]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/translate-all.c
iotests: Test external snapshot with VM state
[mirror_qemu.git] / accel / tcg / translate-all.c
1 /*
2 * Host code generation
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22
23 #define NO_CPU_IO_DEFS
24 #include "cpu.h"
25 #include "trace.h"
26 #include "disas/disas.h"
27 #include "exec/exec-all.h"
28 #include "tcg.h"
29 #if defined(CONFIG_USER_ONLY)
30 #include "qemu.h"
31 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
32 #include <sys/param.h>
33 #if __FreeBSD_version >= 700104
34 #define HAVE_KINFO_GETVMMAP
35 #define sigqueue sigqueue_freebsd /* avoid redefinition */
36 #include <sys/proc.h>
37 #include <machine/profile.h>
38 #define _KERNEL
39 #include <sys/user.h>
40 #undef _KERNEL
41 #undef sigqueue
42 #include <libutil.h>
43 #endif
44 #endif
45 #else
46 #include "exec/ram_addr.h"
47 #endif
48
49 #include "exec/cputlb.h"
50 #include "exec/tb-hash.h"
51 #include "translate-all.h"
52 #include "qemu/bitmap.h"
53 #include "qemu/error-report.h"
54 #include "qemu/qemu-print.h"
55 #include "qemu/timer.h"
56 #include "qemu/main-loop.h"
57 #include "exec/log.h"
58 #include "sysemu/cpus.h"
59 #include "sysemu/tcg.h"
60
61 /* #define DEBUG_TB_INVALIDATE */
62 /* #define DEBUG_TB_FLUSH */
63 /* make various TB consistency checks */
64 /* #define DEBUG_TB_CHECK */
65
66 #ifdef DEBUG_TB_INVALIDATE
67 #define DEBUG_TB_INVALIDATE_GATE 1
68 #else
69 #define DEBUG_TB_INVALIDATE_GATE 0
70 #endif
71
72 #ifdef DEBUG_TB_FLUSH
73 #define DEBUG_TB_FLUSH_GATE 1
74 #else
75 #define DEBUG_TB_FLUSH_GATE 0
76 #endif
77
78 #if !defined(CONFIG_USER_ONLY)
79 /* TB consistency checks only implemented for usermode emulation. */
80 #undef DEBUG_TB_CHECK
81 #endif
82
83 #ifdef DEBUG_TB_CHECK
84 #define DEBUG_TB_CHECK_GATE 1
85 #else
86 #define DEBUG_TB_CHECK_GATE 0
87 #endif
88
89 /* Access to the various translations structures need to be serialised via locks
90 * for consistency.
91 * In user-mode emulation access to the memory related structures are protected
92 * with mmap_lock.
93 * In !user-mode we use per-page locks.
94 */
95 #ifdef CONFIG_SOFTMMU
96 #define assert_memory_lock()
97 #else
98 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
99 #endif
100
101 #define SMC_BITMAP_USE_THRESHOLD 10
102
103 typedef struct PageDesc {
104 /* list of TBs intersecting this ram page */
105 uintptr_t first_tb;
106 #ifdef CONFIG_SOFTMMU
107 /* in order to optimize self modifying code, we count the number
108 of lookups we do to a given page to use a bitmap */
109 unsigned long *code_bitmap;
110 unsigned int code_write_count;
111 #else
112 unsigned long flags;
113 #endif
114 #ifndef CONFIG_USER_ONLY
115 QemuSpin lock;
116 #endif
117 } PageDesc;
118
119 /**
120 * struct page_entry - page descriptor entry
121 * @pd: pointer to the &struct PageDesc of the page this entry represents
122 * @index: page index of the page
123 * @locked: whether the page is locked
124 *
125 * This struct helps us keep track of the locked state of a page, without
126 * bloating &struct PageDesc.
127 *
128 * A page lock protects accesses to all fields of &struct PageDesc.
129 *
130 * See also: &struct page_collection.
131 */
132 struct page_entry {
133 PageDesc *pd;
134 tb_page_addr_t index;
135 bool locked;
136 };
137
138 /**
139 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
140 * @tree: Binary search tree (BST) of the pages, with key == page index
141 * @max: Pointer to the page in @tree with the highest page index
142 *
143 * To avoid deadlock we lock pages in ascending order of page index.
144 * When operating on a set of pages, we need to keep track of them so that
145 * we can lock them in order and also unlock them later. For this we collect
146 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
147 * @tree implementation we use does not provide an O(1) operation to obtain the
148 * highest-ranked element, we use @max to keep track of the inserted page
149 * with the highest index. This is valuable because if a page is not in
150 * the tree and its index is higher than @max's, then we can lock it
151 * without breaking the locking order rule.
152 *
153 * Note on naming: 'struct page_set' would be shorter, but we already have a few
154 * page_set_*() helpers, so page_collection is used instead to avoid confusion.
155 *
156 * See also: page_collection_lock().
157 */
158 struct page_collection {
159 GTree *tree;
160 struct page_entry *max;
161 };
162
163 /* list iterators for lists of tagged pointers in TranslationBlock */
164 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \
165 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \
166 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
167 tb = (TranslationBlock *)((uintptr_t)tb & ~1))
168
169 #define PAGE_FOR_EACH_TB(pagedesc, tb, n) \
170 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
171
172 #define TB_FOR_EACH_JMP(head_tb, tb, n) \
173 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
174
175 /* In system mode we want L1_MAP to be based on ram offsets,
176 while in user mode we want it to be based on virtual addresses. */
177 #if !defined(CONFIG_USER_ONLY)
178 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
179 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
180 #else
181 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
182 #endif
183 #else
184 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
185 #endif
186
187 /* Size of the L2 (and L3, etc) page tables. */
188 #define V_L2_BITS 10
189 #define V_L2_SIZE (1 << V_L2_BITS)
190
191 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
192 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
193 sizeof_field(TranslationBlock, trace_vcpu_dstate)
194 * BITS_PER_BYTE);
195
196 /*
197 * L1 Mapping properties
198 */
199 static int v_l1_size;
200 static int v_l1_shift;
201 static int v_l2_levels;
202
203 /* The bottom level has pointers to PageDesc, and is indexed by
204 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
205 */
206 #define V_L1_MIN_BITS 4
207 #define V_L1_MAX_BITS (V_L2_BITS + 3)
208 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
209
210 static void *l1_map[V_L1_MAX_SIZE];
211
212 /* code generation context */
213 TCGContext tcg_init_ctx;
214 __thread TCGContext *tcg_ctx;
215 TBContext tb_ctx;
216 bool parallel_cpus;
217
218 static void page_table_config_init(void)
219 {
220 uint32_t v_l1_bits;
221
222 assert(TARGET_PAGE_BITS);
223 /* The bits remaining after N lower levels of page tables. */
224 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
225 if (v_l1_bits < V_L1_MIN_BITS) {
226 v_l1_bits += V_L2_BITS;
227 }
228
229 v_l1_size = 1 << v_l1_bits;
230 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
231 v_l2_levels = v_l1_shift / V_L2_BITS - 1;
232
233 assert(v_l1_bits <= V_L1_MAX_BITS);
234 assert(v_l1_shift % V_L2_BITS == 0);
235 assert(v_l2_levels >= 0);
236 }
237
238 void cpu_gen_init(void)
239 {
240 tcg_context_init(&tcg_init_ctx);
241 }
242
243 /* Encode VAL as a signed leb128 sequence at P.
244 Return P incremented past the encoded value. */
245 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
246 {
247 int more, byte;
248
249 do {
250 byte = val & 0x7f;
251 val >>= 7;
252 more = !((val == 0 && (byte & 0x40) == 0)
253 || (val == -1 && (byte & 0x40) != 0));
254 if (more) {
255 byte |= 0x80;
256 }
257 *p++ = byte;
258 } while (more);
259
260 return p;
261 }
262
263 /* Decode a signed leb128 sequence at *PP; increment *PP past the
264 decoded value. Return the decoded value. */
265 static target_long decode_sleb128(uint8_t **pp)
266 {
267 uint8_t *p = *pp;
268 target_long val = 0;
269 int byte, shift = 0;
270
271 do {
272 byte = *p++;
273 val |= (target_ulong)(byte & 0x7f) << shift;
274 shift += 7;
275 } while (byte & 0x80);
276 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
277 val |= -(target_ulong)1 << shift;
278 }
279
280 *pp = p;
281 return val;
282 }
283
284 /* Encode the data collected about the instructions while compiling TB.
285 Place the data at BLOCK, and return the number of bytes consumed.
286
287 The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
288 which come from the target's insn_start data, followed by a uintptr_t
289 which comes from the host pc of the end of the code implementing the insn.
290
291 Each line of the table is encoded as sleb128 deltas from the previous
292 line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
293 That is, the first column is seeded with the guest pc, the last column
294 with the host pc, and the middle columns with zeros. */
295
296 static int encode_search(TranslationBlock *tb, uint8_t *block)
297 {
298 uint8_t *highwater = tcg_ctx->code_gen_highwater;
299 uint8_t *p = block;
300 int i, j, n;
301
302 for (i = 0, n = tb->icount; i < n; ++i) {
303 target_ulong prev;
304
305 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
306 if (i == 0) {
307 prev = (j == 0 ? tb->pc : 0);
308 } else {
309 prev = tcg_ctx->gen_insn_data[i - 1][j];
310 }
311 p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
312 }
313 prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
314 p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
315
316 /* Test for (pending) buffer overflow. The assumption is that any
317 one row beginning below the high water mark cannot overrun
318 the buffer completely. Thus we can test for overflow after
319 encoding a row without having to check during encoding. */
320 if (unlikely(p > highwater)) {
321 return -1;
322 }
323 }
324
325 return p - block;
326 }
327
328 /* The cpu state corresponding to 'searched_pc' is restored.
329 * When reset_icount is true, current TB will be interrupted and
330 * icount should be recalculated.
331 */
332 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
333 uintptr_t searched_pc, bool reset_icount)
334 {
335 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
336 uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
337 CPUArchState *env = cpu->env_ptr;
338 uint8_t *p = tb->tc.ptr + tb->tc.size;
339 int i, j, num_insns = tb->icount;
340 #ifdef CONFIG_PROFILER
341 TCGProfile *prof = &tcg_ctx->prof;
342 int64_t ti = profile_getclock();
343 #endif
344
345 searched_pc -= GETPC_ADJ;
346
347 if (searched_pc < host_pc) {
348 return -1;
349 }
350
351 /* Reconstruct the stored insn data while looking for the point at
352 which the end of the insn exceeds the searched_pc. */
353 for (i = 0; i < num_insns; ++i) {
354 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
355 data[j] += decode_sleb128(&p);
356 }
357 host_pc += decode_sleb128(&p);
358 if (host_pc > searched_pc) {
359 goto found;
360 }
361 }
362 return -1;
363
364 found:
365 if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
366 assert(use_icount);
367 /* Reset the cycle counter to the start of the block
368 and shift if to the number of actually executed instructions */
369 cpu_neg(cpu)->icount_decr.u16.low += num_insns - i;
370 }
371 restore_state_to_opc(env, tb, data);
372
373 #ifdef CONFIG_PROFILER
374 atomic_set(&prof->restore_time,
375 prof->restore_time + profile_getclock() - ti);
376 atomic_set(&prof->restore_count, prof->restore_count + 1);
377 #endif
378 return 0;
379 }
380
381 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
382 {
383 TranslationBlock *tb;
384 bool r = false;
385 uintptr_t check_offset;
386
387 /* The host_pc has to be in the region of current code buffer. If
388 * it is not we will not be able to resolve it here. The two cases
389 * where host_pc will not be correct are:
390 *
391 * - fault during translation (instruction fetch)
392 * - fault from helper (not using GETPC() macro)
393 *
394 * Either way we need return early as we can't resolve it here.
395 *
396 * We are using unsigned arithmetic so if host_pc <
397 * tcg_init_ctx.code_gen_buffer check_offset will wrap to way
398 * above the code_gen_buffer_size
399 */
400 check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer;
401
402 if (check_offset < tcg_init_ctx.code_gen_buffer_size) {
403 tb = tcg_tb_lookup(host_pc);
404 if (tb) {
405 cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
406 if (tb_cflags(tb) & CF_NOCACHE) {
407 /* one-shot translation, invalidate it immediately */
408 tb_phys_invalidate(tb, -1);
409 tcg_tb_remove(tb);
410 }
411 r = true;
412 }
413 }
414
415 return r;
416 }
417
418 static void page_init(void)
419 {
420 page_size_init();
421 page_table_config_init();
422
423 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
424 {
425 #ifdef HAVE_KINFO_GETVMMAP
426 struct kinfo_vmentry *freep;
427 int i, cnt;
428
429 freep = kinfo_getvmmap(getpid(), &cnt);
430 if (freep) {
431 mmap_lock();
432 for (i = 0; i < cnt; i++) {
433 unsigned long startaddr, endaddr;
434
435 startaddr = freep[i].kve_start;
436 endaddr = freep[i].kve_end;
437 if (h2g_valid(startaddr)) {
438 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
439
440 if (h2g_valid(endaddr)) {
441 endaddr = h2g(endaddr);
442 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
443 } else {
444 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
445 endaddr = ~0ul;
446 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
447 #endif
448 }
449 }
450 }
451 free(freep);
452 mmap_unlock();
453 }
454 #else
455 FILE *f;
456
457 last_brk = (unsigned long)sbrk(0);
458
459 f = fopen("/compat/linux/proc/self/maps", "r");
460 if (f) {
461 mmap_lock();
462
463 do {
464 unsigned long startaddr, endaddr;
465 int n;
466
467 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
468
469 if (n == 2 && h2g_valid(startaddr)) {
470 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
471
472 if (h2g_valid(endaddr)) {
473 endaddr = h2g(endaddr);
474 } else {
475 endaddr = ~0ul;
476 }
477 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
478 }
479 } while (!feof(f));
480
481 fclose(f);
482 mmap_unlock();
483 }
484 #endif
485 }
486 #endif
487 }
488
489 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
490 {
491 PageDesc *pd;
492 void **lp;
493 int i;
494
495 /* Level 1. Always allocated. */
496 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
497
498 /* Level 2..N-1. */
499 for (i = v_l2_levels; i > 0; i--) {
500 void **p = atomic_rcu_read(lp);
501
502 if (p == NULL) {
503 void *existing;
504
505 if (!alloc) {
506 return NULL;
507 }
508 p = g_new0(void *, V_L2_SIZE);
509 existing = atomic_cmpxchg(lp, NULL, p);
510 if (unlikely(existing)) {
511 g_free(p);
512 p = existing;
513 }
514 }
515
516 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
517 }
518
519 pd = atomic_rcu_read(lp);
520 if (pd == NULL) {
521 void *existing;
522
523 if (!alloc) {
524 return NULL;
525 }
526 pd = g_new0(PageDesc, V_L2_SIZE);
527 #ifndef CONFIG_USER_ONLY
528 {
529 int i;
530
531 for (i = 0; i < V_L2_SIZE; i++) {
532 qemu_spin_init(&pd[i].lock);
533 }
534 }
535 #endif
536 existing = atomic_cmpxchg(lp, NULL, pd);
537 if (unlikely(existing)) {
538 g_free(pd);
539 pd = existing;
540 }
541 }
542
543 return pd + (index & (V_L2_SIZE - 1));
544 }
545
546 static inline PageDesc *page_find(tb_page_addr_t index)
547 {
548 return page_find_alloc(index, 0);
549 }
550
551 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
552 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
553
554 /* In user-mode page locks aren't used; mmap_lock is enough */
555 #ifdef CONFIG_USER_ONLY
556
557 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
558
559 static inline void page_lock(PageDesc *pd)
560 { }
561
562 static inline void page_unlock(PageDesc *pd)
563 { }
564
565 static inline void page_lock_tb(const TranslationBlock *tb)
566 { }
567
568 static inline void page_unlock_tb(const TranslationBlock *tb)
569 { }
570
571 struct page_collection *
572 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
573 {
574 return NULL;
575 }
576
577 void page_collection_unlock(struct page_collection *set)
578 { }
579 #else /* !CONFIG_USER_ONLY */
580
581 #ifdef CONFIG_DEBUG_TCG
582
583 static __thread GHashTable *ht_pages_locked_debug;
584
585 static void ht_pages_locked_debug_init(void)
586 {
587 if (ht_pages_locked_debug) {
588 return;
589 }
590 ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
591 }
592
593 static bool page_is_locked(const PageDesc *pd)
594 {
595 PageDesc *found;
596
597 ht_pages_locked_debug_init();
598 found = g_hash_table_lookup(ht_pages_locked_debug, pd);
599 return !!found;
600 }
601
602 static void page_lock__debug(PageDesc *pd)
603 {
604 ht_pages_locked_debug_init();
605 g_assert(!page_is_locked(pd));
606 g_hash_table_insert(ht_pages_locked_debug, pd, pd);
607 }
608
609 static void page_unlock__debug(const PageDesc *pd)
610 {
611 bool removed;
612
613 ht_pages_locked_debug_init();
614 g_assert(page_is_locked(pd));
615 removed = g_hash_table_remove(ht_pages_locked_debug, pd);
616 g_assert(removed);
617 }
618
619 static void
620 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
621 {
622 if (unlikely(!page_is_locked(pd))) {
623 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
624 pd, file, line);
625 abort();
626 }
627 }
628
629 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
630
631 void assert_no_pages_locked(void)
632 {
633 ht_pages_locked_debug_init();
634 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
635 }
636
637 #else /* !CONFIG_DEBUG_TCG */
638
639 #define assert_page_locked(pd)
640
641 static inline void page_lock__debug(const PageDesc *pd)
642 {
643 }
644
645 static inline void page_unlock__debug(const PageDesc *pd)
646 {
647 }
648
649 #endif /* CONFIG_DEBUG_TCG */
650
651 static inline void page_lock(PageDesc *pd)
652 {
653 page_lock__debug(pd);
654 qemu_spin_lock(&pd->lock);
655 }
656
657 static inline void page_unlock(PageDesc *pd)
658 {
659 qemu_spin_unlock(&pd->lock);
660 page_unlock__debug(pd);
661 }
662
663 /* lock the page(s) of a TB in the correct acquisition order */
664 static inline void page_lock_tb(const TranslationBlock *tb)
665 {
666 page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
667 }
668
669 static inline void page_unlock_tb(const TranslationBlock *tb)
670 {
671 PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
672
673 page_unlock(p1);
674 if (unlikely(tb->page_addr[1] != -1)) {
675 PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
676
677 if (p2 != p1) {
678 page_unlock(p2);
679 }
680 }
681 }
682
683 static inline struct page_entry *
684 page_entry_new(PageDesc *pd, tb_page_addr_t index)
685 {
686 struct page_entry *pe = g_malloc(sizeof(*pe));
687
688 pe->index = index;
689 pe->pd = pd;
690 pe->locked = false;
691 return pe;
692 }
693
694 static void page_entry_destroy(gpointer p)
695 {
696 struct page_entry *pe = p;
697
698 g_assert(pe->locked);
699 page_unlock(pe->pd);
700 g_free(pe);
701 }
702
703 /* returns false on success */
704 static bool page_entry_trylock(struct page_entry *pe)
705 {
706 bool busy;
707
708 busy = qemu_spin_trylock(&pe->pd->lock);
709 if (!busy) {
710 g_assert(!pe->locked);
711 pe->locked = true;
712 page_lock__debug(pe->pd);
713 }
714 return busy;
715 }
716
717 static void do_page_entry_lock(struct page_entry *pe)
718 {
719 page_lock(pe->pd);
720 g_assert(!pe->locked);
721 pe->locked = true;
722 }
723
724 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
725 {
726 struct page_entry *pe = value;
727
728 do_page_entry_lock(pe);
729 return FALSE;
730 }
731
732 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
733 {
734 struct page_entry *pe = value;
735
736 if (pe->locked) {
737 pe->locked = false;
738 page_unlock(pe->pd);
739 }
740 return FALSE;
741 }
742
743 /*
744 * Trylock a page, and if successful, add the page to a collection.
745 * Returns true ("busy") if the page could not be locked; false otherwise.
746 */
747 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
748 {
749 tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
750 struct page_entry *pe;
751 PageDesc *pd;
752
753 pe = g_tree_lookup(set->tree, &index);
754 if (pe) {
755 return false;
756 }
757
758 pd = page_find(index);
759 if (pd == NULL) {
760 return false;
761 }
762
763 pe = page_entry_new(pd, index);
764 g_tree_insert(set->tree, &pe->index, pe);
765
766 /*
767 * If this is either (1) the first insertion or (2) a page whose index
768 * is higher than any other so far, just lock the page and move on.
769 */
770 if (set->max == NULL || pe->index > set->max->index) {
771 set->max = pe;
772 do_page_entry_lock(pe);
773 return false;
774 }
775 /*
776 * Try to acquire out-of-order lock; if busy, return busy so that we acquire
777 * locks in order.
778 */
779 return page_entry_trylock(pe);
780 }
781
782 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
783 {
784 tb_page_addr_t a = *(const tb_page_addr_t *)ap;
785 tb_page_addr_t b = *(const tb_page_addr_t *)bp;
786
787 if (a == b) {
788 return 0;
789 } else if (a < b) {
790 return -1;
791 }
792 return 1;
793 }
794
795 /*
796 * Lock a range of pages ([@start,@end[) as well as the pages of all
797 * intersecting TBs.
798 * Locking order: acquire locks in ascending order of page index.
799 */
800 struct page_collection *
801 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
802 {
803 struct page_collection *set = g_malloc(sizeof(*set));
804 tb_page_addr_t index;
805 PageDesc *pd;
806
807 start >>= TARGET_PAGE_BITS;
808 end >>= TARGET_PAGE_BITS;
809 g_assert(start <= end);
810
811 set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
812 page_entry_destroy);
813 set->max = NULL;
814 assert_no_pages_locked();
815
816 retry:
817 g_tree_foreach(set->tree, page_entry_lock, NULL);
818
819 for (index = start; index <= end; index++) {
820 TranslationBlock *tb;
821 int n;
822
823 pd = page_find(index);
824 if (pd == NULL) {
825 continue;
826 }
827 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
828 g_tree_foreach(set->tree, page_entry_unlock, NULL);
829 goto retry;
830 }
831 assert_page_locked(pd);
832 PAGE_FOR_EACH_TB(pd, tb, n) {
833 if (page_trylock_add(set, tb->page_addr[0]) ||
834 (tb->page_addr[1] != -1 &&
835 page_trylock_add(set, tb->page_addr[1]))) {
836 /* drop all locks, and reacquire in order */
837 g_tree_foreach(set->tree, page_entry_unlock, NULL);
838 goto retry;
839 }
840 }
841 }
842 return set;
843 }
844
845 void page_collection_unlock(struct page_collection *set)
846 {
847 /* entries are unlocked and freed via page_entry_destroy */
848 g_tree_destroy(set->tree);
849 g_free(set);
850 }
851
852 #endif /* !CONFIG_USER_ONLY */
853
854 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
855 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
856 {
857 PageDesc *p1, *p2;
858 tb_page_addr_t page1;
859 tb_page_addr_t page2;
860
861 assert_memory_lock();
862 g_assert(phys1 != -1);
863
864 page1 = phys1 >> TARGET_PAGE_BITS;
865 page2 = phys2 >> TARGET_PAGE_BITS;
866
867 p1 = page_find_alloc(page1, alloc);
868 if (ret_p1) {
869 *ret_p1 = p1;
870 }
871 if (likely(phys2 == -1)) {
872 page_lock(p1);
873 return;
874 } else if (page1 == page2) {
875 page_lock(p1);
876 if (ret_p2) {
877 *ret_p2 = p1;
878 }
879 return;
880 }
881 p2 = page_find_alloc(page2, alloc);
882 if (ret_p2) {
883 *ret_p2 = p2;
884 }
885 if (page1 < page2) {
886 page_lock(p1);
887 page_lock(p2);
888 } else {
889 page_lock(p2);
890 page_lock(p1);
891 }
892 }
893
894 #if defined(CONFIG_USER_ONLY)
895 /* Currently it is not recommended to allocate big chunks of data in
896 user mode. It will change when a dedicated libc will be used. */
897 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
898 region in which the guest needs to run. Revisit this. */
899 #define USE_STATIC_CODE_GEN_BUFFER
900 #endif
901
902 /* Minimum size of the code gen buffer. This number is randomly chosen,
903 but not so small that we can't have a fair number of TB's live. */
904 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
905
906 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
907 indicated, this is constrained by the range of direct branches on the
908 host cpu, as used by the TCG implementation of goto_tb. */
909 #if defined(__x86_64__)
910 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
911 #elif defined(__sparc__)
912 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
913 #elif defined(__powerpc64__)
914 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
915 #elif defined(__powerpc__)
916 # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
917 #elif defined(__aarch64__)
918 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
919 #elif defined(__s390x__)
920 /* We have a +- 4GB range on the branches; leave some slop. */
921 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
922 #elif defined(__mips__)
923 /* We have a 256MB branch region, but leave room to make sure the
924 main executable is also within that region. */
925 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
926 #else
927 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
928 #endif
929
930 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
931
932 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
933 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
934 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
935
936 static inline size_t size_code_gen_buffer(size_t tb_size)
937 {
938 /* Size the buffer. */
939 if (tb_size == 0) {
940 #ifdef USE_STATIC_CODE_GEN_BUFFER
941 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
942 #else
943 /* ??? Needs adjustments. */
944 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
945 static buffer, we could size this on RESERVED_VA, on the text
946 segment size of the executable, or continue to use the default. */
947 tb_size = (unsigned long)(ram_size / 4);
948 #endif
949 }
950 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
951 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
952 }
953 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
954 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
955 }
956 return tb_size;
957 }
958
959 #ifdef __mips__
960 /* In order to use J and JAL within the code_gen_buffer, we require
961 that the buffer not cross a 256MB boundary. */
962 static inline bool cross_256mb(void *addr, size_t size)
963 {
964 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
965 }
966
967 /* We weren't able to allocate a buffer without crossing that boundary,
968 so make do with the larger portion of the buffer that doesn't cross.
969 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
970 static inline void *split_cross_256mb(void *buf1, size_t size1)
971 {
972 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
973 size_t size2 = buf1 + size1 - buf2;
974
975 size1 = buf2 - buf1;
976 if (size1 < size2) {
977 size1 = size2;
978 buf1 = buf2;
979 }
980
981 tcg_ctx->code_gen_buffer_size = size1;
982 return buf1;
983 }
984 #endif
985
986 #ifdef USE_STATIC_CODE_GEN_BUFFER
987 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
988 __attribute__((aligned(CODE_GEN_ALIGN)));
989
990 static inline void *alloc_code_gen_buffer(void)
991 {
992 void *buf = static_code_gen_buffer;
993 void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
994 size_t size;
995
996 /* page-align the beginning and end of the buffer */
997 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
998 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
999
1000 size = end - buf;
1001
1002 /* Honor a command-line option limiting the size of the buffer. */
1003 if (size > tcg_ctx->code_gen_buffer_size) {
1004 size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size,
1005 qemu_real_host_page_size);
1006 }
1007 tcg_ctx->code_gen_buffer_size = size;
1008
1009 #ifdef __mips__
1010 if (cross_256mb(buf, size)) {
1011 buf = split_cross_256mb(buf, size);
1012 size = tcg_ctx->code_gen_buffer_size;
1013 }
1014 #endif
1015
1016 if (qemu_mprotect_rwx(buf, size)) {
1017 abort();
1018 }
1019 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1020
1021 return buf;
1022 }
1023 #elif defined(_WIN32)
1024 static inline void *alloc_code_gen_buffer(void)
1025 {
1026 size_t size = tcg_ctx->code_gen_buffer_size;
1027 return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1028 PAGE_EXECUTE_READWRITE);
1029 }
1030 #else
1031 static inline void *alloc_code_gen_buffer(void)
1032 {
1033 int prot = PROT_WRITE | PROT_READ | PROT_EXEC;
1034 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
1035 uintptr_t start = 0;
1036 size_t size = tcg_ctx->code_gen_buffer_size;
1037 void *buf;
1038
1039 /* Constrain the position of the buffer based on the host cpu.
1040 Note that these addresses are chosen in concert with the
1041 addresses assigned in the relevant linker script file. */
1042 # if defined(__PIE__) || defined(__PIC__)
1043 /* Don't bother setting a preferred location if we're building
1044 a position-independent executable. We're more likely to get
1045 an address near the main executable if we let the kernel
1046 choose the address. */
1047 # elif defined(__x86_64__) && defined(MAP_32BIT)
1048 /* Force the memory down into low memory with the executable.
1049 Leave the choice of exact location with the kernel. */
1050 flags |= MAP_32BIT;
1051 /* Cannot expect to map more than 800MB in low memory. */
1052 if (size > 800u * 1024 * 1024) {
1053 tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024;
1054 }
1055 # elif defined(__sparc__)
1056 start = 0x40000000ul;
1057 # elif defined(__s390x__)
1058 start = 0x90000000ul;
1059 # elif defined(__mips__)
1060 # if _MIPS_SIM == _ABI64
1061 start = 0x128000000ul;
1062 # else
1063 start = 0x08000000ul;
1064 # endif
1065 # endif
1066
1067 buf = mmap((void *)start, size, prot, flags, -1, 0);
1068 if (buf == MAP_FAILED) {
1069 return NULL;
1070 }
1071
1072 #ifdef __mips__
1073 if (cross_256mb(buf, size)) {
1074 /* Try again, with the original still mapped, to avoid re-acquiring
1075 that 256mb crossing. This time don't specify an address. */
1076 size_t size2;
1077 void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1078 switch ((int)(buf2 != MAP_FAILED)) {
1079 case 1:
1080 if (!cross_256mb(buf2, size)) {
1081 /* Success! Use the new buffer. */
1082 munmap(buf, size);
1083 break;
1084 }
1085 /* Failure. Work with what we had. */
1086 munmap(buf2, size);
1087 /* fallthru */
1088 default:
1089 /* Split the original buffer. Free the smaller half. */
1090 buf2 = split_cross_256mb(buf, size);
1091 size2 = tcg_ctx->code_gen_buffer_size;
1092 if (buf == buf2) {
1093 munmap(buf + size2, size - size2);
1094 } else {
1095 munmap(buf, size - size2);
1096 }
1097 size = size2;
1098 break;
1099 }
1100 buf = buf2;
1101 }
1102 #endif
1103
1104 /* Request large pages for the buffer. */
1105 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1106
1107 return buf;
1108 }
1109 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1110
1111 static inline void code_gen_alloc(size_t tb_size)
1112 {
1113 tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size);
1114 tcg_ctx->code_gen_buffer = alloc_code_gen_buffer();
1115 if (tcg_ctx->code_gen_buffer == NULL) {
1116 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
1117 exit(1);
1118 }
1119 }
1120
1121 static bool tb_cmp(const void *ap, const void *bp)
1122 {
1123 const TranslationBlock *a = ap;
1124 const TranslationBlock *b = bp;
1125
1126 return a->pc == b->pc &&
1127 a->cs_base == b->cs_base &&
1128 a->flags == b->flags &&
1129 (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) &&
1130 a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1131 a->page_addr[0] == b->page_addr[0] &&
1132 a->page_addr[1] == b->page_addr[1];
1133 }
1134
1135 static void tb_htable_init(void)
1136 {
1137 unsigned int mode = QHT_MODE_AUTO_RESIZE;
1138
1139 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1140 }
1141
1142 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1143 (in bytes) allocated to the translation buffer. Zero means default
1144 size. */
1145 void tcg_exec_init(unsigned long tb_size)
1146 {
1147 tcg_allowed = true;
1148 cpu_gen_init();
1149 page_init();
1150 tb_htable_init();
1151 code_gen_alloc(tb_size);
1152 #if defined(CONFIG_SOFTMMU)
1153 /* There's no guest base to take into account, so go ahead and
1154 initialize the prologue now. */
1155 tcg_prologue_init(tcg_ctx);
1156 #endif
1157 }
1158
1159 /* call with @p->lock held */
1160 static inline void invalidate_page_bitmap(PageDesc *p)
1161 {
1162 assert_page_locked(p);
1163 #ifdef CONFIG_SOFTMMU
1164 g_free(p->code_bitmap);
1165 p->code_bitmap = NULL;
1166 p->code_write_count = 0;
1167 #endif
1168 }
1169
1170 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
1171 static void page_flush_tb_1(int level, void **lp)
1172 {
1173 int i;
1174
1175 if (*lp == NULL) {
1176 return;
1177 }
1178 if (level == 0) {
1179 PageDesc *pd = *lp;
1180
1181 for (i = 0; i < V_L2_SIZE; ++i) {
1182 page_lock(&pd[i]);
1183 pd[i].first_tb = (uintptr_t)NULL;
1184 invalidate_page_bitmap(pd + i);
1185 page_unlock(&pd[i]);
1186 }
1187 } else {
1188 void **pp = *lp;
1189
1190 for (i = 0; i < V_L2_SIZE; ++i) {
1191 page_flush_tb_1(level - 1, pp + i);
1192 }
1193 }
1194 }
1195
1196 static void page_flush_tb(void)
1197 {
1198 int i, l1_sz = v_l1_size;
1199
1200 for (i = 0; i < l1_sz; i++) {
1201 page_flush_tb_1(v_l2_levels, l1_map + i);
1202 }
1203 }
1204
1205 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1206 {
1207 const TranslationBlock *tb = value;
1208 size_t *size = data;
1209
1210 *size += tb->tc.size;
1211 return false;
1212 }
1213
1214 /* flush all the translation blocks */
1215 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1216 {
1217 bool did_flush = false;
1218
1219 mmap_lock();
1220 /* If it is already been done on request of another CPU,
1221 * just retry.
1222 */
1223 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1224 goto done;
1225 }
1226 did_flush = true;
1227
1228 if (DEBUG_TB_FLUSH_GATE) {
1229 size_t nb_tbs = tcg_nb_tbs();
1230 size_t host_size = 0;
1231
1232 tcg_tb_foreach(tb_host_size_iter, &host_size);
1233 printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1234 tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1235 }
1236
1237 CPU_FOREACH(cpu) {
1238 cpu_tb_jmp_cache_clear(cpu);
1239 }
1240
1241 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1242 page_flush_tb();
1243
1244 tcg_region_reset_all();
1245 /* XXX: flush processor icache at this point if cache flush is
1246 expensive */
1247 atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1248
1249 done:
1250 mmap_unlock();
1251 if (did_flush) {
1252 qemu_plugin_flush_cb();
1253 }
1254 }
1255
1256 void tb_flush(CPUState *cpu)
1257 {
1258 if (tcg_enabled()) {
1259 unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count);
1260
1261 if (cpu_in_exclusive_context(cpu)) {
1262 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count));
1263 } else {
1264 async_safe_run_on_cpu(cpu, do_tb_flush,
1265 RUN_ON_CPU_HOST_INT(tb_flush_count));
1266 }
1267 }
1268 }
1269
1270 /*
1271 * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1272 * so in order to prevent bit rot we compile them unconditionally in user-mode,
1273 * and let the optimizer get rid of them by wrapping their user-only callers
1274 * with if (DEBUG_TB_CHECK_GATE).
1275 */
1276 #ifdef CONFIG_USER_ONLY
1277
1278 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
1279 {
1280 TranslationBlock *tb = p;
1281 target_ulong addr = *(target_ulong *)userp;
1282
1283 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1284 printf("ERROR invalidate: address=" TARGET_FMT_lx
1285 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1286 }
1287 }
1288
1289 /* verify that all the pages have correct rights for code
1290 *
1291 * Called with mmap_lock held.
1292 */
1293 static void tb_invalidate_check(target_ulong address)
1294 {
1295 address &= TARGET_PAGE_MASK;
1296 qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1297 }
1298
1299 static void do_tb_page_check(void *p, uint32_t hash, void *userp)
1300 {
1301 TranslationBlock *tb = p;
1302 int flags1, flags2;
1303
1304 flags1 = page_get_flags(tb->pc);
1305 flags2 = page_get_flags(tb->pc + tb->size - 1);
1306 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1307 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1308 (long)tb->pc, tb->size, flags1, flags2);
1309 }
1310 }
1311
1312 /* verify that all the pages have correct rights for code */
1313 static void tb_page_check(void)
1314 {
1315 qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1316 }
1317
1318 #endif /* CONFIG_USER_ONLY */
1319
1320 /*
1321 * user-mode: call with mmap_lock held
1322 * !user-mode: call with @pd->lock held
1323 */
1324 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1325 {
1326 TranslationBlock *tb1;
1327 uintptr_t *pprev;
1328 unsigned int n1;
1329
1330 assert_page_locked(pd);
1331 pprev = &pd->first_tb;
1332 PAGE_FOR_EACH_TB(pd, tb1, n1) {
1333 if (tb1 == tb) {
1334 *pprev = tb1->page_next[n1];
1335 return;
1336 }
1337 pprev = &tb1->page_next[n1];
1338 }
1339 g_assert_not_reached();
1340 }
1341
1342 /* remove @orig from its @n_orig-th jump list */
1343 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1344 {
1345 uintptr_t ptr, ptr_locked;
1346 TranslationBlock *dest;
1347 TranslationBlock *tb;
1348 uintptr_t *pprev;
1349 int n;
1350
1351 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1352 ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1353 dest = (TranslationBlock *)(ptr & ~1);
1354 if (dest == NULL) {
1355 return;
1356 }
1357
1358 qemu_spin_lock(&dest->jmp_lock);
1359 /*
1360 * While acquiring the lock, the jump might have been removed if the
1361 * destination TB was invalidated; check again.
1362 */
1363 ptr_locked = atomic_read(&orig->jmp_dest[n_orig]);
1364 if (ptr_locked != ptr) {
1365 qemu_spin_unlock(&dest->jmp_lock);
1366 /*
1367 * The only possibility is that the jump was unlinked via
1368 * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1369 * because we set the LSB above.
1370 */
1371 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1372 return;
1373 }
1374 /*
1375 * We first acquired the lock, and since the destination pointer matches,
1376 * we know for sure that @orig is in the jmp list.
1377 */
1378 pprev = &dest->jmp_list_head;
1379 TB_FOR_EACH_JMP(dest, tb, n) {
1380 if (tb == orig && n == n_orig) {
1381 *pprev = tb->jmp_list_next[n];
1382 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1383 qemu_spin_unlock(&dest->jmp_lock);
1384 return;
1385 }
1386 pprev = &tb->jmp_list_next[n];
1387 }
1388 g_assert_not_reached();
1389 }
1390
1391 /* reset the jump entry 'n' of a TB so that it is not chained to
1392 another TB */
1393 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1394 {
1395 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1396 tb_set_jmp_target(tb, n, addr);
1397 }
1398
1399 /* remove any jumps to the TB */
1400 static inline void tb_jmp_unlink(TranslationBlock *dest)
1401 {
1402 TranslationBlock *tb;
1403 int n;
1404
1405 qemu_spin_lock(&dest->jmp_lock);
1406
1407 TB_FOR_EACH_JMP(dest, tb, n) {
1408 tb_reset_jump(tb, n);
1409 atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1410 /* No need to clear the list entry; setting the dest ptr is enough */
1411 }
1412 dest->jmp_list_head = (uintptr_t)NULL;
1413
1414 qemu_spin_unlock(&dest->jmp_lock);
1415 }
1416
1417 /*
1418 * In user-mode, call with mmap_lock held.
1419 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1420 * locks held.
1421 */
1422 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1423 {
1424 CPUState *cpu;
1425 PageDesc *p;
1426 uint32_t h;
1427 tb_page_addr_t phys_pc;
1428
1429 assert_memory_lock();
1430
1431 /* make sure no further incoming jumps will be chained to this TB */
1432 qemu_spin_lock(&tb->jmp_lock);
1433 atomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1434 qemu_spin_unlock(&tb->jmp_lock);
1435
1436 /* remove the TB from the hash list */
1437 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1438 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK,
1439 tb->trace_vcpu_dstate);
1440 if (!(tb->cflags & CF_NOCACHE) &&
1441 !qht_remove(&tb_ctx.htable, tb, h)) {
1442 return;
1443 }
1444
1445 /* remove the TB from the page list */
1446 if (rm_from_page_list) {
1447 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1448 tb_page_remove(p, tb);
1449 invalidate_page_bitmap(p);
1450 if (tb->page_addr[1] != -1) {
1451 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1452 tb_page_remove(p, tb);
1453 invalidate_page_bitmap(p);
1454 }
1455 }
1456
1457 /* remove the TB from the hash list */
1458 h = tb_jmp_cache_hash_func(tb->pc);
1459 CPU_FOREACH(cpu) {
1460 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1461 atomic_set(&cpu->tb_jmp_cache[h], NULL);
1462 }
1463 }
1464
1465 /* suppress this TB from the two jump lists */
1466 tb_remove_from_jmp_list(tb, 0);
1467 tb_remove_from_jmp_list(tb, 1);
1468
1469 /* suppress any remaining jumps to this TB */
1470 tb_jmp_unlink(tb);
1471
1472 atomic_set(&tcg_ctx->tb_phys_invalidate_count,
1473 tcg_ctx->tb_phys_invalidate_count + 1);
1474 }
1475
1476 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1477 {
1478 do_tb_phys_invalidate(tb, true);
1479 }
1480
1481 /* invalidate one TB
1482 *
1483 * Called with mmap_lock held in user-mode.
1484 */
1485 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1486 {
1487 if (page_addr == -1 && tb->page_addr[0] != -1) {
1488 page_lock_tb(tb);
1489 do_tb_phys_invalidate(tb, true);
1490 page_unlock_tb(tb);
1491 } else {
1492 do_tb_phys_invalidate(tb, false);
1493 }
1494 }
1495
1496 #ifdef CONFIG_SOFTMMU
1497 /* call with @p->lock held */
1498 static void build_page_bitmap(PageDesc *p)
1499 {
1500 int n, tb_start, tb_end;
1501 TranslationBlock *tb;
1502
1503 assert_page_locked(p);
1504 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1505
1506 PAGE_FOR_EACH_TB(p, tb, n) {
1507 /* NOTE: this is subtle as a TB may span two physical pages */
1508 if (n == 0) {
1509 /* NOTE: tb_end may be after the end of the page, but
1510 it is not a problem */
1511 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1512 tb_end = tb_start + tb->size;
1513 if (tb_end > TARGET_PAGE_SIZE) {
1514 tb_end = TARGET_PAGE_SIZE;
1515 }
1516 } else {
1517 tb_start = 0;
1518 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1519 }
1520 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1521 }
1522 }
1523 #endif
1524
1525 /* add the tb in the target page and protect it if necessary
1526 *
1527 * Called with mmap_lock held for user-mode emulation.
1528 * Called with @p->lock held in !user-mode.
1529 */
1530 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1531 unsigned int n, tb_page_addr_t page_addr)
1532 {
1533 #ifndef CONFIG_USER_ONLY
1534 bool page_already_protected;
1535 #endif
1536
1537 assert_page_locked(p);
1538
1539 tb->page_addr[n] = page_addr;
1540 tb->page_next[n] = p->first_tb;
1541 #ifndef CONFIG_USER_ONLY
1542 page_already_protected = p->first_tb != (uintptr_t)NULL;
1543 #endif
1544 p->first_tb = (uintptr_t)tb | n;
1545 invalidate_page_bitmap(p);
1546
1547 #if defined(CONFIG_USER_ONLY)
1548 if (p->flags & PAGE_WRITE) {
1549 target_ulong addr;
1550 PageDesc *p2;
1551 int prot;
1552
1553 /* force the host page as non writable (writes will have a
1554 page fault + mprotect overhead) */
1555 page_addr &= qemu_host_page_mask;
1556 prot = 0;
1557 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1558 addr += TARGET_PAGE_SIZE) {
1559
1560 p2 = page_find(addr >> TARGET_PAGE_BITS);
1561 if (!p2) {
1562 continue;
1563 }
1564 prot |= p2->flags;
1565 p2->flags &= ~PAGE_WRITE;
1566 }
1567 mprotect(g2h(page_addr), qemu_host_page_size,
1568 (prot & PAGE_BITS) & ~PAGE_WRITE);
1569 if (DEBUG_TB_INVALIDATE_GATE) {
1570 printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1571 }
1572 }
1573 #else
1574 /* if some code is already present, then the pages are already
1575 protected. So we handle the case where only the first TB is
1576 allocated in a physical page */
1577 if (!page_already_protected) {
1578 tlb_protect_code(page_addr);
1579 }
1580 #endif
1581 }
1582
1583 /* add a new TB and link it to the physical page tables. phys_page2 is
1584 * (-1) to indicate that only one page contains the TB.
1585 *
1586 * Called with mmap_lock held for user-mode emulation.
1587 *
1588 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1589 * Note that in !user-mode, another thread might have already added a TB
1590 * for the same block of guest code that @tb corresponds to. In that case,
1591 * the caller should discard the original @tb, and use instead the returned TB.
1592 */
1593 static TranslationBlock *
1594 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1595 tb_page_addr_t phys_page2)
1596 {
1597 PageDesc *p;
1598 PageDesc *p2 = NULL;
1599
1600 assert_memory_lock();
1601
1602 if (phys_pc == -1) {
1603 /*
1604 * If the TB is not associated with a physical RAM page then
1605 * it must be a temporary one-insn TB, and we have nothing to do
1606 * except fill in the page_addr[] fields.
1607 */
1608 assert(tb->cflags & CF_NOCACHE);
1609 tb->page_addr[0] = tb->page_addr[1] = -1;
1610 return tb;
1611 }
1612
1613 /*
1614 * Add the TB to the page list, acquiring first the pages's locks.
1615 * We keep the locks held until after inserting the TB in the hash table,
1616 * so that if the insertion fails we know for sure that the TBs are still
1617 * in the page descriptors.
1618 * Note that inserting into the hash table first isn't an option, since
1619 * we can only insert TBs that are fully initialized.
1620 */
1621 page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1622 tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1623 if (p2) {
1624 tb_page_add(p2, tb, 1, phys_page2);
1625 } else {
1626 tb->page_addr[1] = -1;
1627 }
1628
1629 if (!(tb->cflags & CF_NOCACHE)) {
1630 void *existing_tb = NULL;
1631 uint32_t h;
1632
1633 /* add in the hash table */
1634 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
1635 tb->trace_vcpu_dstate);
1636 qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1637
1638 /* remove TB from the page(s) if we couldn't insert it */
1639 if (unlikely(existing_tb)) {
1640 tb_page_remove(p, tb);
1641 invalidate_page_bitmap(p);
1642 if (p2) {
1643 tb_page_remove(p2, tb);
1644 invalidate_page_bitmap(p2);
1645 }
1646 tb = existing_tb;
1647 }
1648 }
1649
1650 if (p2 && p2 != p) {
1651 page_unlock(p2);
1652 }
1653 page_unlock(p);
1654
1655 #ifdef CONFIG_USER_ONLY
1656 if (DEBUG_TB_CHECK_GATE) {
1657 tb_page_check();
1658 }
1659 #endif
1660 return tb;
1661 }
1662
1663 /* Called with mmap_lock held for user mode emulation. */
1664 TranslationBlock *tb_gen_code(CPUState *cpu,
1665 target_ulong pc, target_ulong cs_base,
1666 uint32_t flags, int cflags)
1667 {
1668 CPUArchState *env = cpu->env_ptr;
1669 TranslationBlock *tb, *existing_tb;
1670 tb_page_addr_t phys_pc, phys_page2;
1671 target_ulong virt_page2;
1672 tcg_insn_unit *gen_code_buf;
1673 int gen_code_size, search_size, max_insns;
1674 #ifdef CONFIG_PROFILER
1675 TCGProfile *prof = &tcg_ctx->prof;
1676 int64_t ti;
1677 #endif
1678
1679 assert_memory_lock();
1680
1681 phys_pc = get_page_addr_code(env, pc);
1682
1683 if (phys_pc == -1) {
1684 /* Generate a temporary TB with 1 insn in it */
1685 cflags &= ~CF_COUNT_MASK;
1686 cflags |= CF_NOCACHE | 1;
1687 }
1688
1689 cflags &= ~CF_CLUSTER_MASK;
1690 cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT;
1691
1692 max_insns = cflags & CF_COUNT_MASK;
1693 if (max_insns == 0) {
1694 max_insns = CF_COUNT_MASK;
1695 }
1696 if (max_insns > TCG_MAX_INSNS) {
1697 max_insns = TCG_MAX_INSNS;
1698 }
1699 if (cpu->singlestep_enabled || singlestep) {
1700 max_insns = 1;
1701 }
1702
1703 buffer_overflow:
1704 tb = tcg_tb_alloc(tcg_ctx);
1705 if (unlikely(!tb)) {
1706 /* flush must be done */
1707 tb_flush(cpu);
1708 mmap_unlock();
1709 /* Make the execution loop process the flush as soon as possible. */
1710 cpu->exception_index = EXCP_INTERRUPT;
1711 cpu_loop_exit(cpu);
1712 }
1713
1714 gen_code_buf = tcg_ctx->code_gen_ptr;
1715 tb->tc.ptr = gen_code_buf;
1716 tb->pc = pc;
1717 tb->cs_base = cs_base;
1718 tb->flags = flags;
1719 tb->cflags = cflags;
1720 tb->orig_tb = NULL;
1721 tb->trace_vcpu_dstate = *cpu->trace_dstate;
1722 tcg_ctx->tb_cflags = cflags;
1723 tb_overflow:
1724
1725 #ifdef CONFIG_PROFILER
1726 /* includes aborted translations because of exceptions */
1727 atomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1728 ti = profile_getclock();
1729 #endif
1730
1731 tcg_func_start(tcg_ctx);
1732
1733 tcg_ctx->cpu = env_cpu(env);
1734 gen_intermediate_code(cpu, tb, max_insns);
1735 tcg_ctx->cpu = NULL;
1736
1737 trace_translate_block(tb, tb->pc, tb->tc.ptr);
1738
1739 /* generate machine code */
1740 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1741 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1742 tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1743 if (TCG_TARGET_HAS_direct_jump) {
1744 tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1745 tcg_ctx->tb_jmp_target_addr = NULL;
1746 } else {
1747 tcg_ctx->tb_jmp_insn_offset = NULL;
1748 tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1749 }
1750
1751 #ifdef CONFIG_PROFILER
1752 atomic_set(&prof->tb_count, prof->tb_count + 1);
1753 atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti);
1754 ti = profile_getclock();
1755 #endif
1756
1757 gen_code_size = tcg_gen_code(tcg_ctx, tb);
1758 if (unlikely(gen_code_size < 0)) {
1759 switch (gen_code_size) {
1760 case -1:
1761 /*
1762 * Overflow of code_gen_buffer, or the current slice of it.
1763 *
1764 * TODO: We don't need to re-do gen_intermediate_code, nor
1765 * should we re-do the tcg optimization currently hidden
1766 * inside tcg_gen_code. All that should be required is to
1767 * flush the TBs, allocate a new TB, re-initialize it per
1768 * above, and re-do the actual code generation.
1769 */
1770 goto buffer_overflow;
1771
1772 case -2:
1773 /*
1774 * The code generated for the TranslationBlock is too large.
1775 * The maximum size allowed by the unwind info is 64k.
1776 * There may be stricter constraints from relocations
1777 * in the tcg backend.
1778 *
1779 * Try again with half as many insns as we attempted this time.
1780 * If a single insn overflows, there's a bug somewhere...
1781 */
1782 max_insns = tb->icount;
1783 assert(max_insns > 1);
1784 max_insns /= 2;
1785 goto tb_overflow;
1786
1787 default:
1788 g_assert_not_reached();
1789 }
1790 }
1791 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1792 if (unlikely(search_size < 0)) {
1793 goto buffer_overflow;
1794 }
1795 tb->tc.size = gen_code_size;
1796
1797 #ifdef CONFIG_PROFILER
1798 atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1799 atomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1800 atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1801 atomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1802 #endif
1803
1804 #ifdef DEBUG_DISAS
1805 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1806 qemu_log_in_addr_range(tb->pc)) {
1807 qemu_log_lock();
1808 qemu_log("OUT: [size=%d]\n", gen_code_size);
1809 if (tcg_ctx->data_gen_ptr) {
1810 size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr;
1811 size_t data_size = gen_code_size - code_size;
1812 size_t i;
1813
1814 log_disas(tb->tc.ptr, code_size);
1815
1816 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1817 if (sizeof(tcg_target_ulong) == 8) {
1818 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n",
1819 (uintptr_t)tcg_ctx->data_gen_ptr + i,
1820 *(uint64_t *)(tcg_ctx->data_gen_ptr + i));
1821 } else {
1822 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n",
1823 (uintptr_t)tcg_ctx->data_gen_ptr + i,
1824 *(uint32_t *)(tcg_ctx->data_gen_ptr + i));
1825 }
1826 }
1827 } else {
1828 log_disas(tb->tc.ptr, gen_code_size);
1829 }
1830 qemu_log("\n");
1831 qemu_log_flush();
1832 qemu_log_unlock();
1833 }
1834 #endif
1835
1836 atomic_set(&tcg_ctx->code_gen_ptr, (void *)
1837 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1838 CODE_GEN_ALIGN));
1839
1840 /* init jump list */
1841 qemu_spin_init(&tb->jmp_lock);
1842 tb->jmp_list_head = (uintptr_t)NULL;
1843 tb->jmp_list_next[0] = (uintptr_t)NULL;
1844 tb->jmp_list_next[1] = (uintptr_t)NULL;
1845 tb->jmp_dest[0] = (uintptr_t)NULL;
1846 tb->jmp_dest[1] = (uintptr_t)NULL;
1847
1848 /* init original jump addresses which have been set during tcg_gen_code() */
1849 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1850 tb_reset_jump(tb, 0);
1851 }
1852 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1853 tb_reset_jump(tb, 1);
1854 }
1855
1856 /* check next page if needed */
1857 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1858 phys_page2 = -1;
1859 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1860 phys_page2 = get_page_addr_code(env, virt_page2);
1861 }
1862 /*
1863 * No explicit memory barrier is required -- tb_link_page() makes the
1864 * TB visible in a consistent state.
1865 */
1866 existing_tb = tb_link_page(tb, phys_pc, phys_page2);
1867 /* if the TB already exists, discard what we just translated */
1868 if (unlikely(existing_tb != tb)) {
1869 uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
1870
1871 orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
1872 atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
1873 return existing_tb;
1874 }
1875 tcg_tb_insert(tb);
1876 return tb;
1877 }
1878
1879 /*
1880 * @p must be non-NULL.
1881 * user-mode: call with mmap_lock held.
1882 * !user-mode: call with all @pages locked.
1883 */
1884 static void
1885 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1886 PageDesc *p, tb_page_addr_t start,
1887 tb_page_addr_t end,
1888 uintptr_t retaddr)
1889 {
1890 TranslationBlock *tb;
1891 tb_page_addr_t tb_start, tb_end;
1892 int n;
1893 #ifdef TARGET_HAS_PRECISE_SMC
1894 CPUState *cpu = current_cpu;
1895 CPUArchState *env = NULL;
1896 bool current_tb_not_found = retaddr != 0;
1897 bool current_tb_modified = false;
1898 TranslationBlock *current_tb = NULL;
1899 target_ulong current_pc = 0;
1900 target_ulong current_cs_base = 0;
1901 uint32_t current_flags = 0;
1902 #endif /* TARGET_HAS_PRECISE_SMC */
1903
1904 assert_page_locked(p);
1905
1906 #if defined(TARGET_HAS_PRECISE_SMC)
1907 if (cpu != NULL) {
1908 env = cpu->env_ptr;
1909 }
1910 #endif
1911
1912 /* we remove all the TBs in the range [start, end[ */
1913 /* XXX: see if in some cases it could be faster to invalidate all
1914 the code */
1915 PAGE_FOR_EACH_TB(p, tb, n) {
1916 assert_page_locked(p);
1917 /* NOTE: this is subtle as a TB may span two physical pages */
1918 if (n == 0) {
1919 /* NOTE: tb_end may be after the end of the page, but
1920 it is not a problem */
1921 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1922 tb_end = tb_start + tb->size;
1923 } else {
1924 tb_start = tb->page_addr[1];
1925 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1926 }
1927 if (!(tb_end <= start || tb_start >= end)) {
1928 #ifdef TARGET_HAS_PRECISE_SMC
1929 if (current_tb_not_found) {
1930 current_tb_not_found = false;
1931 /* now we have a real cpu fault */
1932 current_tb = tcg_tb_lookup(retaddr);
1933 }
1934 if (current_tb == tb &&
1935 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1936 /*
1937 * If we are modifying the current TB, we must stop
1938 * its execution. We could be more precise by checking
1939 * that the modification is after the current PC, but it
1940 * would require a specialized function to partially
1941 * restore the CPU state.
1942 */
1943 current_tb_modified = true;
1944 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true);
1945 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1946 &current_flags);
1947 }
1948 #endif /* TARGET_HAS_PRECISE_SMC */
1949 tb_phys_invalidate__locked(tb);
1950 }
1951 }
1952 #if !defined(CONFIG_USER_ONLY)
1953 /* if no code remaining, no need to continue to use slow writes */
1954 if (!p->first_tb) {
1955 invalidate_page_bitmap(p);
1956 tlb_unprotect_code(start);
1957 }
1958 #endif
1959 #ifdef TARGET_HAS_PRECISE_SMC
1960 if (current_tb_modified) {
1961 page_collection_unlock(pages);
1962 /* Force execution of one insn next time. */
1963 cpu->cflags_next_tb = 1 | curr_cflags();
1964 mmap_unlock();
1965 cpu_loop_exit_noexc(cpu);
1966 }
1967 #endif
1968 }
1969
1970 /*
1971 * Invalidate all TBs which intersect with the target physical address range
1972 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1973 * 'is_cpu_write_access' should be true if called from a real cpu write
1974 * access: the virtual CPU will exit the current TB if code is modified inside
1975 * this TB.
1976 *
1977 * Called with mmap_lock held for user-mode emulation
1978 */
1979 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end)
1980 {
1981 struct page_collection *pages;
1982 PageDesc *p;
1983
1984 assert_memory_lock();
1985
1986 p = page_find(start >> TARGET_PAGE_BITS);
1987 if (p == NULL) {
1988 return;
1989 }
1990 pages = page_collection_lock(start, end);
1991 tb_invalidate_phys_page_range__locked(pages, p, start, end, 0);
1992 page_collection_unlock(pages);
1993 }
1994
1995 /*
1996 * Invalidate all TBs which intersect with the target physical address range
1997 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1998 * 'is_cpu_write_access' should be true if called from a real cpu write
1999 * access: the virtual CPU will exit the current TB if code is modified inside
2000 * this TB.
2001 *
2002 * Called with mmap_lock held for user-mode emulation.
2003 */
2004 #ifdef CONFIG_SOFTMMU
2005 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
2006 #else
2007 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
2008 #endif
2009 {
2010 struct page_collection *pages;
2011 tb_page_addr_t next;
2012
2013 assert_memory_lock();
2014
2015 pages = page_collection_lock(start, end);
2016 for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
2017 start < end;
2018 start = next, next += TARGET_PAGE_SIZE) {
2019 PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
2020 tb_page_addr_t bound = MIN(next, end);
2021
2022 if (pd == NULL) {
2023 continue;
2024 }
2025 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
2026 }
2027 page_collection_unlock(pages);
2028 }
2029
2030 #ifdef CONFIG_SOFTMMU
2031 /* len must be <= 8 and start must be a multiple of len.
2032 * Called via softmmu_template.h when code areas are written to with
2033 * iothread mutex not held.
2034 *
2035 * Call with all @pages in the range [@start, @start + len[ locked.
2036 */
2037 void tb_invalidate_phys_page_fast(struct page_collection *pages,
2038 tb_page_addr_t start, int len,
2039 uintptr_t retaddr)
2040 {
2041 PageDesc *p;
2042
2043 assert_memory_lock();
2044
2045 p = page_find(start >> TARGET_PAGE_BITS);
2046 if (!p) {
2047 return;
2048 }
2049
2050 assert_page_locked(p);
2051 if (!p->code_bitmap &&
2052 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2053 build_page_bitmap(p);
2054 }
2055 if (p->code_bitmap) {
2056 unsigned int nr;
2057 unsigned long b;
2058
2059 nr = start & ~TARGET_PAGE_MASK;
2060 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2061 if (b & ((1 << len) - 1)) {
2062 goto do_invalidate;
2063 }
2064 } else {
2065 do_invalidate:
2066 tb_invalidate_phys_page_range__locked(pages, p, start, start + len,
2067 retaddr);
2068 }
2069 }
2070 #else
2071 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2072 * host PC of the faulting store instruction that caused this invalidate.
2073 * Returns true if the caller needs to abort execution of the current
2074 * TB (because it was modified by this store and the guest CPU has
2075 * precise-SMC semantics).
2076 */
2077 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2078 {
2079 TranslationBlock *tb;
2080 PageDesc *p;
2081 int n;
2082 #ifdef TARGET_HAS_PRECISE_SMC
2083 TranslationBlock *current_tb = NULL;
2084 CPUState *cpu = current_cpu;
2085 CPUArchState *env = NULL;
2086 int current_tb_modified = 0;
2087 target_ulong current_pc = 0;
2088 target_ulong current_cs_base = 0;
2089 uint32_t current_flags = 0;
2090 #endif
2091
2092 assert_memory_lock();
2093
2094 addr &= TARGET_PAGE_MASK;
2095 p = page_find(addr >> TARGET_PAGE_BITS);
2096 if (!p) {
2097 return false;
2098 }
2099
2100 #ifdef TARGET_HAS_PRECISE_SMC
2101 if (p->first_tb && pc != 0) {
2102 current_tb = tcg_tb_lookup(pc);
2103 }
2104 if (cpu != NULL) {
2105 env = cpu->env_ptr;
2106 }
2107 #endif
2108 assert_page_locked(p);
2109 PAGE_FOR_EACH_TB(p, tb, n) {
2110 #ifdef TARGET_HAS_PRECISE_SMC
2111 if (current_tb == tb &&
2112 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2113 /* If we are modifying the current TB, we must stop
2114 its execution. We could be more precise by checking
2115 that the modification is after the current PC, but it
2116 would require a specialized function to partially
2117 restore the CPU state */
2118
2119 current_tb_modified = 1;
2120 cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2121 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2122 &current_flags);
2123 }
2124 #endif /* TARGET_HAS_PRECISE_SMC */
2125 tb_phys_invalidate(tb, addr);
2126 }
2127 p->first_tb = (uintptr_t)NULL;
2128 #ifdef TARGET_HAS_PRECISE_SMC
2129 if (current_tb_modified) {
2130 /* Force execution of one insn next time. */
2131 cpu->cflags_next_tb = 1 | curr_cflags();
2132 return true;
2133 }
2134 #endif
2135
2136 return false;
2137 }
2138 #endif
2139
2140 /* user-mode: call with mmap_lock held */
2141 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr)
2142 {
2143 TranslationBlock *tb;
2144
2145 assert_memory_lock();
2146
2147 tb = tcg_tb_lookup(retaddr);
2148 if (tb) {
2149 /* We can use retranslation to find the PC. */
2150 cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2151 tb_phys_invalidate(tb, -1);
2152 } else {
2153 /* The exception probably happened in a helper. The CPU state should
2154 have been saved before calling it. Fetch the PC from there. */
2155 CPUArchState *env = cpu->env_ptr;
2156 target_ulong pc, cs_base;
2157 tb_page_addr_t addr;
2158 uint32_t flags;
2159
2160 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2161 addr = get_page_addr_code(env, pc);
2162 if (addr != -1) {
2163 tb_invalidate_phys_range(addr, addr + 1);
2164 }
2165 }
2166 }
2167
2168 #ifndef CONFIG_USER_ONLY
2169 /* in deterministic execution mode, instructions doing device I/Os
2170 * must be at the end of the TB.
2171 *
2172 * Called by softmmu_template.h, with iothread mutex not held.
2173 */
2174 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2175 {
2176 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
2177 CPUArchState *env = cpu->env_ptr;
2178 #endif
2179 TranslationBlock *tb;
2180 uint32_t n;
2181
2182 tb = tcg_tb_lookup(retaddr);
2183 if (!tb) {
2184 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2185 (void *)retaddr);
2186 }
2187 cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2188
2189 /* On MIPS and SH, delay slot instructions can only be restarted if
2190 they were already the first instruction in the TB. If this is not
2191 the first instruction in a TB then re-execute the preceding
2192 branch. */
2193 n = 1;
2194 #if defined(TARGET_MIPS)
2195 if ((env->hflags & MIPS_HFLAG_BMASK) != 0
2196 && env->active_tc.PC != tb->pc) {
2197 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
2198 cpu_neg(cpu)->icount_decr.u16.low++;
2199 env->hflags &= ~MIPS_HFLAG_BMASK;
2200 n = 2;
2201 }
2202 #elif defined(TARGET_SH4)
2203 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
2204 && env->pc != tb->pc) {
2205 env->pc -= 2;
2206 cpu_neg(cpu)->icount_decr.u16.low++;
2207 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
2208 n = 2;
2209 }
2210 #endif
2211
2212 /* Generate a new TB executing the I/O insn. */
2213 cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n;
2214
2215 if (tb_cflags(tb) & CF_NOCACHE) {
2216 if (tb->orig_tb) {
2217 /* Invalidate original TB if this TB was generated in
2218 * cpu_exec_nocache() */
2219 tb_phys_invalidate(tb->orig_tb, -1);
2220 }
2221 tcg_tb_remove(tb);
2222 }
2223
2224 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2225 * the first in the TB) then we end up generating a whole new TB and
2226 * repeating the fault, which is horribly inefficient.
2227 * Better would be to execute just this insn uncached, or generate a
2228 * second new TB.
2229 */
2230 cpu_loop_exit_noexc(cpu);
2231 }
2232
2233 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
2234 {
2235 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
2236
2237 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
2238 atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
2239 }
2240 }
2241
2242 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
2243 {
2244 /* Discard jump cache entries for any tb which might potentially
2245 overlap the flushed page. */
2246 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
2247 tb_jmp_cache_clear_page(cpu, addr);
2248 }
2249
2250 static void print_qht_statistics(struct qht_stats hst)
2251 {
2252 uint32_t hgram_opts;
2253 size_t hgram_bins;
2254 char *hgram;
2255
2256 if (!hst.head_buckets) {
2257 return;
2258 }
2259 qemu_printf("TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
2260 hst.used_head_buckets, hst.head_buckets,
2261 (double)hst.used_head_buckets / hst.head_buckets * 100);
2262
2263 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2264 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
2265 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2266 hgram_opts |= QDIST_PR_NODECIMAL;
2267 }
2268 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2269 qemu_printf("TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
2270 qdist_avg(&hst.occupancy) * 100, hgram);
2271 g_free(hgram);
2272
2273 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2274 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2275 if (hgram_bins > 10) {
2276 hgram_bins = 10;
2277 } else {
2278 hgram_bins = 0;
2279 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2280 }
2281 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2282 qemu_printf("TB hash avg chain %0.3f buckets. Histogram: %s\n",
2283 qdist_avg(&hst.chain), hgram);
2284 g_free(hgram);
2285 }
2286
2287 struct tb_tree_stats {
2288 size_t nb_tbs;
2289 size_t host_size;
2290 size_t target_size;
2291 size_t max_target_size;
2292 size_t direct_jmp_count;
2293 size_t direct_jmp2_count;
2294 size_t cross_page;
2295 };
2296
2297 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2298 {
2299 const TranslationBlock *tb = value;
2300 struct tb_tree_stats *tst = data;
2301
2302 tst->nb_tbs++;
2303 tst->host_size += tb->tc.size;
2304 tst->target_size += tb->size;
2305 if (tb->size > tst->max_target_size) {
2306 tst->max_target_size = tb->size;
2307 }
2308 if (tb->page_addr[1] != -1) {
2309 tst->cross_page++;
2310 }
2311 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2312 tst->direct_jmp_count++;
2313 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2314 tst->direct_jmp2_count++;
2315 }
2316 }
2317 return false;
2318 }
2319
2320 void dump_exec_info(void)
2321 {
2322 struct tb_tree_stats tst = {};
2323 struct qht_stats hst;
2324 size_t nb_tbs, flush_full, flush_part, flush_elide;
2325
2326 tcg_tb_foreach(tb_tree_stats_iter, &tst);
2327 nb_tbs = tst.nb_tbs;
2328 /* XXX: avoid using doubles ? */
2329 qemu_printf("Translation buffer state:\n");
2330 /*
2331 * Report total code size including the padding and TB structs;
2332 * otherwise users might think "-tb-size" is not honoured.
2333 * For avg host size we use the precise numbers from tb_tree_stats though.
2334 */
2335 qemu_printf("gen code size %zu/%zu\n",
2336 tcg_code_size(), tcg_code_capacity());
2337 qemu_printf("TB count %zu\n", nb_tbs);
2338 qemu_printf("TB avg target size %zu max=%zu bytes\n",
2339 nb_tbs ? tst.target_size / nb_tbs : 0,
2340 tst.max_target_size);
2341 qemu_printf("TB avg host size %zu bytes (expansion ratio: %0.1f)\n",
2342 nb_tbs ? tst.host_size / nb_tbs : 0,
2343 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2344 qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page,
2345 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2346 qemu_printf("direct jump count %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2347 tst.direct_jmp_count,
2348 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2349 tst.direct_jmp2_count,
2350 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2351
2352 qht_statistics_init(&tb_ctx.htable, &hst);
2353 print_qht_statistics(hst);
2354 qht_statistics_destroy(&hst);
2355
2356 qemu_printf("\nStatistics:\n");
2357 qemu_printf("TB flush count %u\n",
2358 atomic_read(&tb_ctx.tb_flush_count));
2359 qemu_printf("TB invalidate count %zu\n",
2360 tcg_tb_phys_invalidate_count());
2361
2362 tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
2363 qemu_printf("TLB full flushes %zu\n", flush_full);
2364 qemu_printf("TLB partial flushes %zu\n", flush_part);
2365 qemu_printf("TLB elided flushes %zu\n", flush_elide);
2366 tcg_dump_info();
2367 }
2368
2369 void dump_opcount_info(void)
2370 {
2371 tcg_dump_op_count();
2372 }
2373
2374 #else /* CONFIG_USER_ONLY */
2375
2376 void cpu_interrupt(CPUState *cpu, int mask)
2377 {
2378 g_assert(qemu_mutex_iothread_locked());
2379 cpu->interrupt_request |= mask;
2380 atomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1);
2381 }
2382
2383 /*
2384 * Walks guest process memory "regions" one by one
2385 * and calls callback function 'fn' for each region.
2386 */
2387 struct walk_memory_regions_data {
2388 walk_memory_regions_fn fn;
2389 void *priv;
2390 target_ulong start;
2391 int prot;
2392 };
2393
2394 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2395 target_ulong end, int new_prot)
2396 {
2397 if (data->start != -1u) {
2398 int rc = data->fn(data->priv, data->start, end, data->prot);
2399 if (rc != 0) {
2400 return rc;
2401 }
2402 }
2403
2404 data->start = (new_prot ? end : -1u);
2405 data->prot = new_prot;
2406
2407 return 0;
2408 }
2409
2410 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2411 target_ulong base, int level, void **lp)
2412 {
2413 target_ulong pa;
2414 int i, rc;
2415
2416 if (*lp == NULL) {
2417 return walk_memory_regions_end(data, base, 0);
2418 }
2419
2420 if (level == 0) {
2421 PageDesc *pd = *lp;
2422
2423 for (i = 0; i < V_L2_SIZE; ++i) {
2424 int prot = pd[i].flags;
2425
2426 pa = base | (i << TARGET_PAGE_BITS);
2427 if (prot != data->prot) {
2428 rc = walk_memory_regions_end(data, pa, prot);
2429 if (rc != 0) {
2430 return rc;
2431 }
2432 }
2433 }
2434 } else {
2435 void **pp = *lp;
2436
2437 for (i = 0; i < V_L2_SIZE; ++i) {
2438 pa = base | ((target_ulong)i <<
2439 (TARGET_PAGE_BITS + V_L2_BITS * level));
2440 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2441 if (rc != 0) {
2442 return rc;
2443 }
2444 }
2445 }
2446
2447 return 0;
2448 }
2449
2450 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2451 {
2452 struct walk_memory_regions_data data;
2453 uintptr_t i, l1_sz = v_l1_size;
2454
2455 data.fn = fn;
2456 data.priv = priv;
2457 data.start = -1u;
2458 data.prot = 0;
2459
2460 for (i = 0; i < l1_sz; i++) {
2461 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2462 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2463 if (rc != 0) {
2464 return rc;
2465 }
2466 }
2467
2468 return walk_memory_regions_end(&data, 0, 0);
2469 }
2470
2471 static int dump_region(void *priv, target_ulong start,
2472 target_ulong end, unsigned long prot)
2473 {
2474 FILE *f = (FILE *)priv;
2475
2476 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2477 " "TARGET_FMT_lx" %c%c%c\n",
2478 start, end, end - start,
2479 ((prot & PAGE_READ) ? 'r' : '-'),
2480 ((prot & PAGE_WRITE) ? 'w' : '-'),
2481 ((prot & PAGE_EXEC) ? 'x' : '-'));
2482
2483 return 0;
2484 }
2485
2486 /* dump memory mappings */
2487 void page_dump(FILE *f)
2488 {
2489 const int length = sizeof(target_ulong) * 2;
2490 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2491 length, "start", length, "end", length, "size", "prot");
2492 walk_memory_regions(f, dump_region);
2493 }
2494
2495 int page_get_flags(target_ulong address)
2496 {
2497 PageDesc *p;
2498
2499 p = page_find(address >> TARGET_PAGE_BITS);
2500 if (!p) {
2501 return 0;
2502 }
2503 return p->flags;
2504 }
2505
2506 /* Modify the flags of a page and invalidate the code if necessary.
2507 The flag PAGE_WRITE_ORG is positioned automatically depending
2508 on PAGE_WRITE. The mmap_lock should already be held. */
2509 void page_set_flags(target_ulong start, target_ulong end, int flags)
2510 {
2511 target_ulong addr, len;
2512
2513 /* This function should never be called with addresses outside the
2514 guest address space. If this assert fires, it probably indicates
2515 a missing call to h2g_valid. */
2516 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2517 assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2518 #endif
2519 assert(start < end);
2520 assert_memory_lock();
2521
2522 start = start & TARGET_PAGE_MASK;
2523 end = TARGET_PAGE_ALIGN(end);
2524
2525 if (flags & PAGE_WRITE) {
2526 flags |= PAGE_WRITE_ORG;
2527 }
2528
2529 for (addr = start, len = end - start;
2530 len != 0;
2531 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2532 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2533
2534 /* If the write protection bit is set, then we invalidate
2535 the code inside. */
2536 if (!(p->flags & PAGE_WRITE) &&
2537 (flags & PAGE_WRITE) &&
2538 p->first_tb) {
2539 tb_invalidate_phys_page(addr, 0);
2540 }
2541 p->flags = flags;
2542 }
2543 }
2544
2545 int page_check_range(target_ulong start, target_ulong len, int flags)
2546 {
2547 PageDesc *p;
2548 target_ulong end;
2549 target_ulong addr;
2550
2551 /* This function should never be called with addresses outside the
2552 guest address space. If this assert fires, it probably indicates
2553 a missing call to h2g_valid. */
2554 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2555 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2556 #endif
2557
2558 if (len == 0) {
2559 return 0;
2560 }
2561 if (start + len - 1 < start) {
2562 /* We've wrapped around. */
2563 return -1;
2564 }
2565
2566 /* must do before we loose bits in the next step */
2567 end = TARGET_PAGE_ALIGN(start + len);
2568 start = start & TARGET_PAGE_MASK;
2569
2570 for (addr = start, len = end - start;
2571 len != 0;
2572 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2573 p = page_find(addr >> TARGET_PAGE_BITS);
2574 if (!p) {
2575 return -1;
2576 }
2577 if (!(p->flags & PAGE_VALID)) {
2578 return -1;
2579 }
2580
2581 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2582 return -1;
2583 }
2584 if (flags & PAGE_WRITE) {
2585 if (!(p->flags & PAGE_WRITE_ORG)) {
2586 return -1;
2587 }
2588 /* unprotect the page if it was put read-only because it
2589 contains translated code */
2590 if (!(p->flags & PAGE_WRITE)) {
2591 if (!page_unprotect(addr, 0)) {
2592 return -1;
2593 }
2594 }
2595 }
2596 }
2597 return 0;
2598 }
2599
2600 /* called from signal handler: invalidate the code and unprotect the
2601 * page. Return 0 if the fault was not handled, 1 if it was handled,
2602 * and 2 if it was handled but the caller must cause the TB to be
2603 * immediately exited. (We can only return 2 if the 'pc' argument is
2604 * non-zero.)
2605 */
2606 int page_unprotect(target_ulong address, uintptr_t pc)
2607 {
2608 unsigned int prot;
2609 bool current_tb_invalidated;
2610 PageDesc *p;
2611 target_ulong host_start, host_end, addr;
2612
2613 /* Technically this isn't safe inside a signal handler. However we
2614 know this only ever happens in a synchronous SEGV handler, so in
2615 practice it seems to be ok. */
2616 mmap_lock();
2617
2618 p = page_find(address >> TARGET_PAGE_BITS);
2619 if (!p) {
2620 mmap_unlock();
2621 return 0;
2622 }
2623
2624 /* if the page was really writable, then we change its
2625 protection back to writable */
2626 if (p->flags & PAGE_WRITE_ORG) {
2627 current_tb_invalidated = false;
2628 if (p->flags & PAGE_WRITE) {
2629 /* If the page is actually marked WRITE then assume this is because
2630 * this thread raced with another one which got here first and
2631 * set the page to PAGE_WRITE and did the TB invalidate for us.
2632 */
2633 #ifdef TARGET_HAS_PRECISE_SMC
2634 TranslationBlock *current_tb = tcg_tb_lookup(pc);
2635 if (current_tb) {
2636 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2637 }
2638 #endif
2639 } else {
2640 host_start = address & qemu_host_page_mask;
2641 host_end = host_start + qemu_host_page_size;
2642
2643 prot = 0;
2644 for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2645 p = page_find(addr >> TARGET_PAGE_BITS);
2646 p->flags |= PAGE_WRITE;
2647 prot |= p->flags;
2648
2649 /* and since the content will be modified, we must invalidate
2650 the corresponding translated code. */
2651 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2652 #ifdef CONFIG_USER_ONLY
2653 if (DEBUG_TB_CHECK_GATE) {
2654 tb_invalidate_check(addr);
2655 }
2656 #endif
2657 }
2658 mprotect((void *)g2h(host_start), qemu_host_page_size,
2659 prot & PAGE_BITS);
2660 }
2661 mmap_unlock();
2662 /* If current TB was invalidated return to main loop */
2663 return current_tb_invalidated ? 2 : 1;
2664 }
2665 mmap_unlock();
2666 return 0;
2667 }
2668 #endif /* CONFIG_USER_ONLY */
2669
2670 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2671 void tcg_flush_softmmu_tlb(CPUState *cs)
2672 {
2673 #ifdef CONFIG_SOFTMMU
2674 tlb_flush(cs);
2675 #endif
2676 }