]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/cputlb.c
trace: Split guest_mem_before
[mirror_qemu.git] / accel / tcg / cputlb.c
1 /*
2 * Common CPU TLB handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "tcg/tcg.h"
30 #include "qemu/error-report.h"
31 #include "exec/log.h"
32 #include "exec/helper-proto.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace/trace-root.h"
37 #include "tb-hash.h"
38 #include "internal.h"
39 #ifdef CONFIG_PLUGIN
40 #include "qemu/plugin-memory.h"
41 #endif
42
43 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
44 /* #define DEBUG_TLB */
45 /* #define DEBUG_TLB_LOG */
46
47 #ifdef DEBUG_TLB
48 # define DEBUG_TLB_GATE 1
49 # ifdef DEBUG_TLB_LOG
50 # define DEBUG_TLB_LOG_GATE 1
51 # else
52 # define DEBUG_TLB_LOG_GATE 0
53 # endif
54 #else
55 # define DEBUG_TLB_GATE 0
56 # define DEBUG_TLB_LOG_GATE 0
57 #endif
58
59 #define tlb_debug(fmt, ...) do { \
60 if (DEBUG_TLB_LOG_GATE) { \
61 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
62 ## __VA_ARGS__); \
63 } else if (DEBUG_TLB_GATE) { \
64 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
65 } \
66 } while (0)
67
68 #define assert_cpu_is_self(cpu) do { \
69 if (DEBUG_TLB_GATE) { \
70 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
71 } \
72 } while (0)
73
74 /* run_on_cpu_data.target_ptr should always be big enough for a
75 * target_ulong even on 32 bit builds */
76 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
77
78 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
79 */
80 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
81 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
82
83 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
84 {
85 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
86 }
87
88 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
89 {
90 return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
91 }
92
93 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
94 size_t max_entries)
95 {
96 desc->window_begin_ns = ns;
97 desc->window_max_entries = max_entries;
98 }
99
100 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
101 {
102 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
103
104 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
105 qatomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
106 }
107 }
108
109 static void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
110 {
111 /* Discard jump cache entries for any tb which might potentially
112 overlap the flushed page. */
113 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
114 tb_jmp_cache_clear_page(cpu, addr);
115 }
116
117 /**
118 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
119 * @desc: The CPUTLBDesc portion of the TLB
120 * @fast: The CPUTLBDescFast portion of the same TLB
121 *
122 * Called with tlb_lock_held.
123 *
124 * We have two main constraints when resizing a TLB: (1) we only resize it
125 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
126 * the array or unnecessarily flushing it), which means we do not control how
127 * frequently the resizing can occur; (2) we don't have access to the guest's
128 * future scheduling decisions, and therefore have to decide the magnitude of
129 * the resize based on past observations.
130 *
131 * In general, a memory-hungry process can benefit greatly from an appropriately
132 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
133 * we just have to make the TLB as large as possible; while an oversized TLB
134 * results in minimal TLB miss rates, it also takes longer to be flushed
135 * (flushes can be _very_ frequent), and the reduced locality can also hurt
136 * performance.
137 *
138 * To achieve near-optimal performance for all kinds of workloads, we:
139 *
140 * 1. Aggressively increase the size of the TLB when the use rate of the
141 * TLB being flushed is high, since it is likely that in the near future this
142 * memory-hungry process will execute again, and its memory hungriness will
143 * probably be similar.
144 *
145 * 2. Slowly reduce the size of the TLB as the use rate declines over a
146 * reasonably large time window. The rationale is that if in such a time window
147 * we have not observed a high TLB use rate, it is likely that we won't observe
148 * it in the near future. In that case, once a time window expires we downsize
149 * the TLB to match the maximum use rate observed in the window.
150 *
151 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
152 * since in that range performance is likely near-optimal. Recall that the TLB
153 * is direct mapped, so we want the use rate to be low (or at least not too
154 * high), since otherwise we are likely to have a significant amount of
155 * conflict misses.
156 */
157 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
158 int64_t now)
159 {
160 size_t old_size = tlb_n_entries(fast);
161 size_t rate;
162 size_t new_size = old_size;
163 int64_t window_len_ms = 100;
164 int64_t window_len_ns = window_len_ms * 1000 * 1000;
165 bool window_expired = now > desc->window_begin_ns + window_len_ns;
166
167 if (desc->n_used_entries > desc->window_max_entries) {
168 desc->window_max_entries = desc->n_used_entries;
169 }
170 rate = desc->window_max_entries * 100 / old_size;
171
172 if (rate > 70) {
173 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
174 } else if (rate < 30 && window_expired) {
175 size_t ceil = pow2ceil(desc->window_max_entries);
176 size_t expected_rate = desc->window_max_entries * 100 / ceil;
177
178 /*
179 * Avoid undersizing when the max number of entries seen is just below
180 * a pow2. For instance, if max_entries == 1025, the expected use rate
181 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
182 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
183 * later. Thus, make sure that the expected use rate remains below 70%.
184 * (and since we double the size, that means the lowest rate we'd
185 * expect to get is 35%, which is still in the 30-70% range where
186 * we consider that the size is appropriate.)
187 */
188 if (expected_rate > 70) {
189 ceil *= 2;
190 }
191 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
192 }
193
194 if (new_size == old_size) {
195 if (window_expired) {
196 tlb_window_reset(desc, now, desc->n_used_entries);
197 }
198 return;
199 }
200
201 g_free(fast->table);
202 g_free(desc->iotlb);
203
204 tlb_window_reset(desc, now, 0);
205 /* desc->n_used_entries is cleared by the caller */
206 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
207 fast->table = g_try_new(CPUTLBEntry, new_size);
208 desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
209
210 /*
211 * If the allocations fail, try smaller sizes. We just freed some
212 * memory, so going back to half of new_size has a good chance of working.
213 * Increased memory pressure elsewhere in the system might cause the
214 * allocations to fail though, so we progressively reduce the allocation
215 * size, aborting if we cannot even allocate the smallest TLB we support.
216 */
217 while (fast->table == NULL || desc->iotlb == NULL) {
218 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
219 error_report("%s: %s", __func__, strerror(errno));
220 abort();
221 }
222 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
223 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
224
225 g_free(fast->table);
226 g_free(desc->iotlb);
227 fast->table = g_try_new(CPUTLBEntry, new_size);
228 desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
229 }
230 }
231
232 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
233 {
234 desc->n_used_entries = 0;
235 desc->large_page_addr = -1;
236 desc->large_page_mask = -1;
237 desc->vindex = 0;
238 memset(fast->table, -1, sizeof_tlb(fast));
239 memset(desc->vtable, -1, sizeof(desc->vtable));
240 }
241
242 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
243 int64_t now)
244 {
245 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
246 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
247
248 tlb_mmu_resize_locked(desc, fast, now);
249 tlb_mmu_flush_locked(desc, fast);
250 }
251
252 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
253 {
254 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
255
256 tlb_window_reset(desc, now, 0);
257 desc->n_used_entries = 0;
258 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
259 fast->table = g_new(CPUTLBEntry, n_entries);
260 desc->iotlb = g_new(CPUIOTLBEntry, n_entries);
261 tlb_mmu_flush_locked(desc, fast);
262 }
263
264 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
265 {
266 env_tlb(env)->d[mmu_idx].n_used_entries++;
267 }
268
269 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
270 {
271 env_tlb(env)->d[mmu_idx].n_used_entries--;
272 }
273
274 void tlb_init(CPUState *cpu)
275 {
276 CPUArchState *env = cpu->env_ptr;
277 int64_t now = get_clock_realtime();
278 int i;
279
280 qemu_spin_init(&env_tlb(env)->c.lock);
281
282 /* All tlbs are initialized flushed. */
283 env_tlb(env)->c.dirty = 0;
284
285 for (i = 0; i < NB_MMU_MODES; i++) {
286 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
287 }
288 }
289
290 void tlb_destroy(CPUState *cpu)
291 {
292 CPUArchState *env = cpu->env_ptr;
293 int i;
294
295 qemu_spin_destroy(&env_tlb(env)->c.lock);
296 for (i = 0; i < NB_MMU_MODES; i++) {
297 CPUTLBDesc *desc = &env_tlb(env)->d[i];
298 CPUTLBDescFast *fast = &env_tlb(env)->f[i];
299
300 g_free(fast->table);
301 g_free(desc->iotlb);
302 }
303 }
304
305 /* flush_all_helper: run fn across all cpus
306 *
307 * If the wait flag is set then the src cpu's helper will be queued as
308 * "safe" work and the loop exited creating a synchronisation point
309 * where all queued work will be finished before execution starts
310 * again.
311 */
312 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
313 run_on_cpu_data d)
314 {
315 CPUState *cpu;
316
317 CPU_FOREACH(cpu) {
318 if (cpu != src) {
319 async_run_on_cpu(cpu, fn, d);
320 }
321 }
322 }
323
324 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
325 {
326 CPUState *cpu;
327 size_t full = 0, part = 0, elide = 0;
328
329 CPU_FOREACH(cpu) {
330 CPUArchState *env = cpu->env_ptr;
331
332 full += qatomic_read(&env_tlb(env)->c.full_flush_count);
333 part += qatomic_read(&env_tlb(env)->c.part_flush_count);
334 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
335 }
336 *pfull = full;
337 *ppart = part;
338 *pelide = elide;
339 }
340
341 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
342 {
343 CPUArchState *env = cpu->env_ptr;
344 uint16_t asked = data.host_int;
345 uint16_t all_dirty, work, to_clean;
346 int64_t now = get_clock_realtime();
347
348 assert_cpu_is_self(cpu);
349
350 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
351
352 qemu_spin_lock(&env_tlb(env)->c.lock);
353
354 all_dirty = env_tlb(env)->c.dirty;
355 to_clean = asked & all_dirty;
356 all_dirty &= ~to_clean;
357 env_tlb(env)->c.dirty = all_dirty;
358
359 for (work = to_clean; work != 0; work &= work - 1) {
360 int mmu_idx = ctz32(work);
361 tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
362 }
363
364 qemu_spin_unlock(&env_tlb(env)->c.lock);
365
366 cpu_tb_jmp_cache_clear(cpu);
367
368 if (to_clean == ALL_MMUIDX_BITS) {
369 qatomic_set(&env_tlb(env)->c.full_flush_count,
370 env_tlb(env)->c.full_flush_count + 1);
371 } else {
372 qatomic_set(&env_tlb(env)->c.part_flush_count,
373 env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
374 if (to_clean != asked) {
375 qatomic_set(&env_tlb(env)->c.elide_flush_count,
376 env_tlb(env)->c.elide_flush_count +
377 ctpop16(asked & ~to_clean));
378 }
379 }
380 }
381
382 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
383 {
384 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
385
386 if (cpu->created && !qemu_cpu_is_self(cpu)) {
387 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
388 RUN_ON_CPU_HOST_INT(idxmap));
389 } else {
390 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
391 }
392 }
393
394 void tlb_flush(CPUState *cpu)
395 {
396 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
397 }
398
399 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
400 {
401 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
402
403 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
404
405 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
406 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
407 }
408
409 void tlb_flush_all_cpus(CPUState *src_cpu)
410 {
411 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
412 }
413
414 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
415 {
416 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
417
418 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
419
420 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
421 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
422 }
423
424 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
425 {
426 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
427 }
428
429 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
430 target_ulong page, target_ulong mask)
431 {
432 page &= mask;
433 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
434
435 return (page == (tlb_entry->addr_read & mask) ||
436 page == (tlb_addr_write(tlb_entry) & mask) ||
437 page == (tlb_entry->addr_code & mask));
438 }
439
440 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
441 target_ulong page)
442 {
443 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
444 }
445
446 /**
447 * tlb_entry_is_empty - return true if the entry is not in use
448 * @te: pointer to CPUTLBEntry
449 */
450 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
451 {
452 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
453 }
454
455 /* Called with tlb_c.lock held */
456 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
457 target_ulong page,
458 target_ulong mask)
459 {
460 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
461 memset(tlb_entry, -1, sizeof(*tlb_entry));
462 return true;
463 }
464 return false;
465 }
466
467 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
468 target_ulong page)
469 {
470 return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
471 }
472
473 /* Called with tlb_c.lock held */
474 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
475 target_ulong page,
476 target_ulong mask)
477 {
478 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
479 int k;
480
481 assert_cpu_is_self(env_cpu(env));
482 for (k = 0; k < CPU_VTLB_SIZE; k++) {
483 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
484 tlb_n_used_entries_dec(env, mmu_idx);
485 }
486 }
487 }
488
489 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
490 target_ulong page)
491 {
492 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
493 }
494
495 static void tlb_flush_page_locked(CPUArchState *env, int midx,
496 target_ulong page)
497 {
498 target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
499 target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
500
501 /* Check if we need to flush due to large pages. */
502 if ((page & lp_mask) == lp_addr) {
503 tlb_debug("forcing full flush midx %d ("
504 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
505 midx, lp_addr, lp_mask);
506 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
507 } else {
508 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
509 tlb_n_used_entries_dec(env, midx);
510 }
511 tlb_flush_vtlb_page_locked(env, midx, page);
512 }
513 }
514
515 /**
516 * tlb_flush_page_by_mmuidx_async_0:
517 * @cpu: cpu on which to flush
518 * @addr: page of virtual address to flush
519 * @idxmap: set of mmu_idx to flush
520 *
521 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
522 * at @addr from the tlbs indicated by @idxmap from @cpu.
523 */
524 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
525 target_ulong addr,
526 uint16_t idxmap)
527 {
528 CPUArchState *env = cpu->env_ptr;
529 int mmu_idx;
530
531 assert_cpu_is_self(cpu);
532
533 tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap);
534
535 qemu_spin_lock(&env_tlb(env)->c.lock);
536 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
537 if ((idxmap >> mmu_idx) & 1) {
538 tlb_flush_page_locked(env, mmu_idx, addr);
539 }
540 }
541 qemu_spin_unlock(&env_tlb(env)->c.lock);
542
543 tb_flush_jmp_cache(cpu, addr);
544 }
545
546 /**
547 * tlb_flush_page_by_mmuidx_async_1:
548 * @cpu: cpu on which to flush
549 * @data: encoded addr + idxmap
550 *
551 * Helper for tlb_flush_page_by_mmuidx and friends, called through
552 * async_run_on_cpu. The idxmap parameter is encoded in the page
553 * offset of the target_ptr field. This limits the set of mmu_idx
554 * that can be passed via this method.
555 */
556 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
557 run_on_cpu_data data)
558 {
559 target_ulong addr_and_idxmap = (target_ulong) data.target_ptr;
560 target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK;
561 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
562
563 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
564 }
565
566 typedef struct {
567 target_ulong addr;
568 uint16_t idxmap;
569 } TLBFlushPageByMMUIdxData;
570
571 /**
572 * tlb_flush_page_by_mmuidx_async_2:
573 * @cpu: cpu on which to flush
574 * @data: allocated addr + idxmap
575 *
576 * Helper for tlb_flush_page_by_mmuidx and friends, called through
577 * async_run_on_cpu. The addr+idxmap parameters are stored in a
578 * TLBFlushPageByMMUIdxData structure that has been allocated
579 * specifically for this helper. Free the structure when done.
580 */
581 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
582 run_on_cpu_data data)
583 {
584 TLBFlushPageByMMUIdxData *d = data.host_ptr;
585
586 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
587 g_free(d);
588 }
589
590 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
591 {
592 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
593
594 /* This should already be page aligned */
595 addr &= TARGET_PAGE_MASK;
596
597 if (qemu_cpu_is_self(cpu)) {
598 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
599 } else if (idxmap < TARGET_PAGE_SIZE) {
600 /*
601 * Most targets have only a few mmu_idx. In the case where
602 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
603 * allocating memory for this operation.
604 */
605 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
606 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
607 } else {
608 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
609
610 /* Otherwise allocate a structure, freed by the worker. */
611 d->addr = addr;
612 d->idxmap = idxmap;
613 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
614 RUN_ON_CPU_HOST_PTR(d));
615 }
616 }
617
618 void tlb_flush_page(CPUState *cpu, target_ulong addr)
619 {
620 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
621 }
622
623 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
624 uint16_t idxmap)
625 {
626 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
627
628 /* This should already be page aligned */
629 addr &= TARGET_PAGE_MASK;
630
631 /*
632 * Allocate memory to hold addr+idxmap only when needed.
633 * See tlb_flush_page_by_mmuidx for details.
634 */
635 if (idxmap < TARGET_PAGE_SIZE) {
636 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
637 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
638 } else {
639 CPUState *dst_cpu;
640
641 /* Allocate a separate data block for each destination cpu. */
642 CPU_FOREACH(dst_cpu) {
643 if (dst_cpu != src_cpu) {
644 TLBFlushPageByMMUIdxData *d
645 = g_new(TLBFlushPageByMMUIdxData, 1);
646
647 d->addr = addr;
648 d->idxmap = idxmap;
649 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
650 RUN_ON_CPU_HOST_PTR(d));
651 }
652 }
653 }
654
655 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
656 }
657
658 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
659 {
660 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
661 }
662
663 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
664 target_ulong addr,
665 uint16_t idxmap)
666 {
667 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
668
669 /* This should already be page aligned */
670 addr &= TARGET_PAGE_MASK;
671
672 /*
673 * Allocate memory to hold addr+idxmap only when needed.
674 * See tlb_flush_page_by_mmuidx for details.
675 */
676 if (idxmap < TARGET_PAGE_SIZE) {
677 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
678 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
679 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
680 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
681 } else {
682 CPUState *dst_cpu;
683 TLBFlushPageByMMUIdxData *d;
684
685 /* Allocate a separate data block for each destination cpu. */
686 CPU_FOREACH(dst_cpu) {
687 if (dst_cpu != src_cpu) {
688 d = g_new(TLBFlushPageByMMUIdxData, 1);
689 d->addr = addr;
690 d->idxmap = idxmap;
691 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
692 RUN_ON_CPU_HOST_PTR(d));
693 }
694 }
695
696 d = g_new(TLBFlushPageByMMUIdxData, 1);
697 d->addr = addr;
698 d->idxmap = idxmap;
699 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
700 RUN_ON_CPU_HOST_PTR(d));
701 }
702 }
703
704 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
705 {
706 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
707 }
708
709 static void tlb_flush_range_locked(CPUArchState *env, int midx,
710 target_ulong addr, target_ulong len,
711 unsigned bits)
712 {
713 CPUTLBDesc *d = &env_tlb(env)->d[midx];
714 CPUTLBDescFast *f = &env_tlb(env)->f[midx];
715 target_ulong mask = MAKE_64BIT_MASK(0, bits);
716
717 /*
718 * If @bits is smaller than the tlb size, there may be multiple entries
719 * within the TLB; otherwise all addresses that match under @mask hit
720 * the same TLB entry.
721 * TODO: Perhaps allow bits to be a few bits less than the size.
722 * For now, just flush the entire TLB.
723 *
724 * If @len is larger than the tlb size, then it will take longer to
725 * test all of the entries in the TLB than it will to flush it all.
726 */
727 if (mask < f->mask || len > f->mask) {
728 tlb_debug("forcing full flush midx %d ("
729 TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n",
730 midx, addr, mask, len);
731 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
732 return;
733 }
734
735 /*
736 * Check if we need to flush due to large pages.
737 * Because large_page_mask contains all 1's from the msb,
738 * we only need to test the end of the range.
739 */
740 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
741 tlb_debug("forcing full flush midx %d ("
742 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
743 midx, d->large_page_addr, d->large_page_mask);
744 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
745 return;
746 }
747
748 for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) {
749 target_ulong page = addr + i;
750 CPUTLBEntry *entry = tlb_entry(env, midx, page);
751
752 if (tlb_flush_entry_mask_locked(entry, page, mask)) {
753 tlb_n_used_entries_dec(env, midx);
754 }
755 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
756 }
757 }
758
759 typedef struct {
760 target_ulong addr;
761 target_ulong len;
762 uint16_t idxmap;
763 uint16_t bits;
764 } TLBFlushRangeData;
765
766 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
767 TLBFlushRangeData d)
768 {
769 CPUArchState *env = cpu->env_ptr;
770 int mmu_idx;
771
772 assert_cpu_is_self(cpu);
773
774 tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n",
775 d.addr, d.bits, d.len, d.idxmap);
776
777 qemu_spin_lock(&env_tlb(env)->c.lock);
778 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
779 if ((d.idxmap >> mmu_idx) & 1) {
780 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
781 }
782 }
783 qemu_spin_unlock(&env_tlb(env)->c.lock);
784
785 for (target_ulong i = 0; i < d.len; i += TARGET_PAGE_SIZE) {
786 tb_flush_jmp_cache(cpu, d.addr + i);
787 }
788 }
789
790 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
791 run_on_cpu_data data)
792 {
793 TLBFlushRangeData *d = data.host_ptr;
794 tlb_flush_range_by_mmuidx_async_0(cpu, *d);
795 g_free(d);
796 }
797
798 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
799 target_ulong len, uint16_t idxmap,
800 unsigned bits)
801 {
802 TLBFlushRangeData d;
803
804 /*
805 * If all bits are significant, and len is small,
806 * this devolves to tlb_flush_page.
807 */
808 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
809 tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
810 return;
811 }
812 /* If no page bits are significant, this devolves to tlb_flush. */
813 if (bits < TARGET_PAGE_BITS) {
814 tlb_flush_by_mmuidx(cpu, idxmap);
815 return;
816 }
817
818 /* This should already be page aligned */
819 d.addr = addr & TARGET_PAGE_MASK;
820 d.len = len;
821 d.idxmap = idxmap;
822 d.bits = bits;
823
824 if (qemu_cpu_is_self(cpu)) {
825 tlb_flush_range_by_mmuidx_async_0(cpu, d);
826 } else {
827 /* Otherwise allocate a structure, freed by the worker. */
828 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
829 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
830 RUN_ON_CPU_HOST_PTR(p));
831 }
832 }
833
834 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
835 uint16_t idxmap, unsigned bits)
836 {
837 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
838 }
839
840 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
841 target_ulong addr, target_ulong len,
842 uint16_t idxmap, unsigned bits)
843 {
844 TLBFlushRangeData d;
845 CPUState *dst_cpu;
846
847 /*
848 * If all bits are significant, and len is small,
849 * this devolves to tlb_flush_page.
850 */
851 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
852 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
853 return;
854 }
855 /* If no page bits are significant, this devolves to tlb_flush. */
856 if (bits < TARGET_PAGE_BITS) {
857 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
858 return;
859 }
860
861 /* This should already be page aligned */
862 d.addr = addr & TARGET_PAGE_MASK;
863 d.len = len;
864 d.idxmap = idxmap;
865 d.bits = bits;
866
867 /* Allocate a separate data block for each destination cpu. */
868 CPU_FOREACH(dst_cpu) {
869 if (dst_cpu != src_cpu) {
870 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
871 async_run_on_cpu(dst_cpu,
872 tlb_flush_range_by_mmuidx_async_1,
873 RUN_ON_CPU_HOST_PTR(p));
874 }
875 }
876
877 tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
878 }
879
880 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
881 target_ulong addr,
882 uint16_t idxmap, unsigned bits)
883 {
884 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
885 idxmap, bits);
886 }
887
888 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
889 target_ulong addr,
890 target_ulong len,
891 uint16_t idxmap,
892 unsigned bits)
893 {
894 TLBFlushRangeData d, *p;
895 CPUState *dst_cpu;
896
897 /*
898 * If all bits are significant, and len is small,
899 * this devolves to tlb_flush_page.
900 */
901 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
902 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
903 return;
904 }
905 /* If no page bits are significant, this devolves to tlb_flush. */
906 if (bits < TARGET_PAGE_BITS) {
907 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
908 return;
909 }
910
911 /* This should already be page aligned */
912 d.addr = addr & TARGET_PAGE_MASK;
913 d.len = len;
914 d.idxmap = idxmap;
915 d.bits = bits;
916
917 /* Allocate a separate data block for each destination cpu. */
918 CPU_FOREACH(dst_cpu) {
919 if (dst_cpu != src_cpu) {
920 p = g_memdup(&d, sizeof(d));
921 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
922 RUN_ON_CPU_HOST_PTR(p));
923 }
924 }
925
926 p = g_memdup(&d, sizeof(d));
927 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
928 RUN_ON_CPU_HOST_PTR(p));
929 }
930
931 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
932 target_ulong addr,
933 uint16_t idxmap,
934 unsigned bits)
935 {
936 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
937 idxmap, bits);
938 }
939
940 /* update the TLBs so that writes to code in the virtual page 'addr'
941 can be detected */
942 void tlb_protect_code(ram_addr_t ram_addr)
943 {
944 cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
945 DIRTY_MEMORY_CODE);
946 }
947
948 /* update the TLB so that writes in physical page 'phys_addr' are no longer
949 tested for self modifying code */
950 void tlb_unprotect_code(ram_addr_t ram_addr)
951 {
952 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
953 }
954
955
956 /*
957 * Dirty write flag handling
958 *
959 * When the TCG code writes to a location it looks up the address in
960 * the TLB and uses that data to compute the final address. If any of
961 * the lower bits of the address are set then the slow path is forced.
962 * There are a number of reasons to do this but for normal RAM the
963 * most usual is detecting writes to code regions which may invalidate
964 * generated code.
965 *
966 * Other vCPUs might be reading their TLBs during guest execution, so we update
967 * te->addr_write with qatomic_set. We don't need to worry about this for
968 * oversized guests as MTTCG is disabled for them.
969 *
970 * Called with tlb_c.lock held.
971 */
972 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
973 uintptr_t start, uintptr_t length)
974 {
975 uintptr_t addr = tlb_entry->addr_write;
976
977 if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
978 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
979 addr &= TARGET_PAGE_MASK;
980 addr += tlb_entry->addend;
981 if ((addr - start) < length) {
982 #if TCG_OVERSIZED_GUEST
983 tlb_entry->addr_write |= TLB_NOTDIRTY;
984 #else
985 qatomic_set(&tlb_entry->addr_write,
986 tlb_entry->addr_write | TLB_NOTDIRTY);
987 #endif
988 }
989 }
990 }
991
992 /*
993 * Called with tlb_c.lock held.
994 * Called only from the vCPU context, i.e. the TLB's owner thread.
995 */
996 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
997 {
998 *d = *s;
999 }
1000
1001 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1002 * the target vCPU).
1003 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1004 * thing actually updated is the target TLB entry ->addr_write flags.
1005 */
1006 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1007 {
1008 CPUArchState *env;
1009
1010 int mmu_idx;
1011
1012 env = cpu->env_ptr;
1013 qemu_spin_lock(&env_tlb(env)->c.lock);
1014 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1015 unsigned int i;
1016 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1017
1018 for (i = 0; i < n; i++) {
1019 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1020 start1, length);
1021 }
1022
1023 for (i = 0; i < CPU_VTLB_SIZE; i++) {
1024 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1025 start1, length);
1026 }
1027 }
1028 qemu_spin_unlock(&env_tlb(env)->c.lock);
1029 }
1030
1031 /* Called with tlb_c.lock held */
1032 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1033 target_ulong vaddr)
1034 {
1035 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
1036 tlb_entry->addr_write = vaddr;
1037 }
1038 }
1039
1040 /* update the TLB corresponding to virtual page vaddr
1041 so that it is no longer dirty */
1042 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
1043 {
1044 CPUArchState *env = cpu->env_ptr;
1045 int mmu_idx;
1046
1047 assert_cpu_is_self(cpu);
1048
1049 vaddr &= TARGET_PAGE_MASK;
1050 qemu_spin_lock(&env_tlb(env)->c.lock);
1051 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1052 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
1053 }
1054
1055 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1056 int k;
1057 for (k = 0; k < CPU_VTLB_SIZE; k++) {
1058 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
1059 }
1060 }
1061 qemu_spin_unlock(&env_tlb(env)->c.lock);
1062 }
1063
1064 /* Our TLB does not support large pages, so remember the area covered by
1065 large pages and trigger a full TLB flush if these are invalidated. */
1066 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1067 target_ulong vaddr, target_ulong size)
1068 {
1069 target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1070 target_ulong lp_mask = ~(size - 1);
1071
1072 if (lp_addr == (target_ulong)-1) {
1073 /* No previous large page. */
1074 lp_addr = vaddr;
1075 } else {
1076 /* Extend the existing region to include the new page.
1077 This is a compromise between unnecessary flushes and
1078 the cost of maintaining a full variable size TLB. */
1079 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1080 while (((lp_addr ^ vaddr) & lp_mask) != 0) {
1081 lp_mask <<= 1;
1082 }
1083 }
1084 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1085 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1086 }
1087
1088 /* Add a new TLB entry. At most one entry for a given virtual address
1089 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1090 * supplied size is only used by tlb_flush_page.
1091 *
1092 * Called from TCG-generated code, which is under an RCU read-side
1093 * critical section.
1094 */
1095 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
1096 hwaddr paddr, MemTxAttrs attrs, int prot,
1097 int mmu_idx, target_ulong size)
1098 {
1099 CPUArchState *env = cpu->env_ptr;
1100 CPUTLB *tlb = env_tlb(env);
1101 CPUTLBDesc *desc = &tlb->d[mmu_idx];
1102 MemoryRegionSection *section;
1103 unsigned int index;
1104 target_ulong address;
1105 target_ulong write_address;
1106 uintptr_t addend;
1107 CPUTLBEntry *te, tn;
1108 hwaddr iotlb, xlat, sz, paddr_page;
1109 target_ulong vaddr_page;
1110 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1111 int wp_flags;
1112 bool is_ram, is_romd;
1113
1114 assert_cpu_is_self(cpu);
1115
1116 if (size <= TARGET_PAGE_SIZE) {
1117 sz = TARGET_PAGE_SIZE;
1118 } else {
1119 tlb_add_large_page(env, mmu_idx, vaddr, size);
1120 sz = size;
1121 }
1122 vaddr_page = vaddr & TARGET_PAGE_MASK;
1123 paddr_page = paddr & TARGET_PAGE_MASK;
1124
1125 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1126 &xlat, &sz, attrs, &prot);
1127 assert(sz >= TARGET_PAGE_SIZE);
1128
1129 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
1130 " prot=%x idx=%d\n",
1131 vaddr, paddr, prot, mmu_idx);
1132
1133 address = vaddr_page;
1134 if (size < TARGET_PAGE_SIZE) {
1135 /* Repeat the MMU check and TLB fill on every access. */
1136 address |= TLB_INVALID_MASK;
1137 }
1138 if (attrs.byte_swap) {
1139 address |= TLB_BSWAP;
1140 }
1141
1142 is_ram = memory_region_is_ram(section->mr);
1143 is_romd = memory_region_is_romd(section->mr);
1144
1145 if (is_ram || is_romd) {
1146 /* RAM and ROMD both have associated host memory. */
1147 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1148 } else {
1149 /* I/O does not; force the host address to NULL. */
1150 addend = 0;
1151 }
1152
1153 write_address = address;
1154 if (is_ram) {
1155 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1156 /*
1157 * Computing is_clean is expensive; avoid all that unless
1158 * the page is actually writable.
1159 */
1160 if (prot & PAGE_WRITE) {
1161 if (section->readonly) {
1162 write_address |= TLB_DISCARD_WRITE;
1163 } else if (cpu_physical_memory_is_clean(iotlb)) {
1164 write_address |= TLB_NOTDIRTY;
1165 }
1166 }
1167 } else {
1168 /* I/O or ROMD */
1169 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1170 /*
1171 * Writes to romd devices must go through MMIO to enable write.
1172 * Reads to romd devices go through the ram_ptr found above,
1173 * but of course reads to I/O must go through MMIO.
1174 */
1175 write_address |= TLB_MMIO;
1176 if (!is_romd) {
1177 address = write_address;
1178 }
1179 }
1180
1181 wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page,
1182 TARGET_PAGE_SIZE);
1183
1184 index = tlb_index(env, mmu_idx, vaddr_page);
1185 te = tlb_entry(env, mmu_idx, vaddr_page);
1186
1187 /*
1188 * Hold the TLB lock for the rest of the function. We could acquire/release
1189 * the lock several times in the function, but it is faster to amortize the
1190 * acquisition cost by acquiring it just once. Note that this leads to
1191 * a longer critical section, but this is not a concern since the TLB lock
1192 * is unlikely to be contended.
1193 */
1194 qemu_spin_lock(&tlb->c.lock);
1195
1196 /* Note that the tlb is no longer clean. */
1197 tlb->c.dirty |= 1 << mmu_idx;
1198
1199 /* Make sure there's no cached translation for the new page. */
1200 tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
1201
1202 /*
1203 * Only evict the old entry to the victim tlb if it's for a
1204 * different page; otherwise just overwrite the stale data.
1205 */
1206 if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
1207 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1208 CPUTLBEntry *tv = &desc->vtable[vidx];
1209
1210 /* Evict the old entry into the victim tlb. */
1211 copy_tlb_helper_locked(tv, te);
1212 desc->viotlb[vidx] = desc->iotlb[index];
1213 tlb_n_used_entries_dec(env, mmu_idx);
1214 }
1215
1216 /* refill the tlb */
1217 /*
1218 * At this point iotlb contains a physical section number in the lower
1219 * TARGET_PAGE_BITS, and either
1220 * + the ram_addr_t of the page base of the target RAM (RAM)
1221 * + the offset within section->mr of the page base (I/O, ROMD)
1222 * We subtract the vaddr_page (which is page aligned and thus won't
1223 * disturb the low bits) to give an offset which can be added to the
1224 * (non-page-aligned) vaddr of the eventual memory access to get
1225 * the MemoryRegion offset for the access. Note that the vaddr we
1226 * subtract here is that of the page base, and not the same as the
1227 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1228 */
1229 desc->iotlb[index].addr = iotlb - vaddr_page;
1230 desc->iotlb[index].attrs = attrs;
1231
1232 /* Now calculate the new entry */
1233 tn.addend = addend - vaddr_page;
1234 if (prot & PAGE_READ) {
1235 tn.addr_read = address;
1236 if (wp_flags & BP_MEM_READ) {
1237 tn.addr_read |= TLB_WATCHPOINT;
1238 }
1239 } else {
1240 tn.addr_read = -1;
1241 }
1242
1243 if (prot & PAGE_EXEC) {
1244 tn.addr_code = address;
1245 } else {
1246 tn.addr_code = -1;
1247 }
1248
1249 tn.addr_write = -1;
1250 if (prot & PAGE_WRITE) {
1251 tn.addr_write = write_address;
1252 if (prot & PAGE_WRITE_INV) {
1253 tn.addr_write |= TLB_INVALID_MASK;
1254 }
1255 if (wp_flags & BP_MEM_WRITE) {
1256 tn.addr_write |= TLB_WATCHPOINT;
1257 }
1258 }
1259
1260 copy_tlb_helper_locked(te, &tn);
1261 tlb_n_used_entries_inc(env, mmu_idx);
1262 qemu_spin_unlock(&tlb->c.lock);
1263 }
1264
1265 /* Add a new TLB entry, but without specifying the memory
1266 * transaction attributes to be used.
1267 */
1268 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
1269 hwaddr paddr, int prot,
1270 int mmu_idx, target_ulong size)
1271 {
1272 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
1273 prot, mmu_idx, size);
1274 }
1275
1276 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1277 {
1278 ram_addr_t ram_addr;
1279
1280 ram_addr = qemu_ram_addr_from_host(ptr);
1281 if (ram_addr == RAM_ADDR_INVALID) {
1282 error_report("Bad ram pointer %p", ptr);
1283 abort();
1284 }
1285 return ram_addr;
1286 }
1287
1288 /*
1289 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1290 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1291 * be discarded and looked up again (e.g. via tlb_entry()).
1292 */
1293 static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
1294 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1295 {
1296 CPUClass *cc = CPU_GET_CLASS(cpu);
1297 bool ok;
1298
1299 /*
1300 * This is not a probe, so only valid return is success; failure
1301 * should result in exception + longjmp to the cpu loop.
1302 */
1303 ok = cc->tcg_ops->tlb_fill(cpu, addr, size,
1304 access_type, mmu_idx, false, retaddr);
1305 assert(ok);
1306 }
1307
1308 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1309 MMUAccessType access_type,
1310 int mmu_idx, uintptr_t retaddr)
1311 {
1312 CPUClass *cc = CPU_GET_CLASS(cpu);
1313
1314 cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
1315 }
1316
1317 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
1318 vaddr addr, unsigned size,
1319 MMUAccessType access_type,
1320 int mmu_idx, MemTxAttrs attrs,
1321 MemTxResult response,
1322 uintptr_t retaddr)
1323 {
1324 CPUClass *cc = CPU_GET_CLASS(cpu);
1325
1326 if (!cpu->ignore_memory_transaction_failures &&
1327 cc->tcg_ops->do_transaction_failed) {
1328 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1329 access_type, mmu_idx, attrs,
1330 response, retaddr);
1331 }
1332 }
1333
1334 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
1335 int mmu_idx, target_ulong addr, uintptr_t retaddr,
1336 MMUAccessType access_type, MemOp op)
1337 {
1338 CPUState *cpu = env_cpu(env);
1339 hwaddr mr_offset;
1340 MemoryRegionSection *section;
1341 MemoryRegion *mr;
1342 uint64_t val;
1343 bool locked = false;
1344 MemTxResult r;
1345
1346 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1347 mr = section->mr;
1348 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1349 cpu->mem_io_pc = retaddr;
1350 if (!cpu->can_do_io) {
1351 cpu_io_recompile(cpu, retaddr);
1352 }
1353
1354 if (!qemu_mutex_iothread_locked()) {
1355 qemu_mutex_lock_iothread();
1356 locked = true;
1357 }
1358 r = memory_region_dispatch_read(mr, mr_offset, &val, op, iotlbentry->attrs);
1359 if (r != MEMTX_OK) {
1360 hwaddr physaddr = mr_offset +
1361 section->offset_within_address_space -
1362 section->offset_within_region;
1363
1364 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
1365 mmu_idx, iotlbentry->attrs, r, retaddr);
1366 }
1367 if (locked) {
1368 qemu_mutex_unlock_iothread();
1369 }
1370
1371 return val;
1372 }
1373
1374 /*
1375 * Save a potentially trashed IOTLB entry for later lookup by plugin.
1376 * This is read by tlb_plugin_lookup if the iotlb entry doesn't match
1377 * because of the side effect of io_writex changing memory layout.
1378 */
1379 static void save_iotlb_data(CPUState *cs, hwaddr addr,
1380 MemoryRegionSection *section, hwaddr mr_offset)
1381 {
1382 #ifdef CONFIG_PLUGIN
1383 SavedIOTLB *saved = &cs->saved_iotlb;
1384 saved->addr = addr;
1385 saved->section = section;
1386 saved->mr_offset = mr_offset;
1387 #endif
1388 }
1389
1390 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
1391 int mmu_idx, uint64_t val, target_ulong addr,
1392 uintptr_t retaddr, MemOp op)
1393 {
1394 CPUState *cpu = env_cpu(env);
1395 hwaddr mr_offset;
1396 MemoryRegionSection *section;
1397 MemoryRegion *mr;
1398 bool locked = false;
1399 MemTxResult r;
1400
1401 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1402 mr = section->mr;
1403 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1404 if (!cpu->can_do_io) {
1405 cpu_io_recompile(cpu, retaddr);
1406 }
1407 cpu->mem_io_pc = retaddr;
1408
1409 /*
1410 * The memory_region_dispatch may trigger a flush/resize
1411 * so for plugins we save the iotlb_data just in case.
1412 */
1413 save_iotlb_data(cpu, iotlbentry->addr, section, mr_offset);
1414
1415 if (!qemu_mutex_iothread_locked()) {
1416 qemu_mutex_lock_iothread();
1417 locked = true;
1418 }
1419 r = memory_region_dispatch_write(mr, mr_offset, val, op, iotlbentry->attrs);
1420 if (r != MEMTX_OK) {
1421 hwaddr physaddr = mr_offset +
1422 section->offset_within_address_space -
1423 section->offset_within_region;
1424
1425 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1426 MMU_DATA_STORE, mmu_idx, iotlbentry->attrs, r,
1427 retaddr);
1428 }
1429 if (locked) {
1430 qemu_mutex_unlock_iothread();
1431 }
1432 }
1433
1434 static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs)
1435 {
1436 #if TCG_OVERSIZED_GUEST
1437 return *(target_ulong *)((uintptr_t)entry + ofs);
1438 #else
1439 /* ofs might correspond to .addr_write, so use qatomic_read */
1440 return qatomic_read((target_ulong *)((uintptr_t)entry + ofs));
1441 #endif
1442 }
1443
1444 /* Return true if ADDR is present in the victim tlb, and has been copied
1445 back to the main tlb. */
1446 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1447 size_t elt_ofs, target_ulong page)
1448 {
1449 size_t vidx;
1450
1451 assert_cpu_is_self(env_cpu(env));
1452 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1453 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1454 target_ulong cmp;
1455
1456 /* elt_ofs might correspond to .addr_write, so use qatomic_read */
1457 #if TCG_OVERSIZED_GUEST
1458 cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
1459 #else
1460 cmp = qatomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
1461 #endif
1462
1463 if (cmp == page) {
1464 /* Found entry in victim tlb, swap tlb and iotlb. */
1465 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1466
1467 qemu_spin_lock(&env_tlb(env)->c.lock);
1468 copy_tlb_helper_locked(&tmptlb, tlb);
1469 copy_tlb_helper_locked(tlb, vtlb);
1470 copy_tlb_helper_locked(vtlb, &tmptlb);
1471 qemu_spin_unlock(&env_tlb(env)->c.lock);
1472
1473 CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index];
1474 CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx];
1475 tmpio = *io; *io = *vio; *vio = tmpio;
1476 return true;
1477 }
1478 }
1479 return false;
1480 }
1481
1482 /* Macro to call the above, with local variables from the use context. */
1483 #define VICTIM_TLB_HIT(TY, ADDR) \
1484 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
1485 (ADDR) & TARGET_PAGE_MASK)
1486
1487 /*
1488 * Return a ram_addr_t for the virtual address for execution.
1489 *
1490 * Return -1 if we can't translate and execute from an entire page
1491 * of RAM. This will force us to execute by loading and translating
1492 * one insn at a time, without caching.
1493 *
1494 * NOTE: This function will trigger an exception if the page is
1495 * not executable.
1496 */
1497 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
1498 void **hostp)
1499 {
1500 uintptr_t mmu_idx = cpu_mmu_index(env, true);
1501 uintptr_t index = tlb_index(env, mmu_idx, addr);
1502 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1503 void *p;
1504
1505 if (unlikely(!tlb_hit(entry->addr_code, addr))) {
1506 if (!VICTIM_TLB_HIT(addr_code, addr)) {
1507 tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0);
1508 index = tlb_index(env, mmu_idx, addr);
1509 entry = tlb_entry(env, mmu_idx, addr);
1510
1511 if (unlikely(entry->addr_code & TLB_INVALID_MASK)) {
1512 /*
1513 * The MMU protection covers a smaller range than a target
1514 * page, so we must redo the MMU check for every insn.
1515 */
1516 return -1;
1517 }
1518 }
1519 assert(tlb_hit(entry->addr_code, addr));
1520 }
1521
1522 if (unlikely(entry->addr_code & TLB_MMIO)) {
1523 /* The region is not backed by RAM. */
1524 if (hostp) {
1525 *hostp = NULL;
1526 }
1527 return -1;
1528 }
1529
1530 p = (void *)((uintptr_t)addr + entry->addend);
1531 if (hostp) {
1532 *hostp = p;
1533 }
1534 return qemu_ram_addr_from_host_nofail(p);
1535 }
1536
1537 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
1538 {
1539 return get_page_addr_code_hostp(env, addr, NULL);
1540 }
1541
1542 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1543 CPUIOTLBEntry *iotlbentry, uintptr_t retaddr)
1544 {
1545 ram_addr_t ram_addr = mem_vaddr + iotlbentry->addr;
1546
1547 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1548
1549 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1550 struct page_collection *pages
1551 = page_collection_lock(ram_addr, ram_addr + size);
1552 tb_invalidate_phys_page_fast(pages, ram_addr, size, retaddr);
1553 page_collection_unlock(pages);
1554 }
1555
1556 /*
1557 * Set both VGA and migration bits for simplicity and to remove
1558 * the notdirty callback faster.
1559 */
1560 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1561
1562 /* We remove the notdirty callback only if the code has been flushed. */
1563 if (!cpu_physical_memory_is_clean(ram_addr)) {
1564 trace_memory_notdirty_set_dirty(mem_vaddr);
1565 tlb_set_dirty(cpu, mem_vaddr);
1566 }
1567 }
1568
1569 static int probe_access_internal(CPUArchState *env, target_ulong addr,
1570 int fault_size, MMUAccessType access_type,
1571 int mmu_idx, bool nonfault,
1572 void **phost, uintptr_t retaddr)
1573 {
1574 uintptr_t index = tlb_index(env, mmu_idx, addr);
1575 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1576 target_ulong tlb_addr, page_addr;
1577 size_t elt_ofs;
1578 int flags;
1579
1580 switch (access_type) {
1581 case MMU_DATA_LOAD:
1582 elt_ofs = offsetof(CPUTLBEntry, addr_read);
1583 break;
1584 case MMU_DATA_STORE:
1585 elt_ofs = offsetof(CPUTLBEntry, addr_write);
1586 break;
1587 case MMU_INST_FETCH:
1588 elt_ofs = offsetof(CPUTLBEntry, addr_code);
1589 break;
1590 default:
1591 g_assert_not_reached();
1592 }
1593 tlb_addr = tlb_read_ofs(entry, elt_ofs);
1594
1595 page_addr = addr & TARGET_PAGE_MASK;
1596 if (!tlb_hit_page(tlb_addr, page_addr)) {
1597 if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) {
1598 CPUState *cs = env_cpu(env);
1599 CPUClass *cc = CPU_GET_CLASS(cs);
1600
1601 if (!cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1602 mmu_idx, nonfault, retaddr)) {
1603 /* Non-faulting page table read failed. */
1604 *phost = NULL;
1605 return TLB_INVALID_MASK;
1606 }
1607
1608 /* TLB resize via tlb_fill may have moved the entry. */
1609 entry = tlb_entry(env, mmu_idx, addr);
1610 }
1611 tlb_addr = tlb_read_ofs(entry, elt_ofs);
1612 }
1613 flags = tlb_addr & TLB_FLAGS_MASK;
1614
1615 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
1616 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1617 *phost = NULL;
1618 return TLB_MMIO;
1619 }
1620
1621 /* Everything else is RAM. */
1622 *phost = (void *)((uintptr_t)addr + entry->addend);
1623 return flags;
1624 }
1625
1626 int probe_access_flags(CPUArchState *env, target_ulong addr,
1627 MMUAccessType access_type, int mmu_idx,
1628 bool nonfault, void **phost, uintptr_t retaddr)
1629 {
1630 int flags;
1631
1632 flags = probe_access_internal(env, addr, 0, access_type, mmu_idx,
1633 nonfault, phost, retaddr);
1634
1635 /* Handle clean RAM pages. */
1636 if (unlikely(flags & TLB_NOTDIRTY)) {
1637 uintptr_t index = tlb_index(env, mmu_idx, addr);
1638 CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1639
1640 notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
1641 flags &= ~TLB_NOTDIRTY;
1642 }
1643
1644 return flags;
1645 }
1646
1647 void *probe_access(CPUArchState *env, target_ulong addr, int size,
1648 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1649 {
1650 void *host;
1651 int flags;
1652
1653 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1654
1655 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1656 false, &host, retaddr);
1657
1658 /* Per the interface, size == 0 merely faults the access. */
1659 if (size == 0) {
1660 return NULL;
1661 }
1662
1663 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1664 uintptr_t index = tlb_index(env, mmu_idx, addr);
1665 CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1666
1667 /* Handle watchpoints. */
1668 if (flags & TLB_WATCHPOINT) {
1669 int wp_access = (access_type == MMU_DATA_STORE
1670 ? BP_MEM_WRITE : BP_MEM_READ);
1671 cpu_check_watchpoint(env_cpu(env), addr, size,
1672 iotlbentry->attrs, wp_access, retaddr);
1673 }
1674
1675 /* Handle clean RAM pages. */
1676 if (flags & TLB_NOTDIRTY) {
1677 notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
1678 }
1679 }
1680
1681 return host;
1682 }
1683
1684 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1685 MMUAccessType access_type, int mmu_idx)
1686 {
1687 void *host;
1688 int flags;
1689
1690 flags = probe_access_internal(env, addr, 0, access_type,
1691 mmu_idx, true, &host, 0);
1692
1693 /* No combination of flags are expected by the caller. */
1694 return flags ? NULL : host;
1695 }
1696
1697 #ifdef CONFIG_PLUGIN
1698 /*
1699 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1700 * This should be a hot path as we will have just looked this path up
1701 * in the softmmu lookup code (or helper). We don't handle re-fills or
1702 * checking the victim table. This is purely informational.
1703 *
1704 * This almost never fails as the memory access being instrumented
1705 * should have just filled the TLB. The one corner case is io_writex
1706 * which can cause TLB flushes and potential resizing of the TLBs
1707 * losing the information we need. In those cases we need to recover
1708 * data from a copy of the iotlbentry. As long as this always occurs
1709 * from the same thread (which a mem callback will be) this is safe.
1710 */
1711
1712 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx,
1713 bool is_store, struct qemu_plugin_hwaddr *data)
1714 {
1715 CPUArchState *env = cpu->env_ptr;
1716 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1717 uintptr_t index = tlb_index(env, mmu_idx, addr);
1718 target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
1719
1720 if (likely(tlb_hit(tlb_addr, addr))) {
1721 /* We must have an iotlb entry for MMIO */
1722 if (tlb_addr & TLB_MMIO) {
1723 CPUIOTLBEntry *iotlbentry;
1724 iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1725 data->is_io = true;
1726 data->v.io.section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1727 data->v.io.offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1728 } else {
1729 data->is_io = false;
1730 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1731 }
1732 return true;
1733 } else {
1734 SavedIOTLB *saved = &cpu->saved_iotlb;
1735 data->is_io = true;
1736 data->v.io.section = saved->section;
1737 data->v.io.offset = saved->mr_offset;
1738 return true;
1739 }
1740 }
1741
1742 #endif
1743
1744 /*
1745 * Probe for an atomic operation. Do not allow unaligned operations,
1746 * or io operations to proceed. Return the host address.
1747 *
1748 * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
1749 */
1750 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1751 MemOpIdx oi, int size, int prot,
1752 uintptr_t retaddr)
1753 {
1754 size_t mmu_idx = get_mmuidx(oi);
1755 MemOp mop = get_memop(oi);
1756 int a_bits = get_alignment_bits(mop);
1757 uintptr_t index;
1758 CPUTLBEntry *tlbe;
1759 target_ulong tlb_addr;
1760 void *hostaddr;
1761
1762 /* Adjust the given return address. */
1763 retaddr -= GETPC_ADJ;
1764
1765 /* Enforce guest required alignment. */
1766 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1767 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1768 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1769 mmu_idx, retaddr);
1770 }
1771
1772 /* Enforce qemu required alignment. */
1773 if (unlikely(addr & (size - 1))) {
1774 /* We get here if guest alignment was not requested,
1775 or was not enforced by cpu_unaligned_access above.
1776 We might widen the access and emulate, but for now
1777 mark an exception and exit the cpu loop. */
1778 goto stop_the_world;
1779 }
1780
1781 index = tlb_index(env, mmu_idx, addr);
1782 tlbe = tlb_entry(env, mmu_idx, addr);
1783
1784 /* Check TLB entry and enforce page permissions. */
1785 if (prot & PAGE_WRITE) {
1786 tlb_addr = tlb_addr_write(tlbe);
1787 if (!tlb_hit(tlb_addr, addr)) {
1788 if (!VICTIM_TLB_HIT(addr_write, addr)) {
1789 tlb_fill(env_cpu(env), addr, size,
1790 MMU_DATA_STORE, mmu_idx, retaddr);
1791 index = tlb_index(env, mmu_idx, addr);
1792 tlbe = tlb_entry(env, mmu_idx, addr);
1793 }
1794 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1795 }
1796
1797 /* Let the guest notice RMW on a write-only page. */
1798 if ((prot & PAGE_READ) &&
1799 unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
1800 tlb_fill(env_cpu(env), addr, size,
1801 MMU_DATA_LOAD, mmu_idx, retaddr);
1802 /*
1803 * Since we don't support reads and writes to different addresses,
1804 * and we do have the proper page loaded for write, this shouldn't
1805 * ever return. But just in case, handle via stop-the-world.
1806 */
1807 goto stop_the_world;
1808 }
1809 } else /* if (prot & PAGE_READ) */ {
1810 tlb_addr = tlbe->addr_read;
1811 if (!tlb_hit(tlb_addr, addr)) {
1812 if (!VICTIM_TLB_HIT(addr_write, addr)) {
1813 tlb_fill(env_cpu(env), addr, size,
1814 MMU_DATA_LOAD, mmu_idx, retaddr);
1815 index = tlb_index(env, mmu_idx, addr);
1816 tlbe = tlb_entry(env, mmu_idx, addr);
1817 }
1818 tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK;
1819 }
1820 }
1821
1822 /* Notice an IO access or a needs-MMU-lookup access */
1823 if (unlikely(tlb_addr & TLB_MMIO)) {
1824 /* There's really nothing that can be done to
1825 support this apart from stop-the-world. */
1826 goto stop_the_world;
1827 }
1828
1829 hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1830
1831 if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1832 notdirty_write(env_cpu(env), addr, size,
1833 &env_tlb(env)->d[mmu_idx].iotlb[index], retaddr);
1834 }
1835
1836 return hostaddr;
1837
1838 stop_the_world:
1839 cpu_loop_exit_atomic(env_cpu(env), retaddr);
1840 }
1841
1842 /*
1843 * Load Helpers
1844 *
1845 * We support two different access types. SOFTMMU_CODE_ACCESS is
1846 * specifically for reading instructions from system memory. It is
1847 * called by the translation loop and in some helpers where the code
1848 * is disassembled. It shouldn't be called directly by guest code.
1849 */
1850
1851 typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
1852 MemOpIdx oi, uintptr_t retaddr);
1853
1854 static inline uint64_t QEMU_ALWAYS_INLINE
1855 load_memop(const void *haddr, MemOp op)
1856 {
1857 switch (op) {
1858 case MO_UB:
1859 return ldub_p(haddr);
1860 case MO_BEUW:
1861 return lduw_be_p(haddr);
1862 case MO_LEUW:
1863 return lduw_le_p(haddr);
1864 case MO_BEUL:
1865 return (uint32_t)ldl_be_p(haddr);
1866 case MO_LEUL:
1867 return (uint32_t)ldl_le_p(haddr);
1868 case MO_BEQ:
1869 return ldq_be_p(haddr);
1870 case MO_LEQ:
1871 return ldq_le_p(haddr);
1872 default:
1873 qemu_build_not_reached();
1874 }
1875 }
1876
1877 static inline uint64_t QEMU_ALWAYS_INLINE
1878 load_helper(CPUArchState *env, target_ulong addr, MemOpIdx oi,
1879 uintptr_t retaddr, MemOp op, bool code_read,
1880 FullLoadHelper *full_load)
1881 {
1882 uintptr_t mmu_idx = get_mmuidx(oi);
1883 uintptr_t index = tlb_index(env, mmu_idx, addr);
1884 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1885 target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1886 const size_t tlb_off = code_read ?
1887 offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
1888 const MMUAccessType access_type =
1889 code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
1890 unsigned a_bits = get_alignment_bits(get_memop(oi));
1891 void *haddr;
1892 uint64_t res;
1893 size_t size = memop_size(op);
1894
1895 /* Handle CPU specific unaligned behaviour */
1896 if (addr & ((1 << a_bits) - 1)) {
1897 cpu_unaligned_access(env_cpu(env), addr, access_type,
1898 mmu_idx, retaddr);
1899 }
1900
1901 /* If the TLB entry is for a different page, reload and try again. */
1902 if (!tlb_hit(tlb_addr, addr)) {
1903 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
1904 addr & TARGET_PAGE_MASK)) {
1905 tlb_fill(env_cpu(env), addr, size,
1906 access_type, mmu_idx, retaddr);
1907 index = tlb_index(env, mmu_idx, addr);
1908 entry = tlb_entry(env, mmu_idx, addr);
1909 }
1910 tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1911 tlb_addr &= ~TLB_INVALID_MASK;
1912 }
1913
1914 /* Handle anything that isn't just a straight memory access. */
1915 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
1916 CPUIOTLBEntry *iotlbentry;
1917 bool need_swap;
1918
1919 /* For anything that is unaligned, recurse through full_load. */
1920 if ((addr & (size - 1)) != 0) {
1921 goto do_unaligned_access;
1922 }
1923
1924 iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1925
1926 /* Handle watchpoints. */
1927 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
1928 /* On watchpoint hit, this will longjmp out. */
1929 cpu_check_watchpoint(env_cpu(env), addr, size,
1930 iotlbentry->attrs, BP_MEM_READ, retaddr);
1931 }
1932
1933 need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
1934
1935 /* Handle I/O access. */
1936 if (likely(tlb_addr & TLB_MMIO)) {
1937 return io_readx(env, iotlbentry, mmu_idx, addr, retaddr,
1938 access_type, op ^ (need_swap * MO_BSWAP));
1939 }
1940
1941 haddr = (void *)((uintptr_t)addr + entry->addend);
1942
1943 /*
1944 * Keep these two load_memop separate to ensure that the compiler
1945 * is able to fold the entire function to a single instruction.
1946 * There is a build-time assert inside to remind you of this. ;-)
1947 */
1948 if (unlikely(need_swap)) {
1949 return load_memop(haddr, op ^ MO_BSWAP);
1950 }
1951 return load_memop(haddr, op);
1952 }
1953
1954 /* Handle slow unaligned access (it spans two pages or IO). */
1955 if (size > 1
1956 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
1957 >= TARGET_PAGE_SIZE)) {
1958 target_ulong addr1, addr2;
1959 uint64_t r1, r2;
1960 unsigned shift;
1961 do_unaligned_access:
1962 addr1 = addr & ~((target_ulong)size - 1);
1963 addr2 = addr1 + size;
1964 r1 = full_load(env, addr1, oi, retaddr);
1965 r2 = full_load(env, addr2, oi, retaddr);
1966 shift = (addr & (size - 1)) * 8;
1967
1968 if (memop_big_endian(op)) {
1969 /* Big-endian combine. */
1970 res = (r1 << shift) | (r2 >> ((size * 8) - shift));
1971 } else {
1972 /* Little-endian combine. */
1973 res = (r1 >> shift) | (r2 << ((size * 8) - shift));
1974 }
1975 return res & MAKE_64BIT_MASK(0, size * 8);
1976 }
1977
1978 haddr = (void *)((uintptr_t)addr + entry->addend);
1979 return load_memop(haddr, op);
1980 }
1981
1982 /*
1983 * For the benefit of TCG generated code, we want to avoid the
1984 * complication of ABI-specific return type promotion and always
1985 * return a value extended to the register size of the host. This is
1986 * tcg_target_long, except in the case of a 32-bit host and 64-bit
1987 * data, and for that we always have uint64_t.
1988 *
1989 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
1990 */
1991
1992 static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
1993 MemOpIdx oi, uintptr_t retaddr)
1994 {
1995 return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu);
1996 }
1997
1998 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
1999 MemOpIdx oi, uintptr_t retaddr)
2000 {
2001 return full_ldub_mmu(env, addr, oi, retaddr);
2002 }
2003
2004 static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
2005 MemOpIdx oi, uintptr_t retaddr)
2006 {
2007 return load_helper(env, addr, oi, retaddr, MO_LEUW, false,
2008 full_le_lduw_mmu);
2009 }
2010
2011 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
2012 MemOpIdx oi, uintptr_t retaddr)
2013 {
2014 return full_le_lduw_mmu(env, addr, oi, retaddr);
2015 }
2016
2017 static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
2018 MemOpIdx oi, uintptr_t retaddr)
2019 {
2020 return load_helper(env, addr, oi, retaddr, MO_BEUW, false,
2021 full_be_lduw_mmu);
2022 }
2023
2024 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
2025 MemOpIdx oi, uintptr_t retaddr)
2026 {
2027 return full_be_lduw_mmu(env, addr, oi, retaddr);
2028 }
2029
2030 static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
2031 MemOpIdx oi, uintptr_t retaddr)
2032 {
2033 return load_helper(env, addr, oi, retaddr, MO_LEUL, false,
2034 full_le_ldul_mmu);
2035 }
2036
2037 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
2038 MemOpIdx oi, uintptr_t retaddr)
2039 {
2040 return full_le_ldul_mmu(env, addr, oi, retaddr);
2041 }
2042
2043 static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
2044 MemOpIdx oi, uintptr_t retaddr)
2045 {
2046 return load_helper(env, addr, oi, retaddr, MO_BEUL, false,
2047 full_be_ldul_mmu);
2048 }
2049
2050 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
2051 MemOpIdx oi, uintptr_t retaddr)
2052 {
2053 return full_be_ldul_mmu(env, addr, oi, retaddr);
2054 }
2055
2056 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
2057 MemOpIdx oi, uintptr_t retaddr)
2058 {
2059 return load_helper(env, addr, oi, retaddr, MO_LEQ, false,
2060 helper_le_ldq_mmu);
2061 }
2062
2063 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
2064 MemOpIdx oi, uintptr_t retaddr)
2065 {
2066 return load_helper(env, addr, oi, retaddr, MO_BEQ, false,
2067 helper_be_ldq_mmu);
2068 }
2069
2070 /*
2071 * Provide signed versions of the load routines as well. We can of course
2072 * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2073 */
2074
2075
2076 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
2077 MemOpIdx oi, uintptr_t retaddr)
2078 {
2079 return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
2080 }
2081
2082 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
2083 MemOpIdx oi, uintptr_t retaddr)
2084 {
2085 return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
2086 }
2087
2088 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
2089 MemOpIdx oi, uintptr_t retaddr)
2090 {
2091 return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
2092 }
2093
2094 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
2095 MemOpIdx oi, uintptr_t retaddr)
2096 {
2097 return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
2098 }
2099
2100 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
2101 MemOpIdx oi, uintptr_t retaddr)
2102 {
2103 return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
2104 }
2105
2106 /*
2107 * Load helpers for cpu_ldst.h.
2108 */
2109
2110 static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr,
2111 int mmu_idx, uintptr_t retaddr,
2112 MemOp op, FullLoadHelper *full_load)
2113 {
2114 MemOpIdx oi = make_memop_idx(op, mmu_idx);
2115 uint64_t ret;
2116
2117 trace_guest_ld_before_exec(env_cpu(env), addr, oi);
2118
2119 ret = full_load(env, addr, oi, retaddr);
2120
2121 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2122
2123 return ret;
2124 }
2125
2126 uint32_t cpu_ldub_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2127 int mmu_idx, uintptr_t ra)
2128 {
2129 return cpu_load_helper(env, addr, mmu_idx, ra, MO_UB, full_ldub_mmu);
2130 }
2131
2132 int cpu_ldsb_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2133 int mmu_idx, uintptr_t ra)
2134 {
2135 return (int8_t)cpu_ldub_mmuidx_ra(env, addr, mmu_idx, ra);
2136 }
2137
2138 uint32_t cpu_lduw_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2139 int mmu_idx, uintptr_t ra)
2140 {
2141 return cpu_load_helper(env, addr, mmu_idx, ra, MO_BEUW, full_be_lduw_mmu);
2142 }
2143
2144 int cpu_ldsw_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2145 int mmu_idx, uintptr_t ra)
2146 {
2147 return (int16_t)cpu_lduw_be_mmuidx_ra(env, addr, mmu_idx, ra);
2148 }
2149
2150 uint32_t cpu_ldl_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2151 int mmu_idx, uintptr_t ra)
2152 {
2153 return cpu_load_helper(env, addr, mmu_idx, ra, MO_BEUL, full_be_ldul_mmu);
2154 }
2155
2156 uint64_t cpu_ldq_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2157 int mmu_idx, uintptr_t ra)
2158 {
2159 return cpu_load_helper(env, addr, mmu_idx, ra, MO_BEQ, helper_be_ldq_mmu);
2160 }
2161
2162 uint32_t cpu_lduw_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2163 int mmu_idx, uintptr_t ra)
2164 {
2165 return cpu_load_helper(env, addr, mmu_idx, ra, MO_LEUW, full_le_lduw_mmu);
2166 }
2167
2168 int cpu_ldsw_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2169 int mmu_idx, uintptr_t ra)
2170 {
2171 return (int16_t)cpu_lduw_le_mmuidx_ra(env, addr, mmu_idx, ra);
2172 }
2173
2174 uint32_t cpu_ldl_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2175 int mmu_idx, uintptr_t ra)
2176 {
2177 return cpu_load_helper(env, addr, mmu_idx, ra, MO_LEUL, full_le_ldul_mmu);
2178 }
2179
2180 uint64_t cpu_ldq_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2181 int mmu_idx, uintptr_t ra)
2182 {
2183 return cpu_load_helper(env, addr, mmu_idx, ra, MO_LEQ, helper_le_ldq_mmu);
2184 }
2185
2186 uint32_t cpu_ldub_data_ra(CPUArchState *env, target_ulong ptr,
2187 uintptr_t retaddr)
2188 {
2189 return cpu_ldub_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2190 }
2191
2192 int cpu_ldsb_data_ra(CPUArchState *env, target_ulong ptr, uintptr_t retaddr)
2193 {
2194 return cpu_ldsb_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2195 }
2196
2197 uint32_t cpu_lduw_be_data_ra(CPUArchState *env, target_ulong ptr,
2198 uintptr_t retaddr)
2199 {
2200 return cpu_lduw_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2201 }
2202
2203 int cpu_ldsw_be_data_ra(CPUArchState *env, target_ulong ptr, uintptr_t retaddr)
2204 {
2205 return cpu_ldsw_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2206 }
2207
2208 uint32_t cpu_ldl_be_data_ra(CPUArchState *env, target_ulong ptr,
2209 uintptr_t retaddr)
2210 {
2211 return cpu_ldl_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2212 }
2213
2214 uint64_t cpu_ldq_be_data_ra(CPUArchState *env, target_ulong ptr,
2215 uintptr_t retaddr)
2216 {
2217 return cpu_ldq_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2218 }
2219
2220 uint32_t cpu_lduw_le_data_ra(CPUArchState *env, target_ulong ptr,
2221 uintptr_t retaddr)
2222 {
2223 return cpu_lduw_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2224 }
2225
2226 int cpu_ldsw_le_data_ra(CPUArchState *env, target_ulong ptr, uintptr_t retaddr)
2227 {
2228 return cpu_ldsw_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2229 }
2230
2231 uint32_t cpu_ldl_le_data_ra(CPUArchState *env, target_ulong ptr,
2232 uintptr_t retaddr)
2233 {
2234 return cpu_ldl_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2235 }
2236
2237 uint64_t cpu_ldq_le_data_ra(CPUArchState *env, target_ulong ptr,
2238 uintptr_t retaddr)
2239 {
2240 return cpu_ldq_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2241 }
2242
2243 uint32_t cpu_ldub_data(CPUArchState *env, target_ulong ptr)
2244 {
2245 return cpu_ldub_data_ra(env, ptr, 0);
2246 }
2247
2248 int cpu_ldsb_data(CPUArchState *env, target_ulong ptr)
2249 {
2250 return cpu_ldsb_data_ra(env, ptr, 0);
2251 }
2252
2253 uint32_t cpu_lduw_be_data(CPUArchState *env, target_ulong ptr)
2254 {
2255 return cpu_lduw_be_data_ra(env, ptr, 0);
2256 }
2257
2258 int cpu_ldsw_be_data(CPUArchState *env, target_ulong ptr)
2259 {
2260 return cpu_ldsw_be_data_ra(env, ptr, 0);
2261 }
2262
2263 uint32_t cpu_ldl_be_data(CPUArchState *env, target_ulong ptr)
2264 {
2265 return cpu_ldl_be_data_ra(env, ptr, 0);
2266 }
2267
2268 uint64_t cpu_ldq_be_data(CPUArchState *env, target_ulong ptr)
2269 {
2270 return cpu_ldq_be_data_ra(env, ptr, 0);
2271 }
2272
2273 uint32_t cpu_lduw_le_data(CPUArchState *env, target_ulong ptr)
2274 {
2275 return cpu_lduw_le_data_ra(env, ptr, 0);
2276 }
2277
2278 int cpu_ldsw_le_data(CPUArchState *env, target_ulong ptr)
2279 {
2280 return cpu_ldsw_le_data_ra(env, ptr, 0);
2281 }
2282
2283 uint32_t cpu_ldl_le_data(CPUArchState *env, target_ulong ptr)
2284 {
2285 return cpu_ldl_le_data_ra(env, ptr, 0);
2286 }
2287
2288 uint64_t cpu_ldq_le_data(CPUArchState *env, target_ulong ptr)
2289 {
2290 return cpu_ldq_le_data_ra(env, ptr, 0);
2291 }
2292
2293 /*
2294 * Store Helpers
2295 */
2296
2297 static inline void QEMU_ALWAYS_INLINE
2298 store_memop(void *haddr, uint64_t val, MemOp op)
2299 {
2300 switch (op) {
2301 case MO_UB:
2302 stb_p(haddr, val);
2303 break;
2304 case MO_BEUW:
2305 stw_be_p(haddr, val);
2306 break;
2307 case MO_LEUW:
2308 stw_le_p(haddr, val);
2309 break;
2310 case MO_BEUL:
2311 stl_be_p(haddr, val);
2312 break;
2313 case MO_LEUL:
2314 stl_le_p(haddr, val);
2315 break;
2316 case MO_BEQ:
2317 stq_be_p(haddr, val);
2318 break;
2319 case MO_LEQ:
2320 stq_le_p(haddr, val);
2321 break;
2322 default:
2323 qemu_build_not_reached();
2324 }
2325 }
2326
2327 static void __attribute__((noinline))
2328 store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val,
2329 uintptr_t retaddr, size_t size, uintptr_t mmu_idx,
2330 bool big_endian)
2331 {
2332 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2333 uintptr_t index, index2;
2334 CPUTLBEntry *entry, *entry2;
2335 target_ulong page2, tlb_addr, tlb_addr2;
2336 MemOpIdx oi;
2337 size_t size2;
2338 int i;
2339
2340 /*
2341 * Ensure the second page is in the TLB. Note that the first page
2342 * is already guaranteed to be filled, and that the second page
2343 * cannot evict the first.
2344 */
2345 page2 = (addr + size) & TARGET_PAGE_MASK;
2346 size2 = (addr + size) & ~TARGET_PAGE_MASK;
2347 index2 = tlb_index(env, mmu_idx, page2);
2348 entry2 = tlb_entry(env, mmu_idx, page2);
2349
2350 tlb_addr2 = tlb_addr_write(entry2);
2351 if (!tlb_hit_page(tlb_addr2, page2)) {
2352 if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) {
2353 tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE,
2354 mmu_idx, retaddr);
2355 index2 = tlb_index(env, mmu_idx, page2);
2356 entry2 = tlb_entry(env, mmu_idx, page2);
2357 }
2358 tlb_addr2 = tlb_addr_write(entry2);
2359 }
2360
2361 index = tlb_index(env, mmu_idx, addr);
2362 entry = tlb_entry(env, mmu_idx, addr);
2363 tlb_addr = tlb_addr_write(entry);
2364
2365 /*
2366 * Handle watchpoints. Since this may trap, all checks
2367 * must happen before any store.
2368 */
2369 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2370 cpu_check_watchpoint(env_cpu(env), addr, size - size2,
2371 env_tlb(env)->d[mmu_idx].iotlb[index].attrs,
2372 BP_MEM_WRITE, retaddr);
2373 }
2374 if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) {
2375 cpu_check_watchpoint(env_cpu(env), page2, size2,
2376 env_tlb(env)->d[mmu_idx].iotlb[index2].attrs,
2377 BP_MEM_WRITE, retaddr);
2378 }
2379
2380 /*
2381 * XXX: not efficient, but simple.
2382 * This loop must go in the forward direction to avoid issues
2383 * with self-modifying code in Windows 64-bit.
2384 */
2385 oi = make_memop_idx(MO_UB, mmu_idx);
2386 if (big_endian) {
2387 for (i = 0; i < size; ++i) {
2388 /* Big-endian extract. */
2389 uint8_t val8 = val >> (((size - 1) * 8) - (i * 8));
2390 helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr);
2391 }
2392 } else {
2393 for (i = 0; i < size; ++i) {
2394 /* Little-endian extract. */
2395 uint8_t val8 = val >> (i * 8);
2396 helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr);
2397 }
2398 }
2399 }
2400
2401 static inline void QEMU_ALWAYS_INLINE
2402 store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
2403 MemOpIdx oi, uintptr_t retaddr, MemOp op)
2404 {
2405 uintptr_t mmu_idx = get_mmuidx(oi);
2406 uintptr_t index = tlb_index(env, mmu_idx, addr);
2407 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
2408 target_ulong tlb_addr = tlb_addr_write(entry);
2409 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2410 unsigned a_bits = get_alignment_bits(get_memop(oi));
2411 void *haddr;
2412 size_t size = memop_size(op);
2413
2414 /* Handle CPU specific unaligned behaviour */
2415 if (addr & ((1 << a_bits) - 1)) {
2416 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
2417 mmu_idx, retaddr);
2418 }
2419
2420 /* If the TLB entry is for a different page, reload and try again. */
2421 if (!tlb_hit(tlb_addr, addr)) {
2422 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
2423 addr & TARGET_PAGE_MASK)) {
2424 tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
2425 mmu_idx, retaddr);
2426 index = tlb_index(env, mmu_idx, addr);
2427 entry = tlb_entry(env, mmu_idx, addr);
2428 }
2429 tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
2430 }
2431
2432 /* Handle anything that isn't just a straight memory access. */
2433 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
2434 CPUIOTLBEntry *iotlbentry;
2435 bool need_swap;
2436
2437 /* For anything that is unaligned, recurse through byte stores. */
2438 if ((addr & (size - 1)) != 0) {
2439 goto do_unaligned_access;
2440 }
2441
2442 iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
2443
2444 /* Handle watchpoints. */
2445 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2446 /* On watchpoint hit, this will longjmp out. */
2447 cpu_check_watchpoint(env_cpu(env), addr, size,
2448 iotlbentry->attrs, BP_MEM_WRITE, retaddr);
2449 }
2450
2451 need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
2452
2453 /* Handle I/O access. */
2454 if (tlb_addr & TLB_MMIO) {
2455 io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr,
2456 op ^ (need_swap * MO_BSWAP));
2457 return;
2458 }
2459
2460 /* Ignore writes to ROM. */
2461 if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) {
2462 return;
2463 }
2464
2465 /* Handle clean RAM pages. */
2466 if (tlb_addr & TLB_NOTDIRTY) {
2467 notdirty_write(env_cpu(env), addr, size, iotlbentry, retaddr);
2468 }
2469
2470 haddr = (void *)((uintptr_t)addr + entry->addend);
2471
2472 /*
2473 * Keep these two store_memop separate to ensure that the compiler
2474 * is able to fold the entire function to a single instruction.
2475 * There is a build-time assert inside to remind you of this. ;-)
2476 */
2477 if (unlikely(need_swap)) {
2478 store_memop(haddr, val, op ^ MO_BSWAP);
2479 } else {
2480 store_memop(haddr, val, op);
2481 }
2482 return;
2483 }
2484
2485 /* Handle slow unaligned access (it spans two pages or IO). */
2486 if (size > 1
2487 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
2488 >= TARGET_PAGE_SIZE)) {
2489 do_unaligned_access:
2490 store_helper_unaligned(env, addr, val, retaddr, size,
2491 mmu_idx, memop_big_endian(op));
2492 return;
2493 }
2494
2495 haddr = (void *)((uintptr_t)addr + entry->addend);
2496 store_memop(haddr, val, op);
2497 }
2498
2499 void __attribute__((noinline))
2500 helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2501 MemOpIdx oi, uintptr_t retaddr)
2502 {
2503 store_helper(env, addr, val, oi, retaddr, MO_UB);
2504 }
2505
2506 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2507 MemOpIdx oi, uintptr_t retaddr)
2508 {
2509 store_helper(env, addr, val, oi, retaddr, MO_LEUW);
2510 }
2511
2512 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2513 MemOpIdx oi, uintptr_t retaddr)
2514 {
2515 store_helper(env, addr, val, oi, retaddr, MO_BEUW);
2516 }
2517
2518 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2519 MemOpIdx oi, uintptr_t retaddr)
2520 {
2521 store_helper(env, addr, val, oi, retaddr, MO_LEUL);
2522 }
2523
2524 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2525 MemOpIdx oi, uintptr_t retaddr)
2526 {
2527 store_helper(env, addr, val, oi, retaddr, MO_BEUL);
2528 }
2529
2530 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2531 MemOpIdx oi, uintptr_t retaddr)
2532 {
2533 store_helper(env, addr, val, oi, retaddr, MO_LEQ);
2534 }
2535
2536 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2537 MemOpIdx oi, uintptr_t retaddr)
2538 {
2539 store_helper(env, addr, val, oi, retaddr, MO_BEQ);
2540 }
2541
2542 /*
2543 * Store Helpers for cpu_ldst.h
2544 */
2545
2546 static inline void QEMU_ALWAYS_INLINE
2547 cpu_store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
2548 int mmu_idx, uintptr_t retaddr, MemOp op)
2549 {
2550 MemOpIdx oi = make_memop_idx(op, mmu_idx);
2551
2552 trace_guest_st_before_exec(env_cpu(env), addr, oi);
2553
2554 store_helper(env, addr, val, oi, retaddr, op);
2555
2556 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
2557 }
2558
2559 void cpu_stb_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2560 int mmu_idx, uintptr_t retaddr)
2561 {
2562 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_UB);
2563 }
2564
2565 void cpu_stw_be_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2566 int mmu_idx, uintptr_t retaddr)
2567 {
2568 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_BEUW);
2569 }
2570
2571 void cpu_stl_be_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2572 int mmu_idx, uintptr_t retaddr)
2573 {
2574 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_BEUL);
2575 }
2576
2577 void cpu_stq_be_mmuidx_ra(CPUArchState *env, target_ulong addr, uint64_t val,
2578 int mmu_idx, uintptr_t retaddr)
2579 {
2580 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_BEQ);
2581 }
2582
2583 void cpu_stw_le_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2584 int mmu_idx, uintptr_t retaddr)
2585 {
2586 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_LEUW);
2587 }
2588
2589 void cpu_stl_le_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2590 int mmu_idx, uintptr_t retaddr)
2591 {
2592 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_LEUL);
2593 }
2594
2595 void cpu_stq_le_mmuidx_ra(CPUArchState *env, target_ulong addr, uint64_t val,
2596 int mmu_idx, uintptr_t retaddr)
2597 {
2598 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_LEQ);
2599 }
2600
2601 void cpu_stb_data_ra(CPUArchState *env, target_ulong ptr,
2602 uint32_t val, uintptr_t retaddr)
2603 {
2604 cpu_stb_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2605 }
2606
2607 void cpu_stw_be_data_ra(CPUArchState *env, target_ulong ptr,
2608 uint32_t val, uintptr_t retaddr)
2609 {
2610 cpu_stw_be_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2611 }
2612
2613 void cpu_stl_be_data_ra(CPUArchState *env, target_ulong ptr,
2614 uint32_t val, uintptr_t retaddr)
2615 {
2616 cpu_stl_be_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2617 }
2618
2619 void cpu_stq_be_data_ra(CPUArchState *env, target_ulong ptr,
2620 uint64_t val, uintptr_t retaddr)
2621 {
2622 cpu_stq_be_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2623 }
2624
2625 void cpu_stw_le_data_ra(CPUArchState *env, target_ulong ptr,
2626 uint32_t val, uintptr_t retaddr)
2627 {
2628 cpu_stw_le_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2629 }
2630
2631 void cpu_stl_le_data_ra(CPUArchState *env, target_ulong ptr,
2632 uint32_t val, uintptr_t retaddr)
2633 {
2634 cpu_stl_le_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2635 }
2636
2637 void cpu_stq_le_data_ra(CPUArchState *env, target_ulong ptr,
2638 uint64_t val, uintptr_t retaddr)
2639 {
2640 cpu_stq_le_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2641 }
2642
2643 void cpu_stb_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2644 {
2645 cpu_stb_data_ra(env, ptr, val, 0);
2646 }
2647
2648 void cpu_stw_be_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2649 {
2650 cpu_stw_be_data_ra(env, ptr, val, 0);
2651 }
2652
2653 void cpu_stl_be_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2654 {
2655 cpu_stl_be_data_ra(env, ptr, val, 0);
2656 }
2657
2658 void cpu_stq_be_data(CPUArchState *env, target_ulong ptr, uint64_t val)
2659 {
2660 cpu_stq_be_data_ra(env, ptr, val, 0);
2661 }
2662
2663 void cpu_stw_le_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2664 {
2665 cpu_stw_le_data_ra(env, ptr, val, 0);
2666 }
2667
2668 void cpu_stl_le_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2669 {
2670 cpu_stl_le_data_ra(env, ptr, val, 0);
2671 }
2672
2673 void cpu_stq_le_data(CPUArchState *env, target_ulong ptr, uint64_t val)
2674 {
2675 cpu_stq_le_data_ra(env, ptr, val, 0);
2676 }
2677
2678 /*
2679 * First set of functions passes in OI and RETADDR.
2680 * This makes them callable from other helpers.
2681 */
2682
2683 #define ATOMIC_NAME(X) \
2684 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
2685
2686 #define ATOMIC_MMU_CLEANUP
2687 #define ATOMIC_MMU_IDX get_mmuidx(oi)
2688
2689 #include "atomic_common.c.inc"
2690
2691 #define DATA_SIZE 1
2692 #include "atomic_template.h"
2693
2694 #define DATA_SIZE 2
2695 #include "atomic_template.h"
2696
2697 #define DATA_SIZE 4
2698 #include "atomic_template.h"
2699
2700 #ifdef CONFIG_ATOMIC64
2701 #define DATA_SIZE 8
2702 #include "atomic_template.h"
2703 #endif
2704
2705 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128
2706 #define DATA_SIZE 16
2707 #include "atomic_template.h"
2708 #endif
2709
2710 /* Code access functions. */
2711
2712 static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr,
2713 MemOpIdx oi, uintptr_t retaddr)
2714 {
2715 return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code);
2716 }
2717
2718 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
2719 {
2720 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
2721 return full_ldub_code(env, addr, oi, 0);
2722 }
2723
2724 static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr,
2725 MemOpIdx oi, uintptr_t retaddr)
2726 {
2727 return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code);
2728 }
2729
2730 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
2731 {
2732 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
2733 return full_lduw_code(env, addr, oi, 0);
2734 }
2735
2736 static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr,
2737 MemOpIdx oi, uintptr_t retaddr)
2738 {
2739 return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code);
2740 }
2741
2742 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
2743 {
2744 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
2745 return full_ldl_code(env, addr, oi, 0);
2746 }
2747
2748 static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr,
2749 MemOpIdx oi, uintptr_t retaddr)
2750 {
2751 return load_helper(env, addr, oi, retaddr, MO_TEQ, true, full_ldq_code);
2752 }
2753
2754 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
2755 {
2756 MemOpIdx oi = make_memop_idx(MO_TEQ, cpu_mmu_index(env, true));
2757 return full_ldq_code(env, addr, oi, 0);
2758 }