]> git.proxmox.com Git - mirror_qemu.git/blob - block/nvme.c
656624c585a204ecb8fa01f95684e38c901b257b
[mirror_qemu.git] / block / nvme.c
1 /*
2 * NVMe block driver based on vfio
3 *
4 * Copyright 2016 - 2018 Red Hat, Inc.
5 *
6 * Authors:
7 * Fam Zheng <famz@redhat.com>
8 * Paolo Bonzini <pbonzini@redhat.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 */
13
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/cutils.h"
23 #include "qemu/option.h"
24 #include "qemu/memalign.h"
25 #include "qemu/vfio-helpers.h"
26 #include "block/block_int.h"
27 #include "sysemu/replay.h"
28 #include "trace.h"
29
30 #include "block/nvme.h"
31
32 #define NVME_SQ_ENTRY_BYTES 64
33 #define NVME_CQ_ENTRY_BYTES 16
34 #define NVME_QUEUE_SIZE 128
35 #define NVME_DOORBELL_SIZE 4096
36
37 /*
38 * We have to leave one slot empty as that is the full queue case where
39 * head == tail + 1.
40 */
41 #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
42
43 typedef struct BDRVNVMeState BDRVNVMeState;
44
45 /* Same index is used for queues and IRQs */
46 #define INDEX_ADMIN 0
47 #define INDEX_IO(n) (1 + n)
48
49 /* This driver shares a single MSIX IRQ for the admin and I/O queues */
50 enum {
51 MSIX_SHARED_IRQ_IDX = 0,
52 MSIX_IRQ_COUNT = 1
53 };
54
55 typedef struct {
56 int32_t head, tail;
57 uint8_t *queue;
58 uint64_t iova;
59 /* Hardware MMIO register */
60 volatile uint32_t *doorbell;
61 } NVMeQueue;
62
63 typedef struct {
64 BlockCompletionFunc *cb;
65 void *opaque;
66 int cid;
67 void *prp_list_page;
68 uint64_t prp_list_iova;
69 int free_req_next; /* q->reqs[] index of next free req */
70 } NVMeRequest;
71
72 typedef struct {
73 QemuMutex lock;
74
75 /* Read from I/O code path, initialized under BQL */
76 BDRVNVMeState *s;
77 int index;
78
79 /* Fields protected by BQL */
80 uint8_t *prp_list_pages;
81
82 /* Fields protected by @lock */
83 CoQueue free_req_queue;
84 NVMeQueue sq, cq;
85 int cq_phase;
86 int free_req_head;
87 NVMeRequest reqs[NVME_NUM_REQS];
88 int need_kick;
89 int inflight;
90
91 /* Thread-safe, no lock necessary */
92 QEMUBH *completion_bh;
93 } NVMeQueuePair;
94
95 struct BDRVNVMeState {
96 AioContext *aio_context;
97 QEMUVFIOState *vfio;
98 void *bar0_wo_map;
99 /* Memory mapped registers */
100 volatile struct {
101 uint32_t sq_tail;
102 uint32_t cq_head;
103 } *doorbells;
104 /* The submission/completion queue pairs.
105 * [0]: admin queue.
106 * [1..]: io queues.
107 */
108 NVMeQueuePair **queues;
109 unsigned queue_count;
110 size_t page_size;
111 /* How many uint32_t elements does each doorbell entry take. */
112 size_t doorbell_scale;
113 bool write_cache_supported;
114 EventNotifier irq_notifier[MSIX_IRQ_COUNT];
115
116 uint64_t nsze; /* Namespace size reported by identify command */
117 int nsid; /* The namespace id to read/write data. */
118 int blkshift;
119
120 uint64_t max_transfer;
121 bool plugged;
122
123 bool supports_write_zeroes;
124 bool supports_discard;
125
126 CoMutex dma_map_lock;
127 CoQueue dma_flush_queue;
128
129 /* Total size of mapped qiov, accessed under dma_map_lock */
130 int dma_map_count;
131
132 /* PCI address (required for nvme_refresh_filename()) */
133 char *device;
134
135 struct {
136 uint64_t completion_errors;
137 uint64_t aligned_accesses;
138 uint64_t unaligned_accesses;
139 } stats;
140 };
141
142 #define NVME_BLOCK_OPT_DEVICE "device"
143 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
144
145 static void nvme_process_completion_bh(void *opaque);
146
147 static QemuOptsList runtime_opts = {
148 .name = "nvme",
149 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
150 .desc = {
151 {
152 .name = NVME_BLOCK_OPT_DEVICE,
153 .type = QEMU_OPT_STRING,
154 .help = "NVMe PCI device address",
155 },
156 {
157 .name = NVME_BLOCK_OPT_NAMESPACE,
158 .type = QEMU_OPT_NUMBER,
159 .help = "NVMe namespace",
160 },
161 { /* end of list */ }
162 },
163 };
164
165 /* Returns true on success, false on failure. */
166 static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
167 unsigned nentries, size_t entry_bytes, Error **errp)
168 {
169 size_t bytes;
170 int r;
171
172 bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size());
173 q->head = q->tail = 0;
174 q->queue = qemu_try_memalign(qemu_real_host_page_size(), bytes);
175 if (!q->queue) {
176 error_setg(errp, "Cannot allocate queue");
177 return false;
178 }
179 memset(q->queue, 0, bytes);
180 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova, errp);
181 if (r) {
182 error_prepend(errp, "Cannot map queue: ");
183 }
184 return r == 0;
185 }
186
187 static void nvme_free_queue(NVMeQueue *q)
188 {
189 qemu_vfree(q->queue);
190 }
191
192 static void nvme_free_queue_pair(NVMeQueuePair *q)
193 {
194 trace_nvme_free_queue_pair(q->index, q, &q->cq, &q->sq);
195 if (q->completion_bh) {
196 qemu_bh_delete(q->completion_bh);
197 }
198 nvme_free_queue(&q->sq);
199 nvme_free_queue(&q->cq);
200 qemu_vfree(q->prp_list_pages);
201 qemu_mutex_destroy(&q->lock);
202 g_free(q);
203 }
204
205 static void nvme_free_req_queue_cb(void *opaque)
206 {
207 NVMeQueuePair *q = opaque;
208
209 qemu_mutex_lock(&q->lock);
210 while (q->free_req_head != -1 &&
211 qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
212 /* Retry waiting requests */
213 }
214 qemu_mutex_unlock(&q->lock);
215 }
216
217 static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
218 AioContext *aio_context,
219 unsigned idx, size_t size,
220 Error **errp)
221 {
222 int i, r;
223 NVMeQueuePair *q;
224 uint64_t prp_list_iova;
225 size_t bytes;
226
227 q = g_try_new0(NVMeQueuePair, 1);
228 if (!q) {
229 error_setg(errp, "Cannot allocate queue pair");
230 return NULL;
231 }
232 trace_nvme_create_queue_pair(idx, q, size, aio_context,
233 event_notifier_get_fd(s->irq_notifier));
234 bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS,
235 qemu_real_host_page_size());
236 q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size(), bytes);
237 if (!q->prp_list_pages) {
238 error_setg(errp, "Cannot allocate PRP page list");
239 goto fail;
240 }
241 memset(q->prp_list_pages, 0, bytes);
242 qemu_mutex_init(&q->lock);
243 q->s = s;
244 q->index = idx;
245 qemu_co_queue_init(&q->free_req_queue);
246 q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
247 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes,
248 false, &prp_list_iova, errp);
249 if (r) {
250 error_prepend(errp, "Cannot map buffer for DMA: ");
251 goto fail;
252 }
253 q->free_req_head = -1;
254 for (i = 0; i < NVME_NUM_REQS; i++) {
255 NVMeRequest *req = &q->reqs[i];
256 req->cid = i + 1;
257 req->free_req_next = q->free_req_head;
258 q->free_req_head = i;
259 req->prp_list_page = q->prp_list_pages + i * s->page_size;
260 req->prp_list_iova = prp_list_iova + i * s->page_size;
261 }
262
263 if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) {
264 goto fail;
265 }
266 q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
267
268 if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) {
269 goto fail;
270 }
271 q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
272
273 return q;
274 fail:
275 nvme_free_queue_pair(q);
276 return NULL;
277 }
278
279 /* With q->lock */
280 static void nvme_kick(NVMeQueuePair *q)
281 {
282 BDRVNVMeState *s = q->s;
283
284 if (s->plugged || !q->need_kick) {
285 return;
286 }
287 trace_nvme_kick(s, q->index);
288 assert(!(q->sq.tail & 0xFF00));
289 /* Fence the write to submission queue entry before notifying the device. */
290 smp_wmb();
291 *q->sq.doorbell = cpu_to_le32(q->sq.tail);
292 q->inflight += q->need_kick;
293 q->need_kick = 0;
294 }
295
296 static NVMeRequest *nvme_get_free_req_nofail_locked(NVMeQueuePair *q)
297 {
298 NVMeRequest *req;
299
300 req = &q->reqs[q->free_req_head];
301 q->free_req_head = req->free_req_next;
302 req->free_req_next = -1;
303 return req;
304 }
305
306 /* Return a free request element if any, otherwise return NULL. */
307 static NVMeRequest *nvme_get_free_req_nowait(NVMeQueuePair *q)
308 {
309 QEMU_LOCK_GUARD(&q->lock);
310 if (q->free_req_head == -1) {
311 return NULL;
312 }
313 return nvme_get_free_req_nofail_locked(q);
314 }
315
316 /*
317 * Wait for a free request to become available if necessary, then
318 * return it.
319 */
320 static coroutine_fn NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
321 {
322 QEMU_LOCK_GUARD(&q->lock);
323
324 while (q->free_req_head == -1) {
325 trace_nvme_free_req_queue_wait(q->s, q->index);
326 qemu_co_queue_wait(&q->free_req_queue, &q->lock);
327 }
328
329 return nvme_get_free_req_nofail_locked(q);
330 }
331
332 /* With q->lock */
333 static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
334 {
335 req->free_req_next = q->free_req_head;
336 q->free_req_head = req - q->reqs;
337 }
338
339 /* With q->lock */
340 static void nvme_wake_free_req_locked(NVMeQueuePair *q)
341 {
342 if (!qemu_co_queue_empty(&q->free_req_queue)) {
343 replay_bh_schedule_oneshot_event(q->s->aio_context,
344 nvme_free_req_queue_cb, q);
345 }
346 }
347
348 /* Insert a request in the freelist and wake waiters */
349 static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
350 {
351 qemu_mutex_lock(&q->lock);
352 nvme_put_free_req_locked(q, req);
353 nvme_wake_free_req_locked(q);
354 qemu_mutex_unlock(&q->lock);
355 }
356
357 static inline int nvme_translate_error(const NvmeCqe *c)
358 {
359 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
360 if (status) {
361 trace_nvme_error(le32_to_cpu(c->result),
362 le16_to_cpu(c->sq_head),
363 le16_to_cpu(c->sq_id),
364 le16_to_cpu(c->cid),
365 le16_to_cpu(status));
366 }
367 switch (status) {
368 case 0:
369 return 0;
370 case 1:
371 return -ENOSYS;
372 case 2:
373 return -EINVAL;
374 default:
375 return -EIO;
376 }
377 }
378
379 /* With q->lock */
380 static bool nvme_process_completion(NVMeQueuePair *q)
381 {
382 BDRVNVMeState *s = q->s;
383 bool progress = false;
384 NVMeRequest *preq;
385 NVMeRequest req;
386 NvmeCqe *c;
387
388 trace_nvme_process_completion(s, q->index, q->inflight);
389 if (s->plugged) {
390 trace_nvme_process_completion_queue_plugged(s, q->index);
391 return false;
392 }
393
394 /*
395 * Support re-entrancy when a request cb() function invokes aio_poll().
396 * Pending completions must be visible to aio_poll() so that a cb()
397 * function can wait for the completion of another request.
398 *
399 * The aio_poll() loop will execute our BH and we'll resume completion
400 * processing there.
401 */
402 qemu_bh_schedule(q->completion_bh);
403
404 assert(q->inflight >= 0);
405 while (q->inflight) {
406 int ret;
407 int16_t cid;
408
409 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
410 if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
411 break;
412 }
413 ret = nvme_translate_error(c);
414 if (ret) {
415 s->stats.completion_errors++;
416 }
417 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
418 if (!q->cq.head) {
419 q->cq_phase = !q->cq_phase;
420 }
421 cid = le16_to_cpu(c->cid);
422 if (cid == 0 || cid > NVME_QUEUE_SIZE) {
423 warn_report("NVMe: Unexpected CID in completion queue: %"PRIu32", "
424 "queue size: %u", cid, NVME_QUEUE_SIZE);
425 continue;
426 }
427 trace_nvme_complete_command(s, q->index, cid);
428 preq = &q->reqs[cid - 1];
429 req = *preq;
430 assert(req.cid == cid);
431 assert(req.cb);
432 nvme_put_free_req_locked(q, preq);
433 preq->cb = preq->opaque = NULL;
434 q->inflight--;
435 qemu_mutex_unlock(&q->lock);
436 req.cb(req.opaque, ret);
437 qemu_mutex_lock(&q->lock);
438 progress = true;
439 }
440 if (progress) {
441 /* Notify the device so it can post more completions. */
442 smp_mb_release();
443 *q->cq.doorbell = cpu_to_le32(q->cq.head);
444 nvme_wake_free_req_locked(q);
445 }
446
447 qemu_bh_cancel(q->completion_bh);
448
449 return progress;
450 }
451
452 static void nvme_process_completion_bh(void *opaque)
453 {
454 NVMeQueuePair *q = opaque;
455
456 /*
457 * We're being invoked because a nvme_process_completion() cb() function
458 * called aio_poll(). The callback may be waiting for further completions
459 * so notify the device that it has space to fill in more completions now.
460 */
461 smp_mb_release();
462 *q->cq.doorbell = cpu_to_le32(q->cq.head);
463 nvme_wake_free_req_locked(q);
464
465 nvme_process_completion(q);
466 }
467
468 static void nvme_trace_command(const NvmeCmd *cmd)
469 {
470 int i;
471
472 if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
473 return;
474 }
475 for (i = 0; i < 8; ++i) {
476 uint8_t *cmdp = (uint8_t *)cmd + i * 8;
477 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
478 cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
479 }
480 }
481
482 static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
483 NvmeCmd *cmd, BlockCompletionFunc cb,
484 void *opaque)
485 {
486 assert(!req->cb);
487 req->cb = cb;
488 req->opaque = opaque;
489 cmd->cid = cpu_to_le16(req->cid);
490
491 trace_nvme_submit_command(q->s, q->index, req->cid);
492 nvme_trace_command(cmd);
493 qemu_mutex_lock(&q->lock);
494 memcpy((uint8_t *)q->sq.queue +
495 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
496 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
497 q->need_kick++;
498 nvme_kick(q);
499 nvme_process_completion(q);
500 qemu_mutex_unlock(&q->lock);
501 }
502
503 static void nvme_admin_cmd_sync_cb(void *opaque, int ret)
504 {
505 int *pret = opaque;
506 *pret = ret;
507 aio_wait_kick();
508 }
509
510 static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd)
511 {
512 BDRVNVMeState *s = bs->opaque;
513 NVMeQueuePair *q = s->queues[INDEX_ADMIN];
514 AioContext *aio_context = bdrv_get_aio_context(bs);
515 NVMeRequest *req;
516 int ret = -EINPROGRESS;
517 req = nvme_get_free_req_nowait(q);
518 if (!req) {
519 return -EBUSY;
520 }
521 nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret);
522
523 AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
524 return ret;
525 }
526
527 /* Returns true on success, false on failure. */
528 static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
529 {
530 BDRVNVMeState *s = bs->opaque;
531 bool ret = false;
532 QEMU_AUTO_VFREE union {
533 NvmeIdCtrl ctrl;
534 NvmeIdNs ns;
535 } *id = NULL;
536 NvmeLBAF *lbaf;
537 uint16_t oncs;
538 int r;
539 uint64_t iova;
540 NvmeCmd cmd = {
541 .opcode = NVME_ADM_CMD_IDENTIFY,
542 .cdw10 = cpu_to_le32(0x1),
543 };
544 size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size());
545
546 id = qemu_try_memalign(qemu_real_host_page_size(), id_size);
547 if (!id) {
548 error_setg(errp, "Cannot allocate buffer for identify response");
549 goto out;
550 }
551 r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova, errp);
552 if (r) {
553 error_prepend(errp, "Cannot map buffer for DMA: ");
554 goto out;
555 }
556
557 memset(id, 0, id_size);
558 cmd.dptr.prp1 = cpu_to_le64(iova);
559 if (nvme_admin_cmd_sync(bs, &cmd)) {
560 error_setg(errp, "Failed to identify controller");
561 goto out;
562 }
563
564 if (le32_to_cpu(id->ctrl.nn) < namespace) {
565 error_setg(errp, "Invalid namespace");
566 goto out;
567 }
568 s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
569 s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
570 /* For now the page list buffer per command is one page, to hold at most
571 * s->page_size / sizeof(uint64_t) entries. */
572 s->max_transfer = MIN_NON_ZERO(s->max_transfer,
573 s->page_size / sizeof(uint64_t) * s->page_size);
574
575 oncs = le16_to_cpu(id->ctrl.oncs);
576 s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
577 s->supports_discard = !!(oncs & NVME_ONCS_DSM);
578
579 memset(id, 0, id_size);
580 cmd.cdw10 = 0;
581 cmd.nsid = cpu_to_le32(namespace);
582 if (nvme_admin_cmd_sync(bs, &cmd)) {
583 error_setg(errp, "Failed to identify namespace");
584 goto out;
585 }
586
587 s->nsze = le64_to_cpu(id->ns.nsze);
588 lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
589
590 if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
591 NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
592 NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
593 bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
594 }
595
596 if (lbaf->ms) {
597 error_setg(errp, "Namespaces with metadata are not yet supported");
598 goto out;
599 }
600
601 if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
602 (1 << lbaf->ds) > s->page_size)
603 {
604 error_setg(errp, "Namespace has unsupported block size (2^%d)",
605 lbaf->ds);
606 goto out;
607 }
608
609 ret = true;
610 s->blkshift = lbaf->ds;
611 out:
612 qemu_vfio_dma_unmap(s->vfio, id);
613
614 return ret;
615 }
616
617 static void nvme_poll_queue(NVMeQueuePair *q)
618 {
619 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
620 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
621
622 trace_nvme_poll_queue(q->s, q->index);
623 /*
624 * Do an early check for completions. q->lock isn't needed because
625 * nvme_process_completion() only runs in the event loop thread and
626 * cannot race with itself.
627 */
628 if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
629 return;
630 }
631
632 qemu_mutex_lock(&q->lock);
633 while (nvme_process_completion(q)) {
634 /* Keep polling */
635 }
636 qemu_mutex_unlock(&q->lock);
637 }
638
639 static void nvme_poll_queues(BDRVNVMeState *s)
640 {
641 int i;
642
643 for (i = 0; i < s->queue_count; i++) {
644 nvme_poll_queue(s->queues[i]);
645 }
646 }
647
648 static void nvme_handle_event(EventNotifier *n)
649 {
650 BDRVNVMeState *s = container_of(n, BDRVNVMeState,
651 irq_notifier[MSIX_SHARED_IRQ_IDX]);
652
653 trace_nvme_handle_event(s);
654 event_notifier_test_and_clear(n);
655 nvme_poll_queues(s);
656 }
657
658 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
659 {
660 BDRVNVMeState *s = bs->opaque;
661 unsigned n = s->queue_count;
662 NVMeQueuePair *q;
663 NvmeCmd cmd;
664 unsigned queue_size = NVME_QUEUE_SIZE;
665
666 assert(n <= UINT16_MAX);
667 q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
668 n, queue_size, errp);
669 if (!q) {
670 return false;
671 }
672 cmd = (NvmeCmd) {
673 .opcode = NVME_ADM_CMD_CREATE_CQ,
674 .dptr.prp1 = cpu_to_le64(q->cq.iova),
675 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
676 .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC),
677 };
678 if (nvme_admin_cmd_sync(bs, &cmd)) {
679 error_setg(errp, "Failed to create CQ io queue [%u]", n);
680 goto out_error;
681 }
682 cmd = (NvmeCmd) {
683 .opcode = NVME_ADM_CMD_CREATE_SQ,
684 .dptr.prp1 = cpu_to_le64(q->sq.iova),
685 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
686 .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)),
687 };
688 if (nvme_admin_cmd_sync(bs, &cmd)) {
689 error_setg(errp, "Failed to create SQ io queue [%u]", n);
690 goto out_error;
691 }
692 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
693 s->queues[n] = q;
694 s->queue_count++;
695 return true;
696 out_error:
697 nvme_free_queue_pair(q);
698 return false;
699 }
700
701 static bool nvme_poll_cb(void *opaque)
702 {
703 EventNotifier *e = opaque;
704 BDRVNVMeState *s = container_of(e, BDRVNVMeState,
705 irq_notifier[MSIX_SHARED_IRQ_IDX]);
706 int i;
707
708 for (i = 0; i < s->queue_count; i++) {
709 NVMeQueuePair *q = s->queues[i];
710 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
711 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
712
713 /*
714 * q->lock isn't needed because nvme_process_completion() only runs in
715 * the event loop thread and cannot race with itself.
716 */
717 if ((le16_to_cpu(cqe->status) & 0x1) != q->cq_phase) {
718 return true;
719 }
720 }
721 return false;
722 }
723
724 static void nvme_poll_ready(EventNotifier *e)
725 {
726 BDRVNVMeState *s = container_of(e, BDRVNVMeState,
727 irq_notifier[MSIX_SHARED_IRQ_IDX]);
728
729 nvme_poll_queues(s);
730 }
731
732 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
733 Error **errp)
734 {
735 BDRVNVMeState *s = bs->opaque;
736 NVMeQueuePair *q;
737 AioContext *aio_context = bdrv_get_aio_context(bs);
738 int ret;
739 uint64_t cap;
740 uint32_t ver;
741 uint64_t timeout_ms;
742 uint64_t deadline, now;
743 volatile NvmeBar *regs = NULL;
744
745 qemu_co_mutex_init(&s->dma_map_lock);
746 qemu_co_queue_init(&s->dma_flush_queue);
747 s->device = g_strdup(device);
748 s->nsid = namespace;
749 s->aio_context = bdrv_get_aio_context(bs);
750 ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
751 if (ret) {
752 error_setg(errp, "Failed to init event notifier");
753 return ret;
754 }
755
756 s->vfio = qemu_vfio_open_pci(device, errp);
757 if (!s->vfio) {
758 ret = -EINVAL;
759 goto out;
760 }
761
762 regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
763 PROT_READ | PROT_WRITE, errp);
764 if (!regs) {
765 ret = -EINVAL;
766 goto out;
767 }
768 /* Perform initialize sequence as described in NVMe spec "7.6.1
769 * Initialization". */
770
771 cap = le64_to_cpu(regs->cap);
772 trace_nvme_controller_capability_raw(cap);
773 trace_nvme_controller_capability("Maximum Queue Entries Supported",
774 1 + NVME_CAP_MQES(cap));
775 trace_nvme_controller_capability("Contiguous Queues Required",
776 NVME_CAP_CQR(cap));
777 trace_nvme_controller_capability("Doorbell Stride",
778 1 << (2 + NVME_CAP_DSTRD(cap)));
779 trace_nvme_controller_capability("Subsystem Reset Supported",
780 NVME_CAP_NSSRS(cap));
781 trace_nvme_controller_capability("Memory Page Size Minimum",
782 1 << (12 + NVME_CAP_MPSMIN(cap)));
783 trace_nvme_controller_capability("Memory Page Size Maximum",
784 1 << (12 + NVME_CAP_MPSMAX(cap)));
785 if (!NVME_CAP_CSS(cap)) {
786 error_setg(errp, "Device doesn't support NVMe command set");
787 ret = -EINVAL;
788 goto out;
789 }
790
791 s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap));
792 s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
793 bs->bl.opt_mem_alignment = s->page_size;
794 bs->bl.request_alignment = s->page_size;
795 timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
796
797 ver = le32_to_cpu(regs->vs);
798 trace_nvme_controller_spec_version(extract32(ver, 16, 16),
799 extract32(ver, 8, 8),
800 extract32(ver, 0, 8));
801
802 /* Reset device to get a clean state. */
803 regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE);
804 /* Wait for CSTS.RDY = 0. */
805 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
806 while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
807 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
808 error_setg(errp, "Timeout while waiting for device to reset (%"
809 PRId64 " ms)",
810 timeout_ms);
811 ret = -ETIMEDOUT;
812 goto out;
813 }
814 }
815
816 s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0,
817 sizeof(NvmeBar) + NVME_DOORBELL_SIZE,
818 PROT_WRITE, errp);
819 s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar));
820 if (!s->doorbells) {
821 ret = -EINVAL;
822 goto out;
823 }
824
825 /* Set up admin queue. */
826 s->queues = g_new(NVMeQueuePair *, 1);
827 q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp);
828 if (!q) {
829 ret = -EINVAL;
830 goto out;
831 }
832 s->queues[INDEX_ADMIN] = q;
833 s->queue_count = 1;
834 QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000);
835 regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) |
836 ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT));
837 regs->asq = cpu_to_le64(q->sq.iova);
838 regs->acq = cpu_to_le64(q->cq.iova);
839
840 /* After setting up all control registers we can enable device now. */
841 regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
842 (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
843 CC_EN_MASK);
844 /* Wait for CSTS.RDY = 1. */
845 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
846 deadline = now + timeout_ms * SCALE_MS;
847 while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
848 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
849 error_setg(errp, "Timeout while waiting for device to start (%"
850 PRId64 " ms)",
851 timeout_ms);
852 ret = -ETIMEDOUT;
853 goto out;
854 }
855 }
856
857 ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
858 VFIO_PCI_MSIX_IRQ_INDEX, errp);
859 if (ret) {
860 goto out;
861 }
862 aio_set_event_notifier(bdrv_get_aio_context(bs),
863 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
864 false, nvme_handle_event, nvme_poll_cb,
865 nvme_poll_ready);
866
867 if (!nvme_identify(bs, namespace, errp)) {
868 ret = -EIO;
869 goto out;
870 }
871
872 /* Set up command queues. */
873 if (!nvme_add_io_queue(bs, errp)) {
874 ret = -EIO;
875 }
876 out:
877 if (regs) {
878 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
879 }
880
881 /* Cleaning up is done in nvme_file_open() upon error. */
882 return ret;
883 }
884
885 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
886 *
887 * nvme://0000:44:00.0/1
888 *
889 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
890 * is the PCI address, and the last part is the namespace number starting from
891 * 1 according to the NVMe spec. */
892 static void nvme_parse_filename(const char *filename, QDict *options,
893 Error **errp)
894 {
895 int pref = strlen("nvme://");
896
897 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
898 const char *tmp = filename + pref;
899 char *device;
900 const char *namespace;
901 unsigned long ns;
902 const char *slash = strchr(tmp, '/');
903 if (!slash) {
904 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
905 return;
906 }
907 device = g_strndup(tmp, slash - tmp);
908 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
909 g_free(device);
910 namespace = slash + 1;
911 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
912 error_setg(errp, "Invalid namespace '%s', positive number expected",
913 namespace);
914 return;
915 }
916 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
917 *namespace ? namespace : "1");
918 }
919 }
920
921 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
922 Error **errp)
923 {
924 int ret;
925 BDRVNVMeState *s = bs->opaque;
926 NvmeCmd cmd = {
927 .opcode = NVME_ADM_CMD_SET_FEATURES,
928 .nsid = cpu_to_le32(s->nsid),
929 .cdw10 = cpu_to_le32(0x06),
930 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
931 };
932
933 ret = nvme_admin_cmd_sync(bs, &cmd);
934 if (ret) {
935 error_setg(errp, "Failed to configure NVMe write cache");
936 }
937 return ret;
938 }
939
940 static void nvme_close(BlockDriverState *bs)
941 {
942 BDRVNVMeState *s = bs->opaque;
943
944 for (unsigned i = 0; i < s->queue_count; ++i) {
945 nvme_free_queue_pair(s->queues[i]);
946 }
947 g_free(s->queues);
948 aio_set_event_notifier(bdrv_get_aio_context(bs),
949 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
950 false, NULL, NULL, NULL);
951 event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
952 qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map,
953 0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE);
954 qemu_vfio_close(s->vfio);
955
956 g_free(s->device);
957 }
958
959 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
960 Error **errp)
961 {
962 const char *device;
963 QemuOpts *opts;
964 int namespace;
965 int ret;
966 BDRVNVMeState *s = bs->opaque;
967
968 bs->supported_write_flags = BDRV_REQ_FUA;
969
970 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
971 qemu_opts_absorb_qdict(opts, options, &error_abort);
972 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
973 if (!device) {
974 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
975 qemu_opts_del(opts);
976 return -EINVAL;
977 }
978
979 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
980 ret = nvme_init(bs, device, namespace, errp);
981 qemu_opts_del(opts);
982 if (ret) {
983 goto fail;
984 }
985 if (flags & BDRV_O_NOCACHE) {
986 if (!s->write_cache_supported) {
987 error_setg(errp,
988 "NVMe controller doesn't support write cache configuration");
989 ret = -EINVAL;
990 } else {
991 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
992 errp);
993 }
994 if (ret) {
995 goto fail;
996 }
997 }
998 return 0;
999 fail:
1000 nvme_close(bs);
1001 return ret;
1002 }
1003
1004 static int64_t nvme_getlength(BlockDriverState *bs)
1005 {
1006 BDRVNVMeState *s = bs->opaque;
1007 return s->nsze << s->blkshift;
1008 }
1009
1010 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
1011 {
1012 BDRVNVMeState *s = bs->opaque;
1013 assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
1014 return UINT32_C(1) << s->blkshift;
1015 }
1016
1017 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
1018 {
1019 uint32_t blocksize = nvme_get_blocksize(bs);
1020 bsz->phys = blocksize;
1021 bsz->log = blocksize;
1022 return 0;
1023 }
1024
1025 /* Called with s->dma_map_lock */
1026 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
1027 QEMUIOVector *qiov)
1028 {
1029 int r = 0;
1030 BDRVNVMeState *s = bs->opaque;
1031
1032 s->dma_map_count -= qiov->size;
1033 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
1034 r = qemu_vfio_dma_reset_temporary(s->vfio);
1035 if (!r) {
1036 qemu_co_queue_restart_all(&s->dma_flush_queue);
1037 }
1038 }
1039 return r;
1040 }
1041
1042 /* Called with s->dma_map_lock */
1043 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
1044 NVMeRequest *req, QEMUIOVector *qiov)
1045 {
1046 BDRVNVMeState *s = bs->opaque;
1047 uint64_t *pagelist = req->prp_list_page;
1048 int i, j, r;
1049 int entries = 0;
1050 Error *local_err = NULL, **errp = NULL;
1051
1052 assert(qiov->size);
1053 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
1054 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
1055 for (i = 0; i < qiov->niov; ++i) {
1056 bool retry = true;
1057 uint64_t iova;
1058 size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len,
1059 qemu_real_host_page_size());
1060 try_map:
1061 r = qemu_vfio_dma_map(s->vfio,
1062 qiov->iov[i].iov_base,
1063 len, true, &iova, errp);
1064 if (r == -ENOSPC) {
1065 /*
1066 * In addition to the -ENOMEM error, the VFIO_IOMMU_MAP_DMA
1067 * ioctl returns -ENOSPC to signal the user exhausted the DMA
1068 * mappings available for a container since Linux kernel commit
1069 * 492855939bdb ("vfio/type1: Limit DMA mappings per container",
1070 * April 2019, see CVE-2019-3882).
1071 *
1072 * This block driver already handles this error path by checking
1073 * for the -ENOMEM error, so we directly replace -ENOSPC by
1074 * -ENOMEM. Beside, -ENOSPC has a specific meaning for blockdev
1075 * coroutines: it triggers BLOCKDEV_ON_ERROR_ENOSPC and
1076 * BLOCK_ERROR_ACTION_STOP which stops the VM, asking the operator
1077 * to add more storage to the blockdev. Not something we can do
1078 * easily with an IOMMU :)
1079 */
1080 r = -ENOMEM;
1081 }
1082 if (r == -ENOMEM && retry) {
1083 /*
1084 * We exhausted the DMA mappings available for our container:
1085 * recycle the volatile IOVA mappings.
1086 */
1087 retry = false;
1088 trace_nvme_dma_flush_queue_wait(s);
1089 if (s->dma_map_count) {
1090 trace_nvme_dma_map_flush(s);
1091 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
1092 } else {
1093 r = qemu_vfio_dma_reset_temporary(s->vfio);
1094 if (r) {
1095 goto fail;
1096 }
1097 }
1098 errp = &local_err;
1099
1100 goto try_map;
1101 }
1102 if (r) {
1103 goto fail;
1104 }
1105
1106 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
1107 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
1108 }
1109 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
1110 qiov->iov[i].iov_len / s->page_size);
1111 }
1112
1113 s->dma_map_count += qiov->size;
1114
1115 assert(entries <= s->page_size / sizeof(uint64_t));
1116 switch (entries) {
1117 case 0:
1118 abort();
1119 case 1:
1120 cmd->dptr.prp1 = pagelist[0];
1121 cmd->dptr.prp2 = 0;
1122 break;
1123 case 2:
1124 cmd->dptr.prp1 = pagelist[0];
1125 cmd->dptr.prp2 = pagelist[1];
1126 break;
1127 default:
1128 cmd->dptr.prp1 = pagelist[0];
1129 cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
1130 break;
1131 }
1132 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1133 for (i = 0; i < entries; ++i) {
1134 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1135 }
1136 return 0;
1137 fail:
1138 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1139 * increment s->dma_map_count. This is okay for fixed mapping memory areas
1140 * because they are already mapped before calling this function; for
1141 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1142 * calling qemu_vfio_dma_reset_temporary when necessary. */
1143 if (local_err) {
1144 error_reportf_err(local_err, "Cannot map buffer for DMA: ");
1145 }
1146 return r;
1147 }
1148
1149 typedef struct {
1150 Coroutine *co;
1151 int ret;
1152 AioContext *ctx;
1153 } NVMeCoData;
1154
1155 static void nvme_rw_cb_bh(void *opaque)
1156 {
1157 NVMeCoData *data = opaque;
1158 qemu_coroutine_enter(data->co);
1159 }
1160
1161 static void nvme_rw_cb(void *opaque, int ret)
1162 {
1163 NVMeCoData *data = opaque;
1164 data->ret = ret;
1165 if (!data->co) {
1166 /* The rw coroutine hasn't yielded, don't try to enter. */
1167 return;
1168 }
1169 replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
1170 }
1171
1172 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1173 uint64_t offset, uint64_t bytes,
1174 QEMUIOVector *qiov,
1175 bool is_write,
1176 int flags)
1177 {
1178 int r;
1179 BDRVNVMeState *s = bs->opaque;
1180 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1181 NVMeRequest *req;
1182
1183 uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
1184 (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1185 NvmeCmd cmd = {
1186 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1187 .nsid = cpu_to_le32(s->nsid),
1188 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1189 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1190 .cdw12 = cpu_to_le32(cdw12),
1191 };
1192 NVMeCoData data = {
1193 .ctx = bdrv_get_aio_context(bs),
1194 .ret = -EINPROGRESS,
1195 };
1196
1197 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1198 assert(s->queue_count > 1);
1199 req = nvme_get_free_req(ioq);
1200 assert(req);
1201
1202 qemu_co_mutex_lock(&s->dma_map_lock);
1203 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1204 qemu_co_mutex_unlock(&s->dma_map_lock);
1205 if (r) {
1206 nvme_put_free_req_and_wake(ioq, req);
1207 return r;
1208 }
1209 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1210
1211 data.co = qemu_coroutine_self();
1212 while (data.ret == -EINPROGRESS) {
1213 qemu_coroutine_yield();
1214 }
1215
1216 qemu_co_mutex_lock(&s->dma_map_lock);
1217 r = nvme_cmd_unmap_qiov(bs, qiov);
1218 qemu_co_mutex_unlock(&s->dma_map_lock);
1219 if (r) {
1220 return r;
1221 }
1222
1223 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1224 return data.ret;
1225 }
1226
1227 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1228 const QEMUIOVector *qiov)
1229 {
1230 int i;
1231 BDRVNVMeState *s = bs->opaque;
1232
1233 for (i = 0; i < qiov->niov; ++i) {
1234 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base,
1235 qemu_real_host_page_size()) ||
1236 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size())) {
1237 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1238 qiov->iov[i].iov_len, s->page_size);
1239 return false;
1240 }
1241 }
1242 return true;
1243 }
1244
1245 static coroutine_fn int nvme_co_prw(BlockDriverState *bs,
1246 uint64_t offset, uint64_t bytes,
1247 QEMUIOVector *qiov, bool is_write,
1248 int flags)
1249 {
1250 BDRVNVMeState *s = bs->opaque;
1251 int r;
1252 QEMU_AUTO_VFREE uint8_t *buf = NULL;
1253 QEMUIOVector local_qiov;
1254 size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size());
1255 assert(QEMU_IS_ALIGNED(offset, s->page_size));
1256 assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1257 assert(bytes <= s->max_transfer);
1258 if (nvme_qiov_aligned(bs, qiov)) {
1259 s->stats.aligned_accesses++;
1260 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1261 }
1262 s->stats.unaligned_accesses++;
1263 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1264 buf = qemu_try_memalign(qemu_real_host_page_size(), len);
1265
1266 if (!buf) {
1267 return -ENOMEM;
1268 }
1269 qemu_iovec_init(&local_qiov, 1);
1270 if (is_write) {
1271 qemu_iovec_to_buf(qiov, 0, buf, bytes);
1272 }
1273 qemu_iovec_add(&local_qiov, buf, bytes);
1274 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1275 qemu_iovec_destroy(&local_qiov);
1276 if (!r && !is_write) {
1277 qemu_iovec_from_buf(qiov, 0, buf, bytes);
1278 }
1279 return r;
1280 }
1281
1282 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1283 int64_t offset, int64_t bytes,
1284 QEMUIOVector *qiov,
1285 BdrvRequestFlags flags)
1286 {
1287 return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1288 }
1289
1290 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1291 int64_t offset, int64_t bytes,
1292 QEMUIOVector *qiov,
1293 BdrvRequestFlags flags)
1294 {
1295 return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1296 }
1297
1298 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1299 {
1300 BDRVNVMeState *s = bs->opaque;
1301 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1302 NVMeRequest *req;
1303 NvmeCmd cmd = {
1304 .opcode = NVME_CMD_FLUSH,
1305 .nsid = cpu_to_le32(s->nsid),
1306 };
1307 NVMeCoData data = {
1308 .ctx = bdrv_get_aio_context(bs),
1309 .ret = -EINPROGRESS,
1310 };
1311
1312 assert(s->queue_count > 1);
1313 req = nvme_get_free_req(ioq);
1314 assert(req);
1315 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1316
1317 data.co = qemu_coroutine_self();
1318 if (data.ret == -EINPROGRESS) {
1319 qemu_coroutine_yield();
1320 }
1321
1322 return data.ret;
1323 }
1324
1325
1326 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1327 int64_t offset,
1328 int64_t bytes,
1329 BdrvRequestFlags flags)
1330 {
1331 BDRVNVMeState *s = bs->opaque;
1332 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1333 NVMeRequest *req;
1334 uint32_t cdw12;
1335
1336 if (!s->supports_write_zeroes) {
1337 return -ENOTSUP;
1338 }
1339
1340 if (bytes == 0) {
1341 return 0;
1342 }
1343
1344 cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1345 /*
1346 * We should not lose information. pwrite_zeroes_alignment and
1347 * max_pwrite_zeroes guarantees it.
1348 */
1349 assert(((cdw12 + 1) << s->blkshift) == bytes);
1350
1351 NvmeCmd cmd = {
1352 .opcode = NVME_CMD_WRITE_ZEROES,
1353 .nsid = cpu_to_le32(s->nsid),
1354 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1355 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1356 };
1357
1358 NVMeCoData data = {
1359 .ctx = bdrv_get_aio_context(bs),
1360 .ret = -EINPROGRESS,
1361 };
1362
1363 if (flags & BDRV_REQ_MAY_UNMAP) {
1364 cdw12 |= (1 << 25);
1365 }
1366
1367 if (flags & BDRV_REQ_FUA) {
1368 cdw12 |= (1 << 30);
1369 }
1370
1371 cmd.cdw12 = cpu_to_le32(cdw12);
1372
1373 trace_nvme_write_zeroes(s, offset, bytes, flags);
1374 assert(s->queue_count > 1);
1375 req = nvme_get_free_req(ioq);
1376 assert(req);
1377
1378 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1379
1380 data.co = qemu_coroutine_self();
1381 while (data.ret == -EINPROGRESS) {
1382 qemu_coroutine_yield();
1383 }
1384
1385 trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1386 return data.ret;
1387 }
1388
1389
1390 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1391 int64_t offset,
1392 int64_t bytes)
1393 {
1394 BDRVNVMeState *s = bs->opaque;
1395 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1396 NVMeRequest *req;
1397 QEMU_AUTO_VFREE NvmeDsmRange *buf = NULL;
1398 QEMUIOVector local_qiov;
1399 int ret;
1400
1401 NvmeCmd cmd = {
1402 .opcode = NVME_CMD_DSM,
1403 .nsid = cpu_to_le32(s->nsid),
1404 .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1405 .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1406 };
1407
1408 NVMeCoData data = {
1409 .ctx = bdrv_get_aio_context(bs),
1410 .ret = -EINPROGRESS,
1411 };
1412
1413 if (!s->supports_discard) {
1414 return -ENOTSUP;
1415 }
1416
1417 assert(s->queue_count > 1);
1418
1419 /*
1420 * Filling the @buf requires @offset and @bytes to satisfy restrictions
1421 * defined in nvme_refresh_limits().
1422 */
1423 assert(QEMU_IS_ALIGNED(bytes, 1UL << s->blkshift));
1424 assert(QEMU_IS_ALIGNED(offset, 1UL << s->blkshift));
1425 assert((bytes >> s->blkshift) <= UINT32_MAX);
1426
1427 buf = qemu_try_memalign(s->page_size, s->page_size);
1428 if (!buf) {
1429 return -ENOMEM;
1430 }
1431 memset(buf, 0, s->page_size);
1432 buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1433 buf->slba = cpu_to_le64(offset >> s->blkshift);
1434 buf->cattr = 0;
1435
1436 qemu_iovec_init(&local_qiov, 1);
1437 qemu_iovec_add(&local_qiov, buf, 4096);
1438
1439 req = nvme_get_free_req(ioq);
1440 assert(req);
1441
1442 qemu_co_mutex_lock(&s->dma_map_lock);
1443 ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1444 qemu_co_mutex_unlock(&s->dma_map_lock);
1445
1446 if (ret) {
1447 nvme_put_free_req_and_wake(ioq, req);
1448 goto out;
1449 }
1450
1451 trace_nvme_dsm(s, offset, bytes);
1452
1453 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1454
1455 data.co = qemu_coroutine_self();
1456 while (data.ret == -EINPROGRESS) {
1457 qemu_coroutine_yield();
1458 }
1459
1460 qemu_co_mutex_lock(&s->dma_map_lock);
1461 ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1462 qemu_co_mutex_unlock(&s->dma_map_lock);
1463
1464 if (ret) {
1465 goto out;
1466 }
1467
1468 ret = data.ret;
1469 trace_nvme_dsm_done(s, offset, bytes, ret);
1470 out:
1471 qemu_iovec_destroy(&local_qiov);
1472 return ret;
1473
1474 }
1475
1476 static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset,
1477 bool exact, PreallocMode prealloc,
1478 BdrvRequestFlags flags, Error **errp)
1479 {
1480 int64_t cur_length;
1481
1482 if (prealloc != PREALLOC_MODE_OFF) {
1483 error_setg(errp, "Unsupported preallocation mode '%s'",
1484 PreallocMode_str(prealloc));
1485 return -ENOTSUP;
1486 }
1487
1488 cur_length = nvme_getlength(bs);
1489 if (offset != cur_length && exact) {
1490 error_setg(errp, "Cannot resize NVMe devices");
1491 return -ENOTSUP;
1492 } else if (offset > cur_length) {
1493 error_setg(errp, "Cannot grow NVMe devices");
1494 return -EINVAL;
1495 }
1496
1497 return 0;
1498 }
1499
1500 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1501 BlockReopenQueue *queue, Error **errp)
1502 {
1503 return 0;
1504 }
1505
1506 static void nvme_refresh_filename(BlockDriverState *bs)
1507 {
1508 BDRVNVMeState *s = bs->opaque;
1509
1510 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1511 s->device, s->nsid);
1512 }
1513
1514 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1515 {
1516 BDRVNVMeState *s = bs->opaque;
1517
1518 bs->bl.opt_mem_alignment = s->page_size;
1519 bs->bl.request_alignment = s->page_size;
1520 bs->bl.max_transfer = s->max_transfer;
1521
1522 /*
1523 * Look at nvme_co_pwrite_zeroes: after shift and decrement we should get
1524 * at most 0xFFFF
1525 */
1526 bs->bl.max_pwrite_zeroes = 1ULL << (s->blkshift + 16);
1527 bs->bl.pwrite_zeroes_alignment = MAX(bs->bl.request_alignment,
1528 1UL << s->blkshift);
1529
1530 bs->bl.max_pdiscard = (uint64_t)UINT32_MAX << s->blkshift;
1531 bs->bl.pdiscard_alignment = MAX(bs->bl.request_alignment,
1532 1UL << s->blkshift);
1533 }
1534
1535 static void nvme_detach_aio_context(BlockDriverState *bs)
1536 {
1537 BDRVNVMeState *s = bs->opaque;
1538
1539 for (unsigned i = 0; i < s->queue_count; i++) {
1540 NVMeQueuePair *q = s->queues[i];
1541
1542 qemu_bh_delete(q->completion_bh);
1543 q->completion_bh = NULL;
1544 }
1545
1546 aio_set_event_notifier(bdrv_get_aio_context(bs),
1547 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1548 false, NULL, NULL, NULL);
1549 }
1550
1551 static void nvme_attach_aio_context(BlockDriverState *bs,
1552 AioContext *new_context)
1553 {
1554 BDRVNVMeState *s = bs->opaque;
1555
1556 s->aio_context = new_context;
1557 aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1558 false, nvme_handle_event, nvme_poll_cb,
1559 nvme_poll_ready);
1560
1561 for (unsigned i = 0; i < s->queue_count; i++) {
1562 NVMeQueuePair *q = s->queues[i];
1563
1564 q->completion_bh =
1565 aio_bh_new(new_context, nvme_process_completion_bh, q);
1566 }
1567 }
1568
1569 static void nvme_aio_plug(BlockDriverState *bs)
1570 {
1571 BDRVNVMeState *s = bs->opaque;
1572 assert(!s->plugged);
1573 s->plugged = true;
1574 }
1575
1576 static void nvme_aio_unplug(BlockDriverState *bs)
1577 {
1578 BDRVNVMeState *s = bs->opaque;
1579 assert(s->plugged);
1580 s->plugged = false;
1581 for (unsigned i = INDEX_IO(0); i < s->queue_count; i++) {
1582 NVMeQueuePair *q = s->queues[i];
1583 qemu_mutex_lock(&q->lock);
1584 nvme_kick(q);
1585 nvme_process_completion(q);
1586 qemu_mutex_unlock(&q->lock);
1587 }
1588 }
1589
1590 static bool nvme_register_buf(BlockDriverState *bs, void *host, size_t size,
1591 Error **errp)
1592 {
1593 int ret;
1594 BDRVNVMeState *s = bs->opaque;
1595
1596 /*
1597 * FIXME: we may run out of IOVA addresses after repeated
1598 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1599 * doesn't reclaim addresses for fixed mappings.
1600 */
1601 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL, errp);
1602 return ret == 0;
1603 }
1604
1605 static void nvme_unregister_buf(BlockDriverState *bs, void *host, size_t size)
1606 {
1607 BDRVNVMeState *s = bs->opaque;
1608
1609 qemu_vfio_dma_unmap(s->vfio, host);
1610 }
1611
1612 static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs)
1613 {
1614 BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1);
1615 BDRVNVMeState *s = bs->opaque;
1616
1617 stats->driver = BLOCKDEV_DRIVER_NVME;
1618 stats->u.nvme = (BlockStatsSpecificNvme) {
1619 .completion_errors = s->stats.completion_errors,
1620 .aligned_accesses = s->stats.aligned_accesses,
1621 .unaligned_accesses = s->stats.unaligned_accesses,
1622 };
1623
1624 return stats;
1625 }
1626
1627 static const char *const nvme_strong_runtime_opts[] = {
1628 NVME_BLOCK_OPT_DEVICE,
1629 NVME_BLOCK_OPT_NAMESPACE,
1630
1631 NULL
1632 };
1633
1634 static BlockDriver bdrv_nvme = {
1635 .format_name = "nvme",
1636 .protocol_name = "nvme",
1637 .instance_size = sizeof(BDRVNVMeState),
1638
1639 .bdrv_co_create_opts = bdrv_co_create_opts_simple,
1640 .create_opts = &bdrv_create_opts_simple,
1641
1642 .bdrv_parse_filename = nvme_parse_filename,
1643 .bdrv_file_open = nvme_file_open,
1644 .bdrv_close = nvme_close,
1645 .bdrv_getlength = nvme_getlength,
1646 .bdrv_probe_blocksizes = nvme_probe_blocksizes,
1647 .bdrv_co_truncate = nvme_co_truncate,
1648
1649 .bdrv_co_preadv = nvme_co_preadv,
1650 .bdrv_co_pwritev = nvme_co_pwritev,
1651
1652 .bdrv_co_pwrite_zeroes = nvme_co_pwrite_zeroes,
1653 .bdrv_co_pdiscard = nvme_co_pdiscard,
1654
1655 .bdrv_co_flush_to_disk = nvme_co_flush,
1656 .bdrv_reopen_prepare = nvme_reopen_prepare,
1657
1658 .bdrv_refresh_filename = nvme_refresh_filename,
1659 .bdrv_refresh_limits = nvme_refresh_limits,
1660 .strong_runtime_opts = nvme_strong_runtime_opts,
1661 .bdrv_get_specific_stats = nvme_get_specific_stats,
1662
1663 .bdrv_detach_aio_context = nvme_detach_aio_context,
1664 .bdrv_attach_aio_context = nvme_attach_aio_context,
1665
1666 .bdrv_io_plug = nvme_aio_plug,
1667 .bdrv_io_unplug = nvme_aio_unplug,
1668
1669 .bdrv_register_buf = nvme_register_buf,
1670 .bdrv_unregister_buf = nvme_unregister_buf,
1671 };
1672
1673 static void bdrv_nvme_init(void)
1674 {
1675 bdrv_register(&bdrv_nvme);
1676 }
1677
1678 block_init(bdrv_nvme_init);