]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/cpu-exec.c
9c857eeb077157942f997690c85b356670515d26
[mirror_qemu.git] / accel / tcg / cpu-exec.c
1 /*
2 * emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/qemu-print.h"
22 #include "qapi/error.h"
23 #include "qapi/qapi-commands-machine.h"
24 #include "qapi/type-helpers.h"
25 #include "hw/core/tcg-cpu-ops.h"
26 #include "trace.h"
27 #include "disas/disas.h"
28 #include "exec/exec-all.h"
29 #include "tcg/tcg.h"
30 #include "qemu/atomic.h"
31 #include "qemu/compiler.h"
32 #include "qemu/timer.h"
33 #include "qemu/rcu.h"
34 #include "exec/log.h"
35 #include "qemu/main-loop.h"
36 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
37 #include "hw/i386/apic.h"
38 #endif
39 #include "sysemu/cpus.h"
40 #include "exec/cpu-all.h"
41 #include "sysemu/cpu-timers.h"
42 #include "sysemu/replay.h"
43 #include "sysemu/tcg.h"
44 #include "exec/helper-proto.h"
45 #include "tb-jmp-cache.h"
46 #include "tb-hash.h"
47 #include "tb-context.h"
48 #include "internal.h"
49
50 /* -icount align implementation. */
51
52 typedef struct SyncClocks {
53 int64_t diff_clk;
54 int64_t last_cpu_icount;
55 int64_t realtime_clock;
56 } SyncClocks;
57
58 #if !defined(CONFIG_USER_ONLY)
59 /* Allow the guest to have a max 3ms advance.
60 * The difference between the 2 clocks could therefore
61 * oscillate around 0.
62 */
63 #define VM_CLOCK_ADVANCE 3000000
64 #define THRESHOLD_REDUCE 1.5
65 #define MAX_DELAY_PRINT_RATE 2000000000LL
66 #define MAX_NB_PRINTS 100
67
68 static int64_t max_delay;
69 static int64_t max_advance;
70
71 static void align_clocks(SyncClocks *sc, CPUState *cpu)
72 {
73 int64_t cpu_icount;
74
75 if (!icount_align_option) {
76 return;
77 }
78
79 cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
80 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
81 sc->last_cpu_icount = cpu_icount;
82
83 if (sc->diff_clk > VM_CLOCK_ADVANCE) {
84 #ifndef _WIN32
85 struct timespec sleep_delay, rem_delay;
86 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
87 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
88 if (nanosleep(&sleep_delay, &rem_delay) < 0) {
89 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
90 } else {
91 sc->diff_clk = 0;
92 }
93 #else
94 Sleep(sc->diff_clk / SCALE_MS);
95 sc->diff_clk = 0;
96 #endif
97 }
98 }
99
100 static void print_delay(const SyncClocks *sc)
101 {
102 static float threshold_delay;
103 static int64_t last_realtime_clock;
104 static int nb_prints;
105
106 if (icount_align_option &&
107 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
108 nb_prints < MAX_NB_PRINTS) {
109 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
110 (-sc->diff_clk / (float)1000000000LL <
111 (threshold_delay - THRESHOLD_REDUCE))) {
112 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
113 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
114 threshold_delay - 1,
115 threshold_delay);
116 nb_prints++;
117 last_realtime_clock = sc->realtime_clock;
118 }
119 }
120 }
121
122 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
123 {
124 if (!icount_align_option) {
125 return;
126 }
127 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
128 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
129 sc->last_cpu_icount
130 = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
131 if (sc->diff_clk < max_delay) {
132 max_delay = sc->diff_clk;
133 }
134 if (sc->diff_clk > max_advance) {
135 max_advance = sc->diff_clk;
136 }
137
138 /* Print every 2s max if the guest is late. We limit the number
139 of printed messages to NB_PRINT_MAX(currently 100) */
140 print_delay(sc);
141 }
142 #else
143 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
144 {
145 }
146
147 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
148 {
149 }
150 #endif /* CONFIG USER ONLY */
151
152 uint32_t curr_cflags(CPUState *cpu)
153 {
154 uint32_t cflags = cpu->tcg_cflags;
155
156 /*
157 * Record gdb single-step. We should be exiting the TB by raising
158 * EXCP_DEBUG, but to simplify other tests, disable chaining too.
159 *
160 * For singlestep and -d nochain, suppress goto_tb so that
161 * we can log -d cpu,exec after every TB.
162 */
163 if (unlikely(cpu->singlestep_enabled)) {
164 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
165 } else if (singlestep) {
166 cflags |= CF_NO_GOTO_TB | 1;
167 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
168 cflags |= CF_NO_GOTO_TB;
169 }
170
171 return cflags;
172 }
173
174 struct tb_desc {
175 target_ulong pc;
176 target_ulong cs_base;
177 CPUArchState *env;
178 tb_page_addr_t page_addr0;
179 uint32_t flags;
180 uint32_t cflags;
181 uint32_t trace_vcpu_dstate;
182 };
183
184 static bool tb_lookup_cmp(const void *p, const void *d)
185 {
186 const TranslationBlock *tb = p;
187 const struct tb_desc *desc = d;
188
189 if ((TARGET_TB_PCREL || tb_pc(tb) == desc->pc) &&
190 tb_page_addr0(tb) == desc->page_addr0 &&
191 tb->cs_base == desc->cs_base &&
192 tb->flags == desc->flags &&
193 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
194 tb_cflags(tb) == desc->cflags) {
195 /* check next page if needed */
196 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb);
197 if (tb_phys_page1 == -1) {
198 return true;
199 } else {
200 tb_page_addr_t phys_page1;
201 target_ulong virt_page1;
202
203 /*
204 * We know that the first page matched, and an otherwise valid TB
205 * encountered an incomplete instruction at the end of that page,
206 * therefore we know that generating a new TB from the current PC
207 * must also require reading from the next page -- even if the
208 * second pages do not match, and therefore the resulting insn
209 * is different for the new TB. Therefore any exception raised
210 * here by the faulting lookup is not premature.
211 */
212 virt_page1 = TARGET_PAGE_ALIGN(desc->pc);
213 phys_page1 = get_page_addr_code(desc->env, virt_page1);
214 if (tb_phys_page1 == phys_page1) {
215 return true;
216 }
217 }
218 }
219 return false;
220 }
221
222 static TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
223 target_ulong cs_base, uint32_t flags,
224 uint32_t cflags)
225 {
226 tb_page_addr_t phys_pc;
227 struct tb_desc desc;
228 uint32_t h;
229
230 desc.env = cpu->env_ptr;
231 desc.cs_base = cs_base;
232 desc.flags = flags;
233 desc.cflags = cflags;
234 desc.trace_vcpu_dstate = *cpu->trace_dstate;
235 desc.pc = pc;
236 phys_pc = get_page_addr_code(desc.env, pc);
237 if (phys_pc == -1) {
238 return NULL;
239 }
240 desc.page_addr0 = phys_pc;
241 h = tb_hash_func(phys_pc, (TARGET_TB_PCREL ? 0 : pc),
242 flags, cflags, *cpu->trace_dstate);
243 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
244 }
245
246 /* Might cause an exception, so have a longjmp destination ready */
247 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc,
248 target_ulong cs_base,
249 uint32_t flags, uint32_t cflags)
250 {
251 TranslationBlock *tb;
252 CPUJumpCache *jc;
253 uint32_t hash;
254
255 /* we should never be trying to look up an INVALID tb */
256 tcg_debug_assert(!(cflags & CF_INVALID));
257
258 hash = tb_jmp_cache_hash_func(pc);
259 jc = cpu->tb_jmp_cache;
260 tb = tb_jmp_cache_get_tb(jc, hash);
261
262 if (likely(tb &&
263 tb_jmp_cache_get_pc(jc, hash, tb) == pc &&
264 tb->cs_base == cs_base &&
265 tb->flags == flags &&
266 tb->trace_vcpu_dstate == *cpu->trace_dstate &&
267 tb_cflags(tb) == cflags)) {
268 return tb;
269 }
270 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
271 if (tb == NULL) {
272 return NULL;
273 }
274 tb_jmp_cache_set(jc, hash, tb, pc);
275 return tb;
276 }
277
278 static void log_cpu_exec(target_ulong pc, CPUState *cpu,
279 const TranslationBlock *tb)
280 {
281 if (qemu_log_in_addr_range(pc)) {
282 qemu_log_mask(CPU_LOG_EXEC,
283 "Trace %d: %p [" TARGET_FMT_lx
284 "/" TARGET_FMT_lx "/%08x/%08x] %s\n",
285 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
286 tb->flags, tb->cflags, lookup_symbol(pc));
287
288 #if defined(DEBUG_DISAS)
289 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
290 FILE *logfile = qemu_log_trylock();
291 if (logfile) {
292 int flags = 0;
293
294 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
295 flags |= CPU_DUMP_FPU;
296 }
297 #if defined(TARGET_I386)
298 flags |= CPU_DUMP_CCOP;
299 #endif
300 cpu_dump_state(cpu, logfile, flags);
301 qemu_log_unlock(logfile);
302 }
303 }
304 #endif /* DEBUG_DISAS */
305 }
306 }
307
308 static bool check_for_breakpoints_slow(CPUState *cpu, target_ulong pc,
309 uint32_t *cflags)
310 {
311 CPUBreakpoint *bp;
312 bool match_page = false;
313
314 /*
315 * Singlestep overrides breakpoints.
316 * This requirement is visible in the record-replay tests, where
317 * we would fail to make forward progress in reverse-continue.
318 *
319 * TODO: gdb singlestep should only override gdb breakpoints,
320 * so that one could (gdb) singlestep into the guest kernel's
321 * architectural breakpoint handler.
322 */
323 if (cpu->singlestep_enabled) {
324 return false;
325 }
326
327 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
328 /*
329 * If we have an exact pc match, trigger the breakpoint.
330 * Otherwise, note matches within the page.
331 */
332 if (pc == bp->pc) {
333 bool match_bp = false;
334
335 if (bp->flags & BP_GDB) {
336 match_bp = true;
337 } else if (bp->flags & BP_CPU) {
338 #ifdef CONFIG_USER_ONLY
339 g_assert_not_reached();
340 #else
341 CPUClass *cc = CPU_GET_CLASS(cpu);
342 assert(cc->tcg_ops->debug_check_breakpoint);
343 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu);
344 #endif
345 }
346
347 if (match_bp) {
348 cpu->exception_index = EXCP_DEBUG;
349 return true;
350 }
351 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
352 match_page = true;
353 }
354 }
355
356 /*
357 * Within the same page as a breakpoint, single-step,
358 * returning to helper_lookup_tb_ptr after each insn looking
359 * for the actual breakpoint.
360 *
361 * TODO: Perhaps better to record all of the TBs associated
362 * with a given virtual page that contains a breakpoint, and
363 * then invalidate them when a new overlapping breakpoint is
364 * set on the page. Non-overlapping TBs would not be
365 * invalidated, nor would any TB need to be invalidated as
366 * breakpoints are removed.
367 */
368 if (match_page) {
369 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1;
370 }
371 return false;
372 }
373
374 static inline bool check_for_breakpoints(CPUState *cpu, target_ulong pc,
375 uint32_t *cflags)
376 {
377 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) &&
378 check_for_breakpoints_slow(cpu, pc, cflags);
379 }
380
381 /**
382 * helper_lookup_tb_ptr: quick check for next tb
383 * @env: current cpu state
384 *
385 * Look for an existing TB matching the current cpu state.
386 * If found, return the code pointer. If not found, return
387 * the tcg epilogue so that we return into cpu_tb_exec.
388 */
389 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
390 {
391 CPUState *cpu = env_cpu(env);
392 TranslationBlock *tb;
393 target_ulong cs_base, pc;
394 uint32_t flags, cflags;
395
396 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
397
398 cflags = curr_cflags(cpu);
399 if (check_for_breakpoints(cpu, pc, &cflags)) {
400 cpu_loop_exit(cpu);
401 }
402
403 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
404 if (tb == NULL) {
405 return tcg_code_gen_epilogue;
406 }
407
408 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
409 log_cpu_exec(pc, cpu, tb);
410 }
411
412 return tb->tc.ptr;
413 }
414
415 /* Execute a TB, and fix up the CPU state afterwards if necessary */
416 /*
417 * Disable CFI checks.
418 * TCG creates binary blobs at runtime, with the transformed code.
419 * A TB is a blob of binary code, created at runtime and called with an
420 * indirect function call. Since such function did not exist at compile time,
421 * the CFI runtime has no way to verify its signature and would fail.
422 * TCG is not considered a security-sensitive part of QEMU so this does not
423 * affect the impact of CFI in environment with high security requirements
424 */
425 static inline TranslationBlock * QEMU_DISABLE_CFI
426 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
427 {
428 CPUArchState *env = cpu->env_ptr;
429 uintptr_t ret;
430 TranslationBlock *last_tb;
431 const void *tb_ptr = itb->tc.ptr;
432
433 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
434 log_cpu_exec(log_pc(cpu, itb), cpu, itb);
435 }
436
437 qemu_thread_jit_execute();
438 ret = tcg_qemu_tb_exec(env, tb_ptr);
439 cpu->can_do_io = 1;
440 /*
441 * TODO: Delay swapping back to the read-write region of the TB
442 * until we actually need to modify the TB. The read-only copy,
443 * coming from the rx region, shares the same host TLB entry as
444 * the code that executed the exit_tb opcode that arrived here.
445 * If we insist on touching both the RX and the RW pages, we
446 * double the host TLB pressure.
447 */
448 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
449 *tb_exit = ret & TB_EXIT_MASK;
450
451 trace_exec_tb_exit(last_tb, *tb_exit);
452
453 if (*tb_exit > TB_EXIT_IDX1) {
454 /* We didn't start executing this TB (eg because the instruction
455 * counter hit zero); we must restore the guest PC to the address
456 * of the start of the TB.
457 */
458 CPUClass *cc = CPU_GET_CLASS(cpu);
459
460 if (cc->tcg_ops->synchronize_from_tb) {
461 cc->tcg_ops->synchronize_from_tb(cpu, last_tb);
462 } else {
463 assert(!TARGET_TB_PCREL);
464 assert(cc->set_pc);
465 cc->set_pc(cpu, tb_pc(last_tb));
466 }
467 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
468 target_ulong pc = log_pc(cpu, last_tb);
469 if (qemu_log_in_addr_range(pc)) {
470 qemu_log("Stopped execution of TB chain before %p ["
471 TARGET_FMT_lx "] %s\n",
472 last_tb->tc.ptr, pc, lookup_symbol(pc));
473 }
474 }
475 }
476
477 /*
478 * If gdb single-step, and we haven't raised another exception,
479 * raise a debug exception. Single-step with another exception
480 * is handled in cpu_handle_exception.
481 */
482 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
483 cpu->exception_index = EXCP_DEBUG;
484 cpu_loop_exit(cpu);
485 }
486
487 return last_tb;
488 }
489
490
491 static void cpu_exec_enter(CPUState *cpu)
492 {
493 CPUClass *cc = CPU_GET_CLASS(cpu);
494
495 if (cc->tcg_ops->cpu_exec_enter) {
496 cc->tcg_ops->cpu_exec_enter(cpu);
497 }
498 }
499
500 static void cpu_exec_exit(CPUState *cpu)
501 {
502 CPUClass *cc = CPU_GET_CLASS(cpu);
503
504 if (cc->tcg_ops->cpu_exec_exit) {
505 cc->tcg_ops->cpu_exec_exit(cpu);
506 }
507 QEMU_PLUGIN_ASSERT(cpu->plugin_mem_cbs == NULL);
508 }
509
510 void cpu_exec_step_atomic(CPUState *cpu)
511 {
512 CPUArchState *env = cpu->env_ptr;
513 TranslationBlock *tb;
514 target_ulong cs_base, pc;
515 uint32_t flags, cflags;
516 int tb_exit;
517
518 if (sigsetjmp(cpu->jmp_env, 0) == 0) {
519 start_exclusive();
520 g_assert(cpu == current_cpu);
521 g_assert(!cpu->running);
522 cpu->running = true;
523
524 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
525
526 cflags = curr_cflags(cpu);
527 /* Execute in a serial context. */
528 cflags &= ~CF_PARALLEL;
529 /* After 1 insn, return and release the exclusive lock. */
530 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
531 /*
532 * No need to check_for_breakpoints here.
533 * We only arrive in cpu_exec_step_atomic after beginning execution
534 * of an insn that includes an atomic operation we can't handle.
535 * Any breakpoint for this insn will have been recognized earlier.
536 */
537
538 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
539 if (tb == NULL) {
540 mmap_lock();
541 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
542 mmap_unlock();
543 }
544
545 cpu_exec_enter(cpu);
546 /* execute the generated code */
547 trace_exec_tb(tb, pc);
548 cpu_tb_exec(cpu, tb, &tb_exit);
549 cpu_exec_exit(cpu);
550 } else {
551 #ifndef CONFIG_SOFTMMU
552 clear_helper_retaddr();
553 if (have_mmap_lock()) {
554 mmap_unlock();
555 }
556 #endif
557 if (qemu_mutex_iothread_locked()) {
558 qemu_mutex_unlock_iothread();
559 }
560 assert_no_pages_locked();
561 qemu_plugin_disable_mem_helpers(cpu);
562 }
563
564 /*
565 * As we start the exclusive region before codegen we must still
566 * be in the region if we longjump out of either the codegen or
567 * the execution.
568 */
569 g_assert(cpu_in_exclusive_context(cpu));
570 cpu->running = false;
571 end_exclusive();
572 }
573
574 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
575 {
576 /*
577 * Get the rx view of the structure, from which we find the
578 * executable code address, and tb_target_set_jmp_target can
579 * produce a pc-relative displacement to jmp_target_addr[n].
580 */
581 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb);
582 uintptr_t offset = tb->jmp_insn_offset[n];
583 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset;
584 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
585
586 tb->jmp_target_addr[n] = addr;
587 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw);
588 }
589
590 static inline void tb_add_jump(TranslationBlock *tb, int n,
591 TranslationBlock *tb_next)
592 {
593 uintptr_t old;
594
595 qemu_thread_jit_write();
596 assert(n < ARRAY_SIZE(tb->jmp_list_next));
597 qemu_spin_lock(&tb_next->jmp_lock);
598
599 /* make sure the destination TB is valid */
600 if (tb_next->cflags & CF_INVALID) {
601 goto out_unlock_next;
602 }
603 /* Atomically claim the jump destination slot only if it was NULL */
604 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
605 (uintptr_t)tb_next);
606 if (old) {
607 goto out_unlock_next;
608 }
609
610 /* patch the native jump address */
611 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
612
613 /* add in TB jmp list */
614 tb->jmp_list_next[n] = tb_next->jmp_list_head;
615 tb_next->jmp_list_head = (uintptr_t)tb | n;
616
617 qemu_spin_unlock(&tb_next->jmp_lock);
618
619 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n",
620 tb->tc.ptr, n, tb_next->tc.ptr);
621 return;
622
623 out_unlock_next:
624 qemu_spin_unlock(&tb_next->jmp_lock);
625 return;
626 }
627
628 static inline bool cpu_handle_halt(CPUState *cpu)
629 {
630 #ifndef CONFIG_USER_ONLY
631 if (cpu->halted) {
632 #if defined(TARGET_I386)
633 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
634 X86CPU *x86_cpu = X86_CPU(cpu);
635 qemu_mutex_lock_iothread();
636 apic_poll_irq(x86_cpu->apic_state);
637 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
638 qemu_mutex_unlock_iothread();
639 }
640 #endif /* TARGET_I386 */
641 if (!cpu_has_work(cpu)) {
642 return true;
643 }
644
645 cpu->halted = 0;
646 }
647 #endif /* !CONFIG_USER_ONLY */
648
649 return false;
650 }
651
652 static inline void cpu_handle_debug_exception(CPUState *cpu)
653 {
654 CPUClass *cc = CPU_GET_CLASS(cpu);
655 CPUWatchpoint *wp;
656
657 if (!cpu->watchpoint_hit) {
658 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
659 wp->flags &= ~BP_WATCHPOINT_HIT;
660 }
661 }
662
663 if (cc->tcg_ops->debug_excp_handler) {
664 cc->tcg_ops->debug_excp_handler(cpu);
665 }
666 }
667
668 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
669 {
670 if (cpu->exception_index < 0) {
671 #ifndef CONFIG_USER_ONLY
672 if (replay_has_exception()
673 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
674 /* Execute just one insn to trigger exception pending in the log */
675 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
676 | CF_NOIRQ | 1;
677 }
678 #endif
679 return false;
680 }
681 if (cpu->exception_index >= EXCP_INTERRUPT) {
682 /* exit request from the cpu execution loop */
683 *ret = cpu->exception_index;
684 if (*ret == EXCP_DEBUG) {
685 cpu_handle_debug_exception(cpu);
686 }
687 cpu->exception_index = -1;
688 return true;
689 } else {
690 #if defined(CONFIG_USER_ONLY)
691 /* if user mode only, we simulate a fake exception
692 which will be handled outside the cpu execution
693 loop */
694 #if defined(TARGET_I386)
695 CPUClass *cc = CPU_GET_CLASS(cpu);
696 cc->tcg_ops->fake_user_interrupt(cpu);
697 #endif /* TARGET_I386 */
698 *ret = cpu->exception_index;
699 cpu->exception_index = -1;
700 return true;
701 #else
702 if (replay_exception()) {
703 CPUClass *cc = CPU_GET_CLASS(cpu);
704 qemu_mutex_lock_iothread();
705 cc->tcg_ops->do_interrupt(cpu);
706 qemu_mutex_unlock_iothread();
707 cpu->exception_index = -1;
708
709 if (unlikely(cpu->singlestep_enabled)) {
710 /*
711 * After processing the exception, ensure an EXCP_DEBUG is
712 * raised when single-stepping so that GDB doesn't miss the
713 * next instruction.
714 */
715 *ret = EXCP_DEBUG;
716 cpu_handle_debug_exception(cpu);
717 return true;
718 }
719 } else if (!replay_has_interrupt()) {
720 /* give a chance to iothread in replay mode */
721 *ret = EXCP_INTERRUPT;
722 return true;
723 }
724 #endif
725 }
726
727 return false;
728 }
729
730 #ifndef CONFIG_USER_ONLY
731 /*
732 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
733 * "real" interrupt event later. It does not need to be recorded for
734 * replay purposes.
735 */
736 static inline bool need_replay_interrupt(int interrupt_request)
737 {
738 #if defined(TARGET_I386)
739 return !(interrupt_request & CPU_INTERRUPT_POLL);
740 #else
741 return true;
742 #endif
743 }
744 #endif /* !CONFIG_USER_ONLY */
745
746 static inline bool cpu_handle_interrupt(CPUState *cpu,
747 TranslationBlock **last_tb)
748 {
749 /*
750 * If we have requested custom cflags with CF_NOIRQ we should
751 * skip checking here. Any pending interrupts will get picked up
752 * by the next TB we execute under normal cflags.
753 */
754 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
755 return false;
756 }
757
758 /* Clear the interrupt flag now since we're processing
759 * cpu->interrupt_request and cpu->exit_request.
760 * Ensure zeroing happens before reading cpu->exit_request or
761 * cpu->interrupt_request (see also smp_wmb in cpu_exit())
762 */
763 qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0);
764
765 if (unlikely(qatomic_read(&cpu->interrupt_request))) {
766 int interrupt_request;
767 qemu_mutex_lock_iothread();
768 interrupt_request = cpu->interrupt_request;
769 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
770 /* Mask out external interrupts for this step. */
771 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
772 }
773 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
774 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
775 cpu->exception_index = EXCP_DEBUG;
776 qemu_mutex_unlock_iothread();
777 return true;
778 }
779 #if !defined(CONFIG_USER_ONLY)
780 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
781 /* Do nothing */
782 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
783 replay_interrupt();
784 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
785 cpu->halted = 1;
786 cpu->exception_index = EXCP_HLT;
787 qemu_mutex_unlock_iothread();
788 return true;
789 }
790 #if defined(TARGET_I386)
791 else if (interrupt_request & CPU_INTERRUPT_INIT) {
792 X86CPU *x86_cpu = X86_CPU(cpu);
793 CPUArchState *env = &x86_cpu->env;
794 replay_interrupt();
795 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
796 do_cpu_init(x86_cpu);
797 cpu->exception_index = EXCP_HALTED;
798 qemu_mutex_unlock_iothread();
799 return true;
800 }
801 #else
802 else if (interrupt_request & CPU_INTERRUPT_RESET) {
803 replay_interrupt();
804 cpu_reset(cpu);
805 qemu_mutex_unlock_iothread();
806 return true;
807 }
808 #endif /* !TARGET_I386 */
809 /* The target hook has 3 exit conditions:
810 False when the interrupt isn't processed,
811 True when it is, and we should restart on a new TB,
812 and via longjmp via cpu_loop_exit. */
813 else {
814 CPUClass *cc = CPU_GET_CLASS(cpu);
815
816 if (cc->tcg_ops->cpu_exec_interrupt &&
817 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
818 if (need_replay_interrupt(interrupt_request)) {
819 replay_interrupt();
820 }
821 /*
822 * After processing the interrupt, ensure an EXCP_DEBUG is
823 * raised when single-stepping so that GDB doesn't miss the
824 * next instruction.
825 */
826 if (unlikely(cpu->singlestep_enabled)) {
827 cpu->exception_index = EXCP_DEBUG;
828 qemu_mutex_unlock_iothread();
829 return true;
830 }
831 cpu->exception_index = -1;
832 *last_tb = NULL;
833 }
834 /* The target hook may have updated the 'cpu->interrupt_request';
835 * reload the 'interrupt_request' value */
836 interrupt_request = cpu->interrupt_request;
837 }
838 #endif /* !CONFIG_USER_ONLY */
839 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
840 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
841 /* ensure that no TB jump will be modified as
842 the program flow was changed */
843 *last_tb = NULL;
844 }
845
846 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
847 qemu_mutex_unlock_iothread();
848 }
849
850 /* Finally, check if we need to exit to the main loop. */
851 if (unlikely(qatomic_read(&cpu->exit_request))
852 || (icount_enabled()
853 && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT)
854 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
855 qatomic_set(&cpu->exit_request, 0);
856 if (cpu->exception_index == -1) {
857 cpu->exception_index = EXCP_INTERRUPT;
858 }
859 return true;
860 }
861
862 return false;
863 }
864
865 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
866 target_ulong pc,
867 TranslationBlock **last_tb, int *tb_exit)
868 {
869 int32_t insns_left;
870
871 trace_exec_tb(tb, pc);
872 tb = cpu_tb_exec(cpu, tb, tb_exit);
873 if (*tb_exit != TB_EXIT_REQUESTED) {
874 *last_tb = tb;
875 return;
876 }
877
878 *last_tb = NULL;
879 insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32);
880 if (insns_left < 0) {
881 /* Something asked us to stop executing chained TBs; just
882 * continue round the main loop. Whatever requested the exit
883 * will also have set something else (eg exit_request or
884 * interrupt_request) which will be handled by
885 * cpu_handle_interrupt. cpu_handle_interrupt will also
886 * clear cpu->icount_decr.u16.high.
887 */
888 return;
889 }
890
891 /* Instruction counter expired. */
892 assert(icount_enabled());
893 #ifndef CONFIG_USER_ONLY
894 /* Ensure global icount has gone forward */
895 icount_update(cpu);
896 /* Refill decrementer and continue execution. */
897 insns_left = MIN(0xffff, cpu->icount_budget);
898 cpu_neg(cpu)->icount_decr.u16.low = insns_left;
899 cpu->icount_extra = cpu->icount_budget - insns_left;
900
901 /*
902 * If the next tb has more instructions than we have left to
903 * execute we need to ensure we find/generate a TB with exactly
904 * insns_left instructions in it.
905 */
906 if (insns_left > 0 && insns_left < tb->icount) {
907 assert(insns_left <= CF_COUNT_MASK);
908 assert(cpu->icount_extra == 0);
909 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
910 }
911 #endif
912 }
913
914 /* main execution loop */
915
916 static int __attribute__((noinline))
917 cpu_exec_loop(CPUState *cpu, SyncClocks *sc)
918 {
919 int ret;
920
921 /* if an exception is pending, we execute it here */
922 while (!cpu_handle_exception(cpu, &ret)) {
923 TranslationBlock *last_tb = NULL;
924 int tb_exit = 0;
925
926 while (!cpu_handle_interrupt(cpu, &last_tb)) {
927 TranslationBlock *tb;
928 target_ulong cs_base, pc;
929 uint32_t flags, cflags;
930
931 cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags);
932
933 /*
934 * When requested, use an exact setting for cflags for the next
935 * execution. This is used for icount, precise smc, and stop-
936 * after-access watchpoints. Since this request should never
937 * have CF_INVALID set, -1 is a convenient invalid value that
938 * does not require tcg headers for cpu_common_reset.
939 */
940 cflags = cpu->cflags_next_tb;
941 if (cflags == -1) {
942 cflags = curr_cflags(cpu);
943 } else {
944 cpu->cflags_next_tb = -1;
945 }
946
947 if (check_for_breakpoints(cpu, pc, &cflags)) {
948 break;
949 }
950
951 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
952 if (tb == NULL) {
953 uint32_t h;
954
955 mmap_lock();
956 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
957 mmap_unlock();
958 /*
959 * We add the TB in the virtual pc hash table
960 * for the fast lookup
961 */
962 h = tb_jmp_cache_hash_func(pc);
963 tb_jmp_cache_set(cpu->tb_jmp_cache, h, tb, pc);
964 }
965
966 #ifndef CONFIG_USER_ONLY
967 /*
968 * We don't take care of direct jumps when address mapping
969 * changes in system emulation. So it's not safe to make a
970 * direct jump to a TB spanning two pages because the mapping
971 * for the second page can change.
972 */
973 if (tb_page_addr1(tb) != -1) {
974 last_tb = NULL;
975 }
976 #endif
977 /* See if we can patch the calling TB. */
978 if (last_tb) {
979 tb_add_jump(last_tb, tb_exit, tb);
980 }
981
982 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit);
983
984 QEMU_PLUGIN_ASSERT(cpu->plugin_mem_cbs == NULL);
985 /* Try to align the host and virtual clocks
986 if the guest is in advance */
987 align_clocks(sc, cpu);
988 }
989 }
990 return ret;
991 }
992
993 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc)
994 {
995 /* Prepare setjmp context for exception handling. */
996 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) {
997 /* Non-buggy compilers preserve this; assert the correct value. */
998 g_assert(cpu == current_cpu);
999
1000 #ifndef CONFIG_SOFTMMU
1001 clear_helper_retaddr();
1002 if (have_mmap_lock()) {
1003 mmap_unlock();
1004 }
1005 #endif
1006 if (qemu_mutex_iothread_locked()) {
1007 qemu_mutex_unlock_iothread();
1008 }
1009 qemu_plugin_disable_mem_helpers(cpu);
1010
1011 assert_no_pages_locked();
1012 }
1013
1014 return cpu_exec_loop(cpu, sc);
1015 }
1016
1017 int cpu_exec(CPUState *cpu)
1018 {
1019 int ret;
1020 SyncClocks sc = { 0 };
1021
1022 /* replay_interrupt may need current_cpu */
1023 current_cpu = cpu;
1024
1025 if (cpu_handle_halt(cpu)) {
1026 return EXCP_HALTED;
1027 }
1028
1029 rcu_read_lock();
1030 cpu_exec_enter(cpu);
1031
1032 /*
1033 * Calculate difference between guest clock and host clock.
1034 * This delay includes the delay of the last cycle, so
1035 * what we have to do is sleep until it is 0. As for the
1036 * advance/delay we gain here, we try to fix it next time.
1037 */
1038 init_delay_params(&sc, cpu);
1039
1040 ret = cpu_exec_setjmp(cpu, &sc);
1041
1042 cpu_exec_exit(cpu);
1043 rcu_read_unlock();
1044
1045 return ret;
1046 }
1047
1048 void tcg_exec_realizefn(CPUState *cpu, Error **errp)
1049 {
1050 static bool tcg_target_initialized;
1051 CPUClass *cc = CPU_GET_CLASS(cpu);
1052
1053 if (!tcg_target_initialized) {
1054 cc->tcg_ops->initialize();
1055 tcg_target_initialized = true;
1056 }
1057
1058 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1);
1059 tlb_init(cpu);
1060 #ifndef CONFIG_USER_ONLY
1061 tcg_iommu_init_notifier_list(cpu);
1062 #endif /* !CONFIG_USER_ONLY */
1063 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */
1064 }
1065
1066 /* undo the initializations in reverse order */
1067 void tcg_exec_unrealizefn(CPUState *cpu)
1068 {
1069 #ifndef CONFIG_USER_ONLY
1070 tcg_iommu_free_notifier_list(cpu);
1071 #endif /* !CONFIG_USER_ONLY */
1072
1073 tlb_destroy(cpu);
1074 g_free_rcu(cpu->tb_jmp_cache, rcu);
1075 }
1076
1077 #ifndef CONFIG_USER_ONLY
1078
1079 static void dump_drift_info(GString *buf)
1080 {
1081 if (!icount_enabled()) {
1082 return;
1083 }
1084
1085 g_string_append_printf(buf, "Host - Guest clock %"PRIi64" ms\n",
1086 (cpu_get_clock() - icount_get()) / SCALE_MS);
1087 if (icount_align_option) {
1088 g_string_append_printf(buf, "Max guest delay %"PRIi64" ms\n",
1089 -max_delay / SCALE_MS);
1090 g_string_append_printf(buf, "Max guest advance %"PRIi64" ms\n",
1091 max_advance / SCALE_MS);
1092 } else {
1093 g_string_append_printf(buf, "Max guest delay NA\n");
1094 g_string_append_printf(buf, "Max guest advance NA\n");
1095 }
1096 }
1097
1098 HumanReadableText *qmp_x_query_jit(Error **errp)
1099 {
1100 g_autoptr(GString) buf = g_string_new("");
1101
1102 if (!tcg_enabled()) {
1103 error_setg(errp, "JIT information is only available with accel=tcg");
1104 return NULL;
1105 }
1106
1107 dump_exec_info(buf);
1108 dump_drift_info(buf);
1109
1110 return human_readable_text_from_str(buf);
1111 }
1112
1113 HumanReadableText *qmp_x_query_opcount(Error **errp)
1114 {
1115 g_autoptr(GString) buf = g_string_new("");
1116
1117 if (!tcg_enabled()) {
1118 error_setg(errp, "Opcode count information is only available with accel=tcg");
1119 return NULL;
1120 }
1121
1122 tcg_dump_op_count(buf);
1123
1124 return human_readable_text_from_str(buf);
1125 }
1126
1127 #ifdef CONFIG_PROFILER
1128
1129 int64_t dev_time;
1130
1131 HumanReadableText *qmp_x_query_profile(Error **errp)
1132 {
1133 g_autoptr(GString) buf = g_string_new("");
1134 static int64_t last_cpu_exec_time;
1135 int64_t cpu_exec_time;
1136 int64_t delta;
1137
1138 cpu_exec_time = tcg_cpu_exec_time();
1139 delta = cpu_exec_time - last_cpu_exec_time;
1140
1141 g_string_append_printf(buf, "async time %" PRId64 " (%0.3f)\n",
1142 dev_time, dev_time / (double)NANOSECONDS_PER_SECOND);
1143 g_string_append_printf(buf, "qemu time %" PRId64 " (%0.3f)\n",
1144 delta, delta / (double)NANOSECONDS_PER_SECOND);
1145 last_cpu_exec_time = cpu_exec_time;
1146 dev_time = 0;
1147
1148 return human_readable_text_from_str(buf);
1149 }
1150 #else
1151 HumanReadableText *qmp_x_query_profile(Error **errp)
1152 {
1153 error_setg(errp, "Internal profiler not compiled");
1154 return NULL;
1155 }
1156 #endif
1157
1158 #endif /* !CONFIG_USER_ONLY */