]> git.proxmox.com Git - mirror_qemu.git/blob - block/io.c
00e45ca21909001d9f46223b402eb415d4f21e81
[mirror_qemu.git] / block / io.c
1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/block_int.h"
30 #include "qemu/cutils.h"
31 #include "qapi/error.h"
32 #include "qemu/error-report.h"
33
34 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
35
36 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child,
37 int64_t offset,
38 QEMUIOVector *qiov,
39 BdrvRequestFlags flags,
40 BlockCompletionFunc *cb,
41 void *opaque,
42 bool is_write);
43 static void coroutine_fn bdrv_co_do_rw(void *opaque);
44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
45 int64_t offset, int count, BdrvRequestFlags flags);
46
47 void bdrv_parent_drained_begin(BlockDriverState *bs)
48 {
49 BdrvChild *c;
50
51 QLIST_FOREACH(c, &bs->parents, next_parent) {
52 if (c->role->drained_begin) {
53 c->role->drained_begin(c);
54 }
55 }
56 }
57
58 void bdrv_parent_drained_end(BlockDriverState *bs)
59 {
60 BdrvChild *c;
61
62 QLIST_FOREACH(c, &bs->parents, next_parent) {
63 if (c->role->drained_end) {
64 c->role->drained_end(c);
65 }
66 }
67 }
68
69 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
70 {
71 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
72 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
73 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
74 src->opt_mem_alignment);
75 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
76 src->min_mem_alignment);
77 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
78 }
79
80 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
81 {
82 BlockDriver *drv = bs->drv;
83 Error *local_err = NULL;
84
85 memset(&bs->bl, 0, sizeof(bs->bl));
86
87 if (!drv) {
88 return;
89 }
90
91 /* Default alignment based on whether driver has byte interface */
92 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
93
94 /* Take some limits from the children as a default */
95 if (bs->file) {
96 bdrv_refresh_limits(bs->file->bs, &local_err);
97 if (local_err) {
98 error_propagate(errp, local_err);
99 return;
100 }
101 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
102 } else {
103 bs->bl.min_mem_alignment = 512;
104 bs->bl.opt_mem_alignment = getpagesize();
105
106 /* Safe default since most protocols use readv()/writev()/etc */
107 bs->bl.max_iov = IOV_MAX;
108 }
109
110 if (bs->backing) {
111 bdrv_refresh_limits(bs->backing->bs, &local_err);
112 if (local_err) {
113 error_propagate(errp, local_err);
114 return;
115 }
116 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
117 }
118
119 /* Then let the driver override it */
120 if (drv->bdrv_refresh_limits) {
121 drv->bdrv_refresh_limits(bs, errp);
122 }
123 }
124
125 /**
126 * The copy-on-read flag is actually a reference count so multiple users may
127 * use the feature without worrying about clobbering its previous state.
128 * Copy-on-read stays enabled until all users have called to disable it.
129 */
130 void bdrv_enable_copy_on_read(BlockDriverState *bs)
131 {
132 bs->copy_on_read++;
133 }
134
135 void bdrv_disable_copy_on_read(BlockDriverState *bs)
136 {
137 assert(bs->copy_on_read > 0);
138 bs->copy_on_read--;
139 }
140
141 /* Check if any requests are in-flight (including throttled requests) */
142 bool bdrv_requests_pending(BlockDriverState *bs)
143 {
144 BdrvChild *child;
145
146 if (atomic_read(&bs->in_flight)) {
147 return true;
148 }
149
150 QLIST_FOREACH(child, &bs->children, next) {
151 if (bdrv_requests_pending(child->bs)) {
152 return true;
153 }
154 }
155
156 return false;
157 }
158
159 static bool bdrv_drain_recurse(BlockDriverState *bs)
160 {
161 BdrvChild *child;
162 bool waited;
163
164 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0);
165
166 if (bs->drv && bs->drv->bdrv_drain) {
167 bs->drv->bdrv_drain(bs);
168 }
169
170 QLIST_FOREACH(child, &bs->children, next) {
171 waited |= bdrv_drain_recurse(child->bs);
172 }
173
174 return waited;
175 }
176
177 typedef struct {
178 Coroutine *co;
179 BlockDriverState *bs;
180 bool done;
181 } BdrvCoDrainData;
182
183 static void bdrv_co_drain_bh_cb(void *opaque)
184 {
185 BdrvCoDrainData *data = opaque;
186 Coroutine *co = data->co;
187 BlockDriverState *bs = data->bs;
188
189 bdrv_dec_in_flight(bs);
190 bdrv_drained_begin(bs);
191 data->done = true;
192 aio_co_wake(co);
193 }
194
195 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs)
196 {
197 BdrvCoDrainData data;
198
199 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
200 * other coroutines run if they were queued from
201 * qemu_co_queue_run_restart(). */
202
203 assert(qemu_in_coroutine());
204 data = (BdrvCoDrainData) {
205 .co = qemu_coroutine_self(),
206 .bs = bs,
207 .done = false,
208 };
209 bdrv_inc_in_flight(bs);
210 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
211 bdrv_co_drain_bh_cb, &data);
212
213 qemu_coroutine_yield();
214 /* If we are resumed from some other event (such as an aio completion or a
215 * timer callback), it is a bug in the caller that should be fixed. */
216 assert(data.done);
217 }
218
219 void bdrv_drained_begin(BlockDriverState *bs)
220 {
221 if (qemu_in_coroutine()) {
222 bdrv_co_yield_to_drain(bs);
223 return;
224 }
225
226 if (!bs->quiesce_counter++) {
227 aio_disable_external(bdrv_get_aio_context(bs));
228 bdrv_parent_drained_begin(bs);
229 }
230
231 bdrv_drain_recurse(bs);
232 }
233
234 void bdrv_drained_end(BlockDriverState *bs)
235 {
236 assert(bs->quiesce_counter > 0);
237 if (--bs->quiesce_counter > 0) {
238 return;
239 }
240
241 bdrv_parent_drained_end(bs);
242 aio_enable_external(bdrv_get_aio_context(bs));
243 }
244
245 /*
246 * Wait for pending requests to complete on a single BlockDriverState subtree,
247 * and suspend block driver's internal I/O until next request arrives.
248 *
249 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
250 * AioContext.
251 *
252 * Only this BlockDriverState's AioContext is run, so in-flight requests must
253 * not depend on events in other AioContexts. In that case, use
254 * bdrv_drain_all() instead.
255 */
256 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
257 {
258 assert(qemu_in_coroutine());
259 bdrv_drained_begin(bs);
260 bdrv_drained_end(bs);
261 }
262
263 void bdrv_drain(BlockDriverState *bs)
264 {
265 bdrv_drained_begin(bs);
266 bdrv_drained_end(bs);
267 }
268
269 /*
270 * Wait for pending requests to complete across all BlockDriverStates
271 *
272 * This function does not flush data to disk, use bdrv_flush_all() for that
273 * after calling this function.
274 *
275 * This pauses all block jobs and disables external clients. It must
276 * be paired with bdrv_drain_all_end().
277 *
278 * NOTE: no new block jobs or BlockDriverStates can be created between
279 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
280 */
281 void bdrv_drain_all_begin(void)
282 {
283 /* Always run first iteration so any pending completion BHs run */
284 bool waited = true;
285 BlockDriverState *bs;
286 BdrvNextIterator it;
287 BlockJob *job = NULL;
288 GSList *aio_ctxs = NULL, *ctx;
289
290 while ((job = block_job_next(job))) {
291 AioContext *aio_context = blk_get_aio_context(job->blk);
292
293 aio_context_acquire(aio_context);
294 block_job_pause(job);
295 aio_context_release(aio_context);
296 }
297
298 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
299 AioContext *aio_context = bdrv_get_aio_context(bs);
300
301 aio_context_acquire(aio_context);
302 bdrv_parent_drained_begin(bs);
303 aio_disable_external(aio_context);
304 aio_context_release(aio_context);
305
306 if (!g_slist_find(aio_ctxs, aio_context)) {
307 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
308 }
309 }
310
311 /* Note that completion of an asynchronous I/O operation can trigger any
312 * number of other I/O operations on other devices---for example a
313 * coroutine can submit an I/O request to another device in response to
314 * request completion. Therefore we must keep looping until there was no
315 * more activity rather than simply draining each device independently.
316 */
317 while (waited) {
318 waited = false;
319
320 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
321 AioContext *aio_context = ctx->data;
322
323 aio_context_acquire(aio_context);
324 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
325 if (aio_context == bdrv_get_aio_context(bs)) {
326 waited |= bdrv_drain_recurse(bs);
327 }
328 }
329 aio_context_release(aio_context);
330 }
331 }
332
333 g_slist_free(aio_ctxs);
334 }
335
336 void bdrv_drain_all_end(void)
337 {
338 BlockDriverState *bs;
339 BdrvNextIterator it;
340 BlockJob *job = NULL;
341
342 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
343 AioContext *aio_context = bdrv_get_aio_context(bs);
344
345 aio_context_acquire(aio_context);
346 aio_enable_external(aio_context);
347 bdrv_parent_drained_end(bs);
348 aio_context_release(aio_context);
349 }
350
351 while ((job = block_job_next(job))) {
352 AioContext *aio_context = blk_get_aio_context(job->blk);
353
354 aio_context_acquire(aio_context);
355 block_job_resume(job);
356 aio_context_release(aio_context);
357 }
358 }
359
360 void bdrv_drain_all(void)
361 {
362 bdrv_drain_all_begin();
363 bdrv_drain_all_end();
364 }
365
366 /**
367 * Remove an active request from the tracked requests list
368 *
369 * This function should be called when a tracked request is completing.
370 */
371 static void tracked_request_end(BdrvTrackedRequest *req)
372 {
373 if (req->serialising) {
374 req->bs->serialising_in_flight--;
375 }
376
377 QLIST_REMOVE(req, list);
378 qemu_co_queue_restart_all(&req->wait_queue);
379 }
380
381 /**
382 * Add an active request to the tracked requests list
383 */
384 static void tracked_request_begin(BdrvTrackedRequest *req,
385 BlockDriverState *bs,
386 int64_t offset,
387 unsigned int bytes,
388 enum BdrvTrackedRequestType type)
389 {
390 *req = (BdrvTrackedRequest){
391 .bs = bs,
392 .offset = offset,
393 .bytes = bytes,
394 .type = type,
395 .co = qemu_coroutine_self(),
396 .serialising = false,
397 .overlap_offset = offset,
398 .overlap_bytes = bytes,
399 };
400
401 qemu_co_queue_init(&req->wait_queue);
402
403 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
404 }
405
406 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
407 {
408 int64_t overlap_offset = req->offset & ~(align - 1);
409 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
410 - overlap_offset;
411
412 if (!req->serialising) {
413 req->bs->serialising_in_flight++;
414 req->serialising = true;
415 }
416
417 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
418 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
419 }
420
421 /**
422 * Round a region to cluster boundaries (sector-based)
423 */
424 void bdrv_round_sectors_to_clusters(BlockDriverState *bs,
425 int64_t sector_num, int nb_sectors,
426 int64_t *cluster_sector_num,
427 int *cluster_nb_sectors)
428 {
429 BlockDriverInfo bdi;
430
431 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
432 *cluster_sector_num = sector_num;
433 *cluster_nb_sectors = nb_sectors;
434 } else {
435 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
436 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
437 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
438 nb_sectors, c);
439 }
440 }
441
442 /**
443 * Round a region to cluster boundaries
444 */
445 void bdrv_round_to_clusters(BlockDriverState *bs,
446 int64_t offset, unsigned int bytes,
447 int64_t *cluster_offset,
448 unsigned int *cluster_bytes)
449 {
450 BlockDriverInfo bdi;
451
452 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
453 *cluster_offset = offset;
454 *cluster_bytes = bytes;
455 } else {
456 int64_t c = bdi.cluster_size;
457 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
458 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
459 }
460 }
461
462 static int bdrv_get_cluster_size(BlockDriverState *bs)
463 {
464 BlockDriverInfo bdi;
465 int ret;
466
467 ret = bdrv_get_info(bs, &bdi);
468 if (ret < 0 || bdi.cluster_size == 0) {
469 return bs->bl.request_alignment;
470 } else {
471 return bdi.cluster_size;
472 }
473 }
474
475 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
476 int64_t offset, unsigned int bytes)
477 {
478 /* aaaa bbbb */
479 if (offset >= req->overlap_offset + req->overlap_bytes) {
480 return false;
481 }
482 /* bbbb aaaa */
483 if (req->overlap_offset >= offset + bytes) {
484 return false;
485 }
486 return true;
487 }
488
489 void bdrv_inc_in_flight(BlockDriverState *bs)
490 {
491 atomic_inc(&bs->in_flight);
492 }
493
494 static void dummy_bh_cb(void *opaque)
495 {
496 }
497
498 void bdrv_wakeup(BlockDriverState *bs)
499 {
500 if (bs->wakeup) {
501 aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL);
502 }
503 }
504
505 void bdrv_dec_in_flight(BlockDriverState *bs)
506 {
507 atomic_dec(&bs->in_flight);
508 bdrv_wakeup(bs);
509 }
510
511 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
512 {
513 BlockDriverState *bs = self->bs;
514 BdrvTrackedRequest *req;
515 bool retry;
516 bool waited = false;
517
518 if (!bs->serialising_in_flight) {
519 return false;
520 }
521
522 do {
523 retry = false;
524 QLIST_FOREACH(req, &bs->tracked_requests, list) {
525 if (req == self || (!req->serialising && !self->serialising)) {
526 continue;
527 }
528 if (tracked_request_overlaps(req, self->overlap_offset,
529 self->overlap_bytes))
530 {
531 /* Hitting this means there was a reentrant request, for
532 * example, a block driver issuing nested requests. This must
533 * never happen since it means deadlock.
534 */
535 assert(qemu_coroutine_self() != req->co);
536
537 /* If the request is already (indirectly) waiting for us, or
538 * will wait for us as soon as it wakes up, then just go on
539 * (instead of producing a deadlock in the former case). */
540 if (!req->waiting_for) {
541 self->waiting_for = req;
542 qemu_co_queue_wait(&req->wait_queue, NULL);
543 self->waiting_for = NULL;
544 retry = true;
545 waited = true;
546 break;
547 }
548 }
549 }
550 } while (retry);
551
552 return waited;
553 }
554
555 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
556 size_t size)
557 {
558 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
559 return -EIO;
560 }
561
562 if (!bdrv_is_inserted(bs)) {
563 return -ENOMEDIUM;
564 }
565
566 if (offset < 0) {
567 return -EIO;
568 }
569
570 return 0;
571 }
572
573 typedef struct RwCo {
574 BdrvChild *child;
575 int64_t offset;
576 QEMUIOVector *qiov;
577 bool is_write;
578 int ret;
579 BdrvRequestFlags flags;
580 } RwCo;
581
582 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
583 {
584 RwCo *rwco = opaque;
585
586 if (!rwco->is_write) {
587 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
588 rwco->qiov->size, rwco->qiov,
589 rwco->flags);
590 } else {
591 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
592 rwco->qiov->size, rwco->qiov,
593 rwco->flags);
594 }
595 }
596
597 /*
598 * Process a vectored synchronous request using coroutines
599 */
600 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
601 QEMUIOVector *qiov, bool is_write,
602 BdrvRequestFlags flags)
603 {
604 Coroutine *co;
605 RwCo rwco = {
606 .child = child,
607 .offset = offset,
608 .qiov = qiov,
609 .is_write = is_write,
610 .ret = NOT_DONE,
611 .flags = flags,
612 };
613
614 if (qemu_in_coroutine()) {
615 /* Fast-path if already in coroutine context */
616 bdrv_rw_co_entry(&rwco);
617 } else {
618 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
619 bdrv_coroutine_enter(child->bs, co);
620 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
621 }
622 return rwco.ret;
623 }
624
625 /*
626 * Process a synchronous request using coroutines
627 */
628 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
629 int nb_sectors, bool is_write, BdrvRequestFlags flags)
630 {
631 QEMUIOVector qiov;
632 struct iovec iov = {
633 .iov_base = (void *)buf,
634 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
635 };
636
637 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
638 return -EINVAL;
639 }
640
641 qemu_iovec_init_external(&qiov, &iov, 1);
642 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
643 &qiov, is_write, flags);
644 }
645
646 /* return < 0 if error. See bdrv_write() for the return codes */
647 int bdrv_read(BdrvChild *child, int64_t sector_num,
648 uint8_t *buf, int nb_sectors)
649 {
650 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
651 }
652
653 /* Return < 0 if error. Important errors are:
654 -EIO generic I/O error (may happen for all errors)
655 -ENOMEDIUM No media inserted.
656 -EINVAL Invalid sector number or nb_sectors
657 -EACCES Trying to write a read-only device
658 */
659 int bdrv_write(BdrvChild *child, int64_t sector_num,
660 const uint8_t *buf, int nb_sectors)
661 {
662 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
663 }
664
665 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
666 int count, BdrvRequestFlags flags)
667 {
668 QEMUIOVector qiov;
669 struct iovec iov = {
670 .iov_base = NULL,
671 .iov_len = count,
672 };
673
674 qemu_iovec_init_external(&qiov, &iov, 1);
675 return bdrv_prwv_co(child, offset, &qiov, true,
676 BDRV_REQ_ZERO_WRITE | flags);
677 }
678
679 /*
680 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
681 * The operation is sped up by checking the block status and only writing
682 * zeroes to the device if they currently do not return zeroes. Optional
683 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
684 * BDRV_REQ_FUA).
685 *
686 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
687 */
688 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
689 {
690 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
691 BlockDriverState *bs = child->bs;
692 BlockDriverState *file;
693 int n;
694
695 target_sectors = bdrv_nb_sectors(bs);
696 if (target_sectors < 0) {
697 return target_sectors;
698 }
699
700 for (;;) {
701 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
702 if (nb_sectors <= 0) {
703 return 0;
704 }
705 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
706 if (ret < 0) {
707 error_report("error getting block status at sector %" PRId64 ": %s",
708 sector_num, strerror(-ret));
709 return ret;
710 }
711 if (ret & BDRV_BLOCK_ZERO) {
712 sector_num += n;
713 continue;
714 }
715 ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS,
716 n << BDRV_SECTOR_BITS, flags);
717 if (ret < 0) {
718 error_report("error writing zeroes at sector %" PRId64 ": %s",
719 sector_num, strerror(-ret));
720 return ret;
721 }
722 sector_num += n;
723 }
724 }
725
726 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
727 {
728 int ret;
729
730 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
731 if (ret < 0) {
732 return ret;
733 }
734
735 return qiov->size;
736 }
737
738 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
739 {
740 QEMUIOVector qiov;
741 struct iovec iov = {
742 .iov_base = (void *)buf,
743 .iov_len = bytes,
744 };
745
746 if (bytes < 0) {
747 return -EINVAL;
748 }
749
750 qemu_iovec_init_external(&qiov, &iov, 1);
751 return bdrv_preadv(child, offset, &qiov);
752 }
753
754 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
755 {
756 int ret;
757
758 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
759 if (ret < 0) {
760 return ret;
761 }
762
763 return qiov->size;
764 }
765
766 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
767 {
768 QEMUIOVector qiov;
769 struct iovec iov = {
770 .iov_base = (void *) buf,
771 .iov_len = bytes,
772 };
773
774 if (bytes < 0) {
775 return -EINVAL;
776 }
777
778 qemu_iovec_init_external(&qiov, &iov, 1);
779 return bdrv_pwritev(child, offset, &qiov);
780 }
781
782 /*
783 * Writes to the file and ensures that no writes are reordered across this
784 * request (acts as a barrier)
785 *
786 * Returns 0 on success, -errno in error cases.
787 */
788 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
789 const void *buf, int count)
790 {
791 int ret;
792
793 ret = bdrv_pwrite(child, offset, buf, count);
794 if (ret < 0) {
795 return ret;
796 }
797
798 ret = bdrv_flush(child->bs);
799 if (ret < 0) {
800 return ret;
801 }
802
803 return 0;
804 }
805
806 typedef struct CoroutineIOCompletion {
807 Coroutine *coroutine;
808 int ret;
809 } CoroutineIOCompletion;
810
811 static void bdrv_co_io_em_complete(void *opaque, int ret)
812 {
813 CoroutineIOCompletion *co = opaque;
814
815 co->ret = ret;
816 aio_co_wake(co->coroutine);
817 }
818
819 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
820 uint64_t offset, uint64_t bytes,
821 QEMUIOVector *qiov, int flags)
822 {
823 BlockDriver *drv = bs->drv;
824 int64_t sector_num;
825 unsigned int nb_sectors;
826
827 assert(!(flags & ~BDRV_REQ_MASK));
828
829 if (drv->bdrv_co_preadv) {
830 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
831 }
832
833 sector_num = offset >> BDRV_SECTOR_BITS;
834 nb_sectors = bytes >> BDRV_SECTOR_BITS;
835
836 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
837 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
838 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
839
840 if (drv->bdrv_co_readv) {
841 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
842 } else {
843 BlockAIOCB *acb;
844 CoroutineIOCompletion co = {
845 .coroutine = qemu_coroutine_self(),
846 };
847
848 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
849 bdrv_co_io_em_complete, &co);
850 if (acb == NULL) {
851 return -EIO;
852 } else {
853 qemu_coroutine_yield();
854 return co.ret;
855 }
856 }
857 }
858
859 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
860 uint64_t offset, uint64_t bytes,
861 QEMUIOVector *qiov, int flags)
862 {
863 BlockDriver *drv = bs->drv;
864 int64_t sector_num;
865 unsigned int nb_sectors;
866 int ret;
867
868 assert(!(flags & ~BDRV_REQ_MASK));
869
870 if (drv->bdrv_co_pwritev) {
871 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
872 flags & bs->supported_write_flags);
873 flags &= ~bs->supported_write_flags;
874 goto emulate_flags;
875 }
876
877 sector_num = offset >> BDRV_SECTOR_BITS;
878 nb_sectors = bytes >> BDRV_SECTOR_BITS;
879
880 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
881 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
882 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
883
884 if (drv->bdrv_co_writev_flags) {
885 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
886 flags & bs->supported_write_flags);
887 flags &= ~bs->supported_write_flags;
888 } else if (drv->bdrv_co_writev) {
889 assert(!bs->supported_write_flags);
890 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
891 } else {
892 BlockAIOCB *acb;
893 CoroutineIOCompletion co = {
894 .coroutine = qemu_coroutine_self(),
895 };
896
897 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
898 bdrv_co_io_em_complete, &co);
899 if (acb == NULL) {
900 ret = -EIO;
901 } else {
902 qemu_coroutine_yield();
903 ret = co.ret;
904 }
905 }
906
907 emulate_flags:
908 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
909 ret = bdrv_co_flush(bs);
910 }
911
912 return ret;
913 }
914
915 static int coroutine_fn
916 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
917 uint64_t bytes, QEMUIOVector *qiov)
918 {
919 BlockDriver *drv = bs->drv;
920
921 if (!drv->bdrv_co_pwritev_compressed) {
922 return -ENOTSUP;
923 }
924
925 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
926 }
927
928 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
929 int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
930 {
931 BlockDriverState *bs = child->bs;
932
933 /* Perform I/O through a temporary buffer so that users who scribble over
934 * their read buffer while the operation is in progress do not end up
935 * modifying the image file. This is critical for zero-copy guest I/O
936 * where anything might happen inside guest memory.
937 */
938 void *bounce_buffer;
939
940 BlockDriver *drv = bs->drv;
941 struct iovec iov;
942 QEMUIOVector bounce_qiov;
943 int64_t cluster_offset;
944 unsigned int cluster_bytes;
945 size_t skip_bytes;
946 int ret;
947
948 /* FIXME We cannot require callers to have write permissions when all they
949 * are doing is a read request. If we did things right, write permissions
950 * would be obtained anyway, but internally by the copy-on-read code. As
951 * long as it is implemented here rather than in a separat filter driver,
952 * the copy-on-read code doesn't have its own BdrvChild, however, for which
953 * it could request permissions. Therefore we have to bypass the permission
954 * system for the moment. */
955 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
956
957 /* Cover entire cluster so no additional backing file I/O is required when
958 * allocating cluster in the image file.
959 */
960 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
961
962 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
963 cluster_offset, cluster_bytes);
964
965 iov.iov_len = cluster_bytes;
966 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
967 if (bounce_buffer == NULL) {
968 ret = -ENOMEM;
969 goto err;
970 }
971
972 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
973
974 ret = bdrv_driver_preadv(bs, cluster_offset, cluster_bytes,
975 &bounce_qiov, 0);
976 if (ret < 0) {
977 goto err;
978 }
979
980 if (drv->bdrv_co_pwrite_zeroes &&
981 buffer_is_zero(bounce_buffer, iov.iov_len)) {
982 /* FIXME: Should we (perhaps conditionally) be setting
983 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
984 * that still correctly reads as zero? */
985 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, cluster_bytes, 0);
986 } else {
987 /* This does not change the data on the disk, it is not necessary
988 * to flush even in cache=writethrough mode.
989 */
990 ret = bdrv_driver_pwritev(bs, cluster_offset, cluster_bytes,
991 &bounce_qiov, 0);
992 }
993
994 if (ret < 0) {
995 /* It might be okay to ignore write errors for guest requests. If this
996 * is a deliberate copy-on-read then we don't want to ignore the error.
997 * Simply report it in all cases.
998 */
999 goto err;
1000 }
1001
1002 skip_bytes = offset - cluster_offset;
1003 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, bytes);
1004
1005 err:
1006 qemu_vfree(bounce_buffer);
1007 return ret;
1008 }
1009
1010 /*
1011 * Forwards an already correctly aligned request to the BlockDriver. This
1012 * handles copy on read, zeroing after EOF, and fragmentation of large
1013 * reads; any other features must be implemented by the caller.
1014 */
1015 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1016 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1017 int64_t align, QEMUIOVector *qiov, int flags)
1018 {
1019 BlockDriverState *bs = child->bs;
1020 int64_t total_bytes, max_bytes;
1021 int ret = 0;
1022 uint64_t bytes_remaining = bytes;
1023 int max_transfer;
1024
1025 assert(is_power_of_2(align));
1026 assert((offset & (align - 1)) == 0);
1027 assert((bytes & (align - 1)) == 0);
1028 assert(!qiov || bytes == qiov->size);
1029 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1030 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1031 align);
1032
1033 /* TODO: We would need a per-BDS .supported_read_flags and
1034 * potential fallback support, if we ever implement any read flags
1035 * to pass through to drivers. For now, there aren't any
1036 * passthrough flags. */
1037 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1038
1039 /* Handle Copy on Read and associated serialisation */
1040 if (flags & BDRV_REQ_COPY_ON_READ) {
1041 /* If we touch the same cluster it counts as an overlap. This
1042 * guarantees that allocating writes will be serialized and not race
1043 * with each other for the same cluster. For example, in copy-on-read
1044 * it ensures that the CoR read and write operations are atomic and
1045 * guest writes cannot interleave between them. */
1046 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1047 }
1048
1049 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1050 wait_serialising_requests(req);
1051 }
1052
1053 if (flags & BDRV_REQ_COPY_ON_READ) {
1054 int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1055 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1056 unsigned int nb_sectors = end_sector - start_sector;
1057 int pnum;
1058
1059 ret = bdrv_is_allocated(bs, start_sector, nb_sectors, &pnum);
1060 if (ret < 0) {
1061 goto out;
1062 }
1063
1064 if (!ret || pnum != nb_sectors) {
1065 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1066 goto out;
1067 }
1068 }
1069
1070 /* Forward the request to the BlockDriver, possibly fragmenting it */
1071 total_bytes = bdrv_getlength(bs);
1072 if (total_bytes < 0) {
1073 ret = total_bytes;
1074 goto out;
1075 }
1076
1077 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1078 if (bytes <= max_bytes && bytes <= max_transfer) {
1079 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1080 goto out;
1081 }
1082
1083 while (bytes_remaining) {
1084 int num;
1085
1086 if (max_bytes) {
1087 QEMUIOVector local_qiov;
1088
1089 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1090 assert(num);
1091 qemu_iovec_init(&local_qiov, qiov->niov);
1092 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1093
1094 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1095 num, &local_qiov, 0);
1096 max_bytes -= num;
1097 qemu_iovec_destroy(&local_qiov);
1098 } else {
1099 num = bytes_remaining;
1100 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1101 bytes_remaining);
1102 }
1103 if (ret < 0) {
1104 goto out;
1105 }
1106 bytes_remaining -= num;
1107 }
1108
1109 out:
1110 return ret < 0 ? ret : 0;
1111 }
1112
1113 /*
1114 * Handle a read request in coroutine context
1115 */
1116 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1117 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1118 BdrvRequestFlags flags)
1119 {
1120 BlockDriverState *bs = child->bs;
1121 BlockDriver *drv = bs->drv;
1122 BdrvTrackedRequest req;
1123
1124 uint64_t align = bs->bl.request_alignment;
1125 uint8_t *head_buf = NULL;
1126 uint8_t *tail_buf = NULL;
1127 QEMUIOVector local_qiov;
1128 bool use_local_qiov = false;
1129 int ret;
1130
1131 if (!drv) {
1132 return -ENOMEDIUM;
1133 }
1134
1135 ret = bdrv_check_byte_request(bs, offset, bytes);
1136 if (ret < 0) {
1137 return ret;
1138 }
1139
1140 bdrv_inc_in_flight(bs);
1141
1142 /* Don't do copy-on-read if we read data before write operation */
1143 if (bs->copy_on_read && !(flags & BDRV_REQ_NO_SERIALISING)) {
1144 flags |= BDRV_REQ_COPY_ON_READ;
1145 }
1146
1147 /* Align read if necessary by padding qiov */
1148 if (offset & (align - 1)) {
1149 head_buf = qemu_blockalign(bs, align);
1150 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1151 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1152 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1153 use_local_qiov = true;
1154
1155 bytes += offset & (align - 1);
1156 offset = offset & ~(align - 1);
1157 }
1158
1159 if ((offset + bytes) & (align - 1)) {
1160 if (!use_local_qiov) {
1161 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1162 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1163 use_local_qiov = true;
1164 }
1165 tail_buf = qemu_blockalign(bs, align);
1166 qemu_iovec_add(&local_qiov, tail_buf,
1167 align - ((offset + bytes) & (align - 1)));
1168
1169 bytes = ROUND_UP(bytes, align);
1170 }
1171
1172 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1173 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1174 use_local_qiov ? &local_qiov : qiov,
1175 flags);
1176 tracked_request_end(&req);
1177 bdrv_dec_in_flight(bs);
1178
1179 if (use_local_qiov) {
1180 qemu_iovec_destroy(&local_qiov);
1181 qemu_vfree(head_buf);
1182 qemu_vfree(tail_buf);
1183 }
1184
1185 return ret;
1186 }
1187
1188 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1189 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1190 BdrvRequestFlags flags)
1191 {
1192 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1193 return -EINVAL;
1194 }
1195
1196 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1197 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1198 }
1199
1200 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1201 int nb_sectors, QEMUIOVector *qiov)
1202 {
1203 trace_bdrv_co_readv(child->bs, sector_num, nb_sectors);
1204
1205 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1206 }
1207
1208 /* Maximum buffer for write zeroes fallback, in bytes */
1209 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
1210
1211 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1212 int64_t offset, int count, BdrvRequestFlags flags)
1213 {
1214 BlockDriver *drv = bs->drv;
1215 QEMUIOVector qiov;
1216 struct iovec iov = {0};
1217 int ret = 0;
1218 bool need_flush = false;
1219 int head = 0;
1220 int tail = 0;
1221
1222 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1223 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1224 bs->bl.request_alignment);
1225 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1226 MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1227
1228 assert(alignment % bs->bl.request_alignment == 0);
1229 head = offset % alignment;
1230 tail = (offset + count) % alignment;
1231 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1232 assert(max_write_zeroes >= bs->bl.request_alignment);
1233
1234 while (count > 0 && !ret) {
1235 int num = count;
1236
1237 /* Align request. Block drivers can expect the "bulk" of the request
1238 * to be aligned, and that unaligned requests do not cross cluster
1239 * boundaries.
1240 */
1241 if (head) {
1242 /* Make a small request up to the first aligned sector. For
1243 * convenience, limit this request to max_transfer even if
1244 * we don't need to fall back to writes. */
1245 num = MIN(MIN(count, max_transfer), alignment - head);
1246 head = (head + num) % alignment;
1247 assert(num < max_write_zeroes);
1248 } else if (tail && num > alignment) {
1249 /* Shorten the request to the last aligned sector. */
1250 num -= tail;
1251 }
1252
1253 /* limit request size */
1254 if (num > max_write_zeroes) {
1255 num = max_write_zeroes;
1256 }
1257
1258 ret = -ENOTSUP;
1259 /* First try the efficient write zeroes operation */
1260 if (drv->bdrv_co_pwrite_zeroes) {
1261 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1262 flags & bs->supported_zero_flags);
1263 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1264 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1265 need_flush = true;
1266 }
1267 } else {
1268 assert(!bs->supported_zero_flags);
1269 }
1270
1271 if (ret == -ENOTSUP) {
1272 /* Fall back to bounce buffer if write zeroes is unsupported */
1273 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1274
1275 if ((flags & BDRV_REQ_FUA) &&
1276 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1277 /* No need for bdrv_driver_pwrite() to do a fallback
1278 * flush on each chunk; use just one at the end */
1279 write_flags &= ~BDRV_REQ_FUA;
1280 need_flush = true;
1281 }
1282 num = MIN(num, max_transfer);
1283 iov.iov_len = num;
1284 if (iov.iov_base == NULL) {
1285 iov.iov_base = qemu_try_blockalign(bs, num);
1286 if (iov.iov_base == NULL) {
1287 ret = -ENOMEM;
1288 goto fail;
1289 }
1290 memset(iov.iov_base, 0, num);
1291 }
1292 qemu_iovec_init_external(&qiov, &iov, 1);
1293
1294 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1295
1296 /* Keep bounce buffer around if it is big enough for all
1297 * all future requests.
1298 */
1299 if (num < max_transfer) {
1300 qemu_vfree(iov.iov_base);
1301 iov.iov_base = NULL;
1302 }
1303 }
1304
1305 offset += num;
1306 count -= num;
1307 }
1308
1309 fail:
1310 if (ret == 0 && need_flush) {
1311 ret = bdrv_co_flush(bs);
1312 }
1313 qemu_vfree(iov.iov_base);
1314 return ret;
1315 }
1316
1317 /*
1318 * Forwards an already correctly aligned write request to the BlockDriver,
1319 * after possibly fragmenting it.
1320 */
1321 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1322 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1323 int64_t align, QEMUIOVector *qiov, int flags)
1324 {
1325 BlockDriverState *bs = child->bs;
1326 BlockDriver *drv = bs->drv;
1327 bool waited;
1328 int ret;
1329
1330 int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1331 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1332 uint64_t bytes_remaining = bytes;
1333 int max_transfer;
1334
1335 assert(is_power_of_2(align));
1336 assert((offset & (align - 1)) == 0);
1337 assert((bytes & (align - 1)) == 0);
1338 assert(!qiov || bytes == qiov->size);
1339 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1340 assert(!(flags & ~BDRV_REQ_MASK));
1341 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1342 align);
1343
1344 waited = wait_serialising_requests(req);
1345 assert(!waited || !req->serialising);
1346 assert(req->overlap_offset <= offset);
1347 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1348 assert(child->perm & BLK_PERM_WRITE);
1349 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1350
1351 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1352
1353 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1354 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1355 qemu_iovec_is_zero(qiov)) {
1356 flags |= BDRV_REQ_ZERO_WRITE;
1357 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1358 flags |= BDRV_REQ_MAY_UNMAP;
1359 }
1360 }
1361
1362 if (ret < 0) {
1363 /* Do nothing, write notifier decided to fail this request */
1364 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1365 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1366 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1367 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1368 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1369 } else if (bytes <= max_transfer) {
1370 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1371 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1372 } else {
1373 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1374 while (bytes_remaining) {
1375 int num = MIN(bytes_remaining, max_transfer);
1376 QEMUIOVector local_qiov;
1377 int local_flags = flags;
1378
1379 assert(num);
1380 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1381 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1382 /* If FUA is going to be emulated by flush, we only
1383 * need to flush on the last iteration */
1384 local_flags &= ~BDRV_REQ_FUA;
1385 }
1386 qemu_iovec_init(&local_qiov, qiov->niov);
1387 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1388
1389 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1390 num, &local_qiov, local_flags);
1391 qemu_iovec_destroy(&local_qiov);
1392 if (ret < 0) {
1393 break;
1394 }
1395 bytes_remaining -= num;
1396 }
1397 }
1398 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1399
1400 ++bs->write_gen;
1401 bdrv_set_dirty(bs, start_sector, end_sector - start_sector);
1402
1403 if (bs->wr_highest_offset < offset + bytes) {
1404 bs->wr_highest_offset = offset + bytes;
1405 }
1406
1407 if (ret >= 0) {
1408 bs->total_sectors = MAX(bs->total_sectors, end_sector);
1409 ret = 0;
1410 }
1411
1412 return ret;
1413 }
1414
1415 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1416 int64_t offset,
1417 unsigned int bytes,
1418 BdrvRequestFlags flags,
1419 BdrvTrackedRequest *req)
1420 {
1421 BlockDriverState *bs = child->bs;
1422 uint8_t *buf = NULL;
1423 QEMUIOVector local_qiov;
1424 struct iovec iov;
1425 uint64_t align = bs->bl.request_alignment;
1426 unsigned int head_padding_bytes, tail_padding_bytes;
1427 int ret = 0;
1428
1429 head_padding_bytes = offset & (align - 1);
1430 tail_padding_bytes = align - ((offset + bytes) & (align - 1));
1431
1432
1433 assert(flags & BDRV_REQ_ZERO_WRITE);
1434 if (head_padding_bytes || tail_padding_bytes) {
1435 buf = qemu_blockalign(bs, align);
1436 iov = (struct iovec) {
1437 .iov_base = buf,
1438 .iov_len = align,
1439 };
1440 qemu_iovec_init_external(&local_qiov, &iov, 1);
1441 }
1442 if (head_padding_bytes) {
1443 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1444
1445 /* RMW the unaligned part before head. */
1446 mark_request_serialising(req, align);
1447 wait_serialising_requests(req);
1448 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1449 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1450 align, &local_qiov, 0);
1451 if (ret < 0) {
1452 goto fail;
1453 }
1454 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1455
1456 memset(buf + head_padding_bytes, 0, zero_bytes);
1457 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1458 align, &local_qiov,
1459 flags & ~BDRV_REQ_ZERO_WRITE);
1460 if (ret < 0) {
1461 goto fail;
1462 }
1463 offset += zero_bytes;
1464 bytes -= zero_bytes;
1465 }
1466
1467 assert(!bytes || (offset & (align - 1)) == 0);
1468 if (bytes >= align) {
1469 /* Write the aligned part in the middle. */
1470 uint64_t aligned_bytes = bytes & ~(align - 1);
1471 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1472 NULL, flags);
1473 if (ret < 0) {
1474 goto fail;
1475 }
1476 bytes -= aligned_bytes;
1477 offset += aligned_bytes;
1478 }
1479
1480 assert(!bytes || (offset & (align - 1)) == 0);
1481 if (bytes) {
1482 assert(align == tail_padding_bytes + bytes);
1483 /* RMW the unaligned part after tail. */
1484 mark_request_serialising(req, align);
1485 wait_serialising_requests(req);
1486 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1487 ret = bdrv_aligned_preadv(child, req, offset, align,
1488 align, &local_qiov, 0);
1489 if (ret < 0) {
1490 goto fail;
1491 }
1492 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1493
1494 memset(buf, 0, bytes);
1495 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1496 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1497 }
1498 fail:
1499 qemu_vfree(buf);
1500 return ret;
1501
1502 }
1503
1504 /*
1505 * Handle a write request in coroutine context
1506 */
1507 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1508 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1509 BdrvRequestFlags flags)
1510 {
1511 BlockDriverState *bs = child->bs;
1512 BdrvTrackedRequest req;
1513 uint64_t align = bs->bl.request_alignment;
1514 uint8_t *head_buf = NULL;
1515 uint8_t *tail_buf = NULL;
1516 QEMUIOVector local_qiov;
1517 bool use_local_qiov = false;
1518 int ret;
1519
1520 if (!bs->drv) {
1521 return -ENOMEDIUM;
1522 }
1523 if (bs->read_only) {
1524 return -EPERM;
1525 }
1526 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1527
1528 ret = bdrv_check_byte_request(bs, offset, bytes);
1529 if (ret < 0) {
1530 return ret;
1531 }
1532
1533 bdrv_inc_in_flight(bs);
1534 /*
1535 * Align write if necessary by performing a read-modify-write cycle.
1536 * Pad qiov with the read parts and be sure to have a tracked request not
1537 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1538 */
1539 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1540
1541 if (!qiov) {
1542 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1543 goto out;
1544 }
1545
1546 if (offset & (align - 1)) {
1547 QEMUIOVector head_qiov;
1548 struct iovec head_iov;
1549
1550 mark_request_serialising(&req, align);
1551 wait_serialising_requests(&req);
1552
1553 head_buf = qemu_blockalign(bs, align);
1554 head_iov = (struct iovec) {
1555 .iov_base = head_buf,
1556 .iov_len = align,
1557 };
1558 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1559
1560 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1561 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1562 align, &head_qiov, 0);
1563 if (ret < 0) {
1564 goto fail;
1565 }
1566 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1567
1568 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1569 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1570 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1571 use_local_qiov = true;
1572
1573 bytes += offset & (align - 1);
1574 offset = offset & ~(align - 1);
1575
1576 /* We have read the tail already if the request is smaller
1577 * than one aligned block.
1578 */
1579 if (bytes < align) {
1580 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1581 bytes = align;
1582 }
1583 }
1584
1585 if ((offset + bytes) & (align - 1)) {
1586 QEMUIOVector tail_qiov;
1587 struct iovec tail_iov;
1588 size_t tail_bytes;
1589 bool waited;
1590
1591 mark_request_serialising(&req, align);
1592 waited = wait_serialising_requests(&req);
1593 assert(!waited || !use_local_qiov);
1594
1595 tail_buf = qemu_blockalign(bs, align);
1596 tail_iov = (struct iovec) {
1597 .iov_base = tail_buf,
1598 .iov_len = align,
1599 };
1600 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1601
1602 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1603 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1604 align, align, &tail_qiov, 0);
1605 if (ret < 0) {
1606 goto fail;
1607 }
1608 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1609
1610 if (!use_local_qiov) {
1611 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1612 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1613 use_local_qiov = true;
1614 }
1615
1616 tail_bytes = (offset + bytes) & (align - 1);
1617 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1618
1619 bytes = ROUND_UP(bytes, align);
1620 }
1621
1622 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1623 use_local_qiov ? &local_qiov : qiov,
1624 flags);
1625
1626 fail:
1627
1628 if (use_local_qiov) {
1629 qemu_iovec_destroy(&local_qiov);
1630 }
1631 qemu_vfree(head_buf);
1632 qemu_vfree(tail_buf);
1633 out:
1634 tracked_request_end(&req);
1635 bdrv_dec_in_flight(bs);
1636 return ret;
1637 }
1638
1639 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1640 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1641 BdrvRequestFlags flags)
1642 {
1643 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1644 return -EINVAL;
1645 }
1646
1647 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1648 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1649 }
1650
1651 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1652 int nb_sectors, QEMUIOVector *qiov)
1653 {
1654 trace_bdrv_co_writev(child->bs, sector_num, nb_sectors);
1655
1656 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1657 }
1658
1659 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1660 int count, BdrvRequestFlags flags)
1661 {
1662 trace_bdrv_co_pwrite_zeroes(child->bs, offset, count, flags);
1663
1664 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1665 flags &= ~BDRV_REQ_MAY_UNMAP;
1666 }
1667
1668 return bdrv_co_pwritev(child, offset, count, NULL,
1669 BDRV_REQ_ZERO_WRITE | flags);
1670 }
1671
1672 /*
1673 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1674 */
1675 int bdrv_flush_all(void)
1676 {
1677 BdrvNextIterator it;
1678 BlockDriverState *bs = NULL;
1679 int result = 0;
1680
1681 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1682 AioContext *aio_context = bdrv_get_aio_context(bs);
1683 int ret;
1684
1685 aio_context_acquire(aio_context);
1686 ret = bdrv_flush(bs);
1687 if (ret < 0 && !result) {
1688 result = ret;
1689 }
1690 aio_context_release(aio_context);
1691 }
1692
1693 return result;
1694 }
1695
1696
1697 typedef struct BdrvCoGetBlockStatusData {
1698 BlockDriverState *bs;
1699 BlockDriverState *base;
1700 BlockDriverState **file;
1701 int64_t sector_num;
1702 int nb_sectors;
1703 int *pnum;
1704 int64_t ret;
1705 bool done;
1706 } BdrvCoGetBlockStatusData;
1707
1708 /*
1709 * Returns the allocation status of the specified sectors.
1710 * Drivers not implementing the functionality are assumed to not support
1711 * backing files, hence all their sectors are reported as allocated.
1712 *
1713 * If 'sector_num' is beyond the end of the disk image the return value is 0
1714 * and 'pnum' is set to 0.
1715 *
1716 * 'pnum' is set to the number of sectors (including and immediately following
1717 * the specified sector) that are known to be in the same
1718 * allocated/unallocated state.
1719 *
1720 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1721 * beyond the end of the disk image it will be clamped.
1722 *
1723 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1724 * points to the BDS which the sector range is allocated in.
1725 */
1726 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1727 int64_t sector_num,
1728 int nb_sectors, int *pnum,
1729 BlockDriverState **file)
1730 {
1731 int64_t total_sectors;
1732 int64_t n;
1733 int64_t ret, ret2;
1734
1735 total_sectors = bdrv_nb_sectors(bs);
1736 if (total_sectors < 0) {
1737 return total_sectors;
1738 }
1739
1740 if (sector_num >= total_sectors) {
1741 *pnum = 0;
1742 return 0;
1743 }
1744
1745 n = total_sectors - sector_num;
1746 if (n < nb_sectors) {
1747 nb_sectors = n;
1748 }
1749
1750 if (!bs->drv->bdrv_co_get_block_status) {
1751 *pnum = nb_sectors;
1752 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1753 if (bs->drv->protocol_name) {
1754 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1755 }
1756 return ret;
1757 }
1758
1759 *file = NULL;
1760 bdrv_inc_in_flight(bs);
1761 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1762 file);
1763 if (ret < 0) {
1764 *pnum = 0;
1765 goto out;
1766 }
1767
1768 if (ret & BDRV_BLOCK_RAW) {
1769 assert(ret & BDRV_BLOCK_OFFSET_VALID);
1770 ret = bdrv_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1771 *pnum, pnum, file);
1772 goto out;
1773 }
1774
1775 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1776 ret |= BDRV_BLOCK_ALLOCATED;
1777 } else {
1778 if (bdrv_unallocated_blocks_are_zero(bs)) {
1779 ret |= BDRV_BLOCK_ZERO;
1780 } else if (bs->backing) {
1781 BlockDriverState *bs2 = bs->backing->bs;
1782 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1783 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1784 ret |= BDRV_BLOCK_ZERO;
1785 }
1786 }
1787 }
1788
1789 if (*file && *file != bs &&
1790 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1791 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1792 BlockDriverState *file2;
1793 int file_pnum;
1794
1795 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1796 *pnum, &file_pnum, &file2);
1797 if (ret2 >= 0) {
1798 /* Ignore errors. This is just providing extra information, it
1799 * is useful but not necessary.
1800 */
1801 if (!file_pnum) {
1802 /* !file_pnum indicates an offset at or beyond the EOF; it is
1803 * perfectly valid for the format block driver to point to such
1804 * offsets, so catch it and mark everything as zero */
1805 ret |= BDRV_BLOCK_ZERO;
1806 } else {
1807 /* Limit request to the range reported by the protocol driver */
1808 *pnum = file_pnum;
1809 ret |= (ret2 & BDRV_BLOCK_ZERO);
1810 }
1811 }
1812 }
1813
1814 out:
1815 bdrv_dec_in_flight(bs);
1816 return ret;
1817 }
1818
1819 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1820 BlockDriverState *base,
1821 int64_t sector_num,
1822 int nb_sectors,
1823 int *pnum,
1824 BlockDriverState **file)
1825 {
1826 BlockDriverState *p;
1827 int64_t ret = 0;
1828
1829 assert(bs != base);
1830 for (p = bs; p != base; p = backing_bs(p)) {
1831 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1832 if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) {
1833 break;
1834 }
1835 /* [sector_num, pnum] unallocated on this layer, which could be only
1836 * the first part of [sector_num, nb_sectors]. */
1837 nb_sectors = MIN(nb_sectors, *pnum);
1838 }
1839 return ret;
1840 }
1841
1842 /* Coroutine wrapper for bdrv_get_block_status_above() */
1843 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1844 {
1845 BdrvCoGetBlockStatusData *data = opaque;
1846
1847 data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1848 data->sector_num,
1849 data->nb_sectors,
1850 data->pnum,
1851 data->file);
1852 data->done = true;
1853 }
1854
1855 /*
1856 * Synchronous wrapper around bdrv_co_get_block_status_above().
1857 *
1858 * See bdrv_co_get_block_status_above() for details.
1859 */
1860 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1861 BlockDriverState *base,
1862 int64_t sector_num,
1863 int nb_sectors, int *pnum,
1864 BlockDriverState **file)
1865 {
1866 Coroutine *co;
1867 BdrvCoGetBlockStatusData data = {
1868 .bs = bs,
1869 .base = base,
1870 .file = file,
1871 .sector_num = sector_num,
1872 .nb_sectors = nb_sectors,
1873 .pnum = pnum,
1874 .done = false,
1875 };
1876
1877 if (qemu_in_coroutine()) {
1878 /* Fast-path if already in coroutine context */
1879 bdrv_get_block_status_above_co_entry(&data);
1880 } else {
1881 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry,
1882 &data);
1883 bdrv_coroutine_enter(bs, co);
1884 BDRV_POLL_WHILE(bs, !data.done);
1885 }
1886 return data.ret;
1887 }
1888
1889 int64_t bdrv_get_block_status(BlockDriverState *bs,
1890 int64_t sector_num,
1891 int nb_sectors, int *pnum,
1892 BlockDriverState **file)
1893 {
1894 return bdrv_get_block_status_above(bs, backing_bs(bs),
1895 sector_num, nb_sectors, pnum, file);
1896 }
1897
1898 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1899 int nb_sectors, int *pnum)
1900 {
1901 BlockDriverState *file;
1902 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum,
1903 &file);
1904 if (ret < 0) {
1905 return ret;
1906 }
1907 return !!(ret & BDRV_BLOCK_ALLOCATED);
1908 }
1909
1910 /*
1911 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1912 *
1913 * Return true if the given sector is allocated in any image between
1914 * BASE and TOP (inclusive). BASE can be NULL to check if the given
1915 * sector is allocated in any image of the chain. Return false otherwise.
1916 *
1917 * 'pnum' is set to the number of sectors (including and immediately following
1918 * the specified sector) that are known to be in the same
1919 * allocated/unallocated state.
1920 *
1921 */
1922 int bdrv_is_allocated_above(BlockDriverState *top,
1923 BlockDriverState *base,
1924 int64_t sector_num,
1925 int nb_sectors, int *pnum)
1926 {
1927 BlockDriverState *intermediate;
1928 int ret, n = nb_sectors;
1929
1930 intermediate = top;
1931 while (intermediate && intermediate != base) {
1932 int pnum_inter;
1933 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1934 &pnum_inter);
1935 if (ret < 0) {
1936 return ret;
1937 } else if (ret) {
1938 *pnum = pnum_inter;
1939 return 1;
1940 }
1941
1942 /*
1943 * [sector_num, nb_sectors] is unallocated on top but intermediate
1944 * might have
1945 *
1946 * [sector_num+x, nr_sectors] allocated.
1947 */
1948 if (n > pnum_inter &&
1949 (intermediate == top ||
1950 sector_num + pnum_inter < intermediate->total_sectors)) {
1951 n = pnum_inter;
1952 }
1953
1954 intermediate = backing_bs(intermediate);
1955 }
1956
1957 *pnum = n;
1958 return 0;
1959 }
1960
1961 typedef struct BdrvVmstateCo {
1962 BlockDriverState *bs;
1963 QEMUIOVector *qiov;
1964 int64_t pos;
1965 bool is_read;
1966 int ret;
1967 } BdrvVmstateCo;
1968
1969 static int coroutine_fn
1970 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1971 bool is_read)
1972 {
1973 BlockDriver *drv = bs->drv;
1974
1975 if (!drv) {
1976 return -ENOMEDIUM;
1977 } else if (drv->bdrv_load_vmstate) {
1978 return is_read ? drv->bdrv_load_vmstate(bs, qiov, pos)
1979 : drv->bdrv_save_vmstate(bs, qiov, pos);
1980 } else if (bs->file) {
1981 return bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
1982 }
1983
1984 return -ENOTSUP;
1985 }
1986
1987 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
1988 {
1989 BdrvVmstateCo *co = opaque;
1990 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
1991 }
1992
1993 static inline int
1994 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1995 bool is_read)
1996 {
1997 if (qemu_in_coroutine()) {
1998 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
1999 } else {
2000 BdrvVmstateCo data = {
2001 .bs = bs,
2002 .qiov = qiov,
2003 .pos = pos,
2004 .is_read = is_read,
2005 .ret = -EINPROGRESS,
2006 };
2007 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2008
2009 bdrv_coroutine_enter(bs, co);
2010 while (data.ret == -EINPROGRESS) {
2011 aio_poll(bdrv_get_aio_context(bs), true);
2012 }
2013 return data.ret;
2014 }
2015 }
2016
2017 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2018 int64_t pos, int size)
2019 {
2020 QEMUIOVector qiov;
2021 struct iovec iov = {
2022 .iov_base = (void *) buf,
2023 .iov_len = size,
2024 };
2025 int ret;
2026
2027 qemu_iovec_init_external(&qiov, &iov, 1);
2028
2029 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2030 if (ret < 0) {
2031 return ret;
2032 }
2033
2034 return size;
2035 }
2036
2037 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2038 {
2039 return bdrv_rw_vmstate(bs, qiov, pos, false);
2040 }
2041
2042 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2043 int64_t pos, int size)
2044 {
2045 QEMUIOVector qiov;
2046 struct iovec iov = {
2047 .iov_base = buf,
2048 .iov_len = size,
2049 };
2050 int ret;
2051
2052 qemu_iovec_init_external(&qiov, &iov, 1);
2053 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2054 if (ret < 0) {
2055 return ret;
2056 }
2057
2058 return size;
2059 }
2060
2061 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2062 {
2063 return bdrv_rw_vmstate(bs, qiov, pos, true);
2064 }
2065
2066 /**************************************************************/
2067 /* async I/Os */
2068
2069 BlockAIOCB *bdrv_aio_readv(BdrvChild *child, int64_t sector_num,
2070 QEMUIOVector *qiov, int nb_sectors,
2071 BlockCompletionFunc *cb, void *opaque)
2072 {
2073 trace_bdrv_aio_readv(child->bs, sector_num, nb_sectors, opaque);
2074
2075 assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size);
2076 return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov,
2077 0, cb, opaque, false);
2078 }
2079
2080 BlockAIOCB *bdrv_aio_writev(BdrvChild *child, int64_t sector_num,
2081 QEMUIOVector *qiov, int nb_sectors,
2082 BlockCompletionFunc *cb, void *opaque)
2083 {
2084 trace_bdrv_aio_writev(child->bs, sector_num, nb_sectors, opaque);
2085
2086 assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size);
2087 return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov,
2088 0, cb, opaque, true);
2089 }
2090
2091 void bdrv_aio_cancel(BlockAIOCB *acb)
2092 {
2093 qemu_aio_ref(acb);
2094 bdrv_aio_cancel_async(acb);
2095 while (acb->refcnt > 1) {
2096 if (acb->aiocb_info->get_aio_context) {
2097 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2098 } else if (acb->bs) {
2099 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2100 * assert that we're not using an I/O thread. Thread-safe
2101 * code should use bdrv_aio_cancel_async exclusively.
2102 */
2103 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2104 aio_poll(bdrv_get_aio_context(acb->bs), true);
2105 } else {
2106 abort();
2107 }
2108 }
2109 qemu_aio_unref(acb);
2110 }
2111
2112 /* Async version of aio cancel. The caller is not blocked if the acb implements
2113 * cancel_async, otherwise we do nothing and let the request normally complete.
2114 * In either case the completion callback must be called. */
2115 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2116 {
2117 if (acb->aiocb_info->cancel_async) {
2118 acb->aiocb_info->cancel_async(acb);
2119 }
2120 }
2121
2122 /**************************************************************/
2123 /* async block device emulation */
2124
2125 typedef struct BlockRequest {
2126 union {
2127 /* Used during read, write, trim */
2128 struct {
2129 int64_t offset;
2130 int bytes;
2131 int flags;
2132 QEMUIOVector *qiov;
2133 };
2134 /* Used during ioctl */
2135 struct {
2136 int req;
2137 void *buf;
2138 };
2139 };
2140 BlockCompletionFunc *cb;
2141 void *opaque;
2142
2143 int error;
2144 } BlockRequest;
2145
2146 typedef struct BlockAIOCBCoroutine {
2147 BlockAIOCB common;
2148 BdrvChild *child;
2149 BlockRequest req;
2150 bool is_write;
2151 bool need_bh;
2152 bool *done;
2153 } BlockAIOCBCoroutine;
2154
2155 static const AIOCBInfo bdrv_em_co_aiocb_info = {
2156 .aiocb_size = sizeof(BlockAIOCBCoroutine),
2157 };
2158
2159 static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2160 {
2161 if (!acb->need_bh) {
2162 bdrv_dec_in_flight(acb->common.bs);
2163 acb->common.cb(acb->common.opaque, acb->req.error);
2164 qemu_aio_unref(acb);
2165 }
2166 }
2167
2168 static void bdrv_co_em_bh(void *opaque)
2169 {
2170 BlockAIOCBCoroutine *acb = opaque;
2171
2172 assert(!acb->need_bh);
2173 bdrv_co_complete(acb);
2174 }
2175
2176 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2177 {
2178 acb->need_bh = false;
2179 if (acb->req.error != -EINPROGRESS) {
2180 BlockDriverState *bs = acb->common.bs;
2181
2182 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2183 }
2184 }
2185
2186 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2187 static void coroutine_fn bdrv_co_do_rw(void *opaque)
2188 {
2189 BlockAIOCBCoroutine *acb = opaque;
2190
2191 if (!acb->is_write) {
2192 acb->req.error = bdrv_co_preadv(acb->child, acb->req.offset,
2193 acb->req.qiov->size, acb->req.qiov, acb->req.flags);
2194 } else {
2195 acb->req.error = bdrv_co_pwritev(acb->child, acb->req.offset,
2196 acb->req.qiov->size, acb->req.qiov, acb->req.flags);
2197 }
2198
2199 bdrv_co_complete(acb);
2200 }
2201
2202 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child,
2203 int64_t offset,
2204 QEMUIOVector *qiov,
2205 BdrvRequestFlags flags,
2206 BlockCompletionFunc *cb,
2207 void *opaque,
2208 bool is_write)
2209 {
2210 Coroutine *co;
2211 BlockAIOCBCoroutine *acb;
2212
2213 /* Matched by bdrv_co_complete's bdrv_dec_in_flight. */
2214 bdrv_inc_in_flight(child->bs);
2215
2216 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, child->bs, cb, opaque);
2217 acb->child = child;
2218 acb->need_bh = true;
2219 acb->req.error = -EINPROGRESS;
2220 acb->req.offset = offset;
2221 acb->req.qiov = qiov;
2222 acb->req.flags = flags;
2223 acb->is_write = is_write;
2224
2225 co = qemu_coroutine_create(bdrv_co_do_rw, acb);
2226 bdrv_coroutine_enter(child->bs, co);
2227
2228 bdrv_co_maybe_schedule_bh(acb);
2229 return &acb->common;
2230 }
2231
2232 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2233 {
2234 BlockAIOCBCoroutine *acb = opaque;
2235 BlockDriverState *bs = acb->common.bs;
2236
2237 acb->req.error = bdrv_co_flush(bs);
2238 bdrv_co_complete(acb);
2239 }
2240
2241 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2242 BlockCompletionFunc *cb, void *opaque)
2243 {
2244 trace_bdrv_aio_flush(bs, opaque);
2245
2246 Coroutine *co;
2247 BlockAIOCBCoroutine *acb;
2248
2249 /* Matched by bdrv_co_complete's bdrv_dec_in_flight. */
2250 bdrv_inc_in_flight(bs);
2251
2252 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2253 acb->need_bh = true;
2254 acb->req.error = -EINPROGRESS;
2255
2256 co = qemu_coroutine_create(bdrv_aio_flush_co_entry, acb);
2257 bdrv_coroutine_enter(bs, co);
2258
2259 bdrv_co_maybe_schedule_bh(acb);
2260 return &acb->common;
2261 }
2262
2263 /**************************************************************/
2264 /* Coroutine block device emulation */
2265
2266 typedef struct FlushCo {
2267 BlockDriverState *bs;
2268 int ret;
2269 } FlushCo;
2270
2271
2272 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2273 {
2274 FlushCo *rwco = opaque;
2275
2276 rwco->ret = bdrv_co_flush(rwco->bs);
2277 }
2278
2279 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2280 {
2281 int ret;
2282
2283 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2284 bdrv_is_sg(bs)) {
2285 return 0;
2286 }
2287
2288 bdrv_inc_in_flight(bs);
2289
2290 int current_gen = bs->write_gen;
2291
2292 /* Wait until any previous flushes are completed */
2293 while (bs->active_flush_req) {
2294 qemu_co_queue_wait(&bs->flush_queue, NULL);
2295 }
2296
2297 bs->active_flush_req = true;
2298
2299 /* Write back all layers by calling one driver function */
2300 if (bs->drv->bdrv_co_flush) {
2301 ret = bs->drv->bdrv_co_flush(bs);
2302 goto out;
2303 }
2304
2305 /* Write back cached data to the OS even with cache=unsafe */
2306 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2307 if (bs->drv->bdrv_co_flush_to_os) {
2308 ret = bs->drv->bdrv_co_flush_to_os(bs);
2309 if (ret < 0) {
2310 goto out;
2311 }
2312 }
2313
2314 /* But don't actually force it to the disk with cache=unsafe */
2315 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2316 goto flush_parent;
2317 }
2318
2319 /* Check if we really need to flush anything */
2320 if (bs->flushed_gen == current_gen) {
2321 goto flush_parent;
2322 }
2323
2324 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2325 if (bs->drv->bdrv_co_flush_to_disk) {
2326 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2327 } else if (bs->drv->bdrv_aio_flush) {
2328 BlockAIOCB *acb;
2329 CoroutineIOCompletion co = {
2330 .coroutine = qemu_coroutine_self(),
2331 };
2332
2333 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2334 if (acb == NULL) {
2335 ret = -EIO;
2336 } else {
2337 qemu_coroutine_yield();
2338 ret = co.ret;
2339 }
2340 } else {
2341 /*
2342 * Some block drivers always operate in either writethrough or unsafe
2343 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2344 * know how the server works (because the behaviour is hardcoded or
2345 * depends on server-side configuration), so we can't ensure that
2346 * everything is safe on disk. Returning an error doesn't work because
2347 * that would break guests even if the server operates in writethrough
2348 * mode.
2349 *
2350 * Let's hope the user knows what he's doing.
2351 */
2352 ret = 0;
2353 }
2354
2355 if (ret < 0) {
2356 goto out;
2357 }
2358
2359 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2360 * in the case of cache=unsafe, so there are no useless flushes.
2361 */
2362 flush_parent:
2363 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2364 out:
2365 /* Notify any pending flushes that we have completed */
2366 if (ret == 0) {
2367 bs->flushed_gen = current_gen;
2368 }
2369 bs->active_flush_req = false;
2370 /* Return value is ignored - it's ok if wait queue is empty */
2371 qemu_co_queue_next(&bs->flush_queue);
2372
2373 bdrv_dec_in_flight(bs);
2374 return ret;
2375 }
2376
2377 int bdrv_flush(BlockDriverState *bs)
2378 {
2379 Coroutine *co;
2380 FlushCo flush_co = {
2381 .bs = bs,
2382 .ret = NOT_DONE,
2383 };
2384
2385 if (qemu_in_coroutine()) {
2386 /* Fast-path if already in coroutine context */
2387 bdrv_flush_co_entry(&flush_co);
2388 } else {
2389 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2390 bdrv_coroutine_enter(bs, co);
2391 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2392 }
2393
2394 return flush_co.ret;
2395 }
2396
2397 typedef struct DiscardCo {
2398 BlockDriverState *bs;
2399 int64_t offset;
2400 int count;
2401 int ret;
2402 } DiscardCo;
2403 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2404 {
2405 DiscardCo *rwco = opaque;
2406
2407 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->count);
2408 }
2409
2410 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2411 int count)
2412 {
2413 BdrvTrackedRequest req;
2414 int max_pdiscard, ret;
2415 int head, tail, align;
2416
2417 if (!bs->drv) {
2418 return -ENOMEDIUM;
2419 }
2420
2421 ret = bdrv_check_byte_request(bs, offset, count);
2422 if (ret < 0) {
2423 return ret;
2424 } else if (bs->read_only) {
2425 return -EPERM;
2426 }
2427 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2428
2429 /* Do nothing if disabled. */
2430 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2431 return 0;
2432 }
2433
2434 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2435 return 0;
2436 }
2437
2438 /* Discard is advisory, but some devices track and coalesce
2439 * unaligned requests, so we must pass everything down rather than
2440 * round here. Still, most devices will just silently ignore
2441 * unaligned requests (by returning -ENOTSUP), so we must fragment
2442 * the request accordingly. */
2443 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2444 assert(align % bs->bl.request_alignment == 0);
2445 head = offset % align;
2446 tail = (offset + count) % align;
2447
2448 bdrv_inc_in_flight(bs);
2449 tracked_request_begin(&req, bs, offset, count, BDRV_TRACKED_DISCARD);
2450
2451 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2452 if (ret < 0) {
2453 goto out;
2454 }
2455
2456 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2457 align);
2458 assert(max_pdiscard >= bs->bl.request_alignment);
2459
2460 while (count > 0) {
2461 int ret;
2462 int num = count;
2463
2464 if (head) {
2465 /* Make small requests to get to alignment boundaries. */
2466 num = MIN(count, align - head);
2467 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2468 num %= bs->bl.request_alignment;
2469 }
2470 head = (head + num) % align;
2471 assert(num < max_pdiscard);
2472 } else if (tail) {
2473 if (num > align) {
2474 /* Shorten the request to the last aligned cluster. */
2475 num -= tail;
2476 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2477 tail > bs->bl.request_alignment) {
2478 tail %= bs->bl.request_alignment;
2479 num -= tail;
2480 }
2481 }
2482 /* limit request size */
2483 if (num > max_pdiscard) {
2484 num = max_pdiscard;
2485 }
2486
2487 if (bs->drv->bdrv_co_pdiscard) {
2488 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2489 } else {
2490 BlockAIOCB *acb;
2491 CoroutineIOCompletion co = {
2492 .coroutine = qemu_coroutine_self(),
2493 };
2494
2495 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2496 bdrv_co_io_em_complete, &co);
2497 if (acb == NULL) {
2498 ret = -EIO;
2499 goto out;
2500 } else {
2501 qemu_coroutine_yield();
2502 ret = co.ret;
2503 }
2504 }
2505 if (ret && ret != -ENOTSUP) {
2506 goto out;
2507 }
2508
2509 offset += num;
2510 count -= num;
2511 }
2512 ret = 0;
2513 out:
2514 ++bs->write_gen;
2515 bdrv_set_dirty(bs, req.offset >> BDRV_SECTOR_BITS,
2516 req.bytes >> BDRV_SECTOR_BITS);
2517 tracked_request_end(&req);
2518 bdrv_dec_in_flight(bs);
2519 return ret;
2520 }
2521
2522 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int count)
2523 {
2524 Coroutine *co;
2525 DiscardCo rwco = {
2526 .bs = bs,
2527 .offset = offset,
2528 .count = count,
2529 .ret = NOT_DONE,
2530 };
2531
2532 if (qemu_in_coroutine()) {
2533 /* Fast-path if already in coroutine context */
2534 bdrv_pdiscard_co_entry(&rwco);
2535 } else {
2536 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2537 bdrv_coroutine_enter(bs, co);
2538 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2539 }
2540
2541 return rwco.ret;
2542 }
2543
2544 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2545 {
2546 BlockDriver *drv = bs->drv;
2547 CoroutineIOCompletion co = {
2548 .coroutine = qemu_coroutine_self(),
2549 };
2550 BlockAIOCB *acb;
2551
2552 bdrv_inc_in_flight(bs);
2553 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2554 co.ret = -ENOTSUP;
2555 goto out;
2556 }
2557
2558 if (drv->bdrv_co_ioctl) {
2559 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2560 } else {
2561 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2562 if (!acb) {
2563 co.ret = -ENOTSUP;
2564 goto out;
2565 }
2566 qemu_coroutine_yield();
2567 }
2568 out:
2569 bdrv_dec_in_flight(bs);
2570 return co.ret;
2571 }
2572
2573 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2574 {
2575 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2576 }
2577
2578 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2579 {
2580 return memset(qemu_blockalign(bs, size), 0, size);
2581 }
2582
2583 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2584 {
2585 size_t align = bdrv_opt_mem_align(bs);
2586
2587 /* Ensure that NULL is never returned on success */
2588 assert(align > 0);
2589 if (size == 0) {
2590 size = align;
2591 }
2592
2593 return qemu_try_memalign(align, size);
2594 }
2595
2596 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2597 {
2598 void *mem = qemu_try_blockalign(bs, size);
2599
2600 if (mem) {
2601 memset(mem, 0, size);
2602 }
2603
2604 return mem;
2605 }
2606
2607 /*
2608 * Check if all memory in this vector is sector aligned.
2609 */
2610 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2611 {
2612 int i;
2613 size_t alignment = bdrv_min_mem_align(bs);
2614
2615 for (i = 0; i < qiov->niov; i++) {
2616 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2617 return false;
2618 }
2619 if (qiov->iov[i].iov_len % alignment) {
2620 return false;
2621 }
2622 }
2623
2624 return true;
2625 }
2626
2627 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2628 NotifierWithReturn *notifier)
2629 {
2630 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2631 }
2632
2633 void bdrv_io_plug(BlockDriverState *bs)
2634 {
2635 BdrvChild *child;
2636
2637 QLIST_FOREACH(child, &bs->children, next) {
2638 bdrv_io_plug(child->bs);
2639 }
2640
2641 if (bs->io_plugged++ == 0) {
2642 BlockDriver *drv = bs->drv;
2643 if (drv && drv->bdrv_io_plug) {
2644 drv->bdrv_io_plug(bs);
2645 }
2646 }
2647 }
2648
2649 void bdrv_io_unplug(BlockDriverState *bs)
2650 {
2651 BdrvChild *child;
2652
2653 assert(bs->io_plugged);
2654 if (--bs->io_plugged == 0) {
2655 BlockDriver *drv = bs->drv;
2656 if (drv && drv->bdrv_io_unplug) {
2657 drv->bdrv_io_unplug(bs);
2658 }
2659 }
2660
2661 QLIST_FOREACH(child, &bs->children, next) {
2662 bdrv_io_unplug(child->bs);
2663 }
2664 }