userspace can't align to the same
509 * bits-per-long, since sizeof(long) is different between kernel
510 * and user space. This way, userspace will provide buffer which
511 * may be 4 bytes less than the kernel will use, resulting in
512 * userspace memory corruption (which is not detectable by valgrind
513 * too, in most cases).
514 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
515 * a hope that sizeof(long) won't become >8 any time soon.
516 */
517 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
518 /*HOST_LONG_BITS*/ 64) / 8;
519 d.dirty_bitmap = g_malloc0(size);
520
521 d.slot = mem->slot | (kml->as_id << 16);
522 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
523 DPRINTF("ioctl failed %d\n", errno);
524 g_free(d.dirty_bitmap);
525 return -1;
526 }
527
528 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
529 g_free(d.dirty_bitmap);
530 }
531
532 return 0;
533 }
534
535 static void kvm_coalesce_mmio_region(MemoryListener *listener,
536 MemoryRegionSection *secion,
537 hwaddr start, hwaddr size)
538 {
539 KVMState *s = kvm_state;
540
541 if (s->coalesced_mmio) {
542 struct kvm_coalesced_mmio_zone zone;
543
544 zone.addr = start;
545 zone.size = size;
546 zone.pad = 0;
547
548 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
549 }
550 }
551
552 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
553 MemoryRegionSection *secion,
554 hwaddr start, hwaddr size)
555 {
556 KVMState *s = kvm_state;
557
558 if (s->coalesced_mmio) {
559 struct kvm_coalesced_mmio_zone zone;
560
561 zone.addr = start;
562 zone.size = size;
563 zone.pad = 0;
564
565 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
566 }
567 }
568
569 static void kvm_coalesce_pio_add(MemoryListener *listener,
570 MemoryRegionSection *section,
571 hwaddr start, hwaddr size)
572 {
573 KVMState *s = kvm_state;
574
575 if (s->coalesced_pio) {
576 struct kvm_coalesced_mmio_zone zone;
577
578 zone.addr = start;
579 zone.size = size;
580 zone.pio = 1;
581
582 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
583 }
584 }
585
586 static void kvm_coalesce_pio_del(MemoryListener *listener,
587 MemoryRegionSection *section,
588 hwaddr start, hwaddr size)
589 {
590 KVMState *s = kvm_state;
591
592 if (s->coalesced_pio) {
593 struct kvm_coalesced_mmio_zone zone;
594
595 zone.addr = start;
596 zone.size = size;
597 zone.pio = 1;
598
599 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
600 }
601 }
602
603 static MemoryListener kvm_coalesced_pio_listener = {
604 .coalesced_io_add = kvm_coalesce_pio_add,
605 .coalesced_io_del = kvm_coalesce_pio_del,
606 };
607
608 int kvm_check_extension(KVMState *s, unsigned int extension)
609 {
610 int ret;
611
612 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
613 if (ret < 0) {
614 ret = 0;
615 }
616
617 return ret;
618 }
619
620 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
621 {
622 int ret;
623
624 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
625 if (ret < 0) {
626 /* VM wide version not implemented, use global one instead */
627 ret = kvm_check_extension(s, extension);
628 }
629
630 return ret;
631 }
632
633 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
634 {
635 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
636 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
637 * endianness, but the memory core hands them in target endianness.
638 * For example, PPC is always treated as big-endian even if running
639 * on KVM and on PPC64LE. Correct here.
640 */
641 switch (size) {
642 case 2:
643 val = bswap16(val);
644 break;
645 case 4:
646 val = bswap32(val);
647 break;
648 }
649 #endif
650 return val;
651 }
652
653 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
654 bool assign, uint32_t size, bool datamatch)
655 {
656 int ret;
657 struct kvm_ioeventfd iofd = {
658 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
659 .addr = addr,
660 .len = size,
661 .flags = 0,
662 .fd = fd,
663 };
664
665 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
666 datamatch);
667 if (!kvm_enabled()) {
668 return -ENOSYS;
669 }
670
671 if (datamatch) {
672 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
673 }
674 if (!assign) {
675 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
676 }
677
678 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
679
680 if (ret < 0) {
681 return -errno;
682 }
683
684 return 0;
685 }
686
687 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
688 bool assign, uint32_t size, bool datamatch)
689 {
690 struct kvm_ioeventfd kick = {
691 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
692 .addr = addr,
693 .flags = KVM_IOEVENTFD_FLAG_PIO,
694 .len = size,
695 .fd = fd,
696 };
697 int r;
698 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
699 if (!kvm_enabled()) {
700 return -ENOSYS;
701 }
702 if (datamatch) {
703 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
704 }
705 if (!assign) {
706 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
707 }
708 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
709 if (r < 0) {
710 return r;
711 }
712 return 0;
713 }
714
715
716 static int kvm_check_many_ioeventfds(void)
717 {
718 /* Userspace can use ioeventfd for io notification. This requires a host
719 * that supports eventfd(2) and an I/O thread; since eventfd does not
720 * support SIGIO it cannot interrupt the vcpu.
721 *
722 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
723 * can avoid creating too many ioeventfds.
724 */
725 #if defined(CONFIG_EVENTFD)
726 int ioeventfds[7];
727 int i, ret = 0;
728 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
729 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
730 if (ioeventfds[i] < 0) {
731 break;
732 }
733 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
734 if (ret < 0) {
735 close(ioeventfds[i]);
736 break;
737 }
738 }
739
740 /* Decide whether many devices are supported or not */
741 ret = i == ARRAY_SIZE(ioeventfds);
742
743 while (i-- > 0) {
744 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
745 close(ioeventfds[i]);
746 }
747 return ret;
748 #else
749 return 0;
750 #endif
751 }
752
753 static const KVMCapabilityInfo *
754 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
755 {
756 while (list->name) {
757 if (!kvm_check_extension(s, list->value)) {
758 return list;
759 }
760 list++;
761 }
762 return NULL;
763 }
764
765 static void kvm_set_phys_mem(KVMMemoryListener *kml,
766 MemoryRegionSection *section, bool add)
767 {
768 KVMSlot *mem;
769 int err;
770 MemoryRegion *mr = section->mr;
771 bool writeable = !mr->readonly && !mr->rom_device;
772 hwaddr start_addr, size;
773 void *ram;
774
775 if (!memory_region_is_ram(mr)) {
776 if (writeable || !kvm_readonly_mem_allowed) {
777 return;
778 } else if (!mr->romd_mode) {
779 /* If the memory device is not in romd_mode, then we actually want
780 * to remove the kvm memory slot so all accesses will trap. */
781 add = false;
782 }
783 }
784
785 size = kvm_align_section(section, &start_addr);
786 if (!size) {
787 return;
788 }
789
790 /* use aligned delta to align the ram address */
791 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
792 (start_addr - section->offset_within_address_space);
793
794 if (!add) {
795 mem = kvm_lookup_matching_slot(kml, start_addr, size);
796 if (!mem) {
797 return;
798 }
799 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
800 kvm_physical_sync_dirty_bitmap(kml, section);
801 }
802
803 /* unregister the slot */
804 mem->memory_size = 0;
805 mem->flags = 0;
806 err = kvm_set_user_memory_region(kml, mem, false);
807 if (err) {
808 fprintf(stderr, "%s: error unregistering slot: %s\n",
809 __func__, strerror(-err));
810 abort();
811 }
812 return;
813 }
814
815 /* register the new slot */
816 mem = kvm_alloc_slot(kml);
817 mem->memory_size = size;
818 mem->start_addr = start_addr;
819 mem->ram = ram;
820 mem->flags = kvm_mem_flags(mr);
821
822 err = kvm_set_user_memory_region(kml, mem, true);
823 if (err) {
824 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
825 strerror(-err));
826 abort();
827 }
828 }
829
830 static void kvm_region_add(MemoryListener *listener,
831 MemoryRegionSection *section)
832 {
833 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
834
835 memory_region_ref(section->mr);
836 kvm_set_phys_mem(kml, section, true);
837 }
838
839 static void kvm_region_del(MemoryListener *listener,
840 MemoryRegionSection *section)
841 {
842 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
843
844 kvm_set_phys_mem(kml, section, false);
845 memory_region_unref(section->mr);
846 }
847
848 static void kvm_log_sync(MemoryListener *listener,
849 MemoryRegionSection *section)
850 {
851 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
852 int r;
853
854 r = kvm_physical_sync_dirty_bitmap(kml, section);
855 if (r < 0) {
856 abort();
857 }
858 }
859
860 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
861 MemoryRegionSection *section,
862 bool match_data, uint64_t data,
863 EventNotifier *e)
864 {
865 int fd = event_notifier_get_fd(e);
866 int r;
867
868 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
869 data, true, int128_get64(section->size),
870 match_data);
871 if (r < 0) {
872 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
873 __func__, strerror(-r), -r);
874 abort();
875 }
876 }
877
878 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
879 MemoryRegionSection *section,
880 bool match_data, uint64_t data,
881 EventNotifier *e)
882 {
883 int fd = event_notifier_get_fd(e);
884 int r;
885
886 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
887 data, false, int128_get64(section->size),
888 match_data);
889 if (r < 0) {
890 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
891 __func__, strerror(-r), -r);
892 abort();
893 }
894 }
895
896 static void kvm_io_ioeventfd_add(MemoryListener *listener,
897 MemoryRegionSection *section,
898 bool match_data, uint64_t data,
899 EventNotifier *e)
900 {
901 int fd = event_notifier_get_fd(e);
902 int r;
903
904 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
905 data, true, int128_get64(section->size),
906 match_data);
907 if (r < 0) {
908 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
909 __func__, strerror(-r), -r);
910 abort();
911 }
912 }
913
914 static void kvm_io_ioeventfd_del(MemoryListener *listener,
915 MemoryRegionSection *section,
916 bool match_data, uint64_t data,
917 EventNotifier *e)
918
919 {
920 int fd = event_notifier_get_fd(e);
921 int r;
922
923 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
924 data, false, int128_get64(section->size),
925 match_data);
926 if (r < 0) {
927 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
928 __func__, strerror(-r), -r);
929 abort();
930 }
931 }
932
933 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
934 AddressSpace *as, int as_id)
935 {
936 int i;
937
938 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
939 kml->as_id = as_id;
940
941 for (i = 0; i < s->nr_slots; i++) {
942 kml->slots[i].slot = i;
943 }
944
945 kml->listener.region_add = kvm_region_add;
946 kml->listener.region_del = kvm_region_del;
947 kml->listener.log_start = kvm_log_start;
948 kml->listener.log_stop = kvm_log_stop;
949 kml->listener.log_sync = kvm_log_sync;
950 kml->listener.priority = 10;
951
952 memory_listener_register(&kml->listener, as);
953 }
954
955 static MemoryListener kvm_io_listener = {
956 .eventfd_add = kvm_io_ioeventfd_add,
957 .eventfd_del = kvm_io_ioeventfd_del,
958 .priority = 10,
959 };
960
961 int kvm_set_irq(KVMState *s, int irq, int level)
962 {
963 struct kvm_irq_level event;
964 int ret;
965
966 assert(kvm_async_interrupts_enabled());
967
968 event.level = level;
969 event.irq = irq;
970 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
971 if (ret < 0) {
972 perror("kvm_set_irq");
973 abort();
974 }
975
976 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
977 }
978
979 #ifdef KVM_CAP_IRQ_ROUTING
980 typedef struct KVMMSIRoute {
981 struct kvm_irq_routing_entry kroute;
982 QTAILQ_ENTRY(KVMMSIRoute) entry;
983 } KVMMSIRoute;
984
985 static void set_gsi(KVMState *s, unsigned int gsi)
986 {
987 set_bit(gsi, s->used_gsi_bitmap);
988 }
989
990 static void clear_gsi(KVMState *s, unsigned int gsi)
991 {
992 clear_bit(gsi, s->used_gsi_bitmap);
993 }
994
995 void kvm_init_irq_routing(KVMState *s)
996 {
997 int gsi_count, i;
998
999 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1000 if (gsi_count > 0) {
1001 /* Round up so we can search ints using ffs */
1002 s->used_gsi_bitmap = bitmap_new(gsi_count);
1003 s->gsi_count = gsi_count;
1004 }
1005
1006 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1007 s->nr_allocated_irq_routes = 0;
1008
1009 if (!kvm_direct_msi_allowed) {
1010 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1011 QTAILQ_INIT(&s->msi_hashtab[i]);
1012 }
1013 }
1014
1015 kvm_arch_init_irq_routing(s);
1016 }
1017
1018 void kvm_irqchip_commit_routes(KVMState *s)
1019 {
1020 int ret;
1021
1022 if (kvm_gsi_direct_mapping()) {
1023 return;
1024 }
1025
1026 if (!kvm_gsi_routing_enabled()) {
1027 return;
1028 }
1029
1030 s->irq_routes->flags = 0;
1031 trace_kvm_irqchip_commit_routes();
1032 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1033 assert(ret == 0);
1034 }
1035
1036 static void kvm_add_routing_entry(KVMState *s,
1037 struct kvm_irq_routing_entry *entry)
1038 {
1039 struct kvm_irq_routing_entry *new;
1040 int n, size;
1041
1042 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1043 n = s->nr_allocated_irq_routes * 2;
1044 if (n < 64) {
1045 n = 64;
1046 }
1047 size = sizeof(struct kvm_irq_routing);
1048 size += n * sizeof(*new);
1049 s->irq_routes = g_realloc(s->irq_routes, size);
1050 s->nr_allocated_irq_routes = n;
1051 }
1052 n = s->irq_routes->nr++;
1053 new = &s->irq_routes->entries[n];
1054
1055 *new = *entry;
1056
1057 set_gsi(s, entry->gsi);
1058 }
1059
1060 static int kvm_update_routing_entry(KVMState *s,
1061 struct kvm_irq_routing_entry *new_entry)
1062 {
1063 struct kvm_irq_routing_entry *entry;
1064 int n;
1065
1066 for (n = 0; n < s->irq_routes->nr; n++) {
1067 entry = &s->irq_routes->entries[n];
1068 if (entry->gsi != new_entry->gsi) {
1069 continue;
1070 }
1071
1072 if(!memcmp(entry, new_entry, sizeof *entry)) {
1073 return 0;
1074 }
1075
1076 *entry = *new_entry;
1077
1078 return 0;
1079 }
1080
1081 return -ESRCH;
1082 }
1083
1084 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1085 {
1086 struct kvm_irq_routing_entry e = {};
1087
1088 assert(pin < s->gsi_count);
1089
1090 e.gsi = irq;
1091 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1092 e.flags = 0;
1093 e.u.irqchip.irqchip = irqchip;
1094 e.u.irqchip.pin = pin;
1095 kvm_add_routing_entry(s, &e);
1096 }
1097
1098 void kvm_irqchip_release_virq(KVMState *s, int virq)
1099 {
1100 struct kvm_irq_routing_entry *e;
1101 int i;
1102
1103 if (kvm_gsi_direct_mapping()) {
1104 return;
1105 }
1106
1107 for (i = 0; i < s->irq_routes->nr; i++) {
1108 e = &s->irq_routes->entries[i];
1109 if (e->gsi == virq) {
1110 s->irq_routes->nr--;
1111 *e = s->irq_routes->entries[s->irq_routes->nr];
1112 }
1113 }
1114 clear_gsi(s, virq);
1115 kvm_arch_release_virq_post(virq);
1116 trace_kvm_irqchip_release_virq(virq);
1117 }
1118
1119 static unsigned int kvm_hash_msi(uint32_t data)
1120 {
1121 /* This is optimized for IA32 MSI layout. However, no other arch shall
1122 * repeat the mistake of not providing a direct MSI injection API. */
1123 return data & 0xff;
1124 }
1125
1126 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1127 {
1128 KVMMSIRoute *route, *next;
1129 unsigned int hash;
1130
1131 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1132 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1133 kvm_irqchip_release_virq(s, route->kroute.gsi);
1134 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1135 g_free(route);
1136 }
1137 }
1138 }
1139
1140 static int kvm_irqchip_get_virq(KVMState *s)
1141 {
1142 int next_virq;
1143
1144 /*
1145 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1146 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1147 * number can succeed even though a new route entry cannot be added.
1148 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1149 */
1150 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1151 kvm_flush_dynamic_msi_routes(s);
1152 }
1153
1154 /* Return the lowest unused GSI in the bitmap */
1155 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1156 if (next_virq >= s->gsi_count) {
1157 return -ENOSPC;
1158 } else {
1159 return next_virq;
1160 }
1161 }
1162
1163 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1164 {
1165 unsigned int hash = kvm_hash_msi(msg.data);
1166 KVMMSIRoute *route;
1167
1168 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1169 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1170 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1171 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1172 return route;
1173 }
1174 }
1175 return NULL;
1176 }
1177
1178 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1179 {
1180 struct kvm_msi msi;
1181 KVMMSIRoute *route;
1182
1183 if (kvm_direct_msi_allowed) {
1184 msi.address_lo = (uint32_t)msg.address;
1185 msi.address_hi = msg.address >> 32;
1186 msi.data = le32_to_cpu(msg.data);
1187 msi.flags = 0;
1188 memset(msi.pad, 0, sizeof(msi.pad));
1189
1190 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1191 }
1192
1193 route = kvm_lookup_msi_route(s, msg);
1194 if (!route) {
1195 int virq;
1196
1197 virq = kvm_irqchip_get_virq(s);
1198 if (virq < 0) {
1199 return virq;
1200 }
1201
1202 route = g_malloc0(sizeof(KVMMSIRoute));
1203 route->kroute.gsi = virq;
1204 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1205 route->kroute.flags = 0;
1206 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1207 route->kroute.u.msi.address_hi = msg.address >> 32;
1208 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1209
1210 kvm_add_routing_entry(s, &route->kroute);
1211 kvm_irqchip_commit_routes(s);
1212
1213 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1214 entry);
1215 }
1216
1217 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1218
1219 return kvm_set_irq(s, route->kroute.gsi, 1);
1220 }
1221
1222 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1223 {
1224 struct kvm_irq_routing_entry kroute = {};
1225 int virq;
1226 MSIMessage msg = {0, 0};
1227
1228 if (pci_available && dev) {
1229 msg = pci_get_msi_message(dev, vector);
1230 }
1231
1232 if (kvm_gsi_direct_mapping()) {
1233 return kvm_arch_msi_data_to_gsi(msg.data);
1234 }
1235
1236 if (!kvm_gsi_routing_enabled()) {
1237 return -ENOSYS;
1238 }
1239
1240 virq = kvm_irqchip_get_virq(s);
1241 if (virq < 0) {
1242 return virq;
1243 }
1244
1245 kroute.gsi = virq;
1246 kroute.type = KVM_IRQ_ROUTING_MSI;
1247 kroute.flags = 0;
1248 kroute.u.msi.address_lo = (uint32_t)msg.address;
1249 kroute.u.msi.address_hi = msg.address >> 32;
1250 kroute.u.msi.data = le32_to_cpu(msg.data);
1251 if (pci_available && kvm_msi_devid_required()) {
1252 kroute.flags = KVM_MSI_VALID_DEVID;
1253 kroute.u.msi.devid = pci_requester_id(dev);
1254 }
1255 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1256 kvm_irqchip_release_virq(s, virq);
1257 return -EINVAL;
1258 }
1259
1260 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1261 vector, virq);
1262
1263 kvm_add_routing_entry(s, &kroute);
1264 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1265 kvm_irqchip_commit_routes(s);
1266
1267 return virq;
1268 }
1269
1270 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1271 PCIDevice *dev)
1272 {
1273 struct kvm_irq_routing_entry kroute = {};
1274
1275 if (kvm_gsi_direct_mapping()) {
1276 return 0;
1277 }
1278
1279 if (!kvm_irqchip_in_kernel()) {
1280 return -ENOSYS;
1281 }
1282
1283 kroute.gsi = virq;
1284 kroute.type = KVM_IRQ_ROUTING_MSI;
1285 kroute.flags = 0;
1286 kroute.u.msi.address_lo = (uint32_t)msg.address;
1287 kroute.u.msi.address_hi = msg.address >> 32;
1288 kroute.u.msi.data = le32_to_cpu(msg.data);
1289 if (pci_available && kvm_msi_devid_required()) {
1290 kroute.flags = KVM_MSI_VALID_DEVID;
1291 kroute.u.msi.devid = pci_requester_id(dev);
1292 }
1293 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1294 return -EINVAL;
1295 }
1296
1297 trace_kvm_irqchip_update_msi_route(virq);
1298
1299 return kvm_update_routing_entry(s, &kroute);
1300 }
1301
1302 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1303 bool assign)
1304 {
1305 struct kvm_irqfd irqfd = {
1306 .fd = fd,
1307 .gsi = virq,
1308 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1309 };
1310
1311 if (rfd != -1) {
1312 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1313 irqfd.resamplefd = rfd;
1314 }
1315
1316 if (!kvm_irqfds_enabled()) {
1317 return -ENOSYS;
1318 }
1319
1320 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1321 }
1322
1323 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1324 {
1325 struct kvm_irq_routing_entry kroute = {};
1326 int virq;
1327
1328 if (!kvm_gsi_routing_enabled()) {
1329 return -ENOSYS;
1330 }
1331
1332 virq = kvm_irqchip_get_virq(s);
1333 if (virq < 0) {
1334 return virq;
1335 }
1336
1337 kroute.gsi = virq;
1338 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1339 kroute.flags = 0;
1340 kroute.u.adapter.summary_addr = adapter->summary_addr;
1341 kroute.u.adapter.ind_addr = adapter->ind_addr;
1342 kroute.u.adapter.summary_offset = adapter->summary_offset;
1343 kroute.u.adapter.ind_offset = adapter->ind_offset;
1344 kroute.u.adapter.adapter_id = adapter->adapter_id;
1345
1346 kvm_add_routing_entry(s, &kroute);
1347
1348 return virq;
1349 }
1350
1351 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1352 {
1353 struct kvm_irq_routing_entry kroute = {};
1354 int virq;
1355
1356 if (!kvm_gsi_routing_enabled()) {
1357 return -ENOSYS;
1358 }
1359 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1360 return -ENOSYS;
1361 }
1362 virq = kvm_irqchip_get_virq(s);
1363 if (virq < 0) {
1364 return virq;
1365 }
1366
1367 kroute.gsi = virq;
1368 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1369 kroute.flags = 0;
1370 kroute.u.hv_sint.vcpu = vcpu;
1371 kroute.u.hv_sint.sint = sint;
1372
1373 kvm_add_routing_entry(s, &kroute);
1374 kvm_irqchip_commit_routes(s);
1375
1376 return virq;
1377 }
1378
1379 #else /* !KVM_CAP_IRQ_ROUTING */
1380
1381 void kvm_init_irq_routing(KVMState *s)
1382 {
1383 }
1384
1385 void kvm_irqchip_release_virq(KVMState *s, int virq)
1386 {
1387 }
1388
1389 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1390 {
1391 abort();
1392 }
1393
1394 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1395 {
1396 return -ENOSYS;
1397 }
1398
1399 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1400 {
1401 return -ENOSYS;
1402 }
1403
1404 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1405 {
1406 return -ENOSYS;
1407 }
1408
1409 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1410 {
1411 abort();
1412 }
1413
1414 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1415 {
1416 return -ENOSYS;
1417 }
1418 #endif /* !KVM_CAP_IRQ_ROUTING */
1419
1420 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1421 EventNotifier *rn, int virq)
1422 {
1423 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1424 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1425 }
1426
1427 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1428 int virq)
1429 {
1430 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1431 false);
1432 }
1433
1434 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1435 EventNotifier *rn, qemu_irq irq)
1436 {
1437 gpointer key, gsi;
1438 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1439
1440 if (!found) {
1441 return -ENXIO;
1442 }
1443 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1444 }
1445
1446 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1447 qemu_irq irq)
1448 {
1449 gpointer key, gsi;
1450 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1451
1452 if (!found) {
1453 return -ENXIO;
1454 }
1455 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1456 }
1457
1458 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1459 {
1460 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1461 }
1462
1463 static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1464 {
1465 int ret;
1466
1467 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1468 ;
1469 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1470 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1471 if (ret < 0) {
1472 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1473 exit(1);
1474 }
1475 } else {
1476 return;
1477 }
1478
1479 /* First probe and see if there's a arch-specific hook to create the
1480 * in-kernel irqchip for us */
1481 ret = kvm_arch_irqchip_create(machine, s);
1482 if (ret == 0) {
1483 if (machine_kernel_irqchip_split(machine)) {
1484 perror("Split IRQ chip mode not supported.");
1485 exit(1);
1486 } else {
1487 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1488 }
1489 }
1490 if (ret < 0) {
1491 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1492 exit(1);
1493 }
1494
1495 kvm_kernel_irqchip = true;
1496 /* If we have an in-kernel IRQ chip then we must have asynchronous
1497 * interrupt delivery (though the reverse is not necessarily true)
1498 */
1499 kvm_async_interrupts_allowed = true;
1500 kvm_halt_in_kernel_allowed = true;
1501
1502 kvm_init_irq_routing(s);
1503
1504 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1505 }
1506
1507 /* Find number of supported CPUs using the recommended
1508 * procedure from the kernel API documentation to cope with
1509 * older kernels that may be missing capabilities.
1510 */
1511 static int kvm_recommended_vcpus(KVMState *s)
1512 {
1513 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1514 return (ret) ? ret : 4;
1515 }
1516
1517 static int kvm_max_vcpus(KVMState *s)
1518 {
1519 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1520 return (ret) ? ret : kvm_recommended_vcpus(s);
1521 }
1522
1523 static int kvm_max_vcpu_id(KVMState *s)
1524 {
1525 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1526 return (ret) ? ret : kvm_max_vcpus(s);
1527 }
1528
1529 bool kvm_vcpu_id_is_valid(int vcpu_id)
1530 {
1531 KVMState *s = KVM_STATE(current_machine->accelerator);
1532 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1533 }
1534
1535 static int kvm_init(MachineState *ms)
1536 {
1537 MachineClass *mc = MACHINE_GET_CLASS(ms);
1538 static const char upgrade_note[] =
1539 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1540 "(see http://sourceforge.net/projects/kvm).\n";
1541 struct {
1542 const char *name;
1543 int num;
1544 } num_cpus[] = {
1545 { "SMP", ms->smp.cpus },
1546 { "hotpluggable", ms->smp.max_cpus },
1547 { NULL, }
1548 }, *nc = num_cpus;
1549 int soft_vcpus_limit, hard_vcpus_limit;
1550 KVMState *s;
1551 const KVMCapabilityInfo *missing_cap;
1552 int ret;
1553 int type = 0;
1554 const char *kvm_type;
1555
1556 s = KVM_STATE(ms->accelerator);
1557
1558 /*
1559 * On systems where the kernel can support different base page
1560 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1561 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1562 * page size for the system though.
1563 */
1564 assert(TARGET_PAGE_SIZE <= getpagesize());
1565
1566 s->sigmask_len = 8;
1567
1568 #ifdef KVM_CAP_SET_GUEST_DEBUG
1569 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1570 #endif
1571 QLIST_INIT(&s->kvm_parked_vcpus);
1572 s->vmfd = -1;
1573 s->fd = qemu_open("/dev/kvm", O_RDWR);
1574 if (s->fd == -1) {
1575 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1576 ret = -errno;
1577 goto err;
1578 }
1579
1580 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1581 if (ret < KVM_API_VERSION) {
1582 if (ret >= 0) {
1583 ret = -EINVAL;
1584 }
1585 fprintf(stderr, "kvm version too old\n");
1586 goto err;
1587 }
1588
1589 if (ret > KVM_API_VERSION) {
1590 ret = -EINVAL;
1591 fprintf(stderr, "kvm version not supported\n");
1592 goto err;
1593 }
1594
1595 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
1596 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1597
1598 /* If unspecified, use the default value */
1599 if (!s->nr_slots) {
1600 s->nr_slots = 32;
1601 }
1602
1603 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1604 if (mc->kvm_type) {
1605 type = mc->kvm_type(ms, kvm_type);
1606 } else if (kvm_type) {
1607 ret = -EINVAL;
1608 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1609 goto err;
1610 }
1611
1612 do {
1613 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1614 } while (ret == -EINTR);
1615
1616 if (ret < 0) {
1617 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1618 strerror(-ret));
1619
1620 #ifdef TARGET_S390X
1621 if (ret == -EINVAL) {
1622 fprintf(stderr,
1623 "Host kernel setup problem detected. Please verify:\n");
1624 fprintf(stderr, "- for kernels supporting the switch_amode or"
1625 " user_mode parameters, whether\n");
1626 fprintf(stderr,
1627 " user space is running in primary address space\n");
1628 fprintf(stderr,
1629 "- for kernels supporting the vm.allocate_pgste sysctl, "
1630 "whether it is enabled\n");
1631 }
1632 #endif
1633 goto err;
1634 }
1635
1636 s->vmfd = ret;
1637
1638 /* check the vcpu limits */
1639 soft_vcpus_limit = kvm_recommended_vcpus(s);
1640 hard_vcpus_limit = kvm_max_vcpus(s);
1641
1642 while (nc->name) {
1643 if (nc->num > soft_vcpus_limit) {
1644 warn_report("Number of %s cpus requested (%d) exceeds "
1645 "the recommended cpus supported by KVM (%d)",
1646 nc->name, nc->num, soft_vcpus_limit);
1647
1648 if (nc->num > hard_vcpus_limit) {
1649 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1650 "the maximum cpus supported by KVM (%d)\n",
1651 nc->name, nc->num, hard_vcpus_limit);
1652 exit(1);
1653 }
1654 }
1655 nc++;
1656 }
1657
1658 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1659 if (!missing_cap) {
1660 missing_cap =
1661 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1662 }
1663 if (missing_cap) {
1664 ret = -EINVAL;
1665 fprintf(stderr, "kvm does not support %s\n%s",
1666 missing_cap->name, upgrade_note);
1667 goto err;
1668 }
1669
1670 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1671 s->coalesced_pio = s->coalesced_mmio &&
1672 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
1673
1674 #ifdef KVM_CAP_VCPU_EVENTS
1675 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1676 #endif
1677
1678 s->robust_singlestep =
1679 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1680
1681 #ifdef KVM_CAP_DEBUGREGS
1682 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1683 #endif
1684
1685 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
1686
1687 #ifdef KVM_CAP_IRQ_ROUTING
1688 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1689 #endif
1690
1691 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1692
1693 s->irq_set_ioctl = KVM_IRQ_LINE;
1694 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1695 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1696 }
1697
1698 kvm_readonly_mem_allowed =
1699 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1700
1701 kvm_eventfds_allowed =
1702 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1703
1704 kvm_irqfds_allowed =
1705 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1706
1707 kvm_resamplefds_allowed =
1708 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1709
1710 kvm_vm_attributes_allowed =
1711 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1712
1713 kvm_ioeventfd_any_length_allowed =
1714 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
1715
1716 kvm_state = s;
1717
1718 /*
1719 * if memory encryption object is specified then initialize the memory
1720 * encryption context.
1721 */
1722 if (ms->memory_encryption) {
1723 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption);
1724 if (!kvm_state->memcrypt_handle) {
1725 ret = -1;
1726 goto err;
1727 }
1728
1729 kvm_state->memcrypt_encrypt_data = sev_encrypt_data;
1730 }
1731
1732 ret = kvm_arch_init(ms, s);
1733 if (ret < 0) {
1734 goto err;
1735 }
1736
1737 if (machine_kernel_irqchip_allowed(ms)) {
1738 kvm_irqchip_create(ms, s);
1739 }
1740
1741 if (kvm_eventfds_allowed) {
1742 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1743 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1744 }
1745 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
1746 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
1747
1748 kvm_memory_listener_register(s, &s->memory_listener,
1749 &address_space_memory, 0);
1750 memory_listener_register(&kvm_io_listener,
1751 &address_space_io);
1752 memory_listener_register(&kvm_coalesced_pio_listener,
1753 &address_space_io);
1754
1755 s->many_ioeventfds = kvm_check_many_ioeventfds();
1756
1757 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1758 if (!s->sync_mmu) {
1759 qemu_balloon_inhibit(true);
1760 }
1761
1762 return 0;
1763
1764 err:
1765 assert(ret < 0);
1766 if (s->vmfd >= 0) {
1767 close(s->vmfd);
1768 }
1769 if (s->fd != -1) {
1770 close(s->fd);
1771 }
1772 g_free(s->memory_listener.slots);
1773
1774 return ret;
1775 }
1776
1777 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1778 {
1779 s->sigmask_len = sigmask_len;
1780 }
1781
1782 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1783 int size, uint32_t count)
1784 {
1785 int i;
1786 uint8_t *ptr = data;
1787
1788 for (i = 0; i < count; i++) {
1789 address_space_rw(&address_space_io, port, attrs,
1790 ptr, size,
1791 direction == KVM_EXIT_IO_OUT);
1792 ptr += size;
1793 }
1794 }
1795
1796 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1797 {
1798 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1799 run->internal.suberror);
1800
1801 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1802 int i;
1803
1804 for (i = 0; i < run->internal.ndata; ++i) {
1805 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1806 i, (uint64_t)run->internal.data[i]);
1807 }
1808 }
1809 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1810 fprintf(stderr, "emulation failure\n");
1811 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1812 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
1813 return EXCP_INTERRUPT;
1814 }
1815 }
1816 /* FIXME: Should trigger a qmp message to let management know
1817 * something went wrong.
1818 */
1819 return -1;
1820 }
1821
1822 void kvm_flush_coalesced_mmio_buffer(void)
1823 {
1824 KVMState *s = kvm_state;
1825
1826 if (s->coalesced_flush_in_progress) {
1827 return;
1828 }
1829
1830 s->coalesced_flush_in_progress = true;
1831
1832 if (s->coalesced_mmio_ring) {
1833 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1834 while (ring->first != ring->last) {
1835 struct kvm_coalesced_mmio *ent;
1836
1837 ent = &ring->coalesced_mmio[ring->first];
1838
1839 if (ent->pio == 1) {
1840 address_space_rw(&address_space_io, ent->phys_addr,
1841 MEMTXATTRS_UNSPECIFIED, ent->data,
1842 ent->len, true);
1843 } else {
1844 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1845 }
1846 smp_wmb();
1847 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1848 }
1849 }
1850
1851 s->coalesced_flush_in_progress = false;
1852 }
1853
1854 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
1855 {
1856 if (!cpu->vcpu_dirty) {
1857 kvm_arch_get_registers(cpu);
1858 cpu->vcpu_dirty = true;
1859 }
1860 }
1861
1862 void kvm_cpu_synchronize_state(CPUState *cpu)
1863 {
1864 if (!cpu->vcpu_dirty) {
1865 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
1866 }
1867 }
1868
1869 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
1870 {
1871 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1872 cpu->vcpu_dirty = false;
1873 }
1874
1875 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1876 {
1877 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
1878 }
1879
1880 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
1881 {
1882 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1883 cpu->vcpu_dirty = false;
1884 }
1885
1886 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1887 {
1888 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
1889 }
1890
1891 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
1892 {
1893 cpu->vcpu_dirty = true;
1894 }
1895
1896 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
1897 {
1898 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
1899 }
1900
1901 #ifdef KVM_HAVE_MCE_INJECTION
1902 static __thread void *pending_sigbus_addr;
1903 static __thread int pending_sigbus_code;
1904 static __thread bool have_sigbus_pending;
1905 #endif
1906
1907 static void kvm_cpu_kick(CPUState *cpu)
1908 {
1909 atomic_set(&cpu->kvm_run->immediate_exit, 1);
1910 }
1911
1912 static void kvm_cpu_kick_self(void)
1913 {
1914 if (kvm_immediate_exit) {
1915 kvm_cpu_kick(current_cpu);
1916 } else {
1917 qemu_cpu_kick_self();
1918 }
1919 }
1920
1921 static void kvm_eat_signals(CPUState *cpu)
1922 {
1923 struct timespec ts = { 0, 0 };
1924 siginfo_t siginfo;
1925 sigset_t waitset;
1926 sigset_t chkset;
1927 int r;
1928
1929 if (kvm_immediate_exit) {
1930 atomic_set(&cpu->kvm_run->immediate_exit, 0);
1931 /* Write kvm_run->immediate_exit before the cpu->exit_request
1932 * write in kvm_cpu_exec.
1933 */
1934 smp_wmb();
1935 return;
1936 }
1937
1938 sigemptyset(&waitset);
1939 sigaddset(&waitset, SIG_IPI);
1940
1941 do {
1942 r = sigtimedwait(&waitset, &siginfo, &ts);
1943 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
1944 perror("sigtimedwait");
1945 exit(1);
1946 }
1947
1948 r = sigpending(&chkset);
1949 if (r == -1) {
1950 perror("sigpending");
1951 exit(1);
1952 }
1953 } while (sigismember(&chkset, SIG_IPI));
1954 }
1955
1956 int kvm_cpu_exec(CPUState *cpu)
1957 {
1958 struct kvm_run *run = cpu->kvm_run;
1959 int ret, run_ret;
1960
1961 DPRINTF("kvm_cpu_exec()\n");
1962
1963 if (kvm_arch_process_async_events(cpu)) {
1964 atomic_set(&cpu->exit_request, 0);
1965 return EXCP_HLT;
1966 }
1967
1968 qemu_mutex_unlock_iothread();
1969 cpu_exec_start(cpu);
1970
1971 do {
1972 MemTxAttrs attrs;
1973
1974 if (cpu->vcpu_dirty) {
1975 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1976 cpu->vcpu_dirty = false;
1977 }
1978
1979 kvm_arch_pre_run(cpu, run);
1980 if (atomic_read(&cpu->exit_request)) {
1981 DPRINTF("interrupt exit requested\n");
1982 /*
1983 * KVM requires us to reenter the kernel after IO exits to complete
1984 * instruction emulation. This self-signal will ensure that we
1985 * leave ASAP again.
1986 */
1987 kvm_cpu_kick_self();
1988 }
1989
1990 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
1991 * Matching barrier in kvm_eat_signals.
1992 */
1993 smp_rmb();
1994
1995 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1996
1997 attrs = kvm_arch_post_run(cpu, run);
1998
1999 #ifdef KVM_HAVE_MCE_INJECTION
2000 if (unlikely(have_sigbus_pending)) {
2001 qemu_mutex_lock_iothread();
2002 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2003 pending_sigbus_addr);
2004 have_sigbus_pending = false;
2005 qemu_mutex_unlock_iothread();
2006 }
2007 #endif
2008
2009 if (run_ret < 0) {
2010 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2011 DPRINTF("io window exit\n");
2012 kvm_eat_signals(cpu);
2013 ret = EXCP_INTERRUPT;
2014 break;
2015 }
2016 fprintf(stderr, "error: kvm run failed %s\n",
2017 strerror(-run_ret));
2018 #ifdef TARGET_PPC
2019 if (run_ret == -EBUSY) {
2020 fprintf(stderr,
2021 "This is probably because your SMT is enabled.\n"
2022 "VCPU can only run on primary threads with all "
2023 "secondary threads offline.\n");
2024 }
2025 #endif
2026 ret = -1;
2027 break;
2028 }
2029
2030 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2031 switch (run->exit_reason) {
2032 case KVM_EXIT_IO:
2033 DPRINTF("handle_io\n");
2034 /* Called outside BQL */
2035 kvm_handle_io(run->io.port, attrs,
2036 (uint8_t *)run + run->io.data_offset,
2037 run->io.direction,
2038 run->io.size,
2039 run->io.count);
2040 ret = 0;
2041 break;
2042 case KVM_EXIT_MMIO:
2043 DPRINTF("handle_mmio\n");
2044 /* Called outside BQL */
2045 address_space_rw(&address_space_memory,
2046 run->mmio.phys_addr, attrs,
2047 run->mmio.data,
2048 run->mmio.len,
2049 run->mmio.is_write);
2050 ret = 0;
2051 break;
2052 case KVM_EXIT_IRQ_WINDOW_OPEN:
2053 DPRINTF("irq_window_open\n");
2054 ret = EXCP_INTERRUPT;
2055 break;
2056 case KVM_EXIT_SHUTDOWN:
2057 DPRINTF("shutdown\n");
2058 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2059 ret = EXCP_INTERRUPT;
2060 break;
2061 case KVM_EXIT_UNKNOWN:
2062 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2063 (uint64_t)run->hw.hardware_exit_reason);
2064 ret = -1;
2065 break;
2066 case KVM_EXIT_INTERNAL_ERROR:
2067 ret = kvm_handle_internal_error(cpu, run);
2068 break;
2069 case KVM_EXIT_SYSTEM_EVENT:
2070 switch (run->system_event.type) {
2071 case KVM_SYSTEM_EVENT_SHUTDOWN:
2072 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2073 ret = EXCP_INTERRUPT;
2074 break;
2075 case KVM_SYSTEM_EVENT_RESET:
2076 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2077 ret = EXCP_INTERRUPT;
2078 break;
2079 case KVM_SYSTEM_EVENT_CRASH:
2080 kvm_cpu_synchronize_state(cpu);
2081 qemu_mutex_lock_iothread();
2082 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2083 qemu_mutex_unlock_iothread();
2084 ret = 0;
2085 break;
2086 default:
2087 DPRINTF("kvm_arch_handle_exit\n");
2088 ret = kvm_arch_handle_exit(cpu, run);
2089 break;
2090 }
2091 break;
2092 default:
2093 DPRINTF("kvm_arch_handle_exit\n");
2094 ret = kvm_arch_handle_exit(cpu, run);
2095 break;
2096 }
2097 } while (ret == 0);
2098
2099 cpu_exec_end(cpu);
2100 qemu_mutex_lock_iothread();
2101
2102 if (ret < 0) {
2103 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2104 vm_stop(RUN_STATE_INTERNAL_ERROR);
2105 }
2106
2107 atomic_set(&cpu->exit_request, 0);
2108 return ret;
2109 }
2110
2111 int kvm_ioctl(KVMState *s, int type, ...)
2112 {
2113 int ret;
2114 void *arg;
2115 va_list ap;
2116
2117 va_start(ap, type);
2118 arg = va_arg(ap, void *);
2119 va_end(ap);
2120
2121 trace_kvm_ioctl(type, arg);
2122 ret = ioctl(s->fd, type, arg);
2123 if (ret == -1) {
2124 ret = -errno;
2125 }
2126 return ret;
2127 }
2128
2129 int kvm_vm_ioctl(KVMState *s, int type, ...)
2130 {
2131 int ret;
2132 void *arg;
2133 va_list ap;
2134
2135 va_start(ap, type);
2136 arg = va_arg(ap, void *);
2137 va_end(ap);
2138
2139 trace_kvm_vm_ioctl(type, arg);
2140 ret = ioctl(s->vmfd, type, arg);
2141 if (ret == -1) {
2142 ret = -errno;
2143 }
2144 return ret;
2145 }
2146
2147 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2148 {
2149 int ret;
2150 void *arg;
2151 va_list ap;
2152
2153 va_start(ap, type);
2154 arg = va_arg(ap, void *);
2155 va_end(ap);
2156
2157 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2158 ret = ioctl(cpu->kvm_fd, type, arg);
2159 if (ret == -1) {
2160 ret = -errno;
2161 }
2162 return ret;
2163 }
2164
2165 int kvm_device_ioctl(int fd, int type, ...)
2166 {
2167 int ret;
2168 void *arg;
2169 va_list ap;
2170
2171 va_start(ap, type);
2172 arg = va_arg(ap, void *);
2173 va_end(ap);
2174
2175 trace_kvm_device_ioctl(fd, type, arg);
2176 ret = ioctl(fd, type, arg);
2177 if (ret == -1) {
2178 ret = -errno;
2179 }
2180 return ret;
2181 }
2182
2183 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2184 {
2185 int ret;
2186 struct kvm_device_attr attribute = {
2187 .group = group,
2188 .attr = attr,
2189 };
2190
2191 if (!kvm_vm_attributes_allowed) {
2192 return 0;
2193 }
2194
2195 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2196 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2197 return ret ? 0 : 1;
2198 }
2199
2200 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2201 {
2202 struct kvm_device_attr attribute = {
2203 .group = group,
2204 .attr = attr,
2205 .flags = 0,
2206 };
2207
2208 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2209 }
2210
2211 int kvm_device_access(int fd, int group, uint64_t attr,
2212 void *val, bool write, Error **errp)
2213 {
2214 struct kvm_device_attr kvmattr;
2215 int err;
2216
2217 kvmattr.flags = 0;
2218 kvmattr.group = group;
2219 kvmattr.attr = attr;
2220 kvmattr.addr = (uintptr_t)val;
2221
2222 err = kvm_device_ioctl(fd,
2223 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2224 &kvmattr);
2225 if (err < 0) {
2226 error_setg_errno(errp, -err,
2227 "KVM_%s_DEVICE_ATTR failed: Group %d "
2228 "attr 0x%016" PRIx64,
2229 write ? "SET" : "GET", group, attr);
2230 }
2231 return err;
2232 }
2233
2234 bool kvm_has_sync_mmu(void)
2235 {
2236 return kvm_state->sync_mmu;
2237 }
2238
2239 int kvm_has_vcpu_events(void)
2240 {
2241 return kvm_state->vcpu_events;
2242 }
2243
2244 int kvm_has_robust_singlestep(void)
2245 {
2246 return kvm_state->robust_singlestep;
2247 }
2248
2249 int kvm_has_debugregs(void)
2250 {
2251 return kvm_state->debugregs;
2252 }
2253
2254 int kvm_max_nested_state_length(void)
2255 {
2256 return kvm_state->max_nested_state_len;
2257 }
2258
2259 int kvm_has_many_ioeventfds(void)
2260 {
2261 if (!kvm_enabled()) {
2262 return 0;
2263 }
2264 return kvm_state->many_ioeventfds;
2265 }
2266
2267 int kvm_has_gsi_routing(void)
2268 {
2269 #ifdef KVM_CAP_IRQ_ROUTING
2270 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2271 #else
2272 return false;
2273 #endif
2274 }
2275
2276 int kvm_has_intx_set_mask(void)
2277 {
2278 return kvm_state->intx_set_mask;
2279 }
2280
2281 bool kvm_arm_supports_user_irq(void)
2282 {
2283 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2284 }
2285
2286 #ifdef KVM_CAP_SET_GUEST_DEBUG
2287 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2288 target_ulong pc)
2289 {
2290 struct kvm_sw_breakpoint *bp;
2291
2292 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2293 if (bp->pc == pc) {
2294 return bp;
2295 }
2296 }
2297 return NULL;
2298 }
2299
2300 int kvm_sw_breakpoints_active(CPUState *cpu)
2301 {
2302 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2303 }
2304
2305 struct kvm_set_guest_debug_data {
2306 struct kvm_guest_debug dbg;
2307 int err;
2308 };
2309
2310 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2311 {
2312 struct kvm_set_guest_debug_data *dbg_data =
2313 (struct kvm_set_guest_debug_data *) data.host_ptr;
2314
2315 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2316 &dbg_data->dbg);
2317 }
2318
2319 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2320 {
2321 struct kvm_set_guest_debug_data data;
2322
2323 data.dbg.control = reinject_trap;
2324
2325 if (cpu->singlestep_enabled) {
2326 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2327 }
2328 kvm_arch_update_guest_debug(cpu, &data.dbg);
2329
2330 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2331 RUN_ON_CPU_HOST_PTR(&data));
2332 return data.err;
2333 }
2334
2335 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2336 target_ulong len, int type)
2337 {
2338 struct kvm_sw_breakpoint *bp;
2339 int err;
2340
2341 if (type == GDB_BREAKPOINT_SW) {
2342 bp = kvm_find_sw_breakpoint(cpu, addr);
2343 if (bp) {
2344 bp->use_count++;
2345 return 0;
2346 }
2347
2348 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2349 bp->pc = addr;
2350 bp->use_count = 1;
2351 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2352 if (err) {
2353 g_free(bp);
2354 return err;
2355 }
2356
2357 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2358 } else {
2359 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2360 if (err) {
2361 return err;
2362 }
2363 }
2364
2365 CPU_FOREACH(cpu) {
2366 err = kvm_update_guest_debug(cpu, 0);
2367 if (err) {
2368 return err;
2369 }
2370 }
2371 return 0;
2372 }
2373
2374 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2375 target_ulong len, int type)
2376 {
2377 struct kvm_sw_breakpoint *bp;
2378 int err;
2379
2380 if (type == GDB_BREAKPOINT_SW) {
2381 bp = kvm_find_sw_breakpoint(cpu, addr);
2382 if (!bp) {
2383 return -ENOENT;
2384 }
2385
2386 if (bp->use_count > 1) {
2387 bp->use_count--;
2388 return 0;
2389 }
2390
2391 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2392 if (err) {
2393 return err;
2394 }
2395
2396 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2397 g_free(bp);
2398 } else {
2399 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2400 if (err) {
2401 return err;
2402 }
2403 }
2404
2405 CPU_FOREACH(cpu) {
2406 err = kvm_update_guest_debug(cpu, 0);
2407 if (err) {
2408 return err;
2409 }
2410 }
2411 return 0;
2412 }
2413
2414 void kvm_remove_all_breakpoints(CPUState *cpu)
2415 {
2416 struct kvm_sw_breakpoint *bp, *next;
2417 KVMState *s = cpu->kvm_state;
2418 CPUState *tmpcpu;
2419
2420 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2421 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2422 /* Try harder to find a CPU that currently sees the breakpoint. */
2423 CPU_FOREACH(tmpcpu) {
2424 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2425 break;
2426 }
2427 }
2428 }
2429 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2430 g_free(bp);
2431 }
2432 kvm_arch_remove_all_hw_breakpoints();
2433
2434 CPU_FOREACH(cpu) {
2435 kvm_update_guest_debug(cpu, 0);
2436 }
2437 }
2438
2439 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2440
2441 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2442 {
2443 return -EINVAL;
2444 }
2445
2446 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2447 target_ulong len, int type)
2448 {
2449 return -EINVAL;
2450 }
2451
2452 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2453 target_ulong len, int type)
2454 {
2455 return -EINVAL;
2456 }
2457
2458 void kvm_remove_all_breakpoints(CPUState *cpu)
2459 {
2460 }
2461 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2462
2463 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2464 {
2465 KVMState *s = kvm_state;
2466 struct kvm_signal_mask *sigmask;
2467 int r;
2468
2469 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2470
2471 sigmask->len = s->sigmask_len;
2472 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2473 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2474 g_free(sigmask);
2475
2476 return r;
2477 }
2478
2479 static void kvm_ipi_signal(int sig)
2480 {
2481 if (current_cpu) {
2482 assert(kvm_immediate_exit);
2483 kvm_cpu_kick(current_cpu);
2484 }
2485 }
2486
2487 void kvm_init_cpu_signals(CPUState *cpu)
2488 {
2489 int r;
2490 sigset_t set;
2491 struct sigaction sigact;
2492
2493 memset(&sigact, 0, sizeof(sigact));
2494 sigact.sa_handler = kvm_ipi_signal;
2495 sigaction(SIG_IPI, &sigact, NULL);
2496
2497 pthread_sigmask(SIG_BLOCK, NULL, &set);
2498 #if defined KVM_HAVE_MCE_INJECTION
2499 sigdelset(&set, SIGBUS);
2500 pthread_sigmask(SIG_SETMASK, &set, NULL);
2501 #endif
2502 sigdelset(&set, SIG_IPI);
2503 if (kvm_immediate_exit) {
2504 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2505 } else {
2506 r = kvm_set_signal_mask(cpu, &set);
2507 }
2508 if (r) {
2509 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2510 exit(1);
2511 }
2512 }
2513
2514 /* Called asynchronously in VCPU thread. */
2515 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2516 {
2517 #ifdef KVM_HAVE_MCE_INJECTION
2518 if (have_sigbus_pending) {
2519 return 1;
2520 }
2521 have_sigbus_pending = true;
2522 pending_sigbus_addr = addr;
2523 pending_sigbus_code = code;
2524 atomic_set(&cpu->exit_request, 1);
2525 return 0;
2526 #else
2527 return 1;
2528 #endif
2529 }
2530
2531 /* Called synchronously (via signalfd) in main thread. */
2532 int kvm_on_sigbus(int code, void *addr)
2533 {
2534 #ifdef KVM_HAVE_MCE_INJECTION
2535 /* Action required MCE kills the process if SIGBUS is blocked. Because
2536 * that's what happens in the I/O thread, where we handle MCE via signalfd,
2537 * we can only get action optional here.
2538 */
2539 assert(code != BUS_MCEERR_AR);
2540 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
2541 return 0;
2542 #else
2543 return 1;
2544 #endif
2545 }
2546
2547 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2548 {
2549 int ret;
2550 struct kvm_create_device create_dev;
2551
2552 create_dev.type = type;
2553 create_dev.fd = -1;
2554 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2555
2556 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2557 return -ENOTSUP;
2558 }
2559
2560 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2561 if (ret) {
2562 return ret;
2563 }
2564
2565 return test ? 0 : create_dev.fd;
2566 }
2567
2568 bool kvm_device_supported(int vmfd, uint64_t type)
2569 {
2570 struct kvm_create_device create_dev = {
2571 .type = type,
2572 .fd = -1,
2573 .flags = KVM_CREATE_DEVICE_TEST,
2574 };
2575
2576 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
2577 return false;
2578 }
2579
2580 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
2581 }
2582
2583 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2584 {
2585 struct kvm_one_reg reg;
2586 int r;
2587
2588 reg.id = id;
2589 reg.addr = (uintptr_t) source;
2590 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2591 if (r) {
2592 trace_kvm_failed_reg_set(id, strerror(-r));
2593 }
2594 return r;
2595 }
2596
2597 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2598 {
2599 struct kvm_one_reg reg;
2600 int r;
2601
2602 reg.id = id;
2603 reg.addr = (uintptr_t) target;
2604 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2605 if (r) {
2606 trace_kvm_failed_reg_get(id, strerror(-r));
2607 }
2608 return r;
2609 }
2610
2611 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2612 {
2613 AccelClass *ac = ACCEL_CLASS(oc);
2614 ac->name = "KVM";
2615 ac->init_machine = kvm_init;
2616 ac->allowed = &kvm_allowed;
2617 }
2618
2619 static const TypeInfo kvm_accel_type = {
2620 .name = TYPE_KVM_ACCEL,
2621 .parent = TYPE_ACCEL,
2622 .class_init = kvm_accel_class_init,
2623 .instance_size = sizeof(KVMState),
2624 };
2625
2626 static void kvm_type_init(void)
2627 {
2628 type_register_static(&kvm_accel_type);
2629 }
2630
2631 type_init(kvm_type_init);