]> git.proxmox.com Git - mirror_qemu.git/blob - block/io.c
Merge tag 'for-upstream' of https://repo.or.cz/qemu/kevin into staging
[mirror_qemu.git] / block / io.c
1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/dirty-bitmap.h"
34 #include "block/write-threshold.h"
35 #include "qemu/cutils.h"
36 #include "qemu/memalign.h"
37 #include "qapi/error.h"
38 #include "qemu/error-report.h"
39 #include "qemu/main-loop.h"
40 #include "sysemu/replay.h"
41
42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
44
45 static void bdrv_parent_cb_resize(BlockDriverState *bs);
46 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
47 int64_t offset, int64_t bytes, BdrvRequestFlags flags);
48
49 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
50 {
51 BdrvChild *c, *next;
52
53 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
54 if (c == ignore) {
55 continue;
56 }
57 bdrv_parent_drained_begin_single(c);
58 }
59 }
60
61 void bdrv_parent_drained_end_single(BdrvChild *c)
62 {
63 GLOBAL_STATE_CODE();
64
65 assert(c->quiesced_parent);
66 c->quiesced_parent = false;
67
68 if (c->klass->drained_end) {
69 c->klass->drained_end(c);
70 }
71 }
72
73 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
74 {
75 BdrvChild *c;
76
77 QLIST_FOREACH(c, &bs->parents, next_parent) {
78 if (c == ignore) {
79 continue;
80 }
81 bdrv_parent_drained_end_single(c);
82 }
83 }
84
85 bool bdrv_parent_drained_poll_single(BdrvChild *c)
86 {
87 if (c->klass->drained_poll) {
88 return c->klass->drained_poll(c);
89 }
90 return false;
91 }
92
93 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
94 bool ignore_bds_parents)
95 {
96 BdrvChild *c, *next;
97 bool busy = false;
98
99 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
100 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
101 continue;
102 }
103 busy |= bdrv_parent_drained_poll_single(c);
104 }
105
106 return busy;
107 }
108
109 void bdrv_parent_drained_begin_single(BdrvChild *c)
110 {
111 GLOBAL_STATE_CODE();
112
113 assert(!c->quiesced_parent);
114 c->quiesced_parent = true;
115
116 if (c->klass->drained_begin) {
117 c->klass->drained_begin(c);
118 }
119 }
120
121 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
122 {
123 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
124 src->pdiscard_alignment);
125 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
126 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
127 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
128 src->max_hw_transfer);
129 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
130 src->opt_mem_alignment);
131 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
132 src->min_mem_alignment);
133 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
134 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
135 }
136
137 typedef struct BdrvRefreshLimitsState {
138 BlockDriverState *bs;
139 BlockLimits old_bl;
140 } BdrvRefreshLimitsState;
141
142 static void bdrv_refresh_limits_abort(void *opaque)
143 {
144 BdrvRefreshLimitsState *s = opaque;
145
146 s->bs->bl = s->old_bl;
147 }
148
149 static TransactionActionDrv bdrv_refresh_limits_drv = {
150 .abort = bdrv_refresh_limits_abort,
151 .clean = g_free,
152 };
153
154 /* @tran is allowed to be NULL, in this case no rollback is possible. */
155 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
156 {
157 ERRP_GUARD();
158 BlockDriver *drv = bs->drv;
159 BdrvChild *c;
160 bool have_limits;
161
162 GLOBAL_STATE_CODE();
163
164 if (tran) {
165 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
166 *s = (BdrvRefreshLimitsState) {
167 .bs = bs,
168 .old_bl = bs->bl,
169 };
170 tran_add(tran, &bdrv_refresh_limits_drv, s);
171 }
172
173 memset(&bs->bl, 0, sizeof(bs->bl));
174
175 if (!drv) {
176 return;
177 }
178
179 /* Default alignment based on whether driver has byte interface */
180 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
181 drv->bdrv_aio_preadv ||
182 drv->bdrv_co_preadv_part) ? 1 : 512;
183
184 /* Take some limits from the children as a default */
185 have_limits = false;
186 QLIST_FOREACH(c, &bs->children, next) {
187 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
188 {
189 bdrv_merge_limits(&bs->bl, &c->bs->bl);
190 have_limits = true;
191 }
192
193 if (c->role & BDRV_CHILD_FILTERED) {
194 bs->bl.has_variable_length |= c->bs->bl.has_variable_length;
195 }
196 }
197
198 if (!have_limits) {
199 bs->bl.min_mem_alignment = 512;
200 bs->bl.opt_mem_alignment = qemu_real_host_page_size();
201
202 /* Safe default since most protocols use readv()/writev()/etc */
203 bs->bl.max_iov = IOV_MAX;
204 }
205
206 /* Then let the driver override it */
207 if (drv->bdrv_refresh_limits) {
208 drv->bdrv_refresh_limits(bs, errp);
209 if (*errp) {
210 return;
211 }
212 }
213
214 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
215 error_setg(errp, "Driver requires too large request alignment");
216 }
217 }
218
219 /**
220 * The copy-on-read flag is actually a reference count so multiple users may
221 * use the feature without worrying about clobbering its previous state.
222 * Copy-on-read stays enabled until all users have called to disable it.
223 */
224 void bdrv_enable_copy_on_read(BlockDriverState *bs)
225 {
226 IO_CODE();
227 qatomic_inc(&bs->copy_on_read);
228 }
229
230 void bdrv_disable_copy_on_read(BlockDriverState *bs)
231 {
232 int old = qatomic_fetch_dec(&bs->copy_on_read);
233 IO_CODE();
234 assert(old >= 1);
235 }
236
237 typedef struct {
238 Coroutine *co;
239 BlockDriverState *bs;
240 bool done;
241 bool begin;
242 bool poll;
243 BdrvChild *parent;
244 } BdrvCoDrainData;
245
246 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
247 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent,
248 bool ignore_bds_parents)
249 {
250 GLOBAL_STATE_CODE();
251
252 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
253 return true;
254 }
255
256 if (qatomic_read(&bs->in_flight)) {
257 return true;
258 }
259
260 return false;
261 }
262
263 static bool bdrv_drain_poll_top_level(BlockDriverState *bs,
264 BdrvChild *ignore_parent)
265 {
266 return bdrv_drain_poll(bs, ignore_parent, false);
267 }
268
269 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
270 bool poll);
271 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent);
272
273 static void bdrv_co_drain_bh_cb(void *opaque)
274 {
275 BdrvCoDrainData *data = opaque;
276 Coroutine *co = data->co;
277 BlockDriverState *bs = data->bs;
278
279 if (bs) {
280 AioContext *ctx = bdrv_get_aio_context(bs);
281 aio_context_acquire(ctx);
282 bdrv_dec_in_flight(bs);
283 if (data->begin) {
284 bdrv_do_drained_begin(bs, data->parent, data->poll);
285 } else {
286 assert(!data->poll);
287 bdrv_do_drained_end(bs, data->parent);
288 }
289 aio_context_release(ctx);
290 } else {
291 assert(data->begin);
292 bdrv_drain_all_begin();
293 }
294
295 data->done = true;
296 aio_co_wake(co);
297 }
298
299 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
300 bool begin,
301 BdrvChild *parent,
302 bool poll)
303 {
304 BdrvCoDrainData data;
305 Coroutine *self = qemu_coroutine_self();
306 AioContext *ctx = bdrv_get_aio_context(bs);
307 AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
308
309 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
310 * other coroutines run if they were queued by aio_co_enter(). */
311
312 assert(qemu_in_coroutine());
313 data = (BdrvCoDrainData) {
314 .co = self,
315 .bs = bs,
316 .done = false,
317 .begin = begin,
318 .parent = parent,
319 .poll = poll,
320 };
321
322 if (bs) {
323 bdrv_inc_in_flight(bs);
324 }
325
326 /*
327 * Temporarily drop the lock across yield or we would get deadlocks.
328 * bdrv_co_drain_bh_cb() reaquires the lock as needed.
329 *
330 * When we yield below, the lock for the current context will be
331 * released, so if this is actually the lock that protects bs, don't drop
332 * it a second time.
333 */
334 if (ctx != co_ctx) {
335 aio_context_release(ctx);
336 }
337 replay_bh_schedule_oneshot_event(qemu_get_aio_context(),
338 bdrv_co_drain_bh_cb, &data);
339
340 qemu_coroutine_yield();
341 /* If we are resumed from some other event (such as an aio completion or a
342 * timer callback), it is a bug in the caller that should be fixed. */
343 assert(data.done);
344
345 /* Reacquire the AioContext of bs if we dropped it */
346 if (ctx != co_ctx) {
347 aio_context_acquire(ctx);
348 }
349 }
350
351 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
352 bool poll)
353 {
354 IO_OR_GS_CODE();
355
356 if (qemu_in_coroutine()) {
357 bdrv_co_yield_to_drain(bs, true, parent, poll);
358 return;
359 }
360
361 GLOBAL_STATE_CODE();
362
363 /* Stop things in parent-to-child order */
364 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
365 bdrv_parent_drained_begin(bs, parent);
366 if (bs->drv && bs->drv->bdrv_drain_begin) {
367 bs->drv->bdrv_drain_begin(bs);
368 }
369 }
370
371 /*
372 * Wait for drained requests to finish.
373 *
374 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
375 * call is needed so things in this AioContext can make progress even
376 * though we don't return to the main AioContext loop - this automatically
377 * includes other nodes in the same AioContext and therefore all child
378 * nodes.
379 */
380 if (poll) {
381 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent));
382 }
383 }
384
385 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent)
386 {
387 bdrv_do_drained_begin(bs, parent, false);
388 }
389
390 void bdrv_drained_begin(BlockDriverState *bs)
391 {
392 IO_OR_GS_CODE();
393 bdrv_do_drained_begin(bs, NULL, true);
394 }
395
396 /**
397 * This function does not poll, nor must any of its recursively called
398 * functions.
399 */
400 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent)
401 {
402 int old_quiesce_counter;
403
404 IO_OR_GS_CODE();
405
406 if (qemu_in_coroutine()) {
407 bdrv_co_yield_to_drain(bs, false, parent, false);
408 return;
409 }
410 assert(bs->quiesce_counter > 0);
411 GLOBAL_STATE_CODE();
412
413 /* Re-enable things in child-to-parent order */
414 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
415 if (old_quiesce_counter == 1) {
416 if (bs->drv && bs->drv->bdrv_drain_end) {
417 bs->drv->bdrv_drain_end(bs);
418 }
419 bdrv_parent_drained_end(bs, parent);
420 }
421 }
422
423 void bdrv_drained_end(BlockDriverState *bs)
424 {
425 IO_OR_GS_CODE();
426 bdrv_do_drained_end(bs, NULL);
427 }
428
429 void bdrv_drain(BlockDriverState *bs)
430 {
431 IO_OR_GS_CODE();
432 bdrv_drained_begin(bs);
433 bdrv_drained_end(bs);
434 }
435
436 static void bdrv_drain_assert_idle(BlockDriverState *bs)
437 {
438 BdrvChild *child, *next;
439
440 assert(qatomic_read(&bs->in_flight) == 0);
441 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
442 bdrv_drain_assert_idle(child->bs);
443 }
444 }
445
446 unsigned int bdrv_drain_all_count = 0;
447
448 static bool bdrv_drain_all_poll(void)
449 {
450 BlockDriverState *bs = NULL;
451 bool result = false;
452 GLOBAL_STATE_CODE();
453
454 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
455 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
456 while ((bs = bdrv_next_all_states(bs))) {
457 AioContext *aio_context = bdrv_get_aio_context(bs);
458 aio_context_acquire(aio_context);
459 result |= bdrv_drain_poll(bs, NULL, true);
460 aio_context_release(aio_context);
461 }
462
463 return result;
464 }
465
466 /*
467 * Wait for pending requests to complete across all BlockDriverStates
468 *
469 * This function does not flush data to disk, use bdrv_flush_all() for that
470 * after calling this function.
471 *
472 * This pauses all block jobs and disables external clients. It must
473 * be paired with bdrv_drain_all_end().
474 *
475 * NOTE: no new block jobs or BlockDriverStates can be created between
476 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
477 */
478 void bdrv_drain_all_begin_nopoll(void)
479 {
480 BlockDriverState *bs = NULL;
481 GLOBAL_STATE_CODE();
482
483 /*
484 * bdrv queue is managed by record/replay,
485 * waiting for finishing the I/O requests may
486 * be infinite
487 */
488 if (replay_events_enabled()) {
489 return;
490 }
491
492 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
493 * loop AioContext, so make sure we're in the main context. */
494 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
495 assert(bdrv_drain_all_count < INT_MAX);
496 bdrv_drain_all_count++;
497
498 /* Quiesce all nodes, without polling in-flight requests yet. The graph
499 * cannot change during this loop. */
500 while ((bs = bdrv_next_all_states(bs))) {
501 AioContext *aio_context = bdrv_get_aio_context(bs);
502
503 aio_context_acquire(aio_context);
504 bdrv_do_drained_begin(bs, NULL, false);
505 aio_context_release(aio_context);
506 }
507 }
508
509 void bdrv_drain_all_begin(void)
510 {
511 BlockDriverState *bs = NULL;
512
513 if (qemu_in_coroutine()) {
514 bdrv_co_yield_to_drain(NULL, true, NULL, true);
515 return;
516 }
517
518 /*
519 * bdrv queue is managed by record/replay,
520 * waiting for finishing the I/O requests may
521 * be infinite
522 */
523 if (replay_events_enabled()) {
524 return;
525 }
526
527 bdrv_drain_all_begin_nopoll();
528
529 /* Now poll the in-flight requests */
530 AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll());
531
532 while ((bs = bdrv_next_all_states(bs))) {
533 bdrv_drain_assert_idle(bs);
534 }
535 }
536
537 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
538 {
539 GLOBAL_STATE_CODE();
540
541 g_assert(bs->quiesce_counter > 0);
542 g_assert(!bs->refcnt);
543
544 while (bs->quiesce_counter) {
545 bdrv_do_drained_end(bs, NULL);
546 }
547 }
548
549 void bdrv_drain_all_end(void)
550 {
551 BlockDriverState *bs = NULL;
552 GLOBAL_STATE_CODE();
553
554 /*
555 * bdrv queue is managed by record/replay,
556 * waiting for finishing the I/O requests may
557 * be endless
558 */
559 if (replay_events_enabled()) {
560 return;
561 }
562
563 while ((bs = bdrv_next_all_states(bs))) {
564 AioContext *aio_context = bdrv_get_aio_context(bs);
565
566 aio_context_acquire(aio_context);
567 bdrv_do_drained_end(bs, NULL);
568 aio_context_release(aio_context);
569 }
570
571 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
572 assert(bdrv_drain_all_count > 0);
573 bdrv_drain_all_count--;
574 }
575
576 void bdrv_drain_all(void)
577 {
578 GLOBAL_STATE_CODE();
579 bdrv_drain_all_begin();
580 bdrv_drain_all_end();
581 }
582
583 /**
584 * Remove an active request from the tracked requests list
585 *
586 * This function should be called when a tracked request is completing.
587 */
588 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
589 {
590 if (req->serialising) {
591 qatomic_dec(&req->bs->serialising_in_flight);
592 }
593
594 qemu_mutex_lock(&req->bs->reqs_lock);
595 QLIST_REMOVE(req, list);
596 qemu_mutex_unlock(&req->bs->reqs_lock);
597
598 /*
599 * At this point qemu_co_queue_wait(&req->wait_queue, ...) won't be called
600 * anymore because the request has been removed from the list, so it's safe
601 * to restart the queue outside reqs_lock to minimize the critical section.
602 */
603 qemu_co_queue_restart_all(&req->wait_queue);
604 }
605
606 /**
607 * Add an active request to the tracked requests list
608 */
609 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req,
610 BlockDriverState *bs,
611 int64_t offset,
612 int64_t bytes,
613 enum BdrvTrackedRequestType type)
614 {
615 bdrv_check_request(offset, bytes, &error_abort);
616
617 *req = (BdrvTrackedRequest){
618 .bs = bs,
619 .offset = offset,
620 .bytes = bytes,
621 .type = type,
622 .co = qemu_coroutine_self(),
623 .serialising = false,
624 .overlap_offset = offset,
625 .overlap_bytes = bytes,
626 };
627
628 qemu_co_queue_init(&req->wait_queue);
629
630 qemu_mutex_lock(&bs->reqs_lock);
631 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
632 qemu_mutex_unlock(&bs->reqs_lock);
633 }
634
635 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
636 int64_t offset, int64_t bytes)
637 {
638 bdrv_check_request(offset, bytes, &error_abort);
639
640 /* aaaa bbbb */
641 if (offset >= req->overlap_offset + req->overlap_bytes) {
642 return false;
643 }
644 /* bbbb aaaa */
645 if (req->overlap_offset >= offset + bytes) {
646 return false;
647 }
648 return true;
649 }
650
651 /* Called with self->bs->reqs_lock held */
652 static coroutine_fn BdrvTrackedRequest *
653 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
654 {
655 BdrvTrackedRequest *req;
656
657 QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
658 if (req == self || (!req->serialising && !self->serialising)) {
659 continue;
660 }
661 if (tracked_request_overlaps(req, self->overlap_offset,
662 self->overlap_bytes))
663 {
664 /*
665 * Hitting this means there was a reentrant request, for
666 * example, a block driver issuing nested requests. This must
667 * never happen since it means deadlock.
668 */
669 assert(qemu_coroutine_self() != req->co);
670
671 /*
672 * If the request is already (indirectly) waiting for us, or
673 * will wait for us as soon as it wakes up, then just go on
674 * (instead of producing a deadlock in the former case).
675 */
676 if (!req->waiting_for) {
677 return req;
678 }
679 }
680 }
681
682 return NULL;
683 }
684
685 /* Called with self->bs->reqs_lock held */
686 static void coroutine_fn
687 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
688 {
689 BdrvTrackedRequest *req;
690
691 while ((req = bdrv_find_conflicting_request(self))) {
692 self->waiting_for = req;
693 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
694 self->waiting_for = NULL;
695 }
696 }
697
698 /* Called with req->bs->reqs_lock held */
699 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
700 uint64_t align)
701 {
702 int64_t overlap_offset = req->offset & ~(align - 1);
703 int64_t overlap_bytes =
704 ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
705
706 bdrv_check_request(req->offset, req->bytes, &error_abort);
707
708 if (!req->serialising) {
709 qatomic_inc(&req->bs->serialising_in_flight);
710 req->serialising = true;
711 }
712
713 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
714 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
715 }
716
717 /**
718 * Return the tracked request on @bs for the current coroutine, or
719 * NULL if there is none.
720 */
721 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
722 {
723 BdrvTrackedRequest *req;
724 Coroutine *self = qemu_coroutine_self();
725 IO_CODE();
726
727 QLIST_FOREACH(req, &bs->tracked_requests, list) {
728 if (req->co == self) {
729 return req;
730 }
731 }
732
733 return NULL;
734 }
735
736 /**
737 * Round a region to subcluster (if supported) or cluster boundaries
738 */
739 void coroutine_fn GRAPH_RDLOCK
740 bdrv_round_to_subclusters(BlockDriverState *bs, int64_t offset, int64_t bytes,
741 int64_t *align_offset, int64_t *align_bytes)
742 {
743 BlockDriverInfo bdi;
744 IO_CODE();
745 if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.subcluster_size == 0) {
746 *align_offset = offset;
747 *align_bytes = bytes;
748 } else {
749 int64_t c = bdi.subcluster_size;
750 *align_offset = QEMU_ALIGN_DOWN(offset, c);
751 *align_bytes = QEMU_ALIGN_UP(offset - *align_offset + bytes, c);
752 }
753 }
754
755 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs)
756 {
757 BlockDriverInfo bdi;
758 int ret;
759
760 ret = bdrv_co_get_info(bs, &bdi);
761 if (ret < 0 || bdi.cluster_size == 0) {
762 return bs->bl.request_alignment;
763 } else {
764 return bdi.cluster_size;
765 }
766 }
767
768 void bdrv_inc_in_flight(BlockDriverState *bs)
769 {
770 IO_CODE();
771 qatomic_inc(&bs->in_flight);
772 }
773
774 void bdrv_wakeup(BlockDriverState *bs)
775 {
776 IO_CODE();
777 aio_wait_kick();
778 }
779
780 void bdrv_dec_in_flight(BlockDriverState *bs)
781 {
782 IO_CODE();
783 qatomic_dec(&bs->in_flight);
784 bdrv_wakeup(bs);
785 }
786
787 static void coroutine_fn
788 bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
789 {
790 BlockDriverState *bs = self->bs;
791
792 if (!qatomic_read(&bs->serialising_in_flight)) {
793 return;
794 }
795
796 qemu_mutex_lock(&bs->reqs_lock);
797 bdrv_wait_serialising_requests_locked(self);
798 qemu_mutex_unlock(&bs->reqs_lock);
799 }
800
801 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
802 uint64_t align)
803 {
804 IO_CODE();
805
806 qemu_mutex_lock(&req->bs->reqs_lock);
807
808 tracked_request_set_serialising(req, align);
809 bdrv_wait_serialising_requests_locked(req);
810
811 qemu_mutex_unlock(&req->bs->reqs_lock);
812 }
813
814 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
815 QEMUIOVector *qiov, size_t qiov_offset,
816 Error **errp)
817 {
818 /*
819 * Check generic offset/bytes correctness
820 */
821
822 if (offset < 0) {
823 error_setg(errp, "offset is negative: %" PRIi64, offset);
824 return -EIO;
825 }
826
827 if (bytes < 0) {
828 error_setg(errp, "bytes is negative: %" PRIi64, bytes);
829 return -EIO;
830 }
831
832 if (bytes > BDRV_MAX_LENGTH) {
833 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
834 bytes, BDRV_MAX_LENGTH);
835 return -EIO;
836 }
837
838 if (offset > BDRV_MAX_LENGTH) {
839 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
840 offset, BDRV_MAX_LENGTH);
841 return -EIO;
842 }
843
844 if (offset > BDRV_MAX_LENGTH - bytes) {
845 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
846 "exceeds maximum(%" PRIi64 ")", offset, bytes,
847 BDRV_MAX_LENGTH);
848 return -EIO;
849 }
850
851 if (!qiov) {
852 return 0;
853 }
854
855 /*
856 * Check qiov and qiov_offset
857 */
858
859 if (qiov_offset > qiov->size) {
860 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
861 qiov_offset, qiov->size);
862 return -EIO;
863 }
864
865 if (bytes > qiov->size - qiov_offset) {
866 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
867 "vector size(%zu)", bytes, qiov_offset, qiov->size);
868 return -EIO;
869 }
870
871 return 0;
872 }
873
874 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
875 {
876 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
877 }
878
879 static int bdrv_check_request32(int64_t offset, int64_t bytes,
880 QEMUIOVector *qiov, size_t qiov_offset)
881 {
882 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
883 if (ret < 0) {
884 return ret;
885 }
886
887 if (bytes > BDRV_REQUEST_MAX_BYTES) {
888 return -EIO;
889 }
890
891 return 0;
892 }
893
894 /*
895 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
896 * The operation is sped up by checking the block status and only writing
897 * zeroes to the device if they currently do not return zeroes. Optional
898 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
899 * BDRV_REQ_FUA).
900 *
901 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
902 */
903 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
904 {
905 int ret;
906 int64_t target_size, bytes, offset = 0;
907 BlockDriverState *bs = child->bs;
908 IO_CODE();
909
910 target_size = bdrv_getlength(bs);
911 if (target_size < 0) {
912 return target_size;
913 }
914
915 for (;;) {
916 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
917 if (bytes <= 0) {
918 return 0;
919 }
920 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
921 if (ret < 0) {
922 return ret;
923 }
924 if (ret & BDRV_BLOCK_ZERO) {
925 offset += bytes;
926 continue;
927 }
928 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
929 if (ret < 0) {
930 return ret;
931 }
932 offset += bytes;
933 }
934 }
935
936 /*
937 * Writes to the file and ensures that no writes are reordered across this
938 * request (acts as a barrier)
939 *
940 * Returns 0 on success, -errno in error cases.
941 */
942 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
943 int64_t bytes, const void *buf,
944 BdrvRequestFlags flags)
945 {
946 int ret;
947 IO_CODE();
948 assert_bdrv_graph_readable();
949
950 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
951 if (ret < 0) {
952 return ret;
953 }
954
955 ret = bdrv_co_flush(child->bs);
956 if (ret < 0) {
957 return ret;
958 }
959
960 return 0;
961 }
962
963 typedef struct CoroutineIOCompletion {
964 Coroutine *coroutine;
965 int ret;
966 } CoroutineIOCompletion;
967
968 static void bdrv_co_io_em_complete(void *opaque, int ret)
969 {
970 CoroutineIOCompletion *co = opaque;
971
972 co->ret = ret;
973 aio_co_wake(co->coroutine);
974 }
975
976 static int coroutine_fn GRAPH_RDLOCK
977 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes,
978 QEMUIOVector *qiov, size_t qiov_offset, int flags)
979 {
980 BlockDriver *drv = bs->drv;
981 int64_t sector_num;
982 unsigned int nb_sectors;
983 QEMUIOVector local_qiov;
984 int ret;
985 assert_bdrv_graph_readable();
986
987 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
988 assert(!(flags & ~bs->supported_read_flags));
989
990 if (!drv) {
991 return -ENOMEDIUM;
992 }
993
994 if (drv->bdrv_co_preadv_part) {
995 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
996 flags);
997 }
998
999 if (qiov_offset > 0 || bytes != qiov->size) {
1000 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1001 qiov = &local_qiov;
1002 }
1003
1004 if (drv->bdrv_co_preadv) {
1005 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1006 goto out;
1007 }
1008
1009 if (drv->bdrv_aio_preadv) {
1010 BlockAIOCB *acb;
1011 CoroutineIOCompletion co = {
1012 .coroutine = qemu_coroutine_self(),
1013 };
1014
1015 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1016 bdrv_co_io_em_complete, &co);
1017 if (acb == NULL) {
1018 ret = -EIO;
1019 goto out;
1020 } else {
1021 qemu_coroutine_yield();
1022 ret = co.ret;
1023 goto out;
1024 }
1025 }
1026
1027 sector_num = offset >> BDRV_SECTOR_BITS;
1028 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1029
1030 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1031 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1032 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1033 assert(drv->bdrv_co_readv);
1034
1035 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1036
1037 out:
1038 if (qiov == &local_qiov) {
1039 qemu_iovec_destroy(&local_qiov);
1040 }
1041
1042 return ret;
1043 }
1044
1045 static int coroutine_fn GRAPH_RDLOCK
1046 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes,
1047 QEMUIOVector *qiov, size_t qiov_offset,
1048 BdrvRequestFlags flags)
1049 {
1050 BlockDriver *drv = bs->drv;
1051 bool emulate_fua = false;
1052 int64_t sector_num;
1053 unsigned int nb_sectors;
1054 QEMUIOVector local_qiov;
1055 int ret;
1056 assert_bdrv_graph_readable();
1057
1058 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1059
1060 if (!drv) {
1061 return -ENOMEDIUM;
1062 }
1063
1064 if ((flags & BDRV_REQ_FUA) &&
1065 (~bs->supported_write_flags & BDRV_REQ_FUA)) {
1066 flags &= ~BDRV_REQ_FUA;
1067 emulate_fua = true;
1068 }
1069
1070 flags &= bs->supported_write_flags;
1071
1072 if (drv->bdrv_co_pwritev_part) {
1073 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1074 flags);
1075 goto emulate_flags;
1076 }
1077
1078 if (qiov_offset > 0 || bytes != qiov->size) {
1079 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1080 qiov = &local_qiov;
1081 }
1082
1083 if (drv->bdrv_co_pwritev) {
1084 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags);
1085 goto emulate_flags;
1086 }
1087
1088 if (drv->bdrv_aio_pwritev) {
1089 BlockAIOCB *acb;
1090 CoroutineIOCompletion co = {
1091 .coroutine = qemu_coroutine_self(),
1092 };
1093
1094 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags,
1095 bdrv_co_io_em_complete, &co);
1096 if (acb == NULL) {
1097 ret = -EIO;
1098 } else {
1099 qemu_coroutine_yield();
1100 ret = co.ret;
1101 }
1102 goto emulate_flags;
1103 }
1104
1105 sector_num = offset >> BDRV_SECTOR_BITS;
1106 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1107
1108 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1109 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1110 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1111
1112 assert(drv->bdrv_co_writev);
1113 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags);
1114
1115 emulate_flags:
1116 if (ret == 0 && emulate_fua) {
1117 ret = bdrv_co_flush(bs);
1118 }
1119
1120 if (qiov == &local_qiov) {
1121 qemu_iovec_destroy(&local_qiov);
1122 }
1123
1124 return ret;
1125 }
1126
1127 static int coroutine_fn GRAPH_RDLOCK
1128 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1129 int64_t bytes, QEMUIOVector *qiov,
1130 size_t qiov_offset)
1131 {
1132 BlockDriver *drv = bs->drv;
1133 QEMUIOVector local_qiov;
1134 int ret;
1135 assert_bdrv_graph_readable();
1136
1137 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1138
1139 if (!drv) {
1140 return -ENOMEDIUM;
1141 }
1142
1143 if (!block_driver_can_compress(drv)) {
1144 return -ENOTSUP;
1145 }
1146
1147 if (drv->bdrv_co_pwritev_compressed_part) {
1148 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1149 qiov, qiov_offset);
1150 }
1151
1152 if (qiov_offset == 0) {
1153 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1154 }
1155
1156 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1157 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1158 qemu_iovec_destroy(&local_qiov);
1159
1160 return ret;
1161 }
1162
1163 static int coroutine_fn GRAPH_RDLOCK
1164 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes,
1165 QEMUIOVector *qiov, size_t qiov_offset, int flags)
1166 {
1167 BlockDriverState *bs = child->bs;
1168
1169 /* Perform I/O through a temporary buffer so that users who scribble over
1170 * their read buffer while the operation is in progress do not end up
1171 * modifying the image file. This is critical for zero-copy guest I/O
1172 * where anything might happen inside guest memory.
1173 */
1174 void *bounce_buffer = NULL;
1175
1176 BlockDriver *drv = bs->drv;
1177 int64_t align_offset;
1178 int64_t align_bytes;
1179 int64_t skip_bytes;
1180 int ret;
1181 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1182 BDRV_REQUEST_MAX_BYTES);
1183 int64_t progress = 0;
1184 bool skip_write;
1185
1186 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1187
1188 if (!drv) {
1189 return -ENOMEDIUM;
1190 }
1191
1192 /*
1193 * Do not write anything when the BDS is inactive. That is not
1194 * allowed, and it would not help.
1195 */
1196 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1197
1198 /* FIXME We cannot require callers to have write permissions when all they
1199 * are doing is a read request. If we did things right, write permissions
1200 * would be obtained anyway, but internally by the copy-on-read code. As
1201 * long as it is implemented here rather than in a separate filter driver,
1202 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1203 * it could request permissions. Therefore we have to bypass the permission
1204 * system for the moment. */
1205 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1206
1207 /* Cover entire cluster so no additional backing file I/O is required when
1208 * allocating cluster in the image file. Note that this value may exceed
1209 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1210 * is one reason we loop rather than doing it all at once.
1211 */
1212 bdrv_round_to_subclusters(bs, offset, bytes, &align_offset, &align_bytes);
1213 skip_bytes = offset - align_offset;
1214
1215 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1216 align_offset, align_bytes);
1217
1218 while (align_bytes) {
1219 int64_t pnum;
1220
1221 if (skip_write) {
1222 ret = 1; /* "already allocated", so nothing will be copied */
1223 pnum = MIN(align_bytes, max_transfer);
1224 } else {
1225 ret = bdrv_is_allocated(bs, align_offset,
1226 MIN(align_bytes, max_transfer), &pnum);
1227 if (ret < 0) {
1228 /*
1229 * Safe to treat errors in querying allocation as if
1230 * unallocated; we'll probably fail again soon on the
1231 * read, but at least that will set a decent errno.
1232 */
1233 pnum = MIN(align_bytes, max_transfer);
1234 }
1235
1236 /* Stop at EOF if the image ends in the middle of the cluster */
1237 if (ret == 0 && pnum == 0) {
1238 assert(progress >= bytes);
1239 break;
1240 }
1241
1242 assert(skip_bytes < pnum);
1243 }
1244
1245 if (ret <= 0) {
1246 QEMUIOVector local_qiov;
1247
1248 /* Must copy-on-read; use the bounce buffer */
1249 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1250 if (!bounce_buffer) {
1251 int64_t max_we_need = MAX(pnum, align_bytes - pnum);
1252 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1253 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1254
1255 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1256 if (!bounce_buffer) {
1257 ret = -ENOMEM;
1258 goto err;
1259 }
1260 }
1261 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1262
1263 ret = bdrv_driver_preadv(bs, align_offset, pnum,
1264 &local_qiov, 0, 0);
1265 if (ret < 0) {
1266 goto err;
1267 }
1268
1269 bdrv_co_debug_event(bs, BLKDBG_COR_WRITE);
1270 if (drv->bdrv_co_pwrite_zeroes &&
1271 buffer_is_zero(bounce_buffer, pnum)) {
1272 /* FIXME: Should we (perhaps conditionally) be setting
1273 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1274 * that still correctly reads as zero? */
1275 ret = bdrv_co_do_pwrite_zeroes(bs, align_offset, pnum,
1276 BDRV_REQ_WRITE_UNCHANGED);
1277 } else {
1278 /* This does not change the data on the disk, it is not
1279 * necessary to flush even in cache=writethrough mode.
1280 */
1281 ret = bdrv_driver_pwritev(bs, align_offset, pnum,
1282 &local_qiov, 0,
1283 BDRV_REQ_WRITE_UNCHANGED);
1284 }
1285
1286 if (ret < 0) {
1287 /* It might be okay to ignore write errors for guest
1288 * requests. If this is a deliberate copy-on-read
1289 * then we don't want to ignore the error. Simply
1290 * report it in all cases.
1291 */
1292 goto err;
1293 }
1294
1295 if (!(flags & BDRV_REQ_PREFETCH)) {
1296 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1297 bounce_buffer + skip_bytes,
1298 MIN(pnum - skip_bytes, bytes - progress));
1299 }
1300 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1301 /* Read directly into the destination */
1302 ret = bdrv_driver_preadv(bs, offset + progress,
1303 MIN(pnum - skip_bytes, bytes - progress),
1304 qiov, qiov_offset + progress, 0);
1305 if (ret < 0) {
1306 goto err;
1307 }
1308 }
1309
1310 align_offset += pnum;
1311 align_bytes -= pnum;
1312 progress += pnum - skip_bytes;
1313 skip_bytes = 0;
1314 }
1315 ret = 0;
1316
1317 err:
1318 qemu_vfree(bounce_buffer);
1319 return ret;
1320 }
1321
1322 /*
1323 * Forwards an already correctly aligned request to the BlockDriver. This
1324 * handles copy on read, zeroing after EOF, and fragmentation of large
1325 * reads; any other features must be implemented by the caller.
1326 */
1327 static int coroutine_fn GRAPH_RDLOCK
1328 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req,
1329 int64_t offset, int64_t bytes, int64_t align,
1330 QEMUIOVector *qiov, size_t qiov_offset, int flags)
1331 {
1332 BlockDriverState *bs = child->bs;
1333 int64_t total_bytes, max_bytes;
1334 int ret = 0;
1335 int64_t bytes_remaining = bytes;
1336 int max_transfer;
1337
1338 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1339 assert(is_power_of_2(align));
1340 assert((offset & (align - 1)) == 0);
1341 assert((bytes & (align - 1)) == 0);
1342 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1343 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1344 align);
1345
1346 /*
1347 * TODO: We would need a per-BDS .supported_read_flags and
1348 * potential fallback support, if we ever implement any read flags
1349 * to pass through to drivers. For now, there aren't any
1350 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint.
1351 */
1352 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH |
1353 BDRV_REQ_REGISTERED_BUF)));
1354
1355 /* Handle Copy on Read and associated serialisation */
1356 if (flags & BDRV_REQ_COPY_ON_READ) {
1357 /* If we touch the same cluster it counts as an overlap. This
1358 * guarantees that allocating writes will be serialized and not race
1359 * with each other for the same cluster. For example, in copy-on-read
1360 * it ensures that the CoR read and write operations are atomic and
1361 * guest writes cannot interleave between them. */
1362 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1363 } else {
1364 bdrv_wait_serialising_requests(req);
1365 }
1366
1367 if (flags & BDRV_REQ_COPY_ON_READ) {
1368 int64_t pnum;
1369
1370 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1371 flags &= ~BDRV_REQ_COPY_ON_READ;
1372
1373 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1374 if (ret < 0) {
1375 goto out;
1376 }
1377
1378 if (!ret || pnum != bytes) {
1379 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1380 qiov, qiov_offset, flags);
1381 goto out;
1382 } else if (flags & BDRV_REQ_PREFETCH) {
1383 goto out;
1384 }
1385 }
1386
1387 /* Forward the request to the BlockDriver, possibly fragmenting it */
1388 total_bytes = bdrv_co_getlength(bs);
1389 if (total_bytes < 0) {
1390 ret = total_bytes;
1391 goto out;
1392 }
1393
1394 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF)));
1395
1396 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1397 if (bytes <= max_bytes && bytes <= max_transfer) {
1398 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1399 goto out;
1400 }
1401
1402 while (bytes_remaining) {
1403 int64_t num;
1404
1405 if (max_bytes) {
1406 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1407 assert(num);
1408
1409 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1410 num, qiov,
1411 qiov_offset + bytes - bytes_remaining,
1412 flags);
1413 max_bytes -= num;
1414 } else {
1415 num = bytes_remaining;
1416 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1417 0, bytes_remaining);
1418 }
1419 if (ret < 0) {
1420 goto out;
1421 }
1422 bytes_remaining -= num;
1423 }
1424
1425 out:
1426 return ret < 0 ? ret : 0;
1427 }
1428
1429 /*
1430 * Request padding
1431 *
1432 * |<---- align ----->| |<----- align ---->|
1433 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1434 * | | | | | |
1435 * -*----------$-------*-------- ... --------*-----$------------*---
1436 * | | | | | |
1437 * | offset | | end |
1438 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1439 * [buf ... ) [tail_buf )
1440 *
1441 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1442 * is placed at the beginning of @buf and @tail at the @end.
1443 *
1444 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1445 * around tail, if tail exists.
1446 *
1447 * @merge_reads is true for small requests,
1448 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1449 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1450 *
1451 * @write is true for write requests, false for read requests.
1452 *
1453 * If padding makes the vector too long (exceeding IOV_MAX), then we need to
1454 * merge existing vector elements into a single one. @collapse_bounce_buf acts
1455 * as the bounce buffer in such cases. @pre_collapse_qiov has the pre-collapse
1456 * I/O vector elements so for read requests, the data can be copied back after
1457 * the read is done.
1458 */
1459 typedef struct BdrvRequestPadding {
1460 uint8_t *buf;
1461 size_t buf_len;
1462 uint8_t *tail_buf;
1463 size_t head;
1464 size_t tail;
1465 bool merge_reads;
1466 bool write;
1467 QEMUIOVector local_qiov;
1468
1469 uint8_t *collapse_bounce_buf;
1470 size_t collapse_len;
1471 QEMUIOVector pre_collapse_qiov;
1472 } BdrvRequestPadding;
1473
1474 static bool bdrv_init_padding(BlockDriverState *bs,
1475 int64_t offset, int64_t bytes,
1476 bool write,
1477 BdrvRequestPadding *pad)
1478 {
1479 int64_t align = bs->bl.request_alignment;
1480 int64_t sum;
1481
1482 bdrv_check_request(offset, bytes, &error_abort);
1483 assert(align <= INT_MAX); /* documented in block/block_int.h */
1484 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1485
1486 memset(pad, 0, sizeof(*pad));
1487
1488 pad->head = offset & (align - 1);
1489 pad->tail = ((offset + bytes) & (align - 1));
1490 if (pad->tail) {
1491 pad->tail = align - pad->tail;
1492 }
1493
1494 if (!pad->head && !pad->tail) {
1495 return false;
1496 }
1497
1498 assert(bytes); /* Nothing good in aligning zero-length requests */
1499
1500 sum = pad->head + bytes + pad->tail;
1501 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1502 pad->buf = qemu_blockalign(bs, pad->buf_len);
1503 pad->merge_reads = sum == pad->buf_len;
1504 if (pad->tail) {
1505 pad->tail_buf = pad->buf + pad->buf_len - align;
1506 }
1507
1508 pad->write = write;
1509
1510 return true;
1511 }
1512
1513 static int coroutine_fn GRAPH_RDLOCK
1514 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req,
1515 BdrvRequestPadding *pad, bool zero_middle)
1516 {
1517 QEMUIOVector local_qiov;
1518 BlockDriverState *bs = child->bs;
1519 uint64_t align = bs->bl.request_alignment;
1520 int ret;
1521
1522 assert(req->serialising && pad->buf);
1523
1524 if (pad->head || pad->merge_reads) {
1525 int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1526
1527 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1528
1529 if (pad->head) {
1530 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1531 }
1532 if (pad->merge_reads && pad->tail) {
1533 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1534 }
1535 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1536 align, &local_qiov, 0, 0);
1537 if (ret < 0) {
1538 return ret;
1539 }
1540 if (pad->head) {
1541 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1542 }
1543 if (pad->merge_reads && pad->tail) {
1544 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1545 }
1546
1547 if (pad->merge_reads) {
1548 goto zero_mem;
1549 }
1550 }
1551
1552 if (pad->tail) {
1553 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1554
1555 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1556 ret = bdrv_aligned_preadv(
1557 child, req,
1558 req->overlap_offset + req->overlap_bytes - align,
1559 align, align, &local_qiov, 0, 0);
1560 if (ret < 0) {
1561 return ret;
1562 }
1563 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1564 }
1565
1566 zero_mem:
1567 if (zero_middle) {
1568 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1569 }
1570
1571 return 0;
1572 }
1573
1574 /**
1575 * Free *pad's associated buffers, and perform any necessary finalization steps.
1576 */
1577 static void bdrv_padding_finalize(BdrvRequestPadding *pad)
1578 {
1579 if (pad->collapse_bounce_buf) {
1580 if (!pad->write) {
1581 /*
1582 * If padding required elements in the vector to be collapsed into a
1583 * bounce buffer, copy the bounce buffer content back
1584 */
1585 qemu_iovec_from_buf(&pad->pre_collapse_qiov, 0,
1586 pad->collapse_bounce_buf, pad->collapse_len);
1587 }
1588 qemu_vfree(pad->collapse_bounce_buf);
1589 qemu_iovec_destroy(&pad->pre_collapse_qiov);
1590 }
1591 if (pad->buf) {
1592 qemu_vfree(pad->buf);
1593 qemu_iovec_destroy(&pad->local_qiov);
1594 }
1595 memset(pad, 0, sizeof(*pad));
1596 }
1597
1598 /*
1599 * Create pad->local_qiov by wrapping @iov in the padding head and tail, while
1600 * ensuring that the resulting vector will not exceed IOV_MAX elements.
1601 *
1602 * To ensure this, when necessary, the first two or three elements of @iov are
1603 * merged into pad->collapse_bounce_buf and replaced by a reference to that
1604 * bounce buffer in pad->local_qiov.
1605 *
1606 * After performing a read request, the data from the bounce buffer must be
1607 * copied back into pad->pre_collapse_qiov (e.g. by bdrv_padding_finalize()).
1608 */
1609 static int bdrv_create_padded_qiov(BlockDriverState *bs,
1610 BdrvRequestPadding *pad,
1611 struct iovec *iov, int niov,
1612 size_t iov_offset, size_t bytes)
1613 {
1614 int padded_niov, surplus_count, collapse_count;
1615
1616 /* Assert this invariant */
1617 assert(niov <= IOV_MAX);
1618
1619 /*
1620 * Cannot pad if resulting length would exceed SIZE_MAX. Returning an error
1621 * to the guest is not ideal, but there is little else we can do. At least
1622 * this will practically never happen on 64-bit systems.
1623 */
1624 if (SIZE_MAX - pad->head < bytes ||
1625 SIZE_MAX - pad->head - bytes < pad->tail)
1626 {
1627 return -EINVAL;
1628 }
1629
1630 /* Length of the resulting IOV if we just concatenated everything */
1631 padded_niov = !!pad->head + niov + !!pad->tail;
1632
1633 qemu_iovec_init(&pad->local_qiov, MIN(padded_niov, IOV_MAX));
1634
1635 if (pad->head) {
1636 qemu_iovec_add(&pad->local_qiov, pad->buf, pad->head);
1637 }
1638
1639 /*
1640 * If padded_niov > IOV_MAX, we cannot just concatenate everything.
1641 * Instead, merge the first two or three elements of @iov to reduce the
1642 * number of vector elements as necessary.
1643 */
1644 if (padded_niov > IOV_MAX) {
1645 /*
1646 * Only head and tail can have lead to the number of entries exceeding
1647 * IOV_MAX, so we can exceed it by the head and tail at most. We need
1648 * to reduce the number of elements by `surplus_count`, so we merge that
1649 * many elements plus one into one element.
1650 */
1651 surplus_count = padded_niov - IOV_MAX;
1652 assert(surplus_count <= !!pad->head + !!pad->tail);
1653 collapse_count = surplus_count + 1;
1654
1655 /*
1656 * Move the elements to collapse into `pad->pre_collapse_qiov`, then
1657 * advance `iov` (and associated variables) by those elements.
1658 */
1659 qemu_iovec_init(&pad->pre_collapse_qiov, collapse_count);
1660 qemu_iovec_concat_iov(&pad->pre_collapse_qiov, iov,
1661 collapse_count, iov_offset, SIZE_MAX);
1662 iov += collapse_count;
1663 iov_offset = 0;
1664 niov -= collapse_count;
1665 bytes -= pad->pre_collapse_qiov.size;
1666
1667 /*
1668 * Construct the bounce buffer to match the length of the to-collapse
1669 * vector elements, and for write requests, initialize it with the data
1670 * from those elements. Then add it to `pad->local_qiov`.
1671 */
1672 pad->collapse_len = pad->pre_collapse_qiov.size;
1673 pad->collapse_bounce_buf = qemu_blockalign(bs, pad->collapse_len);
1674 if (pad->write) {
1675 qemu_iovec_to_buf(&pad->pre_collapse_qiov, 0,
1676 pad->collapse_bounce_buf, pad->collapse_len);
1677 }
1678 qemu_iovec_add(&pad->local_qiov,
1679 pad->collapse_bounce_buf, pad->collapse_len);
1680 }
1681
1682 qemu_iovec_concat_iov(&pad->local_qiov, iov, niov, iov_offset, bytes);
1683
1684 if (pad->tail) {
1685 qemu_iovec_add(&pad->local_qiov,
1686 pad->buf + pad->buf_len - pad->tail, pad->tail);
1687 }
1688
1689 assert(pad->local_qiov.niov == MIN(padded_niov, IOV_MAX));
1690 return 0;
1691 }
1692
1693 /*
1694 * bdrv_pad_request
1695 *
1696 * Exchange request parameters with padded request if needed. Don't include RMW
1697 * read of padding, bdrv_padding_rmw_read() should be called separately if
1698 * needed.
1699 *
1700 * @write is true for write requests, false for read requests.
1701 *
1702 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1703 * - on function start they represent original request
1704 * - on failure or when padding is not needed they are unchanged
1705 * - on success when padding is needed they represent padded request
1706 */
1707 static int bdrv_pad_request(BlockDriverState *bs,
1708 QEMUIOVector **qiov, size_t *qiov_offset,
1709 int64_t *offset, int64_t *bytes,
1710 bool write,
1711 BdrvRequestPadding *pad, bool *padded,
1712 BdrvRequestFlags *flags)
1713 {
1714 int ret;
1715 struct iovec *sliced_iov;
1716 int sliced_niov;
1717 size_t sliced_head, sliced_tail;
1718
1719 /* Should have been checked by the caller already */
1720 ret = bdrv_check_request32(*offset, *bytes, *qiov, *qiov_offset);
1721 if (ret < 0) {
1722 return ret;
1723 }
1724
1725 if (!bdrv_init_padding(bs, *offset, *bytes, write, pad)) {
1726 if (padded) {
1727 *padded = false;
1728 }
1729 return 0;
1730 }
1731
1732 sliced_iov = qemu_iovec_slice(*qiov, *qiov_offset, *bytes,
1733 &sliced_head, &sliced_tail,
1734 &sliced_niov);
1735
1736 /* Guaranteed by bdrv_check_request32() */
1737 assert(*bytes <= SIZE_MAX);
1738 ret = bdrv_create_padded_qiov(bs, pad, sliced_iov, sliced_niov,
1739 sliced_head, *bytes);
1740 if (ret < 0) {
1741 bdrv_padding_finalize(pad);
1742 return ret;
1743 }
1744 *bytes += pad->head + pad->tail;
1745 *offset -= pad->head;
1746 *qiov = &pad->local_qiov;
1747 *qiov_offset = 0;
1748 if (padded) {
1749 *padded = true;
1750 }
1751 if (flags) {
1752 /* Can't use optimization hint with bounce buffer */
1753 *flags &= ~BDRV_REQ_REGISTERED_BUF;
1754 }
1755
1756 return 0;
1757 }
1758
1759 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1760 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1761 BdrvRequestFlags flags)
1762 {
1763 IO_CODE();
1764 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1765 }
1766
1767 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1768 int64_t offset, int64_t bytes,
1769 QEMUIOVector *qiov, size_t qiov_offset,
1770 BdrvRequestFlags flags)
1771 {
1772 BlockDriverState *bs = child->bs;
1773 BdrvTrackedRequest req;
1774 BdrvRequestPadding pad;
1775 int ret;
1776 IO_CODE();
1777
1778 trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1779
1780 if (!bdrv_co_is_inserted(bs)) {
1781 return -ENOMEDIUM;
1782 }
1783
1784 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1785 if (ret < 0) {
1786 return ret;
1787 }
1788
1789 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1790 /*
1791 * Aligning zero request is nonsense. Even if driver has special meaning
1792 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1793 * it to driver due to request_alignment.
1794 *
1795 * Still, no reason to return an error if someone do unaligned
1796 * zero-length read occasionally.
1797 */
1798 return 0;
1799 }
1800
1801 bdrv_inc_in_flight(bs);
1802
1803 /* Don't do copy-on-read if we read data before write operation */
1804 if (qatomic_read(&bs->copy_on_read)) {
1805 flags |= BDRV_REQ_COPY_ON_READ;
1806 }
1807
1808 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, false,
1809 &pad, NULL, &flags);
1810 if (ret < 0) {
1811 goto fail;
1812 }
1813
1814 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1815 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1816 bs->bl.request_alignment,
1817 qiov, qiov_offset, flags);
1818 tracked_request_end(&req);
1819 bdrv_padding_finalize(&pad);
1820
1821 fail:
1822 bdrv_dec_in_flight(bs);
1823
1824 return ret;
1825 }
1826
1827 static int coroutine_fn GRAPH_RDLOCK
1828 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1829 BdrvRequestFlags flags)
1830 {
1831 BlockDriver *drv = bs->drv;
1832 QEMUIOVector qiov;
1833 void *buf = NULL;
1834 int ret = 0;
1835 bool need_flush = false;
1836 int head = 0;
1837 int tail = 0;
1838
1839 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1840 INT64_MAX);
1841 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1842 bs->bl.request_alignment);
1843 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1844
1845 assert_bdrv_graph_readable();
1846 bdrv_check_request(offset, bytes, &error_abort);
1847
1848 if (!drv) {
1849 return -ENOMEDIUM;
1850 }
1851
1852 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1853 return -ENOTSUP;
1854 }
1855
1856 /* By definition there is no user buffer so this flag doesn't make sense */
1857 if (flags & BDRV_REQ_REGISTERED_BUF) {
1858 return -EINVAL;
1859 }
1860
1861 /* Invalidate the cached block-status data range if this write overlaps */
1862 bdrv_bsc_invalidate_range(bs, offset, bytes);
1863
1864 assert(alignment % bs->bl.request_alignment == 0);
1865 head = offset % alignment;
1866 tail = (offset + bytes) % alignment;
1867 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1868 assert(max_write_zeroes >= bs->bl.request_alignment);
1869
1870 while (bytes > 0 && !ret) {
1871 int64_t num = bytes;
1872
1873 /* Align request. Block drivers can expect the "bulk" of the request
1874 * to be aligned, and that unaligned requests do not cross cluster
1875 * boundaries.
1876 */
1877 if (head) {
1878 /* Make a small request up to the first aligned sector. For
1879 * convenience, limit this request to max_transfer even if
1880 * we don't need to fall back to writes. */
1881 num = MIN(MIN(bytes, max_transfer), alignment - head);
1882 head = (head + num) % alignment;
1883 assert(num < max_write_zeroes);
1884 } else if (tail && num > alignment) {
1885 /* Shorten the request to the last aligned sector. */
1886 num -= tail;
1887 }
1888
1889 /* limit request size */
1890 if (num > max_write_zeroes) {
1891 num = max_write_zeroes;
1892 }
1893
1894 ret = -ENOTSUP;
1895 /* First try the efficient write zeroes operation */
1896 if (drv->bdrv_co_pwrite_zeroes) {
1897 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1898 flags & bs->supported_zero_flags);
1899 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1900 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1901 need_flush = true;
1902 }
1903 } else {
1904 assert(!bs->supported_zero_flags);
1905 }
1906
1907 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1908 /* Fall back to bounce buffer if write zeroes is unsupported */
1909 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1910
1911 if ((flags & BDRV_REQ_FUA) &&
1912 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1913 /* No need for bdrv_driver_pwrite() to do a fallback
1914 * flush on each chunk; use just one at the end */
1915 write_flags &= ~BDRV_REQ_FUA;
1916 need_flush = true;
1917 }
1918 num = MIN(num, max_transfer);
1919 if (buf == NULL) {
1920 buf = qemu_try_blockalign0(bs, num);
1921 if (buf == NULL) {
1922 ret = -ENOMEM;
1923 goto fail;
1924 }
1925 }
1926 qemu_iovec_init_buf(&qiov, buf, num);
1927
1928 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1929
1930 /* Keep bounce buffer around if it is big enough for all
1931 * all future requests.
1932 */
1933 if (num < max_transfer) {
1934 qemu_vfree(buf);
1935 buf = NULL;
1936 }
1937 }
1938
1939 offset += num;
1940 bytes -= num;
1941 }
1942
1943 fail:
1944 if (ret == 0 && need_flush) {
1945 ret = bdrv_co_flush(bs);
1946 }
1947 qemu_vfree(buf);
1948 return ret;
1949 }
1950
1951 static inline int coroutine_fn GRAPH_RDLOCK
1952 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1953 BdrvTrackedRequest *req, int flags)
1954 {
1955 BlockDriverState *bs = child->bs;
1956
1957 bdrv_check_request(offset, bytes, &error_abort);
1958
1959 if (bdrv_is_read_only(bs)) {
1960 return -EPERM;
1961 }
1962
1963 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1964 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1965 assert(!(flags & ~BDRV_REQ_MASK));
1966 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1967
1968 if (flags & BDRV_REQ_SERIALISING) {
1969 QEMU_LOCK_GUARD(&bs->reqs_lock);
1970
1971 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1972
1973 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1974 return -EBUSY;
1975 }
1976
1977 bdrv_wait_serialising_requests_locked(req);
1978 } else {
1979 bdrv_wait_serialising_requests(req);
1980 }
1981
1982 assert(req->overlap_offset <= offset);
1983 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1984 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1985 child->perm & BLK_PERM_RESIZE);
1986
1987 switch (req->type) {
1988 case BDRV_TRACKED_WRITE:
1989 case BDRV_TRACKED_DISCARD:
1990 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1991 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1992 } else {
1993 assert(child->perm & BLK_PERM_WRITE);
1994 }
1995 bdrv_write_threshold_check_write(bs, offset, bytes);
1996 return 0;
1997 case BDRV_TRACKED_TRUNCATE:
1998 assert(child->perm & BLK_PERM_RESIZE);
1999 return 0;
2000 default:
2001 abort();
2002 }
2003 }
2004
2005 static inline void coroutine_fn
2006 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2007 BdrvTrackedRequest *req, int ret)
2008 {
2009 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2010 BlockDriverState *bs = child->bs;
2011
2012 bdrv_check_request(offset, bytes, &error_abort);
2013
2014 qatomic_inc(&bs->write_gen);
2015
2016 /*
2017 * Discard cannot extend the image, but in error handling cases, such as
2018 * when reverting a qcow2 cluster allocation, the discarded range can pass
2019 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2020 * here. Instead, just skip it, since semantically a discard request
2021 * beyond EOF cannot expand the image anyway.
2022 */
2023 if (ret == 0 &&
2024 (req->type == BDRV_TRACKED_TRUNCATE ||
2025 end_sector > bs->total_sectors) &&
2026 req->type != BDRV_TRACKED_DISCARD) {
2027 bs->total_sectors = end_sector;
2028 bdrv_parent_cb_resize(bs);
2029 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2030 }
2031 if (req->bytes) {
2032 switch (req->type) {
2033 case BDRV_TRACKED_WRITE:
2034 stat64_max(&bs->wr_highest_offset, offset + bytes);
2035 /* fall through, to set dirty bits */
2036 case BDRV_TRACKED_DISCARD:
2037 bdrv_set_dirty(bs, offset, bytes);
2038 break;
2039 default:
2040 break;
2041 }
2042 }
2043 }
2044
2045 /*
2046 * Forwards an already correctly aligned write request to the BlockDriver,
2047 * after possibly fragmenting it.
2048 */
2049 static int coroutine_fn GRAPH_RDLOCK
2050 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req,
2051 int64_t offset, int64_t bytes, int64_t align,
2052 QEMUIOVector *qiov, size_t qiov_offset,
2053 BdrvRequestFlags flags)
2054 {
2055 BlockDriverState *bs = child->bs;
2056 BlockDriver *drv = bs->drv;
2057 int ret;
2058
2059 int64_t bytes_remaining = bytes;
2060 int max_transfer;
2061
2062 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2063
2064 if (!drv) {
2065 return -ENOMEDIUM;
2066 }
2067
2068 if (bdrv_has_readonly_bitmaps(bs)) {
2069 return -EPERM;
2070 }
2071
2072 assert(is_power_of_2(align));
2073 assert((offset & (align - 1)) == 0);
2074 assert((bytes & (align - 1)) == 0);
2075 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2076 align);
2077
2078 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2079
2080 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2081 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2082 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2083 flags |= BDRV_REQ_ZERO_WRITE;
2084 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2085 flags |= BDRV_REQ_MAY_UNMAP;
2086 }
2087
2088 /* Can't use optimization hint with bufferless zero write */
2089 flags &= ~BDRV_REQ_REGISTERED_BUF;
2090 }
2091
2092 if (ret < 0) {
2093 /* Do nothing, write notifier decided to fail this request */
2094 } else if (flags & BDRV_REQ_ZERO_WRITE) {
2095 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2096 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2097 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2098 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2099 qiov, qiov_offset);
2100 } else if (bytes <= max_transfer) {
2101 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2102 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2103 } else {
2104 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2105 while (bytes_remaining) {
2106 int num = MIN(bytes_remaining, max_transfer);
2107 int local_flags = flags;
2108
2109 assert(num);
2110 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2111 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2112 /* If FUA is going to be emulated by flush, we only
2113 * need to flush on the last iteration */
2114 local_flags &= ~BDRV_REQ_FUA;
2115 }
2116
2117 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2118 num, qiov,
2119 qiov_offset + bytes - bytes_remaining,
2120 local_flags);
2121 if (ret < 0) {
2122 break;
2123 }
2124 bytes_remaining -= num;
2125 }
2126 }
2127 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE);
2128
2129 if (ret >= 0) {
2130 ret = 0;
2131 }
2132 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2133
2134 return ret;
2135 }
2136
2137 static int coroutine_fn GRAPH_RDLOCK
2138 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes,
2139 BdrvRequestFlags flags, BdrvTrackedRequest *req)
2140 {
2141 BlockDriverState *bs = child->bs;
2142 QEMUIOVector local_qiov;
2143 uint64_t align = bs->bl.request_alignment;
2144 int ret = 0;
2145 bool padding;
2146 BdrvRequestPadding pad;
2147
2148 /* This flag doesn't make sense for padding or zero writes */
2149 flags &= ~BDRV_REQ_REGISTERED_BUF;
2150
2151 padding = bdrv_init_padding(bs, offset, bytes, true, &pad);
2152 if (padding) {
2153 assert(!(flags & BDRV_REQ_NO_WAIT));
2154 bdrv_make_request_serialising(req, align);
2155
2156 bdrv_padding_rmw_read(child, req, &pad, true);
2157
2158 if (pad.head || pad.merge_reads) {
2159 int64_t aligned_offset = offset & ~(align - 1);
2160 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2161
2162 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2163 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2164 align, &local_qiov, 0,
2165 flags & ~BDRV_REQ_ZERO_WRITE);
2166 if (ret < 0 || pad.merge_reads) {
2167 /* Error or all work is done */
2168 goto out;
2169 }
2170 offset += write_bytes - pad.head;
2171 bytes -= write_bytes - pad.head;
2172 }
2173 }
2174
2175 assert(!bytes || (offset & (align - 1)) == 0);
2176 if (bytes >= align) {
2177 /* Write the aligned part in the middle. */
2178 int64_t aligned_bytes = bytes & ~(align - 1);
2179 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2180 NULL, 0, flags);
2181 if (ret < 0) {
2182 goto out;
2183 }
2184 bytes -= aligned_bytes;
2185 offset += aligned_bytes;
2186 }
2187
2188 assert(!bytes || (offset & (align - 1)) == 0);
2189 if (bytes) {
2190 assert(align == pad.tail + bytes);
2191
2192 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2193 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2194 &local_qiov, 0,
2195 flags & ~BDRV_REQ_ZERO_WRITE);
2196 }
2197
2198 out:
2199 bdrv_padding_finalize(&pad);
2200
2201 return ret;
2202 }
2203
2204 /*
2205 * Handle a write request in coroutine context
2206 */
2207 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2208 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2209 BdrvRequestFlags flags)
2210 {
2211 IO_CODE();
2212 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2213 }
2214
2215 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2216 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2217 BdrvRequestFlags flags)
2218 {
2219 BlockDriverState *bs = child->bs;
2220 BdrvTrackedRequest req;
2221 uint64_t align = bs->bl.request_alignment;
2222 BdrvRequestPadding pad;
2223 int ret;
2224 bool padded = false;
2225 IO_CODE();
2226
2227 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2228
2229 if (!bdrv_co_is_inserted(bs)) {
2230 return -ENOMEDIUM;
2231 }
2232
2233 if (flags & BDRV_REQ_ZERO_WRITE) {
2234 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2235 } else {
2236 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2237 }
2238 if (ret < 0) {
2239 return ret;
2240 }
2241
2242 /* If the request is misaligned then we can't make it efficient */
2243 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2244 !QEMU_IS_ALIGNED(offset | bytes, align))
2245 {
2246 return -ENOTSUP;
2247 }
2248
2249 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2250 /*
2251 * Aligning zero request is nonsense. Even if driver has special meaning
2252 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2253 * it to driver due to request_alignment.
2254 *
2255 * Still, no reason to return an error if someone do unaligned
2256 * zero-length write occasionally.
2257 */
2258 return 0;
2259 }
2260
2261 if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2262 /*
2263 * Pad request for following read-modify-write cycle.
2264 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2265 * alignment only if there is no ZERO flag.
2266 */
2267 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, true,
2268 &pad, &padded, &flags);
2269 if (ret < 0) {
2270 return ret;
2271 }
2272 }
2273
2274 bdrv_inc_in_flight(bs);
2275 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2276
2277 if (flags & BDRV_REQ_ZERO_WRITE) {
2278 assert(!padded);
2279 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2280 goto out;
2281 }
2282
2283 if (padded) {
2284 /*
2285 * Request was unaligned to request_alignment and therefore
2286 * padded. We are going to do read-modify-write, and must
2287 * serialize the request to prevent interactions of the
2288 * widened region with other transactions.
2289 */
2290 assert(!(flags & BDRV_REQ_NO_WAIT));
2291 bdrv_make_request_serialising(&req, align);
2292 bdrv_padding_rmw_read(child, &req, &pad, false);
2293 }
2294
2295 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2296 qiov, qiov_offset, flags);
2297
2298 bdrv_padding_finalize(&pad);
2299
2300 out:
2301 tracked_request_end(&req);
2302 bdrv_dec_in_flight(bs);
2303
2304 return ret;
2305 }
2306
2307 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2308 int64_t bytes, BdrvRequestFlags flags)
2309 {
2310 IO_CODE();
2311 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2312 assert_bdrv_graph_readable();
2313
2314 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2315 flags &= ~BDRV_REQ_MAY_UNMAP;
2316 }
2317
2318 return bdrv_co_pwritev(child, offset, bytes, NULL,
2319 BDRV_REQ_ZERO_WRITE | flags);
2320 }
2321
2322 /*
2323 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2324 */
2325 int bdrv_flush_all(void)
2326 {
2327 BdrvNextIterator it;
2328 BlockDriverState *bs = NULL;
2329 int result = 0;
2330
2331 GLOBAL_STATE_CODE();
2332
2333 /*
2334 * bdrv queue is managed by record/replay,
2335 * creating new flush request for stopping
2336 * the VM may break the determinism
2337 */
2338 if (replay_events_enabled()) {
2339 return result;
2340 }
2341
2342 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2343 AioContext *aio_context = bdrv_get_aio_context(bs);
2344 int ret;
2345
2346 aio_context_acquire(aio_context);
2347 ret = bdrv_flush(bs);
2348 if (ret < 0 && !result) {
2349 result = ret;
2350 }
2351 aio_context_release(aio_context);
2352 }
2353
2354 return result;
2355 }
2356
2357 /*
2358 * Returns the allocation status of the specified sectors.
2359 * Drivers not implementing the functionality are assumed to not support
2360 * backing files, hence all their sectors are reported as allocated.
2361 *
2362 * If 'want_zero' is true, the caller is querying for mapping
2363 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2364 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2365 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2366 *
2367 * If 'offset' is beyond the end of the disk image the return value is
2368 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2369 *
2370 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2371 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2372 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2373 *
2374 * 'pnum' is set to the number of bytes (including and immediately
2375 * following the specified offset) that are easily known to be in the
2376 * same allocated/unallocated state. Note that a second call starting
2377 * at the original offset plus returned pnum may have the same status.
2378 * The returned value is non-zero on success except at end-of-file.
2379 *
2380 * Returns negative errno on failure. Otherwise, if the
2381 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2382 * set to the host mapping and BDS corresponding to the guest offset.
2383 */
2384 static int coroutine_fn GRAPH_RDLOCK
2385 bdrv_co_block_status(BlockDriverState *bs, bool want_zero,
2386 int64_t offset, int64_t bytes,
2387 int64_t *pnum, int64_t *map, BlockDriverState **file)
2388 {
2389 int64_t total_size;
2390 int64_t n; /* bytes */
2391 int ret;
2392 int64_t local_map = 0;
2393 BlockDriverState *local_file = NULL;
2394 int64_t aligned_offset, aligned_bytes;
2395 uint32_t align;
2396 bool has_filtered_child;
2397
2398 assert(pnum);
2399 assert_bdrv_graph_readable();
2400 *pnum = 0;
2401 total_size = bdrv_co_getlength(bs);
2402 if (total_size < 0) {
2403 ret = total_size;
2404 goto early_out;
2405 }
2406
2407 if (offset >= total_size) {
2408 ret = BDRV_BLOCK_EOF;
2409 goto early_out;
2410 }
2411 if (!bytes) {
2412 ret = 0;
2413 goto early_out;
2414 }
2415
2416 n = total_size - offset;
2417 if (n < bytes) {
2418 bytes = n;
2419 }
2420
2421 /* Must be non-NULL or bdrv_co_getlength() would have failed */
2422 assert(bs->drv);
2423 has_filtered_child = bdrv_filter_child(bs);
2424 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2425 *pnum = bytes;
2426 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2427 if (offset + bytes == total_size) {
2428 ret |= BDRV_BLOCK_EOF;
2429 }
2430 if (bs->drv->protocol_name) {
2431 ret |= BDRV_BLOCK_OFFSET_VALID;
2432 local_map = offset;
2433 local_file = bs;
2434 }
2435 goto early_out;
2436 }
2437
2438 bdrv_inc_in_flight(bs);
2439
2440 /* Round out to request_alignment boundaries */
2441 align = bs->bl.request_alignment;
2442 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2443 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2444
2445 if (bs->drv->bdrv_co_block_status) {
2446 /*
2447 * Use the block-status cache only for protocol nodes: Format
2448 * drivers are generally quick to inquire the status, but protocol
2449 * drivers often need to get information from outside of qemu, so
2450 * we do not have control over the actual implementation. There
2451 * have been cases where inquiring the status took an unreasonably
2452 * long time, and we can do nothing in qemu to fix it.
2453 * This is especially problematic for images with large data areas,
2454 * because finding the few holes in them and giving them special
2455 * treatment does not gain much performance. Therefore, we try to
2456 * cache the last-identified data region.
2457 *
2458 * Second, limiting ourselves to protocol nodes allows us to assume
2459 * the block status for data regions to be DATA | OFFSET_VALID, and
2460 * that the host offset is the same as the guest offset.
2461 *
2462 * Note that it is possible that external writers zero parts of
2463 * the cached regions without the cache being invalidated, and so
2464 * we may report zeroes as data. This is not catastrophic,
2465 * however, because reporting zeroes as data is fine.
2466 */
2467 if (QLIST_EMPTY(&bs->children) &&
2468 bdrv_bsc_is_data(bs, aligned_offset, pnum))
2469 {
2470 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2471 local_file = bs;
2472 local_map = aligned_offset;
2473 } else {
2474 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2475 aligned_bytes, pnum, &local_map,
2476 &local_file);
2477
2478 /*
2479 * Note that checking QLIST_EMPTY(&bs->children) is also done when
2480 * the cache is queried above. Technically, we do not need to check
2481 * it here; the worst that can happen is that we fill the cache for
2482 * non-protocol nodes, and then it is never used. However, filling
2483 * the cache requires an RCU update, so double check here to avoid
2484 * such an update if possible.
2485 *
2486 * Check want_zero, because we only want to update the cache when we
2487 * have accurate information about what is zero and what is data.
2488 */
2489 if (want_zero &&
2490 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2491 QLIST_EMPTY(&bs->children))
2492 {
2493 /*
2494 * When a protocol driver reports BLOCK_OFFSET_VALID, the
2495 * returned local_map value must be the same as the offset we
2496 * have passed (aligned_offset), and local_bs must be the node
2497 * itself.
2498 * Assert this, because we follow this rule when reading from
2499 * the cache (see the `local_file = bs` and
2500 * `local_map = aligned_offset` assignments above), and the
2501 * result the cache delivers must be the same as the driver
2502 * would deliver.
2503 */
2504 assert(local_file == bs);
2505 assert(local_map == aligned_offset);
2506 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2507 }
2508 }
2509 } else {
2510 /* Default code for filters */
2511
2512 local_file = bdrv_filter_bs(bs);
2513 assert(local_file);
2514
2515 *pnum = aligned_bytes;
2516 local_map = aligned_offset;
2517 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2518 }
2519 if (ret < 0) {
2520 *pnum = 0;
2521 goto out;
2522 }
2523
2524 /*
2525 * The driver's result must be a non-zero multiple of request_alignment.
2526 * Clamp pnum and adjust map to original request.
2527 */
2528 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2529 align > offset - aligned_offset);
2530 if (ret & BDRV_BLOCK_RECURSE) {
2531 assert(ret & BDRV_BLOCK_DATA);
2532 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2533 assert(!(ret & BDRV_BLOCK_ZERO));
2534 }
2535
2536 *pnum -= offset - aligned_offset;
2537 if (*pnum > bytes) {
2538 *pnum = bytes;
2539 }
2540 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2541 local_map += offset - aligned_offset;
2542 }
2543
2544 if (ret & BDRV_BLOCK_RAW) {
2545 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2546 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2547 *pnum, pnum, &local_map, &local_file);
2548 goto out;
2549 }
2550
2551 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2552 ret |= BDRV_BLOCK_ALLOCATED;
2553 } else if (bs->drv->supports_backing) {
2554 BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2555
2556 if (!cow_bs) {
2557 ret |= BDRV_BLOCK_ZERO;
2558 } else if (want_zero) {
2559 int64_t size2 = bdrv_co_getlength(cow_bs);
2560
2561 if (size2 >= 0 && offset >= size2) {
2562 ret |= BDRV_BLOCK_ZERO;
2563 }
2564 }
2565 }
2566
2567 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2568 local_file && local_file != bs &&
2569 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2570 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2571 int64_t file_pnum;
2572 int ret2;
2573
2574 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2575 *pnum, &file_pnum, NULL, NULL);
2576 if (ret2 >= 0) {
2577 /* Ignore errors. This is just providing extra information, it
2578 * is useful but not necessary.
2579 */
2580 if (ret2 & BDRV_BLOCK_EOF &&
2581 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2582 /*
2583 * It is valid for the format block driver to read
2584 * beyond the end of the underlying file's current
2585 * size; such areas read as zero.
2586 */
2587 ret |= BDRV_BLOCK_ZERO;
2588 } else {
2589 /* Limit request to the range reported by the protocol driver */
2590 *pnum = file_pnum;
2591 ret |= (ret2 & BDRV_BLOCK_ZERO);
2592 }
2593 }
2594 }
2595
2596 out:
2597 bdrv_dec_in_flight(bs);
2598 if (ret >= 0 && offset + *pnum == total_size) {
2599 ret |= BDRV_BLOCK_EOF;
2600 }
2601 early_out:
2602 if (file) {
2603 *file = local_file;
2604 }
2605 if (map) {
2606 *map = local_map;
2607 }
2608 return ret;
2609 }
2610
2611 int coroutine_fn
2612 bdrv_co_common_block_status_above(BlockDriverState *bs,
2613 BlockDriverState *base,
2614 bool include_base,
2615 bool want_zero,
2616 int64_t offset,
2617 int64_t bytes,
2618 int64_t *pnum,
2619 int64_t *map,
2620 BlockDriverState **file,
2621 int *depth)
2622 {
2623 int ret;
2624 BlockDriverState *p;
2625 int64_t eof = 0;
2626 int dummy;
2627 IO_CODE();
2628
2629 assert(!include_base || base); /* Can't include NULL base */
2630 assert_bdrv_graph_readable();
2631
2632 if (!depth) {
2633 depth = &dummy;
2634 }
2635 *depth = 0;
2636
2637 if (!include_base && bs == base) {
2638 *pnum = bytes;
2639 return 0;
2640 }
2641
2642 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2643 ++*depth;
2644 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2645 return ret;
2646 }
2647
2648 if (ret & BDRV_BLOCK_EOF) {
2649 eof = offset + *pnum;
2650 }
2651
2652 assert(*pnum <= bytes);
2653 bytes = *pnum;
2654
2655 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2656 p = bdrv_filter_or_cow_bs(p))
2657 {
2658 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2659 file);
2660 ++*depth;
2661 if (ret < 0) {
2662 return ret;
2663 }
2664 if (*pnum == 0) {
2665 /*
2666 * The top layer deferred to this layer, and because this layer is
2667 * short, any zeroes that we synthesize beyond EOF behave as if they
2668 * were allocated at this layer.
2669 *
2670 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2671 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2672 * below.
2673 */
2674 assert(ret & BDRV_BLOCK_EOF);
2675 *pnum = bytes;
2676 if (file) {
2677 *file = p;
2678 }
2679 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2680 break;
2681 }
2682 if (ret & BDRV_BLOCK_ALLOCATED) {
2683 /*
2684 * We've found the node and the status, we must break.
2685 *
2686 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2687 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2688 * below.
2689 */
2690 ret &= ~BDRV_BLOCK_EOF;
2691 break;
2692 }
2693
2694 if (p == base) {
2695 assert(include_base);
2696 break;
2697 }
2698
2699 /*
2700 * OK, [offset, offset + *pnum) region is unallocated on this layer,
2701 * let's continue the diving.
2702 */
2703 assert(*pnum <= bytes);
2704 bytes = *pnum;
2705 }
2706
2707 if (offset + *pnum == eof) {
2708 ret |= BDRV_BLOCK_EOF;
2709 }
2710
2711 return ret;
2712 }
2713
2714 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2715 BlockDriverState *base,
2716 int64_t offset, int64_t bytes,
2717 int64_t *pnum, int64_t *map,
2718 BlockDriverState **file)
2719 {
2720 IO_CODE();
2721 return bdrv_co_common_block_status_above(bs, base, false, true, offset,
2722 bytes, pnum, map, file, NULL);
2723 }
2724
2725 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2726 int64_t offset, int64_t bytes, int64_t *pnum,
2727 int64_t *map, BlockDriverState **file)
2728 {
2729 IO_CODE();
2730 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2731 pnum, map, file, NULL);
2732 }
2733
2734 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2735 int64_t *pnum, int64_t *map, BlockDriverState **file)
2736 {
2737 IO_CODE();
2738 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2739 offset, bytes, pnum, map, file);
2740 }
2741
2742 /*
2743 * Check @bs (and its backing chain) to see if the range defined
2744 * by @offset and @bytes is known to read as zeroes.
2745 * Return 1 if that is the case, 0 otherwise and -errno on error.
2746 * This test is meant to be fast rather than accurate so returning 0
2747 * does not guarantee non-zero data.
2748 */
2749 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2750 int64_t bytes)
2751 {
2752 int ret;
2753 int64_t pnum = bytes;
2754 IO_CODE();
2755
2756 if (!bytes) {
2757 return 1;
2758 }
2759
2760 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset,
2761 bytes, &pnum, NULL, NULL, NULL);
2762
2763 if (ret < 0) {
2764 return ret;
2765 }
2766
2767 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2768 }
2769
2770 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset,
2771 int64_t bytes, int64_t *pnum)
2772 {
2773 int ret;
2774 int64_t dummy;
2775 IO_CODE();
2776
2777 ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset,
2778 bytes, pnum ? pnum : &dummy, NULL,
2779 NULL, NULL);
2780 if (ret < 0) {
2781 return ret;
2782 }
2783 return !!(ret & BDRV_BLOCK_ALLOCATED);
2784 }
2785
2786 int bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes,
2787 int64_t *pnum)
2788 {
2789 int ret;
2790 int64_t dummy;
2791 IO_CODE();
2792
2793 ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2794 bytes, pnum ? pnum : &dummy, NULL,
2795 NULL, NULL);
2796 if (ret < 0) {
2797 return ret;
2798 }
2799 return !!(ret & BDRV_BLOCK_ALLOCATED);
2800 }
2801
2802 /* See bdrv_is_allocated_above for documentation */
2803 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2804 BlockDriverState *base,
2805 bool include_base, int64_t offset,
2806 int64_t bytes, int64_t *pnum)
2807 {
2808 int depth;
2809 int ret;
2810 IO_CODE();
2811
2812 ret = bdrv_co_common_block_status_above(top, base, include_base, false,
2813 offset, bytes, pnum, NULL, NULL,
2814 &depth);
2815 if (ret < 0) {
2816 return ret;
2817 }
2818
2819 if (ret & BDRV_BLOCK_ALLOCATED) {
2820 return depth;
2821 }
2822 return 0;
2823 }
2824
2825 /*
2826 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2827 *
2828 * Return a positive depth if (a prefix of) the given range is allocated
2829 * in any image between BASE and TOP (BASE is only included if include_base
2830 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
2831 * BASE can be NULL to check if the given offset is allocated in any
2832 * image of the chain. Return 0 otherwise, or negative errno on
2833 * failure.
2834 *
2835 * 'pnum' is set to the number of bytes (including and immediately
2836 * following the specified offset) that are known to be in the same
2837 * allocated/unallocated state. Note that a subsequent call starting
2838 * at 'offset + *pnum' may return the same allocation status (in other
2839 * words, the result is not necessarily the maximum possible range);
2840 * but 'pnum' will only be 0 when end of file is reached.
2841 */
2842 int bdrv_is_allocated_above(BlockDriverState *top,
2843 BlockDriverState *base,
2844 bool include_base, int64_t offset,
2845 int64_t bytes, int64_t *pnum)
2846 {
2847 int depth;
2848 int ret;
2849 IO_CODE();
2850
2851 ret = bdrv_common_block_status_above(top, base, include_base, false,
2852 offset, bytes, pnum, NULL, NULL,
2853 &depth);
2854 if (ret < 0) {
2855 return ret;
2856 }
2857
2858 if (ret & BDRV_BLOCK_ALLOCATED) {
2859 return depth;
2860 }
2861 return 0;
2862 }
2863
2864 int coroutine_fn
2865 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2866 {
2867 BlockDriver *drv = bs->drv;
2868 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2869 int ret;
2870 IO_CODE();
2871 assert_bdrv_graph_readable();
2872
2873 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2874 if (ret < 0) {
2875 return ret;
2876 }
2877
2878 if (!drv) {
2879 return -ENOMEDIUM;
2880 }
2881
2882 bdrv_inc_in_flight(bs);
2883
2884 if (drv->bdrv_co_load_vmstate) {
2885 ret = drv->bdrv_co_load_vmstate(bs, qiov, pos);
2886 } else if (child_bs) {
2887 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2888 } else {
2889 ret = -ENOTSUP;
2890 }
2891
2892 bdrv_dec_in_flight(bs);
2893
2894 return ret;
2895 }
2896
2897 int coroutine_fn
2898 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2899 {
2900 BlockDriver *drv = bs->drv;
2901 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2902 int ret;
2903 IO_CODE();
2904 assert_bdrv_graph_readable();
2905
2906 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2907 if (ret < 0) {
2908 return ret;
2909 }
2910
2911 if (!drv) {
2912 return -ENOMEDIUM;
2913 }
2914
2915 bdrv_inc_in_flight(bs);
2916
2917 if (drv->bdrv_co_save_vmstate) {
2918 ret = drv->bdrv_co_save_vmstate(bs, qiov, pos);
2919 } else if (child_bs) {
2920 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2921 } else {
2922 ret = -ENOTSUP;
2923 }
2924
2925 bdrv_dec_in_flight(bs);
2926
2927 return ret;
2928 }
2929
2930 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2931 int64_t pos, int size)
2932 {
2933 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2934 int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2935 IO_CODE();
2936
2937 return ret < 0 ? ret : size;
2938 }
2939
2940 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2941 int64_t pos, int size)
2942 {
2943 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2944 int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2945 IO_CODE();
2946
2947 return ret < 0 ? ret : size;
2948 }
2949
2950 /**************************************************************/
2951 /* async I/Os */
2952
2953 void bdrv_aio_cancel(BlockAIOCB *acb)
2954 {
2955 IO_CODE();
2956 qemu_aio_ref(acb);
2957 bdrv_aio_cancel_async(acb);
2958 while (acb->refcnt > 1) {
2959 if (acb->aiocb_info->get_aio_context) {
2960 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2961 } else if (acb->bs) {
2962 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2963 * assert that we're not using an I/O thread. Thread-safe
2964 * code should use bdrv_aio_cancel_async exclusively.
2965 */
2966 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2967 aio_poll(bdrv_get_aio_context(acb->bs), true);
2968 } else {
2969 abort();
2970 }
2971 }
2972 qemu_aio_unref(acb);
2973 }
2974
2975 /* Async version of aio cancel. The caller is not blocked if the acb implements
2976 * cancel_async, otherwise we do nothing and let the request normally complete.
2977 * In either case the completion callback must be called. */
2978 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2979 {
2980 IO_CODE();
2981 if (acb->aiocb_info->cancel_async) {
2982 acb->aiocb_info->cancel_async(acb);
2983 }
2984 }
2985
2986 /**************************************************************/
2987 /* Coroutine block device emulation */
2988
2989 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2990 {
2991 BdrvChild *primary_child = bdrv_primary_child(bs);
2992 BdrvChild *child;
2993 int current_gen;
2994 int ret = 0;
2995 IO_CODE();
2996
2997 assert_bdrv_graph_readable();
2998 bdrv_inc_in_flight(bs);
2999
3000 if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) ||
3001 bdrv_is_sg(bs)) {
3002 goto early_exit;
3003 }
3004
3005 qemu_mutex_lock(&bs->reqs_lock);
3006 current_gen = qatomic_read(&bs->write_gen);
3007
3008 /* Wait until any previous flushes are completed */
3009 while (bs->active_flush_req) {
3010 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
3011 }
3012
3013 /* Flushes reach this point in nondecreasing current_gen order. */
3014 bs->active_flush_req = true;
3015 qemu_mutex_unlock(&bs->reqs_lock);
3016
3017 /* Write back all layers by calling one driver function */
3018 if (bs->drv->bdrv_co_flush) {
3019 ret = bs->drv->bdrv_co_flush(bs);
3020 goto out;
3021 }
3022
3023 /* Write back cached data to the OS even with cache=unsafe */
3024 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
3025 if (bs->drv->bdrv_co_flush_to_os) {
3026 ret = bs->drv->bdrv_co_flush_to_os(bs);
3027 if (ret < 0) {
3028 goto out;
3029 }
3030 }
3031
3032 /* But don't actually force it to the disk with cache=unsafe */
3033 if (bs->open_flags & BDRV_O_NO_FLUSH) {
3034 goto flush_children;
3035 }
3036
3037 /* Check if we really need to flush anything */
3038 if (bs->flushed_gen == current_gen) {
3039 goto flush_children;
3040 }
3041
3042 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
3043 if (!bs->drv) {
3044 /* bs->drv->bdrv_co_flush() might have ejected the BDS
3045 * (even in case of apparent success) */
3046 ret = -ENOMEDIUM;
3047 goto out;
3048 }
3049 if (bs->drv->bdrv_co_flush_to_disk) {
3050 ret = bs->drv->bdrv_co_flush_to_disk(bs);
3051 } else if (bs->drv->bdrv_aio_flush) {
3052 BlockAIOCB *acb;
3053 CoroutineIOCompletion co = {
3054 .coroutine = qemu_coroutine_self(),
3055 };
3056
3057 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3058 if (acb == NULL) {
3059 ret = -EIO;
3060 } else {
3061 qemu_coroutine_yield();
3062 ret = co.ret;
3063 }
3064 } else {
3065 /*
3066 * Some block drivers always operate in either writethrough or unsafe
3067 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3068 * know how the server works (because the behaviour is hardcoded or
3069 * depends on server-side configuration), so we can't ensure that
3070 * everything is safe on disk. Returning an error doesn't work because
3071 * that would break guests even if the server operates in writethrough
3072 * mode.
3073 *
3074 * Let's hope the user knows what he's doing.
3075 */
3076 ret = 0;
3077 }
3078
3079 if (ret < 0) {
3080 goto out;
3081 }
3082
3083 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
3084 * in the case of cache=unsafe, so there are no useless flushes.
3085 */
3086 flush_children:
3087 ret = 0;
3088 QLIST_FOREACH(child, &bs->children, next) {
3089 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
3090 int this_child_ret = bdrv_co_flush(child->bs);
3091 if (!ret) {
3092 ret = this_child_ret;
3093 }
3094 }
3095 }
3096
3097 out:
3098 /* Notify any pending flushes that we have completed */
3099 if (ret == 0) {
3100 bs->flushed_gen = current_gen;
3101 }
3102
3103 qemu_mutex_lock(&bs->reqs_lock);
3104 bs->active_flush_req = false;
3105 /* Return value is ignored - it's ok if wait queue is empty */
3106 qemu_co_queue_next(&bs->flush_queue);
3107 qemu_mutex_unlock(&bs->reqs_lock);
3108
3109 early_exit:
3110 bdrv_dec_in_flight(bs);
3111 return ret;
3112 }
3113
3114 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
3115 int64_t bytes)
3116 {
3117 BdrvTrackedRequest req;
3118 int ret;
3119 int64_t max_pdiscard;
3120 int head, tail, align;
3121 BlockDriverState *bs = child->bs;
3122 IO_CODE();
3123 assert_bdrv_graph_readable();
3124
3125 if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) {
3126 return -ENOMEDIUM;
3127 }
3128
3129 if (bdrv_has_readonly_bitmaps(bs)) {
3130 return -EPERM;
3131 }
3132
3133 ret = bdrv_check_request(offset, bytes, NULL);
3134 if (ret < 0) {
3135 return ret;
3136 }
3137
3138 /* Do nothing if disabled. */
3139 if (!(bs->open_flags & BDRV_O_UNMAP)) {
3140 return 0;
3141 }
3142
3143 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
3144 return 0;
3145 }
3146
3147 /* Invalidate the cached block-status data range if this discard overlaps */
3148 bdrv_bsc_invalidate_range(bs, offset, bytes);
3149
3150 /* Discard is advisory, but some devices track and coalesce
3151 * unaligned requests, so we must pass everything down rather than
3152 * round here. Still, most devices will just silently ignore
3153 * unaligned requests (by returning -ENOTSUP), so we must fragment
3154 * the request accordingly. */
3155 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3156 assert(align % bs->bl.request_alignment == 0);
3157 head = offset % align;
3158 tail = (offset + bytes) % align;
3159
3160 bdrv_inc_in_flight(bs);
3161 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3162
3163 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3164 if (ret < 0) {
3165 goto out;
3166 }
3167
3168 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3169 align);
3170 assert(max_pdiscard >= bs->bl.request_alignment);
3171
3172 while (bytes > 0) {
3173 int64_t num = bytes;
3174
3175 if (head) {
3176 /* Make small requests to get to alignment boundaries. */
3177 num = MIN(bytes, align - head);
3178 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3179 num %= bs->bl.request_alignment;
3180 }
3181 head = (head + num) % align;
3182 assert(num < max_pdiscard);
3183 } else if (tail) {
3184 if (num > align) {
3185 /* Shorten the request to the last aligned cluster. */
3186 num -= tail;
3187 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3188 tail > bs->bl.request_alignment) {
3189 tail %= bs->bl.request_alignment;
3190 num -= tail;
3191 }
3192 }
3193 /* limit request size */
3194 if (num > max_pdiscard) {
3195 num = max_pdiscard;
3196 }
3197
3198 if (!bs->drv) {
3199 ret = -ENOMEDIUM;
3200 goto out;
3201 }
3202 if (bs->drv->bdrv_co_pdiscard) {
3203 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3204 } else {
3205 BlockAIOCB *acb;
3206 CoroutineIOCompletion co = {
3207 .coroutine = qemu_coroutine_self(),
3208 };
3209
3210 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3211 bdrv_co_io_em_complete, &co);
3212 if (acb == NULL) {
3213 ret = -EIO;
3214 goto out;
3215 } else {
3216 qemu_coroutine_yield();
3217 ret = co.ret;
3218 }
3219 }
3220 if (ret && ret != -ENOTSUP) {
3221 goto out;
3222 }
3223
3224 offset += num;
3225 bytes -= num;
3226 }
3227 ret = 0;
3228 out:
3229 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3230 tracked_request_end(&req);
3231 bdrv_dec_in_flight(bs);
3232 return ret;
3233 }
3234
3235 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3236 {
3237 BlockDriver *drv = bs->drv;
3238 CoroutineIOCompletion co = {
3239 .coroutine = qemu_coroutine_self(),
3240 };
3241 BlockAIOCB *acb;
3242 IO_CODE();
3243 assert_bdrv_graph_readable();
3244
3245 bdrv_inc_in_flight(bs);
3246 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3247 co.ret = -ENOTSUP;
3248 goto out;
3249 }
3250
3251 if (drv->bdrv_co_ioctl) {
3252 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3253 } else {
3254 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3255 if (!acb) {
3256 co.ret = -ENOTSUP;
3257 goto out;
3258 }
3259 qemu_coroutine_yield();
3260 }
3261 out:
3262 bdrv_dec_in_flight(bs);
3263 return co.ret;
3264 }
3265
3266 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset,
3267 unsigned int *nr_zones,
3268 BlockZoneDescriptor *zones)
3269 {
3270 BlockDriver *drv = bs->drv;
3271 CoroutineIOCompletion co = {
3272 .coroutine = qemu_coroutine_self(),
3273 };
3274 IO_CODE();
3275
3276 bdrv_inc_in_flight(bs);
3277 if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) {
3278 co.ret = -ENOTSUP;
3279 goto out;
3280 }
3281 co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones);
3282 out:
3283 bdrv_dec_in_flight(bs);
3284 return co.ret;
3285 }
3286
3287 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op,
3288 int64_t offset, int64_t len)
3289 {
3290 BlockDriver *drv = bs->drv;
3291 CoroutineIOCompletion co = {
3292 .coroutine = qemu_coroutine_self(),
3293 };
3294 IO_CODE();
3295
3296 bdrv_inc_in_flight(bs);
3297 if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) {
3298 co.ret = -ENOTSUP;
3299 goto out;
3300 }
3301 co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len);
3302 out:
3303 bdrv_dec_in_flight(bs);
3304 return co.ret;
3305 }
3306
3307 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset,
3308 QEMUIOVector *qiov,
3309 BdrvRequestFlags flags)
3310 {
3311 int ret;
3312 BlockDriver *drv = bs->drv;
3313 CoroutineIOCompletion co = {
3314 .coroutine = qemu_coroutine_self(),
3315 };
3316 IO_CODE();
3317
3318 ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL);
3319 if (ret < 0) {
3320 return ret;
3321 }
3322
3323 bdrv_inc_in_flight(bs);
3324 if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) {
3325 co.ret = -ENOTSUP;
3326 goto out;
3327 }
3328 co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags);
3329 out:
3330 bdrv_dec_in_flight(bs);
3331 return co.ret;
3332 }
3333
3334 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3335 {
3336 IO_CODE();
3337 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3338 }
3339
3340 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3341 {
3342 IO_CODE();
3343 return memset(qemu_blockalign(bs, size), 0, size);
3344 }
3345
3346 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3347 {
3348 size_t align = bdrv_opt_mem_align(bs);
3349 IO_CODE();
3350
3351 /* Ensure that NULL is never returned on success */
3352 assert(align > 0);
3353 if (size == 0) {
3354 size = align;
3355 }
3356
3357 return qemu_try_memalign(align, size);
3358 }
3359
3360 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3361 {
3362 void *mem = qemu_try_blockalign(bs, size);
3363 IO_CODE();
3364
3365 if (mem) {
3366 memset(mem, 0, size);
3367 }
3368
3369 return mem;
3370 }
3371
3372 /* Helper that undoes bdrv_register_buf() when it fails partway through */
3373 static void GRAPH_RDLOCK
3374 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size,
3375 BdrvChild *final_child)
3376 {
3377 BdrvChild *child;
3378
3379 GLOBAL_STATE_CODE();
3380 assert_bdrv_graph_readable();
3381
3382 QLIST_FOREACH(child, &bs->children, next) {
3383 if (child == final_child) {
3384 break;
3385 }
3386
3387 bdrv_unregister_buf(child->bs, host, size);
3388 }
3389
3390 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3391 bs->drv->bdrv_unregister_buf(bs, host, size);
3392 }
3393 }
3394
3395 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size,
3396 Error **errp)
3397 {
3398 BdrvChild *child;
3399
3400 GLOBAL_STATE_CODE();
3401 GRAPH_RDLOCK_GUARD_MAINLOOP();
3402
3403 if (bs->drv && bs->drv->bdrv_register_buf) {
3404 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) {
3405 return false;
3406 }
3407 }
3408 QLIST_FOREACH(child, &bs->children, next) {
3409 if (!bdrv_register_buf(child->bs, host, size, errp)) {
3410 bdrv_register_buf_rollback(bs, host, size, child);
3411 return false;
3412 }
3413 }
3414 return true;
3415 }
3416
3417 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size)
3418 {
3419 BdrvChild *child;
3420
3421 GLOBAL_STATE_CODE();
3422 GRAPH_RDLOCK_GUARD_MAINLOOP();
3423
3424 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3425 bs->drv->bdrv_unregister_buf(bs, host, size);
3426 }
3427 QLIST_FOREACH(child, &bs->children, next) {
3428 bdrv_unregister_buf(child->bs, host, size);
3429 }
3430 }
3431
3432 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal(
3433 BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3434 int64_t dst_offset, int64_t bytes,
3435 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3436 bool recurse_src)
3437 {
3438 BdrvTrackedRequest req;
3439 int ret;
3440 assert_bdrv_graph_readable();
3441
3442 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3443 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3444 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3445 assert(!(read_flags & BDRV_REQ_NO_WAIT));
3446 assert(!(write_flags & BDRV_REQ_NO_WAIT));
3447
3448 if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) {
3449 return -ENOMEDIUM;
3450 }
3451 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3452 if (ret) {
3453 return ret;
3454 }
3455 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3456 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3457 }
3458
3459 if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) {
3460 return -ENOMEDIUM;
3461 }
3462 ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3463 if (ret) {
3464 return ret;
3465 }
3466
3467 if (!src->bs->drv->bdrv_co_copy_range_from
3468 || !dst->bs->drv->bdrv_co_copy_range_to
3469 || src->bs->encrypted || dst->bs->encrypted) {
3470 return -ENOTSUP;
3471 }
3472
3473 if (recurse_src) {
3474 bdrv_inc_in_flight(src->bs);
3475 tracked_request_begin(&req, src->bs, src_offset, bytes,
3476 BDRV_TRACKED_READ);
3477
3478 /* BDRV_REQ_SERIALISING is only for write operation */
3479 assert(!(read_flags & BDRV_REQ_SERIALISING));
3480 bdrv_wait_serialising_requests(&req);
3481
3482 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3483 src, src_offset,
3484 dst, dst_offset,
3485 bytes,
3486 read_flags, write_flags);
3487
3488 tracked_request_end(&req);
3489 bdrv_dec_in_flight(src->bs);
3490 } else {
3491 bdrv_inc_in_flight(dst->bs);
3492 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3493 BDRV_TRACKED_WRITE);
3494 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3495 write_flags);
3496 if (!ret) {
3497 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3498 src, src_offset,
3499 dst, dst_offset,
3500 bytes,
3501 read_flags, write_flags);
3502 }
3503 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3504 tracked_request_end(&req);
3505 bdrv_dec_in_flight(dst->bs);
3506 }
3507
3508 return ret;
3509 }
3510
3511 /* Copy range from @src to @dst.
3512 *
3513 * See the comment of bdrv_co_copy_range for the parameter and return value
3514 * semantics. */
3515 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3516 BdrvChild *dst, int64_t dst_offset,
3517 int64_t bytes,
3518 BdrvRequestFlags read_flags,
3519 BdrvRequestFlags write_flags)
3520 {
3521 IO_CODE();
3522 assert_bdrv_graph_readable();
3523 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3524 read_flags, write_flags);
3525 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3526 bytes, read_flags, write_flags, true);
3527 }
3528
3529 /* Copy range from @src to @dst.
3530 *
3531 * See the comment of bdrv_co_copy_range for the parameter and return value
3532 * semantics. */
3533 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3534 BdrvChild *dst, int64_t dst_offset,
3535 int64_t bytes,
3536 BdrvRequestFlags read_flags,
3537 BdrvRequestFlags write_flags)
3538 {
3539 IO_CODE();
3540 assert_bdrv_graph_readable();
3541 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3542 read_flags, write_flags);
3543 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3544 bytes, read_flags, write_flags, false);
3545 }
3546
3547 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3548 BdrvChild *dst, int64_t dst_offset,
3549 int64_t bytes, BdrvRequestFlags read_flags,
3550 BdrvRequestFlags write_flags)
3551 {
3552 IO_CODE();
3553 assert_bdrv_graph_readable();
3554
3555 return bdrv_co_copy_range_from(src, src_offset,
3556 dst, dst_offset,
3557 bytes, read_flags, write_flags);
3558 }
3559
3560 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3561 {
3562 BdrvChild *c;
3563 QLIST_FOREACH(c, &bs->parents, next_parent) {
3564 if (c->klass->resize) {
3565 c->klass->resize(c);
3566 }
3567 }
3568 }
3569
3570 /**
3571 * Truncate file to 'offset' bytes (needed only for file protocols)
3572 *
3573 * If 'exact' is true, the file must be resized to exactly the given
3574 * 'offset'. Otherwise, it is sufficient for the node to be at least
3575 * 'offset' bytes in length.
3576 */
3577 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3578 PreallocMode prealloc, BdrvRequestFlags flags,
3579 Error **errp)
3580 {
3581 BlockDriverState *bs = child->bs;
3582 BdrvChild *filtered, *backing;
3583 BlockDriver *drv = bs->drv;
3584 BdrvTrackedRequest req;
3585 int64_t old_size, new_bytes;
3586 int ret;
3587 IO_CODE();
3588 assert_bdrv_graph_readable();
3589
3590 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3591 if (!drv) {
3592 error_setg(errp, "No medium inserted");
3593 return -ENOMEDIUM;
3594 }
3595 if (offset < 0) {
3596 error_setg(errp, "Image size cannot be negative");
3597 return -EINVAL;
3598 }
3599
3600 ret = bdrv_check_request(offset, 0, errp);
3601 if (ret < 0) {
3602 return ret;
3603 }
3604
3605 old_size = bdrv_co_getlength(bs);
3606 if (old_size < 0) {
3607 error_setg_errno(errp, -old_size, "Failed to get old image size");
3608 return old_size;
3609 }
3610
3611 if (bdrv_is_read_only(bs)) {
3612 error_setg(errp, "Image is read-only");
3613 return -EACCES;
3614 }
3615
3616 if (offset > old_size) {
3617 new_bytes = offset - old_size;
3618 } else {
3619 new_bytes = 0;
3620 }
3621
3622 bdrv_inc_in_flight(bs);
3623 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3624 BDRV_TRACKED_TRUNCATE);
3625
3626 /* If we are growing the image and potentially using preallocation for the
3627 * new area, we need to make sure that no write requests are made to it
3628 * concurrently or they might be overwritten by preallocation. */
3629 if (new_bytes) {
3630 bdrv_make_request_serialising(&req, 1);
3631 }
3632 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3633 0);
3634 if (ret < 0) {
3635 error_setg_errno(errp, -ret,
3636 "Failed to prepare request for truncation");
3637 goto out;
3638 }
3639
3640 filtered = bdrv_filter_child(bs);
3641 backing = bdrv_cow_child(bs);
3642
3643 /*
3644 * If the image has a backing file that is large enough that it would
3645 * provide data for the new area, we cannot leave it unallocated because
3646 * then the backing file content would become visible. Instead, zero-fill
3647 * the new area.
3648 *
3649 * Note that if the image has a backing file, but was opened without the
3650 * backing file, taking care of keeping things consistent with that backing
3651 * file is the user's responsibility.
3652 */
3653 if (new_bytes && backing) {
3654 int64_t backing_len;
3655
3656 backing_len = bdrv_co_getlength(backing->bs);
3657 if (backing_len < 0) {
3658 ret = backing_len;
3659 error_setg_errno(errp, -ret, "Could not get backing file size");
3660 goto out;
3661 }
3662
3663 if (backing_len > old_size) {
3664 flags |= BDRV_REQ_ZERO_WRITE;
3665 }
3666 }
3667
3668 if (drv->bdrv_co_truncate) {
3669 if (flags & ~bs->supported_truncate_flags) {
3670 error_setg(errp, "Block driver does not support requested flags");
3671 ret = -ENOTSUP;
3672 goto out;
3673 }
3674 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3675 } else if (filtered) {
3676 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3677 } else {
3678 error_setg(errp, "Image format driver does not support resize");
3679 ret = -ENOTSUP;
3680 goto out;
3681 }
3682 if (ret < 0) {
3683 goto out;
3684 }
3685
3686 ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3687 if (ret < 0) {
3688 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3689 } else {
3690 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3691 }
3692 /*
3693 * It's possible that truncation succeeded but bdrv_refresh_total_sectors
3694 * failed, but the latter doesn't affect how we should finish the request.
3695 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled.
3696 */
3697 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3698
3699 out:
3700 tracked_request_end(&req);
3701 bdrv_dec_in_flight(bs);
3702
3703 return ret;
3704 }
3705
3706 void bdrv_cancel_in_flight(BlockDriverState *bs)
3707 {
3708 GLOBAL_STATE_CODE();
3709 if (!bs || !bs->drv) {
3710 return;
3711 }
3712
3713 if (bs->drv->bdrv_cancel_in_flight) {
3714 bs->drv->bdrv_cancel_in_flight(bs);
3715 }
3716 }
3717
3718 int coroutine_fn
3719 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3720 QEMUIOVector *qiov, size_t qiov_offset)
3721 {
3722 BlockDriverState *bs = child->bs;
3723 BlockDriver *drv = bs->drv;
3724 int ret;
3725 IO_CODE();
3726 assert_bdrv_graph_readable();
3727
3728 if (!drv) {
3729 return -ENOMEDIUM;
3730 }
3731
3732 if (!drv->bdrv_co_preadv_snapshot) {
3733 return -ENOTSUP;
3734 }
3735
3736 bdrv_inc_in_flight(bs);
3737 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3738 bdrv_dec_in_flight(bs);
3739
3740 return ret;
3741 }
3742
3743 int coroutine_fn
3744 bdrv_co_snapshot_block_status(BlockDriverState *bs,
3745 bool want_zero, int64_t offset, int64_t bytes,
3746 int64_t *pnum, int64_t *map,
3747 BlockDriverState **file)
3748 {
3749 BlockDriver *drv = bs->drv;
3750 int ret;
3751 IO_CODE();
3752 assert_bdrv_graph_readable();
3753
3754 if (!drv) {
3755 return -ENOMEDIUM;
3756 }
3757
3758 if (!drv->bdrv_co_snapshot_block_status) {
3759 return -ENOTSUP;
3760 }
3761
3762 bdrv_inc_in_flight(bs);
3763 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3764 pnum, map, file);
3765 bdrv_dec_in_flight(bs);
3766
3767 return ret;
3768 }
3769
3770 int coroutine_fn
3771 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3772 {
3773 BlockDriver *drv = bs->drv;
3774 int ret;
3775 IO_CODE();
3776 assert_bdrv_graph_readable();
3777
3778 if (!drv) {
3779 return -ENOMEDIUM;
3780 }
3781
3782 if (!drv->bdrv_co_pdiscard_snapshot) {
3783 return -ENOTSUP;
3784 }
3785
3786 bdrv_inc_in_flight(bs);
3787 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3788 bdrv_dec_in_flight(bs);
3789
3790 return ret;
3791 }