]> git.proxmox.com Git - mirror_qemu.git/blob - accel/kvm/kvm-all.c
d2d96d73e850cf389cdf1ae2bef3e441c29d8f05
[mirror_qemu.git] / accel / kvm / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18
19 #include <linux/kvm.h>
20
21 #include "qemu/atomic.h"
22 #include "qemu/option.h"
23 #include "qemu/config-file.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/pci/msi.h"
27 #include "hw/pci/msix.h"
28 #include "hw/s390x/adapter.h"
29 #include "exec/gdbstub.h"
30 #include "sysemu/kvm_int.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "sysemu/sev.h"
43 #include "sysemu/balloon.h"
44
45 #include "hw/boards.h"
46
47 /* This check must be after config-host.h is included */
48 #ifdef CONFIG_EVENTFD
49 #include <sys/eventfd.h>
50 #endif
51
52 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
53 * need to use the real host PAGE_SIZE, as that's what KVM will use.
54 */
55 #define PAGE_SIZE getpagesize()
56
57 //#define DEBUG_KVM
58
59 #ifdef DEBUG_KVM
60 #define DPRINTF(fmt, ...) \
61 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
62 #else
63 #define DPRINTF(fmt, ...) \
64 do { } while (0)
65 #endif
66
67 #define KVM_MSI_HASHTAB_SIZE 256
68
69 struct KVMParkedVcpu {
70 unsigned long vcpu_id;
71 int kvm_fd;
72 QLIST_ENTRY(KVMParkedVcpu) node;
73 };
74
75 struct KVMState
76 {
77 AccelState parent_obj;
78
79 int nr_slots;
80 int fd;
81 int vmfd;
82 int coalesced_mmio;
83 int coalesced_pio;
84 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
85 bool coalesced_flush_in_progress;
86 int vcpu_events;
87 int robust_singlestep;
88 int debugregs;
89 #ifdef KVM_CAP_SET_GUEST_DEBUG
90 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
91 #endif
92 int max_nested_state_len;
93 int many_ioeventfds;
94 int intx_set_mask;
95 bool sync_mmu;
96 bool manual_dirty_log_protect;
97 /* The man page (and posix) say ioctl numbers are signed int, but
98 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
99 * unsigned, and treating them as signed here can break things */
100 unsigned irq_set_ioctl;
101 unsigned int sigmask_len;
102 GHashTable *gsimap;
103 #ifdef KVM_CAP_IRQ_ROUTING
104 struct kvm_irq_routing *irq_routes;
105 int nr_allocated_irq_routes;
106 unsigned long *used_gsi_bitmap;
107 unsigned int gsi_count;
108 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
109 #endif
110 KVMMemoryListener memory_listener;
111 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
112
113 /* memory encryption */
114 void *memcrypt_handle;
115 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len);
116
117 /* For "info mtree -f" to tell if an MR is registered in KVM */
118 int nr_as;
119 struct KVMAs {
120 KVMMemoryListener *ml;
121 AddressSpace *as;
122 } *as;
123 };
124
125 KVMState *kvm_state;
126 bool kvm_kernel_irqchip;
127 bool kvm_split_irqchip;
128 bool kvm_async_interrupts_allowed;
129 bool kvm_halt_in_kernel_allowed;
130 bool kvm_eventfds_allowed;
131 bool kvm_irqfds_allowed;
132 bool kvm_resamplefds_allowed;
133 bool kvm_msi_via_irqfd_allowed;
134 bool kvm_gsi_routing_allowed;
135 bool kvm_gsi_direct_mapping;
136 bool kvm_allowed;
137 bool kvm_readonly_mem_allowed;
138 bool kvm_vm_attributes_allowed;
139 bool kvm_direct_msi_allowed;
140 bool kvm_ioeventfd_any_length_allowed;
141 bool kvm_msi_use_devid;
142 static bool kvm_immediate_exit;
143 static hwaddr kvm_max_slot_size = ~0;
144
145 static const KVMCapabilityInfo kvm_required_capabilites[] = {
146 KVM_CAP_INFO(USER_MEMORY),
147 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
148 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
149 KVM_CAP_LAST_INFO
150 };
151
152 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock)
153 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock)
154
155 int kvm_get_max_memslots(void)
156 {
157 KVMState *s = KVM_STATE(current_machine->accelerator);
158
159 return s->nr_slots;
160 }
161
162 bool kvm_memcrypt_enabled(void)
163 {
164 if (kvm_state && kvm_state->memcrypt_handle) {
165 return true;
166 }
167
168 return false;
169 }
170
171 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len)
172 {
173 if (kvm_state->memcrypt_handle &&
174 kvm_state->memcrypt_encrypt_data) {
175 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle,
176 ptr, len);
177 }
178
179 return 1;
180 }
181
182 /* Called with KVMMemoryListener.slots_lock held */
183 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
184 {
185 KVMState *s = kvm_state;
186 int i;
187
188 for (i = 0; i < s->nr_slots; i++) {
189 if (kml->slots[i].memory_size == 0) {
190 return &kml->slots[i];
191 }
192 }
193
194 return NULL;
195 }
196
197 bool kvm_has_free_slot(MachineState *ms)
198 {
199 KVMState *s = KVM_STATE(ms->accelerator);
200 bool result;
201 KVMMemoryListener *kml = &s->memory_listener;
202
203 kvm_slots_lock(kml);
204 result = !!kvm_get_free_slot(kml);
205 kvm_slots_unlock(kml);
206
207 return result;
208 }
209
210 /* Called with KVMMemoryListener.slots_lock held */
211 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
212 {
213 KVMSlot *slot = kvm_get_free_slot(kml);
214
215 if (slot) {
216 return slot;
217 }
218
219 fprintf(stderr, "%s: no free slot available\n", __func__);
220 abort();
221 }
222
223 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
224 hwaddr start_addr,
225 hwaddr size)
226 {
227 KVMState *s = kvm_state;
228 int i;
229
230 for (i = 0; i < s->nr_slots; i++) {
231 KVMSlot *mem = &kml->slots[i];
232
233 if (start_addr == mem->start_addr && size == mem->memory_size) {
234 return mem;
235 }
236 }
237
238 return NULL;
239 }
240
241 /*
242 * Calculate and align the start address and the size of the section.
243 * Return the size. If the size is 0, the aligned section is empty.
244 */
245 static hwaddr kvm_align_section(MemoryRegionSection *section,
246 hwaddr *start)
247 {
248 hwaddr size = int128_get64(section->size);
249 hwaddr delta, aligned;
250
251 /* kvm works in page size chunks, but the function may be called
252 with sub-page size and unaligned start address. Pad the start
253 address to next and truncate size to previous page boundary. */
254 aligned = ROUND_UP(section->offset_within_address_space,
255 qemu_real_host_page_size);
256 delta = aligned - section->offset_within_address_space;
257 *start = aligned;
258 if (delta > size) {
259 return 0;
260 }
261
262 return (size - delta) & qemu_real_host_page_mask;
263 }
264
265 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
266 hwaddr *phys_addr)
267 {
268 KVMMemoryListener *kml = &s->memory_listener;
269 int i, ret = 0;
270
271 kvm_slots_lock(kml);
272 for (i = 0; i < s->nr_slots; i++) {
273 KVMSlot *mem = &kml->slots[i];
274
275 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
276 *phys_addr = mem->start_addr + (ram - mem->ram);
277 ret = 1;
278 break;
279 }
280 }
281 kvm_slots_unlock(kml);
282
283 return ret;
284 }
285
286 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
287 {
288 KVMState *s = kvm_state;
289 struct kvm_userspace_memory_region mem;
290 int ret;
291
292 mem.slot = slot->slot | (kml->as_id << 16);
293 mem.guest_phys_addr = slot->start_addr;
294 mem.userspace_addr = (unsigned long)slot->ram;
295 mem.flags = slot->flags;
296
297 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
298 /* Set the slot size to 0 before setting the slot to the desired
299 * value. This is needed based on KVM commit 75d61fbc. */
300 mem.memory_size = 0;
301 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
302 }
303 mem.memory_size = slot->memory_size;
304 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
305 slot->old_flags = mem.flags;
306 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
307 mem.memory_size, mem.userspace_addr, ret);
308 return ret;
309 }
310
311 int kvm_destroy_vcpu(CPUState *cpu)
312 {
313 KVMState *s = kvm_state;
314 long mmap_size;
315 struct KVMParkedVcpu *vcpu = NULL;
316 int ret = 0;
317
318 DPRINTF("kvm_destroy_vcpu\n");
319
320 ret = kvm_arch_destroy_vcpu(cpu);
321 if (ret < 0) {
322 goto err;
323 }
324
325 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
326 if (mmap_size < 0) {
327 ret = mmap_size;
328 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
329 goto err;
330 }
331
332 ret = munmap(cpu->kvm_run, mmap_size);
333 if (ret < 0) {
334 goto err;
335 }
336
337 vcpu = g_malloc0(sizeof(*vcpu));
338 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
339 vcpu->kvm_fd = cpu->kvm_fd;
340 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
341 err:
342 return ret;
343 }
344
345 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
346 {
347 struct KVMParkedVcpu *cpu;
348
349 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
350 if (cpu->vcpu_id == vcpu_id) {
351 int kvm_fd;
352
353 QLIST_REMOVE(cpu, node);
354 kvm_fd = cpu->kvm_fd;
355 g_free(cpu);
356 return kvm_fd;
357 }
358 }
359
360 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
361 }
362
363 int kvm_init_vcpu(CPUState *cpu)
364 {
365 KVMState *s = kvm_state;
366 long mmap_size;
367 int ret;
368
369 DPRINTF("kvm_init_vcpu\n");
370
371 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
372 if (ret < 0) {
373 DPRINTF("kvm_create_vcpu failed\n");
374 goto err;
375 }
376
377 cpu->kvm_fd = ret;
378 cpu->kvm_state = s;
379 cpu->vcpu_dirty = true;
380
381 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
382 if (mmap_size < 0) {
383 ret = mmap_size;
384 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
385 goto err;
386 }
387
388 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
389 cpu->kvm_fd, 0);
390 if (cpu->kvm_run == MAP_FAILED) {
391 ret = -errno;
392 DPRINTF("mmap'ing vcpu state failed\n");
393 goto err;
394 }
395
396 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
397 s->coalesced_mmio_ring =
398 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
399 }
400
401 ret = kvm_arch_init_vcpu(cpu);
402 err:
403 return ret;
404 }
405
406 /*
407 * dirty pages logging control
408 */
409
410 static int kvm_mem_flags(MemoryRegion *mr)
411 {
412 bool readonly = mr->readonly || memory_region_is_romd(mr);
413 int flags = 0;
414
415 if (memory_region_get_dirty_log_mask(mr) != 0) {
416 flags |= KVM_MEM_LOG_DIRTY_PAGES;
417 }
418 if (readonly && kvm_readonly_mem_allowed) {
419 flags |= KVM_MEM_READONLY;
420 }
421 return flags;
422 }
423
424 /* Called with KVMMemoryListener.slots_lock held */
425 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
426 MemoryRegion *mr)
427 {
428 mem->flags = kvm_mem_flags(mr);
429
430 /* If nothing changed effectively, no need to issue ioctl */
431 if (mem->flags == mem->old_flags) {
432 return 0;
433 }
434
435 return kvm_set_user_memory_region(kml, mem, false);
436 }
437
438 static int kvm_section_update_flags(KVMMemoryListener *kml,
439 MemoryRegionSection *section)
440 {
441 hwaddr start_addr, size, slot_size;
442 KVMSlot *mem;
443 int ret = 0;
444
445 size = kvm_align_section(section, &start_addr);
446 if (!size) {
447 return 0;
448 }
449
450 kvm_slots_lock(kml);
451
452 while (size && !ret) {
453 slot_size = MIN(kvm_max_slot_size, size);
454 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
455 if (!mem) {
456 /* We don't have a slot if we want to trap every access. */
457 goto out;
458 }
459
460 ret = kvm_slot_update_flags(kml, mem, section->mr);
461 start_addr += slot_size;
462 size -= slot_size;
463 }
464
465 out:
466 kvm_slots_unlock(kml);
467 return ret;
468 }
469
470 static void kvm_log_start(MemoryListener *listener,
471 MemoryRegionSection *section,
472 int old, int new)
473 {
474 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
475 int r;
476
477 if (old != 0) {
478 return;
479 }
480
481 r = kvm_section_update_flags(kml, section);
482 if (r < 0) {
483 abort();
484 }
485 }
486
487 static void kvm_log_stop(MemoryListener *listener,
488 MemoryRegionSection *section,
489 int old, int new)
490 {
491 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
492 int r;
493
494 if (new != 0) {
495 return;
496 }
497
498 r = kvm_section_update_flags(kml, section);
499 if (r < 0) {
500 abort();
501 }
502 }
503
504 /* get kvm's dirty pages bitmap and update qemu's */
505 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
506 unsigned long *bitmap)
507 {
508 ram_addr_t start = section->offset_within_region +
509 memory_region_get_ram_addr(section->mr);
510 ram_addr_t pages = int128_get64(section->size) / getpagesize();
511
512 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
513 return 0;
514 }
515
516 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
517
518 /**
519 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
520 *
521 * This function will first try to fetch dirty bitmap from the kernel,
522 * and then updates qemu's dirty bitmap.
523 *
524 * NOTE: caller must be with kml->slots_lock held.
525 *
526 * @kml: the KVM memory listener object
527 * @section: the memory section to sync the dirty bitmap with
528 */
529 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
530 MemoryRegionSection *section)
531 {
532 KVMState *s = kvm_state;
533 struct kvm_dirty_log d = {};
534 KVMSlot *mem;
535 hwaddr start_addr, size;
536 hwaddr slot_size, slot_offset = 0;
537 int ret = 0;
538
539 size = kvm_align_section(section, &start_addr);
540 while (size) {
541 MemoryRegionSection subsection = *section;
542
543 slot_size = MIN(kvm_max_slot_size, size);
544 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
545 if (!mem) {
546 /* We don't have a slot if we want to trap every access. */
547 goto out;
548 }
549
550 /* XXX bad kernel interface alert
551 * For dirty bitmap, kernel allocates array of size aligned to
552 * bits-per-long. But for case when the kernel is 64bits and
553 * the userspace is 32bits, userspace can't align to the same
554 * bits-per-long, since sizeof(long) is different between kernel
555 * and user space. This way, userspace will provide buffer which
556 * may be 4 bytes less than the kernel will use, resulting in
557 * userspace memory corruption (which is not detectable by valgrind
558 * too, in most cases).
559 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
560 * a hope that sizeof(long) won't become >8 any time soon.
561 */
562 if (!mem->dirty_bmap) {
563 hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
564 /*HOST_LONG_BITS*/ 64) / 8;
565 /* Allocate on the first log_sync, once and for all */
566 mem->dirty_bmap = g_malloc0(bitmap_size);
567 }
568
569 d.dirty_bitmap = mem->dirty_bmap;
570 d.slot = mem->slot | (kml->as_id << 16);
571 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
572 DPRINTF("ioctl failed %d\n", errno);
573 ret = -1;
574 goto out;
575 }
576
577 subsection.offset_within_region += slot_offset;
578 subsection.size = int128_make64(slot_size);
579 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap);
580
581 slot_offset += slot_size;
582 start_addr += slot_size;
583 size -= slot_size;
584 }
585 out:
586 return ret;
587 }
588
589 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
590 #define KVM_CLEAR_LOG_SHIFT 6
591 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
592 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
593
594 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
595 uint64_t size)
596 {
597 KVMState *s = kvm_state;
598 uint64_t end, bmap_start, start_delta, bmap_npages;
599 struct kvm_clear_dirty_log d;
600 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
601 int ret;
602
603 /*
604 * We need to extend either the start or the size or both to
605 * satisfy the KVM interface requirement. Firstly, do the start
606 * page alignment on 64 host pages
607 */
608 bmap_start = start & KVM_CLEAR_LOG_MASK;
609 start_delta = start - bmap_start;
610 bmap_start /= psize;
611
612 /*
613 * The kernel interface has restriction on the size too, that either:
614 *
615 * (1) the size is 64 host pages aligned (just like the start), or
616 * (2) the size fills up until the end of the KVM memslot.
617 */
618 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
619 << KVM_CLEAR_LOG_SHIFT;
620 end = mem->memory_size / psize;
621 if (bmap_npages > end - bmap_start) {
622 bmap_npages = end - bmap_start;
623 }
624 start_delta /= psize;
625
626 /*
627 * Prepare the bitmap to clear dirty bits. Here we must guarantee
628 * that we won't clear any unknown dirty bits otherwise we might
629 * accidentally clear some set bits which are not yet synced from
630 * the kernel into QEMU's bitmap, then we'll lose track of the
631 * guest modifications upon those pages (which can directly lead
632 * to guest data loss or panic after migration).
633 *
634 * Layout of the KVMSlot.dirty_bmap:
635 *
636 * |<-------- bmap_npages -----------..>|
637 * [1]
638 * start_delta size
639 * |----------------|-------------|------------------|------------|
640 * ^ ^ ^ ^
641 * | | | |
642 * start bmap_start (start) end
643 * of memslot of memslot
644 *
645 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
646 */
647
648 assert(bmap_start % BITS_PER_LONG == 0);
649 /* We should never do log_clear before log_sync */
650 assert(mem->dirty_bmap);
651 if (start_delta) {
652 /* Slow path - we need to manipulate a temp bitmap */
653 bmap_clear = bitmap_new(bmap_npages);
654 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
655 bmap_start, start_delta + size / psize);
656 /*
657 * We need to fill the holes at start because that was not
658 * specified by the caller and we extended the bitmap only for
659 * 64 pages alignment
660 */
661 bitmap_clear(bmap_clear, 0, start_delta);
662 d.dirty_bitmap = bmap_clear;
663 } else {
664 /* Fast path - start address aligns well with BITS_PER_LONG */
665 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
666 }
667
668 d.first_page = bmap_start;
669 /* It should never overflow. If it happens, say something */
670 assert(bmap_npages <= UINT32_MAX);
671 d.num_pages = bmap_npages;
672 d.slot = mem->slot | (as_id << 16);
673
674 if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) {
675 ret = -errno;
676 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
677 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
678 __func__, d.slot, (uint64_t)d.first_page,
679 (uint32_t)d.num_pages, ret);
680 } else {
681 ret = 0;
682 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
683 }
684
685 /*
686 * After we have updated the remote dirty bitmap, we update the
687 * cached bitmap as well for the memslot, then if another user
688 * clears the same region we know we shouldn't clear it again on
689 * the remote otherwise it's data loss as well.
690 */
691 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
692 size / psize);
693 /* This handles the NULL case well */
694 g_free(bmap_clear);
695 return ret;
696 }
697
698
699 /**
700 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
701 *
702 * NOTE: this will be a no-op if we haven't enabled manual dirty log
703 * protection in the host kernel because in that case this operation
704 * will be done within log_sync().
705 *
706 * @kml: the kvm memory listener
707 * @section: the memory range to clear dirty bitmap
708 */
709 static int kvm_physical_log_clear(KVMMemoryListener *kml,
710 MemoryRegionSection *section)
711 {
712 KVMState *s = kvm_state;
713 uint64_t start, size, offset, count;
714 KVMSlot *mem;
715 int ret = 0, i;
716
717 if (!s->manual_dirty_log_protect) {
718 /* No need to do explicit clear */
719 return ret;
720 }
721
722 start = section->offset_within_address_space;
723 size = int128_get64(section->size);
724
725 if (!size) {
726 /* Nothing more we can do... */
727 return ret;
728 }
729
730 kvm_slots_lock(kml);
731
732 for (i = 0; i < s->nr_slots; i++) {
733 mem = &kml->slots[i];
734 /* Discard slots that are empty or do not overlap the section */
735 if (!mem->memory_size ||
736 mem->start_addr > start + size - 1 ||
737 start > mem->start_addr + mem->memory_size - 1) {
738 continue;
739 }
740
741 if (start >= mem->start_addr) {
742 /* The slot starts before section or is aligned to it. */
743 offset = start - mem->start_addr;
744 count = MIN(mem->memory_size - offset, size);
745 } else {
746 /* The slot starts after section. */
747 offset = 0;
748 count = MIN(mem->memory_size, size - (mem->start_addr - start));
749 }
750 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
751 if (ret < 0) {
752 break;
753 }
754 }
755
756 kvm_slots_unlock(kml);
757
758 return ret;
759 }
760
761 static void kvm_coalesce_mmio_region(MemoryListener *listener,
762 MemoryRegionSection *secion,
763 hwaddr start, hwaddr size)
764 {
765 KVMState *s = kvm_state;
766
767 if (s->coalesced_mmio) {
768 struct kvm_coalesced_mmio_zone zone;
769
770 zone.addr = start;
771 zone.size = size;
772 zone.pad = 0;
773
774 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
775 }
776 }
777
778 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
779 MemoryRegionSection *secion,
780 hwaddr start, hwaddr size)
781 {
782 KVMState *s = kvm_state;
783
784 if (s->coalesced_mmio) {
785 struct kvm_coalesced_mmio_zone zone;
786
787 zone.addr = start;
788 zone.size = size;
789 zone.pad = 0;
790
791 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
792 }
793 }
794
795 static void kvm_coalesce_pio_add(MemoryListener *listener,
796 MemoryRegionSection *section,
797 hwaddr start, hwaddr size)
798 {
799 KVMState *s = kvm_state;
800
801 if (s->coalesced_pio) {
802 struct kvm_coalesced_mmio_zone zone;
803
804 zone.addr = start;
805 zone.size = size;
806 zone.pio = 1;
807
808 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
809 }
810 }
811
812 static void kvm_coalesce_pio_del(MemoryListener *listener,
813 MemoryRegionSection *section,
814 hwaddr start, hwaddr size)
815 {
816 KVMState *s = kvm_state;
817
818 if (s->coalesced_pio) {
819 struct kvm_coalesced_mmio_zone zone;
820
821 zone.addr = start;
822 zone.size = size;
823 zone.pio = 1;
824
825 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
826 }
827 }
828
829 static MemoryListener kvm_coalesced_pio_listener = {
830 .coalesced_io_add = kvm_coalesce_pio_add,
831 .coalesced_io_del = kvm_coalesce_pio_del,
832 };
833
834 int kvm_check_extension(KVMState *s, unsigned int extension)
835 {
836 int ret;
837
838 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
839 if (ret < 0) {
840 ret = 0;
841 }
842
843 return ret;
844 }
845
846 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
847 {
848 int ret;
849
850 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
851 if (ret < 0) {
852 /* VM wide version not implemented, use global one instead */
853 ret = kvm_check_extension(s, extension);
854 }
855
856 return ret;
857 }
858
859 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
860 {
861 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
862 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
863 * endianness, but the memory core hands them in target endianness.
864 * For example, PPC is always treated as big-endian even if running
865 * on KVM and on PPC64LE. Correct here.
866 */
867 switch (size) {
868 case 2:
869 val = bswap16(val);
870 break;
871 case 4:
872 val = bswap32(val);
873 break;
874 }
875 #endif
876 return val;
877 }
878
879 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
880 bool assign, uint32_t size, bool datamatch)
881 {
882 int ret;
883 struct kvm_ioeventfd iofd = {
884 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
885 .addr = addr,
886 .len = size,
887 .flags = 0,
888 .fd = fd,
889 };
890
891 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
892 datamatch);
893 if (!kvm_enabled()) {
894 return -ENOSYS;
895 }
896
897 if (datamatch) {
898 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
899 }
900 if (!assign) {
901 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
902 }
903
904 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
905
906 if (ret < 0) {
907 return -errno;
908 }
909
910 return 0;
911 }
912
913 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
914 bool assign, uint32_t size, bool datamatch)
915 {
916 struct kvm_ioeventfd kick = {
917 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
918 .addr = addr,
919 .flags = KVM_IOEVENTFD_FLAG_PIO,
920 .len = size,
921 .fd = fd,
922 };
923 int r;
924 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
925 if (!kvm_enabled()) {
926 return -ENOSYS;
927 }
928 if (datamatch) {
929 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
930 }
931 if (!assign) {
932 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
933 }
934 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
935 if (r < 0) {
936 return r;
937 }
938 return 0;
939 }
940
941
942 static int kvm_check_many_ioeventfds(void)
943 {
944 /* Userspace can use ioeventfd for io notification. This requires a host
945 * that supports eventfd(2) and an I/O thread; since eventfd does not
946 * support SIGIO it cannot interrupt the vcpu.
947 *
948 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
949 * can avoid creating too many ioeventfds.
950 */
951 #if defined(CONFIG_EVENTFD)
952 int ioeventfds[7];
953 int i, ret = 0;
954 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
955 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
956 if (ioeventfds[i] < 0) {
957 break;
958 }
959 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
960 if (ret < 0) {
961 close(ioeventfds[i]);
962 break;
963 }
964 }
965
966 /* Decide whether many devices are supported or not */
967 ret = i == ARRAY_SIZE(ioeventfds);
968
969 while (i-- > 0) {
970 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
971 close(ioeventfds[i]);
972 }
973 return ret;
974 #else
975 return 0;
976 #endif
977 }
978
979 static const KVMCapabilityInfo *
980 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
981 {
982 while (list->name) {
983 if (!kvm_check_extension(s, list->value)) {
984 return list;
985 }
986 list++;
987 }
988 return NULL;
989 }
990
991 void kvm_set_max_memslot_size(hwaddr max_slot_size)
992 {
993 g_assert(
994 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
995 );
996 kvm_max_slot_size = max_slot_size;
997 }
998
999 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1000 MemoryRegionSection *section, bool add)
1001 {
1002 KVMSlot *mem;
1003 int err;
1004 MemoryRegion *mr = section->mr;
1005 bool writeable = !mr->readonly && !mr->rom_device;
1006 hwaddr start_addr, size, slot_size;
1007 void *ram;
1008
1009 if (!memory_region_is_ram(mr)) {
1010 if (writeable || !kvm_readonly_mem_allowed) {
1011 return;
1012 } else if (!mr->romd_mode) {
1013 /* If the memory device is not in romd_mode, then we actually want
1014 * to remove the kvm memory slot so all accesses will trap. */
1015 add = false;
1016 }
1017 }
1018
1019 size = kvm_align_section(section, &start_addr);
1020 if (!size) {
1021 return;
1022 }
1023
1024 /* use aligned delta to align the ram address */
1025 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
1026 (start_addr - section->offset_within_address_space);
1027
1028 kvm_slots_lock(kml);
1029
1030 if (!add) {
1031 do {
1032 slot_size = MIN(kvm_max_slot_size, size);
1033 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1034 if (!mem) {
1035 goto out;
1036 }
1037 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1038 kvm_physical_sync_dirty_bitmap(kml, section);
1039 }
1040
1041 /* unregister the slot */
1042 g_free(mem->dirty_bmap);
1043 mem->dirty_bmap = NULL;
1044 mem->memory_size = 0;
1045 mem->flags = 0;
1046 err = kvm_set_user_memory_region(kml, mem, false);
1047 if (err) {
1048 fprintf(stderr, "%s: error unregistering slot: %s\n",
1049 __func__, strerror(-err));
1050 abort();
1051 }
1052 start_addr += slot_size;
1053 size -= slot_size;
1054 } while (size);
1055 goto out;
1056 }
1057
1058 /* register the new slot */
1059 do {
1060 slot_size = MIN(kvm_max_slot_size, size);
1061 mem = kvm_alloc_slot(kml);
1062 mem->memory_size = slot_size;
1063 mem->start_addr = start_addr;
1064 mem->ram = ram;
1065 mem->flags = kvm_mem_flags(mr);
1066
1067 err = kvm_set_user_memory_region(kml, mem, true);
1068 if (err) {
1069 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1070 strerror(-err));
1071 abort();
1072 }
1073 start_addr += slot_size;
1074 ram += slot_size;
1075 size -= slot_size;
1076 } while (size);
1077
1078 out:
1079 kvm_slots_unlock(kml);
1080 }
1081
1082 static void kvm_region_add(MemoryListener *listener,
1083 MemoryRegionSection *section)
1084 {
1085 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1086
1087 memory_region_ref(section->mr);
1088 kvm_set_phys_mem(kml, section, true);
1089 }
1090
1091 static void kvm_region_del(MemoryListener *listener,
1092 MemoryRegionSection *section)
1093 {
1094 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1095
1096 kvm_set_phys_mem(kml, section, false);
1097 memory_region_unref(section->mr);
1098 }
1099
1100 static void kvm_log_sync(MemoryListener *listener,
1101 MemoryRegionSection *section)
1102 {
1103 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1104 int r;
1105
1106 kvm_slots_lock(kml);
1107 r = kvm_physical_sync_dirty_bitmap(kml, section);
1108 kvm_slots_unlock(kml);
1109 if (r < 0) {
1110 abort();
1111 }
1112 }
1113
1114 static void kvm_log_clear(MemoryListener *listener,
1115 MemoryRegionSection *section)
1116 {
1117 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1118 int r;
1119
1120 r = kvm_physical_log_clear(kml, section);
1121 if (r < 0) {
1122 error_report_once("%s: kvm log clear failed: mr=%s "
1123 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1124 section->mr->name, section->offset_within_region,
1125 int128_get64(section->size));
1126 abort();
1127 }
1128 }
1129
1130 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1131 MemoryRegionSection *section,
1132 bool match_data, uint64_t data,
1133 EventNotifier *e)
1134 {
1135 int fd = event_notifier_get_fd(e);
1136 int r;
1137
1138 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1139 data, true, int128_get64(section->size),
1140 match_data);
1141 if (r < 0) {
1142 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1143 __func__, strerror(-r), -r);
1144 abort();
1145 }
1146 }
1147
1148 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1149 MemoryRegionSection *section,
1150 bool match_data, uint64_t data,
1151 EventNotifier *e)
1152 {
1153 int fd = event_notifier_get_fd(e);
1154 int r;
1155
1156 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1157 data, false, int128_get64(section->size),
1158 match_data);
1159 if (r < 0) {
1160 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1161 __func__, strerror(-r), -r);
1162 abort();
1163 }
1164 }
1165
1166 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1167 MemoryRegionSection *section,
1168 bool match_data, uint64_t data,
1169 EventNotifier *e)
1170 {
1171 int fd = event_notifier_get_fd(e);
1172 int r;
1173
1174 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1175 data, true, int128_get64(section->size),
1176 match_data);
1177 if (r < 0) {
1178 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1179 __func__, strerror(-r), -r);
1180 abort();
1181 }
1182 }
1183
1184 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1185 MemoryRegionSection *section,
1186 bool match_data, uint64_t data,
1187 EventNotifier *e)
1188
1189 {
1190 int fd = event_notifier_get_fd(e);
1191 int r;
1192
1193 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1194 data, false, int128_get64(section->size),
1195 match_data);
1196 if (r < 0) {
1197 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1198 __func__, strerror(-r), -r);
1199 abort();
1200 }
1201 }
1202
1203 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1204 AddressSpace *as, int as_id)
1205 {
1206 int i;
1207
1208 qemu_mutex_init(&kml->slots_lock);
1209 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1210 kml->as_id = as_id;
1211
1212 for (i = 0; i < s->nr_slots; i++) {
1213 kml->slots[i].slot = i;
1214 }
1215
1216 kml->listener.region_add = kvm_region_add;
1217 kml->listener.region_del = kvm_region_del;
1218 kml->listener.log_start = kvm_log_start;
1219 kml->listener.log_stop = kvm_log_stop;
1220 kml->listener.log_sync = kvm_log_sync;
1221 kml->listener.log_clear = kvm_log_clear;
1222 kml->listener.priority = 10;
1223
1224 memory_listener_register(&kml->listener, as);
1225
1226 for (i = 0; i < s->nr_as; ++i) {
1227 if (!s->as[i].as) {
1228 s->as[i].as = as;
1229 s->as[i].ml = kml;
1230 break;
1231 }
1232 }
1233 }
1234
1235 static MemoryListener kvm_io_listener = {
1236 .eventfd_add = kvm_io_ioeventfd_add,
1237 .eventfd_del = kvm_io_ioeventfd_del,
1238 .priority = 10,
1239 };
1240
1241 int kvm_set_irq(KVMState *s, int irq, int level)
1242 {
1243 struct kvm_irq_level event;
1244 int ret;
1245
1246 assert(kvm_async_interrupts_enabled());
1247
1248 event.level = level;
1249 event.irq = irq;
1250 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1251 if (ret < 0) {
1252 perror("kvm_set_irq");
1253 abort();
1254 }
1255
1256 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1257 }
1258
1259 #ifdef KVM_CAP_IRQ_ROUTING
1260 typedef struct KVMMSIRoute {
1261 struct kvm_irq_routing_entry kroute;
1262 QTAILQ_ENTRY(KVMMSIRoute) entry;
1263 } KVMMSIRoute;
1264
1265 static void set_gsi(KVMState *s, unsigned int gsi)
1266 {
1267 set_bit(gsi, s->used_gsi_bitmap);
1268 }
1269
1270 static void clear_gsi(KVMState *s, unsigned int gsi)
1271 {
1272 clear_bit(gsi, s->used_gsi_bitmap);
1273 }
1274
1275 void kvm_init_irq_routing(KVMState *s)
1276 {
1277 int gsi_count, i;
1278
1279 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1280 if (gsi_count > 0) {
1281 /* Round up so we can search ints using ffs */
1282 s->used_gsi_bitmap = bitmap_new(gsi_count);
1283 s->gsi_count = gsi_count;
1284 }
1285
1286 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1287 s->nr_allocated_irq_routes = 0;
1288
1289 if (!kvm_direct_msi_allowed) {
1290 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1291 QTAILQ_INIT(&s->msi_hashtab[i]);
1292 }
1293 }
1294
1295 kvm_arch_init_irq_routing(s);
1296 }
1297
1298 void kvm_irqchip_commit_routes(KVMState *s)
1299 {
1300 int ret;
1301
1302 if (kvm_gsi_direct_mapping()) {
1303 return;
1304 }
1305
1306 if (!kvm_gsi_routing_enabled()) {
1307 return;
1308 }
1309
1310 s->irq_routes->flags = 0;
1311 trace_kvm_irqchip_commit_routes();
1312 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1313 assert(ret == 0);
1314 }
1315
1316 static void kvm_add_routing_entry(KVMState *s,
1317 struct kvm_irq_routing_entry *entry)
1318 {
1319 struct kvm_irq_routing_entry *new;
1320 int n, size;
1321
1322 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1323 n = s->nr_allocated_irq_routes * 2;
1324 if (n < 64) {
1325 n = 64;
1326 }
1327 size = sizeof(struct kvm_irq_routing);
1328 size += n * sizeof(*new);
1329 s->irq_routes = g_realloc(s->irq_routes, size);
1330 s->nr_allocated_irq_routes = n;
1331 }
1332 n = s->irq_routes->nr++;
1333 new = &s->irq_routes->entries[n];
1334
1335 *new = *entry;
1336
1337 set_gsi(s, entry->gsi);
1338 }
1339
1340 static int kvm_update_routing_entry(KVMState *s,
1341 struct kvm_irq_routing_entry *new_entry)
1342 {
1343 struct kvm_irq_routing_entry *entry;
1344 int n;
1345
1346 for (n = 0; n < s->irq_routes->nr; n++) {
1347 entry = &s->irq_routes->entries[n];
1348 if (entry->gsi != new_entry->gsi) {
1349 continue;
1350 }
1351
1352 if(!memcmp(entry, new_entry, sizeof *entry)) {
1353 return 0;
1354 }
1355
1356 *entry = *new_entry;
1357
1358 return 0;
1359 }
1360
1361 return -ESRCH;
1362 }
1363
1364 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1365 {
1366 struct kvm_irq_routing_entry e = {};
1367
1368 assert(pin < s->gsi_count);
1369
1370 e.gsi = irq;
1371 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1372 e.flags = 0;
1373 e.u.irqchip.irqchip = irqchip;
1374 e.u.irqchip.pin = pin;
1375 kvm_add_routing_entry(s, &e);
1376 }
1377
1378 void kvm_irqchip_release_virq(KVMState *s, int virq)
1379 {
1380 struct kvm_irq_routing_entry *e;
1381 int i;
1382
1383 if (kvm_gsi_direct_mapping()) {
1384 return;
1385 }
1386
1387 for (i = 0; i < s->irq_routes->nr; i++) {
1388 e = &s->irq_routes->entries[i];
1389 if (e->gsi == virq) {
1390 s->irq_routes->nr--;
1391 *e = s->irq_routes->entries[s->irq_routes->nr];
1392 }
1393 }
1394 clear_gsi(s, virq);
1395 kvm_arch_release_virq_post(virq);
1396 trace_kvm_irqchip_release_virq(virq);
1397 }
1398
1399 static unsigned int kvm_hash_msi(uint32_t data)
1400 {
1401 /* This is optimized for IA32 MSI layout. However, no other arch shall
1402 * repeat the mistake of not providing a direct MSI injection API. */
1403 return data & 0xff;
1404 }
1405
1406 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1407 {
1408 KVMMSIRoute *route, *next;
1409 unsigned int hash;
1410
1411 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1412 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1413 kvm_irqchip_release_virq(s, route->kroute.gsi);
1414 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1415 g_free(route);
1416 }
1417 }
1418 }
1419
1420 static int kvm_irqchip_get_virq(KVMState *s)
1421 {
1422 int next_virq;
1423
1424 /*
1425 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1426 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1427 * number can succeed even though a new route entry cannot be added.
1428 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1429 */
1430 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1431 kvm_flush_dynamic_msi_routes(s);
1432 }
1433
1434 /* Return the lowest unused GSI in the bitmap */
1435 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1436 if (next_virq >= s->gsi_count) {
1437 return -ENOSPC;
1438 } else {
1439 return next_virq;
1440 }
1441 }
1442
1443 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1444 {
1445 unsigned int hash = kvm_hash_msi(msg.data);
1446 KVMMSIRoute *route;
1447
1448 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1449 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1450 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1451 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1452 return route;
1453 }
1454 }
1455 return NULL;
1456 }
1457
1458 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1459 {
1460 struct kvm_msi msi;
1461 KVMMSIRoute *route;
1462
1463 if (kvm_direct_msi_allowed) {
1464 msi.address_lo = (uint32_t)msg.address;
1465 msi.address_hi = msg.address >> 32;
1466 msi.data = le32_to_cpu(msg.data);
1467 msi.flags = 0;
1468 memset(msi.pad, 0, sizeof(msi.pad));
1469
1470 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1471 }
1472
1473 route = kvm_lookup_msi_route(s, msg);
1474 if (!route) {
1475 int virq;
1476
1477 virq = kvm_irqchip_get_virq(s);
1478 if (virq < 0) {
1479 return virq;
1480 }
1481
1482 route = g_malloc0(sizeof(KVMMSIRoute));
1483 route->kroute.gsi = virq;
1484 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1485 route->kroute.flags = 0;
1486 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1487 route->kroute.u.msi.address_hi = msg.address >> 32;
1488 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1489
1490 kvm_add_routing_entry(s, &route->kroute);
1491 kvm_irqchip_commit_routes(s);
1492
1493 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1494 entry);
1495 }
1496
1497 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1498
1499 return kvm_set_irq(s, route->kroute.gsi, 1);
1500 }
1501
1502 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1503 {
1504 struct kvm_irq_routing_entry kroute = {};
1505 int virq;
1506 MSIMessage msg = {0, 0};
1507
1508 if (pci_available && dev) {
1509 msg = pci_get_msi_message(dev, vector);
1510 }
1511
1512 if (kvm_gsi_direct_mapping()) {
1513 return kvm_arch_msi_data_to_gsi(msg.data);
1514 }
1515
1516 if (!kvm_gsi_routing_enabled()) {
1517 return -ENOSYS;
1518 }
1519
1520 virq = kvm_irqchip_get_virq(s);
1521 if (virq < 0) {
1522 return virq;
1523 }
1524
1525 kroute.gsi = virq;
1526 kroute.type = KVM_IRQ_ROUTING_MSI;
1527 kroute.flags = 0;
1528 kroute.u.msi.address_lo = (uint32_t)msg.address;
1529 kroute.u.msi.address_hi = msg.address >> 32;
1530 kroute.u.msi.data = le32_to_cpu(msg.data);
1531 if (pci_available && kvm_msi_devid_required()) {
1532 kroute.flags = KVM_MSI_VALID_DEVID;
1533 kroute.u.msi.devid = pci_requester_id(dev);
1534 }
1535 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1536 kvm_irqchip_release_virq(s, virq);
1537 return -EINVAL;
1538 }
1539
1540 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1541 vector, virq);
1542
1543 kvm_add_routing_entry(s, &kroute);
1544 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1545 kvm_irqchip_commit_routes(s);
1546
1547 return virq;
1548 }
1549
1550 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1551 PCIDevice *dev)
1552 {
1553 struct kvm_irq_routing_entry kroute = {};
1554
1555 if (kvm_gsi_direct_mapping()) {
1556 return 0;
1557 }
1558
1559 if (!kvm_irqchip_in_kernel()) {
1560 return -ENOSYS;
1561 }
1562
1563 kroute.gsi = virq;
1564 kroute.type = KVM_IRQ_ROUTING_MSI;
1565 kroute.flags = 0;
1566 kroute.u.msi.address_lo = (uint32_t)msg.address;
1567 kroute.u.msi.address_hi = msg.address >> 32;
1568 kroute.u.msi.data = le32_to_cpu(msg.data);
1569 if (pci_available && kvm_msi_devid_required()) {
1570 kroute.flags = KVM_MSI_VALID_DEVID;
1571 kroute.u.msi.devid = pci_requester_id(dev);
1572 }
1573 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1574 return -EINVAL;
1575 }
1576
1577 trace_kvm_irqchip_update_msi_route(virq);
1578
1579 return kvm_update_routing_entry(s, &kroute);
1580 }
1581
1582 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1583 bool assign)
1584 {
1585 struct kvm_irqfd irqfd = {
1586 .fd = fd,
1587 .gsi = virq,
1588 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1589 };
1590
1591 if (rfd != -1) {
1592 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1593 irqfd.resamplefd = rfd;
1594 }
1595
1596 if (!kvm_irqfds_enabled()) {
1597 return -ENOSYS;
1598 }
1599
1600 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1601 }
1602
1603 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1604 {
1605 struct kvm_irq_routing_entry kroute = {};
1606 int virq;
1607
1608 if (!kvm_gsi_routing_enabled()) {
1609 return -ENOSYS;
1610 }
1611
1612 virq = kvm_irqchip_get_virq(s);
1613 if (virq < 0) {
1614 return virq;
1615 }
1616
1617 kroute.gsi = virq;
1618 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1619 kroute.flags = 0;
1620 kroute.u.adapter.summary_addr = adapter->summary_addr;
1621 kroute.u.adapter.ind_addr = adapter->ind_addr;
1622 kroute.u.adapter.summary_offset = adapter->summary_offset;
1623 kroute.u.adapter.ind_offset = adapter->ind_offset;
1624 kroute.u.adapter.adapter_id = adapter->adapter_id;
1625
1626 kvm_add_routing_entry(s, &kroute);
1627
1628 return virq;
1629 }
1630
1631 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1632 {
1633 struct kvm_irq_routing_entry kroute = {};
1634 int virq;
1635
1636 if (!kvm_gsi_routing_enabled()) {
1637 return -ENOSYS;
1638 }
1639 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1640 return -ENOSYS;
1641 }
1642 virq = kvm_irqchip_get_virq(s);
1643 if (virq < 0) {
1644 return virq;
1645 }
1646
1647 kroute.gsi = virq;
1648 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1649 kroute.flags = 0;
1650 kroute.u.hv_sint.vcpu = vcpu;
1651 kroute.u.hv_sint.sint = sint;
1652
1653 kvm_add_routing_entry(s, &kroute);
1654 kvm_irqchip_commit_routes(s);
1655
1656 return virq;
1657 }
1658
1659 #else /* !KVM_CAP_IRQ_ROUTING */
1660
1661 void kvm_init_irq_routing(KVMState *s)
1662 {
1663 }
1664
1665 void kvm_irqchip_release_virq(KVMState *s, int virq)
1666 {
1667 }
1668
1669 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1670 {
1671 abort();
1672 }
1673
1674 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1675 {
1676 return -ENOSYS;
1677 }
1678
1679 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1680 {
1681 return -ENOSYS;
1682 }
1683
1684 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1685 {
1686 return -ENOSYS;
1687 }
1688
1689 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1690 {
1691 abort();
1692 }
1693
1694 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1695 {
1696 return -ENOSYS;
1697 }
1698 #endif /* !KVM_CAP_IRQ_ROUTING */
1699
1700 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1701 EventNotifier *rn, int virq)
1702 {
1703 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1704 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1705 }
1706
1707 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1708 int virq)
1709 {
1710 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1711 false);
1712 }
1713
1714 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1715 EventNotifier *rn, qemu_irq irq)
1716 {
1717 gpointer key, gsi;
1718 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1719
1720 if (!found) {
1721 return -ENXIO;
1722 }
1723 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1724 }
1725
1726 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1727 qemu_irq irq)
1728 {
1729 gpointer key, gsi;
1730 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1731
1732 if (!found) {
1733 return -ENXIO;
1734 }
1735 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1736 }
1737
1738 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1739 {
1740 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1741 }
1742
1743 static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1744 {
1745 int ret;
1746
1747 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1748 ;
1749 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1750 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1751 if (ret < 0) {
1752 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1753 exit(1);
1754 }
1755 } else {
1756 return;
1757 }
1758
1759 /* First probe and see if there's a arch-specific hook to create the
1760 * in-kernel irqchip for us */
1761 ret = kvm_arch_irqchip_create(machine, s);
1762 if (ret == 0) {
1763 if (machine_kernel_irqchip_split(machine)) {
1764 perror("Split IRQ chip mode not supported.");
1765 exit(1);
1766 } else {
1767 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1768 }
1769 }
1770 if (ret < 0) {
1771 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1772 exit(1);
1773 }
1774
1775 kvm_kernel_irqchip = true;
1776 /* If we have an in-kernel IRQ chip then we must have asynchronous
1777 * interrupt delivery (though the reverse is not necessarily true)
1778 */
1779 kvm_async_interrupts_allowed = true;
1780 kvm_halt_in_kernel_allowed = true;
1781
1782 kvm_init_irq_routing(s);
1783
1784 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1785 }
1786
1787 /* Find number of supported CPUs using the recommended
1788 * procedure from the kernel API documentation to cope with
1789 * older kernels that may be missing capabilities.
1790 */
1791 static int kvm_recommended_vcpus(KVMState *s)
1792 {
1793 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1794 return (ret) ? ret : 4;
1795 }
1796
1797 static int kvm_max_vcpus(KVMState *s)
1798 {
1799 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1800 return (ret) ? ret : kvm_recommended_vcpus(s);
1801 }
1802
1803 static int kvm_max_vcpu_id(KVMState *s)
1804 {
1805 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1806 return (ret) ? ret : kvm_max_vcpus(s);
1807 }
1808
1809 bool kvm_vcpu_id_is_valid(int vcpu_id)
1810 {
1811 KVMState *s = KVM_STATE(current_machine->accelerator);
1812 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1813 }
1814
1815 static int kvm_init(MachineState *ms)
1816 {
1817 MachineClass *mc = MACHINE_GET_CLASS(ms);
1818 static const char upgrade_note[] =
1819 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1820 "(see http://sourceforge.net/projects/kvm).\n";
1821 struct {
1822 const char *name;
1823 int num;
1824 } num_cpus[] = {
1825 { "SMP", ms->smp.cpus },
1826 { "hotpluggable", ms->smp.max_cpus },
1827 { NULL, }
1828 }, *nc = num_cpus;
1829 int soft_vcpus_limit, hard_vcpus_limit;
1830 KVMState *s;
1831 const KVMCapabilityInfo *missing_cap;
1832 int ret;
1833 int type = 0;
1834 const char *kvm_type;
1835
1836 s = KVM_STATE(ms->accelerator);
1837
1838 /*
1839 * On systems where the kernel can support different base page
1840 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1841 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1842 * page size for the system though.
1843 */
1844 assert(TARGET_PAGE_SIZE <= getpagesize());
1845
1846 s->sigmask_len = 8;
1847
1848 #ifdef KVM_CAP_SET_GUEST_DEBUG
1849 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1850 #endif
1851 QLIST_INIT(&s->kvm_parked_vcpus);
1852 s->vmfd = -1;
1853 s->fd = qemu_open("/dev/kvm", O_RDWR);
1854 if (s->fd == -1) {
1855 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1856 ret = -errno;
1857 goto err;
1858 }
1859
1860 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1861 if (ret < KVM_API_VERSION) {
1862 if (ret >= 0) {
1863 ret = -EINVAL;
1864 }
1865 fprintf(stderr, "kvm version too old\n");
1866 goto err;
1867 }
1868
1869 if (ret > KVM_API_VERSION) {
1870 ret = -EINVAL;
1871 fprintf(stderr, "kvm version not supported\n");
1872 goto err;
1873 }
1874
1875 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
1876 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1877
1878 /* If unspecified, use the default value */
1879 if (!s->nr_slots) {
1880 s->nr_slots = 32;
1881 }
1882
1883 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
1884 if (s->nr_as <= 1) {
1885 s->nr_as = 1;
1886 }
1887 s->as = g_new0(struct KVMAs, s->nr_as);
1888
1889 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1890 if (mc->kvm_type) {
1891 type = mc->kvm_type(ms, kvm_type);
1892 } else if (kvm_type) {
1893 ret = -EINVAL;
1894 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1895 goto err;
1896 }
1897
1898 do {
1899 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1900 } while (ret == -EINTR);
1901
1902 if (ret < 0) {
1903 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1904 strerror(-ret));
1905
1906 #ifdef TARGET_S390X
1907 if (ret == -EINVAL) {
1908 fprintf(stderr,
1909 "Host kernel setup problem detected. Please verify:\n");
1910 fprintf(stderr, "- for kernels supporting the switch_amode or"
1911 " user_mode parameters, whether\n");
1912 fprintf(stderr,
1913 " user space is running in primary address space\n");
1914 fprintf(stderr,
1915 "- for kernels supporting the vm.allocate_pgste sysctl, "
1916 "whether it is enabled\n");
1917 }
1918 #endif
1919 goto err;
1920 }
1921
1922 s->vmfd = ret;
1923
1924 /* check the vcpu limits */
1925 soft_vcpus_limit = kvm_recommended_vcpus(s);
1926 hard_vcpus_limit = kvm_max_vcpus(s);
1927
1928 while (nc->name) {
1929 if (nc->num > soft_vcpus_limit) {
1930 warn_report("Number of %s cpus requested (%d) exceeds "
1931 "the recommended cpus supported by KVM (%d)",
1932 nc->name, nc->num, soft_vcpus_limit);
1933
1934 if (nc->num > hard_vcpus_limit) {
1935 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1936 "the maximum cpus supported by KVM (%d)\n",
1937 nc->name, nc->num, hard_vcpus_limit);
1938 exit(1);
1939 }
1940 }
1941 nc++;
1942 }
1943
1944 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1945 if (!missing_cap) {
1946 missing_cap =
1947 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1948 }
1949 if (missing_cap) {
1950 ret = -EINVAL;
1951 fprintf(stderr, "kvm does not support %s\n%s",
1952 missing_cap->name, upgrade_note);
1953 goto err;
1954 }
1955
1956 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1957 s->coalesced_pio = s->coalesced_mmio &&
1958 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
1959
1960 s->manual_dirty_log_protect =
1961 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
1962 if (s->manual_dirty_log_protect) {
1963 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 1);
1964 if (ret) {
1965 warn_report("Trying to enable KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 "
1966 "but failed. Falling back to the legacy mode. ");
1967 s->manual_dirty_log_protect = false;
1968 }
1969 }
1970
1971 #ifdef KVM_CAP_VCPU_EVENTS
1972 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1973 #endif
1974
1975 s->robust_singlestep =
1976 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1977
1978 #ifdef KVM_CAP_DEBUGREGS
1979 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1980 #endif
1981
1982 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
1983
1984 #ifdef KVM_CAP_IRQ_ROUTING
1985 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1986 #endif
1987
1988 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1989
1990 s->irq_set_ioctl = KVM_IRQ_LINE;
1991 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1992 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1993 }
1994
1995 kvm_readonly_mem_allowed =
1996 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1997
1998 kvm_eventfds_allowed =
1999 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2000
2001 kvm_irqfds_allowed =
2002 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2003
2004 kvm_resamplefds_allowed =
2005 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2006
2007 kvm_vm_attributes_allowed =
2008 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2009
2010 kvm_ioeventfd_any_length_allowed =
2011 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2012
2013 kvm_state = s;
2014
2015 /*
2016 * if memory encryption object is specified then initialize the memory
2017 * encryption context.
2018 */
2019 if (ms->memory_encryption) {
2020 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption);
2021 if (!kvm_state->memcrypt_handle) {
2022 ret = -1;
2023 goto err;
2024 }
2025
2026 kvm_state->memcrypt_encrypt_data = sev_encrypt_data;
2027 }
2028
2029 ret = kvm_arch_init(ms, s);
2030 if (ret < 0) {
2031 goto err;
2032 }
2033
2034 if (machine_kernel_irqchip_allowed(ms)) {
2035 kvm_irqchip_create(ms, s);
2036 }
2037
2038 if (kvm_eventfds_allowed) {
2039 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2040 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2041 }
2042 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2043 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2044
2045 kvm_memory_listener_register(s, &s->memory_listener,
2046 &address_space_memory, 0);
2047 memory_listener_register(&kvm_io_listener,
2048 &address_space_io);
2049 memory_listener_register(&kvm_coalesced_pio_listener,
2050 &address_space_io);
2051
2052 s->many_ioeventfds = kvm_check_many_ioeventfds();
2053
2054 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2055 if (!s->sync_mmu) {
2056 qemu_balloon_inhibit(true);
2057 }
2058
2059 return 0;
2060
2061 err:
2062 assert(ret < 0);
2063 if (s->vmfd >= 0) {
2064 close(s->vmfd);
2065 }
2066 if (s->fd != -1) {
2067 close(s->fd);
2068 }
2069 g_free(s->memory_listener.slots);
2070
2071 return ret;
2072 }
2073
2074 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2075 {
2076 s->sigmask_len = sigmask_len;
2077 }
2078
2079 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2080 int size, uint32_t count)
2081 {
2082 int i;
2083 uint8_t *ptr = data;
2084
2085 for (i = 0; i < count; i++) {
2086 address_space_rw(&address_space_io, port, attrs,
2087 ptr, size,
2088 direction == KVM_EXIT_IO_OUT);
2089 ptr += size;
2090 }
2091 }
2092
2093 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2094 {
2095 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2096 run->internal.suberror);
2097
2098 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2099 int i;
2100
2101 for (i = 0; i < run->internal.ndata; ++i) {
2102 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
2103 i, (uint64_t)run->internal.data[i]);
2104 }
2105 }
2106 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2107 fprintf(stderr, "emulation failure\n");
2108 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2109 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2110 return EXCP_INTERRUPT;
2111 }
2112 }
2113 /* FIXME: Should trigger a qmp message to let management know
2114 * something went wrong.
2115 */
2116 return -1;
2117 }
2118
2119 void kvm_flush_coalesced_mmio_buffer(void)
2120 {
2121 KVMState *s = kvm_state;
2122
2123 if (s->coalesced_flush_in_progress) {
2124 return;
2125 }
2126
2127 s->coalesced_flush_in_progress = true;
2128
2129 if (s->coalesced_mmio_ring) {
2130 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2131 while (ring->first != ring->last) {
2132 struct kvm_coalesced_mmio *ent;
2133
2134 ent = &ring->coalesced_mmio[ring->first];
2135
2136 if (ent->pio == 1) {
2137 address_space_rw(&address_space_io, ent->phys_addr,
2138 MEMTXATTRS_UNSPECIFIED, ent->data,
2139 ent->len, true);
2140 } else {
2141 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2142 }
2143 smp_wmb();
2144 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2145 }
2146 }
2147
2148 s->coalesced_flush_in_progress = false;
2149 }
2150
2151 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2152 {
2153 if (!cpu->vcpu_dirty) {
2154 kvm_arch_get_registers(cpu);
2155 cpu->vcpu_dirty = true;
2156 }
2157 }
2158
2159 void kvm_cpu_synchronize_state(CPUState *cpu)
2160 {
2161 if (!cpu->vcpu_dirty) {
2162 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2163 }
2164 }
2165
2166 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2167 {
2168 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2169 cpu->vcpu_dirty = false;
2170 }
2171
2172 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2173 {
2174 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2175 }
2176
2177 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2178 {
2179 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2180 cpu->vcpu_dirty = false;
2181 }
2182
2183 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2184 {
2185 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2186 }
2187
2188 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2189 {
2190 cpu->vcpu_dirty = true;
2191 }
2192
2193 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2194 {
2195 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2196 }
2197
2198 #ifdef KVM_HAVE_MCE_INJECTION
2199 static __thread void *pending_sigbus_addr;
2200 static __thread int pending_sigbus_code;
2201 static __thread bool have_sigbus_pending;
2202 #endif
2203
2204 static void kvm_cpu_kick(CPUState *cpu)
2205 {
2206 atomic_set(&cpu->kvm_run->immediate_exit, 1);
2207 }
2208
2209 static void kvm_cpu_kick_self(void)
2210 {
2211 if (kvm_immediate_exit) {
2212 kvm_cpu_kick(current_cpu);
2213 } else {
2214 qemu_cpu_kick_self();
2215 }
2216 }
2217
2218 static void kvm_eat_signals(CPUState *cpu)
2219 {
2220 struct timespec ts = { 0, 0 };
2221 siginfo_t siginfo;
2222 sigset_t waitset;
2223 sigset_t chkset;
2224 int r;
2225
2226 if (kvm_immediate_exit) {
2227 atomic_set(&cpu->kvm_run->immediate_exit, 0);
2228 /* Write kvm_run->immediate_exit before the cpu->exit_request
2229 * write in kvm_cpu_exec.
2230 */
2231 smp_wmb();
2232 return;
2233 }
2234
2235 sigemptyset(&waitset);
2236 sigaddset(&waitset, SIG_IPI);
2237
2238 do {
2239 r = sigtimedwait(&waitset, &siginfo, &ts);
2240 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2241 perror("sigtimedwait");
2242 exit(1);
2243 }
2244
2245 r = sigpending(&chkset);
2246 if (r == -1) {
2247 perror("sigpending");
2248 exit(1);
2249 }
2250 } while (sigismember(&chkset, SIG_IPI));
2251 }
2252
2253 int kvm_cpu_exec(CPUState *cpu)
2254 {
2255 struct kvm_run *run = cpu->kvm_run;
2256 int ret, run_ret;
2257
2258 DPRINTF("kvm_cpu_exec()\n");
2259
2260 if (kvm_arch_process_async_events(cpu)) {
2261 atomic_set(&cpu->exit_request, 0);
2262 return EXCP_HLT;
2263 }
2264
2265 qemu_mutex_unlock_iothread();
2266 cpu_exec_start(cpu);
2267
2268 do {
2269 MemTxAttrs attrs;
2270
2271 if (cpu->vcpu_dirty) {
2272 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2273 cpu->vcpu_dirty = false;
2274 }
2275
2276 kvm_arch_pre_run(cpu, run);
2277 if (atomic_read(&cpu->exit_request)) {
2278 DPRINTF("interrupt exit requested\n");
2279 /*
2280 * KVM requires us to reenter the kernel after IO exits to complete
2281 * instruction emulation. This self-signal will ensure that we
2282 * leave ASAP again.
2283 */
2284 kvm_cpu_kick_self();
2285 }
2286
2287 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2288 * Matching barrier in kvm_eat_signals.
2289 */
2290 smp_rmb();
2291
2292 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2293
2294 attrs = kvm_arch_post_run(cpu, run);
2295
2296 #ifdef KVM_HAVE_MCE_INJECTION
2297 if (unlikely(have_sigbus_pending)) {
2298 qemu_mutex_lock_iothread();
2299 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2300 pending_sigbus_addr);
2301 have_sigbus_pending = false;
2302 qemu_mutex_unlock_iothread();
2303 }
2304 #endif
2305
2306 if (run_ret < 0) {
2307 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2308 DPRINTF("io window exit\n");
2309 kvm_eat_signals(cpu);
2310 ret = EXCP_INTERRUPT;
2311 break;
2312 }
2313 fprintf(stderr, "error: kvm run failed %s\n",
2314 strerror(-run_ret));
2315 #ifdef TARGET_PPC
2316 if (run_ret == -EBUSY) {
2317 fprintf(stderr,
2318 "This is probably because your SMT is enabled.\n"
2319 "VCPU can only run on primary threads with all "
2320 "secondary threads offline.\n");
2321 }
2322 #endif
2323 ret = -1;
2324 break;
2325 }
2326
2327 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2328 switch (run->exit_reason) {
2329 case KVM_EXIT_IO:
2330 DPRINTF("handle_io\n");
2331 /* Called outside BQL */
2332 kvm_handle_io(run->io.port, attrs,
2333 (uint8_t *)run + run->io.data_offset,
2334 run->io.direction,
2335 run->io.size,
2336 run->io.count);
2337 ret = 0;
2338 break;
2339 case KVM_EXIT_MMIO:
2340 DPRINTF("handle_mmio\n");
2341 /* Called outside BQL */
2342 address_space_rw(&address_space_memory,
2343 run->mmio.phys_addr, attrs,
2344 run->mmio.data,
2345 run->mmio.len,
2346 run->mmio.is_write);
2347 ret = 0;
2348 break;
2349 case KVM_EXIT_IRQ_WINDOW_OPEN:
2350 DPRINTF("irq_window_open\n");
2351 ret = EXCP_INTERRUPT;
2352 break;
2353 case KVM_EXIT_SHUTDOWN:
2354 DPRINTF("shutdown\n");
2355 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2356 ret = EXCP_INTERRUPT;
2357 break;
2358 case KVM_EXIT_UNKNOWN:
2359 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2360 (uint64_t)run->hw.hardware_exit_reason);
2361 ret = -1;
2362 break;
2363 case KVM_EXIT_INTERNAL_ERROR:
2364 ret = kvm_handle_internal_error(cpu, run);
2365 break;
2366 case KVM_EXIT_SYSTEM_EVENT:
2367 switch (run->system_event.type) {
2368 case KVM_SYSTEM_EVENT_SHUTDOWN:
2369 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2370 ret = EXCP_INTERRUPT;
2371 break;
2372 case KVM_SYSTEM_EVENT_RESET:
2373 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2374 ret = EXCP_INTERRUPT;
2375 break;
2376 case KVM_SYSTEM_EVENT_CRASH:
2377 kvm_cpu_synchronize_state(cpu);
2378 qemu_mutex_lock_iothread();
2379 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2380 qemu_mutex_unlock_iothread();
2381 ret = 0;
2382 break;
2383 default:
2384 DPRINTF("kvm_arch_handle_exit\n");
2385 ret = kvm_arch_handle_exit(cpu, run);
2386 break;
2387 }
2388 break;
2389 default:
2390 DPRINTF("kvm_arch_handle_exit\n");
2391 ret = kvm_arch_handle_exit(cpu, run);
2392 break;
2393 }
2394 } while (ret == 0);
2395
2396 cpu_exec_end(cpu);
2397 qemu_mutex_lock_iothread();
2398
2399 if (ret < 0) {
2400 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2401 vm_stop(RUN_STATE_INTERNAL_ERROR);
2402 }
2403
2404 atomic_set(&cpu->exit_request, 0);
2405 return ret;
2406 }
2407
2408 int kvm_ioctl(KVMState *s, int type, ...)
2409 {
2410 int ret;
2411 void *arg;
2412 va_list ap;
2413
2414 va_start(ap, type);
2415 arg = va_arg(ap, void *);
2416 va_end(ap);
2417
2418 trace_kvm_ioctl(type, arg);
2419 ret = ioctl(s->fd, type, arg);
2420 if (ret == -1) {
2421 ret = -errno;
2422 }
2423 return ret;
2424 }
2425
2426 int kvm_vm_ioctl(KVMState *s, int type, ...)
2427 {
2428 int ret;
2429 void *arg;
2430 va_list ap;
2431
2432 va_start(ap, type);
2433 arg = va_arg(ap, void *);
2434 va_end(ap);
2435
2436 trace_kvm_vm_ioctl(type, arg);
2437 ret = ioctl(s->vmfd, type, arg);
2438 if (ret == -1) {
2439 ret = -errno;
2440 }
2441 return ret;
2442 }
2443
2444 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2445 {
2446 int ret;
2447 void *arg;
2448 va_list ap;
2449
2450 va_start(ap, type);
2451 arg = va_arg(ap, void *);
2452 va_end(ap);
2453
2454 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2455 ret = ioctl(cpu->kvm_fd, type, arg);
2456 if (ret == -1) {
2457 ret = -errno;
2458 }
2459 return ret;
2460 }
2461
2462 int kvm_device_ioctl(int fd, int type, ...)
2463 {
2464 int ret;
2465 void *arg;
2466 va_list ap;
2467
2468 va_start(ap, type);
2469 arg = va_arg(ap, void *);
2470 va_end(ap);
2471
2472 trace_kvm_device_ioctl(fd, type, arg);
2473 ret = ioctl(fd, type, arg);
2474 if (ret == -1) {
2475 ret = -errno;
2476 }
2477 return ret;
2478 }
2479
2480 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2481 {
2482 int ret;
2483 struct kvm_device_attr attribute = {
2484 .group = group,
2485 .attr = attr,
2486 };
2487
2488 if (!kvm_vm_attributes_allowed) {
2489 return 0;
2490 }
2491
2492 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2493 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2494 return ret ? 0 : 1;
2495 }
2496
2497 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2498 {
2499 struct kvm_device_attr attribute = {
2500 .group = group,
2501 .attr = attr,
2502 .flags = 0,
2503 };
2504
2505 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2506 }
2507
2508 int kvm_device_access(int fd, int group, uint64_t attr,
2509 void *val, bool write, Error **errp)
2510 {
2511 struct kvm_device_attr kvmattr;
2512 int err;
2513
2514 kvmattr.flags = 0;
2515 kvmattr.group = group;
2516 kvmattr.attr = attr;
2517 kvmattr.addr = (uintptr_t)val;
2518
2519 err = kvm_device_ioctl(fd,
2520 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2521 &kvmattr);
2522 if (err < 0) {
2523 error_setg_errno(errp, -err,
2524 "KVM_%s_DEVICE_ATTR failed: Group %d "
2525 "attr 0x%016" PRIx64,
2526 write ? "SET" : "GET", group, attr);
2527 }
2528 return err;
2529 }
2530
2531 bool kvm_has_sync_mmu(void)
2532 {
2533 return kvm_state->sync_mmu;
2534 }
2535
2536 int kvm_has_vcpu_events(void)
2537 {
2538 return kvm_state->vcpu_events;
2539 }
2540
2541 int kvm_has_robust_singlestep(void)
2542 {
2543 return kvm_state->robust_singlestep;
2544 }
2545
2546 int kvm_has_debugregs(void)
2547 {
2548 return kvm_state->debugregs;
2549 }
2550
2551 int kvm_max_nested_state_length(void)
2552 {
2553 return kvm_state->max_nested_state_len;
2554 }
2555
2556 int kvm_has_many_ioeventfds(void)
2557 {
2558 if (!kvm_enabled()) {
2559 return 0;
2560 }
2561 return kvm_state->many_ioeventfds;
2562 }
2563
2564 int kvm_has_gsi_routing(void)
2565 {
2566 #ifdef KVM_CAP_IRQ_ROUTING
2567 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2568 #else
2569 return false;
2570 #endif
2571 }
2572
2573 int kvm_has_intx_set_mask(void)
2574 {
2575 return kvm_state->intx_set_mask;
2576 }
2577
2578 bool kvm_arm_supports_user_irq(void)
2579 {
2580 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2581 }
2582
2583 #ifdef KVM_CAP_SET_GUEST_DEBUG
2584 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2585 target_ulong pc)
2586 {
2587 struct kvm_sw_breakpoint *bp;
2588
2589 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2590 if (bp->pc == pc) {
2591 return bp;
2592 }
2593 }
2594 return NULL;
2595 }
2596
2597 int kvm_sw_breakpoints_active(CPUState *cpu)
2598 {
2599 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2600 }
2601
2602 struct kvm_set_guest_debug_data {
2603 struct kvm_guest_debug dbg;
2604 int err;
2605 };
2606
2607 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2608 {
2609 struct kvm_set_guest_debug_data *dbg_data =
2610 (struct kvm_set_guest_debug_data *) data.host_ptr;
2611
2612 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2613 &dbg_data->dbg);
2614 }
2615
2616 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2617 {
2618 struct kvm_set_guest_debug_data data;
2619
2620 data.dbg.control = reinject_trap;
2621
2622 if (cpu->singlestep_enabled) {
2623 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2624 }
2625 kvm_arch_update_guest_debug(cpu, &data.dbg);
2626
2627 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2628 RUN_ON_CPU_HOST_PTR(&data));
2629 return data.err;
2630 }
2631
2632 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2633 target_ulong len, int type)
2634 {
2635 struct kvm_sw_breakpoint *bp;
2636 int err;
2637
2638 if (type == GDB_BREAKPOINT_SW) {
2639 bp = kvm_find_sw_breakpoint(cpu, addr);
2640 if (bp) {
2641 bp->use_count++;
2642 return 0;
2643 }
2644
2645 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2646 bp->pc = addr;
2647 bp->use_count = 1;
2648 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2649 if (err) {
2650 g_free(bp);
2651 return err;
2652 }
2653
2654 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2655 } else {
2656 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2657 if (err) {
2658 return err;
2659 }
2660 }
2661
2662 CPU_FOREACH(cpu) {
2663 err = kvm_update_guest_debug(cpu, 0);
2664 if (err) {
2665 return err;
2666 }
2667 }
2668 return 0;
2669 }
2670
2671 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2672 target_ulong len, int type)
2673 {
2674 struct kvm_sw_breakpoint *bp;
2675 int err;
2676
2677 if (type == GDB_BREAKPOINT_SW) {
2678 bp = kvm_find_sw_breakpoint(cpu, addr);
2679 if (!bp) {
2680 return -ENOENT;
2681 }
2682
2683 if (bp->use_count > 1) {
2684 bp->use_count--;
2685 return 0;
2686 }
2687
2688 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2689 if (err) {
2690 return err;
2691 }
2692
2693 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2694 g_free(bp);
2695 } else {
2696 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2697 if (err) {
2698 return err;
2699 }
2700 }
2701
2702 CPU_FOREACH(cpu) {
2703 err = kvm_update_guest_debug(cpu, 0);
2704 if (err) {
2705 return err;
2706 }
2707 }
2708 return 0;
2709 }
2710
2711 void kvm_remove_all_breakpoints(CPUState *cpu)
2712 {
2713 struct kvm_sw_breakpoint *bp, *next;
2714 KVMState *s = cpu->kvm_state;
2715 CPUState *tmpcpu;
2716
2717 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2718 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2719 /* Try harder to find a CPU that currently sees the breakpoint. */
2720 CPU_FOREACH(tmpcpu) {
2721 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2722 break;
2723 }
2724 }
2725 }
2726 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2727 g_free(bp);
2728 }
2729 kvm_arch_remove_all_hw_breakpoints();
2730
2731 CPU_FOREACH(cpu) {
2732 kvm_update_guest_debug(cpu, 0);
2733 }
2734 }
2735
2736 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2737
2738 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2739 {
2740 return -EINVAL;
2741 }
2742
2743 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2744 target_ulong len, int type)
2745 {
2746 return -EINVAL;
2747 }
2748
2749 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2750 target_ulong len, int type)
2751 {
2752 return -EINVAL;
2753 }
2754
2755 void kvm_remove_all_breakpoints(CPUState *cpu)
2756 {
2757 }
2758 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2759
2760 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2761 {
2762 KVMState *s = kvm_state;
2763 struct kvm_signal_mask *sigmask;
2764 int r;
2765
2766 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2767
2768 sigmask->len = s->sigmask_len;
2769 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2770 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2771 g_free(sigmask);
2772
2773 return r;
2774 }
2775
2776 static void kvm_ipi_signal(int sig)
2777 {
2778 if (current_cpu) {
2779 assert(kvm_immediate_exit);
2780 kvm_cpu_kick(current_cpu);
2781 }
2782 }
2783
2784 void kvm_init_cpu_signals(CPUState *cpu)
2785 {
2786 int r;
2787 sigset_t set;
2788 struct sigaction sigact;
2789
2790 memset(&sigact, 0, sizeof(sigact));
2791 sigact.sa_handler = kvm_ipi_signal;
2792 sigaction(SIG_IPI, &sigact, NULL);
2793
2794 pthread_sigmask(SIG_BLOCK, NULL, &set);
2795 #if defined KVM_HAVE_MCE_INJECTION
2796 sigdelset(&set, SIGBUS);
2797 pthread_sigmask(SIG_SETMASK, &set, NULL);
2798 #endif
2799 sigdelset(&set, SIG_IPI);
2800 if (kvm_immediate_exit) {
2801 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2802 } else {
2803 r = kvm_set_signal_mask(cpu, &set);
2804 }
2805 if (r) {
2806 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2807 exit(1);
2808 }
2809 }
2810
2811 /* Called asynchronously in VCPU thread. */
2812 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2813 {
2814 #ifdef KVM_HAVE_MCE_INJECTION
2815 if (have_sigbus_pending) {
2816 return 1;
2817 }
2818 have_sigbus_pending = true;
2819 pending_sigbus_addr = addr;
2820 pending_sigbus_code = code;
2821 atomic_set(&cpu->exit_request, 1);
2822 return 0;
2823 #else
2824 return 1;
2825 #endif
2826 }
2827
2828 /* Called synchronously (via signalfd) in main thread. */
2829 int kvm_on_sigbus(int code, void *addr)
2830 {
2831 #ifdef KVM_HAVE_MCE_INJECTION
2832 /* Action required MCE kills the process if SIGBUS is blocked. Because
2833 * that's what happens in the I/O thread, where we handle MCE via signalfd,
2834 * we can only get action optional here.
2835 */
2836 assert(code != BUS_MCEERR_AR);
2837 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
2838 return 0;
2839 #else
2840 return 1;
2841 #endif
2842 }
2843
2844 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2845 {
2846 int ret;
2847 struct kvm_create_device create_dev;
2848
2849 create_dev.type = type;
2850 create_dev.fd = -1;
2851 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2852
2853 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2854 return -ENOTSUP;
2855 }
2856
2857 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2858 if (ret) {
2859 return ret;
2860 }
2861
2862 return test ? 0 : create_dev.fd;
2863 }
2864
2865 bool kvm_device_supported(int vmfd, uint64_t type)
2866 {
2867 struct kvm_create_device create_dev = {
2868 .type = type,
2869 .fd = -1,
2870 .flags = KVM_CREATE_DEVICE_TEST,
2871 };
2872
2873 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
2874 return false;
2875 }
2876
2877 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
2878 }
2879
2880 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2881 {
2882 struct kvm_one_reg reg;
2883 int r;
2884
2885 reg.id = id;
2886 reg.addr = (uintptr_t) source;
2887 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2888 if (r) {
2889 trace_kvm_failed_reg_set(id, strerror(-r));
2890 }
2891 return r;
2892 }
2893
2894 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2895 {
2896 struct kvm_one_reg reg;
2897 int r;
2898
2899 reg.id = id;
2900 reg.addr = (uintptr_t) target;
2901 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2902 if (r) {
2903 trace_kvm_failed_reg_get(id, strerror(-r));
2904 }
2905 return r;
2906 }
2907
2908 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
2909 hwaddr start_addr, hwaddr size)
2910 {
2911 KVMState *kvm = KVM_STATE(ms->accelerator);
2912 int i;
2913
2914 for (i = 0; i < kvm->nr_as; ++i) {
2915 if (kvm->as[i].as == as && kvm->as[i].ml) {
2916 size = MIN(kvm_max_slot_size, size);
2917 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
2918 start_addr, size);
2919 }
2920 }
2921
2922 return false;
2923 }
2924
2925 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2926 {
2927 AccelClass *ac = ACCEL_CLASS(oc);
2928 ac->name = "KVM";
2929 ac->init_machine = kvm_init;
2930 ac->has_memory = kvm_accel_has_memory;
2931 ac->allowed = &kvm_allowed;
2932 }
2933
2934 static const TypeInfo kvm_accel_type = {
2935 .name = TYPE_KVM_ACCEL,
2936 .parent = TYPE_ACCEL,
2937 .class_init = kvm_accel_class_init,
2938 .instance_size = sizeof(KVMState),
2939 };
2940
2941 static void kvm_type_init(void)
2942 {
2943 type_register_static(&kvm_accel_type);
2944 }
2945
2946 type_init(kvm_type_init);