]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/cpu-exec.c
accel/tcg: Introduce TCGCPUOps::need_replay_interrupt() handler
[mirror_qemu.git] / accel / tcg / cpu-exec.c
1 /*
2 * emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/qemu-print.h"
22 #include "qapi/error.h"
23 #include "qapi/type-helpers.h"
24 #include "hw/core/tcg-cpu-ops.h"
25 #include "trace.h"
26 #include "disas/disas.h"
27 #include "exec/exec-all.h"
28 #include "tcg/tcg.h"
29 #include "qemu/atomic.h"
30 #include "qemu/rcu.h"
31 #include "exec/log.h"
32 #include "qemu/main-loop.h"
33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
34 #include "hw/i386/apic.h"
35 #endif
36 #include "sysemu/cpus.h"
37 #include "exec/cpu-all.h"
38 #include "sysemu/cpu-timers.h"
39 #include "exec/replay-core.h"
40 #include "sysemu/tcg.h"
41 #include "exec/helper-proto-common.h"
42 #include "tb-jmp-cache.h"
43 #include "tb-hash.h"
44 #include "tb-context.h"
45 #include "internal-common.h"
46 #include "internal-target.h"
47
48 /* -icount align implementation. */
49
50 typedef struct SyncClocks {
51 int64_t diff_clk;
52 int64_t last_cpu_icount;
53 int64_t realtime_clock;
54 } SyncClocks;
55
56 #if !defined(CONFIG_USER_ONLY)
57 /* Allow the guest to have a max 3ms advance.
58 * The difference between the 2 clocks could therefore
59 * oscillate around 0.
60 */
61 #define VM_CLOCK_ADVANCE 3000000
62 #define THRESHOLD_REDUCE 1.5
63 #define MAX_DELAY_PRINT_RATE 2000000000LL
64 #define MAX_NB_PRINTS 100
65
66 int64_t max_delay;
67 int64_t max_advance;
68
69 static void align_clocks(SyncClocks *sc, CPUState *cpu)
70 {
71 int64_t cpu_icount;
72
73 if (!icount_align_option) {
74 return;
75 }
76
77 cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low;
78 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
79 sc->last_cpu_icount = cpu_icount;
80
81 if (sc->diff_clk > VM_CLOCK_ADVANCE) {
82 #ifndef _WIN32
83 struct timespec sleep_delay, rem_delay;
84 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
85 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
86 if (nanosleep(&sleep_delay, &rem_delay) < 0) {
87 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
88 } else {
89 sc->diff_clk = 0;
90 }
91 #else
92 Sleep(sc->diff_clk / SCALE_MS);
93 sc->diff_clk = 0;
94 #endif
95 }
96 }
97
98 static void print_delay(const SyncClocks *sc)
99 {
100 static float threshold_delay;
101 static int64_t last_realtime_clock;
102 static int nb_prints;
103
104 if (icount_align_option &&
105 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
106 nb_prints < MAX_NB_PRINTS) {
107 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
108 (-sc->diff_clk / (float)1000000000LL <
109 (threshold_delay - THRESHOLD_REDUCE))) {
110 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
111 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
112 threshold_delay - 1,
113 threshold_delay);
114 nb_prints++;
115 last_realtime_clock = sc->realtime_clock;
116 }
117 }
118 }
119
120 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
121 {
122 if (!icount_align_option) {
123 return;
124 }
125 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
126 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
127 sc->last_cpu_icount
128 = cpu->icount_extra + cpu->neg.icount_decr.u16.low;
129 if (sc->diff_clk < max_delay) {
130 max_delay = sc->diff_clk;
131 }
132 if (sc->diff_clk > max_advance) {
133 max_advance = sc->diff_clk;
134 }
135
136 /* Print every 2s max if the guest is late. We limit the number
137 of printed messages to NB_PRINT_MAX(currently 100) */
138 print_delay(sc);
139 }
140 #else
141 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
142 {
143 }
144
145 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
146 {
147 }
148 #endif /* CONFIG USER ONLY */
149
150 uint32_t curr_cflags(CPUState *cpu)
151 {
152 uint32_t cflags = cpu->tcg_cflags;
153
154 /*
155 * Record gdb single-step. We should be exiting the TB by raising
156 * EXCP_DEBUG, but to simplify other tests, disable chaining too.
157 *
158 * For singlestep and -d nochain, suppress goto_tb so that
159 * we can log -d cpu,exec after every TB.
160 */
161 if (unlikely(cpu->singlestep_enabled)) {
162 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
163 } else if (qatomic_read(&one_insn_per_tb)) {
164 cflags |= CF_NO_GOTO_TB | 1;
165 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
166 cflags |= CF_NO_GOTO_TB;
167 }
168
169 return cflags;
170 }
171
172 struct tb_desc {
173 vaddr pc;
174 uint64_t cs_base;
175 CPUArchState *env;
176 tb_page_addr_t page_addr0;
177 uint32_t flags;
178 uint32_t cflags;
179 };
180
181 static bool tb_lookup_cmp(const void *p, const void *d)
182 {
183 const TranslationBlock *tb = p;
184 const struct tb_desc *desc = d;
185
186 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) &&
187 tb_page_addr0(tb) == desc->page_addr0 &&
188 tb->cs_base == desc->cs_base &&
189 tb->flags == desc->flags &&
190 tb_cflags(tb) == desc->cflags) {
191 /* check next page if needed */
192 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb);
193 if (tb_phys_page1 == -1) {
194 return true;
195 } else {
196 tb_page_addr_t phys_page1;
197 vaddr virt_page1;
198
199 /*
200 * We know that the first page matched, and an otherwise valid TB
201 * encountered an incomplete instruction at the end of that page,
202 * therefore we know that generating a new TB from the current PC
203 * must also require reading from the next page -- even if the
204 * second pages do not match, and therefore the resulting insn
205 * is different for the new TB. Therefore any exception raised
206 * here by the faulting lookup is not premature.
207 */
208 virt_page1 = TARGET_PAGE_ALIGN(desc->pc);
209 phys_page1 = get_page_addr_code(desc->env, virt_page1);
210 if (tb_phys_page1 == phys_page1) {
211 return true;
212 }
213 }
214 }
215 return false;
216 }
217
218 static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc,
219 uint64_t cs_base, uint32_t flags,
220 uint32_t cflags)
221 {
222 tb_page_addr_t phys_pc;
223 struct tb_desc desc;
224 uint32_t h;
225
226 desc.env = cpu_env(cpu);
227 desc.cs_base = cs_base;
228 desc.flags = flags;
229 desc.cflags = cflags;
230 desc.pc = pc;
231 phys_pc = get_page_addr_code(desc.env, pc);
232 if (phys_pc == -1) {
233 return NULL;
234 }
235 desc.page_addr0 = phys_pc;
236 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc),
237 flags, cs_base, cflags);
238 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
239 }
240
241 /* Might cause an exception, so have a longjmp destination ready */
242 static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc,
243 uint64_t cs_base, uint32_t flags,
244 uint32_t cflags)
245 {
246 TranslationBlock *tb;
247 CPUJumpCache *jc;
248 uint32_t hash;
249
250 /* we should never be trying to look up an INVALID tb */
251 tcg_debug_assert(!(cflags & CF_INVALID));
252
253 hash = tb_jmp_cache_hash_func(pc);
254 jc = cpu->tb_jmp_cache;
255
256 tb = qatomic_read(&jc->array[hash].tb);
257 if (likely(tb &&
258 jc->array[hash].pc == pc &&
259 tb->cs_base == cs_base &&
260 tb->flags == flags &&
261 tb_cflags(tb) == cflags)) {
262 goto hit;
263 }
264
265 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
266 if (tb == NULL) {
267 return NULL;
268 }
269
270 jc->array[hash].pc = pc;
271 qatomic_set(&jc->array[hash].tb, tb);
272
273 hit:
274 /*
275 * As long as tb is not NULL, the contents are consistent. Therefore,
276 * the virtual PC has to match for non-CF_PCREL translations.
277 */
278 assert((tb_cflags(tb) & CF_PCREL) || tb->pc == pc);
279 return tb;
280 }
281
282 static void log_cpu_exec(vaddr pc, CPUState *cpu,
283 const TranslationBlock *tb)
284 {
285 if (qemu_log_in_addr_range(pc)) {
286 qemu_log_mask(CPU_LOG_EXEC,
287 "Trace %d: %p [%08" PRIx64
288 "/%016" VADDR_PRIx "/%08x/%08x] %s\n",
289 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
290 tb->flags, tb->cflags, lookup_symbol(pc));
291
292 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
293 FILE *logfile = qemu_log_trylock();
294 if (logfile) {
295 int flags = 0;
296
297 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
298 flags |= CPU_DUMP_FPU;
299 }
300 #if defined(TARGET_I386)
301 flags |= CPU_DUMP_CCOP;
302 #endif
303 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) {
304 flags |= CPU_DUMP_VPU;
305 }
306 cpu_dump_state(cpu, logfile, flags);
307 qemu_log_unlock(logfile);
308 }
309 }
310 }
311 }
312
313 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc,
314 uint32_t *cflags)
315 {
316 CPUBreakpoint *bp;
317 bool match_page = false;
318
319 /*
320 * Singlestep overrides breakpoints.
321 * This requirement is visible in the record-replay tests, where
322 * we would fail to make forward progress in reverse-continue.
323 *
324 * TODO: gdb singlestep should only override gdb breakpoints,
325 * so that one could (gdb) singlestep into the guest kernel's
326 * architectural breakpoint handler.
327 */
328 if (cpu->singlestep_enabled) {
329 return false;
330 }
331
332 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
333 /*
334 * If we have an exact pc match, trigger the breakpoint.
335 * Otherwise, note matches within the page.
336 */
337 if (pc == bp->pc) {
338 bool match_bp = false;
339
340 if (bp->flags & BP_GDB) {
341 match_bp = true;
342 } else if (bp->flags & BP_CPU) {
343 #ifdef CONFIG_USER_ONLY
344 g_assert_not_reached();
345 #else
346 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
347 assert(tcg_ops->debug_check_breakpoint);
348 match_bp = tcg_ops->debug_check_breakpoint(cpu);
349 #endif
350 }
351
352 if (match_bp) {
353 cpu->exception_index = EXCP_DEBUG;
354 return true;
355 }
356 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
357 match_page = true;
358 }
359 }
360
361 /*
362 * Within the same page as a breakpoint, single-step,
363 * returning to helper_lookup_tb_ptr after each insn looking
364 * for the actual breakpoint.
365 *
366 * TODO: Perhaps better to record all of the TBs associated
367 * with a given virtual page that contains a breakpoint, and
368 * then invalidate them when a new overlapping breakpoint is
369 * set on the page. Non-overlapping TBs would not be
370 * invalidated, nor would any TB need to be invalidated as
371 * breakpoints are removed.
372 */
373 if (match_page) {
374 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1;
375 }
376 return false;
377 }
378
379 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc,
380 uint32_t *cflags)
381 {
382 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) &&
383 check_for_breakpoints_slow(cpu, pc, cflags);
384 }
385
386 /**
387 * helper_lookup_tb_ptr: quick check for next tb
388 * @env: current cpu state
389 *
390 * Look for an existing TB matching the current cpu state.
391 * If found, return the code pointer. If not found, return
392 * the tcg epilogue so that we return into cpu_tb_exec.
393 */
394 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
395 {
396 CPUState *cpu = env_cpu(env);
397 TranslationBlock *tb;
398 vaddr pc;
399 uint64_t cs_base;
400 uint32_t flags, cflags;
401
402 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
403
404 cflags = curr_cflags(cpu);
405 if (check_for_breakpoints(cpu, pc, &cflags)) {
406 cpu_loop_exit(cpu);
407 }
408
409 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
410 if (tb == NULL) {
411 return tcg_code_gen_epilogue;
412 }
413
414 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
415 log_cpu_exec(pc, cpu, tb);
416 }
417
418 return tb->tc.ptr;
419 }
420
421 /* Execute a TB, and fix up the CPU state afterwards if necessary */
422 /*
423 * Disable CFI checks.
424 * TCG creates binary blobs at runtime, with the transformed code.
425 * A TB is a blob of binary code, created at runtime and called with an
426 * indirect function call. Since such function did not exist at compile time,
427 * the CFI runtime has no way to verify its signature and would fail.
428 * TCG is not considered a security-sensitive part of QEMU so this does not
429 * affect the impact of CFI in environment with high security requirements
430 */
431 static inline TranslationBlock * QEMU_DISABLE_CFI
432 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
433 {
434 CPUArchState *env = cpu_env(cpu);
435 uintptr_t ret;
436 TranslationBlock *last_tb;
437 const void *tb_ptr = itb->tc.ptr;
438
439 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
440 log_cpu_exec(log_pc(cpu, itb), cpu, itb);
441 }
442
443 qemu_thread_jit_execute();
444 ret = tcg_qemu_tb_exec(env, tb_ptr);
445 cpu->neg.can_do_io = true;
446 qemu_plugin_disable_mem_helpers(cpu);
447 /*
448 * TODO: Delay swapping back to the read-write region of the TB
449 * until we actually need to modify the TB. The read-only copy,
450 * coming from the rx region, shares the same host TLB entry as
451 * the code that executed the exit_tb opcode that arrived here.
452 * If we insist on touching both the RX and the RW pages, we
453 * double the host TLB pressure.
454 */
455 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
456 *tb_exit = ret & TB_EXIT_MASK;
457
458 trace_exec_tb_exit(last_tb, *tb_exit);
459
460 if (*tb_exit > TB_EXIT_IDX1) {
461 /* We didn't start executing this TB (eg because the instruction
462 * counter hit zero); we must restore the guest PC to the address
463 * of the start of the TB.
464 */
465 CPUClass *cc = cpu->cc;
466 const TCGCPUOps *tcg_ops = cc->tcg_ops;
467
468 if (tcg_ops->synchronize_from_tb) {
469 tcg_ops->synchronize_from_tb(cpu, last_tb);
470 } else {
471 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL));
472 assert(cc->set_pc);
473 cc->set_pc(cpu, last_tb->pc);
474 }
475 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
476 vaddr pc = log_pc(cpu, last_tb);
477 if (qemu_log_in_addr_range(pc)) {
478 qemu_log("Stopped execution of TB chain before %p [%016"
479 VADDR_PRIx "] %s\n",
480 last_tb->tc.ptr, pc, lookup_symbol(pc));
481 }
482 }
483 }
484
485 /*
486 * If gdb single-step, and we haven't raised another exception,
487 * raise a debug exception. Single-step with another exception
488 * is handled in cpu_handle_exception.
489 */
490 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
491 cpu->exception_index = EXCP_DEBUG;
492 cpu_loop_exit(cpu);
493 }
494
495 return last_tb;
496 }
497
498
499 static void cpu_exec_enter(CPUState *cpu)
500 {
501 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
502
503 if (tcg_ops->cpu_exec_enter) {
504 tcg_ops->cpu_exec_enter(cpu);
505 }
506 }
507
508 static void cpu_exec_exit(CPUState *cpu)
509 {
510 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
511
512 if (tcg_ops->cpu_exec_exit) {
513 tcg_ops->cpu_exec_exit(cpu);
514 }
515 }
516
517 static void cpu_exec_longjmp_cleanup(CPUState *cpu)
518 {
519 /* Non-buggy compilers preserve this; assert the correct value. */
520 g_assert(cpu == current_cpu);
521
522 #ifdef CONFIG_USER_ONLY
523 clear_helper_retaddr();
524 if (have_mmap_lock()) {
525 mmap_unlock();
526 }
527 #else
528 /*
529 * For softmmu, a tlb_fill fault during translation will land here,
530 * and we need to release any page locks held. In system mode we
531 * have one tcg_ctx per thread, so we know it was this cpu doing
532 * the translation.
533 *
534 * Alternative 1: Install a cleanup to be called via an exception
535 * handling safe longjmp. It seems plausible that all our hosts
536 * support such a thing. We'd have to properly register unwind info
537 * for the JIT for EH, rather that just for GDB.
538 *
539 * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to
540 * capture the cpu_loop_exit longjmp, perform the cleanup, and
541 * jump again to arrive here.
542 */
543 if (tcg_ctx->gen_tb) {
544 tb_unlock_pages(tcg_ctx->gen_tb);
545 tcg_ctx->gen_tb = NULL;
546 }
547 #endif
548 if (bql_locked()) {
549 bql_unlock();
550 }
551 assert_no_pages_locked();
552 }
553
554 void cpu_exec_step_atomic(CPUState *cpu)
555 {
556 CPUArchState *env = cpu_env(cpu);
557 TranslationBlock *tb;
558 vaddr pc;
559 uint64_t cs_base;
560 uint32_t flags, cflags;
561 int tb_exit;
562
563 if (sigsetjmp(cpu->jmp_env, 0) == 0) {
564 start_exclusive();
565 g_assert(cpu == current_cpu);
566 g_assert(!cpu->running);
567 cpu->running = true;
568
569 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
570
571 cflags = curr_cflags(cpu);
572 /* Execute in a serial context. */
573 cflags &= ~CF_PARALLEL;
574 /* After 1 insn, return and release the exclusive lock. */
575 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
576 /*
577 * No need to check_for_breakpoints here.
578 * We only arrive in cpu_exec_step_atomic after beginning execution
579 * of an insn that includes an atomic operation we can't handle.
580 * Any breakpoint for this insn will have been recognized earlier.
581 */
582
583 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
584 if (tb == NULL) {
585 mmap_lock();
586 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
587 mmap_unlock();
588 }
589
590 cpu_exec_enter(cpu);
591 /* execute the generated code */
592 trace_exec_tb(tb, pc);
593 cpu_tb_exec(cpu, tb, &tb_exit);
594 cpu_exec_exit(cpu);
595 } else {
596 cpu_exec_longjmp_cleanup(cpu);
597 }
598
599 /*
600 * As we start the exclusive region before codegen we must still
601 * be in the region if we longjump out of either the codegen or
602 * the execution.
603 */
604 g_assert(cpu_in_exclusive_context(cpu));
605 cpu->running = false;
606 end_exclusive();
607 }
608
609 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
610 {
611 /*
612 * Get the rx view of the structure, from which we find the
613 * executable code address, and tb_target_set_jmp_target can
614 * produce a pc-relative displacement to jmp_target_addr[n].
615 */
616 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb);
617 uintptr_t offset = tb->jmp_insn_offset[n];
618 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset;
619 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
620
621 tb->jmp_target_addr[n] = addr;
622 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw);
623 }
624
625 static inline void tb_add_jump(TranslationBlock *tb, int n,
626 TranslationBlock *tb_next)
627 {
628 uintptr_t old;
629
630 qemu_thread_jit_write();
631 assert(n < ARRAY_SIZE(tb->jmp_list_next));
632 qemu_spin_lock(&tb_next->jmp_lock);
633
634 /* make sure the destination TB is valid */
635 if (tb_next->cflags & CF_INVALID) {
636 goto out_unlock_next;
637 }
638 /* Atomically claim the jump destination slot only if it was NULL */
639 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
640 (uintptr_t)tb_next);
641 if (old) {
642 goto out_unlock_next;
643 }
644
645 /* patch the native jump address */
646 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
647
648 /* add in TB jmp list */
649 tb->jmp_list_next[n] = tb_next->jmp_list_head;
650 tb_next->jmp_list_head = (uintptr_t)tb | n;
651
652 qemu_spin_unlock(&tb_next->jmp_lock);
653
654 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n",
655 tb->tc.ptr, n, tb_next->tc.ptr);
656 return;
657
658 out_unlock_next:
659 qemu_spin_unlock(&tb_next->jmp_lock);
660 return;
661 }
662
663 static inline bool cpu_handle_halt(CPUState *cpu)
664 {
665 #ifndef CONFIG_USER_ONLY
666 if (cpu->halted) {
667 #if defined(TARGET_I386)
668 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
669 X86CPU *x86_cpu = X86_CPU(cpu);
670 bql_lock();
671 apic_poll_irq(x86_cpu->apic_state);
672 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
673 bql_unlock();
674 }
675 #endif /* TARGET_I386 */
676 if (!cpu_has_work(cpu)) {
677 return true;
678 }
679
680 cpu->halted = 0;
681 }
682 #endif /* !CONFIG_USER_ONLY */
683
684 return false;
685 }
686
687 static inline void cpu_handle_debug_exception(CPUState *cpu)
688 {
689 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
690 CPUWatchpoint *wp;
691
692 if (!cpu->watchpoint_hit) {
693 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
694 wp->flags &= ~BP_WATCHPOINT_HIT;
695 }
696 }
697
698 if (tcg_ops->debug_excp_handler) {
699 tcg_ops->debug_excp_handler(cpu);
700 }
701 }
702
703 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
704 {
705 if (cpu->exception_index < 0) {
706 #ifndef CONFIG_USER_ONLY
707 if (replay_has_exception()
708 && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) {
709 /* Execute just one insn to trigger exception pending in the log */
710 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
711 | CF_NOIRQ | 1;
712 }
713 #endif
714 return false;
715 }
716
717 if (cpu->exception_index >= EXCP_INTERRUPT) {
718 /* exit request from the cpu execution loop */
719 *ret = cpu->exception_index;
720 if (*ret == EXCP_DEBUG) {
721 cpu_handle_debug_exception(cpu);
722 }
723 cpu->exception_index = -1;
724 return true;
725 }
726
727 #if defined(CONFIG_USER_ONLY)
728 /*
729 * If user mode only, we simulate a fake exception which will be
730 * handled outside the cpu execution loop.
731 */
732 #if defined(TARGET_I386)
733 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
734 tcg_ops->fake_user_interrupt(cpu);
735 #endif /* TARGET_I386 */
736 *ret = cpu->exception_index;
737 cpu->exception_index = -1;
738 return true;
739 #else
740 if (replay_exception()) {
741 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
742
743 bql_lock();
744 tcg_ops->do_interrupt(cpu);
745 bql_unlock();
746 cpu->exception_index = -1;
747
748 if (unlikely(cpu->singlestep_enabled)) {
749 /*
750 * After processing the exception, ensure an EXCP_DEBUG is
751 * raised when single-stepping so that GDB doesn't miss the
752 * next instruction.
753 */
754 *ret = EXCP_DEBUG;
755 cpu_handle_debug_exception(cpu);
756 return true;
757 }
758 } else if (!replay_has_interrupt()) {
759 /* give a chance to iothread in replay mode */
760 *ret = EXCP_INTERRUPT;
761 return true;
762 }
763 #endif
764
765 return false;
766 }
767
768 #ifndef CONFIG_USER_ONLY
769 /*
770 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
771 * "real" interrupt event later. It does not need to be recorded for
772 * replay purposes.
773 */
774 static inline bool need_replay_interrupt(CPUState *cpu, int interrupt_request)
775 {
776 #if defined(TARGET_I386)
777 return !(interrupt_request & CPU_INTERRUPT_POLL);
778 #else
779 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
780 return !tcg_ops->need_replay_interrupt
781 || tcg_ops->need_replay_interrupt(interrupt_request);
782 #endif
783 }
784 #endif /* !CONFIG_USER_ONLY */
785
786 static inline bool icount_exit_request(CPUState *cpu)
787 {
788 if (!icount_enabled()) {
789 return false;
790 }
791 if (cpu->cflags_next_tb != -1 && !(cpu->cflags_next_tb & CF_USE_ICOUNT)) {
792 return false;
793 }
794 return cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0;
795 }
796
797 static inline bool cpu_handle_interrupt(CPUState *cpu,
798 TranslationBlock **last_tb)
799 {
800 /*
801 * If we have requested custom cflags with CF_NOIRQ we should
802 * skip checking here. Any pending interrupts will get picked up
803 * by the next TB we execute under normal cflags.
804 */
805 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
806 return false;
807 }
808
809 /* Clear the interrupt flag now since we're processing
810 * cpu->interrupt_request and cpu->exit_request.
811 * Ensure zeroing happens before reading cpu->exit_request or
812 * cpu->interrupt_request (see also smp_wmb in cpu_exit())
813 */
814 qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0);
815
816 if (unlikely(qatomic_read(&cpu->interrupt_request))) {
817 int interrupt_request;
818 bql_lock();
819 interrupt_request = cpu->interrupt_request;
820 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
821 /* Mask out external interrupts for this step. */
822 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
823 }
824 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
825 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
826 cpu->exception_index = EXCP_DEBUG;
827 bql_unlock();
828 return true;
829 }
830 #if !defined(CONFIG_USER_ONLY)
831 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
832 /* Do nothing */
833 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
834 replay_interrupt();
835 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
836 cpu->halted = 1;
837 cpu->exception_index = EXCP_HLT;
838 bql_unlock();
839 return true;
840 }
841 #if defined(TARGET_I386)
842 else if (interrupt_request & CPU_INTERRUPT_INIT) {
843 X86CPU *x86_cpu = X86_CPU(cpu);
844 CPUArchState *env = &x86_cpu->env;
845 replay_interrupt();
846 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
847 do_cpu_init(x86_cpu);
848 cpu->exception_index = EXCP_HALTED;
849 bql_unlock();
850 return true;
851 }
852 #else
853 else if (interrupt_request & CPU_INTERRUPT_RESET) {
854 replay_interrupt();
855 cpu_reset(cpu);
856 bql_unlock();
857 return true;
858 }
859 #endif /* !TARGET_I386 */
860 /* The target hook has 3 exit conditions:
861 False when the interrupt isn't processed,
862 True when it is, and we should restart on a new TB,
863 and via longjmp via cpu_loop_exit. */
864 else {
865 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
866
867 if (tcg_ops->cpu_exec_interrupt &&
868 tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
869 if (need_replay_interrupt(cpu, interrupt_request)) {
870 replay_interrupt();
871 }
872 /*
873 * After processing the interrupt, ensure an EXCP_DEBUG is
874 * raised when single-stepping so that GDB doesn't miss the
875 * next instruction.
876 */
877 if (unlikely(cpu->singlestep_enabled)) {
878 cpu->exception_index = EXCP_DEBUG;
879 bql_unlock();
880 return true;
881 }
882 cpu->exception_index = -1;
883 *last_tb = NULL;
884 }
885 /* The target hook may have updated the 'cpu->interrupt_request';
886 * reload the 'interrupt_request' value */
887 interrupt_request = cpu->interrupt_request;
888 }
889 #endif /* !CONFIG_USER_ONLY */
890 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
891 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
892 /* ensure that no TB jump will be modified as
893 the program flow was changed */
894 *last_tb = NULL;
895 }
896
897 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
898 bql_unlock();
899 }
900
901 /* Finally, check if we need to exit to the main loop. */
902 if (unlikely(qatomic_read(&cpu->exit_request)) || icount_exit_request(cpu)) {
903 qatomic_set(&cpu->exit_request, 0);
904 if (cpu->exception_index == -1) {
905 cpu->exception_index = EXCP_INTERRUPT;
906 }
907 return true;
908 }
909
910 return false;
911 }
912
913 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
914 vaddr pc, TranslationBlock **last_tb,
915 int *tb_exit)
916 {
917 int32_t insns_left;
918
919 trace_exec_tb(tb, pc);
920 tb = cpu_tb_exec(cpu, tb, tb_exit);
921 if (*tb_exit != TB_EXIT_REQUESTED) {
922 *last_tb = tb;
923 return;
924 }
925
926 *last_tb = NULL;
927 insns_left = qatomic_read(&cpu->neg.icount_decr.u32);
928 if (insns_left < 0) {
929 /* Something asked us to stop executing chained TBs; just
930 * continue round the main loop. Whatever requested the exit
931 * will also have set something else (eg exit_request or
932 * interrupt_request) which will be handled by
933 * cpu_handle_interrupt. cpu_handle_interrupt will also
934 * clear cpu->icount_decr.u16.high.
935 */
936 return;
937 }
938
939 /* Instruction counter expired. */
940 assert(icount_enabled());
941 #ifndef CONFIG_USER_ONLY
942 /* Ensure global icount has gone forward */
943 icount_update(cpu);
944 /* Refill decrementer and continue execution. */
945 insns_left = MIN(0xffff, cpu->icount_budget);
946 cpu->neg.icount_decr.u16.low = insns_left;
947 cpu->icount_extra = cpu->icount_budget - insns_left;
948
949 /*
950 * If the next tb has more instructions than we have left to
951 * execute we need to ensure we find/generate a TB with exactly
952 * insns_left instructions in it.
953 */
954 if (insns_left > 0 && insns_left < tb->icount) {
955 assert(insns_left <= CF_COUNT_MASK);
956 assert(cpu->icount_extra == 0);
957 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
958 }
959 #endif
960 }
961
962 /* main execution loop */
963
964 static int __attribute__((noinline))
965 cpu_exec_loop(CPUState *cpu, SyncClocks *sc)
966 {
967 int ret;
968
969 /* if an exception is pending, we execute it here */
970 while (!cpu_handle_exception(cpu, &ret)) {
971 TranslationBlock *last_tb = NULL;
972 int tb_exit = 0;
973
974 while (!cpu_handle_interrupt(cpu, &last_tb)) {
975 TranslationBlock *tb;
976 vaddr pc;
977 uint64_t cs_base;
978 uint32_t flags, cflags;
979
980 cpu_get_tb_cpu_state(cpu_env(cpu), &pc, &cs_base, &flags);
981
982 /*
983 * When requested, use an exact setting for cflags for the next
984 * execution. This is used for icount, precise smc, and stop-
985 * after-access watchpoints. Since this request should never
986 * have CF_INVALID set, -1 is a convenient invalid value that
987 * does not require tcg headers for cpu_common_reset.
988 */
989 cflags = cpu->cflags_next_tb;
990 if (cflags == -1) {
991 cflags = curr_cflags(cpu);
992 } else {
993 cpu->cflags_next_tb = -1;
994 }
995
996 if (check_for_breakpoints(cpu, pc, &cflags)) {
997 break;
998 }
999
1000 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
1001 if (tb == NULL) {
1002 CPUJumpCache *jc;
1003 uint32_t h;
1004
1005 mmap_lock();
1006 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
1007 mmap_unlock();
1008
1009 /*
1010 * We add the TB in the virtual pc hash table
1011 * for the fast lookup
1012 */
1013 h = tb_jmp_cache_hash_func(pc);
1014 jc = cpu->tb_jmp_cache;
1015 jc->array[h].pc = pc;
1016 qatomic_set(&jc->array[h].tb, tb);
1017 }
1018
1019 #ifndef CONFIG_USER_ONLY
1020 /*
1021 * We don't take care of direct jumps when address mapping
1022 * changes in system emulation. So it's not safe to make a
1023 * direct jump to a TB spanning two pages because the mapping
1024 * for the second page can change.
1025 */
1026 if (tb_page_addr1(tb) != -1) {
1027 last_tb = NULL;
1028 }
1029 #endif
1030 /* See if we can patch the calling TB. */
1031 if (last_tb) {
1032 tb_add_jump(last_tb, tb_exit, tb);
1033 }
1034
1035 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit);
1036
1037 /* Try to align the host and virtual clocks
1038 if the guest is in advance */
1039 align_clocks(sc, cpu);
1040 }
1041 }
1042 return ret;
1043 }
1044
1045 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc)
1046 {
1047 /* Prepare setjmp context for exception handling. */
1048 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) {
1049 cpu_exec_longjmp_cleanup(cpu);
1050 }
1051
1052 return cpu_exec_loop(cpu, sc);
1053 }
1054
1055 int cpu_exec(CPUState *cpu)
1056 {
1057 int ret;
1058 SyncClocks sc = { 0 };
1059
1060 /* replay_interrupt may need current_cpu */
1061 current_cpu = cpu;
1062
1063 if (cpu_handle_halt(cpu)) {
1064 return EXCP_HALTED;
1065 }
1066
1067 RCU_READ_LOCK_GUARD();
1068 cpu_exec_enter(cpu);
1069
1070 /*
1071 * Calculate difference between guest clock and host clock.
1072 * This delay includes the delay of the last cycle, so
1073 * what we have to do is sleep until it is 0. As for the
1074 * advance/delay we gain here, we try to fix it next time.
1075 */
1076 init_delay_params(&sc, cpu);
1077
1078 ret = cpu_exec_setjmp(cpu, &sc);
1079
1080 cpu_exec_exit(cpu);
1081 return ret;
1082 }
1083
1084 bool tcg_exec_realizefn(CPUState *cpu, Error **errp)
1085 {
1086 static bool tcg_target_initialized;
1087
1088 if (!tcg_target_initialized) {
1089 cpu->cc->tcg_ops->initialize();
1090 tcg_target_initialized = true;
1091 }
1092
1093 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1);
1094 tlb_init(cpu);
1095 #ifndef CONFIG_USER_ONLY
1096 tcg_iommu_init_notifier_list(cpu);
1097 #endif /* !CONFIG_USER_ONLY */
1098 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */
1099
1100 return true;
1101 }
1102
1103 /* undo the initializations in reverse order */
1104 void tcg_exec_unrealizefn(CPUState *cpu)
1105 {
1106 #ifndef CONFIG_USER_ONLY
1107 tcg_iommu_free_notifier_list(cpu);
1108 #endif /* !CONFIG_USER_ONLY */
1109
1110 tlb_destroy(cpu);
1111 g_free_rcu(cpu->tb_jmp_cache, rcu);
1112 }