]> git.proxmox.com Git - mirror_qemu.git/blob - block/io.c
hw/acpi: Consolidate build_mcfg to pci.c
[mirror_qemu.git] / block / io.c
1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "qemu/cutils.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35
36 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
37
38 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
39 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
40
41 static void bdrv_parent_cb_resize(BlockDriverState *bs);
42 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
43 int64_t offset, int bytes, BdrvRequestFlags flags);
44
45 void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
46 bool ignore_bds_parents)
47 {
48 BdrvChild *c, *next;
49
50 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
51 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
52 continue;
53 }
54 bdrv_parent_drained_begin_single(c, false);
55 }
56 }
57
58 void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
59 bool ignore_bds_parents)
60 {
61 BdrvChild *c, *next;
62
63 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
64 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
65 continue;
66 }
67 if (c->role->drained_end) {
68 c->role->drained_end(c);
69 }
70 }
71 }
72
73 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
74 {
75 if (c->role->drained_poll) {
76 return c->role->drained_poll(c);
77 }
78 return false;
79 }
80
81 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
82 bool ignore_bds_parents)
83 {
84 BdrvChild *c, *next;
85 bool busy = false;
86
87 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
88 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
89 continue;
90 }
91 busy |= bdrv_parent_drained_poll_single(c);
92 }
93
94 return busy;
95 }
96
97 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
98 {
99 if (c->role->drained_begin) {
100 c->role->drained_begin(c);
101 }
102 if (poll) {
103 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
104 }
105 }
106
107 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
108 {
109 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
110 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
111 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
112 src->opt_mem_alignment);
113 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
114 src->min_mem_alignment);
115 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
116 }
117
118 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
119 {
120 BlockDriver *drv = bs->drv;
121 Error *local_err = NULL;
122
123 memset(&bs->bl, 0, sizeof(bs->bl));
124
125 if (!drv) {
126 return;
127 }
128
129 /* Default alignment based on whether driver has byte interface */
130 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
131 drv->bdrv_aio_preadv) ? 1 : 512;
132
133 /* Take some limits from the children as a default */
134 if (bs->file) {
135 bdrv_refresh_limits(bs->file->bs, &local_err);
136 if (local_err) {
137 error_propagate(errp, local_err);
138 return;
139 }
140 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
141 } else {
142 bs->bl.min_mem_alignment = 512;
143 bs->bl.opt_mem_alignment = getpagesize();
144
145 /* Safe default since most protocols use readv()/writev()/etc */
146 bs->bl.max_iov = IOV_MAX;
147 }
148
149 if (bs->backing) {
150 bdrv_refresh_limits(bs->backing->bs, &local_err);
151 if (local_err) {
152 error_propagate(errp, local_err);
153 return;
154 }
155 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
156 }
157
158 /* Then let the driver override it */
159 if (drv->bdrv_refresh_limits) {
160 drv->bdrv_refresh_limits(bs, errp);
161 }
162 }
163
164 /**
165 * The copy-on-read flag is actually a reference count so multiple users may
166 * use the feature without worrying about clobbering its previous state.
167 * Copy-on-read stays enabled until all users have called to disable it.
168 */
169 void bdrv_enable_copy_on_read(BlockDriverState *bs)
170 {
171 atomic_inc(&bs->copy_on_read);
172 }
173
174 void bdrv_disable_copy_on_read(BlockDriverState *bs)
175 {
176 int old = atomic_fetch_dec(&bs->copy_on_read);
177 assert(old >= 1);
178 }
179
180 typedef struct {
181 Coroutine *co;
182 BlockDriverState *bs;
183 bool done;
184 bool begin;
185 bool recursive;
186 bool poll;
187 BdrvChild *parent;
188 bool ignore_bds_parents;
189 } BdrvCoDrainData;
190
191 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
192 {
193 BdrvCoDrainData *data = opaque;
194 BlockDriverState *bs = data->bs;
195
196 if (data->begin) {
197 bs->drv->bdrv_co_drain_begin(bs);
198 } else {
199 bs->drv->bdrv_co_drain_end(bs);
200 }
201
202 /* Set data->done before reading bs->wakeup. */
203 atomic_mb_set(&data->done, true);
204 bdrv_dec_in_flight(bs);
205
206 if (data->begin) {
207 g_free(data);
208 }
209 }
210
211 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
212 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin)
213 {
214 BdrvCoDrainData *data;
215
216 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
217 (!begin && !bs->drv->bdrv_co_drain_end)) {
218 return;
219 }
220
221 data = g_new(BdrvCoDrainData, 1);
222 *data = (BdrvCoDrainData) {
223 .bs = bs,
224 .done = false,
225 .begin = begin
226 };
227
228 /* Make sure the driver callback completes during the polling phase for
229 * drain_begin. */
230 bdrv_inc_in_flight(bs);
231 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
232 aio_co_schedule(bdrv_get_aio_context(bs), data->co);
233
234 if (!begin) {
235 BDRV_POLL_WHILE(bs, !data->done);
236 g_free(data);
237 }
238 }
239
240 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
241 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
242 BdrvChild *ignore_parent, bool ignore_bds_parents)
243 {
244 BdrvChild *child, *next;
245
246 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
247 return true;
248 }
249
250 if (atomic_read(&bs->in_flight)) {
251 return true;
252 }
253
254 if (recursive) {
255 assert(!ignore_bds_parents);
256 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
257 if (bdrv_drain_poll(child->bs, recursive, child, false)) {
258 return true;
259 }
260 }
261 }
262
263 return false;
264 }
265
266 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
267 BdrvChild *ignore_parent)
268 {
269 return bdrv_drain_poll(bs, recursive, ignore_parent, false);
270 }
271
272 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
273 BdrvChild *parent, bool ignore_bds_parents,
274 bool poll);
275 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
276 BdrvChild *parent, bool ignore_bds_parents);
277
278 static void bdrv_co_drain_bh_cb(void *opaque)
279 {
280 BdrvCoDrainData *data = opaque;
281 Coroutine *co = data->co;
282 BlockDriverState *bs = data->bs;
283
284 if (bs) {
285 AioContext *ctx = bdrv_get_aio_context(bs);
286 AioContext *co_ctx = qemu_coroutine_get_aio_context(co);
287
288 /*
289 * When the coroutine yielded, the lock for its home context was
290 * released, so we need to re-acquire it here. If it explicitly
291 * acquired a different context, the lock is still held and we don't
292 * want to lock it a second time (or AIO_WAIT_WHILE() would hang).
293 */
294 if (ctx == co_ctx) {
295 aio_context_acquire(ctx);
296 }
297 bdrv_dec_in_flight(bs);
298 if (data->begin) {
299 bdrv_do_drained_begin(bs, data->recursive, data->parent,
300 data->ignore_bds_parents, data->poll);
301 } else {
302 bdrv_do_drained_end(bs, data->recursive, data->parent,
303 data->ignore_bds_parents);
304 }
305 if (ctx == co_ctx) {
306 aio_context_release(ctx);
307 }
308 } else {
309 assert(data->begin);
310 bdrv_drain_all_begin();
311 }
312
313 data->done = true;
314 aio_co_wake(co);
315 }
316
317 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
318 bool begin, bool recursive,
319 BdrvChild *parent,
320 bool ignore_bds_parents,
321 bool poll)
322 {
323 BdrvCoDrainData data;
324
325 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
326 * other coroutines run if they were queued by aio_co_enter(). */
327
328 assert(qemu_in_coroutine());
329 data = (BdrvCoDrainData) {
330 .co = qemu_coroutine_self(),
331 .bs = bs,
332 .done = false,
333 .begin = begin,
334 .recursive = recursive,
335 .parent = parent,
336 .ignore_bds_parents = ignore_bds_parents,
337 .poll = poll,
338 };
339 if (bs) {
340 bdrv_inc_in_flight(bs);
341 }
342 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
343 bdrv_co_drain_bh_cb, &data);
344
345 qemu_coroutine_yield();
346 /* If we are resumed from some other event (such as an aio completion or a
347 * timer callback), it is a bug in the caller that should be fixed. */
348 assert(data.done);
349 }
350
351 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
352 BdrvChild *parent, bool ignore_bds_parents)
353 {
354 assert(!qemu_in_coroutine());
355
356 /* Stop things in parent-to-child order */
357 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
358 aio_disable_external(bdrv_get_aio_context(bs));
359 }
360
361 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
362 bdrv_drain_invoke(bs, true);
363 }
364
365 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
366 BdrvChild *parent, bool ignore_bds_parents,
367 bool poll)
368 {
369 BdrvChild *child, *next;
370
371 if (qemu_in_coroutine()) {
372 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
373 poll);
374 return;
375 }
376
377 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
378
379 if (recursive) {
380 assert(!ignore_bds_parents);
381 bs->recursive_quiesce_counter++;
382 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
383 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
384 false);
385 }
386 }
387
388 /*
389 * Wait for drained requests to finish.
390 *
391 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
392 * call is needed so things in this AioContext can make progress even
393 * though we don't return to the main AioContext loop - this automatically
394 * includes other nodes in the same AioContext and therefore all child
395 * nodes.
396 */
397 if (poll) {
398 assert(!ignore_bds_parents);
399 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
400 }
401 }
402
403 void bdrv_drained_begin(BlockDriverState *bs)
404 {
405 bdrv_do_drained_begin(bs, false, NULL, false, true);
406 }
407
408 void bdrv_subtree_drained_begin(BlockDriverState *bs)
409 {
410 bdrv_do_drained_begin(bs, true, NULL, false, true);
411 }
412
413 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
414 BdrvChild *parent, bool ignore_bds_parents)
415 {
416 BdrvChild *child, *next;
417 int old_quiesce_counter;
418
419 if (qemu_in_coroutine()) {
420 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
421 false);
422 return;
423 }
424 assert(bs->quiesce_counter > 0);
425 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
426
427 /* Re-enable things in child-to-parent order */
428 bdrv_drain_invoke(bs, false);
429 bdrv_parent_drained_end(bs, parent, ignore_bds_parents);
430 if (old_quiesce_counter == 1) {
431 aio_enable_external(bdrv_get_aio_context(bs));
432 }
433
434 if (recursive) {
435 assert(!ignore_bds_parents);
436 bs->recursive_quiesce_counter--;
437 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
438 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents);
439 }
440 }
441 }
442
443 void bdrv_drained_end(BlockDriverState *bs)
444 {
445 bdrv_do_drained_end(bs, false, NULL, false);
446 }
447
448 void bdrv_subtree_drained_end(BlockDriverState *bs)
449 {
450 bdrv_do_drained_end(bs, true, NULL, false);
451 }
452
453 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
454 {
455 int i;
456
457 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
458 bdrv_do_drained_begin(child->bs, true, child, false, true);
459 }
460 }
461
462 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
463 {
464 int i;
465
466 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
467 bdrv_do_drained_end(child->bs, true, child, false);
468 }
469 }
470
471 /*
472 * Wait for pending requests to complete on a single BlockDriverState subtree,
473 * and suspend block driver's internal I/O until next request arrives.
474 *
475 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
476 * AioContext.
477 */
478 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
479 {
480 assert(qemu_in_coroutine());
481 bdrv_drained_begin(bs);
482 bdrv_drained_end(bs);
483 }
484
485 void bdrv_drain(BlockDriverState *bs)
486 {
487 bdrv_drained_begin(bs);
488 bdrv_drained_end(bs);
489 }
490
491 static void bdrv_drain_assert_idle(BlockDriverState *bs)
492 {
493 BdrvChild *child, *next;
494
495 assert(atomic_read(&bs->in_flight) == 0);
496 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
497 bdrv_drain_assert_idle(child->bs);
498 }
499 }
500
501 unsigned int bdrv_drain_all_count = 0;
502
503 static bool bdrv_drain_all_poll(void)
504 {
505 BlockDriverState *bs = NULL;
506 bool result = false;
507
508 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
509 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
510 while ((bs = bdrv_next_all_states(bs))) {
511 AioContext *aio_context = bdrv_get_aio_context(bs);
512 aio_context_acquire(aio_context);
513 result |= bdrv_drain_poll(bs, false, NULL, true);
514 aio_context_release(aio_context);
515 }
516
517 return result;
518 }
519
520 /*
521 * Wait for pending requests to complete across all BlockDriverStates
522 *
523 * This function does not flush data to disk, use bdrv_flush_all() for that
524 * after calling this function.
525 *
526 * This pauses all block jobs and disables external clients. It must
527 * be paired with bdrv_drain_all_end().
528 *
529 * NOTE: no new block jobs or BlockDriverStates can be created between
530 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
531 */
532 void bdrv_drain_all_begin(void)
533 {
534 BlockDriverState *bs = NULL;
535
536 if (qemu_in_coroutine()) {
537 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true);
538 return;
539 }
540
541 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
542 * loop AioContext, so make sure we're in the main context. */
543 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
544 assert(bdrv_drain_all_count < INT_MAX);
545 bdrv_drain_all_count++;
546
547 /* Quiesce all nodes, without polling in-flight requests yet. The graph
548 * cannot change during this loop. */
549 while ((bs = bdrv_next_all_states(bs))) {
550 AioContext *aio_context = bdrv_get_aio_context(bs);
551
552 aio_context_acquire(aio_context);
553 bdrv_do_drained_begin(bs, false, NULL, true, false);
554 aio_context_release(aio_context);
555 }
556
557 /* Now poll the in-flight requests */
558 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
559
560 while ((bs = bdrv_next_all_states(bs))) {
561 bdrv_drain_assert_idle(bs);
562 }
563 }
564
565 void bdrv_drain_all_end(void)
566 {
567 BlockDriverState *bs = NULL;
568
569 while ((bs = bdrv_next_all_states(bs))) {
570 AioContext *aio_context = bdrv_get_aio_context(bs);
571
572 aio_context_acquire(aio_context);
573 bdrv_do_drained_end(bs, false, NULL, true);
574 aio_context_release(aio_context);
575 }
576
577 assert(bdrv_drain_all_count > 0);
578 bdrv_drain_all_count--;
579 }
580
581 void bdrv_drain_all(void)
582 {
583 bdrv_drain_all_begin();
584 bdrv_drain_all_end();
585 }
586
587 /**
588 * Remove an active request from the tracked requests list
589 *
590 * This function should be called when a tracked request is completing.
591 */
592 static void tracked_request_end(BdrvTrackedRequest *req)
593 {
594 if (req->serialising) {
595 atomic_dec(&req->bs->serialising_in_flight);
596 }
597
598 qemu_co_mutex_lock(&req->bs->reqs_lock);
599 QLIST_REMOVE(req, list);
600 qemu_co_queue_restart_all(&req->wait_queue);
601 qemu_co_mutex_unlock(&req->bs->reqs_lock);
602 }
603
604 /**
605 * Add an active request to the tracked requests list
606 */
607 static void tracked_request_begin(BdrvTrackedRequest *req,
608 BlockDriverState *bs,
609 int64_t offset,
610 uint64_t bytes,
611 enum BdrvTrackedRequestType type)
612 {
613 assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes);
614
615 *req = (BdrvTrackedRequest){
616 .bs = bs,
617 .offset = offset,
618 .bytes = bytes,
619 .type = type,
620 .co = qemu_coroutine_self(),
621 .serialising = false,
622 .overlap_offset = offset,
623 .overlap_bytes = bytes,
624 };
625
626 qemu_co_queue_init(&req->wait_queue);
627
628 qemu_co_mutex_lock(&bs->reqs_lock);
629 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
630 qemu_co_mutex_unlock(&bs->reqs_lock);
631 }
632
633 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
634 {
635 int64_t overlap_offset = req->offset & ~(align - 1);
636 uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
637 - overlap_offset;
638
639 if (!req->serialising) {
640 atomic_inc(&req->bs->serialising_in_flight);
641 req->serialising = true;
642 }
643
644 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
645 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
646 }
647
648 static bool is_request_serialising_and_aligned(BdrvTrackedRequest *req)
649 {
650 /*
651 * If the request is serialising, overlap_offset and overlap_bytes are set,
652 * so we can check if the request is aligned. Otherwise, don't care and
653 * return false.
654 */
655
656 return req->serialising && (req->offset == req->overlap_offset) &&
657 (req->bytes == req->overlap_bytes);
658 }
659
660 /**
661 * Round a region to cluster boundaries
662 */
663 void bdrv_round_to_clusters(BlockDriverState *bs,
664 int64_t offset, int64_t bytes,
665 int64_t *cluster_offset,
666 int64_t *cluster_bytes)
667 {
668 BlockDriverInfo bdi;
669
670 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
671 *cluster_offset = offset;
672 *cluster_bytes = bytes;
673 } else {
674 int64_t c = bdi.cluster_size;
675 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
676 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
677 }
678 }
679
680 static int bdrv_get_cluster_size(BlockDriverState *bs)
681 {
682 BlockDriverInfo bdi;
683 int ret;
684
685 ret = bdrv_get_info(bs, &bdi);
686 if (ret < 0 || bdi.cluster_size == 0) {
687 return bs->bl.request_alignment;
688 } else {
689 return bdi.cluster_size;
690 }
691 }
692
693 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
694 int64_t offset, uint64_t bytes)
695 {
696 /* aaaa bbbb */
697 if (offset >= req->overlap_offset + req->overlap_bytes) {
698 return false;
699 }
700 /* bbbb aaaa */
701 if (req->overlap_offset >= offset + bytes) {
702 return false;
703 }
704 return true;
705 }
706
707 void bdrv_inc_in_flight(BlockDriverState *bs)
708 {
709 atomic_inc(&bs->in_flight);
710 }
711
712 void bdrv_wakeup(BlockDriverState *bs)
713 {
714 aio_wait_kick();
715 }
716
717 void bdrv_dec_in_flight(BlockDriverState *bs)
718 {
719 atomic_dec(&bs->in_flight);
720 bdrv_wakeup(bs);
721 }
722
723 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
724 {
725 BlockDriverState *bs = self->bs;
726 BdrvTrackedRequest *req;
727 bool retry;
728 bool waited = false;
729
730 if (!atomic_read(&bs->serialising_in_flight)) {
731 return false;
732 }
733
734 do {
735 retry = false;
736 qemu_co_mutex_lock(&bs->reqs_lock);
737 QLIST_FOREACH(req, &bs->tracked_requests, list) {
738 if (req == self || (!req->serialising && !self->serialising)) {
739 continue;
740 }
741 if (tracked_request_overlaps(req, self->overlap_offset,
742 self->overlap_bytes))
743 {
744 /* Hitting this means there was a reentrant request, for
745 * example, a block driver issuing nested requests. This must
746 * never happen since it means deadlock.
747 */
748 assert(qemu_coroutine_self() != req->co);
749
750 /* If the request is already (indirectly) waiting for us, or
751 * will wait for us as soon as it wakes up, then just go on
752 * (instead of producing a deadlock in the former case). */
753 if (!req->waiting_for) {
754 self->waiting_for = req;
755 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
756 self->waiting_for = NULL;
757 retry = true;
758 waited = true;
759 break;
760 }
761 }
762 }
763 qemu_co_mutex_unlock(&bs->reqs_lock);
764 } while (retry);
765
766 return waited;
767 }
768
769 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
770 size_t size)
771 {
772 if (size > BDRV_REQUEST_MAX_BYTES) {
773 return -EIO;
774 }
775
776 if (!bdrv_is_inserted(bs)) {
777 return -ENOMEDIUM;
778 }
779
780 if (offset < 0) {
781 return -EIO;
782 }
783
784 return 0;
785 }
786
787 typedef struct RwCo {
788 BdrvChild *child;
789 int64_t offset;
790 QEMUIOVector *qiov;
791 bool is_write;
792 int ret;
793 BdrvRequestFlags flags;
794 } RwCo;
795
796 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
797 {
798 RwCo *rwco = opaque;
799
800 if (!rwco->is_write) {
801 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
802 rwco->qiov->size, rwco->qiov,
803 rwco->flags);
804 } else {
805 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
806 rwco->qiov->size, rwco->qiov,
807 rwco->flags);
808 }
809 aio_wait_kick();
810 }
811
812 /*
813 * Process a vectored synchronous request using coroutines
814 */
815 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
816 QEMUIOVector *qiov, bool is_write,
817 BdrvRequestFlags flags)
818 {
819 Coroutine *co;
820 RwCo rwco = {
821 .child = child,
822 .offset = offset,
823 .qiov = qiov,
824 .is_write = is_write,
825 .ret = NOT_DONE,
826 .flags = flags,
827 };
828
829 if (qemu_in_coroutine()) {
830 /* Fast-path if already in coroutine context */
831 bdrv_rw_co_entry(&rwco);
832 } else {
833 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
834 bdrv_coroutine_enter(child->bs, co);
835 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
836 }
837 return rwco.ret;
838 }
839
840 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
841 int bytes, BdrvRequestFlags flags)
842 {
843 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
844
845 return bdrv_prwv_co(child, offset, &qiov, true,
846 BDRV_REQ_ZERO_WRITE | flags);
847 }
848
849 /*
850 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
851 * The operation is sped up by checking the block status and only writing
852 * zeroes to the device if they currently do not return zeroes. Optional
853 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
854 * BDRV_REQ_FUA).
855 *
856 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
857 */
858 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
859 {
860 int ret;
861 int64_t target_size, bytes, offset = 0;
862 BlockDriverState *bs = child->bs;
863
864 target_size = bdrv_getlength(bs);
865 if (target_size < 0) {
866 return target_size;
867 }
868
869 for (;;) {
870 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
871 if (bytes <= 0) {
872 return 0;
873 }
874 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
875 if (ret < 0) {
876 return ret;
877 }
878 if (ret & BDRV_BLOCK_ZERO) {
879 offset += bytes;
880 continue;
881 }
882 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
883 if (ret < 0) {
884 return ret;
885 }
886 offset += bytes;
887 }
888 }
889
890 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
891 {
892 int ret;
893
894 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
895 if (ret < 0) {
896 return ret;
897 }
898
899 return qiov->size;
900 }
901
902 /* See bdrv_pwrite() for the return codes */
903 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
904 {
905 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
906
907 if (bytes < 0) {
908 return -EINVAL;
909 }
910
911 return bdrv_preadv(child, offset, &qiov);
912 }
913
914 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
915 {
916 int ret;
917
918 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
919 if (ret < 0) {
920 return ret;
921 }
922
923 return qiov->size;
924 }
925
926 /* Return no. of bytes on success or < 0 on error. Important errors are:
927 -EIO generic I/O error (may happen for all errors)
928 -ENOMEDIUM No media inserted.
929 -EINVAL Invalid offset or number of bytes
930 -EACCES Trying to write a read-only device
931 */
932 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
933 {
934 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
935
936 if (bytes < 0) {
937 return -EINVAL;
938 }
939
940 return bdrv_pwritev(child, offset, &qiov);
941 }
942
943 /*
944 * Writes to the file and ensures that no writes are reordered across this
945 * request (acts as a barrier)
946 *
947 * Returns 0 on success, -errno in error cases.
948 */
949 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
950 const void *buf, int count)
951 {
952 int ret;
953
954 ret = bdrv_pwrite(child, offset, buf, count);
955 if (ret < 0) {
956 return ret;
957 }
958
959 ret = bdrv_flush(child->bs);
960 if (ret < 0) {
961 return ret;
962 }
963
964 return 0;
965 }
966
967 typedef struct CoroutineIOCompletion {
968 Coroutine *coroutine;
969 int ret;
970 } CoroutineIOCompletion;
971
972 static void bdrv_co_io_em_complete(void *opaque, int ret)
973 {
974 CoroutineIOCompletion *co = opaque;
975
976 co->ret = ret;
977 aio_co_wake(co->coroutine);
978 }
979
980 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
981 uint64_t offset, uint64_t bytes,
982 QEMUIOVector *qiov, int flags)
983 {
984 BlockDriver *drv = bs->drv;
985 int64_t sector_num;
986 unsigned int nb_sectors;
987
988 assert(!(flags & ~BDRV_REQ_MASK));
989 assert(!(flags & BDRV_REQ_NO_FALLBACK));
990
991 if (!drv) {
992 return -ENOMEDIUM;
993 }
994
995 if (drv->bdrv_co_preadv) {
996 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
997 }
998
999 if (drv->bdrv_aio_preadv) {
1000 BlockAIOCB *acb;
1001 CoroutineIOCompletion co = {
1002 .coroutine = qemu_coroutine_self(),
1003 };
1004
1005 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1006 bdrv_co_io_em_complete, &co);
1007 if (acb == NULL) {
1008 return -EIO;
1009 } else {
1010 qemu_coroutine_yield();
1011 return co.ret;
1012 }
1013 }
1014
1015 sector_num = offset >> BDRV_SECTOR_BITS;
1016 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1017
1018 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1019 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1020 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1021 assert(drv->bdrv_co_readv);
1022
1023 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1024 }
1025
1026 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1027 uint64_t offset, uint64_t bytes,
1028 QEMUIOVector *qiov, int flags)
1029 {
1030 BlockDriver *drv = bs->drv;
1031 int64_t sector_num;
1032 unsigned int nb_sectors;
1033 int ret;
1034
1035 assert(!(flags & ~BDRV_REQ_MASK));
1036 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1037
1038 if (!drv) {
1039 return -ENOMEDIUM;
1040 }
1041
1042 if (drv->bdrv_co_pwritev) {
1043 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1044 flags & bs->supported_write_flags);
1045 flags &= ~bs->supported_write_flags;
1046 goto emulate_flags;
1047 }
1048
1049 if (drv->bdrv_aio_pwritev) {
1050 BlockAIOCB *acb;
1051 CoroutineIOCompletion co = {
1052 .coroutine = qemu_coroutine_self(),
1053 };
1054
1055 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1056 flags & bs->supported_write_flags,
1057 bdrv_co_io_em_complete, &co);
1058 flags &= ~bs->supported_write_flags;
1059 if (acb == NULL) {
1060 ret = -EIO;
1061 } else {
1062 qemu_coroutine_yield();
1063 ret = co.ret;
1064 }
1065 goto emulate_flags;
1066 }
1067
1068 sector_num = offset >> BDRV_SECTOR_BITS;
1069 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1070
1071 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1072 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1073 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1074
1075 assert(drv->bdrv_co_writev);
1076 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1077 flags & bs->supported_write_flags);
1078 flags &= ~bs->supported_write_flags;
1079
1080 emulate_flags:
1081 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1082 ret = bdrv_co_flush(bs);
1083 }
1084
1085 return ret;
1086 }
1087
1088 static int coroutine_fn
1089 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1090 uint64_t bytes, QEMUIOVector *qiov)
1091 {
1092 BlockDriver *drv = bs->drv;
1093
1094 if (!drv) {
1095 return -ENOMEDIUM;
1096 }
1097
1098 if (!drv->bdrv_co_pwritev_compressed) {
1099 return -ENOTSUP;
1100 }
1101
1102 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1103 }
1104
1105 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1106 int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
1107 {
1108 BlockDriverState *bs = child->bs;
1109
1110 /* Perform I/O through a temporary buffer so that users who scribble over
1111 * their read buffer while the operation is in progress do not end up
1112 * modifying the image file. This is critical for zero-copy guest I/O
1113 * where anything might happen inside guest memory.
1114 */
1115 void *bounce_buffer;
1116
1117 BlockDriver *drv = bs->drv;
1118 QEMUIOVector local_qiov;
1119 int64_t cluster_offset;
1120 int64_t cluster_bytes;
1121 size_t skip_bytes;
1122 int ret;
1123 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1124 BDRV_REQUEST_MAX_BYTES);
1125 unsigned int progress = 0;
1126
1127 if (!drv) {
1128 return -ENOMEDIUM;
1129 }
1130
1131 /* FIXME We cannot require callers to have write permissions when all they
1132 * are doing is a read request. If we did things right, write permissions
1133 * would be obtained anyway, but internally by the copy-on-read code. As
1134 * long as it is implemented here rather than in a separate filter driver,
1135 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1136 * it could request permissions. Therefore we have to bypass the permission
1137 * system for the moment. */
1138 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1139
1140 /* Cover entire cluster so no additional backing file I/O is required when
1141 * allocating cluster in the image file. Note that this value may exceed
1142 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1143 * is one reason we loop rather than doing it all at once.
1144 */
1145 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1146 skip_bytes = offset - cluster_offset;
1147
1148 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1149 cluster_offset, cluster_bytes);
1150
1151 bounce_buffer = qemu_try_blockalign(bs,
1152 MIN(MIN(max_transfer, cluster_bytes),
1153 MAX_BOUNCE_BUFFER));
1154 if (bounce_buffer == NULL) {
1155 ret = -ENOMEM;
1156 goto err;
1157 }
1158
1159 while (cluster_bytes) {
1160 int64_t pnum;
1161
1162 ret = bdrv_is_allocated(bs, cluster_offset,
1163 MIN(cluster_bytes, max_transfer), &pnum);
1164 if (ret < 0) {
1165 /* Safe to treat errors in querying allocation as if
1166 * unallocated; we'll probably fail again soon on the
1167 * read, but at least that will set a decent errno.
1168 */
1169 pnum = MIN(cluster_bytes, max_transfer);
1170 }
1171
1172 /* Stop at EOF if the image ends in the middle of the cluster */
1173 if (ret == 0 && pnum == 0) {
1174 assert(progress >= bytes);
1175 break;
1176 }
1177
1178 assert(skip_bytes < pnum);
1179
1180 if (ret <= 0) {
1181 /* Must copy-on-read; use the bounce buffer */
1182 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1183 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1184
1185 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1186 &local_qiov, 0);
1187 if (ret < 0) {
1188 goto err;
1189 }
1190
1191 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1192 if (drv->bdrv_co_pwrite_zeroes &&
1193 buffer_is_zero(bounce_buffer, pnum)) {
1194 /* FIXME: Should we (perhaps conditionally) be setting
1195 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1196 * that still correctly reads as zero? */
1197 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1198 BDRV_REQ_WRITE_UNCHANGED);
1199 } else {
1200 /* This does not change the data on the disk, it is not
1201 * necessary to flush even in cache=writethrough mode.
1202 */
1203 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1204 &local_qiov,
1205 BDRV_REQ_WRITE_UNCHANGED);
1206 }
1207
1208 if (ret < 0) {
1209 /* It might be okay to ignore write errors for guest
1210 * requests. If this is a deliberate copy-on-read
1211 * then we don't want to ignore the error. Simply
1212 * report it in all cases.
1213 */
1214 goto err;
1215 }
1216
1217 qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes,
1218 pnum - skip_bytes);
1219 } else {
1220 /* Read directly into the destination */
1221 qemu_iovec_init(&local_qiov, qiov->niov);
1222 qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes);
1223 ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size,
1224 &local_qiov, 0);
1225 qemu_iovec_destroy(&local_qiov);
1226 if (ret < 0) {
1227 goto err;
1228 }
1229 }
1230
1231 cluster_offset += pnum;
1232 cluster_bytes -= pnum;
1233 progress += pnum - skip_bytes;
1234 skip_bytes = 0;
1235 }
1236 ret = 0;
1237
1238 err:
1239 qemu_vfree(bounce_buffer);
1240 return ret;
1241 }
1242
1243 /*
1244 * Forwards an already correctly aligned request to the BlockDriver. This
1245 * handles copy on read, zeroing after EOF, and fragmentation of large
1246 * reads; any other features must be implemented by the caller.
1247 */
1248 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1249 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1250 int64_t align, QEMUIOVector *qiov, int flags)
1251 {
1252 BlockDriverState *bs = child->bs;
1253 int64_t total_bytes, max_bytes;
1254 int ret = 0;
1255 uint64_t bytes_remaining = bytes;
1256 int max_transfer;
1257
1258 assert(is_power_of_2(align));
1259 assert((offset & (align - 1)) == 0);
1260 assert((bytes & (align - 1)) == 0);
1261 assert(!qiov || bytes == qiov->size);
1262 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1263 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1264 align);
1265
1266 /* TODO: We would need a per-BDS .supported_read_flags and
1267 * potential fallback support, if we ever implement any read flags
1268 * to pass through to drivers. For now, there aren't any
1269 * passthrough flags. */
1270 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1271
1272 /* Handle Copy on Read and associated serialisation */
1273 if (flags & BDRV_REQ_COPY_ON_READ) {
1274 /* If we touch the same cluster it counts as an overlap. This
1275 * guarantees that allocating writes will be serialized and not race
1276 * with each other for the same cluster. For example, in copy-on-read
1277 * it ensures that the CoR read and write operations are atomic and
1278 * guest writes cannot interleave between them. */
1279 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1280 }
1281
1282 /* BDRV_REQ_SERIALISING is only for write operation */
1283 assert(!(flags & BDRV_REQ_SERIALISING));
1284
1285 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1286 wait_serialising_requests(req);
1287 }
1288
1289 if (flags & BDRV_REQ_COPY_ON_READ) {
1290 int64_t pnum;
1291
1292 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1293 if (ret < 0) {
1294 goto out;
1295 }
1296
1297 if (!ret || pnum != bytes) {
1298 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1299 goto out;
1300 }
1301 }
1302
1303 /* Forward the request to the BlockDriver, possibly fragmenting it */
1304 total_bytes = bdrv_getlength(bs);
1305 if (total_bytes < 0) {
1306 ret = total_bytes;
1307 goto out;
1308 }
1309
1310 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1311 if (bytes <= max_bytes && bytes <= max_transfer) {
1312 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1313 goto out;
1314 }
1315
1316 while (bytes_remaining) {
1317 int num;
1318
1319 if (max_bytes) {
1320 QEMUIOVector local_qiov;
1321
1322 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1323 assert(num);
1324 qemu_iovec_init(&local_qiov, qiov->niov);
1325 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1326
1327 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1328 num, &local_qiov, 0);
1329 max_bytes -= num;
1330 qemu_iovec_destroy(&local_qiov);
1331 } else {
1332 num = bytes_remaining;
1333 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1334 bytes_remaining);
1335 }
1336 if (ret < 0) {
1337 goto out;
1338 }
1339 bytes_remaining -= num;
1340 }
1341
1342 out:
1343 return ret < 0 ? ret : 0;
1344 }
1345
1346 /*
1347 * Handle a read request in coroutine context
1348 */
1349 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1350 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1351 BdrvRequestFlags flags)
1352 {
1353 BlockDriverState *bs = child->bs;
1354 BlockDriver *drv = bs->drv;
1355 BdrvTrackedRequest req;
1356
1357 uint64_t align = bs->bl.request_alignment;
1358 uint8_t *head_buf = NULL;
1359 uint8_t *tail_buf = NULL;
1360 QEMUIOVector local_qiov;
1361 bool use_local_qiov = false;
1362 int ret;
1363
1364 trace_bdrv_co_preadv(child->bs, offset, bytes, flags);
1365
1366 if (!drv) {
1367 return -ENOMEDIUM;
1368 }
1369
1370 ret = bdrv_check_byte_request(bs, offset, bytes);
1371 if (ret < 0) {
1372 return ret;
1373 }
1374
1375 bdrv_inc_in_flight(bs);
1376
1377 /* Don't do copy-on-read if we read data before write operation */
1378 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1379 flags |= BDRV_REQ_COPY_ON_READ;
1380 }
1381
1382 /* Align read if necessary by padding qiov */
1383 if (offset & (align - 1)) {
1384 head_buf = qemu_blockalign(bs, align);
1385 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1386 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1387 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1388 use_local_qiov = true;
1389
1390 bytes += offset & (align - 1);
1391 offset = offset & ~(align - 1);
1392 }
1393
1394 if ((offset + bytes) & (align - 1)) {
1395 if (!use_local_qiov) {
1396 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1397 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1398 use_local_qiov = true;
1399 }
1400 tail_buf = qemu_blockalign(bs, align);
1401 qemu_iovec_add(&local_qiov, tail_buf,
1402 align - ((offset + bytes) & (align - 1)));
1403
1404 bytes = ROUND_UP(bytes, align);
1405 }
1406
1407 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1408 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1409 use_local_qiov ? &local_qiov : qiov,
1410 flags);
1411 tracked_request_end(&req);
1412 bdrv_dec_in_flight(bs);
1413
1414 if (use_local_qiov) {
1415 qemu_iovec_destroy(&local_qiov);
1416 qemu_vfree(head_buf);
1417 qemu_vfree(tail_buf);
1418 }
1419
1420 return ret;
1421 }
1422
1423 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1424 int64_t offset, int bytes, BdrvRequestFlags flags)
1425 {
1426 BlockDriver *drv = bs->drv;
1427 QEMUIOVector qiov;
1428 void *buf = NULL;
1429 int ret = 0;
1430 bool need_flush = false;
1431 int head = 0;
1432 int tail = 0;
1433
1434 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1435 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1436 bs->bl.request_alignment);
1437 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1438
1439 if (!drv) {
1440 return -ENOMEDIUM;
1441 }
1442
1443 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1444 return -ENOTSUP;
1445 }
1446
1447 assert(alignment % bs->bl.request_alignment == 0);
1448 head = offset % alignment;
1449 tail = (offset + bytes) % alignment;
1450 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1451 assert(max_write_zeroes >= bs->bl.request_alignment);
1452
1453 while (bytes > 0 && !ret) {
1454 int num = bytes;
1455
1456 /* Align request. Block drivers can expect the "bulk" of the request
1457 * to be aligned, and that unaligned requests do not cross cluster
1458 * boundaries.
1459 */
1460 if (head) {
1461 /* Make a small request up to the first aligned sector. For
1462 * convenience, limit this request to max_transfer even if
1463 * we don't need to fall back to writes. */
1464 num = MIN(MIN(bytes, max_transfer), alignment - head);
1465 head = (head + num) % alignment;
1466 assert(num < max_write_zeroes);
1467 } else if (tail && num > alignment) {
1468 /* Shorten the request to the last aligned sector. */
1469 num -= tail;
1470 }
1471
1472 /* limit request size */
1473 if (num > max_write_zeroes) {
1474 num = max_write_zeroes;
1475 }
1476
1477 ret = -ENOTSUP;
1478 /* First try the efficient write zeroes operation */
1479 if (drv->bdrv_co_pwrite_zeroes) {
1480 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1481 flags & bs->supported_zero_flags);
1482 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1483 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1484 need_flush = true;
1485 }
1486 } else {
1487 assert(!bs->supported_zero_flags);
1488 }
1489
1490 if (ret < 0 && !(flags & BDRV_REQ_NO_FALLBACK)) {
1491 /* Fall back to bounce buffer if write zeroes is unsupported */
1492 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1493
1494 if ((flags & BDRV_REQ_FUA) &&
1495 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1496 /* No need for bdrv_driver_pwrite() to do a fallback
1497 * flush on each chunk; use just one at the end */
1498 write_flags &= ~BDRV_REQ_FUA;
1499 need_flush = true;
1500 }
1501 num = MIN(num, max_transfer);
1502 if (buf == NULL) {
1503 buf = qemu_try_blockalign0(bs, num);
1504 if (buf == NULL) {
1505 ret = -ENOMEM;
1506 goto fail;
1507 }
1508 }
1509 qemu_iovec_init_buf(&qiov, buf, num);
1510
1511 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1512
1513 /* Keep bounce buffer around if it is big enough for all
1514 * all future requests.
1515 */
1516 if (num < max_transfer) {
1517 qemu_vfree(buf);
1518 buf = NULL;
1519 }
1520 }
1521
1522 offset += num;
1523 bytes -= num;
1524 }
1525
1526 fail:
1527 if (ret == 0 && need_flush) {
1528 ret = bdrv_co_flush(bs);
1529 }
1530 qemu_vfree(buf);
1531 return ret;
1532 }
1533
1534 static inline int coroutine_fn
1535 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes,
1536 BdrvTrackedRequest *req, int flags)
1537 {
1538 BlockDriverState *bs = child->bs;
1539 bool waited;
1540 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1541
1542 if (bs->read_only) {
1543 return -EPERM;
1544 }
1545
1546 /* BDRV_REQ_NO_SERIALISING is only for read operation */
1547 assert(!(flags & BDRV_REQ_NO_SERIALISING));
1548 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1549 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1550 assert(!(flags & ~BDRV_REQ_MASK));
1551
1552 if (flags & BDRV_REQ_SERIALISING) {
1553 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1554 }
1555
1556 waited = wait_serialising_requests(req);
1557
1558 assert(!waited || !req->serialising ||
1559 is_request_serialising_and_aligned(req));
1560 assert(req->overlap_offset <= offset);
1561 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1562 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1563
1564 switch (req->type) {
1565 case BDRV_TRACKED_WRITE:
1566 case BDRV_TRACKED_DISCARD:
1567 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1568 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1569 } else {
1570 assert(child->perm & BLK_PERM_WRITE);
1571 }
1572 return notifier_with_return_list_notify(&bs->before_write_notifiers,
1573 req);
1574 case BDRV_TRACKED_TRUNCATE:
1575 assert(child->perm & BLK_PERM_RESIZE);
1576 return 0;
1577 default:
1578 abort();
1579 }
1580 }
1581
1582 static inline void coroutine_fn
1583 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes,
1584 BdrvTrackedRequest *req, int ret)
1585 {
1586 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1587 BlockDriverState *bs = child->bs;
1588
1589 atomic_inc(&bs->write_gen);
1590
1591 /*
1592 * Discard cannot extend the image, but in error handling cases, such as
1593 * when reverting a qcow2 cluster allocation, the discarded range can pass
1594 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1595 * here. Instead, just skip it, since semantically a discard request
1596 * beyond EOF cannot expand the image anyway.
1597 */
1598 if (ret == 0 &&
1599 (req->type == BDRV_TRACKED_TRUNCATE ||
1600 end_sector > bs->total_sectors) &&
1601 req->type != BDRV_TRACKED_DISCARD) {
1602 bs->total_sectors = end_sector;
1603 bdrv_parent_cb_resize(bs);
1604 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1605 }
1606 if (req->bytes) {
1607 switch (req->type) {
1608 case BDRV_TRACKED_WRITE:
1609 stat64_max(&bs->wr_highest_offset, offset + bytes);
1610 /* fall through, to set dirty bits */
1611 case BDRV_TRACKED_DISCARD:
1612 bdrv_set_dirty(bs, offset, bytes);
1613 break;
1614 default:
1615 break;
1616 }
1617 }
1618 }
1619
1620 /*
1621 * Forwards an already correctly aligned write request to the BlockDriver,
1622 * after possibly fragmenting it.
1623 */
1624 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1625 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1626 int64_t align, QEMUIOVector *qiov, int flags)
1627 {
1628 BlockDriverState *bs = child->bs;
1629 BlockDriver *drv = bs->drv;
1630 int ret;
1631
1632 uint64_t bytes_remaining = bytes;
1633 int max_transfer;
1634
1635 if (!drv) {
1636 return -ENOMEDIUM;
1637 }
1638
1639 if (bdrv_has_readonly_bitmaps(bs)) {
1640 return -EPERM;
1641 }
1642
1643 assert(is_power_of_2(align));
1644 assert((offset & (align - 1)) == 0);
1645 assert((bytes & (align - 1)) == 0);
1646 assert(!qiov || bytes == qiov->size);
1647 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1648 align);
1649
1650 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1651
1652 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1653 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1654 qemu_iovec_is_zero(qiov)) {
1655 flags |= BDRV_REQ_ZERO_WRITE;
1656 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1657 flags |= BDRV_REQ_MAY_UNMAP;
1658 }
1659 }
1660
1661 if (ret < 0) {
1662 /* Do nothing, write notifier decided to fail this request */
1663 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1664 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1665 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1666 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1667 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1668 } else if (bytes <= max_transfer) {
1669 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1670 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1671 } else {
1672 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1673 while (bytes_remaining) {
1674 int num = MIN(bytes_remaining, max_transfer);
1675 QEMUIOVector local_qiov;
1676 int local_flags = flags;
1677
1678 assert(num);
1679 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1680 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1681 /* If FUA is going to be emulated by flush, we only
1682 * need to flush on the last iteration */
1683 local_flags &= ~BDRV_REQ_FUA;
1684 }
1685 qemu_iovec_init(&local_qiov, qiov->niov);
1686 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1687
1688 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1689 num, &local_qiov, local_flags);
1690 qemu_iovec_destroy(&local_qiov);
1691 if (ret < 0) {
1692 break;
1693 }
1694 bytes_remaining -= num;
1695 }
1696 }
1697 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1698
1699 if (ret >= 0) {
1700 ret = 0;
1701 }
1702 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
1703
1704 return ret;
1705 }
1706
1707 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1708 int64_t offset,
1709 unsigned int bytes,
1710 BdrvRequestFlags flags,
1711 BdrvTrackedRequest *req)
1712 {
1713 BlockDriverState *bs = child->bs;
1714 uint8_t *buf = NULL;
1715 QEMUIOVector local_qiov;
1716 uint64_t align = bs->bl.request_alignment;
1717 unsigned int head_padding_bytes, tail_padding_bytes;
1718 int ret = 0;
1719
1720 head_padding_bytes = offset & (align - 1);
1721 tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1722
1723
1724 assert(flags & BDRV_REQ_ZERO_WRITE);
1725 if (head_padding_bytes || tail_padding_bytes) {
1726 buf = qemu_blockalign(bs, align);
1727 qemu_iovec_init_buf(&local_qiov, buf, align);
1728 }
1729 if (head_padding_bytes) {
1730 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1731
1732 /* RMW the unaligned part before head. */
1733 mark_request_serialising(req, align);
1734 wait_serialising_requests(req);
1735 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1736 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1737 align, &local_qiov, 0);
1738 if (ret < 0) {
1739 goto fail;
1740 }
1741 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1742
1743 memset(buf + head_padding_bytes, 0, zero_bytes);
1744 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1745 align, &local_qiov,
1746 flags & ~BDRV_REQ_ZERO_WRITE);
1747 if (ret < 0) {
1748 goto fail;
1749 }
1750 offset += zero_bytes;
1751 bytes -= zero_bytes;
1752 }
1753
1754 assert(!bytes || (offset & (align - 1)) == 0);
1755 if (bytes >= align) {
1756 /* Write the aligned part in the middle. */
1757 uint64_t aligned_bytes = bytes & ~(align - 1);
1758 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1759 NULL, flags);
1760 if (ret < 0) {
1761 goto fail;
1762 }
1763 bytes -= aligned_bytes;
1764 offset += aligned_bytes;
1765 }
1766
1767 assert(!bytes || (offset & (align - 1)) == 0);
1768 if (bytes) {
1769 assert(align == tail_padding_bytes + bytes);
1770 /* RMW the unaligned part after tail. */
1771 mark_request_serialising(req, align);
1772 wait_serialising_requests(req);
1773 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1774 ret = bdrv_aligned_preadv(child, req, offset, align,
1775 align, &local_qiov, 0);
1776 if (ret < 0) {
1777 goto fail;
1778 }
1779 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1780
1781 memset(buf, 0, bytes);
1782 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1783 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1784 }
1785 fail:
1786 qemu_vfree(buf);
1787 return ret;
1788
1789 }
1790
1791 /*
1792 * Handle a write request in coroutine context
1793 */
1794 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1795 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1796 BdrvRequestFlags flags)
1797 {
1798 BlockDriverState *bs = child->bs;
1799 BdrvTrackedRequest req;
1800 uint64_t align = bs->bl.request_alignment;
1801 uint8_t *head_buf = NULL;
1802 uint8_t *tail_buf = NULL;
1803 QEMUIOVector local_qiov;
1804 bool use_local_qiov = false;
1805 int ret;
1806
1807 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
1808
1809 if (!bs->drv) {
1810 return -ENOMEDIUM;
1811 }
1812
1813 ret = bdrv_check_byte_request(bs, offset, bytes);
1814 if (ret < 0) {
1815 return ret;
1816 }
1817
1818 bdrv_inc_in_flight(bs);
1819 /*
1820 * Align write if necessary by performing a read-modify-write cycle.
1821 * Pad qiov with the read parts and be sure to have a tracked request not
1822 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1823 */
1824 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1825
1826 if (flags & BDRV_REQ_ZERO_WRITE) {
1827 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1828 goto out;
1829 }
1830
1831 if (offset & (align - 1)) {
1832 QEMUIOVector head_qiov;
1833
1834 mark_request_serialising(&req, align);
1835 wait_serialising_requests(&req);
1836
1837 head_buf = qemu_blockalign(bs, align);
1838 qemu_iovec_init_buf(&head_qiov, head_buf, align);
1839
1840 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1841 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1842 align, &head_qiov, 0);
1843 if (ret < 0) {
1844 goto fail;
1845 }
1846 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1847
1848 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1849 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1850 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1851 use_local_qiov = true;
1852
1853 bytes += offset & (align - 1);
1854 offset = offset & ~(align - 1);
1855
1856 /* We have read the tail already if the request is smaller
1857 * than one aligned block.
1858 */
1859 if (bytes < align) {
1860 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1861 bytes = align;
1862 }
1863 }
1864
1865 if ((offset + bytes) & (align - 1)) {
1866 QEMUIOVector tail_qiov;
1867 size_t tail_bytes;
1868 bool waited;
1869
1870 mark_request_serialising(&req, align);
1871 waited = wait_serialising_requests(&req);
1872 assert(!waited || !use_local_qiov);
1873
1874 tail_buf = qemu_blockalign(bs, align);
1875 qemu_iovec_init_buf(&tail_qiov, tail_buf, align);
1876
1877 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1878 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1879 align, align, &tail_qiov, 0);
1880 if (ret < 0) {
1881 goto fail;
1882 }
1883 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1884
1885 if (!use_local_qiov) {
1886 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1887 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1888 use_local_qiov = true;
1889 }
1890
1891 tail_bytes = (offset + bytes) & (align - 1);
1892 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1893
1894 bytes = ROUND_UP(bytes, align);
1895 }
1896
1897 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1898 use_local_qiov ? &local_qiov : qiov,
1899 flags);
1900
1901 fail:
1902
1903 if (use_local_qiov) {
1904 qemu_iovec_destroy(&local_qiov);
1905 }
1906 qemu_vfree(head_buf);
1907 qemu_vfree(tail_buf);
1908 out:
1909 tracked_request_end(&req);
1910 bdrv_dec_in_flight(bs);
1911 return ret;
1912 }
1913
1914 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1915 int bytes, BdrvRequestFlags flags)
1916 {
1917 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1918
1919 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1920 flags &= ~BDRV_REQ_MAY_UNMAP;
1921 }
1922
1923 return bdrv_co_pwritev(child, offset, bytes, NULL,
1924 BDRV_REQ_ZERO_WRITE | flags);
1925 }
1926
1927 /*
1928 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1929 */
1930 int bdrv_flush_all(void)
1931 {
1932 BdrvNextIterator it;
1933 BlockDriverState *bs = NULL;
1934 int result = 0;
1935
1936 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1937 AioContext *aio_context = bdrv_get_aio_context(bs);
1938 int ret;
1939
1940 aio_context_acquire(aio_context);
1941 ret = bdrv_flush(bs);
1942 if (ret < 0 && !result) {
1943 result = ret;
1944 }
1945 aio_context_release(aio_context);
1946 }
1947
1948 return result;
1949 }
1950
1951
1952 typedef struct BdrvCoBlockStatusData {
1953 BlockDriverState *bs;
1954 BlockDriverState *base;
1955 bool want_zero;
1956 int64_t offset;
1957 int64_t bytes;
1958 int64_t *pnum;
1959 int64_t *map;
1960 BlockDriverState **file;
1961 int ret;
1962 bool done;
1963 } BdrvCoBlockStatusData;
1964
1965 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs,
1966 bool want_zero,
1967 int64_t offset,
1968 int64_t bytes,
1969 int64_t *pnum,
1970 int64_t *map,
1971 BlockDriverState **file)
1972 {
1973 assert(bs->file && bs->file->bs);
1974 *pnum = bytes;
1975 *map = offset;
1976 *file = bs->file->bs;
1977 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
1978 }
1979
1980 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs,
1981 bool want_zero,
1982 int64_t offset,
1983 int64_t bytes,
1984 int64_t *pnum,
1985 int64_t *map,
1986 BlockDriverState **file)
1987 {
1988 assert(bs->backing && bs->backing->bs);
1989 *pnum = bytes;
1990 *map = offset;
1991 *file = bs->backing->bs;
1992 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
1993 }
1994
1995 /*
1996 * Returns the allocation status of the specified sectors.
1997 * Drivers not implementing the functionality are assumed to not support
1998 * backing files, hence all their sectors are reported as allocated.
1999 *
2000 * If 'want_zero' is true, the caller is querying for mapping
2001 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2002 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2003 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2004 *
2005 * If 'offset' is beyond the end of the disk image the return value is
2006 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2007 *
2008 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2009 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2010 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2011 *
2012 * 'pnum' is set to the number of bytes (including and immediately
2013 * following the specified offset) that are easily known to be in the
2014 * same allocated/unallocated state. Note that a second call starting
2015 * at the original offset plus returned pnum may have the same status.
2016 * The returned value is non-zero on success except at end-of-file.
2017 *
2018 * Returns negative errno on failure. Otherwise, if the
2019 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2020 * set to the host mapping and BDS corresponding to the guest offset.
2021 */
2022 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2023 bool want_zero,
2024 int64_t offset, int64_t bytes,
2025 int64_t *pnum, int64_t *map,
2026 BlockDriverState **file)
2027 {
2028 int64_t total_size;
2029 int64_t n; /* bytes */
2030 int ret;
2031 int64_t local_map = 0;
2032 BlockDriverState *local_file = NULL;
2033 int64_t aligned_offset, aligned_bytes;
2034 uint32_t align;
2035
2036 assert(pnum);
2037 *pnum = 0;
2038 total_size = bdrv_getlength(bs);
2039 if (total_size < 0) {
2040 ret = total_size;
2041 goto early_out;
2042 }
2043
2044 if (offset >= total_size) {
2045 ret = BDRV_BLOCK_EOF;
2046 goto early_out;
2047 }
2048 if (!bytes) {
2049 ret = 0;
2050 goto early_out;
2051 }
2052
2053 n = total_size - offset;
2054 if (n < bytes) {
2055 bytes = n;
2056 }
2057
2058 /* Must be non-NULL or bdrv_getlength() would have failed */
2059 assert(bs->drv);
2060 if (!bs->drv->bdrv_co_block_status) {
2061 *pnum = bytes;
2062 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2063 if (offset + bytes == total_size) {
2064 ret |= BDRV_BLOCK_EOF;
2065 }
2066 if (bs->drv->protocol_name) {
2067 ret |= BDRV_BLOCK_OFFSET_VALID;
2068 local_map = offset;
2069 local_file = bs;
2070 }
2071 goto early_out;
2072 }
2073
2074 bdrv_inc_in_flight(bs);
2075
2076 /* Round out to request_alignment boundaries */
2077 align = bs->bl.request_alignment;
2078 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2079 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2080
2081 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2082 aligned_bytes, pnum, &local_map,
2083 &local_file);
2084 if (ret < 0) {
2085 *pnum = 0;
2086 goto out;
2087 }
2088
2089 /*
2090 * The driver's result must be a non-zero multiple of request_alignment.
2091 * Clamp pnum and adjust map to original request.
2092 */
2093 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2094 align > offset - aligned_offset);
2095 *pnum -= offset - aligned_offset;
2096 if (*pnum > bytes) {
2097 *pnum = bytes;
2098 }
2099 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2100 local_map += offset - aligned_offset;
2101 }
2102
2103 if (ret & BDRV_BLOCK_RAW) {
2104 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2105 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2106 *pnum, pnum, &local_map, &local_file);
2107 goto out;
2108 }
2109
2110 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2111 ret |= BDRV_BLOCK_ALLOCATED;
2112 } else if (want_zero) {
2113 if (bdrv_unallocated_blocks_are_zero(bs)) {
2114 ret |= BDRV_BLOCK_ZERO;
2115 } else if (bs->backing) {
2116 BlockDriverState *bs2 = bs->backing->bs;
2117 int64_t size2 = bdrv_getlength(bs2);
2118
2119 if (size2 >= 0 && offset >= size2) {
2120 ret |= BDRV_BLOCK_ZERO;
2121 }
2122 }
2123 }
2124
2125 if (want_zero && local_file && local_file != bs &&
2126 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2127 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2128 int64_t file_pnum;
2129 int ret2;
2130
2131 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2132 *pnum, &file_pnum, NULL, NULL);
2133 if (ret2 >= 0) {
2134 /* Ignore errors. This is just providing extra information, it
2135 * is useful but not necessary.
2136 */
2137 if (ret2 & BDRV_BLOCK_EOF &&
2138 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2139 /*
2140 * It is valid for the format block driver to read
2141 * beyond the end of the underlying file's current
2142 * size; such areas read as zero.
2143 */
2144 ret |= BDRV_BLOCK_ZERO;
2145 } else {
2146 /* Limit request to the range reported by the protocol driver */
2147 *pnum = file_pnum;
2148 ret |= (ret2 & BDRV_BLOCK_ZERO);
2149 }
2150 }
2151 }
2152
2153 out:
2154 bdrv_dec_in_flight(bs);
2155 if (ret >= 0 && offset + *pnum == total_size) {
2156 ret |= BDRV_BLOCK_EOF;
2157 }
2158 early_out:
2159 if (file) {
2160 *file = local_file;
2161 }
2162 if (map) {
2163 *map = local_map;
2164 }
2165 return ret;
2166 }
2167
2168 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2169 BlockDriverState *base,
2170 bool want_zero,
2171 int64_t offset,
2172 int64_t bytes,
2173 int64_t *pnum,
2174 int64_t *map,
2175 BlockDriverState **file)
2176 {
2177 BlockDriverState *p;
2178 int ret = 0;
2179 bool first = true;
2180
2181 assert(bs != base);
2182 for (p = bs; p != base; p = backing_bs(p)) {
2183 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2184 file);
2185 if (ret < 0) {
2186 break;
2187 }
2188 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2189 /*
2190 * Reading beyond the end of the file continues to read
2191 * zeroes, but we can only widen the result to the
2192 * unallocated length we learned from an earlier
2193 * iteration.
2194 */
2195 *pnum = bytes;
2196 }
2197 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2198 break;
2199 }
2200 /* [offset, pnum] unallocated on this layer, which could be only
2201 * the first part of [offset, bytes]. */
2202 bytes = MIN(bytes, *pnum);
2203 first = false;
2204 }
2205 return ret;
2206 }
2207
2208 /* Coroutine wrapper for bdrv_block_status_above() */
2209 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2210 {
2211 BdrvCoBlockStatusData *data = opaque;
2212
2213 data->ret = bdrv_co_block_status_above(data->bs, data->base,
2214 data->want_zero,
2215 data->offset, data->bytes,
2216 data->pnum, data->map, data->file);
2217 data->done = true;
2218 aio_wait_kick();
2219 }
2220
2221 /*
2222 * Synchronous wrapper around bdrv_co_block_status_above().
2223 *
2224 * See bdrv_co_block_status_above() for details.
2225 */
2226 static int bdrv_common_block_status_above(BlockDriverState *bs,
2227 BlockDriverState *base,
2228 bool want_zero, int64_t offset,
2229 int64_t bytes, int64_t *pnum,
2230 int64_t *map,
2231 BlockDriverState **file)
2232 {
2233 Coroutine *co;
2234 BdrvCoBlockStatusData data = {
2235 .bs = bs,
2236 .base = base,
2237 .want_zero = want_zero,
2238 .offset = offset,
2239 .bytes = bytes,
2240 .pnum = pnum,
2241 .map = map,
2242 .file = file,
2243 .done = false,
2244 };
2245
2246 if (qemu_in_coroutine()) {
2247 /* Fast-path if already in coroutine context */
2248 bdrv_block_status_above_co_entry(&data);
2249 } else {
2250 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2251 bdrv_coroutine_enter(bs, co);
2252 BDRV_POLL_WHILE(bs, !data.done);
2253 }
2254 return data.ret;
2255 }
2256
2257 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2258 int64_t offset, int64_t bytes, int64_t *pnum,
2259 int64_t *map, BlockDriverState **file)
2260 {
2261 return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2262 pnum, map, file);
2263 }
2264
2265 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2266 int64_t *pnum, int64_t *map, BlockDriverState **file)
2267 {
2268 return bdrv_block_status_above(bs, backing_bs(bs),
2269 offset, bytes, pnum, map, file);
2270 }
2271
2272 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2273 int64_t bytes, int64_t *pnum)
2274 {
2275 int ret;
2276 int64_t dummy;
2277
2278 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2279 bytes, pnum ? pnum : &dummy, NULL,
2280 NULL);
2281 if (ret < 0) {
2282 return ret;
2283 }
2284 return !!(ret & BDRV_BLOCK_ALLOCATED);
2285 }
2286
2287 /*
2288 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2289 *
2290 * Return true if (a prefix of) the given range is allocated in any image
2291 * between BASE and TOP (inclusive). BASE can be NULL to check if the given
2292 * offset is allocated in any image of the chain. Return false otherwise,
2293 * or negative errno on failure.
2294 *
2295 * 'pnum' is set to the number of bytes (including and immediately
2296 * following the specified offset) that are known to be in the same
2297 * allocated/unallocated state. Note that a subsequent call starting
2298 * at 'offset + *pnum' may return the same allocation status (in other
2299 * words, the result is not necessarily the maximum possible range);
2300 * but 'pnum' will only be 0 when end of file is reached.
2301 *
2302 */
2303 int bdrv_is_allocated_above(BlockDriverState *top,
2304 BlockDriverState *base,
2305 int64_t offset, int64_t bytes, int64_t *pnum)
2306 {
2307 BlockDriverState *intermediate;
2308 int ret;
2309 int64_t n = bytes;
2310
2311 intermediate = top;
2312 while (intermediate && intermediate != base) {
2313 int64_t pnum_inter;
2314 int64_t size_inter;
2315
2316 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2317 if (ret < 0) {
2318 return ret;
2319 }
2320 if (ret) {
2321 *pnum = pnum_inter;
2322 return 1;
2323 }
2324
2325 size_inter = bdrv_getlength(intermediate);
2326 if (size_inter < 0) {
2327 return size_inter;
2328 }
2329 if (n > pnum_inter &&
2330 (intermediate == top || offset + pnum_inter < size_inter)) {
2331 n = pnum_inter;
2332 }
2333
2334 intermediate = backing_bs(intermediate);
2335 }
2336
2337 *pnum = n;
2338 return 0;
2339 }
2340
2341 typedef struct BdrvVmstateCo {
2342 BlockDriverState *bs;
2343 QEMUIOVector *qiov;
2344 int64_t pos;
2345 bool is_read;
2346 int ret;
2347 } BdrvVmstateCo;
2348
2349 static int coroutine_fn
2350 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2351 bool is_read)
2352 {
2353 BlockDriver *drv = bs->drv;
2354 int ret = -ENOTSUP;
2355
2356 bdrv_inc_in_flight(bs);
2357
2358 if (!drv) {
2359 ret = -ENOMEDIUM;
2360 } else if (drv->bdrv_load_vmstate) {
2361 if (is_read) {
2362 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2363 } else {
2364 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2365 }
2366 } else if (bs->file) {
2367 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2368 }
2369
2370 bdrv_dec_in_flight(bs);
2371 return ret;
2372 }
2373
2374 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2375 {
2376 BdrvVmstateCo *co = opaque;
2377 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2378 aio_wait_kick();
2379 }
2380
2381 static inline int
2382 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2383 bool is_read)
2384 {
2385 if (qemu_in_coroutine()) {
2386 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2387 } else {
2388 BdrvVmstateCo data = {
2389 .bs = bs,
2390 .qiov = qiov,
2391 .pos = pos,
2392 .is_read = is_read,
2393 .ret = -EINPROGRESS,
2394 };
2395 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2396
2397 bdrv_coroutine_enter(bs, co);
2398 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2399 return data.ret;
2400 }
2401 }
2402
2403 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2404 int64_t pos, int size)
2405 {
2406 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2407 int ret;
2408
2409 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2410 if (ret < 0) {
2411 return ret;
2412 }
2413
2414 return size;
2415 }
2416
2417 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2418 {
2419 return bdrv_rw_vmstate(bs, qiov, pos, false);
2420 }
2421
2422 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2423 int64_t pos, int size)
2424 {
2425 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2426 int ret;
2427
2428 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2429 if (ret < 0) {
2430 return ret;
2431 }
2432
2433 return size;
2434 }
2435
2436 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2437 {
2438 return bdrv_rw_vmstate(bs, qiov, pos, true);
2439 }
2440
2441 /**************************************************************/
2442 /* async I/Os */
2443
2444 void bdrv_aio_cancel(BlockAIOCB *acb)
2445 {
2446 qemu_aio_ref(acb);
2447 bdrv_aio_cancel_async(acb);
2448 while (acb->refcnt > 1) {
2449 if (acb->aiocb_info->get_aio_context) {
2450 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2451 } else if (acb->bs) {
2452 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2453 * assert that we're not using an I/O thread. Thread-safe
2454 * code should use bdrv_aio_cancel_async exclusively.
2455 */
2456 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2457 aio_poll(bdrv_get_aio_context(acb->bs), true);
2458 } else {
2459 abort();
2460 }
2461 }
2462 qemu_aio_unref(acb);
2463 }
2464
2465 /* Async version of aio cancel. The caller is not blocked if the acb implements
2466 * cancel_async, otherwise we do nothing and let the request normally complete.
2467 * In either case the completion callback must be called. */
2468 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2469 {
2470 if (acb->aiocb_info->cancel_async) {
2471 acb->aiocb_info->cancel_async(acb);
2472 }
2473 }
2474
2475 /**************************************************************/
2476 /* Coroutine block device emulation */
2477
2478 typedef struct FlushCo {
2479 BlockDriverState *bs;
2480 int ret;
2481 } FlushCo;
2482
2483
2484 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2485 {
2486 FlushCo *rwco = opaque;
2487
2488 rwco->ret = bdrv_co_flush(rwco->bs);
2489 aio_wait_kick();
2490 }
2491
2492 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2493 {
2494 int current_gen;
2495 int ret = 0;
2496
2497 bdrv_inc_in_flight(bs);
2498
2499 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2500 bdrv_is_sg(bs)) {
2501 goto early_exit;
2502 }
2503
2504 qemu_co_mutex_lock(&bs->reqs_lock);
2505 current_gen = atomic_read(&bs->write_gen);
2506
2507 /* Wait until any previous flushes are completed */
2508 while (bs->active_flush_req) {
2509 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2510 }
2511
2512 /* Flushes reach this point in nondecreasing current_gen order. */
2513 bs->active_flush_req = true;
2514 qemu_co_mutex_unlock(&bs->reqs_lock);
2515
2516 /* Write back all layers by calling one driver function */
2517 if (bs->drv->bdrv_co_flush) {
2518 ret = bs->drv->bdrv_co_flush(bs);
2519 goto out;
2520 }
2521
2522 /* Write back cached data to the OS even with cache=unsafe */
2523 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2524 if (bs->drv->bdrv_co_flush_to_os) {
2525 ret = bs->drv->bdrv_co_flush_to_os(bs);
2526 if (ret < 0) {
2527 goto out;
2528 }
2529 }
2530
2531 /* But don't actually force it to the disk with cache=unsafe */
2532 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2533 goto flush_parent;
2534 }
2535
2536 /* Check if we really need to flush anything */
2537 if (bs->flushed_gen == current_gen) {
2538 goto flush_parent;
2539 }
2540
2541 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2542 if (!bs->drv) {
2543 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2544 * (even in case of apparent success) */
2545 ret = -ENOMEDIUM;
2546 goto out;
2547 }
2548 if (bs->drv->bdrv_co_flush_to_disk) {
2549 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2550 } else if (bs->drv->bdrv_aio_flush) {
2551 BlockAIOCB *acb;
2552 CoroutineIOCompletion co = {
2553 .coroutine = qemu_coroutine_self(),
2554 };
2555
2556 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2557 if (acb == NULL) {
2558 ret = -EIO;
2559 } else {
2560 qemu_coroutine_yield();
2561 ret = co.ret;
2562 }
2563 } else {
2564 /*
2565 * Some block drivers always operate in either writethrough or unsafe
2566 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2567 * know how the server works (because the behaviour is hardcoded or
2568 * depends on server-side configuration), so we can't ensure that
2569 * everything is safe on disk. Returning an error doesn't work because
2570 * that would break guests even if the server operates in writethrough
2571 * mode.
2572 *
2573 * Let's hope the user knows what he's doing.
2574 */
2575 ret = 0;
2576 }
2577
2578 if (ret < 0) {
2579 goto out;
2580 }
2581
2582 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2583 * in the case of cache=unsafe, so there are no useless flushes.
2584 */
2585 flush_parent:
2586 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2587 out:
2588 /* Notify any pending flushes that we have completed */
2589 if (ret == 0) {
2590 bs->flushed_gen = current_gen;
2591 }
2592
2593 qemu_co_mutex_lock(&bs->reqs_lock);
2594 bs->active_flush_req = false;
2595 /* Return value is ignored - it's ok if wait queue is empty */
2596 qemu_co_queue_next(&bs->flush_queue);
2597 qemu_co_mutex_unlock(&bs->reqs_lock);
2598
2599 early_exit:
2600 bdrv_dec_in_flight(bs);
2601 return ret;
2602 }
2603
2604 int bdrv_flush(BlockDriverState *bs)
2605 {
2606 Coroutine *co;
2607 FlushCo flush_co = {
2608 .bs = bs,
2609 .ret = NOT_DONE,
2610 };
2611
2612 if (qemu_in_coroutine()) {
2613 /* Fast-path if already in coroutine context */
2614 bdrv_flush_co_entry(&flush_co);
2615 } else {
2616 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2617 bdrv_coroutine_enter(bs, co);
2618 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2619 }
2620
2621 return flush_co.ret;
2622 }
2623
2624 typedef struct DiscardCo {
2625 BdrvChild *child;
2626 int64_t offset;
2627 int bytes;
2628 int ret;
2629 } DiscardCo;
2630 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2631 {
2632 DiscardCo *rwco = opaque;
2633
2634 rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes);
2635 aio_wait_kick();
2636 }
2637
2638 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, int bytes)
2639 {
2640 BdrvTrackedRequest req;
2641 int max_pdiscard, ret;
2642 int head, tail, align;
2643 BlockDriverState *bs = child->bs;
2644
2645 if (!bs || !bs->drv) {
2646 return -ENOMEDIUM;
2647 }
2648
2649 if (bdrv_has_readonly_bitmaps(bs)) {
2650 return -EPERM;
2651 }
2652
2653 ret = bdrv_check_byte_request(bs, offset, bytes);
2654 if (ret < 0) {
2655 return ret;
2656 }
2657
2658 /* Do nothing if disabled. */
2659 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2660 return 0;
2661 }
2662
2663 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2664 return 0;
2665 }
2666
2667 /* Discard is advisory, but some devices track and coalesce
2668 * unaligned requests, so we must pass everything down rather than
2669 * round here. Still, most devices will just silently ignore
2670 * unaligned requests (by returning -ENOTSUP), so we must fragment
2671 * the request accordingly. */
2672 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2673 assert(align % bs->bl.request_alignment == 0);
2674 head = offset % align;
2675 tail = (offset + bytes) % align;
2676
2677 bdrv_inc_in_flight(bs);
2678 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2679
2680 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
2681 if (ret < 0) {
2682 goto out;
2683 }
2684
2685 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2686 align);
2687 assert(max_pdiscard >= bs->bl.request_alignment);
2688
2689 while (bytes > 0) {
2690 int num = bytes;
2691
2692 if (head) {
2693 /* Make small requests to get to alignment boundaries. */
2694 num = MIN(bytes, align - head);
2695 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2696 num %= bs->bl.request_alignment;
2697 }
2698 head = (head + num) % align;
2699 assert(num < max_pdiscard);
2700 } else if (tail) {
2701 if (num > align) {
2702 /* Shorten the request to the last aligned cluster. */
2703 num -= tail;
2704 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2705 tail > bs->bl.request_alignment) {
2706 tail %= bs->bl.request_alignment;
2707 num -= tail;
2708 }
2709 }
2710 /* limit request size */
2711 if (num > max_pdiscard) {
2712 num = max_pdiscard;
2713 }
2714
2715 if (!bs->drv) {
2716 ret = -ENOMEDIUM;
2717 goto out;
2718 }
2719 if (bs->drv->bdrv_co_pdiscard) {
2720 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2721 } else {
2722 BlockAIOCB *acb;
2723 CoroutineIOCompletion co = {
2724 .coroutine = qemu_coroutine_self(),
2725 };
2726
2727 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2728 bdrv_co_io_em_complete, &co);
2729 if (acb == NULL) {
2730 ret = -EIO;
2731 goto out;
2732 } else {
2733 qemu_coroutine_yield();
2734 ret = co.ret;
2735 }
2736 }
2737 if (ret && ret != -ENOTSUP) {
2738 goto out;
2739 }
2740
2741 offset += num;
2742 bytes -= num;
2743 }
2744 ret = 0;
2745 out:
2746 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
2747 tracked_request_end(&req);
2748 bdrv_dec_in_flight(bs);
2749 return ret;
2750 }
2751
2752 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int bytes)
2753 {
2754 Coroutine *co;
2755 DiscardCo rwco = {
2756 .child = child,
2757 .offset = offset,
2758 .bytes = bytes,
2759 .ret = NOT_DONE,
2760 };
2761
2762 if (qemu_in_coroutine()) {
2763 /* Fast-path if already in coroutine context */
2764 bdrv_pdiscard_co_entry(&rwco);
2765 } else {
2766 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2767 bdrv_coroutine_enter(child->bs, co);
2768 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
2769 }
2770
2771 return rwco.ret;
2772 }
2773
2774 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2775 {
2776 BlockDriver *drv = bs->drv;
2777 CoroutineIOCompletion co = {
2778 .coroutine = qemu_coroutine_self(),
2779 };
2780 BlockAIOCB *acb;
2781
2782 bdrv_inc_in_flight(bs);
2783 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2784 co.ret = -ENOTSUP;
2785 goto out;
2786 }
2787
2788 if (drv->bdrv_co_ioctl) {
2789 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2790 } else {
2791 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2792 if (!acb) {
2793 co.ret = -ENOTSUP;
2794 goto out;
2795 }
2796 qemu_coroutine_yield();
2797 }
2798 out:
2799 bdrv_dec_in_flight(bs);
2800 return co.ret;
2801 }
2802
2803 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2804 {
2805 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2806 }
2807
2808 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2809 {
2810 return memset(qemu_blockalign(bs, size), 0, size);
2811 }
2812
2813 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2814 {
2815 size_t align = bdrv_opt_mem_align(bs);
2816
2817 /* Ensure that NULL is never returned on success */
2818 assert(align > 0);
2819 if (size == 0) {
2820 size = align;
2821 }
2822
2823 return qemu_try_memalign(align, size);
2824 }
2825
2826 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2827 {
2828 void *mem = qemu_try_blockalign(bs, size);
2829
2830 if (mem) {
2831 memset(mem, 0, size);
2832 }
2833
2834 return mem;
2835 }
2836
2837 /*
2838 * Check if all memory in this vector is sector aligned.
2839 */
2840 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2841 {
2842 int i;
2843 size_t alignment = bdrv_min_mem_align(bs);
2844
2845 for (i = 0; i < qiov->niov; i++) {
2846 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2847 return false;
2848 }
2849 if (qiov->iov[i].iov_len % alignment) {
2850 return false;
2851 }
2852 }
2853
2854 return true;
2855 }
2856
2857 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2858 NotifierWithReturn *notifier)
2859 {
2860 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2861 }
2862
2863 void bdrv_io_plug(BlockDriverState *bs)
2864 {
2865 BdrvChild *child;
2866
2867 QLIST_FOREACH(child, &bs->children, next) {
2868 bdrv_io_plug(child->bs);
2869 }
2870
2871 if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2872 BlockDriver *drv = bs->drv;
2873 if (drv && drv->bdrv_io_plug) {
2874 drv->bdrv_io_plug(bs);
2875 }
2876 }
2877 }
2878
2879 void bdrv_io_unplug(BlockDriverState *bs)
2880 {
2881 BdrvChild *child;
2882
2883 assert(bs->io_plugged);
2884 if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2885 BlockDriver *drv = bs->drv;
2886 if (drv && drv->bdrv_io_unplug) {
2887 drv->bdrv_io_unplug(bs);
2888 }
2889 }
2890
2891 QLIST_FOREACH(child, &bs->children, next) {
2892 bdrv_io_unplug(child->bs);
2893 }
2894 }
2895
2896 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
2897 {
2898 BdrvChild *child;
2899
2900 if (bs->drv && bs->drv->bdrv_register_buf) {
2901 bs->drv->bdrv_register_buf(bs, host, size);
2902 }
2903 QLIST_FOREACH(child, &bs->children, next) {
2904 bdrv_register_buf(child->bs, host, size);
2905 }
2906 }
2907
2908 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
2909 {
2910 BdrvChild *child;
2911
2912 if (bs->drv && bs->drv->bdrv_unregister_buf) {
2913 bs->drv->bdrv_unregister_buf(bs, host);
2914 }
2915 QLIST_FOREACH(child, &bs->children, next) {
2916 bdrv_unregister_buf(child->bs, host);
2917 }
2918 }
2919
2920 static int coroutine_fn bdrv_co_copy_range_internal(
2921 BdrvChild *src, uint64_t src_offset, BdrvChild *dst,
2922 uint64_t dst_offset, uint64_t bytes,
2923 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
2924 bool recurse_src)
2925 {
2926 BdrvTrackedRequest req;
2927 int ret;
2928
2929 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
2930 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
2931 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
2932
2933 if (!dst || !dst->bs) {
2934 return -ENOMEDIUM;
2935 }
2936 ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes);
2937 if (ret) {
2938 return ret;
2939 }
2940 if (write_flags & BDRV_REQ_ZERO_WRITE) {
2941 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
2942 }
2943
2944 if (!src || !src->bs) {
2945 return -ENOMEDIUM;
2946 }
2947 ret = bdrv_check_byte_request(src->bs, src_offset, bytes);
2948 if (ret) {
2949 return ret;
2950 }
2951
2952 if (!src->bs->drv->bdrv_co_copy_range_from
2953 || !dst->bs->drv->bdrv_co_copy_range_to
2954 || src->bs->encrypted || dst->bs->encrypted) {
2955 return -ENOTSUP;
2956 }
2957
2958 if (recurse_src) {
2959 bdrv_inc_in_flight(src->bs);
2960 tracked_request_begin(&req, src->bs, src_offset, bytes,
2961 BDRV_TRACKED_READ);
2962
2963 /* BDRV_REQ_SERIALISING is only for write operation */
2964 assert(!(read_flags & BDRV_REQ_SERIALISING));
2965 if (!(read_flags & BDRV_REQ_NO_SERIALISING)) {
2966 wait_serialising_requests(&req);
2967 }
2968
2969 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
2970 src, src_offset,
2971 dst, dst_offset,
2972 bytes,
2973 read_flags, write_flags);
2974
2975 tracked_request_end(&req);
2976 bdrv_dec_in_flight(src->bs);
2977 } else {
2978 bdrv_inc_in_flight(dst->bs);
2979 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
2980 BDRV_TRACKED_WRITE);
2981 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
2982 write_flags);
2983 if (!ret) {
2984 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
2985 src, src_offset,
2986 dst, dst_offset,
2987 bytes,
2988 read_flags, write_flags);
2989 }
2990 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
2991 tracked_request_end(&req);
2992 bdrv_dec_in_flight(dst->bs);
2993 }
2994
2995 return ret;
2996 }
2997
2998 /* Copy range from @src to @dst.
2999 *
3000 * See the comment of bdrv_co_copy_range for the parameter and return value
3001 * semantics. */
3002 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset,
3003 BdrvChild *dst, uint64_t dst_offset,
3004 uint64_t bytes,
3005 BdrvRequestFlags read_flags,
3006 BdrvRequestFlags write_flags)
3007 {
3008 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3009 read_flags, write_flags);
3010 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3011 bytes, read_flags, write_flags, true);
3012 }
3013
3014 /* Copy range from @src to @dst.
3015 *
3016 * See the comment of bdrv_co_copy_range for the parameter and return value
3017 * semantics. */
3018 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset,
3019 BdrvChild *dst, uint64_t dst_offset,
3020 uint64_t bytes,
3021 BdrvRequestFlags read_flags,
3022 BdrvRequestFlags write_flags)
3023 {
3024 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3025 read_flags, write_flags);
3026 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3027 bytes, read_flags, write_flags, false);
3028 }
3029
3030 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset,
3031 BdrvChild *dst, uint64_t dst_offset,
3032 uint64_t bytes, BdrvRequestFlags read_flags,
3033 BdrvRequestFlags write_flags)
3034 {
3035 return bdrv_co_copy_range_from(src, src_offset,
3036 dst, dst_offset,
3037 bytes, read_flags, write_flags);
3038 }
3039
3040 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3041 {
3042 BdrvChild *c;
3043 QLIST_FOREACH(c, &bs->parents, next_parent) {
3044 if (c->role->resize) {
3045 c->role->resize(c);
3046 }
3047 }
3048 }
3049
3050 /**
3051 * Truncate file to 'offset' bytes (needed only for file protocols)
3052 */
3053 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset,
3054 PreallocMode prealloc, Error **errp)
3055 {
3056 BlockDriverState *bs = child->bs;
3057 BlockDriver *drv = bs->drv;
3058 BdrvTrackedRequest req;
3059 int64_t old_size, new_bytes;
3060 int ret;
3061
3062
3063 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3064 if (!drv) {
3065 error_setg(errp, "No medium inserted");
3066 return -ENOMEDIUM;
3067 }
3068 if (offset < 0) {
3069 error_setg(errp, "Image size cannot be negative");
3070 return -EINVAL;
3071 }
3072
3073 old_size = bdrv_getlength(bs);
3074 if (old_size < 0) {
3075 error_setg_errno(errp, -old_size, "Failed to get old image size");
3076 return old_size;
3077 }
3078
3079 if (offset > old_size) {
3080 new_bytes = offset - old_size;
3081 } else {
3082 new_bytes = 0;
3083 }
3084
3085 bdrv_inc_in_flight(bs);
3086 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3087 BDRV_TRACKED_TRUNCATE);
3088
3089 /* If we are growing the image and potentially using preallocation for the
3090 * new area, we need to make sure that no write requests are made to it
3091 * concurrently or they might be overwritten by preallocation. */
3092 if (new_bytes) {
3093 mark_request_serialising(&req, 1);
3094 }
3095 if (bs->read_only) {
3096 error_setg(errp, "Image is read-only");
3097 ret = -EACCES;
3098 goto out;
3099 }
3100 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3101 0);
3102 if (ret < 0) {
3103 error_setg_errno(errp, -ret,
3104 "Failed to prepare request for truncation");
3105 goto out;
3106 }
3107
3108 if (!drv->bdrv_co_truncate) {
3109 if (bs->file && drv->is_filter) {
3110 ret = bdrv_co_truncate(bs->file, offset, prealloc, errp);
3111 goto out;
3112 }
3113 error_setg(errp, "Image format driver does not support resize");
3114 ret = -ENOTSUP;
3115 goto out;
3116 }
3117
3118 ret = drv->bdrv_co_truncate(bs, offset, prealloc, errp);
3119 if (ret < 0) {
3120 goto out;
3121 }
3122 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3123 if (ret < 0) {
3124 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3125 } else {
3126 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3127 }
3128 /* It's possible that truncation succeeded but refresh_total_sectors
3129 * failed, but the latter doesn't affect how we should finish the request.
3130 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3131 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3132
3133 out:
3134 tracked_request_end(&req);
3135 bdrv_dec_in_flight(bs);
3136
3137 return ret;
3138 }
3139
3140 typedef struct TruncateCo {
3141 BdrvChild *child;
3142 int64_t offset;
3143 PreallocMode prealloc;
3144 Error **errp;
3145 int ret;
3146 } TruncateCo;
3147
3148 static void coroutine_fn bdrv_truncate_co_entry(void *opaque)
3149 {
3150 TruncateCo *tco = opaque;
3151 tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->prealloc,
3152 tco->errp);
3153 aio_wait_kick();
3154 }
3155
3156 int bdrv_truncate(BdrvChild *child, int64_t offset, PreallocMode prealloc,
3157 Error **errp)
3158 {
3159 Coroutine *co;
3160 TruncateCo tco = {
3161 .child = child,
3162 .offset = offset,
3163 .prealloc = prealloc,
3164 .errp = errp,
3165 .ret = NOT_DONE,
3166 };
3167
3168 if (qemu_in_coroutine()) {
3169 /* Fast-path if already in coroutine context */
3170 bdrv_truncate_co_entry(&tco);
3171 } else {
3172 co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco);
3173 bdrv_coroutine_enter(child->bs, co);
3174 BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE);
3175 }
3176
3177 return tco.ret;
3178 }