]> git.proxmox.com Git - mirror_qemu.git/blob - accel/kvm/kvm-all.c
kvm: Introduce slots lock for memory listener
[mirror_qemu.git] / accel / kvm / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18
19 #include <linux/kvm.h>
20
21 #include "qemu/atomic.h"
22 #include "qemu/option.h"
23 #include "qemu/config-file.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/hw.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/cpus.h"
33 #include "qemu/bswap.h"
34 #include "exec/memory.h"
35 #include "exec/ram_addr.h"
36 #include "exec/address-spaces.h"
37 #include "qemu/event_notifier.h"
38 #include "trace.h"
39 #include "hw/irq.h"
40 #include "sysemu/sev.h"
41 #include "sysemu/balloon.h"
42
43 #include "hw/boards.h"
44
45 /* This check must be after config-host.h is included */
46 #ifdef CONFIG_EVENTFD
47 #include <sys/eventfd.h>
48 #endif
49
50 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
51 * need to use the real host PAGE_SIZE, as that's what KVM will use.
52 */
53 #define PAGE_SIZE getpagesize()
54
55 //#define DEBUG_KVM
56
57 #ifdef DEBUG_KVM
58 #define DPRINTF(fmt, ...) \
59 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
60 #else
61 #define DPRINTF(fmt, ...) \
62 do { } while (0)
63 #endif
64
65 #define KVM_MSI_HASHTAB_SIZE 256
66
67 struct KVMParkedVcpu {
68 unsigned long vcpu_id;
69 int kvm_fd;
70 QLIST_ENTRY(KVMParkedVcpu) node;
71 };
72
73 struct KVMState
74 {
75 AccelState parent_obj;
76
77 int nr_slots;
78 int fd;
79 int vmfd;
80 int coalesced_mmio;
81 int coalesced_pio;
82 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
83 bool coalesced_flush_in_progress;
84 int vcpu_events;
85 int robust_singlestep;
86 int debugregs;
87 #ifdef KVM_CAP_SET_GUEST_DEBUG
88 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
89 #endif
90 int max_nested_state_len;
91 int many_ioeventfds;
92 int intx_set_mask;
93 bool sync_mmu;
94 /* The man page (and posix) say ioctl numbers are signed int, but
95 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
96 * unsigned, and treating them as signed here can break things */
97 unsigned irq_set_ioctl;
98 unsigned int sigmask_len;
99 GHashTable *gsimap;
100 #ifdef KVM_CAP_IRQ_ROUTING
101 struct kvm_irq_routing *irq_routes;
102 int nr_allocated_irq_routes;
103 unsigned long *used_gsi_bitmap;
104 unsigned int gsi_count;
105 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
106 #endif
107 KVMMemoryListener memory_listener;
108 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
109
110 /* memory encryption */
111 void *memcrypt_handle;
112 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len);
113 };
114
115 KVMState *kvm_state;
116 bool kvm_kernel_irqchip;
117 bool kvm_split_irqchip;
118 bool kvm_async_interrupts_allowed;
119 bool kvm_halt_in_kernel_allowed;
120 bool kvm_eventfds_allowed;
121 bool kvm_irqfds_allowed;
122 bool kvm_resamplefds_allowed;
123 bool kvm_msi_via_irqfd_allowed;
124 bool kvm_gsi_routing_allowed;
125 bool kvm_gsi_direct_mapping;
126 bool kvm_allowed;
127 bool kvm_readonly_mem_allowed;
128 bool kvm_vm_attributes_allowed;
129 bool kvm_direct_msi_allowed;
130 bool kvm_ioeventfd_any_length_allowed;
131 bool kvm_msi_use_devid;
132 static bool kvm_immediate_exit;
133
134 static const KVMCapabilityInfo kvm_required_capabilites[] = {
135 KVM_CAP_INFO(USER_MEMORY),
136 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
137 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
138 KVM_CAP_LAST_INFO
139 };
140
141 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock)
142 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock)
143
144 int kvm_get_max_memslots(void)
145 {
146 KVMState *s = KVM_STATE(current_machine->accelerator);
147
148 return s->nr_slots;
149 }
150
151 bool kvm_memcrypt_enabled(void)
152 {
153 if (kvm_state && kvm_state->memcrypt_handle) {
154 return true;
155 }
156
157 return false;
158 }
159
160 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len)
161 {
162 if (kvm_state->memcrypt_handle &&
163 kvm_state->memcrypt_encrypt_data) {
164 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle,
165 ptr, len);
166 }
167
168 return 1;
169 }
170
171 /* Called with KVMMemoryListener.slots_lock held */
172 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
173 {
174 KVMState *s = kvm_state;
175 int i;
176
177 for (i = 0; i < s->nr_slots; i++) {
178 if (kml->slots[i].memory_size == 0) {
179 return &kml->slots[i];
180 }
181 }
182
183 return NULL;
184 }
185
186 bool kvm_has_free_slot(MachineState *ms)
187 {
188 KVMState *s = KVM_STATE(ms->accelerator);
189 bool result;
190 KVMMemoryListener *kml = &s->memory_listener;
191
192 kvm_slots_lock(kml);
193 result = !!kvm_get_free_slot(kml);
194 kvm_slots_unlock(kml);
195
196 return result;
197 }
198
199 /* Called with KVMMemoryListener.slots_lock held */
200 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
201 {
202 KVMSlot *slot = kvm_get_free_slot(kml);
203
204 if (slot) {
205 return slot;
206 }
207
208 fprintf(stderr, "%s: no free slot available\n", __func__);
209 abort();
210 }
211
212 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
213 hwaddr start_addr,
214 hwaddr size)
215 {
216 KVMState *s = kvm_state;
217 int i;
218
219 for (i = 0; i < s->nr_slots; i++) {
220 KVMSlot *mem = &kml->slots[i];
221
222 if (start_addr == mem->start_addr && size == mem->memory_size) {
223 return mem;
224 }
225 }
226
227 return NULL;
228 }
229
230 /*
231 * Calculate and align the start address and the size of the section.
232 * Return the size. If the size is 0, the aligned section is empty.
233 */
234 static hwaddr kvm_align_section(MemoryRegionSection *section,
235 hwaddr *start)
236 {
237 hwaddr size = int128_get64(section->size);
238 hwaddr delta, aligned;
239
240 /* kvm works in page size chunks, but the function may be called
241 with sub-page size and unaligned start address. Pad the start
242 address to next and truncate size to previous page boundary. */
243 aligned = ROUND_UP(section->offset_within_address_space,
244 qemu_real_host_page_size);
245 delta = aligned - section->offset_within_address_space;
246 *start = aligned;
247 if (delta > size) {
248 return 0;
249 }
250
251 return (size - delta) & qemu_real_host_page_mask;
252 }
253
254 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
255 hwaddr *phys_addr)
256 {
257 KVMMemoryListener *kml = &s->memory_listener;
258 int i, ret = 0;
259
260 kvm_slots_lock(kml);
261 for (i = 0; i < s->nr_slots; i++) {
262 KVMSlot *mem = &kml->slots[i];
263
264 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
265 *phys_addr = mem->start_addr + (ram - mem->ram);
266 ret = 1;
267 break;
268 }
269 }
270 kvm_slots_unlock(kml);
271
272 return ret;
273 }
274
275 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
276 {
277 KVMState *s = kvm_state;
278 struct kvm_userspace_memory_region mem;
279 int ret;
280
281 mem.slot = slot->slot | (kml->as_id << 16);
282 mem.guest_phys_addr = slot->start_addr;
283 mem.userspace_addr = (unsigned long)slot->ram;
284 mem.flags = slot->flags;
285
286 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
287 /* Set the slot size to 0 before setting the slot to the desired
288 * value. This is needed based on KVM commit 75d61fbc. */
289 mem.memory_size = 0;
290 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
291 }
292 mem.memory_size = slot->memory_size;
293 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
294 slot->old_flags = mem.flags;
295 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
296 mem.memory_size, mem.userspace_addr, ret);
297 return ret;
298 }
299
300 int kvm_destroy_vcpu(CPUState *cpu)
301 {
302 KVMState *s = kvm_state;
303 long mmap_size;
304 struct KVMParkedVcpu *vcpu = NULL;
305 int ret = 0;
306
307 DPRINTF("kvm_destroy_vcpu\n");
308
309 ret = kvm_arch_destroy_vcpu(cpu);
310 if (ret < 0) {
311 goto err;
312 }
313
314 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
315 if (mmap_size < 0) {
316 ret = mmap_size;
317 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
318 goto err;
319 }
320
321 ret = munmap(cpu->kvm_run, mmap_size);
322 if (ret < 0) {
323 goto err;
324 }
325
326 vcpu = g_malloc0(sizeof(*vcpu));
327 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
328 vcpu->kvm_fd = cpu->kvm_fd;
329 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
330 err:
331 return ret;
332 }
333
334 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
335 {
336 struct KVMParkedVcpu *cpu;
337
338 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
339 if (cpu->vcpu_id == vcpu_id) {
340 int kvm_fd;
341
342 QLIST_REMOVE(cpu, node);
343 kvm_fd = cpu->kvm_fd;
344 g_free(cpu);
345 return kvm_fd;
346 }
347 }
348
349 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
350 }
351
352 int kvm_init_vcpu(CPUState *cpu)
353 {
354 KVMState *s = kvm_state;
355 long mmap_size;
356 int ret;
357
358 DPRINTF("kvm_init_vcpu\n");
359
360 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
361 if (ret < 0) {
362 DPRINTF("kvm_create_vcpu failed\n");
363 goto err;
364 }
365
366 cpu->kvm_fd = ret;
367 cpu->kvm_state = s;
368 cpu->vcpu_dirty = true;
369
370 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
371 if (mmap_size < 0) {
372 ret = mmap_size;
373 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
374 goto err;
375 }
376
377 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
378 cpu->kvm_fd, 0);
379 if (cpu->kvm_run == MAP_FAILED) {
380 ret = -errno;
381 DPRINTF("mmap'ing vcpu state failed\n");
382 goto err;
383 }
384
385 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
386 s->coalesced_mmio_ring =
387 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
388 }
389
390 ret = kvm_arch_init_vcpu(cpu);
391 err:
392 return ret;
393 }
394
395 /*
396 * dirty pages logging control
397 */
398
399 static int kvm_mem_flags(MemoryRegion *mr)
400 {
401 bool readonly = mr->readonly || memory_region_is_romd(mr);
402 int flags = 0;
403
404 if (memory_region_get_dirty_log_mask(mr) != 0) {
405 flags |= KVM_MEM_LOG_DIRTY_PAGES;
406 }
407 if (readonly && kvm_readonly_mem_allowed) {
408 flags |= KVM_MEM_READONLY;
409 }
410 return flags;
411 }
412
413 /* Called with KVMMemoryListener.slots_lock held */
414 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
415 MemoryRegion *mr)
416 {
417 mem->flags = kvm_mem_flags(mr);
418
419 /* If nothing changed effectively, no need to issue ioctl */
420 if (mem->flags == mem->old_flags) {
421 return 0;
422 }
423
424 return kvm_set_user_memory_region(kml, mem, false);
425 }
426
427 static int kvm_section_update_flags(KVMMemoryListener *kml,
428 MemoryRegionSection *section)
429 {
430 hwaddr start_addr, size;
431 KVMSlot *mem;
432 int ret = 0;
433
434 size = kvm_align_section(section, &start_addr);
435 if (!size) {
436 return 0;
437 }
438
439 kvm_slots_lock(kml);
440
441 mem = kvm_lookup_matching_slot(kml, start_addr, size);
442 if (!mem) {
443 /* We don't have a slot if we want to trap every access. */
444 goto out;
445 }
446
447 ret = kvm_slot_update_flags(kml, mem, section->mr);
448
449 out:
450 kvm_slots_unlock(kml);
451 return ret;
452 }
453
454 static void kvm_log_start(MemoryListener *listener,
455 MemoryRegionSection *section,
456 int old, int new)
457 {
458 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
459 int r;
460
461 if (old != 0) {
462 return;
463 }
464
465 r = kvm_section_update_flags(kml, section);
466 if (r < 0) {
467 abort();
468 }
469 }
470
471 static void kvm_log_stop(MemoryListener *listener,
472 MemoryRegionSection *section,
473 int old, int new)
474 {
475 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
476 int r;
477
478 if (new != 0) {
479 return;
480 }
481
482 r = kvm_section_update_flags(kml, section);
483 if (r < 0) {
484 abort();
485 }
486 }
487
488 /* get kvm's dirty pages bitmap and update qemu's */
489 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
490 unsigned long *bitmap)
491 {
492 ram_addr_t start = section->offset_within_region +
493 memory_region_get_ram_addr(section->mr);
494 ram_addr_t pages = int128_get64(section->size) / getpagesize();
495
496 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
497 return 0;
498 }
499
500 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
501
502 /**
503 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
504 *
505 * This function will first try to fetch dirty bitmap from the kernel,
506 * and then updates qemu's dirty bitmap.
507 *
508 * NOTE: caller must be with kml->slots_lock held.
509 *
510 * @kml: the KVM memory listener object
511 * @section: the memory section to sync the dirty bitmap with
512 */
513 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
514 MemoryRegionSection *section)
515 {
516 KVMState *s = kvm_state;
517 struct kvm_dirty_log d = {};
518 KVMSlot *mem;
519 hwaddr start_addr, size;
520 int ret = 0;
521
522 size = kvm_align_section(section, &start_addr);
523 if (size) {
524 mem = kvm_lookup_matching_slot(kml, start_addr, size);
525 if (!mem) {
526 /* We don't have a slot if we want to trap every access. */
527 goto out;
528 }
529
530 /* XXX bad kernel interface alert
531 * For dirty bitmap, kernel allocates array of size aligned to
532 * bits-per-long. But for case when the kernel is 64bits and
533 * the userspace is 32bits, userspace can't align to the same
534 * bits-per-long, since sizeof(long) is different between kernel
535 * and user space. This way, userspace will provide buffer which
536 * may be 4 bytes less than the kernel will use, resulting in
537 * userspace memory corruption (which is not detectable by valgrind
538 * too, in most cases).
539 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
540 * a hope that sizeof(long) won't become >8 any time soon.
541 */
542 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
543 /*HOST_LONG_BITS*/ 64) / 8;
544 if (!mem->dirty_bmap) {
545 /* Allocate on the first log_sync, once and for all */
546 mem->dirty_bmap = g_malloc0(size);
547 }
548
549 d.dirty_bitmap = mem->dirty_bmap;
550 d.slot = mem->slot | (kml->as_id << 16);
551 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
552 DPRINTF("ioctl failed %d\n", errno);
553 ret = -1;
554 goto out;
555 }
556
557 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
558 }
559 out:
560 return ret;
561 }
562
563 static void kvm_coalesce_mmio_region(MemoryListener *listener,
564 MemoryRegionSection *secion,
565 hwaddr start, hwaddr size)
566 {
567 KVMState *s = kvm_state;
568
569 if (s->coalesced_mmio) {
570 struct kvm_coalesced_mmio_zone zone;
571
572 zone.addr = start;
573 zone.size = size;
574 zone.pad = 0;
575
576 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
577 }
578 }
579
580 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
581 MemoryRegionSection *secion,
582 hwaddr start, hwaddr size)
583 {
584 KVMState *s = kvm_state;
585
586 if (s->coalesced_mmio) {
587 struct kvm_coalesced_mmio_zone zone;
588
589 zone.addr = start;
590 zone.size = size;
591 zone.pad = 0;
592
593 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
594 }
595 }
596
597 static void kvm_coalesce_pio_add(MemoryListener *listener,
598 MemoryRegionSection *section,
599 hwaddr start, hwaddr size)
600 {
601 KVMState *s = kvm_state;
602
603 if (s->coalesced_pio) {
604 struct kvm_coalesced_mmio_zone zone;
605
606 zone.addr = start;
607 zone.size = size;
608 zone.pio = 1;
609
610 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
611 }
612 }
613
614 static void kvm_coalesce_pio_del(MemoryListener *listener,
615 MemoryRegionSection *section,
616 hwaddr start, hwaddr size)
617 {
618 KVMState *s = kvm_state;
619
620 if (s->coalesced_pio) {
621 struct kvm_coalesced_mmio_zone zone;
622
623 zone.addr = start;
624 zone.size = size;
625 zone.pio = 1;
626
627 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
628 }
629 }
630
631 static MemoryListener kvm_coalesced_pio_listener = {
632 .coalesced_io_add = kvm_coalesce_pio_add,
633 .coalesced_io_del = kvm_coalesce_pio_del,
634 };
635
636 int kvm_check_extension(KVMState *s, unsigned int extension)
637 {
638 int ret;
639
640 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
641 if (ret < 0) {
642 ret = 0;
643 }
644
645 return ret;
646 }
647
648 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
649 {
650 int ret;
651
652 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
653 if (ret < 0) {
654 /* VM wide version not implemented, use global one instead */
655 ret = kvm_check_extension(s, extension);
656 }
657
658 return ret;
659 }
660
661 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
662 {
663 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
664 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
665 * endianness, but the memory core hands them in target endianness.
666 * For example, PPC is always treated as big-endian even if running
667 * on KVM and on PPC64LE. Correct here.
668 */
669 switch (size) {
670 case 2:
671 val = bswap16(val);
672 break;
673 case 4:
674 val = bswap32(val);
675 break;
676 }
677 #endif
678 return val;
679 }
680
681 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
682 bool assign, uint32_t size, bool datamatch)
683 {
684 int ret;
685 struct kvm_ioeventfd iofd = {
686 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
687 .addr = addr,
688 .len = size,
689 .flags = 0,
690 .fd = fd,
691 };
692
693 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
694 datamatch);
695 if (!kvm_enabled()) {
696 return -ENOSYS;
697 }
698
699 if (datamatch) {
700 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
701 }
702 if (!assign) {
703 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
704 }
705
706 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
707
708 if (ret < 0) {
709 return -errno;
710 }
711
712 return 0;
713 }
714
715 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
716 bool assign, uint32_t size, bool datamatch)
717 {
718 struct kvm_ioeventfd kick = {
719 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
720 .addr = addr,
721 .flags = KVM_IOEVENTFD_FLAG_PIO,
722 .len = size,
723 .fd = fd,
724 };
725 int r;
726 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
727 if (!kvm_enabled()) {
728 return -ENOSYS;
729 }
730 if (datamatch) {
731 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
732 }
733 if (!assign) {
734 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
735 }
736 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
737 if (r < 0) {
738 return r;
739 }
740 return 0;
741 }
742
743
744 static int kvm_check_many_ioeventfds(void)
745 {
746 /* Userspace can use ioeventfd for io notification. This requires a host
747 * that supports eventfd(2) and an I/O thread; since eventfd does not
748 * support SIGIO it cannot interrupt the vcpu.
749 *
750 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
751 * can avoid creating too many ioeventfds.
752 */
753 #if defined(CONFIG_EVENTFD)
754 int ioeventfds[7];
755 int i, ret = 0;
756 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
757 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
758 if (ioeventfds[i] < 0) {
759 break;
760 }
761 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
762 if (ret < 0) {
763 close(ioeventfds[i]);
764 break;
765 }
766 }
767
768 /* Decide whether many devices are supported or not */
769 ret = i == ARRAY_SIZE(ioeventfds);
770
771 while (i-- > 0) {
772 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
773 close(ioeventfds[i]);
774 }
775 return ret;
776 #else
777 return 0;
778 #endif
779 }
780
781 static const KVMCapabilityInfo *
782 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
783 {
784 while (list->name) {
785 if (!kvm_check_extension(s, list->value)) {
786 return list;
787 }
788 list++;
789 }
790 return NULL;
791 }
792
793 static void kvm_set_phys_mem(KVMMemoryListener *kml,
794 MemoryRegionSection *section, bool add)
795 {
796 KVMSlot *mem;
797 int err;
798 MemoryRegion *mr = section->mr;
799 bool writeable = !mr->readonly && !mr->rom_device;
800 hwaddr start_addr, size;
801 void *ram;
802
803 if (!memory_region_is_ram(mr)) {
804 if (writeable || !kvm_readonly_mem_allowed) {
805 return;
806 } else if (!mr->romd_mode) {
807 /* If the memory device is not in romd_mode, then we actually want
808 * to remove the kvm memory slot so all accesses will trap. */
809 add = false;
810 }
811 }
812
813 size = kvm_align_section(section, &start_addr);
814 if (!size) {
815 return;
816 }
817
818 /* use aligned delta to align the ram address */
819 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
820 (start_addr - section->offset_within_address_space);
821
822 kvm_slots_lock(kml);
823
824 if (!add) {
825 mem = kvm_lookup_matching_slot(kml, start_addr, size);
826 if (!mem) {
827 goto out;
828 }
829 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
830 kvm_physical_sync_dirty_bitmap(kml, section);
831 }
832
833 /* unregister the slot */
834 g_free(mem->dirty_bmap);
835 mem->dirty_bmap = NULL;
836 mem->memory_size = 0;
837 mem->flags = 0;
838 err = kvm_set_user_memory_region(kml, mem, false);
839 if (err) {
840 fprintf(stderr, "%s: error unregistering slot: %s\n",
841 __func__, strerror(-err));
842 abort();
843 }
844 goto out;
845 }
846
847 /* register the new slot */
848 mem = kvm_alloc_slot(kml);
849 mem->memory_size = size;
850 mem->start_addr = start_addr;
851 mem->ram = ram;
852 mem->flags = kvm_mem_flags(mr);
853
854 err = kvm_set_user_memory_region(kml, mem, true);
855 if (err) {
856 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
857 strerror(-err));
858 abort();
859 }
860
861 out:
862 kvm_slots_unlock(kml);
863 }
864
865 static void kvm_region_add(MemoryListener *listener,
866 MemoryRegionSection *section)
867 {
868 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
869
870 memory_region_ref(section->mr);
871 kvm_set_phys_mem(kml, section, true);
872 }
873
874 static void kvm_region_del(MemoryListener *listener,
875 MemoryRegionSection *section)
876 {
877 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
878
879 kvm_set_phys_mem(kml, section, false);
880 memory_region_unref(section->mr);
881 }
882
883 static void kvm_log_sync(MemoryListener *listener,
884 MemoryRegionSection *section)
885 {
886 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
887 int r;
888
889 kvm_slots_lock(kml);
890 r = kvm_physical_sync_dirty_bitmap(kml, section);
891 kvm_slots_unlock(kml);
892 if (r < 0) {
893 abort();
894 }
895 }
896
897 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
898 MemoryRegionSection *section,
899 bool match_data, uint64_t data,
900 EventNotifier *e)
901 {
902 int fd = event_notifier_get_fd(e);
903 int r;
904
905 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
906 data, true, int128_get64(section->size),
907 match_data);
908 if (r < 0) {
909 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
910 __func__, strerror(-r), -r);
911 abort();
912 }
913 }
914
915 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
916 MemoryRegionSection *section,
917 bool match_data, uint64_t data,
918 EventNotifier *e)
919 {
920 int fd = event_notifier_get_fd(e);
921 int r;
922
923 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
924 data, false, int128_get64(section->size),
925 match_data);
926 if (r < 0) {
927 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
928 __func__, strerror(-r), -r);
929 abort();
930 }
931 }
932
933 static void kvm_io_ioeventfd_add(MemoryListener *listener,
934 MemoryRegionSection *section,
935 bool match_data, uint64_t data,
936 EventNotifier *e)
937 {
938 int fd = event_notifier_get_fd(e);
939 int r;
940
941 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
942 data, true, int128_get64(section->size),
943 match_data);
944 if (r < 0) {
945 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
946 __func__, strerror(-r), -r);
947 abort();
948 }
949 }
950
951 static void kvm_io_ioeventfd_del(MemoryListener *listener,
952 MemoryRegionSection *section,
953 bool match_data, uint64_t data,
954 EventNotifier *e)
955
956 {
957 int fd = event_notifier_get_fd(e);
958 int r;
959
960 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
961 data, false, int128_get64(section->size),
962 match_data);
963 if (r < 0) {
964 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
965 __func__, strerror(-r), -r);
966 abort();
967 }
968 }
969
970 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
971 AddressSpace *as, int as_id)
972 {
973 int i;
974
975 qemu_mutex_init(&kml->slots_lock);
976 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
977 kml->as_id = as_id;
978
979 for (i = 0; i < s->nr_slots; i++) {
980 kml->slots[i].slot = i;
981 }
982
983 kml->listener.region_add = kvm_region_add;
984 kml->listener.region_del = kvm_region_del;
985 kml->listener.log_start = kvm_log_start;
986 kml->listener.log_stop = kvm_log_stop;
987 kml->listener.log_sync = kvm_log_sync;
988 kml->listener.priority = 10;
989
990 memory_listener_register(&kml->listener, as);
991 }
992
993 static MemoryListener kvm_io_listener = {
994 .eventfd_add = kvm_io_ioeventfd_add,
995 .eventfd_del = kvm_io_ioeventfd_del,
996 .priority = 10,
997 };
998
999 int kvm_set_irq(KVMState *s, int irq, int level)
1000 {
1001 struct kvm_irq_level event;
1002 int ret;
1003
1004 assert(kvm_async_interrupts_enabled());
1005
1006 event.level = level;
1007 event.irq = irq;
1008 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1009 if (ret < 0) {
1010 perror("kvm_set_irq");
1011 abort();
1012 }
1013
1014 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1015 }
1016
1017 #ifdef KVM_CAP_IRQ_ROUTING
1018 typedef struct KVMMSIRoute {
1019 struct kvm_irq_routing_entry kroute;
1020 QTAILQ_ENTRY(KVMMSIRoute) entry;
1021 } KVMMSIRoute;
1022
1023 static void set_gsi(KVMState *s, unsigned int gsi)
1024 {
1025 set_bit(gsi, s->used_gsi_bitmap);
1026 }
1027
1028 static void clear_gsi(KVMState *s, unsigned int gsi)
1029 {
1030 clear_bit(gsi, s->used_gsi_bitmap);
1031 }
1032
1033 void kvm_init_irq_routing(KVMState *s)
1034 {
1035 int gsi_count, i;
1036
1037 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1038 if (gsi_count > 0) {
1039 /* Round up so we can search ints using ffs */
1040 s->used_gsi_bitmap = bitmap_new(gsi_count);
1041 s->gsi_count = gsi_count;
1042 }
1043
1044 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1045 s->nr_allocated_irq_routes = 0;
1046
1047 if (!kvm_direct_msi_allowed) {
1048 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1049 QTAILQ_INIT(&s->msi_hashtab[i]);
1050 }
1051 }
1052
1053 kvm_arch_init_irq_routing(s);
1054 }
1055
1056 void kvm_irqchip_commit_routes(KVMState *s)
1057 {
1058 int ret;
1059
1060 if (kvm_gsi_direct_mapping()) {
1061 return;
1062 }
1063
1064 if (!kvm_gsi_routing_enabled()) {
1065 return;
1066 }
1067
1068 s->irq_routes->flags = 0;
1069 trace_kvm_irqchip_commit_routes();
1070 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1071 assert(ret == 0);
1072 }
1073
1074 static void kvm_add_routing_entry(KVMState *s,
1075 struct kvm_irq_routing_entry *entry)
1076 {
1077 struct kvm_irq_routing_entry *new;
1078 int n, size;
1079
1080 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1081 n = s->nr_allocated_irq_routes * 2;
1082 if (n < 64) {
1083 n = 64;
1084 }
1085 size = sizeof(struct kvm_irq_routing);
1086 size += n * sizeof(*new);
1087 s->irq_routes = g_realloc(s->irq_routes, size);
1088 s->nr_allocated_irq_routes = n;
1089 }
1090 n = s->irq_routes->nr++;
1091 new = &s->irq_routes->entries[n];
1092
1093 *new = *entry;
1094
1095 set_gsi(s, entry->gsi);
1096 }
1097
1098 static int kvm_update_routing_entry(KVMState *s,
1099 struct kvm_irq_routing_entry *new_entry)
1100 {
1101 struct kvm_irq_routing_entry *entry;
1102 int n;
1103
1104 for (n = 0; n < s->irq_routes->nr; n++) {
1105 entry = &s->irq_routes->entries[n];
1106 if (entry->gsi != new_entry->gsi) {
1107 continue;
1108 }
1109
1110 if(!memcmp(entry, new_entry, sizeof *entry)) {
1111 return 0;
1112 }
1113
1114 *entry = *new_entry;
1115
1116 return 0;
1117 }
1118
1119 return -ESRCH;
1120 }
1121
1122 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1123 {
1124 struct kvm_irq_routing_entry e = {};
1125
1126 assert(pin < s->gsi_count);
1127
1128 e.gsi = irq;
1129 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1130 e.flags = 0;
1131 e.u.irqchip.irqchip = irqchip;
1132 e.u.irqchip.pin = pin;
1133 kvm_add_routing_entry(s, &e);
1134 }
1135
1136 void kvm_irqchip_release_virq(KVMState *s, int virq)
1137 {
1138 struct kvm_irq_routing_entry *e;
1139 int i;
1140
1141 if (kvm_gsi_direct_mapping()) {
1142 return;
1143 }
1144
1145 for (i = 0; i < s->irq_routes->nr; i++) {
1146 e = &s->irq_routes->entries[i];
1147 if (e->gsi == virq) {
1148 s->irq_routes->nr--;
1149 *e = s->irq_routes->entries[s->irq_routes->nr];
1150 }
1151 }
1152 clear_gsi(s, virq);
1153 kvm_arch_release_virq_post(virq);
1154 trace_kvm_irqchip_release_virq(virq);
1155 }
1156
1157 static unsigned int kvm_hash_msi(uint32_t data)
1158 {
1159 /* This is optimized for IA32 MSI layout. However, no other arch shall
1160 * repeat the mistake of not providing a direct MSI injection API. */
1161 return data & 0xff;
1162 }
1163
1164 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1165 {
1166 KVMMSIRoute *route, *next;
1167 unsigned int hash;
1168
1169 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1170 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1171 kvm_irqchip_release_virq(s, route->kroute.gsi);
1172 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1173 g_free(route);
1174 }
1175 }
1176 }
1177
1178 static int kvm_irqchip_get_virq(KVMState *s)
1179 {
1180 int next_virq;
1181
1182 /*
1183 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1184 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1185 * number can succeed even though a new route entry cannot be added.
1186 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1187 */
1188 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1189 kvm_flush_dynamic_msi_routes(s);
1190 }
1191
1192 /* Return the lowest unused GSI in the bitmap */
1193 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1194 if (next_virq >= s->gsi_count) {
1195 return -ENOSPC;
1196 } else {
1197 return next_virq;
1198 }
1199 }
1200
1201 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1202 {
1203 unsigned int hash = kvm_hash_msi(msg.data);
1204 KVMMSIRoute *route;
1205
1206 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1207 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1208 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1209 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1210 return route;
1211 }
1212 }
1213 return NULL;
1214 }
1215
1216 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1217 {
1218 struct kvm_msi msi;
1219 KVMMSIRoute *route;
1220
1221 if (kvm_direct_msi_allowed) {
1222 msi.address_lo = (uint32_t)msg.address;
1223 msi.address_hi = msg.address >> 32;
1224 msi.data = le32_to_cpu(msg.data);
1225 msi.flags = 0;
1226 memset(msi.pad, 0, sizeof(msi.pad));
1227
1228 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1229 }
1230
1231 route = kvm_lookup_msi_route(s, msg);
1232 if (!route) {
1233 int virq;
1234
1235 virq = kvm_irqchip_get_virq(s);
1236 if (virq < 0) {
1237 return virq;
1238 }
1239
1240 route = g_malloc0(sizeof(KVMMSIRoute));
1241 route->kroute.gsi = virq;
1242 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1243 route->kroute.flags = 0;
1244 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1245 route->kroute.u.msi.address_hi = msg.address >> 32;
1246 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1247
1248 kvm_add_routing_entry(s, &route->kroute);
1249 kvm_irqchip_commit_routes(s);
1250
1251 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1252 entry);
1253 }
1254
1255 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1256
1257 return kvm_set_irq(s, route->kroute.gsi, 1);
1258 }
1259
1260 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1261 {
1262 struct kvm_irq_routing_entry kroute = {};
1263 int virq;
1264 MSIMessage msg = {0, 0};
1265
1266 if (pci_available && dev) {
1267 msg = pci_get_msi_message(dev, vector);
1268 }
1269
1270 if (kvm_gsi_direct_mapping()) {
1271 return kvm_arch_msi_data_to_gsi(msg.data);
1272 }
1273
1274 if (!kvm_gsi_routing_enabled()) {
1275 return -ENOSYS;
1276 }
1277
1278 virq = kvm_irqchip_get_virq(s);
1279 if (virq < 0) {
1280 return virq;
1281 }
1282
1283 kroute.gsi = virq;
1284 kroute.type = KVM_IRQ_ROUTING_MSI;
1285 kroute.flags = 0;
1286 kroute.u.msi.address_lo = (uint32_t)msg.address;
1287 kroute.u.msi.address_hi = msg.address >> 32;
1288 kroute.u.msi.data = le32_to_cpu(msg.data);
1289 if (pci_available && kvm_msi_devid_required()) {
1290 kroute.flags = KVM_MSI_VALID_DEVID;
1291 kroute.u.msi.devid = pci_requester_id(dev);
1292 }
1293 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1294 kvm_irqchip_release_virq(s, virq);
1295 return -EINVAL;
1296 }
1297
1298 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1299 vector, virq);
1300
1301 kvm_add_routing_entry(s, &kroute);
1302 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1303 kvm_irqchip_commit_routes(s);
1304
1305 return virq;
1306 }
1307
1308 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1309 PCIDevice *dev)
1310 {
1311 struct kvm_irq_routing_entry kroute = {};
1312
1313 if (kvm_gsi_direct_mapping()) {
1314 return 0;
1315 }
1316
1317 if (!kvm_irqchip_in_kernel()) {
1318 return -ENOSYS;
1319 }
1320
1321 kroute.gsi = virq;
1322 kroute.type = KVM_IRQ_ROUTING_MSI;
1323 kroute.flags = 0;
1324 kroute.u.msi.address_lo = (uint32_t)msg.address;
1325 kroute.u.msi.address_hi = msg.address >> 32;
1326 kroute.u.msi.data = le32_to_cpu(msg.data);
1327 if (pci_available && kvm_msi_devid_required()) {
1328 kroute.flags = KVM_MSI_VALID_DEVID;
1329 kroute.u.msi.devid = pci_requester_id(dev);
1330 }
1331 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1332 return -EINVAL;
1333 }
1334
1335 trace_kvm_irqchip_update_msi_route(virq);
1336
1337 return kvm_update_routing_entry(s, &kroute);
1338 }
1339
1340 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1341 bool assign)
1342 {
1343 struct kvm_irqfd irqfd = {
1344 .fd = fd,
1345 .gsi = virq,
1346 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1347 };
1348
1349 if (rfd != -1) {
1350 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1351 irqfd.resamplefd = rfd;
1352 }
1353
1354 if (!kvm_irqfds_enabled()) {
1355 return -ENOSYS;
1356 }
1357
1358 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1359 }
1360
1361 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1362 {
1363 struct kvm_irq_routing_entry kroute = {};
1364 int virq;
1365
1366 if (!kvm_gsi_routing_enabled()) {
1367 return -ENOSYS;
1368 }
1369
1370 virq = kvm_irqchip_get_virq(s);
1371 if (virq < 0) {
1372 return virq;
1373 }
1374
1375 kroute.gsi = virq;
1376 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1377 kroute.flags = 0;
1378 kroute.u.adapter.summary_addr = adapter->summary_addr;
1379 kroute.u.adapter.ind_addr = adapter->ind_addr;
1380 kroute.u.adapter.summary_offset = adapter->summary_offset;
1381 kroute.u.adapter.ind_offset = adapter->ind_offset;
1382 kroute.u.adapter.adapter_id = adapter->adapter_id;
1383
1384 kvm_add_routing_entry(s, &kroute);
1385
1386 return virq;
1387 }
1388
1389 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1390 {
1391 struct kvm_irq_routing_entry kroute = {};
1392 int virq;
1393
1394 if (!kvm_gsi_routing_enabled()) {
1395 return -ENOSYS;
1396 }
1397 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1398 return -ENOSYS;
1399 }
1400 virq = kvm_irqchip_get_virq(s);
1401 if (virq < 0) {
1402 return virq;
1403 }
1404
1405 kroute.gsi = virq;
1406 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1407 kroute.flags = 0;
1408 kroute.u.hv_sint.vcpu = vcpu;
1409 kroute.u.hv_sint.sint = sint;
1410
1411 kvm_add_routing_entry(s, &kroute);
1412 kvm_irqchip_commit_routes(s);
1413
1414 return virq;
1415 }
1416
1417 #else /* !KVM_CAP_IRQ_ROUTING */
1418
1419 void kvm_init_irq_routing(KVMState *s)
1420 {
1421 }
1422
1423 void kvm_irqchip_release_virq(KVMState *s, int virq)
1424 {
1425 }
1426
1427 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1428 {
1429 abort();
1430 }
1431
1432 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1433 {
1434 return -ENOSYS;
1435 }
1436
1437 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1438 {
1439 return -ENOSYS;
1440 }
1441
1442 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1443 {
1444 return -ENOSYS;
1445 }
1446
1447 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1448 {
1449 abort();
1450 }
1451
1452 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1453 {
1454 return -ENOSYS;
1455 }
1456 #endif /* !KVM_CAP_IRQ_ROUTING */
1457
1458 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1459 EventNotifier *rn, int virq)
1460 {
1461 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1462 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1463 }
1464
1465 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1466 int virq)
1467 {
1468 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1469 false);
1470 }
1471
1472 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1473 EventNotifier *rn, qemu_irq irq)
1474 {
1475 gpointer key, gsi;
1476 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1477
1478 if (!found) {
1479 return -ENXIO;
1480 }
1481 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1482 }
1483
1484 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1485 qemu_irq irq)
1486 {
1487 gpointer key, gsi;
1488 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1489
1490 if (!found) {
1491 return -ENXIO;
1492 }
1493 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1494 }
1495
1496 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1497 {
1498 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1499 }
1500
1501 static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1502 {
1503 int ret;
1504
1505 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1506 ;
1507 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1508 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1509 if (ret < 0) {
1510 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1511 exit(1);
1512 }
1513 } else {
1514 return;
1515 }
1516
1517 /* First probe and see if there's a arch-specific hook to create the
1518 * in-kernel irqchip for us */
1519 ret = kvm_arch_irqchip_create(machine, s);
1520 if (ret == 0) {
1521 if (machine_kernel_irqchip_split(machine)) {
1522 perror("Split IRQ chip mode not supported.");
1523 exit(1);
1524 } else {
1525 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1526 }
1527 }
1528 if (ret < 0) {
1529 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1530 exit(1);
1531 }
1532
1533 kvm_kernel_irqchip = true;
1534 /* If we have an in-kernel IRQ chip then we must have asynchronous
1535 * interrupt delivery (though the reverse is not necessarily true)
1536 */
1537 kvm_async_interrupts_allowed = true;
1538 kvm_halt_in_kernel_allowed = true;
1539
1540 kvm_init_irq_routing(s);
1541
1542 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1543 }
1544
1545 /* Find number of supported CPUs using the recommended
1546 * procedure from the kernel API documentation to cope with
1547 * older kernels that may be missing capabilities.
1548 */
1549 static int kvm_recommended_vcpus(KVMState *s)
1550 {
1551 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1552 return (ret) ? ret : 4;
1553 }
1554
1555 static int kvm_max_vcpus(KVMState *s)
1556 {
1557 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1558 return (ret) ? ret : kvm_recommended_vcpus(s);
1559 }
1560
1561 static int kvm_max_vcpu_id(KVMState *s)
1562 {
1563 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1564 return (ret) ? ret : kvm_max_vcpus(s);
1565 }
1566
1567 bool kvm_vcpu_id_is_valid(int vcpu_id)
1568 {
1569 KVMState *s = KVM_STATE(current_machine->accelerator);
1570 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1571 }
1572
1573 static int kvm_init(MachineState *ms)
1574 {
1575 MachineClass *mc = MACHINE_GET_CLASS(ms);
1576 static const char upgrade_note[] =
1577 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1578 "(see http://sourceforge.net/projects/kvm).\n";
1579 struct {
1580 const char *name;
1581 int num;
1582 } num_cpus[] = {
1583 { "SMP", ms->smp.cpus },
1584 { "hotpluggable", ms->smp.max_cpus },
1585 { NULL, }
1586 }, *nc = num_cpus;
1587 int soft_vcpus_limit, hard_vcpus_limit;
1588 KVMState *s;
1589 const KVMCapabilityInfo *missing_cap;
1590 int ret;
1591 int type = 0;
1592 const char *kvm_type;
1593
1594 s = KVM_STATE(ms->accelerator);
1595
1596 /*
1597 * On systems where the kernel can support different base page
1598 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1599 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1600 * page size for the system though.
1601 */
1602 assert(TARGET_PAGE_SIZE <= getpagesize());
1603
1604 s->sigmask_len = 8;
1605
1606 #ifdef KVM_CAP_SET_GUEST_DEBUG
1607 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1608 #endif
1609 QLIST_INIT(&s->kvm_parked_vcpus);
1610 s->vmfd = -1;
1611 s->fd = qemu_open("/dev/kvm", O_RDWR);
1612 if (s->fd == -1) {
1613 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1614 ret = -errno;
1615 goto err;
1616 }
1617
1618 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1619 if (ret < KVM_API_VERSION) {
1620 if (ret >= 0) {
1621 ret = -EINVAL;
1622 }
1623 fprintf(stderr, "kvm version too old\n");
1624 goto err;
1625 }
1626
1627 if (ret > KVM_API_VERSION) {
1628 ret = -EINVAL;
1629 fprintf(stderr, "kvm version not supported\n");
1630 goto err;
1631 }
1632
1633 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
1634 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1635
1636 /* If unspecified, use the default value */
1637 if (!s->nr_slots) {
1638 s->nr_slots = 32;
1639 }
1640
1641 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1642 if (mc->kvm_type) {
1643 type = mc->kvm_type(ms, kvm_type);
1644 } else if (kvm_type) {
1645 ret = -EINVAL;
1646 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1647 goto err;
1648 }
1649
1650 do {
1651 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1652 } while (ret == -EINTR);
1653
1654 if (ret < 0) {
1655 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1656 strerror(-ret));
1657
1658 #ifdef TARGET_S390X
1659 if (ret == -EINVAL) {
1660 fprintf(stderr,
1661 "Host kernel setup problem detected. Please verify:\n");
1662 fprintf(stderr, "- for kernels supporting the switch_amode or"
1663 " user_mode parameters, whether\n");
1664 fprintf(stderr,
1665 " user space is running in primary address space\n");
1666 fprintf(stderr,
1667 "- for kernels supporting the vm.allocate_pgste sysctl, "
1668 "whether it is enabled\n");
1669 }
1670 #endif
1671 goto err;
1672 }
1673
1674 s->vmfd = ret;
1675
1676 /* check the vcpu limits */
1677 soft_vcpus_limit = kvm_recommended_vcpus(s);
1678 hard_vcpus_limit = kvm_max_vcpus(s);
1679
1680 while (nc->name) {
1681 if (nc->num > soft_vcpus_limit) {
1682 warn_report("Number of %s cpus requested (%d) exceeds "
1683 "the recommended cpus supported by KVM (%d)",
1684 nc->name, nc->num, soft_vcpus_limit);
1685
1686 if (nc->num > hard_vcpus_limit) {
1687 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1688 "the maximum cpus supported by KVM (%d)\n",
1689 nc->name, nc->num, hard_vcpus_limit);
1690 exit(1);
1691 }
1692 }
1693 nc++;
1694 }
1695
1696 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1697 if (!missing_cap) {
1698 missing_cap =
1699 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1700 }
1701 if (missing_cap) {
1702 ret = -EINVAL;
1703 fprintf(stderr, "kvm does not support %s\n%s",
1704 missing_cap->name, upgrade_note);
1705 goto err;
1706 }
1707
1708 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1709 s->coalesced_pio = s->coalesced_mmio &&
1710 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
1711
1712 #ifdef KVM_CAP_VCPU_EVENTS
1713 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1714 #endif
1715
1716 s->robust_singlestep =
1717 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1718
1719 #ifdef KVM_CAP_DEBUGREGS
1720 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1721 #endif
1722
1723 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
1724
1725 #ifdef KVM_CAP_IRQ_ROUTING
1726 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1727 #endif
1728
1729 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1730
1731 s->irq_set_ioctl = KVM_IRQ_LINE;
1732 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1733 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1734 }
1735
1736 kvm_readonly_mem_allowed =
1737 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1738
1739 kvm_eventfds_allowed =
1740 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1741
1742 kvm_irqfds_allowed =
1743 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1744
1745 kvm_resamplefds_allowed =
1746 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1747
1748 kvm_vm_attributes_allowed =
1749 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1750
1751 kvm_ioeventfd_any_length_allowed =
1752 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
1753
1754 kvm_state = s;
1755
1756 /*
1757 * if memory encryption object is specified then initialize the memory
1758 * encryption context.
1759 */
1760 if (ms->memory_encryption) {
1761 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption);
1762 if (!kvm_state->memcrypt_handle) {
1763 ret = -1;
1764 goto err;
1765 }
1766
1767 kvm_state->memcrypt_encrypt_data = sev_encrypt_data;
1768 }
1769
1770 ret = kvm_arch_init(ms, s);
1771 if (ret < 0) {
1772 goto err;
1773 }
1774
1775 if (machine_kernel_irqchip_allowed(ms)) {
1776 kvm_irqchip_create(ms, s);
1777 }
1778
1779 if (kvm_eventfds_allowed) {
1780 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1781 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1782 }
1783 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
1784 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
1785
1786 kvm_memory_listener_register(s, &s->memory_listener,
1787 &address_space_memory, 0);
1788 memory_listener_register(&kvm_io_listener,
1789 &address_space_io);
1790 memory_listener_register(&kvm_coalesced_pio_listener,
1791 &address_space_io);
1792
1793 s->many_ioeventfds = kvm_check_many_ioeventfds();
1794
1795 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1796 if (!s->sync_mmu) {
1797 qemu_balloon_inhibit(true);
1798 }
1799
1800 return 0;
1801
1802 err:
1803 assert(ret < 0);
1804 if (s->vmfd >= 0) {
1805 close(s->vmfd);
1806 }
1807 if (s->fd != -1) {
1808 close(s->fd);
1809 }
1810 g_free(s->memory_listener.slots);
1811
1812 return ret;
1813 }
1814
1815 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1816 {
1817 s->sigmask_len = sigmask_len;
1818 }
1819
1820 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1821 int size, uint32_t count)
1822 {
1823 int i;
1824 uint8_t *ptr = data;
1825
1826 for (i = 0; i < count; i++) {
1827 address_space_rw(&address_space_io, port, attrs,
1828 ptr, size,
1829 direction == KVM_EXIT_IO_OUT);
1830 ptr += size;
1831 }
1832 }
1833
1834 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1835 {
1836 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1837 run->internal.suberror);
1838
1839 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1840 int i;
1841
1842 for (i = 0; i < run->internal.ndata; ++i) {
1843 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1844 i, (uint64_t)run->internal.data[i]);
1845 }
1846 }
1847 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1848 fprintf(stderr, "emulation failure\n");
1849 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1850 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
1851 return EXCP_INTERRUPT;
1852 }
1853 }
1854 /* FIXME: Should trigger a qmp message to let management know
1855 * something went wrong.
1856 */
1857 return -1;
1858 }
1859
1860 void kvm_flush_coalesced_mmio_buffer(void)
1861 {
1862 KVMState *s = kvm_state;
1863
1864 if (s->coalesced_flush_in_progress) {
1865 return;
1866 }
1867
1868 s->coalesced_flush_in_progress = true;
1869
1870 if (s->coalesced_mmio_ring) {
1871 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1872 while (ring->first != ring->last) {
1873 struct kvm_coalesced_mmio *ent;
1874
1875 ent = &ring->coalesced_mmio[ring->first];
1876
1877 if (ent->pio == 1) {
1878 address_space_rw(&address_space_io, ent->phys_addr,
1879 MEMTXATTRS_UNSPECIFIED, ent->data,
1880 ent->len, true);
1881 } else {
1882 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1883 }
1884 smp_wmb();
1885 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1886 }
1887 }
1888
1889 s->coalesced_flush_in_progress = false;
1890 }
1891
1892 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
1893 {
1894 if (!cpu->vcpu_dirty) {
1895 kvm_arch_get_registers(cpu);
1896 cpu->vcpu_dirty = true;
1897 }
1898 }
1899
1900 void kvm_cpu_synchronize_state(CPUState *cpu)
1901 {
1902 if (!cpu->vcpu_dirty) {
1903 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
1904 }
1905 }
1906
1907 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
1908 {
1909 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1910 cpu->vcpu_dirty = false;
1911 }
1912
1913 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1914 {
1915 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
1916 }
1917
1918 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
1919 {
1920 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1921 cpu->vcpu_dirty = false;
1922 }
1923
1924 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1925 {
1926 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
1927 }
1928
1929 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
1930 {
1931 cpu->vcpu_dirty = true;
1932 }
1933
1934 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
1935 {
1936 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
1937 }
1938
1939 #ifdef KVM_HAVE_MCE_INJECTION
1940 static __thread void *pending_sigbus_addr;
1941 static __thread int pending_sigbus_code;
1942 static __thread bool have_sigbus_pending;
1943 #endif
1944
1945 static void kvm_cpu_kick(CPUState *cpu)
1946 {
1947 atomic_set(&cpu->kvm_run->immediate_exit, 1);
1948 }
1949
1950 static void kvm_cpu_kick_self(void)
1951 {
1952 if (kvm_immediate_exit) {
1953 kvm_cpu_kick(current_cpu);
1954 } else {
1955 qemu_cpu_kick_self();
1956 }
1957 }
1958
1959 static void kvm_eat_signals(CPUState *cpu)
1960 {
1961 struct timespec ts = { 0, 0 };
1962 siginfo_t siginfo;
1963 sigset_t waitset;
1964 sigset_t chkset;
1965 int r;
1966
1967 if (kvm_immediate_exit) {
1968 atomic_set(&cpu->kvm_run->immediate_exit, 0);
1969 /* Write kvm_run->immediate_exit before the cpu->exit_request
1970 * write in kvm_cpu_exec.
1971 */
1972 smp_wmb();
1973 return;
1974 }
1975
1976 sigemptyset(&waitset);
1977 sigaddset(&waitset, SIG_IPI);
1978
1979 do {
1980 r = sigtimedwait(&waitset, &siginfo, &ts);
1981 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
1982 perror("sigtimedwait");
1983 exit(1);
1984 }
1985
1986 r = sigpending(&chkset);
1987 if (r == -1) {
1988 perror("sigpending");
1989 exit(1);
1990 }
1991 } while (sigismember(&chkset, SIG_IPI));
1992 }
1993
1994 int kvm_cpu_exec(CPUState *cpu)
1995 {
1996 struct kvm_run *run = cpu->kvm_run;
1997 int ret, run_ret;
1998
1999 DPRINTF("kvm_cpu_exec()\n");
2000
2001 if (kvm_arch_process_async_events(cpu)) {
2002 atomic_set(&cpu->exit_request, 0);
2003 return EXCP_HLT;
2004 }
2005
2006 qemu_mutex_unlock_iothread();
2007 cpu_exec_start(cpu);
2008
2009 do {
2010 MemTxAttrs attrs;
2011
2012 if (cpu->vcpu_dirty) {
2013 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2014 cpu->vcpu_dirty = false;
2015 }
2016
2017 kvm_arch_pre_run(cpu, run);
2018 if (atomic_read(&cpu->exit_request)) {
2019 DPRINTF("interrupt exit requested\n");
2020 /*
2021 * KVM requires us to reenter the kernel after IO exits to complete
2022 * instruction emulation. This self-signal will ensure that we
2023 * leave ASAP again.
2024 */
2025 kvm_cpu_kick_self();
2026 }
2027
2028 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2029 * Matching barrier in kvm_eat_signals.
2030 */
2031 smp_rmb();
2032
2033 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2034
2035 attrs = kvm_arch_post_run(cpu, run);
2036
2037 #ifdef KVM_HAVE_MCE_INJECTION
2038 if (unlikely(have_sigbus_pending)) {
2039 qemu_mutex_lock_iothread();
2040 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2041 pending_sigbus_addr);
2042 have_sigbus_pending = false;
2043 qemu_mutex_unlock_iothread();
2044 }
2045 #endif
2046
2047 if (run_ret < 0) {
2048 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2049 DPRINTF("io window exit\n");
2050 kvm_eat_signals(cpu);
2051 ret = EXCP_INTERRUPT;
2052 break;
2053 }
2054 fprintf(stderr, "error: kvm run failed %s\n",
2055 strerror(-run_ret));
2056 #ifdef TARGET_PPC
2057 if (run_ret == -EBUSY) {
2058 fprintf(stderr,
2059 "This is probably because your SMT is enabled.\n"
2060 "VCPU can only run on primary threads with all "
2061 "secondary threads offline.\n");
2062 }
2063 #endif
2064 ret = -1;
2065 break;
2066 }
2067
2068 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2069 switch (run->exit_reason) {
2070 case KVM_EXIT_IO:
2071 DPRINTF("handle_io\n");
2072 /* Called outside BQL */
2073 kvm_handle_io(run->io.port, attrs,
2074 (uint8_t *)run + run->io.data_offset,
2075 run->io.direction,
2076 run->io.size,
2077 run->io.count);
2078 ret = 0;
2079 break;
2080 case KVM_EXIT_MMIO:
2081 DPRINTF("handle_mmio\n");
2082 /* Called outside BQL */
2083 address_space_rw(&address_space_memory,
2084 run->mmio.phys_addr, attrs,
2085 run->mmio.data,
2086 run->mmio.len,
2087 run->mmio.is_write);
2088 ret = 0;
2089 break;
2090 case KVM_EXIT_IRQ_WINDOW_OPEN:
2091 DPRINTF("irq_window_open\n");
2092 ret = EXCP_INTERRUPT;
2093 break;
2094 case KVM_EXIT_SHUTDOWN:
2095 DPRINTF("shutdown\n");
2096 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2097 ret = EXCP_INTERRUPT;
2098 break;
2099 case KVM_EXIT_UNKNOWN:
2100 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2101 (uint64_t)run->hw.hardware_exit_reason);
2102 ret = -1;
2103 break;
2104 case KVM_EXIT_INTERNAL_ERROR:
2105 ret = kvm_handle_internal_error(cpu, run);
2106 break;
2107 case KVM_EXIT_SYSTEM_EVENT:
2108 switch (run->system_event.type) {
2109 case KVM_SYSTEM_EVENT_SHUTDOWN:
2110 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2111 ret = EXCP_INTERRUPT;
2112 break;
2113 case KVM_SYSTEM_EVENT_RESET:
2114 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2115 ret = EXCP_INTERRUPT;
2116 break;
2117 case KVM_SYSTEM_EVENT_CRASH:
2118 kvm_cpu_synchronize_state(cpu);
2119 qemu_mutex_lock_iothread();
2120 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2121 qemu_mutex_unlock_iothread();
2122 ret = 0;
2123 break;
2124 default:
2125 DPRINTF("kvm_arch_handle_exit\n");
2126 ret = kvm_arch_handle_exit(cpu, run);
2127 break;
2128 }
2129 break;
2130 default:
2131 DPRINTF("kvm_arch_handle_exit\n");
2132 ret = kvm_arch_handle_exit(cpu, run);
2133 break;
2134 }
2135 } while (ret == 0);
2136
2137 cpu_exec_end(cpu);
2138 qemu_mutex_lock_iothread();
2139
2140 if (ret < 0) {
2141 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2142 vm_stop(RUN_STATE_INTERNAL_ERROR);
2143 }
2144
2145 atomic_set(&cpu->exit_request, 0);
2146 return ret;
2147 }
2148
2149 int kvm_ioctl(KVMState *s, int type, ...)
2150 {
2151 int ret;
2152 void *arg;
2153 va_list ap;
2154
2155 va_start(ap, type);
2156 arg = va_arg(ap, void *);
2157 va_end(ap);
2158
2159 trace_kvm_ioctl(type, arg);
2160 ret = ioctl(s->fd, type, arg);
2161 if (ret == -1) {
2162 ret = -errno;
2163 }
2164 return ret;
2165 }
2166
2167 int kvm_vm_ioctl(KVMState *s, int type, ...)
2168 {
2169 int ret;
2170 void *arg;
2171 va_list ap;
2172
2173 va_start(ap, type);
2174 arg = va_arg(ap, void *);
2175 va_end(ap);
2176
2177 trace_kvm_vm_ioctl(type, arg);
2178 ret = ioctl(s->vmfd, type, arg);
2179 if (ret == -1) {
2180 ret = -errno;
2181 }
2182 return ret;
2183 }
2184
2185 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2186 {
2187 int ret;
2188 void *arg;
2189 va_list ap;
2190
2191 va_start(ap, type);
2192 arg = va_arg(ap, void *);
2193 va_end(ap);
2194
2195 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2196 ret = ioctl(cpu->kvm_fd, type, arg);
2197 if (ret == -1) {
2198 ret = -errno;
2199 }
2200 return ret;
2201 }
2202
2203 int kvm_device_ioctl(int fd, int type, ...)
2204 {
2205 int ret;
2206 void *arg;
2207 va_list ap;
2208
2209 va_start(ap, type);
2210 arg = va_arg(ap, void *);
2211 va_end(ap);
2212
2213 trace_kvm_device_ioctl(fd, type, arg);
2214 ret = ioctl(fd, type, arg);
2215 if (ret == -1) {
2216 ret = -errno;
2217 }
2218 return ret;
2219 }
2220
2221 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2222 {
2223 int ret;
2224 struct kvm_device_attr attribute = {
2225 .group = group,
2226 .attr = attr,
2227 };
2228
2229 if (!kvm_vm_attributes_allowed) {
2230 return 0;
2231 }
2232
2233 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2234 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2235 return ret ? 0 : 1;
2236 }
2237
2238 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2239 {
2240 struct kvm_device_attr attribute = {
2241 .group = group,
2242 .attr = attr,
2243 .flags = 0,
2244 };
2245
2246 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2247 }
2248
2249 int kvm_device_access(int fd, int group, uint64_t attr,
2250 void *val, bool write, Error **errp)
2251 {
2252 struct kvm_device_attr kvmattr;
2253 int err;
2254
2255 kvmattr.flags = 0;
2256 kvmattr.group = group;
2257 kvmattr.attr = attr;
2258 kvmattr.addr = (uintptr_t)val;
2259
2260 err = kvm_device_ioctl(fd,
2261 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2262 &kvmattr);
2263 if (err < 0) {
2264 error_setg_errno(errp, -err,
2265 "KVM_%s_DEVICE_ATTR failed: Group %d "
2266 "attr 0x%016" PRIx64,
2267 write ? "SET" : "GET", group, attr);
2268 }
2269 return err;
2270 }
2271
2272 bool kvm_has_sync_mmu(void)
2273 {
2274 return kvm_state->sync_mmu;
2275 }
2276
2277 int kvm_has_vcpu_events(void)
2278 {
2279 return kvm_state->vcpu_events;
2280 }
2281
2282 int kvm_has_robust_singlestep(void)
2283 {
2284 return kvm_state->robust_singlestep;
2285 }
2286
2287 int kvm_has_debugregs(void)
2288 {
2289 return kvm_state->debugregs;
2290 }
2291
2292 int kvm_max_nested_state_length(void)
2293 {
2294 return kvm_state->max_nested_state_len;
2295 }
2296
2297 int kvm_has_many_ioeventfds(void)
2298 {
2299 if (!kvm_enabled()) {
2300 return 0;
2301 }
2302 return kvm_state->many_ioeventfds;
2303 }
2304
2305 int kvm_has_gsi_routing(void)
2306 {
2307 #ifdef KVM_CAP_IRQ_ROUTING
2308 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2309 #else
2310 return false;
2311 #endif
2312 }
2313
2314 int kvm_has_intx_set_mask(void)
2315 {
2316 return kvm_state->intx_set_mask;
2317 }
2318
2319 bool kvm_arm_supports_user_irq(void)
2320 {
2321 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2322 }
2323
2324 #ifdef KVM_CAP_SET_GUEST_DEBUG
2325 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2326 target_ulong pc)
2327 {
2328 struct kvm_sw_breakpoint *bp;
2329
2330 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2331 if (bp->pc == pc) {
2332 return bp;
2333 }
2334 }
2335 return NULL;
2336 }
2337
2338 int kvm_sw_breakpoints_active(CPUState *cpu)
2339 {
2340 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2341 }
2342
2343 struct kvm_set_guest_debug_data {
2344 struct kvm_guest_debug dbg;
2345 int err;
2346 };
2347
2348 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2349 {
2350 struct kvm_set_guest_debug_data *dbg_data =
2351 (struct kvm_set_guest_debug_data *) data.host_ptr;
2352
2353 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2354 &dbg_data->dbg);
2355 }
2356
2357 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2358 {
2359 struct kvm_set_guest_debug_data data;
2360
2361 data.dbg.control = reinject_trap;
2362
2363 if (cpu->singlestep_enabled) {
2364 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2365 }
2366 kvm_arch_update_guest_debug(cpu, &data.dbg);
2367
2368 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2369 RUN_ON_CPU_HOST_PTR(&data));
2370 return data.err;
2371 }
2372
2373 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2374 target_ulong len, int type)
2375 {
2376 struct kvm_sw_breakpoint *bp;
2377 int err;
2378
2379 if (type == GDB_BREAKPOINT_SW) {
2380 bp = kvm_find_sw_breakpoint(cpu, addr);
2381 if (bp) {
2382 bp->use_count++;
2383 return 0;
2384 }
2385
2386 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2387 bp->pc = addr;
2388 bp->use_count = 1;
2389 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2390 if (err) {
2391 g_free(bp);
2392 return err;
2393 }
2394
2395 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2396 } else {
2397 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2398 if (err) {
2399 return err;
2400 }
2401 }
2402
2403 CPU_FOREACH(cpu) {
2404 err = kvm_update_guest_debug(cpu, 0);
2405 if (err) {
2406 return err;
2407 }
2408 }
2409 return 0;
2410 }
2411
2412 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2413 target_ulong len, int type)
2414 {
2415 struct kvm_sw_breakpoint *bp;
2416 int err;
2417
2418 if (type == GDB_BREAKPOINT_SW) {
2419 bp = kvm_find_sw_breakpoint(cpu, addr);
2420 if (!bp) {
2421 return -ENOENT;
2422 }
2423
2424 if (bp->use_count > 1) {
2425 bp->use_count--;
2426 return 0;
2427 }
2428
2429 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2430 if (err) {
2431 return err;
2432 }
2433
2434 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2435 g_free(bp);
2436 } else {
2437 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2438 if (err) {
2439 return err;
2440 }
2441 }
2442
2443 CPU_FOREACH(cpu) {
2444 err = kvm_update_guest_debug(cpu, 0);
2445 if (err) {
2446 return err;
2447 }
2448 }
2449 return 0;
2450 }
2451
2452 void kvm_remove_all_breakpoints(CPUState *cpu)
2453 {
2454 struct kvm_sw_breakpoint *bp, *next;
2455 KVMState *s = cpu->kvm_state;
2456 CPUState *tmpcpu;
2457
2458 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2459 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2460 /* Try harder to find a CPU that currently sees the breakpoint. */
2461 CPU_FOREACH(tmpcpu) {
2462 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2463 break;
2464 }
2465 }
2466 }
2467 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2468 g_free(bp);
2469 }
2470 kvm_arch_remove_all_hw_breakpoints();
2471
2472 CPU_FOREACH(cpu) {
2473 kvm_update_guest_debug(cpu, 0);
2474 }
2475 }
2476
2477 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2478
2479 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2480 {
2481 return -EINVAL;
2482 }
2483
2484 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2485 target_ulong len, int type)
2486 {
2487 return -EINVAL;
2488 }
2489
2490 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2491 target_ulong len, int type)
2492 {
2493 return -EINVAL;
2494 }
2495
2496 void kvm_remove_all_breakpoints(CPUState *cpu)
2497 {
2498 }
2499 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2500
2501 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2502 {
2503 KVMState *s = kvm_state;
2504 struct kvm_signal_mask *sigmask;
2505 int r;
2506
2507 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2508
2509 sigmask->len = s->sigmask_len;
2510 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2511 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2512 g_free(sigmask);
2513
2514 return r;
2515 }
2516
2517 static void kvm_ipi_signal(int sig)
2518 {
2519 if (current_cpu) {
2520 assert(kvm_immediate_exit);
2521 kvm_cpu_kick(current_cpu);
2522 }
2523 }
2524
2525 void kvm_init_cpu_signals(CPUState *cpu)
2526 {
2527 int r;
2528 sigset_t set;
2529 struct sigaction sigact;
2530
2531 memset(&sigact, 0, sizeof(sigact));
2532 sigact.sa_handler = kvm_ipi_signal;
2533 sigaction(SIG_IPI, &sigact, NULL);
2534
2535 pthread_sigmask(SIG_BLOCK, NULL, &set);
2536 #if defined KVM_HAVE_MCE_INJECTION
2537 sigdelset(&set, SIGBUS);
2538 pthread_sigmask(SIG_SETMASK, &set, NULL);
2539 #endif
2540 sigdelset(&set, SIG_IPI);
2541 if (kvm_immediate_exit) {
2542 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2543 } else {
2544 r = kvm_set_signal_mask(cpu, &set);
2545 }
2546 if (r) {
2547 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2548 exit(1);
2549 }
2550 }
2551
2552 /* Called asynchronously in VCPU thread. */
2553 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2554 {
2555 #ifdef KVM_HAVE_MCE_INJECTION
2556 if (have_sigbus_pending) {
2557 return 1;
2558 }
2559 have_sigbus_pending = true;
2560 pending_sigbus_addr = addr;
2561 pending_sigbus_code = code;
2562 atomic_set(&cpu->exit_request, 1);
2563 return 0;
2564 #else
2565 return 1;
2566 #endif
2567 }
2568
2569 /* Called synchronously (via signalfd) in main thread. */
2570 int kvm_on_sigbus(int code, void *addr)
2571 {
2572 #ifdef KVM_HAVE_MCE_INJECTION
2573 /* Action required MCE kills the process if SIGBUS is blocked. Because
2574 * that's what happens in the I/O thread, where we handle MCE via signalfd,
2575 * we can only get action optional here.
2576 */
2577 assert(code != BUS_MCEERR_AR);
2578 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
2579 return 0;
2580 #else
2581 return 1;
2582 #endif
2583 }
2584
2585 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2586 {
2587 int ret;
2588 struct kvm_create_device create_dev;
2589
2590 create_dev.type = type;
2591 create_dev.fd = -1;
2592 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2593
2594 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2595 return -ENOTSUP;
2596 }
2597
2598 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2599 if (ret) {
2600 return ret;
2601 }
2602
2603 return test ? 0 : create_dev.fd;
2604 }
2605
2606 bool kvm_device_supported(int vmfd, uint64_t type)
2607 {
2608 struct kvm_create_device create_dev = {
2609 .type = type,
2610 .fd = -1,
2611 .flags = KVM_CREATE_DEVICE_TEST,
2612 };
2613
2614 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
2615 return false;
2616 }
2617
2618 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
2619 }
2620
2621 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2622 {
2623 struct kvm_one_reg reg;
2624 int r;
2625
2626 reg.id = id;
2627 reg.addr = (uintptr_t) source;
2628 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2629 if (r) {
2630 trace_kvm_failed_reg_set(id, strerror(-r));
2631 }
2632 return r;
2633 }
2634
2635 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2636 {
2637 struct kvm_one_reg reg;
2638 int r;
2639
2640 reg.id = id;
2641 reg.addr = (uintptr_t) target;
2642 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2643 if (r) {
2644 trace_kvm_failed_reg_get(id, strerror(-r));
2645 }
2646 return r;
2647 }
2648
2649 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2650 {
2651 AccelClass *ac = ACCEL_CLASS(oc);
2652 ac->name = "KVM";
2653 ac->init_machine = kvm_init;
2654 ac->allowed = &kvm_allowed;
2655 }
2656
2657 static const TypeInfo kvm_accel_type = {
2658 .name = TYPE_KVM_ACCEL,
2659 .parent = TYPE_ACCEL,
2660 .class_init = kvm_accel_class_init,
2661 .instance_size = sizeof(KVMState),
2662 };
2663
2664 static void kvm_type_init(void)
2665 {
2666 type_register_static(&kvm_accel_type);
2667 }
2668
2669 type_init(kvm_type_init);