]> git.proxmox.com Git - mirror_qemu.git/blob - block.c
block: bdrv_img_create(): add Error ** argument
[mirror_qemu.git] / block.c
1 /*
2 * QEMU System Emulator block driver
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor.h"
28 #include "block_int.h"
29 #include "blockjob.h"
30 #include "module.h"
31 #include "qjson.h"
32 #include "sysemu.h"
33 #include "notify.h"
34 #include "qemu-coroutine.h"
35 #include "qmp-commands.h"
36 #include "qemu-timer.h"
37
38 #ifdef CONFIG_BSD
39 #include <sys/types.h>
40 #include <sys/stat.h>
41 #include <sys/ioctl.h>
42 #include <sys/queue.h>
43 #ifndef __DragonFly__
44 #include <sys/disk.h>
45 #endif
46 #endif
47
48 #ifdef _WIN32
49 #include <windows.h>
50 #endif
51
52 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
53
54 typedef enum {
55 BDRV_REQ_COPY_ON_READ = 0x1,
56 BDRV_REQ_ZERO_WRITE = 0x2,
57 } BdrvRequestFlags;
58
59 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
60 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
62 BlockDriverCompletionFunc *cb, void *opaque);
63 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
64 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
65 BlockDriverCompletionFunc *cb, void *opaque);
66 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
67 int64_t sector_num, int nb_sectors,
68 QEMUIOVector *iov);
69 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
70 int64_t sector_num, int nb_sectors,
71 QEMUIOVector *iov);
72 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
74 BdrvRequestFlags flags);
75 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
76 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
77 BdrvRequestFlags flags);
78 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
79 int64_t sector_num,
80 QEMUIOVector *qiov,
81 int nb_sectors,
82 BlockDriverCompletionFunc *cb,
83 void *opaque,
84 bool is_write);
85 static void coroutine_fn bdrv_co_do_rw(void *opaque);
86 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
87 int64_t sector_num, int nb_sectors);
88
89 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
90 bool is_write, double elapsed_time, uint64_t *wait);
91 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
92 double elapsed_time, uint64_t *wait);
93 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
94 bool is_write, int64_t *wait);
95
96 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
97 QTAILQ_HEAD_INITIALIZER(bdrv_states);
98
99 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
100 QLIST_HEAD_INITIALIZER(bdrv_drivers);
101
102 /* The device to use for VM snapshots */
103 static BlockDriverState *bs_snapshots;
104
105 /* If non-zero, use only whitelisted block drivers */
106 static int use_bdrv_whitelist;
107
108 #ifdef _WIN32
109 static int is_windows_drive_prefix(const char *filename)
110 {
111 return (((filename[0] >= 'a' && filename[0] <= 'z') ||
112 (filename[0] >= 'A' && filename[0] <= 'Z')) &&
113 filename[1] == ':');
114 }
115
116 int is_windows_drive(const char *filename)
117 {
118 if (is_windows_drive_prefix(filename) &&
119 filename[2] == '\0')
120 return 1;
121 if (strstart(filename, "\\\\.\\", NULL) ||
122 strstart(filename, "//./", NULL))
123 return 1;
124 return 0;
125 }
126 #endif
127
128 /* throttling disk I/O limits */
129 void bdrv_io_limits_disable(BlockDriverState *bs)
130 {
131 bs->io_limits_enabled = false;
132
133 while (qemu_co_queue_next(&bs->throttled_reqs));
134
135 if (bs->block_timer) {
136 qemu_del_timer(bs->block_timer);
137 qemu_free_timer(bs->block_timer);
138 bs->block_timer = NULL;
139 }
140
141 bs->slice_start = 0;
142 bs->slice_end = 0;
143 bs->slice_time = 0;
144 memset(&bs->io_base, 0, sizeof(bs->io_base));
145 }
146
147 static void bdrv_block_timer(void *opaque)
148 {
149 BlockDriverState *bs = opaque;
150
151 qemu_co_queue_next(&bs->throttled_reqs);
152 }
153
154 void bdrv_io_limits_enable(BlockDriverState *bs)
155 {
156 qemu_co_queue_init(&bs->throttled_reqs);
157 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
158 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
159 bs->slice_start = qemu_get_clock_ns(vm_clock);
160 bs->slice_end = bs->slice_start + bs->slice_time;
161 memset(&bs->io_base, 0, sizeof(bs->io_base));
162 bs->io_limits_enabled = true;
163 }
164
165 bool bdrv_io_limits_enabled(BlockDriverState *bs)
166 {
167 BlockIOLimit *io_limits = &bs->io_limits;
168 return io_limits->bps[BLOCK_IO_LIMIT_READ]
169 || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
170 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
171 || io_limits->iops[BLOCK_IO_LIMIT_READ]
172 || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
173 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
174 }
175
176 static void bdrv_io_limits_intercept(BlockDriverState *bs,
177 bool is_write, int nb_sectors)
178 {
179 int64_t wait_time = -1;
180
181 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
182 qemu_co_queue_wait(&bs->throttled_reqs);
183 }
184
185 /* In fact, we hope to keep each request's timing, in FIFO mode. The next
186 * throttled requests will not be dequeued until the current request is
187 * allowed to be serviced. So if the current request still exceeds the
188 * limits, it will be inserted to the head. All requests followed it will
189 * be still in throttled_reqs queue.
190 */
191
192 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
193 qemu_mod_timer(bs->block_timer,
194 wait_time + qemu_get_clock_ns(vm_clock));
195 qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
196 }
197
198 qemu_co_queue_next(&bs->throttled_reqs);
199 }
200
201 /* check if the path starts with "<protocol>:" */
202 static int path_has_protocol(const char *path)
203 {
204 const char *p;
205
206 #ifdef _WIN32
207 if (is_windows_drive(path) ||
208 is_windows_drive_prefix(path)) {
209 return 0;
210 }
211 p = path + strcspn(path, ":/\\");
212 #else
213 p = path + strcspn(path, ":/");
214 #endif
215
216 return *p == ':';
217 }
218
219 int path_is_absolute(const char *path)
220 {
221 #ifdef _WIN32
222 /* specific case for names like: "\\.\d:" */
223 if (is_windows_drive(path) || is_windows_drive_prefix(path)) {
224 return 1;
225 }
226 return (*path == '/' || *path == '\\');
227 #else
228 return (*path == '/');
229 #endif
230 }
231
232 /* if filename is absolute, just copy it to dest. Otherwise, build a
233 path to it by considering it is relative to base_path. URL are
234 supported. */
235 void path_combine(char *dest, int dest_size,
236 const char *base_path,
237 const char *filename)
238 {
239 const char *p, *p1;
240 int len;
241
242 if (dest_size <= 0)
243 return;
244 if (path_is_absolute(filename)) {
245 pstrcpy(dest, dest_size, filename);
246 } else {
247 p = strchr(base_path, ':');
248 if (p)
249 p++;
250 else
251 p = base_path;
252 p1 = strrchr(base_path, '/');
253 #ifdef _WIN32
254 {
255 const char *p2;
256 p2 = strrchr(base_path, '\\');
257 if (!p1 || p2 > p1)
258 p1 = p2;
259 }
260 #endif
261 if (p1)
262 p1++;
263 else
264 p1 = base_path;
265 if (p1 > p)
266 p = p1;
267 len = p - base_path;
268 if (len > dest_size - 1)
269 len = dest_size - 1;
270 memcpy(dest, base_path, len);
271 dest[len] = '\0';
272 pstrcat(dest, dest_size, filename);
273 }
274 }
275
276 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz)
277 {
278 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) {
279 pstrcpy(dest, sz, bs->backing_file);
280 } else {
281 path_combine(dest, sz, bs->filename, bs->backing_file);
282 }
283 }
284
285 void bdrv_register(BlockDriver *bdrv)
286 {
287 /* Block drivers without coroutine functions need emulation */
288 if (!bdrv->bdrv_co_readv) {
289 bdrv->bdrv_co_readv = bdrv_co_readv_em;
290 bdrv->bdrv_co_writev = bdrv_co_writev_em;
291
292 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
293 * the block driver lacks aio we need to emulate that too.
294 */
295 if (!bdrv->bdrv_aio_readv) {
296 /* add AIO emulation layer */
297 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
298 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
299 }
300 }
301
302 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
303 }
304
305 /* create a new block device (by default it is empty) */
306 BlockDriverState *bdrv_new(const char *device_name)
307 {
308 BlockDriverState *bs;
309
310 bs = g_malloc0(sizeof(BlockDriverState));
311 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
312 if (device_name[0] != '\0') {
313 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
314 }
315 bdrv_iostatus_disable(bs);
316 notifier_list_init(&bs->close_notifiers);
317
318 return bs;
319 }
320
321 void bdrv_add_close_notifier(BlockDriverState *bs, Notifier *notify)
322 {
323 notifier_list_add(&bs->close_notifiers, notify);
324 }
325
326 BlockDriver *bdrv_find_format(const char *format_name)
327 {
328 BlockDriver *drv1;
329 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
330 if (!strcmp(drv1->format_name, format_name)) {
331 return drv1;
332 }
333 }
334 return NULL;
335 }
336
337 static int bdrv_is_whitelisted(BlockDriver *drv)
338 {
339 static const char *whitelist[] = {
340 CONFIG_BDRV_WHITELIST
341 };
342 const char **p;
343
344 if (!whitelist[0])
345 return 1; /* no whitelist, anything goes */
346
347 for (p = whitelist; *p; p++) {
348 if (!strcmp(drv->format_name, *p)) {
349 return 1;
350 }
351 }
352 return 0;
353 }
354
355 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
356 {
357 BlockDriver *drv = bdrv_find_format(format_name);
358 return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
359 }
360
361 typedef struct CreateCo {
362 BlockDriver *drv;
363 char *filename;
364 QEMUOptionParameter *options;
365 int ret;
366 } CreateCo;
367
368 static void coroutine_fn bdrv_create_co_entry(void *opaque)
369 {
370 CreateCo *cco = opaque;
371 assert(cco->drv);
372
373 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options);
374 }
375
376 int bdrv_create(BlockDriver *drv, const char* filename,
377 QEMUOptionParameter *options)
378 {
379 int ret;
380
381 Coroutine *co;
382 CreateCo cco = {
383 .drv = drv,
384 .filename = g_strdup(filename),
385 .options = options,
386 .ret = NOT_DONE,
387 };
388
389 if (!drv->bdrv_create) {
390 ret = -ENOTSUP;
391 goto out;
392 }
393
394 if (qemu_in_coroutine()) {
395 /* Fast-path if already in coroutine context */
396 bdrv_create_co_entry(&cco);
397 } else {
398 co = qemu_coroutine_create(bdrv_create_co_entry);
399 qemu_coroutine_enter(co, &cco);
400 while (cco.ret == NOT_DONE) {
401 qemu_aio_wait();
402 }
403 }
404
405 ret = cco.ret;
406
407 out:
408 g_free(cco.filename);
409 return ret;
410 }
411
412 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
413 {
414 BlockDriver *drv;
415
416 drv = bdrv_find_protocol(filename);
417 if (drv == NULL) {
418 return -ENOENT;
419 }
420
421 return bdrv_create(drv, filename, options);
422 }
423
424 /*
425 * Create a uniquely-named empty temporary file.
426 * Return 0 upon success, otherwise a negative errno value.
427 */
428 int get_tmp_filename(char *filename, int size)
429 {
430 #ifdef _WIN32
431 char temp_dir[MAX_PATH];
432 /* GetTempFileName requires that its output buffer (4th param)
433 have length MAX_PATH or greater. */
434 assert(size >= MAX_PATH);
435 return (GetTempPath(MAX_PATH, temp_dir)
436 && GetTempFileName(temp_dir, "qem", 0, filename)
437 ? 0 : -GetLastError());
438 #else
439 int fd;
440 const char *tmpdir;
441 tmpdir = getenv("TMPDIR");
442 if (!tmpdir)
443 tmpdir = "/tmp";
444 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) {
445 return -EOVERFLOW;
446 }
447 fd = mkstemp(filename);
448 if (fd < 0) {
449 return -errno;
450 }
451 if (close(fd) != 0) {
452 unlink(filename);
453 return -errno;
454 }
455 return 0;
456 #endif
457 }
458
459 /*
460 * Detect host devices. By convention, /dev/cdrom[N] is always
461 * recognized as a host CDROM.
462 */
463 static BlockDriver *find_hdev_driver(const char *filename)
464 {
465 int score_max = 0, score;
466 BlockDriver *drv = NULL, *d;
467
468 QLIST_FOREACH(d, &bdrv_drivers, list) {
469 if (d->bdrv_probe_device) {
470 score = d->bdrv_probe_device(filename);
471 if (score > score_max) {
472 score_max = score;
473 drv = d;
474 }
475 }
476 }
477
478 return drv;
479 }
480
481 BlockDriver *bdrv_find_protocol(const char *filename)
482 {
483 BlockDriver *drv1;
484 char protocol[128];
485 int len;
486 const char *p;
487
488 /* TODO Drivers without bdrv_file_open must be specified explicitly */
489
490 /*
491 * XXX(hch): we really should not let host device detection
492 * override an explicit protocol specification, but moving this
493 * later breaks access to device names with colons in them.
494 * Thanks to the brain-dead persistent naming schemes on udev-
495 * based Linux systems those actually are quite common.
496 */
497 drv1 = find_hdev_driver(filename);
498 if (drv1) {
499 return drv1;
500 }
501
502 if (!path_has_protocol(filename)) {
503 return bdrv_find_format("file");
504 }
505 p = strchr(filename, ':');
506 assert(p != NULL);
507 len = p - filename;
508 if (len > sizeof(protocol) - 1)
509 len = sizeof(protocol) - 1;
510 memcpy(protocol, filename, len);
511 protocol[len] = '\0';
512 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
513 if (drv1->protocol_name &&
514 !strcmp(drv1->protocol_name, protocol)) {
515 return drv1;
516 }
517 }
518 return NULL;
519 }
520
521 static int find_image_format(BlockDriverState *bs, const char *filename,
522 BlockDriver **pdrv)
523 {
524 int score, score_max;
525 BlockDriver *drv1, *drv;
526 uint8_t buf[2048];
527 int ret = 0;
528
529 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
530 if (bs->sg || !bdrv_is_inserted(bs)) {
531 drv = bdrv_find_format("raw");
532 if (!drv) {
533 ret = -ENOENT;
534 }
535 *pdrv = drv;
536 return ret;
537 }
538
539 ret = bdrv_pread(bs, 0, buf, sizeof(buf));
540 if (ret < 0) {
541 *pdrv = NULL;
542 return ret;
543 }
544
545 score_max = 0;
546 drv = NULL;
547 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
548 if (drv1->bdrv_probe) {
549 score = drv1->bdrv_probe(buf, ret, filename);
550 if (score > score_max) {
551 score_max = score;
552 drv = drv1;
553 }
554 }
555 }
556 if (!drv) {
557 ret = -ENOENT;
558 }
559 *pdrv = drv;
560 return ret;
561 }
562
563 /**
564 * Set the current 'total_sectors' value
565 */
566 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
567 {
568 BlockDriver *drv = bs->drv;
569
570 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
571 if (bs->sg)
572 return 0;
573
574 /* query actual device if possible, otherwise just trust the hint */
575 if (drv->bdrv_getlength) {
576 int64_t length = drv->bdrv_getlength(bs);
577 if (length < 0) {
578 return length;
579 }
580 hint = length >> BDRV_SECTOR_BITS;
581 }
582
583 bs->total_sectors = hint;
584 return 0;
585 }
586
587 /**
588 * Set open flags for a given cache mode
589 *
590 * Return 0 on success, -1 if the cache mode was invalid.
591 */
592 int bdrv_parse_cache_flags(const char *mode, int *flags)
593 {
594 *flags &= ~BDRV_O_CACHE_MASK;
595
596 if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
597 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
598 } else if (!strcmp(mode, "directsync")) {
599 *flags |= BDRV_O_NOCACHE;
600 } else if (!strcmp(mode, "writeback")) {
601 *flags |= BDRV_O_CACHE_WB;
602 } else if (!strcmp(mode, "unsafe")) {
603 *flags |= BDRV_O_CACHE_WB;
604 *flags |= BDRV_O_NO_FLUSH;
605 } else if (!strcmp(mode, "writethrough")) {
606 /* this is the default */
607 } else {
608 return -1;
609 }
610
611 return 0;
612 }
613
614 /**
615 * The copy-on-read flag is actually a reference count so multiple users may
616 * use the feature without worrying about clobbering its previous state.
617 * Copy-on-read stays enabled until all users have called to disable it.
618 */
619 void bdrv_enable_copy_on_read(BlockDriverState *bs)
620 {
621 bs->copy_on_read++;
622 }
623
624 void bdrv_disable_copy_on_read(BlockDriverState *bs)
625 {
626 assert(bs->copy_on_read > 0);
627 bs->copy_on_read--;
628 }
629
630 static int bdrv_open_flags(BlockDriverState *bs, int flags)
631 {
632 int open_flags = flags | BDRV_O_CACHE_WB;
633
634 /*
635 * Clear flags that are internal to the block layer before opening the
636 * image.
637 */
638 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
639
640 /*
641 * Snapshots should be writable.
642 */
643 if (bs->is_temporary) {
644 open_flags |= BDRV_O_RDWR;
645 }
646
647 return open_flags;
648 }
649
650 /*
651 * Common part for opening disk images and files
652 */
653 static int bdrv_open_common(BlockDriverState *bs, BlockDriverState *file,
654 const char *filename,
655 int flags, BlockDriver *drv)
656 {
657 int ret, open_flags;
658
659 assert(drv != NULL);
660 assert(bs->file == NULL);
661
662 trace_bdrv_open_common(bs, filename, flags, drv->format_name);
663
664 bs->open_flags = flags;
665 bs->buffer_alignment = 512;
666
667 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
668 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
669 bdrv_enable_copy_on_read(bs);
670 }
671
672 pstrcpy(bs->filename, sizeof(bs->filename), filename);
673
674 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
675 return -ENOTSUP;
676 }
677
678 bs->drv = drv;
679 bs->opaque = g_malloc0(drv->instance_size);
680
681 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
682 open_flags = bdrv_open_flags(bs, flags);
683
684 bs->read_only = !(open_flags & BDRV_O_RDWR);
685
686 /* Open the image, either directly or using a protocol */
687 if (drv->bdrv_file_open) {
688 if (file != NULL) {
689 bdrv_swap(file, bs);
690 ret = 0;
691 } else {
692 ret = drv->bdrv_file_open(bs, filename, open_flags);
693 }
694 } else {
695 assert(file != NULL);
696 bs->file = file;
697 ret = drv->bdrv_open(bs, open_flags);
698 }
699
700 if (ret < 0) {
701 goto free_and_fail;
702 }
703
704 ret = refresh_total_sectors(bs, bs->total_sectors);
705 if (ret < 0) {
706 goto free_and_fail;
707 }
708
709 #ifndef _WIN32
710 if (bs->is_temporary) {
711 unlink(filename);
712 }
713 #endif
714 return 0;
715
716 free_and_fail:
717 bs->file = NULL;
718 g_free(bs->opaque);
719 bs->opaque = NULL;
720 bs->drv = NULL;
721 return ret;
722 }
723
724 /*
725 * Opens a file using a protocol (file, host_device, nbd, ...)
726 */
727 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
728 {
729 BlockDriverState *bs;
730 BlockDriver *drv;
731 int ret;
732
733 drv = bdrv_find_protocol(filename);
734 if (!drv) {
735 return -ENOENT;
736 }
737
738 bs = bdrv_new("");
739 ret = bdrv_open_common(bs, NULL, filename, flags, drv);
740 if (ret < 0) {
741 bdrv_delete(bs);
742 return ret;
743 }
744 bs->growable = 1;
745 *pbs = bs;
746 return 0;
747 }
748
749 int bdrv_open_backing_file(BlockDriverState *bs)
750 {
751 char backing_filename[PATH_MAX];
752 int back_flags, ret;
753 BlockDriver *back_drv = NULL;
754
755 if (bs->backing_hd != NULL) {
756 return 0;
757 }
758
759 bs->open_flags &= ~BDRV_O_NO_BACKING;
760 if (bs->backing_file[0] == '\0') {
761 return 0;
762 }
763
764 bs->backing_hd = bdrv_new("");
765 bdrv_get_full_backing_filename(bs, backing_filename,
766 sizeof(backing_filename));
767
768 if (bs->backing_format[0] != '\0') {
769 back_drv = bdrv_find_format(bs->backing_format);
770 }
771
772 /* backing files always opened read-only */
773 back_flags = bs->open_flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT);
774
775 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
776 if (ret < 0) {
777 bdrv_delete(bs->backing_hd);
778 bs->backing_hd = NULL;
779 bs->open_flags |= BDRV_O_NO_BACKING;
780 return ret;
781 }
782 return 0;
783 }
784
785 /*
786 * Opens a disk image (raw, qcow2, vmdk, ...)
787 */
788 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
789 BlockDriver *drv)
790 {
791 int ret;
792 /* TODO: extra byte is a hack to ensure MAX_PATH space on Windows. */
793 char tmp_filename[PATH_MAX + 1];
794 BlockDriverState *file = NULL;
795
796 if (flags & BDRV_O_SNAPSHOT) {
797 BlockDriverState *bs1;
798 int64_t total_size;
799 int is_protocol = 0;
800 BlockDriver *bdrv_qcow2;
801 QEMUOptionParameter *options;
802 char backing_filename[PATH_MAX];
803
804 /* if snapshot, we create a temporary backing file and open it
805 instead of opening 'filename' directly */
806
807 /* if there is a backing file, use it */
808 bs1 = bdrv_new("");
809 ret = bdrv_open(bs1, filename, 0, drv);
810 if (ret < 0) {
811 bdrv_delete(bs1);
812 return ret;
813 }
814 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
815
816 if (bs1->drv && bs1->drv->protocol_name)
817 is_protocol = 1;
818
819 bdrv_delete(bs1);
820
821 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename));
822 if (ret < 0) {
823 return ret;
824 }
825
826 /* Real path is meaningless for protocols */
827 if (is_protocol)
828 snprintf(backing_filename, sizeof(backing_filename),
829 "%s", filename);
830 else if (!realpath(filename, backing_filename))
831 return -errno;
832
833 bdrv_qcow2 = bdrv_find_format("qcow2");
834 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
835
836 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
837 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
838 if (drv) {
839 set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
840 drv->format_name);
841 }
842
843 ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
844 free_option_parameters(options);
845 if (ret < 0) {
846 return ret;
847 }
848
849 filename = tmp_filename;
850 drv = bdrv_qcow2;
851 bs->is_temporary = 1;
852 }
853
854 /* Open image file without format layer */
855 if (flags & BDRV_O_RDWR) {
856 flags |= BDRV_O_ALLOW_RDWR;
857 }
858
859 ret = bdrv_file_open(&file, filename, bdrv_open_flags(bs, flags));
860 if (ret < 0) {
861 return ret;
862 }
863
864 /* Find the right image format driver */
865 if (!drv) {
866 ret = find_image_format(file, filename, &drv);
867 }
868
869 if (!drv) {
870 goto unlink_and_fail;
871 }
872
873 /* Open the image */
874 ret = bdrv_open_common(bs, file, filename, flags, drv);
875 if (ret < 0) {
876 goto unlink_and_fail;
877 }
878
879 if (bs->file != file) {
880 bdrv_delete(file);
881 file = NULL;
882 }
883
884 /* If there is a backing file, use it */
885 if ((flags & BDRV_O_NO_BACKING) == 0) {
886 ret = bdrv_open_backing_file(bs);
887 if (ret < 0) {
888 bdrv_close(bs);
889 return ret;
890 }
891 }
892
893 if (!bdrv_key_required(bs)) {
894 bdrv_dev_change_media_cb(bs, true);
895 }
896
897 /* throttling disk I/O limits */
898 if (bs->io_limits_enabled) {
899 bdrv_io_limits_enable(bs);
900 }
901
902 return 0;
903
904 unlink_and_fail:
905 if (file != NULL) {
906 bdrv_delete(file);
907 }
908 if (bs->is_temporary) {
909 unlink(filename);
910 }
911 return ret;
912 }
913
914 typedef struct BlockReopenQueueEntry {
915 bool prepared;
916 BDRVReopenState state;
917 QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry;
918 } BlockReopenQueueEntry;
919
920 /*
921 * Adds a BlockDriverState to a simple queue for an atomic, transactional
922 * reopen of multiple devices.
923 *
924 * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT
925 * already performed, or alternatively may be NULL a new BlockReopenQueue will
926 * be created and initialized. This newly created BlockReopenQueue should be
927 * passed back in for subsequent calls that are intended to be of the same
928 * atomic 'set'.
929 *
930 * bs is the BlockDriverState to add to the reopen queue.
931 *
932 * flags contains the open flags for the associated bs
933 *
934 * returns a pointer to bs_queue, which is either the newly allocated
935 * bs_queue, or the existing bs_queue being used.
936 *
937 */
938 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue,
939 BlockDriverState *bs, int flags)
940 {
941 assert(bs != NULL);
942
943 BlockReopenQueueEntry *bs_entry;
944 if (bs_queue == NULL) {
945 bs_queue = g_new0(BlockReopenQueue, 1);
946 QSIMPLEQ_INIT(bs_queue);
947 }
948
949 if (bs->file) {
950 bdrv_reopen_queue(bs_queue, bs->file, flags);
951 }
952
953 bs_entry = g_new0(BlockReopenQueueEntry, 1);
954 QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry);
955
956 bs_entry->state.bs = bs;
957 bs_entry->state.flags = flags;
958
959 return bs_queue;
960 }
961
962 /*
963 * Reopen multiple BlockDriverStates atomically & transactionally.
964 *
965 * The queue passed in (bs_queue) must have been built up previous
966 * via bdrv_reopen_queue().
967 *
968 * Reopens all BDS specified in the queue, with the appropriate
969 * flags. All devices are prepared for reopen, and failure of any
970 * device will cause all device changes to be abandonded, and intermediate
971 * data cleaned up.
972 *
973 * If all devices prepare successfully, then the changes are committed
974 * to all devices.
975 *
976 */
977 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp)
978 {
979 int ret = -1;
980 BlockReopenQueueEntry *bs_entry, *next;
981 Error *local_err = NULL;
982
983 assert(bs_queue != NULL);
984
985 bdrv_drain_all();
986
987 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
988 if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) {
989 error_propagate(errp, local_err);
990 goto cleanup;
991 }
992 bs_entry->prepared = true;
993 }
994
995 /* If we reach this point, we have success and just need to apply the
996 * changes
997 */
998 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
999 bdrv_reopen_commit(&bs_entry->state);
1000 }
1001
1002 ret = 0;
1003
1004 cleanup:
1005 QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) {
1006 if (ret && bs_entry->prepared) {
1007 bdrv_reopen_abort(&bs_entry->state);
1008 }
1009 g_free(bs_entry);
1010 }
1011 g_free(bs_queue);
1012 return ret;
1013 }
1014
1015
1016 /* Reopen a single BlockDriverState with the specified flags. */
1017 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp)
1018 {
1019 int ret = -1;
1020 Error *local_err = NULL;
1021 BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags);
1022
1023 ret = bdrv_reopen_multiple(queue, &local_err);
1024 if (local_err != NULL) {
1025 error_propagate(errp, local_err);
1026 }
1027 return ret;
1028 }
1029
1030
1031 /*
1032 * Prepares a BlockDriverState for reopen. All changes are staged in the
1033 * 'opaque' field of the BDRVReopenState, which is used and allocated by
1034 * the block driver layer .bdrv_reopen_prepare()
1035 *
1036 * bs is the BlockDriverState to reopen
1037 * flags are the new open flags
1038 * queue is the reopen queue
1039 *
1040 * Returns 0 on success, non-zero on error. On error errp will be set
1041 * as well.
1042 *
1043 * On failure, bdrv_reopen_abort() will be called to clean up any data.
1044 * It is the responsibility of the caller to then call the abort() or
1045 * commit() for any other BDS that have been left in a prepare() state
1046 *
1047 */
1048 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue,
1049 Error **errp)
1050 {
1051 int ret = -1;
1052 Error *local_err = NULL;
1053 BlockDriver *drv;
1054
1055 assert(reopen_state != NULL);
1056 assert(reopen_state->bs->drv != NULL);
1057 drv = reopen_state->bs->drv;
1058
1059 /* if we are to stay read-only, do not allow permission change
1060 * to r/w */
1061 if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) &&
1062 reopen_state->flags & BDRV_O_RDWR) {
1063 error_set(errp, QERR_DEVICE_IS_READ_ONLY,
1064 reopen_state->bs->device_name);
1065 goto error;
1066 }
1067
1068
1069 ret = bdrv_flush(reopen_state->bs);
1070 if (ret) {
1071 error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive",
1072 strerror(-ret));
1073 goto error;
1074 }
1075
1076 if (drv->bdrv_reopen_prepare) {
1077 ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err);
1078 if (ret) {
1079 if (local_err != NULL) {
1080 error_propagate(errp, local_err);
1081 } else {
1082 error_set(errp, QERR_OPEN_FILE_FAILED,
1083 reopen_state->bs->filename);
1084 }
1085 goto error;
1086 }
1087 } else {
1088 /* It is currently mandatory to have a bdrv_reopen_prepare()
1089 * handler for each supported drv. */
1090 error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
1091 drv->format_name, reopen_state->bs->device_name,
1092 "reopening of file");
1093 ret = -1;
1094 goto error;
1095 }
1096
1097 ret = 0;
1098
1099 error:
1100 return ret;
1101 }
1102
1103 /*
1104 * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and
1105 * makes them final by swapping the staging BlockDriverState contents into
1106 * the active BlockDriverState contents.
1107 */
1108 void bdrv_reopen_commit(BDRVReopenState *reopen_state)
1109 {
1110 BlockDriver *drv;
1111
1112 assert(reopen_state != NULL);
1113 drv = reopen_state->bs->drv;
1114 assert(drv != NULL);
1115
1116 /* If there are any driver level actions to take */
1117 if (drv->bdrv_reopen_commit) {
1118 drv->bdrv_reopen_commit(reopen_state);
1119 }
1120
1121 /* set BDS specific flags now */
1122 reopen_state->bs->open_flags = reopen_state->flags;
1123 reopen_state->bs->enable_write_cache = !!(reopen_state->flags &
1124 BDRV_O_CACHE_WB);
1125 reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR);
1126 }
1127
1128 /*
1129 * Abort the reopen, and delete and free the staged changes in
1130 * reopen_state
1131 */
1132 void bdrv_reopen_abort(BDRVReopenState *reopen_state)
1133 {
1134 BlockDriver *drv;
1135
1136 assert(reopen_state != NULL);
1137 drv = reopen_state->bs->drv;
1138 assert(drv != NULL);
1139
1140 if (drv->bdrv_reopen_abort) {
1141 drv->bdrv_reopen_abort(reopen_state);
1142 }
1143 }
1144
1145
1146 void bdrv_close(BlockDriverState *bs)
1147 {
1148 bdrv_flush(bs);
1149 if (bs->job) {
1150 block_job_cancel_sync(bs->job);
1151 }
1152 bdrv_drain_all();
1153 notifier_list_notify(&bs->close_notifiers, bs);
1154
1155 if (bs->drv) {
1156 if (bs == bs_snapshots) {
1157 bs_snapshots = NULL;
1158 }
1159 if (bs->backing_hd) {
1160 bdrv_delete(bs->backing_hd);
1161 bs->backing_hd = NULL;
1162 }
1163 bs->drv->bdrv_close(bs);
1164 g_free(bs->opaque);
1165 #ifdef _WIN32
1166 if (bs->is_temporary) {
1167 unlink(bs->filename);
1168 }
1169 #endif
1170 bs->opaque = NULL;
1171 bs->drv = NULL;
1172 bs->copy_on_read = 0;
1173 bs->backing_file[0] = '\0';
1174 bs->backing_format[0] = '\0';
1175 bs->total_sectors = 0;
1176 bs->encrypted = 0;
1177 bs->valid_key = 0;
1178 bs->sg = 0;
1179 bs->growable = 0;
1180
1181 if (bs->file != NULL) {
1182 bdrv_delete(bs->file);
1183 bs->file = NULL;
1184 }
1185 }
1186
1187 bdrv_dev_change_media_cb(bs, false);
1188
1189 /*throttling disk I/O limits*/
1190 if (bs->io_limits_enabled) {
1191 bdrv_io_limits_disable(bs);
1192 }
1193 }
1194
1195 void bdrv_close_all(void)
1196 {
1197 BlockDriverState *bs;
1198
1199 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1200 bdrv_close(bs);
1201 }
1202 }
1203
1204 /*
1205 * Wait for pending requests to complete across all BlockDriverStates
1206 *
1207 * This function does not flush data to disk, use bdrv_flush_all() for that
1208 * after calling this function.
1209 *
1210 * Note that completion of an asynchronous I/O operation can trigger any
1211 * number of other I/O operations on other devices---for example a coroutine
1212 * can be arbitrarily complex and a constant flow of I/O can come until the
1213 * coroutine is complete. Because of this, it is not possible to have a
1214 * function to drain a single device's I/O queue.
1215 */
1216 void bdrv_drain_all(void)
1217 {
1218 BlockDriverState *bs;
1219 bool busy;
1220
1221 do {
1222 busy = qemu_aio_wait();
1223
1224 /* FIXME: We do not have timer support here, so this is effectively
1225 * a busy wait.
1226 */
1227 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1228 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
1229 qemu_co_queue_restart_all(&bs->throttled_reqs);
1230 busy = true;
1231 }
1232 }
1233 } while (busy);
1234
1235 /* If requests are still pending there is a bug somewhere */
1236 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1237 assert(QLIST_EMPTY(&bs->tracked_requests));
1238 assert(qemu_co_queue_empty(&bs->throttled_reqs));
1239 }
1240 }
1241
1242 /* make a BlockDriverState anonymous by removing from bdrv_state list.
1243 Also, NULL terminate the device_name to prevent double remove */
1244 void bdrv_make_anon(BlockDriverState *bs)
1245 {
1246 if (bs->device_name[0] != '\0') {
1247 QTAILQ_REMOVE(&bdrv_states, bs, list);
1248 }
1249 bs->device_name[0] = '\0';
1250 }
1251
1252 static void bdrv_rebind(BlockDriverState *bs)
1253 {
1254 if (bs->drv && bs->drv->bdrv_rebind) {
1255 bs->drv->bdrv_rebind(bs);
1256 }
1257 }
1258
1259 static void bdrv_move_feature_fields(BlockDriverState *bs_dest,
1260 BlockDriverState *bs_src)
1261 {
1262 /* move some fields that need to stay attached to the device */
1263 bs_dest->open_flags = bs_src->open_flags;
1264
1265 /* dev info */
1266 bs_dest->dev_ops = bs_src->dev_ops;
1267 bs_dest->dev_opaque = bs_src->dev_opaque;
1268 bs_dest->dev = bs_src->dev;
1269 bs_dest->buffer_alignment = bs_src->buffer_alignment;
1270 bs_dest->copy_on_read = bs_src->copy_on_read;
1271
1272 bs_dest->enable_write_cache = bs_src->enable_write_cache;
1273
1274 /* i/o timing parameters */
1275 bs_dest->slice_time = bs_src->slice_time;
1276 bs_dest->slice_start = bs_src->slice_start;
1277 bs_dest->slice_end = bs_src->slice_end;
1278 bs_dest->io_limits = bs_src->io_limits;
1279 bs_dest->io_base = bs_src->io_base;
1280 bs_dest->throttled_reqs = bs_src->throttled_reqs;
1281 bs_dest->block_timer = bs_src->block_timer;
1282 bs_dest->io_limits_enabled = bs_src->io_limits_enabled;
1283
1284 /* r/w error */
1285 bs_dest->on_read_error = bs_src->on_read_error;
1286 bs_dest->on_write_error = bs_src->on_write_error;
1287
1288 /* i/o status */
1289 bs_dest->iostatus_enabled = bs_src->iostatus_enabled;
1290 bs_dest->iostatus = bs_src->iostatus;
1291
1292 /* dirty bitmap */
1293 bs_dest->dirty_count = bs_src->dirty_count;
1294 bs_dest->dirty_bitmap = bs_src->dirty_bitmap;
1295
1296 /* job */
1297 bs_dest->in_use = bs_src->in_use;
1298 bs_dest->job = bs_src->job;
1299
1300 /* keep the same entry in bdrv_states */
1301 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name),
1302 bs_src->device_name);
1303 bs_dest->list = bs_src->list;
1304 }
1305
1306 /*
1307 * Swap bs contents for two image chains while they are live,
1308 * while keeping required fields on the BlockDriverState that is
1309 * actually attached to a device.
1310 *
1311 * This will modify the BlockDriverState fields, and swap contents
1312 * between bs_new and bs_old. Both bs_new and bs_old are modified.
1313 *
1314 * bs_new is required to be anonymous.
1315 *
1316 * This function does not create any image files.
1317 */
1318 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old)
1319 {
1320 BlockDriverState tmp;
1321
1322 /* bs_new must be anonymous and shouldn't have anything fancy enabled */
1323 assert(bs_new->device_name[0] == '\0');
1324 assert(bs_new->dirty_bitmap == NULL);
1325 assert(bs_new->job == NULL);
1326 assert(bs_new->dev == NULL);
1327 assert(bs_new->in_use == 0);
1328 assert(bs_new->io_limits_enabled == false);
1329 assert(bs_new->block_timer == NULL);
1330
1331 tmp = *bs_new;
1332 *bs_new = *bs_old;
1333 *bs_old = tmp;
1334
1335 /* there are some fields that should not be swapped, move them back */
1336 bdrv_move_feature_fields(&tmp, bs_old);
1337 bdrv_move_feature_fields(bs_old, bs_new);
1338 bdrv_move_feature_fields(bs_new, &tmp);
1339
1340 /* bs_new shouldn't be in bdrv_states even after the swap! */
1341 assert(bs_new->device_name[0] == '\0');
1342
1343 /* Check a few fields that should remain attached to the device */
1344 assert(bs_new->dev == NULL);
1345 assert(bs_new->job == NULL);
1346 assert(bs_new->in_use == 0);
1347 assert(bs_new->io_limits_enabled == false);
1348 assert(bs_new->block_timer == NULL);
1349
1350 bdrv_rebind(bs_new);
1351 bdrv_rebind(bs_old);
1352 }
1353
1354 /*
1355 * Add new bs contents at the top of an image chain while the chain is
1356 * live, while keeping required fields on the top layer.
1357 *
1358 * This will modify the BlockDriverState fields, and swap contents
1359 * between bs_new and bs_top. Both bs_new and bs_top are modified.
1360 *
1361 * bs_new is required to be anonymous.
1362 *
1363 * This function does not create any image files.
1364 */
1365 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
1366 {
1367 bdrv_swap(bs_new, bs_top);
1368
1369 /* The contents of 'tmp' will become bs_top, as we are
1370 * swapping bs_new and bs_top contents. */
1371 bs_top->backing_hd = bs_new;
1372 bs_top->open_flags &= ~BDRV_O_NO_BACKING;
1373 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file),
1374 bs_new->filename);
1375 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format),
1376 bs_new->drv ? bs_new->drv->format_name : "");
1377 }
1378
1379 void bdrv_delete(BlockDriverState *bs)
1380 {
1381 assert(!bs->dev);
1382 assert(!bs->job);
1383 assert(!bs->in_use);
1384
1385 /* remove from list, if necessary */
1386 bdrv_make_anon(bs);
1387
1388 bdrv_close(bs);
1389
1390 assert(bs != bs_snapshots);
1391 g_free(bs);
1392 }
1393
1394 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
1395 /* TODO change to DeviceState *dev when all users are qdevified */
1396 {
1397 if (bs->dev) {
1398 return -EBUSY;
1399 }
1400 bs->dev = dev;
1401 bdrv_iostatus_reset(bs);
1402 return 0;
1403 }
1404
1405 /* TODO qdevified devices don't use this, remove when devices are qdevified */
1406 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
1407 {
1408 if (bdrv_attach_dev(bs, dev) < 0) {
1409 abort();
1410 }
1411 }
1412
1413 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1414 /* TODO change to DeviceState *dev when all users are qdevified */
1415 {
1416 assert(bs->dev == dev);
1417 bs->dev = NULL;
1418 bs->dev_ops = NULL;
1419 bs->dev_opaque = NULL;
1420 bs->buffer_alignment = 512;
1421 }
1422
1423 /* TODO change to return DeviceState * when all users are qdevified */
1424 void *bdrv_get_attached_dev(BlockDriverState *bs)
1425 {
1426 return bs->dev;
1427 }
1428
1429 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1430 void *opaque)
1431 {
1432 bs->dev_ops = ops;
1433 bs->dev_opaque = opaque;
1434 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
1435 bs_snapshots = NULL;
1436 }
1437 }
1438
1439 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1440 enum MonitorEvent ev,
1441 BlockErrorAction action, bool is_read)
1442 {
1443 QObject *data;
1444 const char *action_str;
1445
1446 switch (action) {
1447 case BDRV_ACTION_REPORT:
1448 action_str = "report";
1449 break;
1450 case BDRV_ACTION_IGNORE:
1451 action_str = "ignore";
1452 break;
1453 case BDRV_ACTION_STOP:
1454 action_str = "stop";
1455 break;
1456 default:
1457 abort();
1458 }
1459
1460 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1461 bdrv->device_name,
1462 action_str,
1463 is_read ? "read" : "write");
1464 monitor_protocol_event(ev, data);
1465
1466 qobject_decref(data);
1467 }
1468
1469 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1470 {
1471 QObject *data;
1472
1473 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1474 bdrv_get_device_name(bs), ejected);
1475 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1476
1477 qobject_decref(data);
1478 }
1479
1480 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1481 {
1482 if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1483 bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1484 bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1485 if (tray_was_closed) {
1486 /* tray open */
1487 bdrv_emit_qmp_eject_event(bs, true);
1488 }
1489 if (load) {
1490 /* tray close */
1491 bdrv_emit_qmp_eject_event(bs, false);
1492 }
1493 }
1494 }
1495
1496 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1497 {
1498 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1499 }
1500
1501 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1502 {
1503 if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1504 bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1505 }
1506 }
1507
1508 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1509 {
1510 if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1511 return bs->dev_ops->is_tray_open(bs->dev_opaque);
1512 }
1513 return false;
1514 }
1515
1516 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1517 {
1518 if (bs->dev_ops && bs->dev_ops->resize_cb) {
1519 bs->dev_ops->resize_cb(bs->dev_opaque);
1520 }
1521 }
1522
1523 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1524 {
1525 if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1526 return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1527 }
1528 return false;
1529 }
1530
1531 /*
1532 * Run consistency checks on an image
1533 *
1534 * Returns 0 if the check could be completed (it doesn't mean that the image is
1535 * free of errors) or -errno when an internal error occurred. The results of the
1536 * check are stored in res.
1537 */
1538 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix)
1539 {
1540 if (bs->drv->bdrv_check == NULL) {
1541 return -ENOTSUP;
1542 }
1543
1544 memset(res, 0, sizeof(*res));
1545 return bs->drv->bdrv_check(bs, res, fix);
1546 }
1547
1548 #define COMMIT_BUF_SECTORS 2048
1549
1550 /* commit COW file into the raw image */
1551 int bdrv_commit(BlockDriverState *bs)
1552 {
1553 BlockDriver *drv = bs->drv;
1554 int64_t sector, total_sectors;
1555 int n, ro, open_flags;
1556 int ret = 0;
1557 uint8_t *buf;
1558 char filename[PATH_MAX];
1559
1560 if (!drv)
1561 return -ENOMEDIUM;
1562
1563 if (!bs->backing_hd) {
1564 return -ENOTSUP;
1565 }
1566
1567 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1568 return -EBUSY;
1569 }
1570
1571 ro = bs->backing_hd->read_only;
1572 /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */
1573 pstrcpy(filename, sizeof(filename), bs->backing_hd->filename);
1574 open_flags = bs->backing_hd->open_flags;
1575
1576 if (ro) {
1577 if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) {
1578 return -EACCES;
1579 }
1580 }
1581
1582 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1583 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1584
1585 for (sector = 0; sector < total_sectors; sector += n) {
1586 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1587
1588 if (bdrv_read(bs, sector, buf, n) != 0) {
1589 ret = -EIO;
1590 goto ro_cleanup;
1591 }
1592
1593 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1594 ret = -EIO;
1595 goto ro_cleanup;
1596 }
1597 }
1598 }
1599
1600 if (drv->bdrv_make_empty) {
1601 ret = drv->bdrv_make_empty(bs);
1602 bdrv_flush(bs);
1603 }
1604
1605 /*
1606 * Make sure all data we wrote to the backing device is actually
1607 * stable on disk.
1608 */
1609 if (bs->backing_hd)
1610 bdrv_flush(bs->backing_hd);
1611
1612 ro_cleanup:
1613 g_free(buf);
1614
1615 if (ro) {
1616 /* ignoring error return here */
1617 bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL);
1618 }
1619
1620 return ret;
1621 }
1622
1623 int bdrv_commit_all(void)
1624 {
1625 BlockDriverState *bs;
1626
1627 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1628 int ret = bdrv_commit(bs);
1629 if (ret < 0) {
1630 return ret;
1631 }
1632 }
1633 return 0;
1634 }
1635
1636 struct BdrvTrackedRequest {
1637 BlockDriverState *bs;
1638 int64_t sector_num;
1639 int nb_sectors;
1640 bool is_write;
1641 QLIST_ENTRY(BdrvTrackedRequest) list;
1642 Coroutine *co; /* owner, used for deadlock detection */
1643 CoQueue wait_queue; /* coroutines blocked on this request */
1644 };
1645
1646 /**
1647 * Remove an active request from the tracked requests list
1648 *
1649 * This function should be called when a tracked request is completing.
1650 */
1651 static void tracked_request_end(BdrvTrackedRequest *req)
1652 {
1653 QLIST_REMOVE(req, list);
1654 qemu_co_queue_restart_all(&req->wait_queue);
1655 }
1656
1657 /**
1658 * Add an active request to the tracked requests list
1659 */
1660 static void tracked_request_begin(BdrvTrackedRequest *req,
1661 BlockDriverState *bs,
1662 int64_t sector_num,
1663 int nb_sectors, bool is_write)
1664 {
1665 *req = (BdrvTrackedRequest){
1666 .bs = bs,
1667 .sector_num = sector_num,
1668 .nb_sectors = nb_sectors,
1669 .is_write = is_write,
1670 .co = qemu_coroutine_self(),
1671 };
1672
1673 qemu_co_queue_init(&req->wait_queue);
1674
1675 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1676 }
1677
1678 /**
1679 * Round a region to cluster boundaries
1680 */
1681 static void round_to_clusters(BlockDriverState *bs,
1682 int64_t sector_num, int nb_sectors,
1683 int64_t *cluster_sector_num,
1684 int *cluster_nb_sectors)
1685 {
1686 BlockDriverInfo bdi;
1687
1688 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1689 *cluster_sector_num = sector_num;
1690 *cluster_nb_sectors = nb_sectors;
1691 } else {
1692 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1693 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1694 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1695 nb_sectors, c);
1696 }
1697 }
1698
1699 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1700 int64_t sector_num, int nb_sectors) {
1701 /* aaaa bbbb */
1702 if (sector_num >= req->sector_num + req->nb_sectors) {
1703 return false;
1704 }
1705 /* bbbb aaaa */
1706 if (req->sector_num >= sector_num + nb_sectors) {
1707 return false;
1708 }
1709 return true;
1710 }
1711
1712 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1713 int64_t sector_num, int nb_sectors)
1714 {
1715 BdrvTrackedRequest *req;
1716 int64_t cluster_sector_num;
1717 int cluster_nb_sectors;
1718 bool retry;
1719
1720 /* If we touch the same cluster it counts as an overlap. This guarantees
1721 * that allocating writes will be serialized and not race with each other
1722 * for the same cluster. For example, in copy-on-read it ensures that the
1723 * CoR read and write operations are atomic and guest writes cannot
1724 * interleave between them.
1725 */
1726 round_to_clusters(bs, sector_num, nb_sectors,
1727 &cluster_sector_num, &cluster_nb_sectors);
1728
1729 do {
1730 retry = false;
1731 QLIST_FOREACH(req, &bs->tracked_requests, list) {
1732 if (tracked_request_overlaps(req, cluster_sector_num,
1733 cluster_nb_sectors)) {
1734 /* Hitting this means there was a reentrant request, for
1735 * example, a block driver issuing nested requests. This must
1736 * never happen since it means deadlock.
1737 */
1738 assert(qemu_coroutine_self() != req->co);
1739
1740 qemu_co_queue_wait(&req->wait_queue);
1741 retry = true;
1742 break;
1743 }
1744 }
1745 } while (retry);
1746 }
1747
1748 /*
1749 * Return values:
1750 * 0 - success
1751 * -EINVAL - backing format specified, but no file
1752 * -ENOSPC - can't update the backing file because no space is left in the
1753 * image file header
1754 * -ENOTSUP - format driver doesn't support changing the backing file
1755 */
1756 int bdrv_change_backing_file(BlockDriverState *bs,
1757 const char *backing_file, const char *backing_fmt)
1758 {
1759 BlockDriver *drv = bs->drv;
1760 int ret;
1761
1762 /* Backing file format doesn't make sense without a backing file */
1763 if (backing_fmt && !backing_file) {
1764 return -EINVAL;
1765 }
1766
1767 if (drv->bdrv_change_backing_file != NULL) {
1768 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1769 } else {
1770 ret = -ENOTSUP;
1771 }
1772
1773 if (ret == 0) {
1774 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
1775 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
1776 }
1777 return ret;
1778 }
1779
1780 /*
1781 * Finds the image layer in the chain that has 'bs' as its backing file.
1782 *
1783 * active is the current topmost image.
1784 *
1785 * Returns NULL if bs is not found in active's image chain,
1786 * or if active == bs.
1787 */
1788 BlockDriverState *bdrv_find_overlay(BlockDriverState *active,
1789 BlockDriverState *bs)
1790 {
1791 BlockDriverState *overlay = NULL;
1792 BlockDriverState *intermediate;
1793
1794 assert(active != NULL);
1795 assert(bs != NULL);
1796
1797 /* if bs is the same as active, then by definition it has no overlay
1798 */
1799 if (active == bs) {
1800 return NULL;
1801 }
1802
1803 intermediate = active;
1804 while (intermediate->backing_hd) {
1805 if (intermediate->backing_hd == bs) {
1806 overlay = intermediate;
1807 break;
1808 }
1809 intermediate = intermediate->backing_hd;
1810 }
1811
1812 return overlay;
1813 }
1814
1815 typedef struct BlkIntermediateStates {
1816 BlockDriverState *bs;
1817 QSIMPLEQ_ENTRY(BlkIntermediateStates) entry;
1818 } BlkIntermediateStates;
1819
1820
1821 /*
1822 * Drops images above 'base' up to and including 'top', and sets the image
1823 * above 'top' to have base as its backing file.
1824 *
1825 * Requires that the overlay to 'top' is opened r/w, so that the backing file
1826 * information in 'bs' can be properly updated.
1827 *
1828 * E.g., this will convert the following chain:
1829 * bottom <- base <- intermediate <- top <- active
1830 *
1831 * to
1832 *
1833 * bottom <- base <- active
1834 *
1835 * It is allowed for bottom==base, in which case it converts:
1836 *
1837 * base <- intermediate <- top <- active
1838 *
1839 * to
1840 *
1841 * base <- active
1842 *
1843 * Error conditions:
1844 * if active == top, that is considered an error
1845 *
1846 */
1847 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top,
1848 BlockDriverState *base)
1849 {
1850 BlockDriverState *intermediate;
1851 BlockDriverState *base_bs = NULL;
1852 BlockDriverState *new_top_bs = NULL;
1853 BlkIntermediateStates *intermediate_state, *next;
1854 int ret = -EIO;
1855
1856 QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete;
1857 QSIMPLEQ_INIT(&states_to_delete);
1858
1859 if (!top->drv || !base->drv) {
1860 goto exit;
1861 }
1862
1863 new_top_bs = bdrv_find_overlay(active, top);
1864
1865 if (new_top_bs == NULL) {
1866 /* we could not find the image above 'top', this is an error */
1867 goto exit;
1868 }
1869
1870 /* special case of new_top_bs->backing_hd already pointing to base - nothing
1871 * to do, no intermediate images */
1872 if (new_top_bs->backing_hd == base) {
1873 ret = 0;
1874 goto exit;
1875 }
1876
1877 intermediate = top;
1878
1879 /* now we will go down through the list, and add each BDS we find
1880 * into our deletion queue, until we hit the 'base'
1881 */
1882 while (intermediate) {
1883 intermediate_state = g_malloc0(sizeof(BlkIntermediateStates));
1884 intermediate_state->bs = intermediate;
1885 QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry);
1886
1887 if (intermediate->backing_hd == base) {
1888 base_bs = intermediate->backing_hd;
1889 break;
1890 }
1891 intermediate = intermediate->backing_hd;
1892 }
1893 if (base_bs == NULL) {
1894 /* something went wrong, we did not end at the base. safely
1895 * unravel everything, and exit with error */
1896 goto exit;
1897 }
1898
1899 /* success - we can delete the intermediate states, and link top->base */
1900 ret = bdrv_change_backing_file(new_top_bs, base_bs->filename,
1901 base_bs->drv ? base_bs->drv->format_name : "");
1902 if (ret) {
1903 goto exit;
1904 }
1905 new_top_bs->backing_hd = base_bs;
1906
1907
1908 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1909 /* so that bdrv_close() does not recursively close the chain */
1910 intermediate_state->bs->backing_hd = NULL;
1911 bdrv_delete(intermediate_state->bs);
1912 }
1913 ret = 0;
1914
1915 exit:
1916 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1917 g_free(intermediate_state);
1918 }
1919 return ret;
1920 }
1921
1922
1923 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1924 size_t size)
1925 {
1926 int64_t len;
1927
1928 if (!bdrv_is_inserted(bs))
1929 return -ENOMEDIUM;
1930
1931 if (bs->growable)
1932 return 0;
1933
1934 len = bdrv_getlength(bs);
1935
1936 if (offset < 0)
1937 return -EIO;
1938
1939 if ((offset > len) || (len - offset < size))
1940 return -EIO;
1941
1942 return 0;
1943 }
1944
1945 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1946 int nb_sectors)
1947 {
1948 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1949 nb_sectors * BDRV_SECTOR_SIZE);
1950 }
1951
1952 typedef struct RwCo {
1953 BlockDriverState *bs;
1954 int64_t sector_num;
1955 int nb_sectors;
1956 QEMUIOVector *qiov;
1957 bool is_write;
1958 int ret;
1959 } RwCo;
1960
1961 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1962 {
1963 RwCo *rwco = opaque;
1964
1965 if (!rwco->is_write) {
1966 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1967 rwco->nb_sectors, rwco->qiov, 0);
1968 } else {
1969 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1970 rwco->nb_sectors, rwco->qiov, 0);
1971 }
1972 }
1973
1974 /*
1975 * Process a synchronous request using coroutines
1976 */
1977 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1978 int nb_sectors, bool is_write)
1979 {
1980 QEMUIOVector qiov;
1981 struct iovec iov = {
1982 .iov_base = (void *)buf,
1983 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1984 };
1985 Coroutine *co;
1986 RwCo rwco = {
1987 .bs = bs,
1988 .sector_num = sector_num,
1989 .nb_sectors = nb_sectors,
1990 .qiov = &qiov,
1991 .is_write = is_write,
1992 .ret = NOT_DONE,
1993 };
1994
1995 qemu_iovec_init_external(&qiov, &iov, 1);
1996
1997 /**
1998 * In sync call context, when the vcpu is blocked, this throttling timer
1999 * will not fire; so the I/O throttling function has to be disabled here
2000 * if it has been enabled.
2001 */
2002 if (bs->io_limits_enabled) {
2003 fprintf(stderr, "Disabling I/O throttling on '%s' due "
2004 "to synchronous I/O.\n", bdrv_get_device_name(bs));
2005 bdrv_io_limits_disable(bs);
2006 }
2007
2008 if (qemu_in_coroutine()) {
2009 /* Fast-path if already in coroutine context */
2010 bdrv_rw_co_entry(&rwco);
2011 } else {
2012 co = qemu_coroutine_create(bdrv_rw_co_entry);
2013 qemu_coroutine_enter(co, &rwco);
2014 while (rwco.ret == NOT_DONE) {
2015 qemu_aio_wait();
2016 }
2017 }
2018 return rwco.ret;
2019 }
2020
2021 /* return < 0 if error. See bdrv_write() for the return codes */
2022 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
2023 uint8_t *buf, int nb_sectors)
2024 {
2025 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
2026 }
2027
2028 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
2029 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
2030 uint8_t *buf, int nb_sectors)
2031 {
2032 bool enabled;
2033 int ret;
2034
2035 enabled = bs->io_limits_enabled;
2036 bs->io_limits_enabled = false;
2037 ret = bdrv_read(bs, 0, buf, 1);
2038 bs->io_limits_enabled = enabled;
2039 return ret;
2040 }
2041
2042 #define BITS_PER_LONG (sizeof(unsigned long) * 8)
2043
2044 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num,
2045 int nb_sectors, int dirty)
2046 {
2047 int64_t start, end;
2048 unsigned long val, idx, bit;
2049
2050 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK;
2051 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK;
2052
2053 for (; start <= end; start++) {
2054 idx = start / BITS_PER_LONG;
2055 bit = start % BITS_PER_LONG;
2056 val = bs->dirty_bitmap[idx];
2057 if (dirty) {
2058 if (!(val & (1UL << bit))) {
2059 bs->dirty_count++;
2060 val |= 1UL << bit;
2061 }
2062 } else {
2063 if (val & (1UL << bit)) {
2064 bs->dirty_count--;
2065 val &= ~(1UL << bit);
2066 }
2067 }
2068 bs->dirty_bitmap[idx] = val;
2069 }
2070 }
2071
2072 /* Return < 0 if error. Important errors are:
2073 -EIO generic I/O error (may happen for all errors)
2074 -ENOMEDIUM No media inserted.
2075 -EINVAL Invalid sector number or nb_sectors
2076 -EACCES Trying to write a read-only device
2077 */
2078 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
2079 const uint8_t *buf, int nb_sectors)
2080 {
2081 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
2082 }
2083
2084 int bdrv_pread(BlockDriverState *bs, int64_t offset,
2085 void *buf, int count1)
2086 {
2087 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2088 int len, nb_sectors, count;
2089 int64_t sector_num;
2090 int ret;
2091
2092 count = count1;
2093 /* first read to align to sector start */
2094 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2095 if (len > count)
2096 len = count;
2097 sector_num = offset >> BDRV_SECTOR_BITS;
2098 if (len > 0) {
2099 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2100 return ret;
2101 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
2102 count -= len;
2103 if (count == 0)
2104 return count1;
2105 sector_num++;
2106 buf += len;
2107 }
2108
2109 /* read the sectors "in place" */
2110 nb_sectors = count >> BDRV_SECTOR_BITS;
2111 if (nb_sectors > 0) {
2112 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
2113 return ret;
2114 sector_num += nb_sectors;
2115 len = nb_sectors << BDRV_SECTOR_BITS;
2116 buf += len;
2117 count -= len;
2118 }
2119
2120 /* add data from the last sector */
2121 if (count > 0) {
2122 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2123 return ret;
2124 memcpy(buf, tmp_buf, count);
2125 }
2126 return count1;
2127 }
2128
2129 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
2130 const void *buf, int count1)
2131 {
2132 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2133 int len, nb_sectors, count;
2134 int64_t sector_num;
2135 int ret;
2136
2137 count = count1;
2138 /* first write to align to sector start */
2139 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2140 if (len > count)
2141 len = count;
2142 sector_num = offset >> BDRV_SECTOR_BITS;
2143 if (len > 0) {
2144 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2145 return ret;
2146 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
2147 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2148 return ret;
2149 count -= len;
2150 if (count == 0)
2151 return count1;
2152 sector_num++;
2153 buf += len;
2154 }
2155
2156 /* write the sectors "in place" */
2157 nb_sectors = count >> BDRV_SECTOR_BITS;
2158 if (nb_sectors > 0) {
2159 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
2160 return ret;
2161 sector_num += nb_sectors;
2162 len = nb_sectors << BDRV_SECTOR_BITS;
2163 buf += len;
2164 count -= len;
2165 }
2166
2167 /* add data from the last sector */
2168 if (count > 0) {
2169 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2170 return ret;
2171 memcpy(tmp_buf, buf, count);
2172 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2173 return ret;
2174 }
2175 return count1;
2176 }
2177
2178 /*
2179 * Writes to the file and ensures that no writes are reordered across this
2180 * request (acts as a barrier)
2181 *
2182 * Returns 0 on success, -errno in error cases.
2183 */
2184 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
2185 const void *buf, int count)
2186 {
2187 int ret;
2188
2189 ret = bdrv_pwrite(bs, offset, buf, count);
2190 if (ret < 0) {
2191 return ret;
2192 }
2193
2194 /* No flush needed for cache modes that already do it */
2195 if (bs->enable_write_cache) {
2196 bdrv_flush(bs);
2197 }
2198
2199 return 0;
2200 }
2201
2202 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
2203 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2204 {
2205 /* Perform I/O through a temporary buffer so that users who scribble over
2206 * their read buffer while the operation is in progress do not end up
2207 * modifying the image file. This is critical for zero-copy guest I/O
2208 * where anything might happen inside guest memory.
2209 */
2210 void *bounce_buffer;
2211
2212 BlockDriver *drv = bs->drv;
2213 struct iovec iov;
2214 QEMUIOVector bounce_qiov;
2215 int64_t cluster_sector_num;
2216 int cluster_nb_sectors;
2217 size_t skip_bytes;
2218 int ret;
2219
2220 /* Cover entire cluster so no additional backing file I/O is required when
2221 * allocating cluster in the image file.
2222 */
2223 round_to_clusters(bs, sector_num, nb_sectors,
2224 &cluster_sector_num, &cluster_nb_sectors);
2225
2226 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
2227 cluster_sector_num, cluster_nb_sectors);
2228
2229 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
2230 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
2231 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
2232
2233 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
2234 &bounce_qiov);
2235 if (ret < 0) {
2236 goto err;
2237 }
2238
2239 if (drv->bdrv_co_write_zeroes &&
2240 buffer_is_zero(bounce_buffer, iov.iov_len)) {
2241 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
2242 cluster_nb_sectors);
2243 } else {
2244 /* This does not change the data on the disk, it is not necessary
2245 * to flush even in cache=writethrough mode.
2246 */
2247 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
2248 &bounce_qiov);
2249 }
2250
2251 if (ret < 0) {
2252 /* It might be okay to ignore write errors for guest requests. If this
2253 * is a deliberate copy-on-read then we don't want to ignore the error.
2254 * Simply report it in all cases.
2255 */
2256 goto err;
2257 }
2258
2259 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
2260 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
2261 nb_sectors * BDRV_SECTOR_SIZE);
2262
2263 err:
2264 qemu_vfree(bounce_buffer);
2265 return ret;
2266 }
2267
2268 /*
2269 * Handle a read request in coroutine context
2270 */
2271 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
2272 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2273 BdrvRequestFlags flags)
2274 {
2275 BlockDriver *drv = bs->drv;
2276 BdrvTrackedRequest req;
2277 int ret;
2278
2279 if (!drv) {
2280 return -ENOMEDIUM;
2281 }
2282 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2283 return -EIO;
2284 }
2285
2286 /* throttling disk read I/O */
2287 if (bs->io_limits_enabled) {
2288 bdrv_io_limits_intercept(bs, false, nb_sectors);
2289 }
2290
2291 if (bs->copy_on_read) {
2292 flags |= BDRV_REQ_COPY_ON_READ;
2293 }
2294 if (flags & BDRV_REQ_COPY_ON_READ) {
2295 bs->copy_on_read_in_flight++;
2296 }
2297
2298 if (bs->copy_on_read_in_flight) {
2299 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2300 }
2301
2302 tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
2303
2304 if (flags & BDRV_REQ_COPY_ON_READ) {
2305 int pnum;
2306
2307 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
2308 if (ret < 0) {
2309 goto out;
2310 }
2311
2312 if (!ret || pnum != nb_sectors) {
2313 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
2314 goto out;
2315 }
2316 }
2317
2318 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
2319
2320 out:
2321 tracked_request_end(&req);
2322
2323 if (flags & BDRV_REQ_COPY_ON_READ) {
2324 bs->copy_on_read_in_flight--;
2325 }
2326
2327 return ret;
2328 }
2329
2330 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
2331 int nb_sectors, QEMUIOVector *qiov)
2332 {
2333 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
2334
2335 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
2336 }
2337
2338 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
2339 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2340 {
2341 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
2342
2343 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
2344 BDRV_REQ_COPY_ON_READ);
2345 }
2346
2347 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
2348 int64_t sector_num, int nb_sectors)
2349 {
2350 BlockDriver *drv = bs->drv;
2351 QEMUIOVector qiov;
2352 struct iovec iov;
2353 int ret;
2354
2355 /* TODO Emulate only part of misaligned requests instead of letting block
2356 * drivers return -ENOTSUP and emulate everything */
2357
2358 /* First try the efficient write zeroes operation */
2359 if (drv->bdrv_co_write_zeroes) {
2360 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2361 if (ret != -ENOTSUP) {
2362 return ret;
2363 }
2364 }
2365
2366 /* Fall back to bounce buffer if write zeroes is unsupported */
2367 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE;
2368 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
2369 memset(iov.iov_base, 0, iov.iov_len);
2370 qemu_iovec_init_external(&qiov, &iov, 1);
2371
2372 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
2373
2374 qemu_vfree(iov.iov_base);
2375 return ret;
2376 }
2377
2378 /*
2379 * Handle a write request in coroutine context
2380 */
2381 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
2382 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2383 BdrvRequestFlags flags)
2384 {
2385 BlockDriver *drv = bs->drv;
2386 BdrvTrackedRequest req;
2387 int ret;
2388
2389 if (!bs->drv) {
2390 return -ENOMEDIUM;
2391 }
2392 if (bs->read_only) {
2393 return -EACCES;
2394 }
2395 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2396 return -EIO;
2397 }
2398
2399 /* throttling disk write I/O */
2400 if (bs->io_limits_enabled) {
2401 bdrv_io_limits_intercept(bs, true, nb_sectors);
2402 }
2403
2404 if (bs->copy_on_read_in_flight) {
2405 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2406 }
2407
2408 tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
2409
2410 if (flags & BDRV_REQ_ZERO_WRITE) {
2411 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
2412 } else {
2413 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
2414 }
2415
2416 if (ret == 0 && !bs->enable_write_cache) {
2417 ret = bdrv_co_flush(bs);
2418 }
2419
2420 if (bs->dirty_bitmap) {
2421 bdrv_set_dirty(bs, sector_num, nb_sectors);
2422 }
2423
2424 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
2425 bs->wr_highest_sector = sector_num + nb_sectors - 1;
2426 }
2427
2428 tracked_request_end(&req);
2429
2430 return ret;
2431 }
2432
2433 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
2434 int nb_sectors, QEMUIOVector *qiov)
2435 {
2436 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
2437
2438 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
2439 }
2440
2441 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
2442 int64_t sector_num, int nb_sectors)
2443 {
2444 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2445
2446 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
2447 BDRV_REQ_ZERO_WRITE);
2448 }
2449
2450 /**
2451 * Truncate file to 'offset' bytes (needed only for file protocols)
2452 */
2453 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
2454 {
2455 BlockDriver *drv = bs->drv;
2456 int ret;
2457 if (!drv)
2458 return -ENOMEDIUM;
2459 if (!drv->bdrv_truncate)
2460 return -ENOTSUP;
2461 if (bs->read_only)
2462 return -EACCES;
2463 if (bdrv_in_use(bs))
2464 return -EBUSY;
2465 ret = drv->bdrv_truncate(bs, offset);
2466 if (ret == 0) {
2467 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
2468 bdrv_dev_resize_cb(bs);
2469 }
2470 return ret;
2471 }
2472
2473 /**
2474 * Length of a allocated file in bytes. Sparse files are counted by actual
2475 * allocated space. Return < 0 if error or unknown.
2476 */
2477 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
2478 {
2479 BlockDriver *drv = bs->drv;
2480 if (!drv) {
2481 return -ENOMEDIUM;
2482 }
2483 if (drv->bdrv_get_allocated_file_size) {
2484 return drv->bdrv_get_allocated_file_size(bs);
2485 }
2486 if (bs->file) {
2487 return bdrv_get_allocated_file_size(bs->file);
2488 }
2489 return -ENOTSUP;
2490 }
2491
2492 /**
2493 * Length of a file in bytes. Return < 0 if error or unknown.
2494 */
2495 int64_t bdrv_getlength(BlockDriverState *bs)
2496 {
2497 BlockDriver *drv = bs->drv;
2498 if (!drv)
2499 return -ENOMEDIUM;
2500
2501 if (bs->growable || bdrv_dev_has_removable_media(bs)) {
2502 if (drv->bdrv_getlength) {
2503 return drv->bdrv_getlength(bs);
2504 }
2505 }
2506 return bs->total_sectors * BDRV_SECTOR_SIZE;
2507 }
2508
2509 /* return 0 as number of sectors if no device present or error */
2510 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
2511 {
2512 int64_t length;
2513 length = bdrv_getlength(bs);
2514 if (length < 0)
2515 length = 0;
2516 else
2517 length = length >> BDRV_SECTOR_BITS;
2518 *nb_sectors_ptr = length;
2519 }
2520
2521 /* throttling disk io limits */
2522 void bdrv_set_io_limits(BlockDriverState *bs,
2523 BlockIOLimit *io_limits)
2524 {
2525 bs->io_limits = *io_limits;
2526 bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2527 }
2528
2529 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error,
2530 BlockdevOnError on_write_error)
2531 {
2532 bs->on_read_error = on_read_error;
2533 bs->on_write_error = on_write_error;
2534 }
2535
2536 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read)
2537 {
2538 return is_read ? bs->on_read_error : bs->on_write_error;
2539 }
2540
2541 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error)
2542 {
2543 BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error;
2544
2545 switch (on_err) {
2546 case BLOCKDEV_ON_ERROR_ENOSPC:
2547 return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT;
2548 case BLOCKDEV_ON_ERROR_STOP:
2549 return BDRV_ACTION_STOP;
2550 case BLOCKDEV_ON_ERROR_REPORT:
2551 return BDRV_ACTION_REPORT;
2552 case BLOCKDEV_ON_ERROR_IGNORE:
2553 return BDRV_ACTION_IGNORE;
2554 default:
2555 abort();
2556 }
2557 }
2558
2559 /* This is done by device models because, while the block layer knows
2560 * about the error, it does not know whether an operation comes from
2561 * the device or the block layer (from a job, for example).
2562 */
2563 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action,
2564 bool is_read, int error)
2565 {
2566 assert(error >= 0);
2567 bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read);
2568 if (action == BDRV_ACTION_STOP) {
2569 vm_stop(RUN_STATE_IO_ERROR);
2570 bdrv_iostatus_set_err(bs, error);
2571 }
2572 }
2573
2574 int bdrv_is_read_only(BlockDriverState *bs)
2575 {
2576 return bs->read_only;
2577 }
2578
2579 int bdrv_is_sg(BlockDriverState *bs)
2580 {
2581 return bs->sg;
2582 }
2583
2584 int bdrv_enable_write_cache(BlockDriverState *bs)
2585 {
2586 return bs->enable_write_cache;
2587 }
2588
2589 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce)
2590 {
2591 bs->enable_write_cache = wce;
2592
2593 /* so a reopen() will preserve wce */
2594 if (wce) {
2595 bs->open_flags |= BDRV_O_CACHE_WB;
2596 } else {
2597 bs->open_flags &= ~BDRV_O_CACHE_WB;
2598 }
2599 }
2600
2601 int bdrv_is_encrypted(BlockDriverState *bs)
2602 {
2603 if (bs->backing_hd && bs->backing_hd->encrypted)
2604 return 1;
2605 return bs->encrypted;
2606 }
2607
2608 int bdrv_key_required(BlockDriverState *bs)
2609 {
2610 BlockDriverState *backing_hd = bs->backing_hd;
2611
2612 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2613 return 1;
2614 return (bs->encrypted && !bs->valid_key);
2615 }
2616
2617 int bdrv_set_key(BlockDriverState *bs, const char *key)
2618 {
2619 int ret;
2620 if (bs->backing_hd && bs->backing_hd->encrypted) {
2621 ret = bdrv_set_key(bs->backing_hd, key);
2622 if (ret < 0)
2623 return ret;
2624 if (!bs->encrypted)
2625 return 0;
2626 }
2627 if (!bs->encrypted) {
2628 return -EINVAL;
2629 } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2630 return -ENOMEDIUM;
2631 }
2632 ret = bs->drv->bdrv_set_key(bs, key);
2633 if (ret < 0) {
2634 bs->valid_key = 0;
2635 } else if (!bs->valid_key) {
2636 bs->valid_key = 1;
2637 /* call the change callback now, we skipped it on open */
2638 bdrv_dev_change_media_cb(bs, true);
2639 }
2640 return ret;
2641 }
2642
2643 const char *bdrv_get_format_name(BlockDriverState *bs)
2644 {
2645 return bs->drv ? bs->drv->format_name : NULL;
2646 }
2647
2648 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2649 void *opaque)
2650 {
2651 BlockDriver *drv;
2652
2653 QLIST_FOREACH(drv, &bdrv_drivers, list) {
2654 it(opaque, drv->format_name);
2655 }
2656 }
2657
2658 BlockDriverState *bdrv_find(const char *name)
2659 {
2660 BlockDriverState *bs;
2661
2662 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2663 if (!strcmp(name, bs->device_name)) {
2664 return bs;
2665 }
2666 }
2667 return NULL;
2668 }
2669
2670 BlockDriverState *bdrv_next(BlockDriverState *bs)
2671 {
2672 if (!bs) {
2673 return QTAILQ_FIRST(&bdrv_states);
2674 }
2675 return QTAILQ_NEXT(bs, list);
2676 }
2677
2678 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2679 {
2680 BlockDriverState *bs;
2681
2682 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2683 it(opaque, bs);
2684 }
2685 }
2686
2687 const char *bdrv_get_device_name(BlockDriverState *bs)
2688 {
2689 return bs->device_name;
2690 }
2691
2692 int bdrv_get_flags(BlockDriverState *bs)
2693 {
2694 return bs->open_flags;
2695 }
2696
2697 void bdrv_flush_all(void)
2698 {
2699 BlockDriverState *bs;
2700
2701 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2702 bdrv_flush(bs);
2703 }
2704 }
2705
2706 int bdrv_has_zero_init(BlockDriverState *bs)
2707 {
2708 assert(bs->drv);
2709
2710 if (bs->drv->bdrv_has_zero_init) {
2711 return bs->drv->bdrv_has_zero_init(bs);
2712 }
2713
2714 return 1;
2715 }
2716
2717 typedef struct BdrvCoIsAllocatedData {
2718 BlockDriverState *bs;
2719 int64_t sector_num;
2720 int nb_sectors;
2721 int *pnum;
2722 int ret;
2723 bool done;
2724 } BdrvCoIsAllocatedData;
2725
2726 /*
2727 * Returns true iff the specified sector is present in the disk image. Drivers
2728 * not implementing the functionality are assumed to not support backing files,
2729 * hence all their sectors are reported as allocated.
2730 *
2731 * If 'sector_num' is beyond the end of the disk image the return value is 0
2732 * and 'pnum' is set to 0.
2733 *
2734 * 'pnum' is set to the number of sectors (including and immediately following
2735 * the specified sector) that are known to be in the same
2736 * allocated/unallocated state.
2737 *
2738 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
2739 * beyond the end of the disk image it will be clamped.
2740 */
2741 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2742 int nb_sectors, int *pnum)
2743 {
2744 int64_t n;
2745
2746 if (sector_num >= bs->total_sectors) {
2747 *pnum = 0;
2748 return 0;
2749 }
2750
2751 n = bs->total_sectors - sector_num;
2752 if (n < nb_sectors) {
2753 nb_sectors = n;
2754 }
2755
2756 if (!bs->drv->bdrv_co_is_allocated) {
2757 *pnum = nb_sectors;
2758 return 1;
2759 }
2760
2761 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2762 }
2763
2764 /* Coroutine wrapper for bdrv_is_allocated() */
2765 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2766 {
2767 BdrvCoIsAllocatedData *data = opaque;
2768 BlockDriverState *bs = data->bs;
2769
2770 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2771 data->pnum);
2772 data->done = true;
2773 }
2774
2775 /*
2776 * Synchronous wrapper around bdrv_co_is_allocated().
2777 *
2778 * See bdrv_co_is_allocated() for details.
2779 */
2780 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2781 int *pnum)
2782 {
2783 Coroutine *co;
2784 BdrvCoIsAllocatedData data = {
2785 .bs = bs,
2786 .sector_num = sector_num,
2787 .nb_sectors = nb_sectors,
2788 .pnum = pnum,
2789 .done = false,
2790 };
2791
2792 co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2793 qemu_coroutine_enter(co, &data);
2794 while (!data.done) {
2795 qemu_aio_wait();
2796 }
2797 return data.ret;
2798 }
2799
2800 /*
2801 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2802 *
2803 * Return true if the given sector is allocated in any image between
2804 * BASE and TOP (inclusive). BASE can be NULL to check if the given
2805 * sector is allocated in any image of the chain. Return false otherwise.
2806 *
2807 * 'pnum' is set to the number of sectors (including and immediately following
2808 * the specified sector) that are known to be in the same
2809 * allocated/unallocated state.
2810 *
2811 */
2812 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2813 BlockDriverState *base,
2814 int64_t sector_num,
2815 int nb_sectors, int *pnum)
2816 {
2817 BlockDriverState *intermediate;
2818 int ret, n = nb_sectors;
2819
2820 intermediate = top;
2821 while (intermediate && intermediate != base) {
2822 int pnum_inter;
2823 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors,
2824 &pnum_inter);
2825 if (ret < 0) {
2826 return ret;
2827 } else if (ret) {
2828 *pnum = pnum_inter;
2829 return 1;
2830 }
2831
2832 /*
2833 * [sector_num, nb_sectors] is unallocated on top but intermediate
2834 * might have
2835 *
2836 * [sector_num+x, nr_sectors] allocated.
2837 */
2838 if (n > pnum_inter) {
2839 n = pnum_inter;
2840 }
2841
2842 intermediate = intermediate->backing_hd;
2843 }
2844
2845 *pnum = n;
2846 return 0;
2847 }
2848
2849 BlockInfo *bdrv_query_info(BlockDriverState *bs)
2850 {
2851 BlockInfo *info = g_malloc0(sizeof(*info));
2852 info->device = g_strdup(bs->device_name);
2853 info->type = g_strdup("unknown");
2854 info->locked = bdrv_dev_is_medium_locked(bs);
2855 info->removable = bdrv_dev_has_removable_media(bs);
2856
2857 if (bdrv_dev_has_removable_media(bs)) {
2858 info->has_tray_open = true;
2859 info->tray_open = bdrv_dev_is_tray_open(bs);
2860 }
2861
2862 if (bdrv_iostatus_is_enabled(bs)) {
2863 info->has_io_status = true;
2864 info->io_status = bs->iostatus;
2865 }
2866
2867 if (bs->dirty_bitmap) {
2868 info->has_dirty = true;
2869 info->dirty = g_malloc0(sizeof(*info->dirty));
2870 info->dirty->count = bdrv_get_dirty_count(bs) *
2871 BDRV_SECTORS_PER_DIRTY_CHUNK * BDRV_SECTOR_SIZE;
2872 }
2873
2874 if (bs->drv) {
2875 info->has_inserted = true;
2876 info->inserted = g_malloc0(sizeof(*info->inserted));
2877 info->inserted->file = g_strdup(bs->filename);
2878 info->inserted->ro = bs->read_only;
2879 info->inserted->drv = g_strdup(bs->drv->format_name);
2880 info->inserted->encrypted = bs->encrypted;
2881 info->inserted->encryption_key_missing = bdrv_key_required(bs);
2882
2883 if (bs->backing_file[0]) {
2884 info->inserted->has_backing_file = true;
2885 info->inserted->backing_file = g_strdup(bs->backing_file);
2886 }
2887
2888 info->inserted->backing_file_depth = bdrv_get_backing_file_depth(bs);
2889
2890 if (bs->io_limits_enabled) {
2891 info->inserted->bps =
2892 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2893 info->inserted->bps_rd =
2894 bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2895 info->inserted->bps_wr =
2896 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2897 info->inserted->iops =
2898 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2899 info->inserted->iops_rd =
2900 bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2901 info->inserted->iops_wr =
2902 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2903 }
2904 }
2905 return info;
2906 }
2907
2908 BlockInfoList *qmp_query_block(Error **errp)
2909 {
2910 BlockInfoList *head = NULL, **p_next = &head;
2911 BlockDriverState *bs;
2912
2913 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2914 BlockInfoList *info = g_malloc0(sizeof(*info));
2915 info->value = bdrv_query_info(bs);
2916
2917 *p_next = info;
2918 p_next = &info->next;
2919 }
2920
2921 return head;
2922 }
2923
2924 BlockStats *bdrv_query_stats(const BlockDriverState *bs)
2925 {
2926 BlockStats *s;
2927
2928 s = g_malloc0(sizeof(*s));
2929
2930 if (bs->device_name[0]) {
2931 s->has_device = true;
2932 s->device = g_strdup(bs->device_name);
2933 }
2934
2935 s->stats = g_malloc0(sizeof(*s->stats));
2936 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2937 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2938 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2939 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2940 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2941 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2942 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2943 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2944 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2945
2946 if (bs->file) {
2947 s->has_parent = true;
2948 s->parent = bdrv_query_stats(bs->file);
2949 }
2950
2951 return s;
2952 }
2953
2954 BlockStatsList *qmp_query_blockstats(Error **errp)
2955 {
2956 BlockStatsList *head = NULL, **p_next = &head;
2957 BlockDriverState *bs;
2958
2959 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2960 BlockStatsList *info = g_malloc0(sizeof(*info));
2961 info->value = bdrv_query_stats(bs);
2962
2963 *p_next = info;
2964 p_next = &info->next;
2965 }
2966
2967 return head;
2968 }
2969
2970 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
2971 {
2972 if (bs->backing_hd && bs->backing_hd->encrypted)
2973 return bs->backing_file;
2974 else if (bs->encrypted)
2975 return bs->filename;
2976 else
2977 return NULL;
2978 }
2979
2980 void bdrv_get_backing_filename(BlockDriverState *bs,
2981 char *filename, int filename_size)
2982 {
2983 pstrcpy(filename, filename_size, bs->backing_file);
2984 }
2985
2986 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
2987 const uint8_t *buf, int nb_sectors)
2988 {
2989 BlockDriver *drv = bs->drv;
2990 if (!drv)
2991 return -ENOMEDIUM;
2992 if (!drv->bdrv_write_compressed)
2993 return -ENOTSUP;
2994 if (bdrv_check_request(bs, sector_num, nb_sectors))
2995 return -EIO;
2996
2997 assert(!bs->dirty_bitmap);
2998
2999 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
3000 }
3001
3002 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
3003 {
3004 BlockDriver *drv = bs->drv;
3005 if (!drv)
3006 return -ENOMEDIUM;
3007 if (!drv->bdrv_get_info)
3008 return -ENOTSUP;
3009 memset(bdi, 0, sizeof(*bdi));
3010 return drv->bdrv_get_info(bs, bdi);
3011 }
3012
3013 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
3014 int64_t pos, int size)
3015 {
3016 BlockDriver *drv = bs->drv;
3017 if (!drv)
3018 return -ENOMEDIUM;
3019 if (drv->bdrv_save_vmstate)
3020 return drv->bdrv_save_vmstate(bs, buf, pos, size);
3021 if (bs->file)
3022 return bdrv_save_vmstate(bs->file, buf, pos, size);
3023 return -ENOTSUP;
3024 }
3025
3026 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
3027 int64_t pos, int size)
3028 {
3029 BlockDriver *drv = bs->drv;
3030 if (!drv)
3031 return -ENOMEDIUM;
3032 if (drv->bdrv_load_vmstate)
3033 return drv->bdrv_load_vmstate(bs, buf, pos, size);
3034 if (bs->file)
3035 return bdrv_load_vmstate(bs->file, buf, pos, size);
3036 return -ENOTSUP;
3037 }
3038
3039 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
3040 {
3041 BlockDriver *drv = bs->drv;
3042
3043 if (!drv || !drv->bdrv_debug_event) {
3044 return;
3045 }
3046
3047 drv->bdrv_debug_event(bs, event);
3048
3049 }
3050
3051 /**************************************************************/
3052 /* handling of snapshots */
3053
3054 int bdrv_can_snapshot(BlockDriverState *bs)
3055 {
3056 BlockDriver *drv = bs->drv;
3057 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3058 return 0;
3059 }
3060
3061 if (!drv->bdrv_snapshot_create) {
3062 if (bs->file != NULL) {
3063 return bdrv_can_snapshot(bs->file);
3064 }
3065 return 0;
3066 }
3067
3068 return 1;
3069 }
3070
3071 int bdrv_is_snapshot(BlockDriverState *bs)
3072 {
3073 return !!(bs->open_flags & BDRV_O_SNAPSHOT);
3074 }
3075
3076 BlockDriverState *bdrv_snapshots(void)
3077 {
3078 BlockDriverState *bs;
3079
3080 if (bs_snapshots) {
3081 return bs_snapshots;
3082 }
3083
3084 bs = NULL;
3085 while ((bs = bdrv_next(bs))) {
3086 if (bdrv_can_snapshot(bs)) {
3087 bs_snapshots = bs;
3088 return bs;
3089 }
3090 }
3091 return NULL;
3092 }
3093
3094 int bdrv_snapshot_create(BlockDriverState *bs,
3095 QEMUSnapshotInfo *sn_info)
3096 {
3097 BlockDriver *drv = bs->drv;
3098 if (!drv)
3099 return -ENOMEDIUM;
3100 if (drv->bdrv_snapshot_create)
3101 return drv->bdrv_snapshot_create(bs, sn_info);
3102 if (bs->file)
3103 return bdrv_snapshot_create(bs->file, sn_info);
3104 return -ENOTSUP;
3105 }
3106
3107 int bdrv_snapshot_goto(BlockDriverState *bs,
3108 const char *snapshot_id)
3109 {
3110 BlockDriver *drv = bs->drv;
3111 int ret, open_ret;
3112
3113 if (!drv)
3114 return -ENOMEDIUM;
3115 if (drv->bdrv_snapshot_goto)
3116 return drv->bdrv_snapshot_goto(bs, snapshot_id);
3117
3118 if (bs->file) {
3119 drv->bdrv_close(bs);
3120 ret = bdrv_snapshot_goto(bs->file, snapshot_id);
3121 open_ret = drv->bdrv_open(bs, bs->open_flags);
3122 if (open_ret < 0) {
3123 bdrv_delete(bs->file);
3124 bs->drv = NULL;
3125 return open_ret;
3126 }
3127 return ret;
3128 }
3129
3130 return -ENOTSUP;
3131 }
3132
3133 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
3134 {
3135 BlockDriver *drv = bs->drv;
3136 if (!drv)
3137 return -ENOMEDIUM;
3138 if (drv->bdrv_snapshot_delete)
3139 return drv->bdrv_snapshot_delete(bs, snapshot_id);
3140 if (bs->file)
3141 return bdrv_snapshot_delete(bs->file, snapshot_id);
3142 return -ENOTSUP;
3143 }
3144
3145 int bdrv_snapshot_list(BlockDriverState *bs,
3146 QEMUSnapshotInfo **psn_info)
3147 {
3148 BlockDriver *drv = bs->drv;
3149 if (!drv)
3150 return -ENOMEDIUM;
3151 if (drv->bdrv_snapshot_list)
3152 return drv->bdrv_snapshot_list(bs, psn_info);
3153 if (bs->file)
3154 return bdrv_snapshot_list(bs->file, psn_info);
3155 return -ENOTSUP;
3156 }
3157
3158 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
3159 const char *snapshot_name)
3160 {
3161 BlockDriver *drv = bs->drv;
3162 if (!drv) {
3163 return -ENOMEDIUM;
3164 }
3165 if (!bs->read_only) {
3166 return -EINVAL;
3167 }
3168 if (drv->bdrv_snapshot_load_tmp) {
3169 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
3170 }
3171 return -ENOTSUP;
3172 }
3173
3174 /* backing_file can either be relative, or absolute, or a protocol. If it is
3175 * relative, it must be relative to the chain. So, passing in bs->filename
3176 * from a BDS as backing_file should not be done, as that may be relative to
3177 * the CWD rather than the chain. */
3178 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
3179 const char *backing_file)
3180 {
3181 char *filename_full = NULL;
3182 char *backing_file_full = NULL;
3183 char *filename_tmp = NULL;
3184 int is_protocol = 0;
3185 BlockDriverState *curr_bs = NULL;
3186 BlockDriverState *retval = NULL;
3187
3188 if (!bs || !bs->drv || !backing_file) {
3189 return NULL;
3190 }
3191
3192 filename_full = g_malloc(PATH_MAX);
3193 backing_file_full = g_malloc(PATH_MAX);
3194 filename_tmp = g_malloc(PATH_MAX);
3195
3196 is_protocol = path_has_protocol(backing_file);
3197
3198 for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) {
3199
3200 /* If either of the filename paths is actually a protocol, then
3201 * compare unmodified paths; otherwise make paths relative */
3202 if (is_protocol || path_has_protocol(curr_bs->backing_file)) {
3203 if (strcmp(backing_file, curr_bs->backing_file) == 0) {
3204 retval = curr_bs->backing_hd;
3205 break;
3206 }
3207 } else {
3208 /* If not an absolute filename path, make it relative to the current
3209 * image's filename path */
3210 path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3211 backing_file);
3212
3213 /* We are going to compare absolute pathnames */
3214 if (!realpath(filename_tmp, filename_full)) {
3215 continue;
3216 }
3217
3218 /* We need to make sure the backing filename we are comparing against
3219 * is relative to the current image filename (or absolute) */
3220 path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3221 curr_bs->backing_file);
3222
3223 if (!realpath(filename_tmp, backing_file_full)) {
3224 continue;
3225 }
3226
3227 if (strcmp(backing_file_full, filename_full) == 0) {
3228 retval = curr_bs->backing_hd;
3229 break;
3230 }
3231 }
3232 }
3233
3234 g_free(filename_full);
3235 g_free(backing_file_full);
3236 g_free(filename_tmp);
3237 return retval;
3238 }
3239
3240 int bdrv_get_backing_file_depth(BlockDriverState *bs)
3241 {
3242 if (!bs->drv) {
3243 return 0;
3244 }
3245
3246 if (!bs->backing_hd) {
3247 return 0;
3248 }
3249
3250 return 1 + bdrv_get_backing_file_depth(bs->backing_hd);
3251 }
3252
3253 BlockDriverState *bdrv_find_base(BlockDriverState *bs)
3254 {
3255 BlockDriverState *curr_bs = NULL;
3256
3257 if (!bs) {
3258 return NULL;
3259 }
3260
3261 curr_bs = bs;
3262
3263 while (curr_bs->backing_hd) {
3264 curr_bs = curr_bs->backing_hd;
3265 }
3266 return curr_bs;
3267 }
3268
3269 #define NB_SUFFIXES 4
3270
3271 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
3272 {
3273 static const char suffixes[NB_SUFFIXES] = "KMGT";
3274 int64_t base;
3275 int i;
3276
3277 if (size <= 999) {
3278 snprintf(buf, buf_size, "%" PRId64, size);
3279 } else {
3280 base = 1024;
3281 for(i = 0; i < NB_SUFFIXES; i++) {
3282 if (size < (10 * base)) {
3283 snprintf(buf, buf_size, "%0.1f%c",
3284 (double)size / base,
3285 suffixes[i]);
3286 break;
3287 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
3288 snprintf(buf, buf_size, "%" PRId64 "%c",
3289 ((size + (base >> 1)) / base),
3290 suffixes[i]);
3291 break;
3292 }
3293 base = base * 1024;
3294 }
3295 }
3296 return buf;
3297 }
3298
3299 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
3300 {
3301 char buf1[128], date_buf[128], clock_buf[128];
3302 #ifdef _WIN32
3303 struct tm *ptm;
3304 #else
3305 struct tm tm;
3306 #endif
3307 time_t ti;
3308 int64_t secs;
3309
3310 if (!sn) {
3311 snprintf(buf, buf_size,
3312 "%-10s%-20s%7s%20s%15s",
3313 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
3314 } else {
3315 ti = sn->date_sec;
3316 #ifdef _WIN32
3317 ptm = localtime(&ti);
3318 strftime(date_buf, sizeof(date_buf),
3319 "%Y-%m-%d %H:%M:%S", ptm);
3320 #else
3321 localtime_r(&ti, &tm);
3322 strftime(date_buf, sizeof(date_buf),
3323 "%Y-%m-%d %H:%M:%S", &tm);
3324 #endif
3325 secs = sn->vm_clock_nsec / 1000000000;
3326 snprintf(clock_buf, sizeof(clock_buf),
3327 "%02d:%02d:%02d.%03d",
3328 (int)(secs / 3600),
3329 (int)((secs / 60) % 60),
3330 (int)(secs % 60),
3331 (int)((sn->vm_clock_nsec / 1000000) % 1000));
3332 snprintf(buf, buf_size,
3333 "%-10s%-20s%7s%20s%15s",
3334 sn->id_str, sn->name,
3335 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
3336 date_buf,
3337 clock_buf);
3338 }
3339 return buf;
3340 }
3341
3342 /**************************************************************/
3343 /* async I/Os */
3344
3345 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
3346 QEMUIOVector *qiov, int nb_sectors,
3347 BlockDriverCompletionFunc *cb, void *opaque)
3348 {
3349 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
3350
3351 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3352 cb, opaque, false);
3353 }
3354
3355 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
3356 QEMUIOVector *qiov, int nb_sectors,
3357 BlockDriverCompletionFunc *cb, void *opaque)
3358 {
3359 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
3360
3361 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3362 cb, opaque, true);
3363 }
3364
3365
3366 typedef struct MultiwriteCB {
3367 int error;
3368 int num_requests;
3369 int num_callbacks;
3370 struct {
3371 BlockDriverCompletionFunc *cb;
3372 void *opaque;
3373 QEMUIOVector *free_qiov;
3374 } callbacks[];
3375 } MultiwriteCB;
3376
3377 static void multiwrite_user_cb(MultiwriteCB *mcb)
3378 {
3379 int i;
3380
3381 for (i = 0; i < mcb->num_callbacks; i++) {
3382 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
3383 if (mcb->callbacks[i].free_qiov) {
3384 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
3385 }
3386 g_free(mcb->callbacks[i].free_qiov);
3387 }
3388 }
3389
3390 static void multiwrite_cb(void *opaque, int ret)
3391 {
3392 MultiwriteCB *mcb = opaque;
3393
3394 trace_multiwrite_cb(mcb, ret);
3395
3396 if (ret < 0 && !mcb->error) {
3397 mcb->error = ret;
3398 }
3399
3400 mcb->num_requests--;
3401 if (mcb->num_requests == 0) {
3402 multiwrite_user_cb(mcb);
3403 g_free(mcb);
3404 }
3405 }
3406
3407 static int multiwrite_req_compare(const void *a, const void *b)
3408 {
3409 const BlockRequest *req1 = a, *req2 = b;
3410
3411 /*
3412 * Note that we can't simply subtract req2->sector from req1->sector
3413 * here as that could overflow the return value.
3414 */
3415 if (req1->sector > req2->sector) {
3416 return 1;
3417 } else if (req1->sector < req2->sector) {
3418 return -1;
3419 } else {
3420 return 0;
3421 }
3422 }
3423
3424 /*
3425 * Takes a bunch of requests and tries to merge them. Returns the number of
3426 * requests that remain after merging.
3427 */
3428 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
3429 int num_reqs, MultiwriteCB *mcb)
3430 {
3431 int i, outidx;
3432
3433 // Sort requests by start sector
3434 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
3435
3436 // Check if adjacent requests touch the same clusters. If so, combine them,
3437 // filling up gaps with zero sectors.
3438 outidx = 0;
3439 for (i = 1; i < num_reqs; i++) {
3440 int merge = 0;
3441 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
3442
3443 // Handle exactly sequential writes and overlapping writes.
3444 if (reqs[i].sector <= oldreq_last) {
3445 merge = 1;
3446 }
3447
3448 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
3449 merge = 0;
3450 }
3451
3452 if (merge) {
3453 size_t size;
3454 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
3455 qemu_iovec_init(qiov,
3456 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
3457
3458 // Add the first request to the merged one. If the requests are
3459 // overlapping, drop the last sectors of the first request.
3460 size = (reqs[i].sector - reqs[outidx].sector) << 9;
3461 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
3462
3463 // We should need to add any zeros between the two requests
3464 assert (reqs[i].sector <= oldreq_last);
3465
3466 // Add the second request
3467 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
3468
3469 reqs[outidx].nb_sectors = qiov->size >> 9;
3470 reqs[outidx].qiov = qiov;
3471
3472 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
3473 } else {
3474 outidx++;
3475 reqs[outidx].sector = reqs[i].sector;
3476 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
3477 reqs[outidx].qiov = reqs[i].qiov;
3478 }
3479 }
3480
3481 return outidx + 1;
3482 }
3483
3484 /*
3485 * Submit multiple AIO write requests at once.
3486 *
3487 * On success, the function returns 0 and all requests in the reqs array have
3488 * been submitted. In error case this function returns -1, and any of the
3489 * requests may or may not be submitted yet. In particular, this means that the
3490 * callback will be called for some of the requests, for others it won't. The
3491 * caller must check the error field of the BlockRequest to wait for the right
3492 * callbacks (if error != 0, no callback will be called).
3493 *
3494 * The implementation may modify the contents of the reqs array, e.g. to merge
3495 * requests. However, the fields opaque and error are left unmodified as they
3496 * are used to signal failure for a single request to the caller.
3497 */
3498 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3499 {
3500 MultiwriteCB *mcb;
3501 int i;
3502
3503 /* don't submit writes if we don't have a medium */
3504 if (bs->drv == NULL) {
3505 for (i = 0; i < num_reqs; i++) {
3506 reqs[i].error = -ENOMEDIUM;
3507 }
3508 return -1;
3509 }
3510
3511 if (num_reqs == 0) {
3512 return 0;
3513 }
3514
3515 // Create MultiwriteCB structure
3516 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3517 mcb->num_requests = 0;
3518 mcb->num_callbacks = num_reqs;
3519
3520 for (i = 0; i < num_reqs; i++) {
3521 mcb->callbacks[i].cb = reqs[i].cb;
3522 mcb->callbacks[i].opaque = reqs[i].opaque;
3523 }
3524
3525 // Check for mergable requests
3526 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3527
3528 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3529
3530 /* Run the aio requests. */
3531 mcb->num_requests = num_reqs;
3532 for (i = 0; i < num_reqs; i++) {
3533 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3534 reqs[i].nb_sectors, multiwrite_cb, mcb);
3535 }
3536
3537 return 0;
3538 }
3539
3540 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3541 {
3542 acb->aiocb_info->cancel(acb);
3543 }
3544
3545 /* block I/O throttling */
3546 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3547 bool is_write, double elapsed_time, uint64_t *wait)
3548 {
3549 uint64_t bps_limit = 0;
3550 double bytes_limit, bytes_base, bytes_res;
3551 double slice_time, wait_time;
3552
3553 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3554 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3555 } else if (bs->io_limits.bps[is_write]) {
3556 bps_limit = bs->io_limits.bps[is_write];
3557 } else {
3558 if (wait) {
3559 *wait = 0;
3560 }
3561
3562 return false;
3563 }
3564
3565 slice_time = bs->slice_end - bs->slice_start;
3566 slice_time /= (NANOSECONDS_PER_SECOND);
3567 bytes_limit = bps_limit * slice_time;
3568 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
3569 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3570 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
3571 }
3572
3573 /* bytes_base: the bytes of data which have been read/written; and
3574 * it is obtained from the history statistic info.
3575 * bytes_res: the remaining bytes of data which need to be read/written.
3576 * (bytes_base + bytes_res) / bps_limit: used to calcuate
3577 * the total time for completing reading/writting all data.
3578 */
3579 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3580
3581 if (bytes_base + bytes_res <= bytes_limit) {
3582 if (wait) {
3583 *wait = 0;
3584 }
3585
3586 return false;
3587 }
3588
3589 /* Calc approx time to dispatch */
3590 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3591
3592 /* When the I/O rate at runtime exceeds the limits,
3593 * bs->slice_end need to be extended in order that the current statistic
3594 * info can be kept until the timer fire, so it is increased and tuned
3595 * based on the result of experiment.
3596 */
3597 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3598 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3599 if (wait) {
3600 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3601 }
3602
3603 return true;
3604 }
3605
3606 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3607 double elapsed_time, uint64_t *wait)
3608 {
3609 uint64_t iops_limit = 0;
3610 double ios_limit, ios_base;
3611 double slice_time, wait_time;
3612
3613 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3614 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3615 } else if (bs->io_limits.iops[is_write]) {
3616 iops_limit = bs->io_limits.iops[is_write];
3617 } else {
3618 if (wait) {
3619 *wait = 0;
3620 }
3621
3622 return false;
3623 }
3624
3625 slice_time = bs->slice_end - bs->slice_start;
3626 slice_time /= (NANOSECONDS_PER_SECOND);
3627 ios_limit = iops_limit * slice_time;
3628 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3629 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3630 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3631 }
3632
3633 if (ios_base + 1 <= ios_limit) {
3634 if (wait) {
3635 *wait = 0;
3636 }
3637
3638 return false;
3639 }
3640
3641 /* Calc approx time to dispatch */
3642 wait_time = (ios_base + 1) / iops_limit;
3643 if (wait_time > elapsed_time) {
3644 wait_time = wait_time - elapsed_time;
3645 } else {
3646 wait_time = 0;
3647 }
3648
3649 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3650 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3651 if (wait) {
3652 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3653 }
3654
3655 return true;
3656 }
3657
3658 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3659 bool is_write, int64_t *wait)
3660 {
3661 int64_t now, max_wait;
3662 uint64_t bps_wait = 0, iops_wait = 0;
3663 double elapsed_time;
3664 int bps_ret, iops_ret;
3665
3666 now = qemu_get_clock_ns(vm_clock);
3667 if ((bs->slice_start < now)
3668 && (bs->slice_end > now)) {
3669 bs->slice_end = now + bs->slice_time;
3670 } else {
3671 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
3672 bs->slice_start = now;
3673 bs->slice_end = now + bs->slice_time;
3674
3675 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write];
3676 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3677
3678 bs->io_base.ios[is_write] = bs->nr_ops[is_write];
3679 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write];
3680 }
3681
3682 elapsed_time = now - bs->slice_start;
3683 elapsed_time /= (NANOSECONDS_PER_SECOND);
3684
3685 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors,
3686 is_write, elapsed_time, &bps_wait);
3687 iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3688 elapsed_time, &iops_wait);
3689 if (bps_ret || iops_ret) {
3690 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3691 if (wait) {
3692 *wait = max_wait;
3693 }
3694
3695 now = qemu_get_clock_ns(vm_clock);
3696 if (bs->slice_end < now + max_wait) {
3697 bs->slice_end = now + max_wait;
3698 }
3699
3700 return true;
3701 }
3702
3703 if (wait) {
3704 *wait = 0;
3705 }
3706
3707 return false;
3708 }
3709
3710 /**************************************************************/
3711 /* async block device emulation */
3712
3713 typedef struct BlockDriverAIOCBSync {
3714 BlockDriverAIOCB common;
3715 QEMUBH *bh;
3716 int ret;
3717 /* vector translation state */
3718 QEMUIOVector *qiov;
3719 uint8_t *bounce;
3720 int is_write;
3721 } BlockDriverAIOCBSync;
3722
3723 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3724 {
3725 BlockDriverAIOCBSync *acb =
3726 container_of(blockacb, BlockDriverAIOCBSync, common);
3727 qemu_bh_delete(acb->bh);
3728 acb->bh = NULL;
3729 qemu_aio_release(acb);
3730 }
3731
3732 static const AIOCBInfo bdrv_em_aiocb_info = {
3733 .aiocb_size = sizeof(BlockDriverAIOCBSync),
3734 .cancel = bdrv_aio_cancel_em,
3735 };
3736
3737 static void bdrv_aio_bh_cb(void *opaque)
3738 {
3739 BlockDriverAIOCBSync *acb = opaque;
3740
3741 if (!acb->is_write)
3742 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
3743 qemu_vfree(acb->bounce);
3744 acb->common.cb(acb->common.opaque, acb->ret);
3745 qemu_bh_delete(acb->bh);
3746 acb->bh = NULL;
3747 qemu_aio_release(acb);
3748 }
3749
3750 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3751 int64_t sector_num,
3752 QEMUIOVector *qiov,
3753 int nb_sectors,
3754 BlockDriverCompletionFunc *cb,
3755 void *opaque,
3756 int is_write)
3757
3758 {
3759 BlockDriverAIOCBSync *acb;
3760
3761 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
3762 acb->is_write = is_write;
3763 acb->qiov = qiov;
3764 acb->bounce = qemu_blockalign(bs, qiov->size);
3765 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3766
3767 if (is_write) {
3768 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
3769 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3770 } else {
3771 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3772 }
3773
3774 qemu_bh_schedule(acb->bh);
3775
3776 return &acb->common;
3777 }
3778
3779 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3780 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3781 BlockDriverCompletionFunc *cb, void *opaque)
3782 {
3783 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3784 }
3785
3786 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3787 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3788 BlockDriverCompletionFunc *cb, void *opaque)
3789 {
3790 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3791 }
3792
3793
3794 typedef struct BlockDriverAIOCBCoroutine {
3795 BlockDriverAIOCB common;
3796 BlockRequest req;
3797 bool is_write;
3798 bool *done;
3799 QEMUBH* bh;
3800 } BlockDriverAIOCBCoroutine;
3801
3802 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3803 {
3804 BlockDriverAIOCBCoroutine *acb =
3805 container_of(blockacb, BlockDriverAIOCBCoroutine, common);
3806 bool done = false;
3807
3808 acb->done = &done;
3809 while (!done) {
3810 qemu_aio_wait();
3811 }
3812 }
3813
3814 static const AIOCBInfo bdrv_em_co_aiocb_info = {
3815 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine),
3816 .cancel = bdrv_aio_co_cancel_em,
3817 };
3818
3819 static void bdrv_co_em_bh(void *opaque)
3820 {
3821 BlockDriverAIOCBCoroutine *acb = opaque;
3822
3823 acb->common.cb(acb->common.opaque, acb->req.error);
3824
3825 if (acb->done) {
3826 *acb->done = true;
3827 }
3828
3829 qemu_bh_delete(acb->bh);
3830 qemu_aio_release(acb);
3831 }
3832
3833 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3834 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3835 {
3836 BlockDriverAIOCBCoroutine *acb = opaque;
3837 BlockDriverState *bs = acb->common.bs;
3838
3839 if (!acb->is_write) {
3840 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3841 acb->req.nb_sectors, acb->req.qiov, 0);
3842 } else {
3843 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3844 acb->req.nb_sectors, acb->req.qiov, 0);
3845 }
3846
3847 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3848 qemu_bh_schedule(acb->bh);
3849 }
3850
3851 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3852 int64_t sector_num,
3853 QEMUIOVector *qiov,
3854 int nb_sectors,
3855 BlockDriverCompletionFunc *cb,
3856 void *opaque,
3857 bool is_write)
3858 {
3859 Coroutine *co;
3860 BlockDriverAIOCBCoroutine *acb;
3861
3862 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3863 acb->req.sector = sector_num;
3864 acb->req.nb_sectors = nb_sectors;
3865 acb->req.qiov = qiov;
3866 acb->is_write = is_write;
3867 acb->done = NULL;
3868
3869 co = qemu_coroutine_create(bdrv_co_do_rw);
3870 qemu_coroutine_enter(co, acb);
3871
3872 return &acb->common;
3873 }
3874
3875 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3876 {
3877 BlockDriverAIOCBCoroutine *acb = opaque;
3878 BlockDriverState *bs = acb->common.bs;
3879
3880 acb->req.error = bdrv_co_flush(bs);
3881 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3882 qemu_bh_schedule(acb->bh);
3883 }
3884
3885 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3886 BlockDriverCompletionFunc *cb, void *opaque)
3887 {
3888 trace_bdrv_aio_flush(bs, opaque);
3889
3890 Coroutine *co;
3891 BlockDriverAIOCBCoroutine *acb;
3892
3893 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3894 acb->done = NULL;
3895
3896 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3897 qemu_coroutine_enter(co, acb);
3898
3899 return &acb->common;
3900 }
3901
3902 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3903 {
3904 BlockDriverAIOCBCoroutine *acb = opaque;
3905 BlockDriverState *bs = acb->common.bs;
3906
3907 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3908 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3909 qemu_bh_schedule(acb->bh);
3910 }
3911
3912 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3913 int64_t sector_num, int nb_sectors,
3914 BlockDriverCompletionFunc *cb, void *opaque)
3915 {
3916 Coroutine *co;
3917 BlockDriverAIOCBCoroutine *acb;
3918
3919 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3920
3921 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3922 acb->req.sector = sector_num;
3923 acb->req.nb_sectors = nb_sectors;
3924 acb->done = NULL;
3925 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3926 qemu_coroutine_enter(co, acb);
3927
3928 return &acb->common;
3929 }
3930
3931 void bdrv_init(void)
3932 {
3933 module_call_init(MODULE_INIT_BLOCK);
3934 }
3935
3936 void bdrv_init_with_whitelist(void)
3937 {
3938 use_bdrv_whitelist = 1;
3939 bdrv_init();
3940 }
3941
3942 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
3943 BlockDriverCompletionFunc *cb, void *opaque)
3944 {
3945 BlockDriverAIOCB *acb;
3946
3947 acb = g_slice_alloc(aiocb_info->aiocb_size);
3948 acb->aiocb_info = aiocb_info;
3949 acb->bs = bs;
3950 acb->cb = cb;
3951 acb->opaque = opaque;
3952 return acb;
3953 }
3954
3955 void qemu_aio_release(void *p)
3956 {
3957 BlockDriverAIOCB *acb = p;
3958 g_slice_free1(acb->aiocb_info->aiocb_size, acb);
3959 }
3960
3961 /**************************************************************/
3962 /* Coroutine block device emulation */
3963
3964 typedef struct CoroutineIOCompletion {
3965 Coroutine *coroutine;
3966 int ret;
3967 } CoroutineIOCompletion;
3968
3969 static void bdrv_co_io_em_complete(void *opaque, int ret)
3970 {
3971 CoroutineIOCompletion *co = opaque;
3972
3973 co->ret = ret;
3974 qemu_coroutine_enter(co->coroutine, NULL);
3975 }
3976
3977 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
3978 int nb_sectors, QEMUIOVector *iov,
3979 bool is_write)
3980 {
3981 CoroutineIOCompletion co = {
3982 .coroutine = qemu_coroutine_self(),
3983 };
3984 BlockDriverAIOCB *acb;
3985
3986 if (is_write) {
3987 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
3988 bdrv_co_io_em_complete, &co);
3989 } else {
3990 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
3991 bdrv_co_io_em_complete, &co);
3992 }
3993
3994 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
3995 if (!acb) {
3996 return -EIO;
3997 }
3998 qemu_coroutine_yield();
3999
4000 return co.ret;
4001 }
4002
4003 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
4004 int64_t sector_num, int nb_sectors,
4005 QEMUIOVector *iov)
4006 {
4007 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
4008 }
4009
4010 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
4011 int64_t sector_num, int nb_sectors,
4012 QEMUIOVector *iov)
4013 {
4014 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
4015 }
4016
4017 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
4018 {
4019 RwCo *rwco = opaque;
4020
4021 rwco->ret = bdrv_co_flush(rwco->bs);
4022 }
4023
4024 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
4025 {
4026 int ret;
4027
4028 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
4029 return 0;
4030 }
4031
4032 /* Write back cached data to the OS even with cache=unsafe */
4033 if (bs->drv->bdrv_co_flush_to_os) {
4034 ret = bs->drv->bdrv_co_flush_to_os(bs);
4035 if (ret < 0) {
4036 return ret;
4037 }
4038 }
4039
4040 /* But don't actually force it to the disk with cache=unsafe */
4041 if (bs->open_flags & BDRV_O_NO_FLUSH) {
4042 goto flush_parent;
4043 }
4044
4045 if (bs->drv->bdrv_co_flush_to_disk) {
4046 ret = bs->drv->bdrv_co_flush_to_disk(bs);
4047 } else if (bs->drv->bdrv_aio_flush) {
4048 BlockDriverAIOCB *acb;
4049 CoroutineIOCompletion co = {
4050 .coroutine = qemu_coroutine_self(),
4051 };
4052
4053 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
4054 if (acb == NULL) {
4055 ret = -EIO;
4056 } else {
4057 qemu_coroutine_yield();
4058 ret = co.ret;
4059 }
4060 } else {
4061 /*
4062 * Some block drivers always operate in either writethrough or unsafe
4063 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
4064 * know how the server works (because the behaviour is hardcoded or
4065 * depends on server-side configuration), so we can't ensure that
4066 * everything is safe on disk. Returning an error doesn't work because
4067 * that would break guests even if the server operates in writethrough
4068 * mode.
4069 *
4070 * Let's hope the user knows what he's doing.
4071 */
4072 ret = 0;
4073 }
4074 if (ret < 0) {
4075 return ret;
4076 }
4077
4078 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
4079 * in the case of cache=unsafe, so there are no useless flushes.
4080 */
4081 flush_parent:
4082 return bdrv_co_flush(bs->file);
4083 }
4084
4085 void bdrv_invalidate_cache(BlockDriverState *bs)
4086 {
4087 if (bs->drv && bs->drv->bdrv_invalidate_cache) {
4088 bs->drv->bdrv_invalidate_cache(bs);
4089 }
4090 }
4091
4092 void bdrv_invalidate_cache_all(void)
4093 {
4094 BlockDriverState *bs;
4095
4096 QTAILQ_FOREACH(bs, &bdrv_states, list) {
4097 bdrv_invalidate_cache(bs);
4098 }
4099 }
4100
4101 void bdrv_clear_incoming_migration_all(void)
4102 {
4103 BlockDriverState *bs;
4104
4105 QTAILQ_FOREACH(bs, &bdrv_states, list) {
4106 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING);
4107 }
4108 }
4109
4110 int bdrv_flush(BlockDriverState *bs)
4111 {
4112 Coroutine *co;
4113 RwCo rwco = {
4114 .bs = bs,
4115 .ret = NOT_DONE,
4116 };
4117
4118 if (qemu_in_coroutine()) {
4119 /* Fast-path if already in coroutine context */
4120 bdrv_flush_co_entry(&rwco);
4121 } else {
4122 co = qemu_coroutine_create(bdrv_flush_co_entry);
4123 qemu_coroutine_enter(co, &rwco);
4124 while (rwco.ret == NOT_DONE) {
4125 qemu_aio_wait();
4126 }
4127 }
4128
4129 return rwco.ret;
4130 }
4131
4132 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
4133 {
4134 RwCo *rwco = opaque;
4135
4136 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
4137 }
4138
4139 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
4140 int nb_sectors)
4141 {
4142 if (!bs->drv) {
4143 return -ENOMEDIUM;
4144 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
4145 return -EIO;
4146 } else if (bs->read_only) {
4147 return -EROFS;
4148 } else if (bs->drv->bdrv_co_discard) {
4149 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
4150 } else if (bs->drv->bdrv_aio_discard) {
4151 BlockDriverAIOCB *acb;
4152 CoroutineIOCompletion co = {
4153 .coroutine = qemu_coroutine_self(),
4154 };
4155
4156 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
4157 bdrv_co_io_em_complete, &co);
4158 if (acb == NULL) {
4159 return -EIO;
4160 } else {
4161 qemu_coroutine_yield();
4162 return co.ret;
4163 }
4164 } else {
4165 return 0;
4166 }
4167 }
4168
4169 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
4170 {
4171 Coroutine *co;
4172 RwCo rwco = {
4173 .bs = bs,
4174 .sector_num = sector_num,
4175 .nb_sectors = nb_sectors,
4176 .ret = NOT_DONE,
4177 };
4178
4179 if (qemu_in_coroutine()) {
4180 /* Fast-path if already in coroutine context */
4181 bdrv_discard_co_entry(&rwco);
4182 } else {
4183 co = qemu_coroutine_create(bdrv_discard_co_entry);
4184 qemu_coroutine_enter(co, &rwco);
4185 while (rwco.ret == NOT_DONE) {
4186 qemu_aio_wait();
4187 }
4188 }
4189
4190 return rwco.ret;
4191 }
4192
4193 /**************************************************************/
4194 /* removable device support */
4195
4196 /**
4197 * Return TRUE if the media is present
4198 */
4199 int bdrv_is_inserted(BlockDriverState *bs)
4200 {
4201 BlockDriver *drv = bs->drv;
4202
4203 if (!drv)
4204 return 0;
4205 if (!drv->bdrv_is_inserted)
4206 return 1;
4207 return drv->bdrv_is_inserted(bs);
4208 }
4209
4210 /**
4211 * Return whether the media changed since the last call to this
4212 * function, or -ENOTSUP if we don't know. Most drivers don't know.
4213 */
4214 int bdrv_media_changed(BlockDriverState *bs)
4215 {
4216 BlockDriver *drv = bs->drv;
4217
4218 if (drv && drv->bdrv_media_changed) {
4219 return drv->bdrv_media_changed(bs);
4220 }
4221 return -ENOTSUP;
4222 }
4223
4224 /**
4225 * If eject_flag is TRUE, eject the media. Otherwise, close the tray
4226 */
4227 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
4228 {
4229 BlockDriver *drv = bs->drv;
4230
4231 if (drv && drv->bdrv_eject) {
4232 drv->bdrv_eject(bs, eject_flag);
4233 }
4234
4235 if (bs->device_name[0] != '\0') {
4236 bdrv_emit_qmp_eject_event(bs, eject_flag);
4237 }
4238 }
4239
4240 /**
4241 * Lock or unlock the media (if it is locked, the user won't be able
4242 * to eject it manually).
4243 */
4244 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
4245 {
4246 BlockDriver *drv = bs->drv;
4247
4248 trace_bdrv_lock_medium(bs, locked);
4249
4250 if (drv && drv->bdrv_lock_medium) {
4251 drv->bdrv_lock_medium(bs, locked);
4252 }
4253 }
4254
4255 /* needed for generic scsi interface */
4256
4257 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
4258 {
4259 BlockDriver *drv = bs->drv;
4260
4261 if (drv && drv->bdrv_ioctl)
4262 return drv->bdrv_ioctl(bs, req, buf);
4263 return -ENOTSUP;
4264 }
4265
4266 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
4267 unsigned long int req, void *buf,
4268 BlockDriverCompletionFunc *cb, void *opaque)
4269 {
4270 BlockDriver *drv = bs->drv;
4271
4272 if (drv && drv->bdrv_aio_ioctl)
4273 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
4274 return NULL;
4275 }
4276
4277 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
4278 {
4279 bs->buffer_alignment = align;
4280 }
4281
4282 void *qemu_blockalign(BlockDriverState *bs, size_t size)
4283 {
4284 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
4285 }
4286
4287 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable)
4288 {
4289 int64_t bitmap_size;
4290
4291 bs->dirty_count = 0;
4292 if (enable) {
4293 if (!bs->dirty_bitmap) {
4294 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) +
4295 BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG - 1;
4296 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG;
4297
4298 bs->dirty_bitmap = g_new0(unsigned long, bitmap_size);
4299 }
4300 } else {
4301 if (bs->dirty_bitmap) {
4302 g_free(bs->dirty_bitmap);
4303 bs->dirty_bitmap = NULL;
4304 }
4305 }
4306 }
4307
4308 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
4309 {
4310 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
4311
4312 if (bs->dirty_bitmap &&
4313 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) {
4314 return !!(bs->dirty_bitmap[chunk / BITS_PER_LONG] &
4315 (1UL << (chunk % BITS_PER_LONG)));
4316 } else {
4317 return 0;
4318 }
4319 }
4320
4321 int64_t bdrv_get_next_dirty(BlockDriverState *bs, int64_t sector)
4322 {
4323 int64_t chunk;
4324 int bit, elem;
4325
4326 /* Avoid an infinite loop. */
4327 assert(bs->dirty_count > 0);
4328
4329 sector = (sector | (BDRV_SECTORS_PER_DIRTY_CHUNK - 1)) + 1;
4330 chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
4331
4332 QEMU_BUILD_BUG_ON(sizeof(bs->dirty_bitmap[0]) * 8 != BITS_PER_LONG);
4333 elem = chunk / BITS_PER_LONG;
4334 bit = chunk % BITS_PER_LONG;
4335 for (;;) {
4336 if (sector >= bs->total_sectors) {
4337 sector = 0;
4338 bit = elem = 0;
4339 }
4340 if (bit == 0 && bs->dirty_bitmap[elem] == 0) {
4341 sector += BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG;
4342 elem++;
4343 } else {
4344 if (bs->dirty_bitmap[elem] & (1UL << bit)) {
4345 return sector;
4346 }
4347 sector += BDRV_SECTORS_PER_DIRTY_CHUNK;
4348 if (++bit == BITS_PER_LONG) {
4349 bit = 0;
4350 elem++;
4351 }
4352 }
4353 }
4354 }
4355
4356 void bdrv_set_dirty(BlockDriverState *bs, int64_t cur_sector,
4357 int nr_sectors)
4358 {
4359 set_dirty_bitmap(bs, cur_sector, nr_sectors, 1);
4360 }
4361
4362 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
4363 int nr_sectors)
4364 {
4365 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0);
4366 }
4367
4368 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
4369 {
4370 return bs->dirty_count;
4371 }
4372
4373 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
4374 {
4375 assert(bs->in_use != in_use);
4376 bs->in_use = in_use;
4377 }
4378
4379 int bdrv_in_use(BlockDriverState *bs)
4380 {
4381 return bs->in_use;
4382 }
4383
4384 void bdrv_iostatus_enable(BlockDriverState *bs)
4385 {
4386 bs->iostatus_enabled = true;
4387 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4388 }
4389
4390 /* The I/O status is only enabled if the drive explicitly
4391 * enables it _and_ the VM is configured to stop on errors */
4392 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
4393 {
4394 return (bs->iostatus_enabled &&
4395 (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC ||
4396 bs->on_write_error == BLOCKDEV_ON_ERROR_STOP ||
4397 bs->on_read_error == BLOCKDEV_ON_ERROR_STOP));
4398 }
4399
4400 void bdrv_iostatus_disable(BlockDriverState *bs)
4401 {
4402 bs->iostatus_enabled = false;
4403 }
4404
4405 void bdrv_iostatus_reset(BlockDriverState *bs)
4406 {
4407 if (bdrv_iostatus_is_enabled(bs)) {
4408 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4409 if (bs->job) {
4410 block_job_iostatus_reset(bs->job);
4411 }
4412 }
4413 }
4414
4415 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
4416 {
4417 assert(bdrv_iostatus_is_enabled(bs));
4418 if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
4419 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
4420 BLOCK_DEVICE_IO_STATUS_FAILED;
4421 }
4422 }
4423
4424 void
4425 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
4426 enum BlockAcctType type)
4427 {
4428 assert(type < BDRV_MAX_IOTYPE);
4429
4430 cookie->bytes = bytes;
4431 cookie->start_time_ns = get_clock();
4432 cookie->type = type;
4433 }
4434
4435 void
4436 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
4437 {
4438 assert(cookie->type < BDRV_MAX_IOTYPE);
4439
4440 bs->nr_bytes[cookie->type] += cookie->bytes;
4441 bs->nr_ops[cookie->type]++;
4442 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
4443 }
4444
4445 int bdrv_img_create(const char *filename, const char *fmt,
4446 const char *base_filename, const char *base_fmt,
4447 char *options, uint64_t img_size, int flags, Error **errp)
4448 {
4449 QEMUOptionParameter *param = NULL, *create_options = NULL;
4450 QEMUOptionParameter *backing_fmt, *backing_file, *size;
4451 BlockDriverState *bs = NULL;
4452 BlockDriver *drv, *proto_drv;
4453 BlockDriver *backing_drv = NULL;
4454 int ret = 0;
4455
4456 /* Find driver and parse its options */
4457 drv = bdrv_find_format(fmt);
4458 if (!drv) {
4459 error_report("Unknown file format '%s'", fmt);
4460 error_setg(errp, "Unknown file format '%s'", fmt);
4461 ret = -EINVAL;
4462 goto out;
4463 }
4464
4465 proto_drv = bdrv_find_protocol(filename);
4466 if (!proto_drv) {
4467 error_report("Unknown protocol '%s'", filename);
4468 error_setg(errp, "Unknown protocol '%s'", filename);
4469 ret = -EINVAL;
4470 goto out;
4471 }
4472
4473 create_options = append_option_parameters(create_options,
4474 drv->create_options);
4475 create_options = append_option_parameters(create_options,
4476 proto_drv->create_options);
4477
4478 /* Create parameter list with default values */
4479 param = parse_option_parameters("", create_options, param);
4480
4481 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
4482
4483 /* Parse -o options */
4484 if (options) {
4485 param = parse_option_parameters(options, create_options, param);
4486 if (param == NULL) {
4487 error_report("Invalid options for file format '%s'.", fmt);
4488 error_setg(errp, "Invalid options for file format '%s'.", fmt);
4489 ret = -EINVAL;
4490 goto out;
4491 }
4492 }
4493
4494 if (base_filename) {
4495 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
4496 base_filename)) {
4497 error_report("Backing file not supported for file format '%s'",
4498 fmt);
4499 error_setg(errp, "Backing file not supported for file format '%s'",
4500 fmt);
4501 ret = -EINVAL;
4502 goto out;
4503 }
4504 }
4505
4506 if (base_fmt) {
4507 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
4508 error_report("Backing file format not supported for file "
4509 "format '%s'", fmt);
4510 error_setg(errp, "Backing file format not supported for file "
4511 "format '%s'", fmt);
4512 ret = -EINVAL;
4513 goto out;
4514 }
4515 }
4516
4517 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
4518 if (backing_file && backing_file->value.s) {
4519 if (!strcmp(filename, backing_file->value.s)) {
4520 error_report("Error: Trying to create an image with the "
4521 "same filename as the backing file");
4522 error_setg(errp, "Error: Trying to create an image with the "
4523 "same filename as the backing file");
4524 ret = -EINVAL;
4525 goto out;
4526 }
4527 }
4528
4529 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
4530 if (backing_fmt && backing_fmt->value.s) {
4531 backing_drv = bdrv_find_format(backing_fmt->value.s);
4532 if (!backing_drv) {
4533 error_report("Unknown backing file format '%s'",
4534 backing_fmt->value.s);
4535 error_setg(errp, "Unknown backing file format '%s'",
4536 backing_fmt->value.s);
4537 ret = -EINVAL;
4538 goto out;
4539 }
4540 }
4541
4542 // The size for the image must always be specified, with one exception:
4543 // If we are using a backing file, we can obtain the size from there
4544 size = get_option_parameter(param, BLOCK_OPT_SIZE);
4545 if (size && size->value.n == -1) {
4546 if (backing_file && backing_file->value.s) {
4547 uint64_t size;
4548 char buf[32];
4549 int back_flags;
4550
4551 /* backing files always opened read-only */
4552 back_flags =
4553 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
4554
4555 bs = bdrv_new("");
4556
4557 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv);
4558 if (ret < 0) {
4559 error_report("Could not open '%s'", backing_file->value.s);
4560 error_setg_errno(errp, -ret, "Could not open '%s'",
4561 backing_file->value.s);
4562 goto out;
4563 }
4564 bdrv_get_geometry(bs, &size);
4565 size *= 512;
4566
4567 snprintf(buf, sizeof(buf), "%" PRId64, size);
4568 set_option_parameter(param, BLOCK_OPT_SIZE, buf);
4569 } else {
4570 error_report("Image creation needs a size parameter");
4571 error_setg(errp, "Image creation needs a size parameter");
4572 ret = -EINVAL;
4573 goto out;
4574 }
4575 }
4576
4577 printf("Formatting '%s', fmt=%s ", filename, fmt);
4578 print_option_parameters(param);
4579 puts("");
4580
4581 ret = bdrv_create(drv, filename, param);
4582
4583 if (ret < 0) {
4584 if (ret == -ENOTSUP) {
4585 error_report("Formatting or formatting option not supported for "
4586 "file format '%s'", fmt);
4587 error_setg(errp,"Formatting or formatting option not supported for "
4588 "file format '%s'", fmt);
4589 } else if (ret == -EFBIG) {
4590 error_report("The image size is too large for file format '%s'",
4591 fmt);
4592 error_setg(errp, "The image size is too large for file format '%s'",
4593 fmt);
4594 } else {
4595 error_report("%s: error while creating %s: %s", filename, fmt,
4596 strerror(-ret));
4597 error_setg(errp, "%s: error while creating %s: %s", filename, fmt,
4598 strerror(-ret));
4599 }
4600 }
4601
4602 out:
4603 free_option_parameters(create_options);
4604 free_option_parameters(param);
4605
4606 if (bs) {
4607 bdrv_delete(bs);
4608 }
4609
4610 return ret;
4611 }