]> git.proxmox.com Git - mirror_qemu.git/blob - accel/kvm/kvm-all.c
Merge remote-tracking branch 'remotes/kraxel/tags/seabios-20191220-pull-request'...
[mirror_qemu.git] / accel / kvm / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18
19 #include <linux/kvm.h>
20
21 #include "qemu/atomic.h"
22 #include "qemu/option.h"
23 #include "qemu/config-file.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/pci/msi.h"
27 #include "hw/pci/msix.h"
28 #include "hw/s390x/adapter.h"
29 #include "exec/gdbstub.h"
30 #include "sysemu/kvm_int.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "sysemu/sev.h"
43 #include "sysemu/balloon.h"
44 #include "qapi/visitor.h"
45 #include "qapi/qapi-types-common.h"
46 #include "qapi/qapi-visit-common.h"
47
48 #include "hw/boards.h"
49
50 /* This check must be after config-host.h is included */
51 #ifdef CONFIG_EVENTFD
52 #include <sys/eventfd.h>
53 #endif
54
55 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
56 * need to use the real host PAGE_SIZE, as that's what KVM will use.
57 */
58 #define PAGE_SIZE qemu_real_host_page_size
59
60 //#define DEBUG_KVM
61
62 #ifdef DEBUG_KVM
63 #define DPRINTF(fmt, ...) \
64 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
65 #else
66 #define DPRINTF(fmt, ...) \
67 do { } while (0)
68 #endif
69
70 #define KVM_MSI_HASHTAB_SIZE 256
71
72 struct KVMParkedVcpu {
73 unsigned long vcpu_id;
74 int kvm_fd;
75 QLIST_ENTRY(KVMParkedVcpu) node;
76 };
77
78 struct KVMState
79 {
80 AccelState parent_obj;
81
82 int nr_slots;
83 int fd;
84 int vmfd;
85 int coalesced_mmio;
86 int coalesced_pio;
87 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
88 bool coalesced_flush_in_progress;
89 int vcpu_events;
90 int robust_singlestep;
91 int debugregs;
92 #ifdef KVM_CAP_SET_GUEST_DEBUG
93 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
94 #endif
95 int max_nested_state_len;
96 int many_ioeventfds;
97 int intx_set_mask;
98 int kvm_shadow_mem;
99 bool kernel_irqchip_allowed;
100 bool kernel_irqchip_required;
101 bool kernel_irqchip_split;
102 bool sync_mmu;
103 bool manual_dirty_log_protect;
104 /* The man page (and posix) say ioctl numbers are signed int, but
105 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
106 * unsigned, and treating them as signed here can break things */
107 unsigned irq_set_ioctl;
108 unsigned int sigmask_len;
109 GHashTable *gsimap;
110 #ifdef KVM_CAP_IRQ_ROUTING
111 struct kvm_irq_routing *irq_routes;
112 int nr_allocated_irq_routes;
113 unsigned long *used_gsi_bitmap;
114 unsigned int gsi_count;
115 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
116 #endif
117 KVMMemoryListener memory_listener;
118 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
119
120 /* memory encryption */
121 void *memcrypt_handle;
122 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len);
123
124 /* For "info mtree -f" to tell if an MR is registered in KVM */
125 int nr_as;
126 struct KVMAs {
127 KVMMemoryListener *ml;
128 AddressSpace *as;
129 } *as;
130 };
131
132 KVMState *kvm_state;
133 bool kvm_kernel_irqchip;
134 bool kvm_split_irqchip;
135 bool kvm_async_interrupts_allowed;
136 bool kvm_halt_in_kernel_allowed;
137 bool kvm_eventfds_allowed;
138 bool kvm_irqfds_allowed;
139 bool kvm_resamplefds_allowed;
140 bool kvm_msi_via_irqfd_allowed;
141 bool kvm_gsi_routing_allowed;
142 bool kvm_gsi_direct_mapping;
143 bool kvm_allowed;
144 bool kvm_readonly_mem_allowed;
145 bool kvm_vm_attributes_allowed;
146 bool kvm_direct_msi_allowed;
147 bool kvm_ioeventfd_any_length_allowed;
148 bool kvm_msi_use_devid;
149 static bool kvm_immediate_exit;
150 static hwaddr kvm_max_slot_size = ~0;
151
152 static const KVMCapabilityInfo kvm_required_capabilites[] = {
153 KVM_CAP_INFO(USER_MEMORY),
154 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
155 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
156 KVM_CAP_LAST_INFO
157 };
158
159 static NotifierList kvm_irqchip_change_notifiers =
160 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
161
162 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock)
163 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock)
164
165 int kvm_get_max_memslots(void)
166 {
167 KVMState *s = KVM_STATE(current_machine->accelerator);
168
169 return s->nr_slots;
170 }
171
172 bool kvm_memcrypt_enabled(void)
173 {
174 if (kvm_state && kvm_state->memcrypt_handle) {
175 return true;
176 }
177
178 return false;
179 }
180
181 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len)
182 {
183 if (kvm_state->memcrypt_handle &&
184 kvm_state->memcrypt_encrypt_data) {
185 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle,
186 ptr, len);
187 }
188
189 return 1;
190 }
191
192 /* Called with KVMMemoryListener.slots_lock held */
193 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
194 {
195 KVMState *s = kvm_state;
196 int i;
197
198 for (i = 0; i < s->nr_slots; i++) {
199 if (kml->slots[i].memory_size == 0) {
200 return &kml->slots[i];
201 }
202 }
203
204 return NULL;
205 }
206
207 bool kvm_has_free_slot(MachineState *ms)
208 {
209 KVMState *s = KVM_STATE(ms->accelerator);
210 bool result;
211 KVMMemoryListener *kml = &s->memory_listener;
212
213 kvm_slots_lock(kml);
214 result = !!kvm_get_free_slot(kml);
215 kvm_slots_unlock(kml);
216
217 return result;
218 }
219
220 /* Called with KVMMemoryListener.slots_lock held */
221 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
222 {
223 KVMSlot *slot = kvm_get_free_slot(kml);
224
225 if (slot) {
226 return slot;
227 }
228
229 fprintf(stderr, "%s: no free slot available\n", __func__);
230 abort();
231 }
232
233 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
234 hwaddr start_addr,
235 hwaddr size)
236 {
237 KVMState *s = kvm_state;
238 int i;
239
240 for (i = 0; i < s->nr_slots; i++) {
241 KVMSlot *mem = &kml->slots[i];
242
243 if (start_addr == mem->start_addr && size == mem->memory_size) {
244 return mem;
245 }
246 }
247
248 return NULL;
249 }
250
251 /*
252 * Calculate and align the start address and the size of the section.
253 * Return the size. If the size is 0, the aligned section is empty.
254 */
255 static hwaddr kvm_align_section(MemoryRegionSection *section,
256 hwaddr *start)
257 {
258 hwaddr size = int128_get64(section->size);
259 hwaddr delta, aligned;
260
261 /* kvm works in page size chunks, but the function may be called
262 with sub-page size and unaligned start address. Pad the start
263 address to next and truncate size to previous page boundary. */
264 aligned = ROUND_UP(section->offset_within_address_space,
265 qemu_real_host_page_size);
266 delta = aligned - section->offset_within_address_space;
267 *start = aligned;
268 if (delta > size) {
269 return 0;
270 }
271
272 return (size - delta) & qemu_real_host_page_mask;
273 }
274
275 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
276 hwaddr *phys_addr)
277 {
278 KVMMemoryListener *kml = &s->memory_listener;
279 int i, ret = 0;
280
281 kvm_slots_lock(kml);
282 for (i = 0; i < s->nr_slots; i++) {
283 KVMSlot *mem = &kml->slots[i];
284
285 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
286 *phys_addr = mem->start_addr + (ram - mem->ram);
287 ret = 1;
288 break;
289 }
290 }
291 kvm_slots_unlock(kml);
292
293 return ret;
294 }
295
296 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
297 {
298 KVMState *s = kvm_state;
299 struct kvm_userspace_memory_region mem;
300 int ret;
301
302 mem.slot = slot->slot | (kml->as_id << 16);
303 mem.guest_phys_addr = slot->start_addr;
304 mem.userspace_addr = (unsigned long)slot->ram;
305 mem.flags = slot->flags;
306
307 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
308 /* Set the slot size to 0 before setting the slot to the desired
309 * value. This is needed based on KVM commit 75d61fbc. */
310 mem.memory_size = 0;
311 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
312 }
313 mem.memory_size = slot->memory_size;
314 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
315 slot->old_flags = mem.flags;
316 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
317 mem.memory_size, mem.userspace_addr, ret);
318 return ret;
319 }
320
321 int kvm_destroy_vcpu(CPUState *cpu)
322 {
323 KVMState *s = kvm_state;
324 long mmap_size;
325 struct KVMParkedVcpu *vcpu = NULL;
326 int ret = 0;
327
328 DPRINTF("kvm_destroy_vcpu\n");
329
330 ret = kvm_arch_destroy_vcpu(cpu);
331 if (ret < 0) {
332 goto err;
333 }
334
335 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
336 if (mmap_size < 0) {
337 ret = mmap_size;
338 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
339 goto err;
340 }
341
342 ret = munmap(cpu->kvm_run, mmap_size);
343 if (ret < 0) {
344 goto err;
345 }
346
347 vcpu = g_malloc0(sizeof(*vcpu));
348 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
349 vcpu->kvm_fd = cpu->kvm_fd;
350 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
351 err:
352 return ret;
353 }
354
355 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
356 {
357 struct KVMParkedVcpu *cpu;
358
359 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
360 if (cpu->vcpu_id == vcpu_id) {
361 int kvm_fd;
362
363 QLIST_REMOVE(cpu, node);
364 kvm_fd = cpu->kvm_fd;
365 g_free(cpu);
366 return kvm_fd;
367 }
368 }
369
370 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
371 }
372
373 int kvm_init_vcpu(CPUState *cpu)
374 {
375 KVMState *s = kvm_state;
376 long mmap_size;
377 int ret;
378
379 DPRINTF("kvm_init_vcpu\n");
380
381 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
382 if (ret < 0) {
383 DPRINTF("kvm_create_vcpu failed\n");
384 goto err;
385 }
386
387 cpu->kvm_fd = ret;
388 cpu->kvm_state = s;
389 cpu->vcpu_dirty = true;
390
391 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
392 if (mmap_size < 0) {
393 ret = mmap_size;
394 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
395 goto err;
396 }
397
398 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
399 cpu->kvm_fd, 0);
400 if (cpu->kvm_run == MAP_FAILED) {
401 ret = -errno;
402 DPRINTF("mmap'ing vcpu state failed\n");
403 goto err;
404 }
405
406 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
407 s->coalesced_mmio_ring =
408 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
409 }
410
411 ret = kvm_arch_init_vcpu(cpu);
412 err:
413 return ret;
414 }
415
416 /*
417 * dirty pages logging control
418 */
419
420 static int kvm_mem_flags(MemoryRegion *mr)
421 {
422 bool readonly = mr->readonly || memory_region_is_romd(mr);
423 int flags = 0;
424
425 if (memory_region_get_dirty_log_mask(mr) != 0) {
426 flags |= KVM_MEM_LOG_DIRTY_PAGES;
427 }
428 if (readonly && kvm_readonly_mem_allowed) {
429 flags |= KVM_MEM_READONLY;
430 }
431 return flags;
432 }
433
434 /* Called with KVMMemoryListener.slots_lock held */
435 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
436 MemoryRegion *mr)
437 {
438 mem->flags = kvm_mem_flags(mr);
439
440 /* If nothing changed effectively, no need to issue ioctl */
441 if (mem->flags == mem->old_flags) {
442 return 0;
443 }
444
445 return kvm_set_user_memory_region(kml, mem, false);
446 }
447
448 static int kvm_section_update_flags(KVMMemoryListener *kml,
449 MemoryRegionSection *section)
450 {
451 hwaddr start_addr, size, slot_size;
452 KVMSlot *mem;
453 int ret = 0;
454
455 size = kvm_align_section(section, &start_addr);
456 if (!size) {
457 return 0;
458 }
459
460 kvm_slots_lock(kml);
461
462 while (size && !ret) {
463 slot_size = MIN(kvm_max_slot_size, size);
464 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
465 if (!mem) {
466 /* We don't have a slot if we want to trap every access. */
467 goto out;
468 }
469
470 ret = kvm_slot_update_flags(kml, mem, section->mr);
471 start_addr += slot_size;
472 size -= slot_size;
473 }
474
475 out:
476 kvm_slots_unlock(kml);
477 return ret;
478 }
479
480 static void kvm_log_start(MemoryListener *listener,
481 MemoryRegionSection *section,
482 int old, int new)
483 {
484 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
485 int r;
486
487 if (old != 0) {
488 return;
489 }
490
491 r = kvm_section_update_flags(kml, section);
492 if (r < 0) {
493 abort();
494 }
495 }
496
497 static void kvm_log_stop(MemoryListener *listener,
498 MemoryRegionSection *section,
499 int old, int new)
500 {
501 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
502 int r;
503
504 if (new != 0) {
505 return;
506 }
507
508 r = kvm_section_update_flags(kml, section);
509 if (r < 0) {
510 abort();
511 }
512 }
513
514 /* get kvm's dirty pages bitmap and update qemu's */
515 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
516 unsigned long *bitmap)
517 {
518 ram_addr_t start = section->offset_within_region +
519 memory_region_get_ram_addr(section->mr);
520 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size;
521
522 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
523 return 0;
524 }
525
526 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
527
528 /* Allocate the dirty bitmap for a slot */
529 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem)
530 {
531 /*
532 * XXX bad kernel interface alert
533 * For dirty bitmap, kernel allocates array of size aligned to
534 * bits-per-long. But for case when the kernel is 64bits and
535 * the userspace is 32bits, userspace can't align to the same
536 * bits-per-long, since sizeof(long) is different between kernel
537 * and user space. This way, userspace will provide buffer which
538 * may be 4 bytes less than the kernel will use, resulting in
539 * userspace memory corruption (which is not detectable by valgrind
540 * too, in most cases).
541 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
542 * a hope that sizeof(long) won't become >8 any time soon.
543 */
544 hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
545 /*HOST_LONG_BITS*/ 64) / 8;
546 mem->dirty_bmap = g_malloc0(bitmap_size);
547 }
548
549 /**
550 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
551 *
552 * This function will first try to fetch dirty bitmap from the kernel,
553 * and then updates qemu's dirty bitmap.
554 *
555 * NOTE: caller must be with kml->slots_lock held.
556 *
557 * @kml: the KVM memory listener object
558 * @section: the memory section to sync the dirty bitmap with
559 */
560 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
561 MemoryRegionSection *section)
562 {
563 KVMState *s = kvm_state;
564 struct kvm_dirty_log d = {};
565 KVMSlot *mem;
566 hwaddr start_addr, size;
567 hwaddr slot_size, slot_offset = 0;
568 int ret = 0;
569
570 size = kvm_align_section(section, &start_addr);
571 while (size) {
572 MemoryRegionSection subsection = *section;
573
574 slot_size = MIN(kvm_max_slot_size, size);
575 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
576 if (!mem) {
577 /* We don't have a slot if we want to trap every access. */
578 goto out;
579 }
580
581 if (!mem->dirty_bmap) {
582 /* Allocate on the first log_sync, once and for all */
583 kvm_memslot_init_dirty_bitmap(mem);
584 }
585
586 d.dirty_bitmap = mem->dirty_bmap;
587 d.slot = mem->slot | (kml->as_id << 16);
588 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
589 DPRINTF("ioctl failed %d\n", errno);
590 ret = -1;
591 goto out;
592 }
593
594 subsection.offset_within_region += slot_offset;
595 subsection.size = int128_make64(slot_size);
596 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap);
597
598 slot_offset += slot_size;
599 start_addr += slot_size;
600 size -= slot_size;
601 }
602 out:
603 return ret;
604 }
605
606 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
607 #define KVM_CLEAR_LOG_SHIFT 6
608 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
609 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
610
611 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
612 uint64_t size)
613 {
614 KVMState *s = kvm_state;
615 uint64_t end, bmap_start, start_delta, bmap_npages;
616 struct kvm_clear_dirty_log d;
617 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
618 int ret;
619
620 /*
621 * We need to extend either the start or the size or both to
622 * satisfy the KVM interface requirement. Firstly, do the start
623 * page alignment on 64 host pages
624 */
625 bmap_start = start & KVM_CLEAR_LOG_MASK;
626 start_delta = start - bmap_start;
627 bmap_start /= psize;
628
629 /*
630 * The kernel interface has restriction on the size too, that either:
631 *
632 * (1) the size is 64 host pages aligned (just like the start), or
633 * (2) the size fills up until the end of the KVM memslot.
634 */
635 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
636 << KVM_CLEAR_LOG_SHIFT;
637 end = mem->memory_size / psize;
638 if (bmap_npages > end - bmap_start) {
639 bmap_npages = end - bmap_start;
640 }
641 start_delta /= psize;
642
643 /*
644 * Prepare the bitmap to clear dirty bits. Here we must guarantee
645 * that we won't clear any unknown dirty bits otherwise we might
646 * accidentally clear some set bits which are not yet synced from
647 * the kernel into QEMU's bitmap, then we'll lose track of the
648 * guest modifications upon those pages (which can directly lead
649 * to guest data loss or panic after migration).
650 *
651 * Layout of the KVMSlot.dirty_bmap:
652 *
653 * |<-------- bmap_npages -----------..>|
654 * [1]
655 * start_delta size
656 * |----------------|-------------|------------------|------------|
657 * ^ ^ ^ ^
658 * | | | |
659 * start bmap_start (start) end
660 * of memslot of memslot
661 *
662 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
663 */
664
665 assert(bmap_start % BITS_PER_LONG == 0);
666 /* We should never do log_clear before log_sync */
667 assert(mem->dirty_bmap);
668 if (start_delta) {
669 /* Slow path - we need to manipulate a temp bitmap */
670 bmap_clear = bitmap_new(bmap_npages);
671 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
672 bmap_start, start_delta + size / psize);
673 /*
674 * We need to fill the holes at start because that was not
675 * specified by the caller and we extended the bitmap only for
676 * 64 pages alignment
677 */
678 bitmap_clear(bmap_clear, 0, start_delta);
679 d.dirty_bitmap = bmap_clear;
680 } else {
681 /* Fast path - start address aligns well with BITS_PER_LONG */
682 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
683 }
684
685 d.first_page = bmap_start;
686 /* It should never overflow. If it happens, say something */
687 assert(bmap_npages <= UINT32_MAX);
688 d.num_pages = bmap_npages;
689 d.slot = mem->slot | (as_id << 16);
690
691 if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) {
692 ret = -errno;
693 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
694 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
695 __func__, d.slot, (uint64_t)d.first_page,
696 (uint32_t)d.num_pages, ret);
697 } else {
698 ret = 0;
699 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
700 }
701
702 /*
703 * After we have updated the remote dirty bitmap, we update the
704 * cached bitmap as well for the memslot, then if another user
705 * clears the same region we know we shouldn't clear it again on
706 * the remote otherwise it's data loss as well.
707 */
708 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
709 size / psize);
710 /* This handles the NULL case well */
711 g_free(bmap_clear);
712 return ret;
713 }
714
715
716 /**
717 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
718 *
719 * NOTE: this will be a no-op if we haven't enabled manual dirty log
720 * protection in the host kernel because in that case this operation
721 * will be done within log_sync().
722 *
723 * @kml: the kvm memory listener
724 * @section: the memory range to clear dirty bitmap
725 */
726 static int kvm_physical_log_clear(KVMMemoryListener *kml,
727 MemoryRegionSection *section)
728 {
729 KVMState *s = kvm_state;
730 uint64_t start, size, offset, count;
731 KVMSlot *mem;
732 int ret = 0, i;
733
734 if (!s->manual_dirty_log_protect) {
735 /* No need to do explicit clear */
736 return ret;
737 }
738
739 start = section->offset_within_address_space;
740 size = int128_get64(section->size);
741
742 if (!size) {
743 /* Nothing more we can do... */
744 return ret;
745 }
746
747 kvm_slots_lock(kml);
748
749 for (i = 0; i < s->nr_slots; i++) {
750 mem = &kml->slots[i];
751 /* Discard slots that are empty or do not overlap the section */
752 if (!mem->memory_size ||
753 mem->start_addr > start + size - 1 ||
754 start > mem->start_addr + mem->memory_size - 1) {
755 continue;
756 }
757
758 if (start >= mem->start_addr) {
759 /* The slot starts before section or is aligned to it. */
760 offset = start - mem->start_addr;
761 count = MIN(mem->memory_size - offset, size);
762 } else {
763 /* The slot starts after section. */
764 offset = 0;
765 count = MIN(mem->memory_size, size - (mem->start_addr - start));
766 }
767 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
768 if (ret < 0) {
769 break;
770 }
771 }
772
773 kvm_slots_unlock(kml);
774
775 return ret;
776 }
777
778 static void kvm_coalesce_mmio_region(MemoryListener *listener,
779 MemoryRegionSection *secion,
780 hwaddr start, hwaddr size)
781 {
782 KVMState *s = kvm_state;
783
784 if (s->coalesced_mmio) {
785 struct kvm_coalesced_mmio_zone zone;
786
787 zone.addr = start;
788 zone.size = size;
789 zone.pad = 0;
790
791 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
792 }
793 }
794
795 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
796 MemoryRegionSection *secion,
797 hwaddr start, hwaddr size)
798 {
799 KVMState *s = kvm_state;
800
801 if (s->coalesced_mmio) {
802 struct kvm_coalesced_mmio_zone zone;
803
804 zone.addr = start;
805 zone.size = size;
806 zone.pad = 0;
807
808 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
809 }
810 }
811
812 static void kvm_coalesce_pio_add(MemoryListener *listener,
813 MemoryRegionSection *section,
814 hwaddr start, hwaddr size)
815 {
816 KVMState *s = kvm_state;
817
818 if (s->coalesced_pio) {
819 struct kvm_coalesced_mmio_zone zone;
820
821 zone.addr = start;
822 zone.size = size;
823 zone.pio = 1;
824
825 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
826 }
827 }
828
829 static void kvm_coalesce_pio_del(MemoryListener *listener,
830 MemoryRegionSection *section,
831 hwaddr start, hwaddr size)
832 {
833 KVMState *s = kvm_state;
834
835 if (s->coalesced_pio) {
836 struct kvm_coalesced_mmio_zone zone;
837
838 zone.addr = start;
839 zone.size = size;
840 zone.pio = 1;
841
842 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
843 }
844 }
845
846 static MemoryListener kvm_coalesced_pio_listener = {
847 .coalesced_io_add = kvm_coalesce_pio_add,
848 .coalesced_io_del = kvm_coalesce_pio_del,
849 };
850
851 int kvm_check_extension(KVMState *s, unsigned int extension)
852 {
853 int ret;
854
855 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
856 if (ret < 0) {
857 ret = 0;
858 }
859
860 return ret;
861 }
862
863 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
864 {
865 int ret;
866
867 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
868 if (ret < 0) {
869 /* VM wide version not implemented, use global one instead */
870 ret = kvm_check_extension(s, extension);
871 }
872
873 return ret;
874 }
875
876 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
877 {
878 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
879 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
880 * endianness, but the memory core hands them in target endianness.
881 * For example, PPC is always treated as big-endian even if running
882 * on KVM and on PPC64LE. Correct here.
883 */
884 switch (size) {
885 case 2:
886 val = bswap16(val);
887 break;
888 case 4:
889 val = bswap32(val);
890 break;
891 }
892 #endif
893 return val;
894 }
895
896 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
897 bool assign, uint32_t size, bool datamatch)
898 {
899 int ret;
900 struct kvm_ioeventfd iofd = {
901 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
902 .addr = addr,
903 .len = size,
904 .flags = 0,
905 .fd = fd,
906 };
907
908 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
909 datamatch);
910 if (!kvm_enabled()) {
911 return -ENOSYS;
912 }
913
914 if (datamatch) {
915 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
916 }
917 if (!assign) {
918 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
919 }
920
921 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
922
923 if (ret < 0) {
924 return -errno;
925 }
926
927 return 0;
928 }
929
930 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
931 bool assign, uint32_t size, bool datamatch)
932 {
933 struct kvm_ioeventfd kick = {
934 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
935 .addr = addr,
936 .flags = KVM_IOEVENTFD_FLAG_PIO,
937 .len = size,
938 .fd = fd,
939 };
940 int r;
941 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
942 if (!kvm_enabled()) {
943 return -ENOSYS;
944 }
945 if (datamatch) {
946 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
947 }
948 if (!assign) {
949 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
950 }
951 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
952 if (r < 0) {
953 return r;
954 }
955 return 0;
956 }
957
958
959 static int kvm_check_many_ioeventfds(void)
960 {
961 /* Userspace can use ioeventfd for io notification. This requires a host
962 * that supports eventfd(2) and an I/O thread; since eventfd does not
963 * support SIGIO it cannot interrupt the vcpu.
964 *
965 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
966 * can avoid creating too many ioeventfds.
967 */
968 #if defined(CONFIG_EVENTFD)
969 int ioeventfds[7];
970 int i, ret = 0;
971 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
972 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
973 if (ioeventfds[i] < 0) {
974 break;
975 }
976 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
977 if (ret < 0) {
978 close(ioeventfds[i]);
979 break;
980 }
981 }
982
983 /* Decide whether many devices are supported or not */
984 ret = i == ARRAY_SIZE(ioeventfds);
985
986 while (i-- > 0) {
987 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
988 close(ioeventfds[i]);
989 }
990 return ret;
991 #else
992 return 0;
993 #endif
994 }
995
996 static const KVMCapabilityInfo *
997 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
998 {
999 while (list->name) {
1000 if (!kvm_check_extension(s, list->value)) {
1001 return list;
1002 }
1003 list++;
1004 }
1005 return NULL;
1006 }
1007
1008 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1009 {
1010 g_assert(
1011 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
1012 );
1013 kvm_max_slot_size = max_slot_size;
1014 }
1015
1016 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1017 MemoryRegionSection *section, bool add)
1018 {
1019 KVMSlot *mem;
1020 int err;
1021 MemoryRegion *mr = section->mr;
1022 bool writeable = !mr->readonly && !mr->rom_device;
1023 hwaddr start_addr, size, slot_size;
1024 void *ram;
1025
1026 if (!memory_region_is_ram(mr)) {
1027 if (writeable || !kvm_readonly_mem_allowed) {
1028 return;
1029 } else if (!mr->romd_mode) {
1030 /* If the memory device is not in romd_mode, then we actually want
1031 * to remove the kvm memory slot so all accesses will trap. */
1032 add = false;
1033 }
1034 }
1035
1036 size = kvm_align_section(section, &start_addr);
1037 if (!size) {
1038 return;
1039 }
1040
1041 /* use aligned delta to align the ram address */
1042 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
1043 (start_addr - section->offset_within_address_space);
1044
1045 kvm_slots_lock(kml);
1046
1047 if (!add) {
1048 do {
1049 slot_size = MIN(kvm_max_slot_size, size);
1050 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1051 if (!mem) {
1052 goto out;
1053 }
1054 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1055 kvm_physical_sync_dirty_bitmap(kml, section);
1056 }
1057
1058 /* unregister the slot */
1059 g_free(mem->dirty_bmap);
1060 mem->dirty_bmap = NULL;
1061 mem->memory_size = 0;
1062 mem->flags = 0;
1063 err = kvm_set_user_memory_region(kml, mem, false);
1064 if (err) {
1065 fprintf(stderr, "%s: error unregistering slot: %s\n",
1066 __func__, strerror(-err));
1067 abort();
1068 }
1069 start_addr += slot_size;
1070 size -= slot_size;
1071 } while (size);
1072 goto out;
1073 }
1074
1075 /* register the new slot */
1076 do {
1077 slot_size = MIN(kvm_max_slot_size, size);
1078 mem = kvm_alloc_slot(kml);
1079 mem->memory_size = slot_size;
1080 mem->start_addr = start_addr;
1081 mem->ram = ram;
1082 mem->flags = kvm_mem_flags(mr);
1083
1084 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1085 /*
1086 * Reallocate the bmap; it means it doesn't disappear in
1087 * middle of a migrate.
1088 */
1089 kvm_memslot_init_dirty_bitmap(mem);
1090 }
1091 err = kvm_set_user_memory_region(kml, mem, true);
1092 if (err) {
1093 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1094 strerror(-err));
1095 abort();
1096 }
1097 start_addr += slot_size;
1098 ram += slot_size;
1099 size -= slot_size;
1100 } while (size);
1101
1102 out:
1103 kvm_slots_unlock(kml);
1104 }
1105
1106 static void kvm_region_add(MemoryListener *listener,
1107 MemoryRegionSection *section)
1108 {
1109 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1110
1111 memory_region_ref(section->mr);
1112 kvm_set_phys_mem(kml, section, true);
1113 }
1114
1115 static void kvm_region_del(MemoryListener *listener,
1116 MemoryRegionSection *section)
1117 {
1118 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1119
1120 kvm_set_phys_mem(kml, section, false);
1121 memory_region_unref(section->mr);
1122 }
1123
1124 static void kvm_log_sync(MemoryListener *listener,
1125 MemoryRegionSection *section)
1126 {
1127 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1128 int r;
1129
1130 kvm_slots_lock(kml);
1131 r = kvm_physical_sync_dirty_bitmap(kml, section);
1132 kvm_slots_unlock(kml);
1133 if (r < 0) {
1134 abort();
1135 }
1136 }
1137
1138 static void kvm_log_clear(MemoryListener *listener,
1139 MemoryRegionSection *section)
1140 {
1141 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1142 int r;
1143
1144 r = kvm_physical_log_clear(kml, section);
1145 if (r < 0) {
1146 error_report_once("%s: kvm log clear failed: mr=%s "
1147 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1148 section->mr->name, section->offset_within_region,
1149 int128_get64(section->size));
1150 abort();
1151 }
1152 }
1153
1154 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1155 MemoryRegionSection *section,
1156 bool match_data, uint64_t data,
1157 EventNotifier *e)
1158 {
1159 int fd = event_notifier_get_fd(e);
1160 int r;
1161
1162 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1163 data, true, int128_get64(section->size),
1164 match_data);
1165 if (r < 0) {
1166 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1167 __func__, strerror(-r), -r);
1168 abort();
1169 }
1170 }
1171
1172 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1173 MemoryRegionSection *section,
1174 bool match_data, uint64_t data,
1175 EventNotifier *e)
1176 {
1177 int fd = event_notifier_get_fd(e);
1178 int r;
1179
1180 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1181 data, false, int128_get64(section->size),
1182 match_data);
1183 if (r < 0) {
1184 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1185 __func__, strerror(-r), -r);
1186 abort();
1187 }
1188 }
1189
1190 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1191 MemoryRegionSection *section,
1192 bool match_data, uint64_t data,
1193 EventNotifier *e)
1194 {
1195 int fd = event_notifier_get_fd(e);
1196 int r;
1197
1198 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1199 data, true, int128_get64(section->size),
1200 match_data);
1201 if (r < 0) {
1202 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1203 __func__, strerror(-r), -r);
1204 abort();
1205 }
1206 }
1207
1208 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1209 MemoryRegionSection *section,
1210 bool match_data, uint64_t data,
1211 EventNotifier *e)
1212
1213 {
1214 int fd = event_notifier_get_fd(e);
1215 int r;
1216
1217 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1218 data, false, int128_get64(section->size),
1219 match_data);
1220 if (r < 0) {
1221 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1222 __func__, strerror(-r), -r);
1223 abort();
1224 }
1225 }
1226
1227 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1228 AddressSpace *as, int as_id)
1229 {
1230 int i;
1231
1232 qemu_mutex_init(&kml->slots_lock);
1233 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1234 kml->as_id = as_id;
1235
1236 for (i = 0; i < s->nr_slots; i++) {
1237 kml->slots[i].slot = i;
1238 }
1239
1240 kml->listener.region_add = kvm_region_add;
1241 kml->listener.region_del = kvm_region_del;
1242 kml->listener.log_start = kvm_log_start;
1243 kml->listener.log_stop = kvm_log_stop;
1244 kml->listener.log_sync = kvm_log_sync;
1245 kml->listener.log_clear = kvm_log_clear;
1246 kml->listener.priority = 10;
1247
1248 memory_listener_register(&kml->listener, as);
1249
1250 for (i = 0; i < s->nr_as; ++i) {
1251 if (!s->as[i].as) {
1252 s->as[i].as = as;
1253 s->as[i].ml = kml;
1254 break;
1255 }
1256 }
1257 }
1258
1259 static MemoryListener kvm_io_listener = {
1260 .eventfd_add = kvm_io_ioeventfd_add,
1261 .eventfd_del = kvm_io_ioeventfd_del,
1262 .priority = 10,
1263 };
1264
1265 int kvm_set_irq(KVMState *s, int irq, int level)
1266 {
1267 struct kvm_irq_level event;
1268 int ret;
1269
1270 assert(kvm_async_interrupts_enabled());
1271
1272 event.level = level;
1273 event.irq = irq;
1274 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1275 if (ret < 0) {
1276 perror("kvm_set_irq");
1277 abort();
1278 }
1279
1280 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1281 }
1282
1283 #ifdef KVM_CAP_IRQ_ROUTING
1284 typedef struct KVMMSIRoute {
1285 struct kvm_irq_routing_entry kroute;
1286 QTAILQ_ENTRY(KVMMSIRoute) entry;
1287 } KVMMSIRoute;
1288
1289 static void set_gsi(KVMState *s, unsigned int gsi)
1290 {
1291 set_bit(gsi, s->used_gsi_bitmap);
1292 }
1293
1294 static void clear_gsi(KVMState *s, unsigned int gsi)
1295 {
1296 clear_bit(gsi, s->used_gsi_bitmap);
1297 }
1298
1299 void kvm_init_irq_routing(KVMState *s)
1300 {
1301 int gsi_count, i;
1302
1303 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1304 if (gsi_count > 0) {
1305 /* Round up so we can search ints using ffs */
1306 s->used_gsi_bitmap = bitmap_new(gsi_count);
1307 s->gsi_count = gsi_count;
1308 }
1309
1310 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1311 s->nr_allocated_irq_routes = 0;
1312
1313 if (!kvm_direct_msi_allowed) {
1314 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1315 QTAILQ_INIT(&s->msi_hashtab[i]);
1316 }
1317 }
1318
1319 kvm_arch_init_irq_routing(s);
1320 }
1321
1322 void kvm_irqchip_commit_routes(KVMState *s)
1323 {
1324 int ret;
1325
1326 if (kvm_gsi_direct_mapping()) {
1327 return;
1328 }
1329
1330 if (!kvm_gsi_routing_enabled()) {
1331 return;
1332 }
1333
1334 s->irq_routes->flags = 0;
1335 trace_kvm_irqchip_commit_routes();
1336 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1337 assert(ret == 0);
1338 }
1339
1340 static void kvm_add_routing_entry(KVMState *s,
1341 struct kvm_irq_routing_entry *entry)
1342 {
1343 struct kvm_irq_routing_entry *new;
1344 int n, size;
1345
1346 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1347 n = s->nr_allocated_irq_routes * 2;
1348 if (n < 64) {
1349 n = 64;
1350 }
1351 size = sizeof(struct kvm_irq_routing);
1352 size += n * sizeof(*new);
1353 s->irq_routes = g_realloc(s->irq_routes, size);
1354 s->nr_allocated_irq_routes = n;
1355 }
1356 n = s->irq_routes->nr++;
1357 new = &s->irq_routes->entries[n];
1358
1359 *new = *entry;
1360
1361 set_gsi(s, entry->gsi);
1362 }
1363
1364 static int kvm_update_routing_entry(KVMState *s,
1365 struct kvm_irq_routing_entry *new_entry)
1366 {
1367 struct kvm_irq_routing_entry *entry;
1368 int n;
1369
1370 for (n = 0; n < s->irq_routes->nr; n++) {
1371 entry = &s->irq_routes->entries[n];
1372 if (entry->gsi != new_entry->gsi) {
1373 continue;
1374 }
1375
1376 if(!memcmp(entry, new_entry, sizeof *entry)) {
1377 return 0;
1378 }
1379
1380 *entry = *new_entry;
1381
1382 return 0;
1383 }
1384
1385 return -ESRCH;
1386 }
1387
1388 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1389 {
1390 struct kvm_irq_routing_entry e = {};
1391
1392 assert(pin < s->gsi_count);
1393
1394 e.gsi = irq;
1395 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1396 e.flags = 0;
1397 e.u.irqchip.irqchip = irqchip;
1398 e.u.irqchip.pin = pin;
1399 kvm_add_routing_entry(s, &e);
1400 }
1401
1402 void kvm_irqchip_release_virq(KVMState *s, int virq)
1403 {
1404 struct kvm_irq_routing_entry *e;
1405 int i;
1406
1407 if (kvm_gsi_direct_mapping()) {
1408 return;
1409 }
1410
1411 for (i = 0; i < s->irq_routes->nr; i++) {
1412 e = &s->irq_routes->entries[i];
1413 if (e->gsi == virq) {
1414 s->irq_routes->nr--;
1415 *e = s->irq_routes->entries[s->irq_routes->nr];
1416 }
1417 }
1418 clear_gsi(s, virq);
1419 kvm_arch_release_virq_post(virq);
1420 trace_kvm_irqchip_release_virq(virq);
1421 }
1422
1423 void kvm_irqchip_add_change_notifier(Notifier *n)
1424 {
1425 notifier_list_add(&kvm_irqchip_change_notifiers, n);
1426 }
1427
1428 void kvm_irqchip_remove_change_notifier(Notifier *n)
1429 {
1430 notifier_remove(n);
1431 }
1432
1433 void kvm_irqchip_change_notify(void)
1434 {
1435 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1436 }
1437
1438 static unsigned int kvm_hash_msi(uint32_t data)
1439 {
1440 /* This is optimized for IA32 MSI layout. However, no other arch shall
1441 * repeat the mistake of not providing a direct MSI injection API. */
1442 return data & 0xff;
1443 }
1444
1445 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1446 {
1447 KVMMSIRoute *route, *next;
1448 unsigned int hash;
1449
1450 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1451 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1452 kvm_irqchip_release_virq(s, route->kroute.gsi);
1453 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1454 g_free(route);
1455 }
1456 }
1457 }
1458
1459 static int kvm_irqchip_get_virq(KVMState *s)
1460 {
1461 int next_virq;
1462
1463 /*
1464 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1465 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1466 * number can succeed even though a new route entry cannot be added.
1467 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1468 */
1469 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1470 kvm_flush_dynamic_msi_routes(s);
1471 }
1472
1473 /* Return the lowest unused GSI in the bitmap */
1474 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1475 if (next_virq >= s->gsi_count) {
1476 return -ENOSPC;
1477 } else {
1478 return next_virq;
1479 }
1480 }
1481
1482 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1483 {
1484 unsigned int hash = kvm_hash_msi(msg.data);
1485 KVMMSIRoute *route;
1486
1487 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1488 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1489 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1490 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1491 return route;
1492 }
1493 }
1494 return NULL;
1495 }
1496
1497 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1498 {
1499 struct kvm_msi msi;
1500 KVMMSIRoute *route;
1501
1502 if (kvm_direct_msi_allowed) {
1503 msi.address_lo = (uint32_t)msg.address;
1504 msi.address_hi = msg.address >> 32;
1505 msi.data = le32_to_cpu(msg.data);
1506 msi.flags = 0;
1507 memset(msi.pad, 0, sizeof(msi.pad));
1508
1509 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1510 }
1511
1512 route = kvm_lookup_msi_route(s, msg);
1513 if (!route) {
1514 int virq;
1515
1516 virq = kvm_irqchip_get_virq(s);
1517 if (virq < 0) {
1518 return virq;
1519 }
1520
1521 route = g_malloc0(sizeof(KVMMSIRoute));
1522 route->kroute.gsi = virq;
1523 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1524 route->kroute.flags = 0;
1525 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1526 route->kroute.u.msi.address_hi = msg.address >> 32;
1527 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1528
1529 kvm_add_routing_entry(s, &route->kroute);
1530 kvm_irqchip_commit_routes(s);
1531
1532 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1533 entry);
1534 }
1535
1536 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1537
1538 return kvm_set_irq(s, route->kroute.gsi, 1);
1539 }
1540
1541 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1542 {
1543 struct kvm_irq_routing_entry kroute = {};
1544 int virq;
1545 MSIMessage msg = {0, 0};
1546
1547 if (pci_available && dev) {
1548 msg = pci_get_msi_message(dev, vector);
1549 }
1550
1551 if (kvm_gsi_direct_mapping()) {
1552 return kvm_arch_msi_data_to_gsi(msg.data);
1553 }
1554
1555 if (!kvm_gsi_routing_enabled()) {
1556 return -ENOSYS;
1557 }
1558
1559 virq = kvm_irqchip_get_virq(s);
1560 if (virq < 0) {
1561 return virq;
1562 }
1563
1564 kroute.gsi = virq;
1565 kroute.type = KVM_IRQ_ROUTING_MSI;
1566 kroute.flags = 0;
1567 kroute.u.msi.address_lo = (uint32_t)msg.address;
1568 kroute.u.msi.address_hi = msg.address >> 32;
1569 kroute.u.msi.data = le32_to_cpu(msg.data);
1570 if (pci_available && kvm_msi_devid_required()) {
1571 kroute.flags = KVM_MSI_VALID_DEVID;
1572 kroute.u.msi.devid = pci_requester_id(dev);
1573 }
1574 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1575 kvm_irqchip_release_virq(s, virq);
1576 return -EINVAL;
1577 }
1578
1579 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1580 vector, virq);
1581
1582 kvm_add_routing_entry(s, &kroute);
1583 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1584 kvm_irqchip_commit_routes(s);
1585
1586 return virq;
1587 }
1588
1589 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1590 PCIDevice *dev)
1591 {
1592 struct kvm_irq_routing_entry kroute = {};
1593
1594 if (kvm_gsi_direct_mapping()) {
1595 return 0;
1596 }
1597
1598 if (!kvm_irqchip_in_kernel()) {
1599 return -ENOSYS;
1600 }
1601
1602 kroute.gsi = virq;
1603 kroute.type = KVM_IRQ_ROUTING_MSI;
1604 kroute.flags = 0;
1605 kroute.u.msi.address_lo = (uint32_t)msg.address;
1606 kroute.u.msi.address_hi = msg.address >> 32;
1607 kroute.u.msi.data = le32_to_cpu(msg.data);
1608 if (pci_available && kvm_msi_devid_required()) {
1609 kroute.flags = KVM_MSI_VALID_DEVID;
1610 kroute.u.msi.devid = pci_requester_id(dev);
1611 }
1612 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1613 return -EINVAL;
1614 }
1615
1616 trace_kvm_irqchip_update_msi_route(virq);
1617
1618 return kvm_update_routing_entry(s, &kroute);
1619 }
1620
1621 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1622 bool assign)
1623 {
1624 struct kvm_irqfd irqfd = {
1625 .fd = fd,
1626 .gsi = virq,
1627 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1628 };
1629
1630 if (rfd != -1) {
1631 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1632 irqfd.resamplefd = rfd;
1633 }
1634
1635 if (!kvm_irqfds_enabled()) {
1636 return -ENOSYS;
1637 }
1638
1639 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1640 }
1641
1642 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1643 {
1644 struct kvm_irq_routing_entry kroute = {};
1645 int virq;
1646
1647 if (!kvm_gsi_routing_enabled()) {
1648 return -ENOSYS;
1649 }
1650
1651 virq = kvm_irqchip_get_virq(s);
1652 if (virq < 0) {
1653 return virq;
1654 }
1655
1656 kroute.gsi = virq;
1657 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1658 kroute.flags = 0;
1659 kroute.u.adapter.summary_addr = adapter->summary_addr;
1660 kroute.u.adapter.ind_addr = adapter->ind_addr;
1661 kroute.u.adapter.summary_offset = adapter->summary_offset;
1662 kroute.u.adapter.ind_offset = adapter->ind_offset;
1663 kroute.u.adapter.adapter_id = adapter->adapter_id;
1664
1665 kvm_add_routing_entry(s, &kroute);
1666
1667 return virq;
1668 }
1669
1670 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1671 {
1672 struct kvm_irq_routing_entry kroute = {};
1673 int virq;
1674
1675 if (!kvm_gsi_routing_enabled()) {
1676 return -ENOSYS;
1677 }
1678 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1679 return -ENOSYS;
1680 }
1681 virq = kvm_irqchip_get_virq(s);
1682 if (virq < 0) {
1683 return virq;
1684 }
1685
1686 kroute.gsi = virq;
1687 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1688 kroute.flags = 0;
1689 kroute.u.hv_sint.vcpu = vcpu;
1690 kroute.u.hv_sint.sint = sint;
1691
1692 kvm_add_routing_entry(s, &kroute);
1693 kvm_irqchip_commit_routes(s);
1694
1695 return virq;
1696 }
1697
1698 #else /* !KVM_CAP_IRQ_ROUTING */
1699
1700 void kvm_init_irq_routing(KVMState *s)
1701 {
1702 }
1703
1704 void kvm_irqchip_release_virq(KVMState *s, int virq)
1705 {
1706 }
1707
1708 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1709 {
1710 abort();
1711 }
1712
1713 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1714 {
1715 return -ENOSYS;
1716 }
1717
1718 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1719 {
1720 return -ENOSYS;
1721 }
1722
1723 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1724 {
1725 return -ENOSYS;
1726 }
1727
1728 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1729 {
1730 abort();
1731 }
1732
1733 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1734 {
1735 return -ENOSYS;
1736 }
1737 #endif /* !KVM_CAP_IRQ_ROUTING */
1738
1739 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1740 EventNotifier *rn, int virq)
1741 {
1742 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1743 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1744 }
1745
1746 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1747 int virq)
1748 {
1749 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1750 false);
1751 }
1752
1753 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1754 EventNotifier *rn, qemu_irq irq)
1755 {
1756 gpointer key, gsi;
1757 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1758
1759 if (!found) {
1760 return -ENXIO;
1761 }
1762 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1763 }
1764
1765 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1766 qemu_irq irq)
1767 {
1768 gpointer key, gsi;
1769 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1770
1771 if (!found) {
1772 return -ENXIO;
1773 }
1774 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1775 }
1776
1777 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1778 {
1779 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1780 }
1781
1782 static void kvm_irqchip_create(KVMState *s)
1783 {
1784 int ret;
1785
1786 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1787 ;
1788 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1789 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1790 if (ret < 0) {
1791 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1792 exit(1);
1793 }
1794 } else {
1795 return;
1796 }
1797
1798 /* First probe and see if there's a arch-specific hook to create the
1799 * in-kernel irqchip for us */
1800 ret = kvm_arch_irqchip_create(s);
1801 if (ret == 0) {
1802 if (s->kernel_irqchip_split) {
1803 perror("Split IRQ chip mode not supported.");
1804 exit(1);
1805 } else {
1806 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1807 }
1808 }
1809 if (ret < 0) {
1810 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1811 exit(1);
1812 }
1813
1814 kvm_kernel_irqchip = true;
1815 /* If we have an in-kernel IRQ chip then we must have asynchronous
1816 * interrupt delivery (though the reverse is not necessarily true)
1817 */
1818 kvm_async_interrupts_allowed = true;
1819 kvm_halt_in_kernel_allowed = true;
1820
1821 kvm_init_irq_routing(s);
1822
1823 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1824 }
1825
1826 /* Find number of supported CPUs using the recommended
1827 * procedure from the kernel API documentation to cope with
1828 * older kernels that may be missing capabilities.
1829 */
1830 static int kvm_recommended_vcpus(KVMState *s)
1831 {
1832 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1833 return (ret) ? ret : 4;
1834 }
1835
1836 static int kvm_max_vcpus(KVMState *s)
1837 {
1838 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1839 return (ret) ? ret : kvm_recommended_vcpus(s);
1840 }
1841
1842 static int kvm_max_vcpu_id(KVMState *s)
1843 {
1844 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1845 return (ret) ? ret : kvm_max_vcpus(s);
1846 }
1847
1848 bool kvm_vcpu_id_is_valid(int vcpu_id)
1849 {
1850 KVMState *s = KVM_STATE(current_machine->accelerator);
1851 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1852 }
1853
1854 static int kvm_init(MachineState *ms)
1855 {
1856 MachineClass *mc = MACHINE_GET_CLASS(ms);
1857 static const char upgrade_note[] =
1858 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1859 "(see http://sourceforge.net/projects/kvm).\n";
1860 struct {
1861 const char *name;
1862 int num;
1863 } num_cpus[] = {
1864 { "SMP", ms->smp.cpus },
1865 { "hotpluggable", ms->smp.max_cpus },
1866 { NULL, }
1867 }, *nc = num_cpus;
1868 int soft_vcpus_limit, hard_vcpus_limit;
1869 KVMState *s;
1870 const KVMCapabilityInfo *missing_cap;
1871 int ret;
1872 int type = 0;
1873 const char *kvm_type;
1874
1875 s = KVM_STATE(ms->accelerator);
1876
1877 /*
1878 * On systems where the kernel can support different base page
1879 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1880 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1881 * page size for the system though.
1882 */
1883 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
1884
1885 s->sigmask_len = 8;
1886
1887 #ifdef KVM_CAP_SET_GUEST_DEBUG
1888 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1889 #endif
1890 QLIST_INIT(&s->kvm_parked_vcpus);
1891 s->vmfd = -1;
1892 s->fd = qemu_open("/dev/kvm", O_RDWR);
1893 if (s->fd == -1) {
1894 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1895 ret = -errno;
1896 goto err;
1897 }
1898
1899 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1900 if (ret < KVM_API_VERSION) {
1901 if (ret >= 0) {
1902 ret = -EINVAL;
1903 }
1904 fprintf(stderr, "kvm version too old\n");
1905 goto err;
1906 }
1907
1908 if (ret > KVM_API_VERSION) {
1909 ret = -EINVAL;
1910 fprintf(stderr, "kvm version not supported\n");
1911 goto err;
1912 }
1913
1914 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
1915 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1916
1917 /* If unspecified, use the default value */
1918 if (!s->nr_slots) {
1919 s->nr_slots = 32;
1920 }
1921
1922 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
1923 if (s->nr_as <= 1) {
1924 s->nr_as = 1;
1925 }
1926 s->as = g_new0(struct KVMAs, s->nr_as);
1927
1928 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1929 if (mc->kvm_type) {
1930 type = mc->kvm_type(ms, kvm_type);
1931 } else if (kvm_type) {
1932 ret = -EINVAL;
1933 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1934 goto err;
1935 }
1936
1937 do {
1938 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1939 } while (ret == -EINTR);
1940
1941 if (ret < 0) {
1942 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1943 strerror(-ret));
1944
1945 #ifdef TARGET_S390X
1946 if (ret == -EINVAL) {
1947 fprintf(stderr,
1948 "Host kernel setup problem detected. Please verify:\n");
1949 fprintf(stderr, "- for kernels supporting the switch_amode or"
1950 " user_mode parameters, whether\n");
1951 fprintf(stderr,
1952 " user space is running in primary address space\n");
1953 fprintf(stderr,
1954 "- for kernels supporting the vm.allocate_pgste sysctl, "
1955 "whether it is enabled\n");
1956 }
1957 #endif
1958 goto err;
1959 }
1960
1961 s->vmfd = ret;
1962
1963 /* check the vcpu limits */
1964 soft_vcpus_limit = kvm_recommended_vcpus(s);
1965 hard_vcpus_limit = kvm_max_vcpus(s);
1966
1967 while (nc->name) {
1968 if (nc->num > soft_vcpus_limit) {
1969 warn_report("Number of %s cpus requested (%d) exceeds "
1970 "the recommended cpus supported by KVM (%d)",
1971 nc->name, nc->num, soft_vcpus_limit);
1972
1973 if (nc->num > hard_vcpus_limit) {
1974 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1975 "the maximum cpus supported by KVM (%d)\n",
1976 nc->name, nc->num, hard_vcpus_limit);
1977 exit(1);
1978 }
1979 }
1980 nc++;
1981 }
1982
1983 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1984 if (!missing_cap) {
1985 missing_cap =
1986 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1987 }
1988 if (missing_cap) {
1989 ret = -EINVAL;
1990 fprintf(stderr, "kvm does not support %s\n%s",
1991 missing_cap->name, upgrade_note);
1992 goto err;
1993 }
1994
1995 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1996 s->coalesced_pio = s->coalesced_mmio &&
1997 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
1998
1999 s->manual_dirty_log_protect =
2000 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2001 if (s->manual_dirty_log_protect) {
2002 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 1);
2003 if (ret) {
2004 warn_report("Trying to enable KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 "
2005 "but failed. Falling back to the legacy mode. ");
2006 s->manual_dirty_log_protect = false;
2007 }
2008 }
2009
2010 #ifdef KVM_CAP_VCPU_EVENTS
2011 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2012 #endif
2013
2014 s->robust_singlestep =
2015 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2016
2017 #ifdef KVM_CAP_DEBUGREGS
2018 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2019 #endif
2020
2021 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2022
2023 #ifdef KVM_CAP_IRQ_ROUTING
2024 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2025 #endif
2026
2027 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2028
2029 s->irq_set_ioctl = KVM_IRQ_LINE;
2030 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2031 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2032 }
2033
2034 kvm_readonly_mem_allowed =
2035 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2036
2037 kvm_eventfds_allowed =
2038 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2039
2040 kvm_irqfds_allowed =
2041 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2042
2043 kvm_resamplefds_allowed =
2044 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2045
2046 kvm_vm_attributes_allowed =
2047 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2048
2049 kvm_ioeventfd_any_length_allowed =
2050 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2051
2052 kvm_state = s;
2053
2054 /*
2055 * if memory encryption object is specified then initialize the memory
2056 * encryption context.
2057 */
2058 if (ms->memory_encryption) {
2059 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption);
2060 if (!kvm_state->memcrypt_handle) {
2061 ret = -1;
2062 goto err;
2063 }
2064
2065 kvm_state->memcrypt_encrypt_data = sev_encrypt_data;
2066 }
2067
2068 ret = kvm_arch_init(ms, s);
2069 if (ret < 0) {
2070 goto err;
2071 }
2072
2073 if (s->kernel_irqchip_allowed) {
2074 kvm_irqchip_create(s);
2075 }
2076
2077 if (kvm_eventfds_allowed) {
2078 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2079 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2080 }
2081 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2082 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2083
2084 kvm_memory_listener_register(s, &s->memory_listener,
2085 &address_space_memory, 0);
2086 memory_listener_register(&kvm_io_listener,
2087 &address_space_io);
2088 memory_listener_register(&kvm_coalesced_pio_listener,
2089 &address_space_io);
2090
2091 s->many_ioeventfds = kvm_check_many_ioeventfds();
2092
2093 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2094 if (!s->sync_mmu) {
2095 qemu_balloon_inhibit(true);
2096 }
2097
2098 return 0;
2099
2100 err:
2101 assert(ret < 0);
2102 if (s->vmfd >= 0) {
2103 close(s->vmfd);
2104 }
2105 if (s->fd != -1) {
2106 close(s->fd);
2107 }
2108 g_free(s->memory_listener.slots);
2109
2110 return ret;
2111 }
2112
2113 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2114 {
2115 s->sigmask_len = sigmask_len;
2116 }
2117
2118 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2119 int size, uint32_t count)
2120 {
2121 int i;
2122 uint8_t *ptr = data;
2123
2124 for (i = 0; i < count; i++) {
2125 address_space_rw(&address_space_io, port, attrs,
2126 ptr, size,
2127 direction == KVM_EXIT_IO_OUT);
2128 ptr += size;
2129 }
2130 }
2131
2132 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2133 {
2134 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2135 run->internal.suberror);
2136
2137 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2138 int i;
2139
2140 for (i = 0; i < run->internal.ndata; ++i) {
2141 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
2142 i, (uint64_t)run->internal.data[i]);
2143 }
2144 }
2145 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2146 fprintf(stderr, "emulation failure\n");
2147 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2148 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2149 return EXCP_INTERRUPT;
2150 }
2151 }
2152 /* FIXME: Should trigger a qmp message to let management know
2153 * something went wrong.
2154 */
2155 return -1;
2156 }
2157
2158 void kvm_flush_coalesced_mmio_buffer(void)
2159 {
2160 KVMState *s = kvm_state;
2161
2162 if (s->coalesced_flush_in_progress) {
2163 return;
2164 }
2165
2166 s->coalesced_flush_in_progress = true;
2167
2168 if (s->coalesced_mmio_ring) {
2169 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2170 while (ring->first != ring->last) {
2171 struct kvm_coalesced_mmio *ent;
2172
2173 ent = &ring->coalesced_mmio[ring->first];
2174
2175 if (ent->pio == 1) {
2176 address_space_rw(&address_space_io, ent->phys_addr,
2177 MEMTXATTRS_UNSPECIFIED, ent->data,
2178 ent->len, true);
2179 } else {
2180 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2181 }
2182 smp_wmb();
2183 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2184 }
2185 }
2186
2187 s->coalesced_flush_in_progress = false;
2188 }
2189
2190 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2191 {
2192 if (!cpu->vcpu_dirty) {
2193 kvm_arch_get_registers(cpu);
2194 cpu->vcpu_dirty = true;
2195 }
2196 }
2197
2198 void kvm_cpu_synchronize_state(CPUState *cpu)
2199 {
2200 if (!cpu->vcpu_dirty) {
2201 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2202 }
2203 }
2204
2205 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2206 {
2207 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2208 cpu->vcpu_dirty = false;
2209 }
2210
2211 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2212 {
2213 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2214 }
2215
2216 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2217 {
2218 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2219 cpu->vcpu_dirty = false;
2220 }
2221
2222 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2223 {
2224 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2225 }
2226
2227 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2228 {
2229 cpu->vcpu_dirty = true;
2230 }
2231
2232 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2233 {
2234 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2235 }
2236
2237 #ifdef KVM_HAVE_MCE_INJECTION
2238 static __thread void *pending_sigbus_addr;
2239 static __thread int pending_sigbus_code;
2240 static __thread bool have_sigbus_pending;
2241 #endif
2242
2243 static void kvm_cpu_kick(CPUState *cpu)
2244 {
2245 atomic_set(&cpu->kvm_run->immediate_exit, 1);
2246 }
2247
2248 static void kvm_cpu_kick_self(void)
2249 {
2250 if (kvm_immediate_exit) {
2251 kvm_cpu_kick(current_cpu);
2252 } else {
2253 qemu_cpu_kick_self();
2254 }
2255 }
2256
2257 static void kvm_eat_signals(CPUState *cpu)
2258 {
2259 struct timespec ts = { 0, 0 };
2260 siginfo_t siginfo;
2261 sigset_t waitset;
2262 sigset_t chkset;
2263 int r;
2264
2265 if (kvm_immediate_exit) {
2266 atomic_set(&cpu->kvm_run->immediate_exit, 0);
2267 /* Write kvm_run->immediate_exit before the cpu->exit_request
2268 * write in kvm_cpu_exec.
2269 */
2270 smp_wmb();
2271 return;
2272 }
2273
2274 sigemptyset(&waitset);
2275 sigaddset(&waitset, SIG_IPI);
2276
2277 do {
2278 r = sigtimedwait(&waitset, &siginfo, &ts);
2279 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2280 perror("sigtimedwait");
2281 exit(1);
2282 }
2283
2284 r = sigpending(&chkset);
2285 if (r == -1) {
2286 perror("sigpending");
2287 exit(1);
2288 }
2289 } while (sigismember(&chkset, SIG_IPI));
2290 }
2291
2292 int kvm_cpu_exec(CPUState *cpu)
2293 {
2294 struct kvm_run *run = cpu->kvm_run;
2295 int ret, run_ret;
2296
2297 DPRINTF("kvm_cpu_exec()\n");
2298
2299 if (kvm_arch_process_async_events(cpu)) {
2300 atomic_set(&cpu->exit_request, 0);
2301 return EXCP_HLT;
2302 }
2303
2304 qemu_mutex_unlock_iothread();
2305 cpu_exec_start(cpu);
2306
2307 do {
2308 MemTxAttrs attrs;
2309
2310 if (cpu->vcpu_dirty) {
2311 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2312 cpu->vcpu_dirty = false;
2313 }
2314
2315 kvm_arch_pre_run(cpu, run);
2316 if (atomic_read(&cpu->exit_request)) {
2317 DPRINTF("interrupt exit requested\n");
2318 /*
2319 * KVM requires us to reenter the kernel after IO exits to complete
2320 * instruction emulation. This self-signal will ensure that we
2321 * leave ASAP again.
2322 */
2323 kvm_cpu_kick_self();
2324 }
2325
2326 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2327 * Matching barrier in kvm_eat_signals.
2328 */
2329 smp_rmb();
2330
2331 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2332
2333 attrs = kvm_arch_post_run(cpu, run);
2334
2335 #ifdef KVM_HAVE_MCE_INJECTION
2336 if (unlikely(have_sigbus_pending)) {
2337 qemu_mutex_lock_iothread();
2338 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2339 pending_sigbus_addr);
2340 have_sigbus_pending = false;
2341 qemu_mutex_unlock_iothread();
2342 }
2343 #endif
2344
2345 if (run_ret < 0) {
2346 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2347 DPRINTF("io window exit\n");
2348 kvm_eat_signals(cpu);
2349 ret = EXCP_INTERRUPT;
2350 break;
2351 }
2352 fprintf(stderr, "error: kvm run failed %s\n",
2353 strerror(-run_ret));
2354 #ifdef TARGET_PPC
2355 if (run_ret == -EBUSY) {
2356 fprintf(stderr,
2357 "This is probably because your SMT is enabled.\n"
2358 "VCPU can only run on primary threads with all "
2359 "secondary threads offline.\n");
2360 }
2361 #endif
2362 ret = -1;
2363 break;
2364 }
2365
2366 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2367 switch (run->exit_reason) {
2368 case KVM_EXIT_IO:
2369 DPRINTF("handle_io\n");
2370 /* Called outside BQL */
2371 kvm_handle_io(run->io.port, attrs,
2372 (uint8_t *)run + run->io.data_offset,
2373 run->io.direction,
2374 run->io.size,
2375 run->io.count);
2376 ret = 0;
2377 break;
2378 case KVM_EXIT_MMIO:
2379 DPRINTF("handle_mmio\n");
2380 /* Called outside BQL */
2381 address_space_rw(&address_space_memory,
2382 run->mmio.phys_addr, attrs,
2383 run->mmio.data,
2384 run->mmio.len,
2385 run->mmio.is_write);
2386 ret = 0;
2387 break;
2388 case KVM_EXIT_IRQ_WINDOW_OPEN:
2389 DPRINTF("irq_window_open\n");
2390 ret = EXCP_INTERRUPT;
2391 break;
2392 case KVM_EXIT_SHUTDOWN:
2393 DPRINTF("shutdown\n");
2394 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2395 ret = EXCP_INTERRUPT;
2396 break;
2397 case KVM_EXIT_UNKNOWN:
2398 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2399 (uint64_t)run->hw.hardware_exit_reason);
2400 ret = -1;
2401 break;
2402 case KVM_EXIT_INTERNAL_ERROR:
2403 ret = kvm_handle_internal_error(cpu, run);
2404 break;
2405 case KVM_EXIT_SYSTEM_EVENT:
2406 switch (run->system_event.type) {
2407 case KVM_SYSTEM_EVENT_SHUTDOWN:
2408 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2409 ret = EXCP_INTERRUPT;
2410 break;
2411 case KVM_SYSTEM_EVENT_RESET:
2412 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2413 ret = EXCP_INTERRUPT;
2414 break;
2415 case KVM_SYSTEM_EVENT_CRASH:
2416 kvm_cpu_synchronize_state(cpu);
2417 qemu_mutex_lock_iothread();
2418 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2419 qemu_mutex_unlock_iothread();
2420 ret = 0;
2421 break;
2422 default:
2423 DPRINTF("kvm_arch_handle_exit\n");
2424 ret = kvm_arch_handle_exit(cpu, run);
2425 break;
2426 }
2427 break;
2428 default:
2429 DPRINTF("kvm_arch_handle_exit\n");
2430 ret = kvm_arch_handle_exit(cpu, run);
2431 break;
2432 }
2433 } while (ret == 0);
2434
2435 cpu_exec_end(cpu);
2436 qemu_mutex_lock_iothread();
2437
2438 if (ret < 0) {
2439 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2440 vm_stop(RUN_STATE_INTERNAL_ERROR);
2441 }
2442
2443 atomic_set(&cpu->exit_request, 0);
2444 return ret;
2445 }
2446
2447 int kvm_ioctl(KVMState *s, int type, ...)
2448 {
2449 int ret;
2450 void *arg;
2451 va_list ap;
2452
2453 va_start(ap, type);
2454 arg = va_arg(ap, void *);
2455 va_end(ap);
2456
2457 trace_kvm_ioctl(type, arg);
2458 ret = ioctl(s->fd, type, arg);
2459 if (ret == -1) {
2460 ret = -errno;
2461 }
2462 return ret;
2463 }
2464
2465 int kvm_vm_ioctl(KVMState *s, int type, ...)
2466 {
2467 int ret;
2468 void *arg;
2469 va_list ap;
2470
2471 va_start(ap, type);
2472 arg = va_arg(ap, void *);
2473 va_end(ap);
2474
2475 trace_kvm_vm_ioctl(type, arg);
2476 ret = ioctl(s->vmfd, type, arg);
2477 if (ret == -1) {
2478 ret = -errno;
2479 }
2480 return ret;
2481 }
2482
2483 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2484 {
2485 int ret;
2486 void *arg;
2487 va_list ap;
2488
2489 va_start(ap, type);
2490 arg = va_arg(ap, void *);
2491 va_end(ap);
2492
2493 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2494 ret = ioctl(cpu->kvm_fd, type, arg);
2495 if (ret == -1) {
2496 ret = -errno;
2497 }
2498 return ret;
2499 }
2500
2501 int kvm_device_ioctl(int fd, int type, ...)
2502 {
2503 int ret;
2504 void *arg;
2505 va_list ap;
2506
2507 va_start(ap, type);
2508 arg = va_arg(ap, void *);
2509 va_end(ap);
2510
2511 trace_kvm_device_ioctl(fd, type, arg);
2512 ret = ioctl(fd, type, arg);
2513 if (ret == -1) {
2514 ret = -errno;
2515 }
2516 return ret;
2517 }
2518
2519 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2520 {
2521 int ret;
2522 struct kvm_device_attr attribute = {
2523 .group = group,
2524 .attr = attr,
2525 };
2526
2527 if (!kvm_vm_attributes_allowed) {
2528 return 0;
2529 }
2530
2531 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2532 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2533 return ret ? 0 : 1;
2534 }
2535
2536 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2537 {
2538 struct kvm_device_attr attribute = {
2539 .group = group,
2540 .attr = attr,
2541 .flags = 0,
2542 };
2543
2544 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2545 }
2546
2547 int kvm_device_access(int fd, int group, uint64_t attr,
2548 void *val, bool write, Error **errp)
2549 {
2550 struct kvm_device_attr kvmattr;
2551 int err;
2552
2553 kvmattr.flags = 0;
2554 kvmattr.group = group;
2555 kvmattr.attr = attr;
2556 kvmattr.addr = (uintptr_t)val;
2557
2558 err = kvm_device_ioctl(fd,
2559 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2560 &kvmattr);
2561 if (err < 0) {
2562 error_setg_errno(errp, -err,
2563 "KVM_%s_DEVICE_ATTR failed: Group %d "
2564 "attr 0x%016" PRIx64,
2565 write ? "SET" : "GET", group, attr);
2566 }
2567 return err;
2568 }
2569
2570 bool kvm_has_sync_mmu(void)
2571 {
2572 return kvm_state->sync_mmu;
2573 }
2574
2575 int kvm_has_vcpu_events(void)
2576 {
2577 return kvm_state->vcpu_events;
2578 }
2579
2580 int kvm_has_robust_singlestep(void)
2581 {
2582 return kvm_state->robust_singlestep;
2583 }
2584
2585 int kvm_has_debugregs(void)
2586 {
2587 return kvm_state->debugregs;
2588 }
2589
2590 int kvm_max_nested_state_length(void)
2591 {
2592 return kvm_state->max_nested_state_len;
2593 }
2594
2595 int kvm_has_many_ioeventfds(void)
2596 {
2597 if (!kvm_enabled()) {
2598 return 0;
2599 }
2600 return kvm_state->many_ioeventfds;
2601 }
2602
2603 int kvm_has_gsi_routing(void)
2604 {
2605 #ifdef KVM_CAP_IRQ_ROUTING
2606 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2607 #else
2608 return false;
2609 #endif
2610 }
2611
2612 int kvm_has_intx_set_mask(void)
2613 {
2614 return kvm_state->intx_set_mask;
2615 }
2616
2617 bool kvm_arm_supports_user_irq(void)
2618 {
2619 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2620 }
2621
2622 #ifdef KVM_CAP_SET_GUEST_DEBUG
2623 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2624 target_ulong pc)
2625 {
2626 struct kvm_sw_breakpoint *bp;
2627
2628 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2629 if (bp->pc == pc) {
2630 return bp;
2631 }
2632 }
2633 return NULL;
2634 }
2635
2636 int kvm_sw_breakpoints_active(CPUState *cpu)
2637 {
2638 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2639 }
2640
2641 struct kvm_set_guest_debug_data {
2642 struct kvm_guest_debug dbg;
2643 int err;
2644 };
2645
2646 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2647 {
2648 struct kvm_set_guest_debug_data *dbg_data =
2649 (struct kvm_set_guest_debug_data *) data.host_ptr;
2650
2651 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2652 &dbg_data->dbg);
2653 }
2654
2655 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2656 {
2657 struct kvm_set_guest_debug_data data;
2658
2659 data.dbg.control = reinject_trap;
2660
2661 if (cpu->singlestep_enabled) {
2662 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2663 }
2664 kvm_arch_update_guest_debug(cpu, &data.dbg);
2665
2666 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2667 RUN_ON_CPU_HOST_PTR(&data));
2668 return data.err;
2669 }
2670
2671 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2672 target_ulong len, int type)
2673 {
2674 struct kvm_sw_breakpoint *bp;
2675 int err;
2676
2677 if (type == GDB_BREAKPOINT_SW) {
2678 bp = kvm_find_sw_breakpoint(cpu, addr);
2679 if (bp) {
2680 bp->use_count++;
2681 return 0;
2682 }
2683
2684 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2685 bp->pc = addr;
2686 bp->use_count = 1;
2687 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2688 if (err) {
2689 g_free(bp);
2690 return err;
2691 }
2692
2693 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2694 } else {
2695 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2696 if (err) {
2697 return err;
2698 }
2699 }
2700
2701 CPU_FOREACH(cpu) {
2702 err = kvm_update_guest_debug(cpu, 0);
2703 if (err) {
2704 return err;
2705 }
2706 }
2707 return 0;
2708 }
2709
2710 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2711 target_ulong len, int type)
2712 {
2713 struct kvm_sw_breakpoint *bp;
2714 int err;
2715
2716 if (type == GDB_BREAKPOINT_SW) {
2717 bp = kvm_find_sw_breakpoint(cpu, addr);
2718 if (!bp) {
2719 return -ENOENT;
2720 }
2721
2722 if (bp->use_count > 1) {
2723 bp->use_count--;
2724 return 0;
2725 }
2726
2727 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2728 if (err) {
2729 return err;
2730 }
2731
2732 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2733 g_free(bp);
2734 } else {
2735 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2736 if (err) {
2737 return err;
2738 }
2739 }
2740
2741 CPU_FOREACH(cpu) {
2742 err = kvm_update_guest_debug(cpu, 0);
2743 if (err) {
2744 return err;
2745 }
2746 }
2747 return 0;
2748 }
2749
2750 void kvm_remove_all_breakpoints(CPUState *cpu)
2751 {
2752 struct kvm_sw_breakpoint *bp, *next;
2753 KVMState *s = cpu->kvm_state;
2754 CPUState *tmpcpu;
2755
2756 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2757 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2758 /* Try harder to find a CPU that currently sees the breakpoint. */
2759 CPU_FOREACH(tmpcpu) {
2760 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2761 break;
2762 }
2763 }
2764 }
2765 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2766 g_free(bp);
2767 }
2768 kvm_arch_remove_all_hw_breakpoints();
2769
2770 CPU_FOREACH(cpu) {
2771 kvm_update_guest_debug(cpu, 0);
2772 }
2773 }
2774
2775 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2776
2777 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2778 {
2779 return -EINVAL;
2780 }
2781
2782 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2783 target_ulong len, int type)
2784 {
2785 return -EINVAL;
2786 }
2787
2788 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2789 target_ulong len, int type)
2790 {
2791 return -EINVAL;
2792 }
2793
2794 void kvm_remove_all_breakpoints(CPUState *cpu)
2795 {
2796 }
2797 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2798
2799 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2800 {
2801 KVMState *s = kvm_state;
2802 struct kvm_signal_mask *sigmask;
2803 int r;
2804
2805 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2806
2807 sigmask->len = s->sigmask_len;
2808 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2809 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2810 g_free(sigmask);
2811
2812 return r;
2813 }
2814
2815 static void kvm_ipi_signal(int sig)
2816 {
2817 if (current_cpu) {
2818 assert(kvm_immediate_exit);
2819 kvm_cpu_kick(current_cpu);
2820 }
2821 }
2822
2823 void kvm_init_cpu_signals(CPUState *cpu)
2824 {
2825 int r;
2826 sigset_t set;
2827 struct sigaction sigact;
2828
2829 memset(&sigact, 0, sizeof(sigact));
2830 sigact.sa_handler = kvm_ipi_signal;
2831 sigaction(SIG_IPI, &sigact, NULL);
2832
2833 pthread_sigmask(SIG_BLOCK, NULL, &set);
2834 #if defined KVM_HAVE_MCE_INJECTION
2835 sigdelset(&set, SIGBUS);
2836 pthread_sigmask(SIG_SETMASK, &set, NULL);
2837 #endif
2838 sigdelset(&set, SIG_IPI);
2839 if (kvm_immediate_exit) {
2840 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2841 } else {
2842 r = kvm_set_signal_mask(cpu, &set);
2843 }
2844 if (r) {
2845 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2846 exit(1);
2847 }
2848 }
2849
2850 /* Called asynchronously in VCPU thread. */
2851 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2852 {
2853 #ifdef KVM_HAVE_MCE_INJECTION
2854 if (have_sigbus_pending) {
2855 return 1;
2856 }
2857 have_sigbus_pending = true;
2858 pending_sigbus_addr = addr;
2859 pending_sigbus_code = code;
2860 atomic_set(&cpu->exit_request, 1);
2861 return 0;
2862 #else
2863 return 1;
2864 #endif
2865 }
2866
2867 /* Called synchronously (via signalfd) in main thread. */
2868 int kvm_on_sigbus(int code, void *addr)
2869 {
2870 #ifdef KVM_HAVE_MCE_INJECTION
2871 /* Action required MCE kills the process if SIGBUS is blocked. Because
2872 * that's what happens in the I/O thread, where we handle MCE via signalfd,
2873 * we can only get action optional here.
2874 */
2875 assert(code != BUS_MCEERR_AR);
2876 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
2877 return 0;
2878 #else
2879 return 1;
2880 #endif
2881 }
2882
2883 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2884 {
2885 int ret;
2886 struct kvm_create_device create_dev;
2887
2888 create_dev.type = type;
2889 create_dev.fd = -1;
2890 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2891
2892 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2893 return -ENOTSUP;
2894 }
2895
2896 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2897 if (ret) {
2898 return ret;
2899 }
2900
2901 return test ? 0 : create_dev.fd;
2902 }
2903
2904 bool kvm_device_supported(int vmfd, uint64_t type)
2905 {
2906 struct kvm_create_device create_dev = {
2907 .type = type,
2908 .fd = -1,
2909 .flags = KVM_CREATE_DEVICE_TEST,
2910 };
2911
2912 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
2913 return false;
2914 }
2915
2916 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
2917 }
2918
2919 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2920 {
2921 struct kvm_one_reg reg;
2922 int r;
2923
2924 reg.id = id;
2925 reg.addr = (uintptr_t) source;
2926 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2927 if (r) {
2928 trace_kvm_failed_reg_set(id, strerror(-r));
2929 }
2930 return r;
2931 }
2932
2933 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2934 {
2935 struct kvm_one_reg reg;
2936 int r;
2937
2938 reg.id = id;
2939 reg.addr = (uintptr_t) target;
2940 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2941 if (r) {
2942 trace_kvm_failed_reg_get(id, strerror(-r));
2943 }
2944 return r;
2945 }
2946
2947 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
2948 hwaddr start_addr, hwaddr size)
2949 {
2950 KVMState *kvm = KVM_STATE(ms->accelerator);
2951 int i;
2952
2953 for (i = 0; i < kvm->nr_as; ++i) {
2954 if (kvm->as[i].as == as && kvm->as[i].ml) {
2955 size = MIN(kvm_max_slot_size, size);
2956 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
2957 start_addr, size);
2958 }
2959 }
2960
2961 return false;
2962 }
2963
2964 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
2965 const char *name, void *opaque,
2966 Error **errp)
2967 {
2968 KVMState *s = KVM_STATE(obj);
2969 int64_t value = s->kvm_shadow_mem;
2970
2971 visit_type_int(v, name, &value, errp);
2972 }
2973
2974 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
2975 const char *name, void *opaque,
2976 Error **errp)
2977 {
2978 KVMState *s = KVM_STATE(obj);
2979 Error *error = NULL;
2980 int64_t value;
2981
2982 visit_type_int(v, name, &value, &error);
2983 if (error) {
2984 error_propagate(errp, error);
2985 return;
2986 }
2987
2988 s->kvm_shadow_mem = value;
2989 }
2990
2991 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
2992 const char *name, void *opaque,
2993 Error **errp)
2994 {
2995 Error *err = NULL;
2996 KVMState *s = KVM_STATE(obj);
2997 OnOffSplit mode;
2998
2999 visit_type_OnOffSplit(v, name, &mode, &err);
3000 if (err) {
3001 error_propagate(errp, err);
3002 return;
3003 } else {
3004 switch (mode) {
3005 case ON_OFF_SPLIT_ON:
3006 s->kernel_irqchip_allowed = true;
3007 s->kernel_irqchip_required = true;
3008 s->kernel_irqchip_split = false;
3009 break;
3010 case ON_OFF_SPLIT_OFF:
3011 s->kernel_irqchip_allowed = false;
3012 s->kernel_irqchip_required = false;
3013 s->kernel_irqchip_split = false;
3014 break;
3015 case ON_OFF_SPLIT_SPLIT:
3016 s->kernel_irqchip_allowed = true;
3017 s->kernel_irqchip_required = true;
3018 s->kernel_irqchip_split = true;
3019 break;
3020 default:
3021 /* The value was checked in visit_type_OnOffSplit() above. If
3022 * we get here, then something is wrong in QEMU.
3023 */
3024 abort();
3025 }
3026 }
3027 }
3028
3029 bool kvm_kernel_irqchip_allowed(void)
3030 {
3031 return kvm_state->kernel_irqchip_allowed;
3032 }
3033
3034 bool kvm_kernel_irqchip_required(void)
3035 {
3036 return kvm_state->kernel_irqchip_required;
3037 }
3038
3039 bool kvm_kernel_irqchip_split(void)
3040 {
3041 return kvm_state->kernel_irqchip_split;
3042 }
3043
3044 static void kvm_accel_instance_init(Object *obj)
3045 {
3046 KVMState *s = KVM_STATE(obj);
3047
3048 s->kvm_shadow_mem = -1;
3049 }
3050
3051 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3052 {
3053 AccelClass *ac = ACCEL_CLASS(oc);
3054 ac->name = "KVM";
3055 ac->init_machine = kvm_init;
3056 ac->has_memory = kvm_accel_has_memory;
3057 ac->allowed = &kvm_allowed;
3058
3059 object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3060 NULL, kvm_set_kernel_irqchip,
3061 NULL, NULL, &error_abort);
3062 object_class_property_set_description(oc, "kernel-irqchip",
3063 "Configure KVM in-kernel irqchip", &error_abort);
3064
3065 object_class_property_add(oc, "kvm-shadow-mem", "int",
3066 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3067 NULL, NULL, &error_abort);
3068 object_class_property_set_description(oc, "kvm-shadow-mem",
3069 "KVM shadow MMU size", &error_abort);
3070 }
3071
3072 static const TypeInfo kvm_accel_type = {
3073 .name = TYPE_KVM_ACCEL,
3074 .parent = TYPE_ACCEL,
3075 .instance_init = kvm_accel_instance_init,
3076 .class_init = kvm_accel_class_init,
3077 .instance_size = sizeof(KVMState),
3078 };
3079
3080 static void kvm_type_init(void)
3081 {
3082 type_register_static(&kvm_accel_type);
3083 }
3084
3085 type_init(kvm_type_init);