]> git.proxmox.com Git - mirror_qemu.git/blob - block/io.c
block: fix possible reorder of flush operations
[mirror_qemu.git] / block / io.c
1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/block_int.h"
30 #include "qemu/cutils.h"
31 #include "qapi/error.h"
32 #include "qemu/error-report.h"
33
34 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
35
36 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child,
37 int64_t offset,
38 QEMUIOVector *qiov,
39 BdrvRequestFlags flags,
40 BlockCompletionFunc *cb,
41 void *opaque,
42 bool is_write);
43 static void coroutine_fn bdrv_co_do_rw(void *opaque);
44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
45 int64_t offset, int count, BdrvRequestFlags flags);
46
47 static void bdrv_parent_drained_begin(BlockDriverState *bs)
48 {
49 BdrvChild *c;
50
51 QLIST_FOREACH(c, &bs->parents, next_parent) {
52 if (c->role->drained_begin) {
53 c->role->drained_begin(c);
54 }
55 }
56 }
57
58 static void bdrv_parent_drained_end(BlockDriverState *bs)
59 {
60 BdrvChild *c;
61
62 QLIST_FOREACH(c, &bs->parents, next_parent) {
63 if (c->role->drained_end) {
64 c->role->drained_end(c);
65 }
66 }
67 }
68
69 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
70 {
71 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
72 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
73 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
74 src->opt_mem_alignment);
75 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
76 src->min_mem_alignment);
77 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
78 }
79
80 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
81 {
82 BlockDriver *drv = bs->drv;
83 Error *local_err = NULL;
84
85 memset(&bs->bl, 0, sizeof(bs->bl));
86
87 if (!drv) {
88 return;
89 }
90
91 /* Default alignment based on whether driver has byte interface */
92 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
93
94 /* Take some limits from the children as a default */
95 if (bs->file) {
96 bdrv_refresh_limits(bs->file->bs, &local_err);
97 if (local_err) {
98 error_propagate(errp, local_err);
99 return;
100 }
101 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
102 } else {
103 bs->bl.min_mem_alignment = 512;
104 bs->bl.opt_mem_alignment = getpagesize();
105
106 /* Safe default since most protocols use readv()/writev()/etc */
107 bs->bl.max_iov = IOV_MAX;
108 }
109
110 if (bs->backing) {
111 bdrv_refresh_limits(bs->backing->bs, &local_err);
112 if (local_err) {
113 error_propagate(errp, local_err);
114 return;
115 }
116 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
117 }
118
119 /* Then let the driver override it */
120 if (drv->bdrv_refresh_limits) {
121 drv->bdrv_refresh_limits(bs, errp);
122 }
123 }
124
125 /**
126 * The copy-on-read flag is actually a reference count so multiple users may
127 * use the feature without worrying about clobbering its previous state.
128 * Copy-on-read stays enabled until all users have called to disable it.
129 */
130 void bdrv_enable_copy_on_read(BlockDriverState *bs)
131 {
132 bs->copy_on_read++;
133 }
134
135 void bdrv_disable_copy_on_read(BlockDriverState *bs)
136 {
137 assert(bs->copy_on_read > 0);
138 bs->copy_on_read--;
139 }
140
141 /* Check if any requests are in-flight (including throttled requests) */
142 bool bdrv_requests_pending(BlockDriverState *bs)
143 {
144 BdrvChild *child;
145
146 if (!QLIST_EMPTY(&bs->tracked_requests)) {
147 return true;
148 }
149
150 QLIST_FOREACH(child, &bs->children, next) {
151 if (bdrv_requests_pending(child->bs)) {
152 return true;
153 }
154 }
155
156 return false;
157 }
158
159 static void bdrv_drain_recurse(BlockDriverState *bs)
160 {
161 BdrvChild *child;
162
163 if (bs->drv && bs->drv->bdrv_drain) {
164 bs->drv->bdrv_drain(bs);
165 }
166 QLIST_FOREACH(child, &bs->children, next) {
167 bdrv_drain_recurse(child->bs);
168 }
169 }
170
171 typedef struct {
172 Coroutine *co;
173 BlockDriverState *bs;
174 QEMUBH *bh;
175 bool done;
176 } BdrvCoDrainData;
177
178 static void bdrv_drain_poll(BlockDriverState *bs)
179 {
180 bool busy = true;
181
182 while (busy) {
183 /* Keep iterating */
184 busy = bdrv_requests_pending(bs);
185 busy |= aio_poll(bdrv_get_aio_context(bs), busy);
186 }
187 }
188
189 static void bdrv_co_drain_bh_cb(void *opaque)
190 {
191 BdrvCoDrainData *data = opaque;
192 Coroutine *co = data->co;
193
194 qemu_bh_delete(data->bh);
195 bdrv_drain_poll(data->bs);
196 data->done = true;
197 qemu_coroutine_enter(co);
198 }
199
200 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs)
201 {
202 BdrvCoDrainData data;
203
204 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
205 * other coroutines run if they were queued from
206 * qemu_co_queue_run_restart(). */
207
208 assert(qemu_in_coroutine());
209 data = (BdrvCoDrainData) {
210 .co = qemu_coroutine_self(),
211 .bs = bs,
212 .done = false,
213 .bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_drain_bh_cb, &data),
214 };
215 qemu_bh_schedule(data.bh);
216
217 qemu_coroutine_yield();
218 /* If we are resumed from some other event (such as an aio completion or a
219 * timer callback), it is a bug in the caller that should be fixed. */
220 assert(data.done);
221 }
222
223 void bdrv_drained_begin(BlockDriverState *bs)
224 {
225 if (!bs->quiesce_counter++) {
226 aio_disable_external(bdrv_get_aio_context(bs));
227 bdrv_parent_drained_begin(bs);
228 }
229
230 bdrv_io_unplugged_begin(bs);
231 bdrv_drain_recurse(bs);
232 if (qemu_in_coroutine()) {
233 bdrv_co_yield_to_drain(bs);
234 } else {
235 bdrv_drain_poll(bs);
236 }
237 bdrv_io_unplugged_end(bs);
238 }
239
240 void bdrv_drained_end(BlockDriverState *bs)
241 {
242 assert(bs->quiesce_counter > 0);
243 if (--bs->quiesce_counter > 0) {
244 return;
245 }
246
247 bdrv_parent_drained_end(bs);
248 aio_enable_external(bdrv_get_aio_context(bs));
249 }
250
251 /*
252 * Wait for pending requests to complete on a single BlockDriverState subtree,
253 * and suspend block driver's internal I/O until next request arrives.
254 *
255 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
256 * AioContext.
257 *
258 * Only this BlockDriverState's AioContext is run, so in-flight requests must
259 * not depend on events in other AioContexts. In that case, use
260 * bdrv_drain_all() instead.
261 */
262 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
263 {
264 assert(qemu_in_coroutine());
265 bdrv_drained_begin(bs);
266 bdrv_drained_end(bs);
267 }
268
269 void bdrv_drain(BlockDriverState *bs)
270 {
271 bdrv_drained_begin(bs);
272 bdrv_drained_end(bs);
273 }
274
275 /*
276 * Wait for pending requests to complete across all BlockDriverStates
277 *
278 * This function does not flush data to disk, use bdrv_flush_all() for that
279 * after calling this function.
280 */
281 void bdrv_drain_all(void)
282 {
283 /* Always run first iteration so any pending completion BHs run */
284 bool busy = true;
285 BlockDriverState *bs;
286 BdrvNextIterator it;
287 BlockJob *job = NULL;
288 GSList *aio_ctxs = NULL, *ctx;
289
290 while ((job = block_job_next(job))) {
291 AioContext *aio_context = blk_get_aio_context(job->blk);
292
293 aio_context_acquire(aio_context);
294 block_job_pause(job);
295 aio_context_release(aio_context);
296 }
297
298 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
299 AioContext *aio_context = bdrv_get_aio_context(bs);
300
301 aio_context_acquire(aio_context);
302 bdrv_parent_drained_begin(bs);
303 bdrv_io_unplugged_begin(bs);
304 bdrv_drain_recurse(bs);
305 aio_context_release(aio_context);
306
307 if (!g_slist_find(aio_ctxs, aio_context)) {
308 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
309 }
310 }
311
312 /* Note that completion of an asynchronous I/O operation can trigger any
313 * number of other I/O operations on other devices---for example a
314 * coroutine can submit an I/O request to another device in response to
315 * request completion. Therefore we must keep looping until there was no
316 * more activity rather than simply draining each device independently.
317 */
318 while (busy) {
319 busy = false;
320
321 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
322 AioContext *aio_context = ctx->data;
323
324 aio_context_acquire(aio_context);
325 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
326 if (aio_context == bdrv_get_aio_context(bs)) {
327 if (bdrv_requests_pending(bs)) {
328 busy = true;
329 aio_poll(aio_context, busy);
330 }
331 }
332 }
333 busy |= aio_poll(aio_context, false);
334 aio_context_release(aio_context);
335 }
336 }
337
338 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
339 AioContext *aio_context = bdrv_get_aio_context(bs);
340
341 aio_context_acquire(aio_context);
342 bdrv_io_unplugged_end(bs);
343 bdrv_parent_drained_end(bs);
344 aio_context_release(aio_context);
345 }
346 g_slist_free(aio_ctxs);
347
348 job = NULL;
349 while ((job = block_job_next(job))) {
350 AioContext *aio_context = blk_get_aio_context(job->blk);
351
352 aio_context_acquire(aio_context);
353 block_job_resume(job);
354 aio_context_release(aio_context);
355 }
356 }
357
358 /**
359 * Remove an active request from the tracked requests list
360 *
361 * This function should be called when a tracked request is completing.
362 */
363 static void tracked_request_end(BdrvTrackedRequest *req)
364 {
365 if (req->serialising) {
366 req->bs->serialising_in_flight--;
367 }
368
369 QLIST_REMOVE(req, list);
370 qemu_co_queue_restart_all(&req->wait_queue);
371 }
372
373 /**
374 * Add an active request to the tracked requests list
375 */
376 static void tracked_request_begin(BdrvTrackedRequest *req,
377 BlockDriverState *bs,
378 int64_t offset,
379 unsigned int bytes,
380 enum BdrvTrackedRequestType type)
381 {
382 *req = (BdrvTrackedRequest){
383 .bs = bs,
384 .offset = offset,
385 .bytes = bytes,
386 .type = type,
387 .co = qemu_coroutine_self(),
388 .serialising = false,
389 .overlap_offset = offset,
390 .overlap_bytes = bytes,
391 };
392
393 qemu_co_queue_init(&req->wait_queue);
394
395 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
396 }
397
398 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
399 {
400 int64_t overlap_offset = req->offset & ~(align - 1);
401 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
402 - overlap_offset;
403
404 if (!req->serialising) {
405 req->bs->serialising_in_flight++;
406 req->serialising = true;
407 }
408
409 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
410 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
411 }
412
413 /**
414 * Round a region to cluster boundaries (sector-based)
415 */
416 void bdrv_round_sectors_to_clusters(BlockDriverState *bs,
417 int64_t sector_num, int nb_sectors,
418 int64_t *cluster_sector_num,
419 int *cluster_nb_sectors)
420 {
421 BlockDriverInfo bdi;
422
423 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
424 *cluster_sector_num = sector_num;
425 *cluster_nb_sectors = nb_sectors;
426 } else {
427 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
428 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
429 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
430 nb_sectors, c);
431 }
432 }
433
434 /**
435 * Round a region to cluster boundaries
436 */
437 void bdrv_round_to_clusters(BlockDriverState *bs,
438 int64_t offset, unsigned int bytes,
439 int64_t *cluster_offset,
440 unsigned int *cluster_bytes)
441 {
442 BlockDriverInfo bdi;
443
444 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
445 *cluster_offset = offset;
446 *cluster_bytes = bytes;
447 } else {
448 int64_t c = bdi.cluster_size;
449 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
450 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
451 }
452 }
453
454 static int bdrv_get_cluster_size(BlockDriverState *bs)
455 {
456 BlockDriverInfo bdi;
457 int ret;
458
459 ret = bdrv_get_info(bs, &bdi);
460 if (ret < 0 || bdi.cluster_size == 0) {
461 return bs->bl.request_alignment;
462 } else {
463 return bdi.cluster_size;
464 }
465 }
466
467 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
468 int64_t offset, unsigned int bytes)
469 {
470 /* aaaa bbbb */
471 if (offset >= req->overlap_offset + req->overlap_bytes) {
472 return false;
473 }
474 /* bbbb aaaa */
475 if (req->overlap_offset >= offset + bytes) {
476 return false;
477 }
478 return true;
479 }
480
481 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
482 {
483 BlockDriverState *bs = self->bs;
484 BdrvTrackedRequest *req;
485 bool retry;
486 bool waited = false;
487
488 if (!bs->serialising_in_flight) {
489 return false;
490 }
491
492 do {
493 retry = false;
494 QLIST_FOREACH(req, &bs->tracked_requests, list) {
495 if (req == self || (!req->serialising && !self->serialising)) {
496 continue;
497 }
498 if (tracked_request_overlaps(req, self->overlap_offset,
499 self->overlap_bytes))
500 {
501 /* Hitting this means there was a reentrant request, for
502 * example, a block driver issuing nested requests. This must
503 * never happen since it means deadlock.
504 */
505 assert(qemu_coroutine_self() != req->co);
506
507 /* If the request is already (indirectly) waiting for us, or
508 * will wait for us as soon as it wakes up, then just go on
509 * (instead of producing a deadlock in the former case). */
510 if (!req->waiting_for) {
511 self->waiting_for = req;
512 qemu_co_queue_wait(&req->wait_queue);
513 self->waiting_for = NULL;
514 retry = true;
515 waited = true;
516 break;
517 }
518 }
519 }
520 } while (retry);
521
522 return waited;
523 }
524
525 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
526 size_t size)
527 {
528 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
529 return -EIO;
530 }
531
532 if (!bdrv_is_inserted(bs)) {
533 return -ENOMEDIUM;
534 }
535
536 if (offset < 0) {
537 return -EIO;
538 }
539
540 return 0;
541 }
542
543 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
544 int nb_sectors)
545 {
546 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
547 return -EIO;
548 }
549
550 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
551 nb_sectors * BDRV_SECTOR_SIZE);
552 }
553
554 typedef struct RwCo {
555 BdrvChild *child;
556 int64_t offset;
557 QEMUIOVector *qiov;
558 bool is_write;
559 int ret;
560 BdrvRequestFlags flags;
561 } RwCo;
562
563 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
564 {
565 RwCo *rwco = opaque;
566
567 if (!rwco->is_write) {
568 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
569 rwco->qiov->size, rwco->qiov,
570 rwco->flags);
571 } else {
572 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
573 rwco->qiov->size, rwco->qiov,
574 rwco->flags);
575 }
576 }
577
578 /*
579 * Process a vectored synchronous request using coroutines
580 */
581 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
582 QEMUIOVector *qiov, bool is_write,
583 BdrvRequestFlags flags)
584 {
585 Coroutine *co;
586 RwCo rwco = {
587 .child = child,
588 .offset = offset,
589 .qiov = qiov,
590 .is_write = is_write,
591 .ret = NOT_DONE,
592 .flags = flags,
593 };
594
595 if (qemu_in_coroutine()) {
596 /* Fast-path if already in coroutine context */
597 bdrv_rw_co_entry(&rwco);
598 } else {
599 AioContext *aio_context = bdrv_get_aio_context(child->bs);
600
601 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
602 qemu_coroutine_enter(co);
603 while (rwco.ret == NOT_DONE) {
604 aio_poll(aio_context, true);
605 }
606 }
607 return rwco.ret;
608 }
609
610 /*
611 * Process a synchronous request using coroutines
612 */
613 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
614 int nb_sectors, bool is_write, BdrvRequestFlags flags)
615 {
616 QEMUIOVector qiov;
617 struct iovec iov = {
618 .iov_base = (void *)buf,
619 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
620 };
621
622 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
623 return -EINVAL;
624 }
625
626 qemu_iovec_init_external(&qiov, &iov, 1);
627 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
628 &qiov, is_write, flags);
629 }
630
631 /* return < 0 if error. See bdrv_write() for the return codes */
632 int bdrv_read(BdrvChild *child, int64_t sector_num,
633 uint8_t *buf, int nb_sectors)
634 {
635 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
636 }
637
638 /* Return < 0 if error. Important errors are:
639 -EIO generic I/O error (may happen for all errors)
640 -ENOMEDIUM No media inserted.
641 -EINVAL Invalid sector number or nb_sectors
642 -EACCES Trying to write a read-only device
643 */
644 int bdrv_write(BdrvChild *child, int64_t sector_num,
645 const uint8_t *buf, int nb_sectors)
646 {
647 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
648 }
649
650 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
651 int count, BdrvRequestFlags flags)
652 {
653 QEMUIOVector qiov;
654 struct iovec iov = {
655 .iov_base = NULL,
656 .iov_len = count,
657 };
658
659 qemu_iovec_init_external(&qiov, &iov, 1);
660 return bdrv_prwv_co(child, offset, &qiov, true,
661 BDRV_REQ_ZERO_WRITE | flags);
662 }
663
664 /*
665 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
666 * The operation is sped up by checking the block status and only writing
667 * zeroes to the device if they currently do not return zeroes. Optional
668 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
669 * BDRV_REQ_FUA).
670 *
671 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
672 */
673 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
674 {
675 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
676 BlockDriverState *bs = child->bs;
677 BlockDriverState *file;
678 int n;
679
680 target_sectors = bdrv_nb_sectors(bs);
681 if (target_sectors < 0) {
682 return target_sectors;
683 }
684
685 for (;;) {
686 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
687 if (nb_sectors <= 0) {
688 return 0;
689 }
690 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
691 if (ret < 0) {
692 error_report("error getting block status at sector %" PRId64 ": %s",
693 sector_num, strerror(-ret));
694 return ret;
695 }
696 if (ret & BDRV_BLOCK_ZERO) {
697 sector_num += n;
698 continue;
699 }
700 ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS,
701 n << BDRV_SECTOR_BITS, flags);
702 if (ret < 0) {
703 error_report("error writing zeroes at sector %" PRId64 ": %s",
704 sector_num, strerror(-ret));
705 return ret;
706 }
707 sector_num += n;
708 }
709 }
710
711 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
712 {
713 int ret;
714
715 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
716 if (ret < 0) {
717 return ret;
718 }
719
720 return qiov->size;
721 }
722
723 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
724 {
725 QEMUIOVector qiov;
726 struct iovec iov = {
727 .iov_base = (void *)buf,
728 .iov_len = bytes,
729 };
730
731 if (bytes < 0) {
732 return -EINVAL;
733 }
734
735 qemu_iovec_init_external(&qiov, &iov, 1);
736 return bdrv_preadv(child, offset, &qiov);
737 }
738
739 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
740 {
741 int ret;
742
743 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
744 if (ret < 0) {
745 return ret;
746 }
747
748 return qiov->size;
749 }
750
751 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
752 {
753 QEMUIOVector qiov;
754 struct iovec iov = {
755 .iov_base = (void *) buf,
756 .iov_len = bytes,
757 };
758
759 if (bytes < 0) {
760 return -EINVAL;
761 }
762
763 qemu_iovec_init_external(&qiov, &iov, 1);
764 return bdrv_pwritev(child, offset, &qiov);
765 }
766
767 /*
768 * Writes to the file and ensures that no writes are reordered across this
769 * request (acts as a barrier)
770 *
771 * Returns 0 on success, -errno in error cases.
772 */
773 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
774 const void *buf, int count)
775 {
776 int ret;
777
778 ret = bdrv_pwrite(child, offset, buf, count);
779 if (ret < 0) {
780 return ret;
781 }
782
783 ret = bdrv_flush(child->bs);
784 if (ret < 0) {
785 return ret;
786 }
787
788 return 0;
789 }
790
791 typedef struct CoroutineIOCompletion {
792 Coroutine *coroutine;
793 int ret;
794 } CoroutineIOCompletion;
795
796 static void bdrv_co_io_em_complete(void *opaque, int ret)
797 {
798 CoroutineIOCompletion *co = opaque;
799
800 co->ret = ret;
801 qemu_coroutine_enter(co->coroutine);
802 }
803
804 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
805 uint64_t offset, uint64_t bytes,
806 QEMUIOVector *qiov, int flags)
807 {
808 BlockDriver *drv = bs->drv;
809 int64_t sector_num;
810 unsigned int nb_sectors;
811
812 assert(!(flags & ~BDRV_REQ_MASK));
813
814 if (drv->bdrv_co_preadv) {
815 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
816 }
817
818 sector_num = offset >> BDRV_SECTOR_BITS;
819 nb_sectors = bytes >> BDRV_SECTOR_BITS;
820
821 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
822 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
823 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
824
825 if (drv->bdrv_co_readv) {
826 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
827 } else {
828 BlockAIOCB *acb;
829 CoroutineIOCompletion co = {
830 .coroutine = qemu_coroutine_self(),
831 };
832
833 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
834 bdrv_co_io_em_complete, &co);
835 if (acb == NULL) {
836 return -EIO;
837 } else {
838 qemu_coroutine_yield();
839 return co.ret;
840 }
841 }
842 }
843
844 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
845 uint64_t offset, uint64_t bytes,
846 QEMUIOVector *qiov, int flags)
847 {
848 BlockDriver *drv = bs->drv;
849 int64_t sector_num;
850 unsigned int nb_sectors;
851 int ret;
852
853 assert(!(flags & ~BDRV_REQ_MASK));
854
855 if (drv->bdrv_co_pwritev) {
856 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
857 flags & bs->supported_write_flags);
858 flags &= ~bs->supported_write_flags;
859 goto emulate_flags;
860 }
861
862 sector_num = offset >> BDRV_SECTOR_BITS;
863 nb_sectors = bytes >> BDRV_SECTOR_BITS;
864
865 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
866 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
867 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
868
869 if (drv->bdrv_co_writev_flags) {
870 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
871 flags & bs->supported_write_flags);
872 flags &= ~bs->supported_write_flags;
873 } else if (drv->bdrv_co_writev) {
874 assert(!bs->supported_write_flags);
875 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
876 } else {
877 BlockAIOCB *acb;
878 CoroutineIOCompletion co = {
879 .coroutine = qemu_coroutine_self(),
880 };
881
882 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
883 bdrv_co_io_em_complete, &co);
884 if (acb == NULL) {
885 ret = -EIO;
886 } else {
887 qemu_coroutine_yield();
888 ret = co.ret;
889 }
890 }
891
892 emulate_flags:
893 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
894 ret = bdrv_co_flush(bs);
895 }
896
897 return ret;
898 }
899
900 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
901 int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
902 {
903 /* Perform I/O through a temporary buffer so that users who scribble over
904 * their read buffer while the operation is in progress do not end up
905 * modifying the image file. This is critical for zero-copy guest I/O
906 * where anything might happen inside guest memory.
907 */
908 void *bounce_buffer;
909
910 BlockDriver *drv = bs->drv;
911 struct iovec iov;
912 QEMUIOVector bounce_qiov;
913 int64_t cluster_offset;
914 unsigned int cluster_bytes;
915 size_t skip_bytes;
916 int ret;
917
918 /* Cover entire cluster so no additional backing file I/O is required when
919 * allocating cluster in the image file.
920 */
921 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
922
923 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
924 cluster_offset, cluster_bytes);
925
926 iov.iov_len = cluster_bytes;
927 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
928 if (bounce_buffer == NULL) {
929 ret = -ENOMEM;
930 goto err;
931 }
932
933 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
934
935 ret = bdrv_driver_preadv(bs, cluster_offset, cluster_bytes,
936 &bounce_qiov, 0);
937 if (ret < 0) {
938 goto err;
939 }
940
941 if (drv->bdrv_co_pwrite_zeroes &&
942 buffer_is_zero(bounce_buffer, iov.iov_len)) {
943 /* FIXME: Should we (perhaps conditionally) be setting
944 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
945 * that still correctly reads as zero? */
946 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, cluster_bytes, 0);
947 } else {
948 /* This does not change the data on the disk, it is not necessary
949 * to flush even in cache=writethrough mode.
950 */
951 ret = bdrv_driver_pwritev(bs, cluster_offset, cluster_bytes,
952 &bounce_qiov, 0);
953 }
954
955 if (ret < 0) {
956 /* It might be okay to ignore write errors for guest requests. If this
957 * is a deliberate copy-on-read then we don't want to ignore the error.
958 * Simply report it in all cases.
959 */
960 goto err;
961 }
962
963 skip_bytes = offset - cluster_offset;
964 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, bytes);
965
966 err:
967 qemu_vfree(bounce_buffer);
968 return ret;
969 }
970
971 /*
972 * Forwards an already correctly aligned request to the BlockDriver. This
973 * handles copy on read, zeroing after EOF, and fragmentation of large
974 * reads; any other features must be implemented by the caller.
975 */
976 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
977 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
978 int64_t align, QEMUIOVector *qiov, int flags)
979 {
980 int64_t total_bytes, max_bytes;
981 int ret = 0;
982 uint64_t bytes_remaining = bytes;
983 int max_transfer;
984
985 assert(is_power_of_2(align));
986 assert((offset & (align - 1)) == 0);
987 assert((bytes & (align - 1)) == 0);
988 assert(!qiov || bytes == qiov->size);
989 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
990 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
991 align);
992
993 /* TODO: We would need a per-BDS .supported_read_flags and
994 * potential fallback support, if we ever implement any read flags
995 * to pass through to drivers. For now, there aren't any
996 * passthrough flags. */
997 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
998
999 /* Handle Copy on Read and associated serialisation */
1000 if (flags & BDRV_REQ_COPY_ON_READ) {
1001 /* If we touch the same cluster it counts as an overlap. This
1002 * guarantees that allocating writes will be serialized and not race
1003 * with each other for the same cluster. For example, in copy-on-read
1004 * it ensures that the CoR read and write operations are atomic and
1005 * guest writes cannot interleave between them. */
1006 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1007 }
1008
1009 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1010 wait_serialising_requests(req);
1011 }
1012
1013 if (flags & BDRV_REQ_COPY_ON_READ) {
1014 int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1015 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1016 unsigned int nb_sectors = end_sector - start_sector;
1017 int pnum;
1018
1019 ret = bdrv_is_allocated(bs, start_sector, nb_sectors, &pnum);
1020 if (ret < 0) {
1021 goto out;
1022 }
1023
1024 if (!ret || pnum != nb_sectors) {
1025 ret = bdrv_co_do_copy_on_readv(bs, offset, bytes, qiov);
1026 goto out;
1027 }
1028 }
1029
1030 /* Forward the request to the BlockDriver, possibly fragmenting it */
1031 total_bytes = bdrv_getlength(bs);
1032 if (total_bytes < 0) {
1033 ret = total_bytes;
1034 goto out;
1035 }
1036
1037 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1038 if (bytes <= max_bytes && bytes <= max_transfer) {
1039 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1040 goto out;
1041 }
1042
1043 while (bytes_remaining) {
1044 int num;
1045
1046 if (max_bytes) {
1047 QEMUIOVector local_qiov;
1048
1049 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1050 assert(num);
1051 qemu_iovec_init(&local_qiov, qiov->niov);
1052 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1053
1054 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1055 num, &local_qiov, 0);
1056 max_bytes -= num;
1057 qemu_iovec_destroy(&local_qiov);
1058 } else {
1059 num = bytes_remaining;
1060 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1061 bytes_remaining);
1062 }
1063 if (ret < 0) {
1064 goto out;
1065 }
1066 bytes_remaining -= num;
1067 }
1068
1069 out:
1070 return ret < 0 ? ret : 0;
1071 }
1072
1073 /*
1074 * Handle a read request in coroutine context
1075 */
1076 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1077 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1078 BdrvRequestFlags flags)
1079 {
1080 BlockDriverState *bs = child->bs;
1081 BlockDriver *drv = bs->drv;
1082 BdrvTrackedRequest req;
1083
1084 uint64_t align = bs->bl.request_alignment;
1085 uint8_t *head_buf = NULL;
1086 uint8_t *tail_buf = NULL;
1087 QEMUIOVector local_qiov;
1088 bool use_local_qiov = false;
1089 int ret;
1090
1091 if (!drv) {
1092 return -ENOMEDIUM;
1093 }
1094
1095 ret = bdrv_check_byte_request(bs, offset, bytes);
1096 if (ret < 0) {
1097 return ret;
1098 }
1099
1100 /* Don't do copy-on-read if we read data before write operation */
1101 if (bs->copy_on_read && !(flags & BDRV_REQ_NO_SERIALISING)) {
1102 flags |= BDRV_REQ_COPY_ON_READ;
1103 }
1104
1105 /* Align read if necessary by padding qiov */
1106 if (offset & (align - 1)) {
1107 head_buf = qemu_blockalign(bs, align);
1108 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1109 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1110 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1111 use_local_qiov = true;
1112
1113 bytes += offset & (align - 1);
1114 offset = offset & ~(align - 1);
1115 }
1116
1117 if ((offset + bytes) & (align - 1)) {
1118 if (!use_local_qiov) {
1119 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1120 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1121 use_local_qiov = true;
1122 }
1123 tail_buf = qemu_blockalign(bs, align);
1124 qemu_iovec_add(&local_qiov, tail_buf,
1125 align - ((offset + bytes) & (align - 1)));
1126
1127 bytes = ROUND_UP(bytes, align);
1128 }
1129
1130 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1131 ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
1132 use_local_qiov ? &local_qiov : qiov,
1133 flags);
1134 tracked_request_end(&req);
1135
1136 if (use_local_qiov) {
1137 qemu_iovec_destroy(&local_qiov);
1138 qemu_vfree(head_buf);
1139 qemu_vfree(tail_buf);
1140 }
1141
1142 return ret;
1143 }
1144
1145 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1146 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1147 BdrvRequestFlags flags)
1148 {
1149 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1150 return -EINVAL;
1151 }
1152
1153 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1154 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1155 }
1156
1157 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1158 int nb_sectors, QEMUIOVector *qiov)
1159 {
1160 trace_bdrv_co_readv(child->bs, sector_num, nb_sectors);
1161
1162 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1163 }
1164
1165 /* Maximum buffer for write zeroes fallback, in bytes */
1166 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
1167
1168 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1169 int64_t offset, int count, BdrvRequestFlags flags)
1170 {
1171 BlockDriver *drv = bs->drv;
1172 QEMUIOVector qiov;
1173 struct iovec iov = {0};
1174 int ret = 0;
1175 bool need_flush = false;
1176 int head = 0;
1177 int tail = 0;
1178
1179 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1180 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1181 bs->bl.request_alignment);
1182
1183 assert(alignment % bs->bl.request_alignment == 0);
1184 head = offset % alignment;
1185 tail = (offset + count) % alignment;
1186 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1187 assert(max_write_zeroes >= bs->bl.request_alignment);
1188
1189 while (count > 0 && !ret) {
1190 int num = count;
1191
1192 /* Align request. Block drivers can expect the "bulk" of the request
1193 * to be aligned, and that unaligned requests do not cross cluster
1194 * boundaries.
1195 */
1196 if (head) {
1197 /* Make a small request up to the first aligned sector. */
1198 num = MIN(count, alignment - head);
1199 head = 0;
1200 } else if (tail && num > alignment) {
1201 /* Shorten the request to the last aligned sector. */
1202 num -= tail;
1203 }
1204
1205 /* limit request size */
1206 if (num > max_write_zeroes) {
1207 num = max_write_zeroes;
1208 }
1209
1210 ret = -ENOTSUP;
1211 /* First try the efficient write zeroes operation */
1212 if (drv->bdrv_co_pwrite_zeroes) {
1213 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1214 flags & bs->supported_zero_flags);
1215 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1216 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1217 need_flush = true;
1218 }
1219 } else {
1220 assert(!bs->supported_zero_flags);
1221 }
1222
1223 if (ret == -ENOTSUP) {
1224 /* Fall back to bounce buffer if write zeroes is unsupported */
1225 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1226 MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1227 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1228
1229 if ((flags & BDRV_REQ_FUA) &&
1230 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1231 /* No need for bdrv_driver_pwrite() to do a fallback
1232 * flush on each chunk; use just one at the end */
1233 write_flags &= ~BDRV_REQ_FUA;
1234 need_flush = true;
1235 }
1236 num = MIN(num, max_transfer);
1237 iov.iov_len = num;
1238 if (iov.iov_base == NULL) {
1239 iov.iov_base = qemu_try_blockalign(bs, num);
1240 if (iov.iov_base == NULL) {
1241 ret = -ENOMEM;
1242 goto fail;
1243 }
1244 memset(iov.iov_base, 0, num);
1245 }
1246 qemu_iovec_init_external(&qiov, &iov, 1);
1247
1248 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1249
1250 /* Keep bounce buffer around if it is big enough for all
1251 * all future requests.
1252 */
1253 if (num < max_transfer) {
1254 qemu_vfree(iov.iov_base);
1255 iov.iov_base = NULL;
1256 }
1257 }
1258
1259 offset += num;
1260 count -= num;
1261 }
1262
1263 fail:
1264 if (ret == 0 && need_flush) {
1265 ret = bdrv_co_flush(bs);
1266 }
1267 qemu_vfree(iov.iov_base);
1268 return ret;
1269 }
1270
1271 /*
1272 * Forwards an already correctly aligned write request to the BlockDriver,
1273 * after possibly fragmenting it.
1274 */
1275 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
1276 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1277 int64_t align, QEMUIOVector *qiov, int flags)
1278 {
1279 BlockDriver *drv = bs->drv;
1280 bool waited;
1281 int ret;
1282
1283 int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1284 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1285 uint64_t bytes_remaining = bytes;
1286 int max_transfer;
1287
1288 assert(is_power_of_2(align));
1289 assert((offset & (align - 1)) == 0);
1290 assert((bytes & (align - 1)) == 0);
1291 assert(!qiov || bytes == qiov->size);
1292 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1293 assert(!(flags & ~BDRV_REQ_MASK));
1294 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1295 align);
1296
1297 waited = wait_serialising_requests(req);
1298 assert(!waited || !req->serialising);
1299 assert(req->overlap_offset <= offset);
1300 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1301
1302 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1303
1304 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1305 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1306 qemu_iovec_is_zero(qiov)) {
1307 flags |= BDRV_REQ_ZERO_WRITE;
1308 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1309 flags |= BDRV_REQ_MAY_UNMAP;
1310 }
1311 }
1312
1313 if (ret < 0) {
1314 /* Do nothing, write notifier decided to fail this request */
1315 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1316 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1317 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1318 } else if (bytes <= max_transfer) {
1319 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1320 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1321 } else {
1322 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1323 while (bytes_remaining) {
1324 int num = MIN(bytes_remaining, max_transfer);
1325 QEMUIOVector local_qiov;
1326 int local_flags = flags;
1327
1328 assert(num);
1329 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1330 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1331 /* If FUA is going to be emulated by flush, we only
1332 * need to flush on the last iteration */
1333 local_flags &= ~BDRV_REQ_FUA;
1334 }
1335 qemu_iovec_init(&local_qiov, qiov->niov);
1336 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1337
1338 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1339 num, &local_qiov, local_flags);
1340 qemu_iovec_destroy(&local_qiov);
1341 if (ret < 0) {
1342 break;
1343 }
1344 bytes_remaining -= num;
1345 }
1346 }
1347 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1348
1349 ++bs->write_gen;
1350 bdrv_set_dirty(bs, start_sector, end_sector - start_sector);
1351
1352 if (bs->wr_highest_offset < offset + bytes) {
1353 bs->wr_highest_offset = offset + bytes;
1354 }
1355
1356 if (ret >= 0) {
1357 bs->total_sectors = MAX(bs->total_sectors, end_sector);
1358 ret = 0;
1359 }
1360
1361 return ret;
1362 }
1363
1364 static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs,
1365 int64_t offset,
1366 unsigned int bytes,
1367 BdrvRequestFlags flags,
1368 BdrvTrackedRequest *req)
1369 {
1370 uint8_t *buf = NULL;
1371 QEMUIOVector local_qiov;
1372 struct iovec iov;
1373 uint64_t align = bs->bl.request_alignment;
1374 unsigned int head_padding_bytes, tail_padding_bytes;
1375 int ret = 0;
1376
1377 head_padding_bytes = offset & (align - 1);
1378 tail_padding_bytes = align - ((offset + bytes) & (align - 1));
1379
1380
1381 assert(flags & BDRV_REQ_ZERO_WRITE);
1382 if (head_padding_bytes || tail_padding_bytes) {
1383 buf = qemu_blockalign(bs, align);
1384 iov = (struct iovec) {
1385 .iov_base = buf,
1386 .iov_len = align,
1387 };
1388 qemu_iovec_init_external(&local_qiov, &iov, 1);
1389 }
1390 if (head_padding_bytes) {
1391 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1392
1393 /* RMW the unaligned part before head. */
1394 mark_request_serialising(req, align);
1395 wait_serialising_requests(req);
1396 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1397 ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align,
1398 align, &local_qiov, 0);
1399 if (ret < 0) {
1400 goto fail;
1401 }
1402 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1403
1404 memset(buf + head_padding_bytes, 0, zero_bytes);
1405 ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align,
1406 align, &local_qiov,
1407 flags & ~BDRV_REQ_ZERO_WRITE);
1408 if (ret < 0) {
1409 goto fail;
1410 }
1411 offset += zero_bytes;
1412 bytes -= zero_bytes;
1413 }
1414
1415 assert(!bytes || (offset & (align - 1)) == 0);
1416 if (bytes >= align) {
1417 /* Write the aligned part in the middle. */
1418 uint64_t aligned_bytes = bytes & ~(align - 1);
1419 ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes, align,
1420 NULL, flags);
1421 if (ret < 0) {
1422 goto fail;
1423 }
1424 bytes -= aligned_bytes;
1425 offset += aligned_bytes;
1426 }
1427
1428 assert(!bytes || (offset & (align - 1)) == 0);
1429 if (bytes) {
1430 assert(align == tail_padding_bytes + bytes);
1431 /* RMW the unaligned part after tail. */
1432 mark_request_serialising(req, align);
1433 wait_serialising_requests(req);
1434 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1435 ret = bdrv_aligned_preadv(bs, req, offset, align,
1436 align, &local_qiov, 0);
1437 if (ret < 0) {
1438 goto fail;
1439 }
1440 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1441
1442 memset(buf, 0, bytes);
1443 ret = bdrv_aligned_pwritev(bs, req, offset, align, align,
1444 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1445 }
1446 fail:
1447 qemu_vfree(buf);
1448 return ret;
1449
1450 }
1451
1452 /*
1453 * Handle a write request in coroutine context
1454 */
1455 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1456 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1457 BdrvRequestFlags flags)
1458 {
1459 BlockDriverState *bs = child->bs;
1460 BdrvTrackedRequest req;
1461 uint64_t align = bs->bl.request_alignment;
1462 uint8_t *head_buf = NULL;
1463 uint8_t *tail_buf = NULL;
1464 QEMUIOVector local_qiov;
1465 bool use_local_qiov = false;
1466 int ret;
1467
1468 if (!bs->drv) {
1469 return -ENOMEDIUM;
1470 }
1471 if (bs->read_only) {
1472 return -EPERM;
1473 }
1474 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1475
1476 ret = bdrv_check_byte_request(bs, offset, bytes);
1477 if (ret < 0) {
1478 return ret;
1479 }
1480
1481 /*
1482 * Align write if necessary by performing a read-modify-write cycle.
1483 * Pad qiov with the read parts and be sure to have a tracked request not
1484 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1485 */
1486 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1487
1488 if (!qiov) {
1489 ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req);
1490 goto out;
1491 }
1492
1493 if (offset & (align - 1)) {
1494 QEMUIOVector head_qiov;
1495 struct iovec head_iov;
1496
1497 mark_request_serialising(&req, align);
1498 wait_serialising_requests(&req);
1499
1500 head_buf = qemu_blockalign(bs, align);
1501 head_iov = (struct iovec) {
1502 .iov_base = head_buf,
1503 .iov_len = align,
1504 };
1505 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1506
1507 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1508 ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
1509 align, &head_qiov, 0);
1510 if (ret < 0) {
1511 goto fail;
1512 }
1513 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1514
1515 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1516 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1517 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1518 use_local_qiov = true;
1519
1520 bytes += offset & (align - 1);
1521 offset = offset & ~(align - 1);
1522
1523 /* We have read the tail already if the request is smaller
1524 * than one aligned block.
1525 */
1526 if (bytes < align) {
1527 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1528 bytes = align;
1529 }
1530 }
1531
1532 if ((offset + bytes) & (align - 1)) {
1533 QEMUIOVector tail_qiov;
1534 struct iovec tail_iov;
1535 size_t tail_bytes;
1536 bool waited;
1537
1538 mark_request_serialising(&req, align);
1539 waited = wait_serialising_requests(&req);
1540 assert(!waited || !use_local_qiov);
1541
1542 tail_buf = qemu_blockalign(bs, align);
1543 tail_iov = (struct iovec) {
1544 .iov_base = tail_buf,
1545 .iov_len = align,
1546 };
1547 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1548
1549 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1550 ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
1551 align, &tail_qiov, 0);
1552 if (ret < 0) {
1553 goto fail;
1554 }
1555 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1556
1557 if (!use_local_qiov) {
1558 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1559 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1560 use_local_qiov = true;
1561 }
1562
1563 tail_bytes = (offset + bytes) & (align - 1);
1564 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1565
1566 bytes = ROUND_UP(bytes, align);
1567 }
1568
1569 ret = bdrv_aligned_pwritev(bs, &req, offset, bytes, align,
1570 use_local_qiov ? &local_qiov : qiov,
1571 flags);
1572
1573 fail:
1574
1575 if (use_local_qiov) {
1576 qemu_iovec_destroy(&local_qiov);
1577 }
1578 qemu_vfree(head_buf);
1579 qemu_vfree(tail_buf);
1580 out:
1581 tracked_request_end(&req);
1582 return ret;
1583 }
1584
1585 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1586 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1587 BdrvRequestFlags flags)
1588 {
1589 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1590 return -EINVAL;
1591 }
1592
1593 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1594 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1595 }
1596
1597 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1598 int nb_sectors, QEMUIOVector *qiov)
1599 {
1600 trace_bdrv_co_writev(child->bs, sector_num, nb_sectors);
1601
1602 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1603 }
1604
1605 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1606 int count, BdrvRequestFlags flags)
1607 {
1608 trace_bdrv_co_pwrite_zeroes(child->bs, offset, count, flags);
1609
1610 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1611 flags &= ~BDRV_REQ_MAY_UNMAP;
1612 }
1613
1614 return bdrv_co_pwritev(child, offset, count, NULL,
1615 BDRV_REQ_ZERO_WRITE | flags);
1616 }
1617
1618 typedef struct BdrvCoGetBlockStatusData {
1619 BlockDriverState *bs;
1620 BlockDriverState *base;
1621 BlockDriverState **file;
1622 int64_t sector_num;
1623 int nb_sectors;
1624 int *pnum;
1625 int64_t ret;
1626 bool done;
1627 } BdrvCoGetBlockStatusData;
1628
1629 /*
1630 * Returns the allocation status of the specified sectors.
1631 * Drivers not implementing the functionality are assumed to not support
1632 * backing files, hence all their sectors are reported as allocated.
1633 *
1634 * If 'sector_num' is beyond the end of the disk image the return value is 0
1635 * and 'pnum' is set to 0.
1636 *
1637 * 'pnum' is set to the number of sectors (including and immediately following
1638 * the specified sector) that are known to be in the same
1639 * allocated/unallocated state.
1640 *
1641 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1642 * beyond the end of the disk image it will be clamped.
1643 *
1644 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1645 * points to the BDS which the sector range is allocated in.
1646 */
1647 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1648 int64_t sector_num,
1649 int nb_sectors, int *pnum,
1650 BlockDriverState **file)
1651 {
1652 int64_t total_sectors;
1653 int64_t n;
1654 int64_t ret, ret2;
1655
1656 total_sectors = bdrv_nb_sectors(bs);
1657 if (total_sectors < 0) {
1658 return total_sectors;
1659 }
1660
1661 if (sector_num >= total_sectors) {
1662 *pnum = 0;
1663 return 0;
1664 }
1665
1666 n = total_sectors - sector_num;
1667 if (n < nb_sectors) {
1668 nb_sectors = n;
1669 }
1670
1671 if (!bs->drv->bdrv_co_get_block_status) {
1672 *pnum = nb_sectors;
1673 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1674 if (bs->drv->protocol_name) {
1675 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1676 }
1677 return ret;
1678 }
1679
1680 *file = NULL;
1681 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1682 file);
1683 if (ret < 0) {
1684 *pnum = 0;
1685 return ret;
1686 }
1687
1688 if (ret & BDRV_BLOCK_RAW) {
1689 assert(ret & BDRV_BLOCK_OFFSET_VALID);
1690 return bdrv_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS,
1691 *pnum, pnum, file);
1692 }
1693
1694 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1695 ret |= BDRV_BLOCK_ALLOCATED;
1696 } else {
1697 if (bdrv_unallocated_blocks_are_zero(bs)) {
1698 ret |= BDRV_BLOCK_ZERO;
1699 } else if (bs->backing) {
1700 BlockDriverState *bs2 = bs->backing->bs;
1701 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1702 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1703 ret |= BDRV_BLOCK_ZERO;
1704 }
1705 }
1706 }
1707
1708 if (*file && *file != bs &&
1709 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1710 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1711 BlockDriverState *file2;
1712 int file_pnum;
1713
1714 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1715 *pnum, &file_pnum, &file2);
1716 if (ret2 >= 0) {
1717 /* Ignore errors. This is just providing extra information, it
1718 * is useful but not necessary.
1719 */
1720 if (!file_pnum) {
1721 /* !file_pnum indicates an offset at or beyond the EOF; it is
1722 * perfectly valid for the format block driver to point to such
1723 * offsets, so catch it and mark everything as zero */
1724 ret |= BDRV_BLOCK_ZERO;
1725 } else {
1726 /* Limit request to the range reported by the protocol driver */
1727 *pnum = file_pnum;
1728 ret |= (ret2 & BDRV_BLOCK_ZERO);
1729 }
1730 }
1731 }
1732
1733 return ret;
1734 }
1735
1736 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1737 BlockDriverState *base,
1738 int64_t sector_num,
1739 int nb_sectors,
1740 int *pnum,
1741 BlockDriverState **file)
1742 {
1743 BlockDriverState *p;
1744 int64_t ret = 0;
1745
1746 assert(bs != base);
1747 for (p = bs; p != base; p = backing_bs(p)) {
1748 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1749 if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) {
1750 break;
1751 }
1752 /* [sector_num, pnum] unallocated on this layer, which could be only
1753 * the first part of [sector_num, nb_sectors]. */
1754 nb_sectors = MIN(nb_sectors, *pnum);
1755 }
1756 return ret;
1757 }
1758
1759 /* Coroutine wrapper for bdrv_get_block_status_above() */
1760 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1761 {
1762 BdrvCoGetBlockStatusData *data = opaque;
1763
1764 data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1765 data->sector_num,
1766 data->nb_sectors,
1767 data->pnum,
1768 data->file);
1769 data->done = true;
1770 }
1771
1772 /*
1773 * Synchronous wrapper around bdrv_co_get_block_status_above().
1774 *
1775 * See bdrv_co_get_block_status_above() for details.
1776 */
1777 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1778 BlockDriverState *base,
1779 int64_t sector_num,
1780 int nb_sectors, int *pnum,
1781 BlockDriverState **file)
1782 {
1783 Coroutine *co;
1784 BdrvCoGetBlockStatusData data = {
1785 .bs = bs,
1786 .base = base,
1787 .file = file,
1788 .sector_num = sector_num,
1789 .nb_sectors = nb_sectors,
1790 .pnum = pnum,
1791 .done = false,
1792 };
1793
1794 if (qemu_in_coroutine()) {
1795 /* Fast-path if already in coroutine context */
1796 bdrv_get_block_status_above_co_entry(&data);
1797 } else {
1798 AioContext *aio_context = bdrv_get_aio_context(bs);
1799
1800 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry,
1801 &data);
1802 qemu_coroutine_enter(co);
1803 while (!data.done) {
1804 aio_poll(aio_context, true);
1805 }
1806 }
1807 return data.ret;
1808 }
1809
1810 int64_t bdrv_get_block_status(BlockDriverState *bs,
1811 int64_t sector_num,
1812 int nb_sectors, int *pnum,
1813 BlockDriverState **file)
1814 {
1815 return bdrv_get_block_status_above(bs, backing_bs(bs),
1816 sector_num, nb_sectors, pnum, file);
1817 }
1818
1819 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1820 int nb_sectors, int *pnum)
1821 {
1822 BlockDriverState *file;
1823 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum,
1824 &file);
1825 if (ret < 0) {
1826 return ret;
1827 }
1828 return !!(ret & BDRV_BLOCK_ALLOCATED);
1829 }
1830
1831 /*
1832 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1833 *
1834 * Return true if the given sector is allocated in any image between
1835 * BASE and TOP (inclusive). BASE can be NULL to check if the given
1836 * sector is allocated in any image of the chain. Return false otherwise.
1837 *
1838 * 'pnum' is set to the number of sectors (including and immediately following
1839 * the specified sector) that are known to be in the same
1840 * allocated/unallocated state.
1841 *
1842 */
1843 int bdrv_is_allocated_above(BlockDriverState *top,
1844 BlockDriverState *base,
1845 int64_t sector_num,
1846 int nb_sectors, int *pnum)
1847 {
1848 BlockDriverState *intermediate;
1849 int ret, n = nb_sectors;
1850
1851 intermediate = top;
1852 while (intermediate && intermediate != base) {
1853 int pnum_inter;
1854 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1855 &pnum_inter);
1856 if (ret < 0) {
1857 return ret;
1858 } else if (ret) {
1859 *pnum = pnum_inter;
1860 return 1;
1861 }
1862
1863 /*
1864 * [sector_num, nb_sectors] is unallocated on top but intermediate
1865 * might have
1866 *
1867 * [sector_num+x, nr_sectors] allocated.
1868 */
1869 if (n > pnum_inter &&
1870 (intermediate == top ||
1871 sector_num + pnum_inter < intermediate->total_sectors)) {
1872 n = pnum_inter;
1873 }
1874
1875 intermediate = backing_bs(intermediate);
1876 }
1877
1878 *pnum = n;
1879 return 0;
1880 }
1881
1882 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
1883 const uint8_t *buf, int nb_sectors)
1884 {
1885 BlockDriver *drv = bs->drv;
1886 int ret;
1887
1888 if (!drv) {
1889 return -ENOMEDIUM;
1890 }
1891 if (!drv->bdrv_write_compressed) {
1892 return -ENOTSUP;
1893 }
1894 ret = bdrv_check_request(bs, sector_num, nb_sectors);
1895 if (ret < 0) {
1896 return ret;
1897 }
1898
1899 assert(QLIST_EMPTY(&bs->dirty_bitmaps));
1900
1901 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
1902 }
1903
1904 typedef struct BdrvVmstateCo {
1905 BlockDriverState *bs;
1906 QEMUIOVector *qiov;
1907 int64_t pos;
1908 bool is_read;
1909 int ret;
1910 } BdrvVmstateCo;
1911
1912 static int coroutine_fn
1913 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1914 bool is_read)
1915 {
1916 BlockDriver *drv = bs->drv;
1917
1918 if (!drv) {
1919 return -ENOMEDIUM;
1920 } else if (drv->bdrv_load_vmstate) {
1921 return is_read ? drv->bdrv_load_vmstate(bs, qiov, pos)
1922 : drv->bdrv_save_vmstate(bs, qiov, pos);
1923 } else if (bs->file) {
1924 return bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
1925 }
1926
1927 return -ENOTSUP;
1928 }
1929
1930 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
1931 {
1932 BdrvVmstateCo *co = opaque;
1933 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
1934 }
1935
1936 static inline int
1937 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1938 bool is_read)
1939 {
1940 if (qemu_in_coroutine()) {
1941 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
1942 } else {
1943 BdrvVmstateCo data = {
1944 .bs = bs,
1945 .qiov = qiov,
1946 .pos = pos,
1947 .is_read = is_read,
1948 .ret = -EINPROGRESS,
1949 };
1950 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
1951
1952 qemu_coroutine_enter(co);
1953 while (data.ret == -EINPROGRESS) {
1954 aio_poll(bdrv_get_aio_context(bs), true);
1955 }
1956 return data.ret;
1957 }
1958 }
1959
1960 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
1961 int64_t pos, int size)
1962 {
1963 QEMUIOVector qiov;
1964 struct iovec iov = {
1965 .iov_base = (void *) buf,
1966 .iov_len = size,
1967 };
1968 int ret;
1969
1970 qemu_iovec_init_external(&qiov, &iov, 1);
1971
1972 ret = bdrv_writev_vmstate(bs, &qiov, pos);
1973 if (ret < 0) {
1974 return ret;
1975 }
1976
1977 return size;
1978 }
1979
1980 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
1981 {
1982 return bdrv_rw_vmstate(bs, qiov, pos, false);
1983 }
1984
1985 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
1986 int64_t pos, int size)
1987 {
1988 QEMUIOVector qiov;
1989 struct iovec iov = {
1990 .iov_base = buf,
1991 .iov_len = size,
1992 };
1993 int ret;
1994
1995 qemu_iovec_init_external(&qiov, &iov, 1);
1996 ret = bdrv_readv_vmstate(bs, &qiov, pos);
1997 if (ret < 0) {
1998 return ret;
1999 }
2000
2001 return size;
2002 }
2003
2004 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2005 {
2006 return bdrv_rw_vmstate(bs, qiov, pos, true);
2007 }
2008
2009 /**************************************************************/
2010 /* async I/Os */
2011
2012 BlockAIOCB *bdrv_aio_readv(BdrvChild *child, int64_t sector_num,
2013 QEMUIOVector *qiov, int nb_sectors,
2014 BlockCompletionFunc *cb, void *opaque)
2015 {
2016 trace_bdrv_aio_readv(child->bs, sector_num, nb_sectors, opaque);
2017
2018 assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size);
2019 return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov,
2020 0, cb, opaque, false);
2021 }
2022
2023 BlockAIOCB *bdrv_aio_writev(BdrvChild *child, int64_t sector_num,
2024 QEMUIOVector *qiov, int nb_sectors,
2025 BlockCompletionFunc *cb, void *opaque)
2026 {
2027 trace_bdrv_aio_writev(child->bs, sector_num, nb_sectors, opaque);
2028
2029 assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size);
2030 return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov,
2031 0, cb, opaque, true);
2032 }
2033
2034 void bdrv_aio_cancel(BlockAIOCB *acb)
2035 {
2036 qemu_aio_ref(acb);
2037 bdrv_aio_cancel_async(acb);
2038 while (acb->refcnt > 1) {
2039 if (acb->aiocb_info->get_aio_context) {
2040 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2041 } else if (acb->bs) {
2042 aio_poll(bdrv_get_aio_context(acb->bs), true);
2043 } else {
2044 abort();
2045 }
2046 }
2047 qemu_aio_unref(acb);
2048 }
2049
2050 /* Async version of aio cancel. The caller is not blocked if the acb implements
2051 * cancel_async, otherwise we do nothing and let the request normally complete.
2052 * In either case the completion callback must be called. */
2053 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2054 {
2055 if (acb->aiocb_info->cancel_async) {
2056 acb->aiocb_info->cancel_async(acb);
2057 }
2058 }
2059
2060 /**************************************************************/
2061 /* async block device emulation */
2062
2063 typedef struct BlockRequest {
2064 union {
2065 /* Used during read, write, trim */
2066 struct {
2067 int64_t offset;
2068 int bytes;
2069 int flags;
2070 QEMUIOVector *qiov;
2071 };
2072 /* Used during ioctl */
2073 struct {
2074 int req;
2075 void *buf;
2076 };
2077 };
2078 BlockCompletionFunc *cb;
2079 void *opaque;
2080
2081 int error;
2082 } BlockRequest;
2083
2084 typedef struct BlockAIOCBCoroutine {
2085 BlockAIOCB common;
2086 BdrvChild *child;
2087 BlockRequest req;
2088 bool is_write;
2089 bool need_bh;
2090 bool *done;
2091 QEMUBH* bh;
2092 } BlockAIOCBCoroutine;
2093
2094 static const AIOCBInfo bdrv_em_co_aiocb_info = {
2095 .aiocb_size = sizeof(BlockAIOCBCoroutine),
2096 };
2097
2098 static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2099 {
2100 if (!acb->need_bh) {
2101 acb->common.cb(acb->common.opaque, acb->req.error);
2102 qemu_aio_unref(acb);
2103 }
2104 }
2105
2106 static void bdrv_co_em_bh(void *opaque)
2107 {
2108 BlockAIOCBCoroutine *acb = opaque;
2109
2110 assert(!acb->need_bh);
2111 qemu_bh_delete(acb->bh);
2112 bdrv_co_complete(acb);
2113 }
2114
2115 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2116 {
2117 acb->need_bh = false;
2118 if (acb->req.error != -EINPROGRESS) {
2119 BlockDriverState *bs = acb->common.bs;
2120
2121 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2122 qemu_bh_schedule(acb->bh);
2123 }
2124 }
2125
2126 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2127 static void coroutine_fn bdrv_co_do_rw(void *opaque)
2128 {
2129 BlockAIOCBCoroutine *acb = opaque;
2130
2131 if (!acb->is_write) {
2132 acb->req.error = bdrv_co_preadv(acb->child, acb->req.offset,
2133 acb->req.qiov->size, acb->req.qiov, acb->req.flags);
2134 } else {
2135 acb->req.error = bdrv_co_pwritev(acb->child, acb->req.offset,
2136 acb->req.qiov->size, acb->req.qiov, acb->req.flags);
2137 }
2138
2139 bdrv_co_complete(acb);
2140 }
2141
2142 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child,
2143 int64_t offset,
2144 QEMUIOVector *qiov,
2145 BdrvRequestFlags flags,
2146 BlockCompletionFunc *cb,
2147 void *opaque,
2148 bool is_write)
2149 {
2150 Coroutine *co;
2151 BlockAIOCBCoroutine *acb;
2152
2153 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, child->bs, cb, opaque);
2154 acb->child = child;
2155 acb->need_bh = true;
2156 acb->req.error = -EINPROGRESS;
2157 acb->req.offset = offset;
2158 acb->req.qiov = qiov;
2159 acb->req.flags = flags;
2160 acb->is_write = is_write;
2161
2162 co = qemu_coroutine_create(bdrv_co_do_rw, acb);
2163 qemu_coroutine_enter(co);
2164
2165 bdrv_co_maybe_schedule_bh(acb);
2166 return &acb->common;
2167 }
2168
2169 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2170 {
2171 BlockAIOCBCoroutine *acb = opaque;
2172 BlockDriverState *bs = acb->common.bs;
2173
2174 acb->req.error = bdrv_co_flush(bs);
2175 bdrv_co_complete(acb);
2176 }
2177
2178 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2179 BlockCompletionFunc *cb, void *opaque)
2180 {
2181 trace_bdrv_aio_flush(bs, opaque);
2182
2183 Coroutine *co;
2184 BlockAIOCBCoroutine *acb;
2185
2186 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2187 acb->need_bh = true;
2188 acb->req.error = -EINPROGRESS;
2189
2190 co = qemu_coroutine_create(bdrv_aio_flush_co_entry, acb);
2191 qemu_coroutine_enter(co);
2192
2193 bdrv_co_maybe_schedule_bh(acb);
2194 return &acb->common;
2195 }
2196
2197 static void coroutine_fn bdrv_aio_pdiscard_co_entry(void *opaque)
2198 {
2199 BlockAIOCBCoroutine *acb = opaque;
2200 BlockDriverState *bs = acb->common.bs;
2201
2202 acb->req.error = bdrv_co_pdiscard(bs, acb->req.offset, acb->req.bytes);
2203 bdrv_co_complete(acb);
2204 }
2205
2206 BlockAIOCB *bdrv_aio_pdiscard(BlockDriverState *bs, int64_t offset, int count,
2207 BlockCompletionFunc *cb, void *opaque)
2208 {
2209 Coroutine *co;
2210 BlockAIOCBCoroutine *acb;
2211
2212 trace_bdrv_aio_pdiscard(bs, offset, count, opaque);
2213
2214 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2215 acb->need_bh = true;
2216 acb->req.error = -EINPROGRESS;
2217 acb->req.offset = offset;
2218 acb->req.bytes = count;
2219 co = qemu_coroutine_create(bdrv_aio_pdiscard_co_entry, acb);
2220 qemu_coroutine_enter(co);
2221
2222 bdrv_co_maybe_schedule_bh(acb);
2223 return &acb->common;
2224 }
2225
2226 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
2227 BlockCompletionFunc *cb, void *opaque)
2228 {
2229 BlockAIOCB *acb;
2230
2231 acb = g_malloc(aiocb_info->aiocb_size);
2232 acb->aiocb_info = aiocb_info;
2233 acb->bs = bs;
2234 acb->cb = cb;
2235 acb->opaque = opaque;
2236 acb->refcnt = 1;
2237 return acb;
2238 }
2239
2240 void qemu_aio_ref(void *p)
2241 {
2242 BlockAIOCB *acb = p;
2243 acb->refcnt++;
2244 }
2245
2246 void qemu_aio_unref(void *p)
2247 {
2248 BlockAIOCB *acb = p;
2249 assert(acb->refcnt > 0);
2250 if (--acb->refcnt == 0) {
2251 g_free(acb);
2252 }
2253 }
2254
2255 /**************************************************************/
2256 /* Coroutine block device emulation */
2257
2258 typedef struct FlushCo {
2259 BlockDriverState *bs;
2260 int ret;
2261 } FlushCo;
2262
2263
2264 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2265 {
2266 FlushCo *rwco = opaque;
2267
2268 rwco->ret = bdrv_co_flush(rwco->bs);
2269 }
2270
2271 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2272 {
2273 int ret;
2274 BdrvTrackedRequest req;
2275
2276 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2277 bdrv_is_sg(bs)) {
2278 return 0;
2279 }
2280
2281 tracked_request_begin(&req, bs, 0, 0, BDRV_TRACKED_FLUSH);
2282
2283 int current_gen = bs->write_gen;
2284
2285 /* Wait until any previous flushes are completed */
2286 while (bs->active_flush_req != NULL) {
2287 qemu_co_queue_wait(&bs->flush_queue);
2288 }
2289
2290 bs->active_flush_req = &req;
2291
2292 /* Write back all layers by calling one driver function */
2293 if (bs->drv->bdrv_co_flush) {
2294 ret = bs->drv->bdrv_co_flush(bs);
2295 goto out;
2296 }
2297
2298 /* Write back cached data to the OS even with cache=unsafe */
2299 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2300 if (bs->drv->bdrv_co_flush_to_os) {
2301 ret = bs->drv->bdrv_co_flush_to_os(bs);
2302 if (ret < 0) {
2303 goto out;
2304 }
2305 }
2306
2307 /* But don't actually force it to the disk with cache=unsafe */
2308 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2309 goto flush_parent;
2310 }
2311
2312 /* Check if we really need to flush anything */
2313 if (bs->flushed_gen == current_gen) {
2314 goto flush_parent;
2315 }
2316
2317 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2318 if (bs->drv->bdrv_co_flush_to_disk) {
2319 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2320 } else if (bs->drv->bdrv_aio_flush) {
2321 BlockAIOCB *acb;
2322 CoroutineIOCompletion co = {
2323 .coroutine = qemu_coroutine_self(),
2324 };
2325
2326 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2327 if (acb == NULL) {
2328 ret = -EIO;
2329 } else {
2330 qemu_coroutine_yield();
2331 ret = co.ret;
2332 }
2333 } else {
2334 /*
2335 * Some block drivers always operate in either writethrough or unsafe
2336 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2337 * know how the server works (because the behaviour is hardcoded or
2338 * depends on server-side configuration), so we can't ensure that
2339 * everything is safe on disk. Returning an error doesn't work because
2340 * that would break guests even if the server operates in writethrough
2341 * mode.
2342 *
2343 * Let's hope the user knows what he's doing.
2344 */
2345 ret = 0;
2346 }
2347
2348 if (ret < 0) {
2349 goto out;
2350 }
2351
2352 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2353 * in the case of cache=unsafe, so there are no useless flushes.
2354 */
2355 flush_parent:
2356 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2357 out:
2358 /* Notify any pending flushes that we have completed */
2359 bs->flushed_gen = current_gen;
2360 bs->active_flush_req = NULL;
2361 /* Return value is ignored - it's ok if wait queue is empty */
2362 qemu_co_queue_next(&bs->flush_queue);
2363
2364 tracked_request_end(&req);
2365 return ret;
2366 }
2367
2368 int bdrv_flush(BlockDriverState *bs)
2369 {
2370 Coroutine *co;
2371 FlushCo flush_co = {
2372 .bs = bs,
2373 .ret = NOT_DONE,
2374 };
2375
2376 if (qemu_in_coroutine()) {
2377 /* Fast-path if already in coroutine context */
2378 bdrv_flush_co_entry(&flush_co);
2379 } else {
2380 AioContext *aio_context = bdrv_get_aio_context(bs);
2381
2382 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2383 qemu_coroutine_enter(co);
2384 while (flush_co.ret == NOT_DONE) {
2385 aio_poll(aio_context, true);
2386 }
2387 }
2388
2389 return flush_co.ret;
2390 }
2391
2392 typedef struct DiscardCo {
2393 BlockDriverState *bs;
2394 int64_t offset;
2395 int count;
2396 int ret;
2397 } DiscardCo;
2398 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2399 {
2400 DiscardCo *rwco = opaque;
2401
2402 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->count);
2403 }
2404
2405 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2406 int count)
2407 {
2408 BdrvTrackedRequest req;
2409 int max_pdiscard, ret;
2410 int head, align;
2411
2412 if (!bs->drv) {
2413 return -ENOMEDIUM;
2414 }
2415
2416 ret = bdrv_check_byte_request(bs, offset, count);
2417 if (ret < 0) {
2418 return ret;
2419 } else if (bs->read_only) {
2420 return -EPERM;
2421 }
2422 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2423
2424 /* Do nothing if disabled. */
2425 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2426 return 0;
2427 }
2428
2429 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2430 return 0;
2431 }
2432
2433 /* Discard is advisory, so ignore any unaligned head or tail */
2434 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2435 assert(align % bs->bl.request_alignment == 0);
2436 head = offset % align;
2437 if (head) {
2438 head = MIN(count, align - head);
2439 count -= head;
2440 offset += head;
2441 }
2442 count = QEMU_ALIGN_DOWN(count, align);
2443 if (!count) {
2444 return 0;
2445 }
2446
2447 tracked_request_begin(&req, bs, offset, count, BDRV_TRACKED_DISCARD);
2448
2449 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2450 if (ret < 0) {
2451 goto out;
2452 }
2453
2454 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2455 align);
2456 assert(max_pdiscard);
2457
2458 while (count > 0) {
2459 int ret;
2460 int num = MIN(count, max_pdiscard);
2461
2462 if (bs->drv->bdrv_co_pdiscard) {
2463 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2464 } else {
2465 BlockAIOCB *acb;
2466 CoroutineIOCompletion co = {
2467 .coroutine = qemu_coroutine_self(),
2468 };
2469
2470 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2471 bdrv_co_io_em_complete, &co);
2472 if (acb == NULL) {
2473 ret = -EIO;
2474 goto out;
2475 } else {
2476 qemu_coroutine_yield();
2477 ret = co.ret;
2478 }
2479 }
2480 if (ret && ret != -ENOTSUP) {
2481 goto out;
2482 }
2483
2484 offset += num;
2485 count -= num;
2486 }
2487 ret = 0;
2488 out:
2489 ++bs->write_gen;
2490 bdrv_set_dirty(bs, req.offset >> BDRV_SECTOR_BITS,
2491 req.bytes >> BDRV_SECTOR_BITS);
2492 tracked_request_end(&req);
2493 return ret;
2494 }
2495
2496 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int count)
2497 {
2498 Coroutine *co;
2499 DiscardCo rwco = {
2500 .bs = bs,
2501 .offset = offset,
2502 .count = count,
2503 .ret = NOT_DONE,
2504 };
2505
2506 if (qemu_in_coroutine()) {
2507 /* Fast-path if already in coroutine context */
2508 bdrv_pdiscard_co_entry(&rwco);
2509 } else {
2510 AioContext *aio_context = bdrv_get_aio_context(bs);
2511
2512 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2513 qemu_coroutine_enter(co);
2514 while (rwco.ret == NOT_DONE) {
2515 aio_poll(aio_context, true);
2516 }
2517 }
2518
2519 return rwco.ret;
2520 }
2521
2522 static int bdrv_co_do_ioctl(BlockDriverState *bs, int req, void *buf)
2523 {
2524 BlockDriver *drv = bs->drv;
2525 BdrvTrackedRequest tracked_req;
2526 CoroutineIOCompletion co = {
2527 .coroutine = qemu_coroutine_self(),
2528 };
2529 BlockAIOCB *acb;
2530
2531 tracked_request_begin(&tracked_req, bs, 0, 0, BDRV_TRACKED_IOCTL);
2532 if (!drv || !drv->bdrv_aio_ioctl) {
2533 co.ret = -ENOTSUP;
2534 goto out;
2535 }
2536
2537 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2538 if (!acb) {
2539 co.ret = -ENOTSUP;
2540 goto out;
2541 }
2542 qemu_coroutine_yield();
2543 out:
2544 tracked_request_end(&tracked_req);
2545 return co.ret;
2546 }
2547
2548 typedef struct {
2549 BlockDriverState *bs;
2550 int req;
2551 void *buf;
2552 int ret;
2553 } BdrvIoctlCoData;
2554
2555 static void coroutine_fn bdrv_co_ioctl_entry(void *opaque)
2556 {
2557 BdrvIoctlCoData *data = opaque;
2558 data->ret = bdrv_co_do_ioctl(data->bs, data->req, data->buf);
2559 }
2560
2561 /* needed for generic scsi interface */
2562 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
2563 {
2564 BdrvIoctlCoData data = {
2565 .bs = bs,
2566 .req = req,
2567 .buf = buf,
2568 .ret = -EINPROGRESS,
2569 };
2570
2571 if (qemu_in_coroutine()) {
2572 /* Fast-path if already in coroutine context */
2573 bdrv_co_ioctl_entry(&data);
2574 } else {
2575 Coroutine *co = qemu_coroutine_create(bdrv_co_ioctl_entry, &data);
2576
2577 qemu_coroutine_enter(co);
2578 while (data.ret == -EINPROGRESS) {
2579 aio_poll(bdrv_get_aio_context(bs), true);
2580 }
2581 }
2582 return data.ret;
2583 }
2584
2585 static void coroutine_fn bdrv_co_aio_ioctl_entry(void *opaque)
2586 {
2587 BlockAIOCBCoroutine *acb = opaque;
2588 acb->req.error = bdrv_co_do_ioctl(acb->common.bs,
2589 acb->req.req, acb->req.buf);
2590 bdrv_co_complete(acb);
2591 }
2592
2593 BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
2594 unsigned long int req, void *buf,
2595 BlockCompletionFunc *cb, void *opaque)
2596 {
2597 BlockAIOCBCoroutine *acb = qemu_aio_get(&bdrv_em_co_aiocb_info,
2598 bs, cb, opaque);
2599 Coroutine *co;
2600
2601 acb->need_bh = true;
2602 acb->req.error = -EINPROGRESS;
2603 acb->req.req = req;
2604 acb->req.buf = buf;
2605 co = qemu_coroutine_create(bdrv_co_aio_ioctl_entry, acb);
2606 qemu_coroutine_enter(co);
2607
2608 bdrv_co_maybe_schedule_bh(acb);
2609 return &acb->common;
2610 }
2611
2612 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2613 {
2614 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2615 }
2616
2617 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2618 {
2619 return memset(qemu_blockalign(bs, size), 0, size);
2620 }
2621
2622 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2623 {
2624 size_t align = bdrv_opt_mem_align(bs);
2625
2626 /* Ensure that NULL is never returned on success */
2627 assert(align > 0);
2628 if (size == 0) {
2629 size = align;
2630 }
2631
2632 return qemu_try_memalign(align, size);
2633 }
2634
2635 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2636 {
2637 void *mem = qemu_try_blockalign(bs, size);
2638
2639 if (mem) {
2640 memset(mem, 0, size);
2641 }
2642
2643 return mem;
2644 }
2645
2646 /*
2647 * Check if all memory in this vector is sector aligned.
2648 */
2649 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2650 {
2651 int i;
2652 size_t alignment = bdrv_min_mem_align(bs);
2653
2654 for (i = 0; i < qiov->niov; i++) {
2655 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2656 return false;
2657 }
2658 if (qiov->iov[i].iov_len % alignment) {
2659 return false;
2660 }
2661 }
2662
2663 return true;
2664 }
2665
2666 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2667 NotifierWithReturn *notifier)
2668 {
2669 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2670 }
2671
2672 void bdrv_io_plug(BlockDriverState *bs)
2673 {
2674 BdrvChild *child;
2675
2676 QLIST_FOREACH(child, &bs->children, next) {
2677 bdrv_io_plug(child->bs);
2678 }
2679
2680 if (bs->io_plugged++ == 0 && bs->io_plug_disabled == 0) {
2681 BlockDriver *drv = bs->drv;
2682 if (drv && drv->bdrv_io_plug) {
2683 drv->bdrv_io_plug(bs);
2684 }
2685 }
2686 }
2687
2688 void bdrv_io_unplug(BlockDriverState *bs)
2689 {
2690 BdrvChild *child;
2691
2692 assert(bs->io_plugged);
2693 if (--bs->io_plugged == 0 && bs->io_plug_disabled == 0) {
2694 BlockDriver *drv = bs->drv;
2695 if (drv && drv->bdrv_io_unplug) {
2696 drv->bdrv_io_unplug(bs);
2697 }
2698 }
2699
2700 QLIST_FOREACH(child, &bs->children, next) {
2701 bdrv_io_unplug(child->bs);
2702 }
2703 }
2704
2705 void bdrv_io_unplugged_begin(BlockDriverState *bs)
2706 {
2707 BdrvChild *child;
2708
2709 if (bs->io_plug_disabled++ == 0 && bs->io_plugged > 0) {
2710 BlockDriver *drv = bs->drv;
2711 if (drv && drv->bdrv_io_unplug) {
2712 drv->bdrv_io_unplug(bs);
2713 }
2714 }
2715
2716 QLIST_FOREACH(child, &bs->children, next) {
2717 bdrv_io_unplugged_begin(child->bs);
2718 }
2719 }
2720
2721 void bdrv_io_unplugged_end(BlockDriverState *bs)
2722 {
2723 BdrvChild *child;
2724
2725 assert(bs->io_plug_disabled);
2726 QLIST_FOREACH(child, &bs->children, next) {
2727 bdrv_io_unplugged_end(child->bs);
2728 }
2729
2730 if (--bs->io_plug_disabled == 0 && bs->io_plugged > 0) {
2731 BlockDriver *drv = bs->drv;
2732 if (drv && drv->bdrv_io_plug) {
2733 drv->bdrv_io_plug(bs);
2734 }
2735 }
2736 }