]> git.proxmox.com Git - mirror_qemu.git/blob - block/nvme.c
nvme: Fix nvme_init error handling
[mirror_qemu.git] / block / nvme.c
1 /*
2 * NVMe block driver based on vfio
3 *
4 * Copyright 2016 - 2018 Red Hat, Inc.
5 *
6 * Authors:
7 * Fam Zheng <famz@redhat.com>
8 * Paolo Bonzini <pbonzini@redhat.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 */
13
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/cutils.h"
21 #include "qemu/option.h"
22 #include "qemu/vfio-helpers.h"
23 #include "block/block_int.h"
24 #include "trace.h"
25
26 #include "block/nvme.h"
27
28 #define NVME_SQ_ENTRY_BYTES 64
29 #define NVME_CQ_ENTRY_BYTES 16
30 #define NVME_QUEUE_SIZE 128
31 #define NVME_BAR_SIZE 8192
32
33 typedef struct {
34 int32_t head, tail;
35 uint8_t *queue;
36 uint64_t iova;
37 /* Hardware MMIO register */
38 volatile uint32_t *doorbell;
39 } NVMeQueue;
40
41 typedef struct {
42 BlockCompletionFunc *cb;
43 void *opaque;
44 int cid;
45 void *prp_list_page;
46 uint64_t prp_list_iova;
47 bool busy;
48 } NVMeRequest;
49
50 typedef struct {
51 CoQueue free_req_queue;
52 QemuMutex lock;
53
54 /* Fields protected by BQL */
55 int index;
56 uint8_t *prp_list_pages;
57
58 /* Fields protected by @lock */
59 NVMeQueue sq, cq;
60 int cq_phase;
61 NVMeRequest reqs[NVME_QUEUE_SIZE];
62 bool busy;
63 int need_kick;
64 int inflight;
65 } NVMeQueuePair;
66
67 /* Memory mapped registers */
68 typedef volatile struct {
69 uint64_t cap;
70 uint32_t vs;
71 uint32_t intms;
72 uint32_t intmc;
73 uint32_t cc;
74 uint32_t reserved0;
75 uint32_t csts;
76 uint32_t nssr;
77 uint32_t aqa;
78 uint64_t asq;
79 uint64_t acq;
80 uint32_t cmbloc;
81 uint32_t cmbsz;
82 uint8_t reserved1[0xec0];
83 uint8_t cmd_set_specfic[0x100];
84 uint32_t doorbells[];
85 } QEMU_PACKED NVMeRegs;
86
87 QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000);
88
89 typedef struct {
90 AioContext *aio_context;
91 QEMUVFIOState *vfio;
92 NVMeRegs *regs;
93 /* The submission/completion queue pairs.
94 * [0]: admin queue.
95 * [1..]: io queues.
96 */
97 NVMeQueuePair **queues;
98 int nr_queues;
99 size_t page_size;
100 /* How many uint32_t elements does each doorbell entry take. */
101 size_t doorbell_scale;
102 bool write_cache_supported;
103 EventNotifier irq_notifier;
104 uint64_t nsze; /* Namespace size reported by identify command */
105 int nsid; /* The namespace id to read/write data. */
106 uint64_t max_transfer;
107 int plugged;
108
109 CoMutex dma_map_lock;
110 CoQueue dma_flush_queue;
111
112 /* Total size of mapped qiov, accessed under dma_map_lock */
113 int dma_map_count;
114 } BDRVNVMeState;
115
116 #define NVME_BLOCK_OPT_DEVICE "device"
117 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
118
119 static QemuOptsList runtime_opts = {
120 .name = "nvme",
121 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
122 .desc = {
123 {
124 .name = NVME_BLOCK_OPT_DEVICE,
125 .type = QEMU_OPT_STRING,
126 .help = "NVMe PCI device address",
127 },
128 {
129 .name = NVME_BLOCK_OPT_NAMESPACE,
130 .type = QEMU_OPT_NUMBER,
131 .help = "NVMe namespace",
132 },
133 { /* end of list */ }
134 },
135 };
136
137 static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q,
138 int nentries, int entry_bytes, Error **errp)
139 {
140 BDRVNVMeState *s = bs->opaque;
141 size_t bytes;
142 int r;
143
144 bytes = ROUND_UP(nentries * entry_bytes, s->page_size);
145 q->head = q->tail = 0;
146 q->queue = qemu_try_blockalign0(bs, bytes);
147
148 if (!q->queue) {
149 error_setg(errp, "Cannot allocate queue");
150 return;
151 }
152 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova);
153 if (r) {
154 error_setg(errp, "Cannot map queue");
155 }
156 }
157
158 static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q)
159 {
160 qemu_vfree(q->prp_list_pages);
161 qemu_vfree(q->sq.queue);
162 qemu_vfree(q->cq.queue);
163 qemu_mutex_destroy(&q->lock);
164 g_free(q);
165 }
166
167 static void nvme_free_req_queue_cb(void *opaque)
168 {
169 NVMeQueuePair *q = opaque;
170
171 qemu_mutex_lock(&q->lock);
172 while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
173 /* Retry all pending requests */
174 }
175 qemu_mutex_unlock(&q->lock);
176 }
177
178 static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs,
179 int idx, int size,
180 Error **errp)
181 {
182 int i, r;
183 BDRVNVMeState *s = bs->opaque;
184 Error *local_err = NULL;
185 NVMeQueuePair *q = g_new0(NVMeQueuePair, 1);
186 uint64_t prp_list_iova;
187
188 qemu_mutex_init(&q->lock);
189 q->index = idx;
190 qemu_co_queue_init(&q->free_req_queue);
191 q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE);
192 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages,
193 s->page_size * NVME_QUEUE_SIZE,
194 false, &prp_list_iova);
195 if (r) {
196 goto fail;
197 }
198 for (i = 0; i < NVME_QUEUE_SIZE; i++) {
199 NVMeRequest *req = &q->reqs[i];
200 req->cid = i + 1;
201 req->prp_list_page = q->prp_list_pages + i * s->page_size;
202 req->prp_list_iova = prp_list_iova + i * s->page_size;
203 }
204 nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err);
205 if (local_err) {
206 error_propagate(errp, local_err);
207 goto fail;
208 }
209 q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale];
210
211 nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err);
212 if (local_err) {
213 error_propagate(errp, local_err);
214 goto fail;
215 }
216 q->cq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale + 1];
217
218 return q;
219 fail:
220 nvme_free_queue_pair(bs, q);
221 return NULL;
222 }
223
224 /* With q->lock */
225 static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q)
226 {
227 if (s->plugged || !q->need_kick) {
228 return;
229 }
230 trace_nvme_kick(s, q->index);
231 assert(!(q->sq.tail & 0xFF00));
232 /* Fence the write to submission queue entry before notifying the device. */
233 smp_wmb();
234 *q->sq.doorbell = cpu_to_le32(q->sq.tail);
235 q->inflight += q->need_kick;
236 q->need_kick = 0;
237 }
238
239 /* Find a free request element if any, otherwise:
240 * a) if in coroutine context, try to wait for one to become available;
241 * b) if not in coroutine, return NULL;
242 */
243 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
244 {
245 int i;
246 NVMeRequest *req = NULL;
247
248 qemu_mutex_lock(&q->lock);
249 while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) {
250 /* We have to leave one slot empty as that is the full queue case (head
251 * == tail + 1). */
252 if (qemu_in_coroutine()) {
253 trace_nvme_free_req_queue_wait(q);
254 qemu_co_queue_wait(&q->free_req_queue, &q->lock);
255 } else {
256 qemu_mutex_unlock(&q->lock);
257 return NULL;
258 }
259 }
260 for (i = 0; i < NVME_QUEUE_SIZE; i++) {
261 if (!q->reqs[i].busy) {
262 q->reqs[i].busy = true;
263 req = &q->reqs[i];
264 break;
265 }
266 }
267 /* We have checked inflight and need_kick while holding q->lock, so one
268 * free req must be available. */
269 assert(req);
270 qemu_mutex_unlock(&q->lock);
271 return req;
272 }
273
274 static inline int nvme_translate_error(const NvmeCqe *c)
275 {
276 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
277 if (status) {
278 trace_nvme_error(le32_to_cpu(c->result),
279 le16_to_cpu(c->sq_head),
280 le16_to_cpu(c->sq_id),
281 le16_to_cpu(c->cid),
282 le16_to_cpu(status));
283 }
284 switch (status) {
285 case 0:
286 return 0;
287 case 1:
288 return -ENOSYS;
289 case 2:
290 return -EINVAL;
291 default:
292 return -EIO;
293 }
294 }
295
296 /* With q->lock */
297 static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q)
298 {
299 bool progress = false;
300 NVMeRequest *preq;
301 NVMeRequest req;
302 NvmeCqe *c;
303
304 trace_nvme_process_completion(s, q->index, q->inflight);
305 if (q->busy || s->plugged) {
306 trace_nvme_process_completion_queue_busy(s, q->index);
307 return false;
308 }
309 q->busy = true;
310 assert(q->inflight >= 0);
311 while (q->inflight) {
312 int16_t cid;
313 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
314 if (!c->cid || (le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
315 break;
316 }
317 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
318 if (!q->cq.head) {
319 q->cq_phase = !q->cq_phase;
320 }
321 cid = le16_to_cpu(c->cid);
322 if (cid == 0 || cid > NVME_QUEUE_SIZE) {
323 fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n",
324 cid);
325 continue;
326 }
327 assert(cid <= NVME_QUEUE_SIZE);
328 trace_nvme_complete_command(s, q->index, cid);
329 preq = &q->reqs[cid - 1];
330 req = *preq;
331 assert(req.cid == cid);
332 assert(req.cb);
333 preq->busy = false;
334 preq->cb = preq->opaque = NULL;
335 qemu_mutex_unlock(&q->lock);
336 req.cb(req.opaque, nvme_translate_error(c));
337 qemu_mutex_lock(&q->lock);
338 c->cid = cpu_to_le16(0);
339 q->inflight--;
340 /* Flip Phase Tag bit. */
341 c->status = cpu_to_le16(le16_to_cpu(c->status) ^ 0x1);
342 progress = true;
343 }
344 if (progress) {
345 /* Notify the device so it can post more completions. */
346 smp_mb_release();
347 *q->cq.doorbell = cpu_to_le32(q->cq.head);
348 if (!qemu_co_queue_empty(&q->free_req_queue)) {
349 aio_bh_schedule_oneshot(s->aio_context, nvme_free_req_queue_cb, q);
350 }
351 }
352 q->busy = false;
353 return progress;
354 }
355
356 static void nvme_trace_command(const NvmeCmd *cmd)
357 {
358 int i;
359
360 for (i = 0; i < 8; ++i) {
361 uint8_t *cmdp = (uint8_t *)cmd + i * 8;
362 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
363 cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
364 }
365 }
366
367 static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q,
368 NVMeRequest *req,
369 NvmeCmd *cmd, BlockCompletionFunc cb,
370 void *opaque)
371 {
372 assert(!req->cb);
373 req->cb = cb;
374 req->opaque = opaque;
375 cmd->cid = cpu_to_le32(req->cid);
376
377 trace_nvme_submit_command(s, q->index, req->cid);
378 nvme_trace_command(cmd);
379 qemu_mutex_lock(&q->lock);
380 memcpy((uint8_t *)q->sq.queue +
381 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
382 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
383 q->need_kick++;
384 nvme_kick(s, q);
385 nvme_process_completion(s, q);
386 qemu_mutex_unlock(&q->lock);
387 }
388
389 static void nvme_cmd_sync_cb(void *opaque, int ret)
390 {
391 int *pret = opaque;
392 *pret = ret;
393 }
394
395 static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q,
396 NvmeCmd *cmd)
397 {
398 NVMeRequest *req;
399 BDRVNVMeState *s = bs->opaque;
400 int ret = -EINPROGRESS;
401 req = nvme_get_free_req(q);
402 if (!req) {
403 return -EBUSY;
404 }
405 nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret);
406
407 BDRV_POLL_WHILE(bs, ret == -EINPROGRESS);
408 return ret;
409 }
410
411 static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
412 {
413 BDRVNVMeState *s = bs->opaque;
414 NvmeIdCtrl *idctrl;
415 NvmeIdNs *idns;
416 uint8_t *resp;
417 int r;
418 uint64_t iova;
419 NvmeCmd cmd = {
420 .opcode = NVME_ADM_CMD_IDENTIFY,
421 .cdw10 = cpu_to_le32(0x1),
422 };
423
424 resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl));
425 if (!resp) {
426 error_setg(errp, "Cannot allocate buffer for identify response");
427 goto out;
428 }
429 idctrl = (NvmeIdCtrl *)resp;
430 idns = (NvmeIdNs *)resp;
431 r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova);
432 if (r) {
433 error_setg(errp, "Cannot map buffer for DMA");
434 goto out;
435 }
436 cmd.prp1 = cpu_to_le64(iova);
437
438 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
439 error_setg(errp, "Failed to identify controller");
440 goto out;
441 }
442
443 if (le32_to_cpu(idctrl->nn) < namespace) {
444 error_setg(errp, "Invalid namespace");
445 goto out;
446 }
447 s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1;
448 s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size;
449 /* For now the page list buffer per command is one page, to hold at most
450 * s->page_size / sizeof(uint64_t) entries. */
451 s->max_transfer = MIN_NON_ZERO(s->max_transfer,
452 s->page_size / sizeof(uint64_t) * s->page_size);
453
454 memset(resp, 0, 4096);
455
456 cmd.cdw10 = 0;
457 cmd.nsid = cpu_to_le32(namespace);
458 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
459 error_setg(errp, "Failed to identify namespace");
460 goto out;
461 }
462
463 s->nsze = le64_to_cpu(idns->nsze);
464
465 out:
466 qemu_vfio_dma_unmap(s->vfio, resp);
467 qemu_vfree(resp);
468 }
469
470 static bool nvme_poll_queues(BDRVNVMeState *s)
471 {
472 bool progress = false;
473 int i;
474
475 for (i = 0; i < s->nr_queues; i++) {
476 NVMeQueuePair *q = s->queues[i];
477 qemu_mutex_lock(&q->lock);
478 while (nvme_process_completion(s, q)) {
479 /* Keep polling */
480 progress = true;
481 }
482 qemu_mutex_unlock(&q->lock);
483 }
484 return progress;
485 }
486
487 static void nvme_handle_event(EventNotifier *n)
488 {
489 BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier);
490
491 trace_nvme_handle_event(s);
492 aio_context_acquire(s->aio_context);
493 event_notifier_test_and_clear(n);
494 nvme_poll_queues(s);
495 aio_context_release(s->aio_context);
496 }
497
498 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
499 {
500 BDRVNVMeState *s = bs->opaque;
501 int n = s->nr_queues;
502 NVMeQueuePair *q;
503 NvmeCmd cmd;
504 int queue_size = NVME_QUEUE_SIZE;
505
506 q = nvme_create_queue_pair(bs, n, queue_size, errp);
507 if (!q) {
508 return false;
509 }
510 cmd = (NvmeCmd) {
511 .opcode = NVME_ADM_CMD_CREATE_CQ,
512 .prp1 = cpu_to_le64(q->cq.iova),
513 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
514 .cdw11 = cpu_to_le32(0x3),
515 };
516 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
517 error_setg(errp, "Failed to create io queue [%d]", n);
518 nvme_free_queue_pair(bs, q);
519 return false;
520 }
521 cmd = (NvmeCmd) {
522 .opcode = NVME_ADM_CMD_CREATE_SQ,
523 .prp1 = cpu_to_le64(q->sq.iova),
524 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
525 .cdw11 = cpu_to_le32(0x1 | (n << 16)),
526 };
527 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
528 error_setg(errp, "Failed to create io queue [%d]", n);
529 nvme_free_queue_pair(bs, q);
530 return false;
531 }
532 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
533 s->queues[n] = q;
534 s->nr_queues++;
535 return true;
536 }
537
538 static bool nvme_poll_cb(void *opaque)
539 {
540 EventNotifier *e = opaque;
541 BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier);
542 bool progress = false;
543
544 trace_nvme_poll_cb(s);
545 progress = nvme_poll_queues(s);
546 return progress;
547 }
548
549 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
550 Error **errp)
551 {
552 BDRVNVMeState *s = bs->opaque;
553 int ret;
554 uint64_t cap;
555 uint64_t timeout_ms;
556 uint64_t deadline, now;
557 Error *local_err = NULL;
558
559 qemu_co_mutex_init(&s->dma_map_lock);
560 qemu_co_queue_init(&s->dma_flush_queue);
561 s->nsid = namespace;
562 s->aio_context = bdrv_get_aio_context(bs);
563 ret = event_notifier_init(&s->irq_notifier, 0);
564 if (ret) {
565 error_setg(errp, "Failed to init event notifier");
566 return ret;
567 }
568
569 s->vfio = qemu_vfio_open_pci(device, errp);
570 if (!s->vfio) {
571 ret = -EINVAL;
572 goto out;
573 }
574
575 s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp);
576 if (!s->regs) {
577 ret = -EINVAL;
578 goto out;
579 }
580
581 /* Perform initialize sequence as described in NVMe spec "7.6.1
582 * Initialization". */
583
584 cap = le64_to_cpu(s->regs->cap);
585 if (!(cap & (1ULL << 37))) {
586 error_setg(errp, "Device doesn't support NVMe command set");
587 ret = -EINVAL;
588 goto out;
589 }
590
591 s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF)));
592 s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t);
593 bs->bl.opt_mem_alignment = s->page_size;
594 timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000);
595
596 /* Reset device to get a clean state. */
597 s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE);
598 /* Wait for CSTS.RDY = 0. */
599 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL;
600 while (le32_to_cpu(s->regs->csts) & 0x1) {
601 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
602 error_setg(errp, "Timeout while waiting for device to reset (%"
603 PRId64 " ms)",
604 timeout_ms);
605 ret = -ETIMEDOUT;
606 goto out;
607 }
608 }
609
610 /* Set up admin queue. */
611 s->queues = g_new(NVMeQueuePair *, 1);
612 s->nr_queues = 1;
613 s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp);
614 if (!s->queues[0]) {
615 ret = -EINVAL;
616 goto out;
617 }
618 QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000);
619 s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE);
620 s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova);
621 s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova);
622
623 /* After setting up all control registers we can enable device now. */
624 s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) |
625 (ctz32(NVME_SQ_ENTRY_BYTES) << 16) |
626 0x1);
627 /* Wait for CSTS.RDY = 1. */
628 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
629 deadline = now + timeout_ms * 1000000;
630 while (!(le32_to_cpu(s->regs->csts) & 0x1)) {
631 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
632 error_setg(errp, "Timeout while waiting for device to start (%"
633 PRId64 " ms)",
634 timeout_ms);
635 ret = -ETIMEDOUT;
636 goto out;
637 }
638 }
639
640 ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier,
641 VFIO_PCI_MSIX_IRQ_INDEX, errp);
642 if (ret) {
643 goto out;
644 }
645 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
646 false, nvme_handle_event, nvme_poll_cb);
647
648 nvme_identify(bs, namespace, &local_err);
649 if (local_err) {
650 error_propagate(errp, local_err);
651 ret = -EIO;
652 goto out;
653 }
654
655 /* Set up command queues. */
656 if (!nvme_add_io_queue(bs, errp)) {
657 ret = -EIO;
658 }
659 out:
660 /* Cleaning up is done in nvme_file_open() upon error. */
661 return ret;
662 }
663
664 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
665 *
666 * nvme://0000:44:00.0/1
667 *
668 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
669 * is the PCI address, and the last part is the namespace number starting from
670 * 1 according to the NVMe spec. */
671 static void nvme_parse_filename(const char *filename, QDict *options,
672 Error **errp)
673 {
674 int pref = strlen("nvme://");
675
676 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
677 const char *tmp = filename + pref;
678 char *device;
679 const char *namespace;
680 unsigned long ns;
681 const char *slash = strchr(tmp, '/');
682 if (!slash) {
683 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
684 return;
685 }
686 device = g_strndup(tmp, slash - tmp);
687 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
688 g_free(device);
689 namespace = slash + 1;
690 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
691 error_setg(errp, "Invalid namespace '%s', positive number expected",
692 namespace);
693 return;
694 }
695 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
696 *namespace ? namespace : "1");
697 }
698 }
699
700 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
701 Error **errp)
702 {
703 int ret;
704 BDRVNVMeState *s = bs->opaque;
705 NvmeCmd cmd = {
706 .opcode = NVME_ADM_CMD_SET_FEATURES,
707 .nsid = cpu_to_le32(s->nsid),
708 .cdw10 = cpu_to_le32(0x06),
709 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
710 };
711
712 ret = nvme_cmd_sync(bs, s->queues[0], &cmd);
713 if (ret) {
714 error_setg(errp, "Failed to configure NVMe write cache");
715 }
716 return ret;
717 }
718
719 static void nvme_close(BlockDriverState *bs)
720 {
721 int i;
722 BDRVNVMeState *s = bs->opaque;
723
724 for (i = 0; i < s->nr_queues; ++i) {
725 nvme_free_queue_pair(bs, s->queues[i]);
726 }
727 g_free(s->queues);
728 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
729 false, NULL, NULL);
730 event_notifier_cleanup(&s->irq_notifier);
731 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE);
732 qemu_vfio_close(s->vfio);
733 }
734
735 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
736 Error **errp)
737 {
738 const char *device;
739 QemuOpts *opts;
740 int namespace;
741 int ret;
742 BDRVNVMeState *s = bs->opaque;
743
744 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
745 qemu_opts_absorb_qdict(opts, options, &error_abort);
746 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
747 if (!device) {
748 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
749 qemu_opts_del(opts);
750 return -EINVAL;
751 }
752
753 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
754 ret = nvme_init(bs, device, namespace, errp);
755 qemu_opts_del(opts);
756 if (ret) {
757 goto fail;
758 }
759 if (flags & BDRV_O_NOCACHE) {
760 if (!s->write_cache_supported) {
761 error_setg(errp,
762 "NVMe controller doesn't support write cache configuration");
763 ret = -EINVAL;
764 } else {
765 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
766 errp);
767 }
768 if (ret) {
769 goto fail;
770 }
771 }
772 bs->supported_write_flags = BDRV_REQ_FUA;
773 return 0;
774 fail:
775 nvme_close(bs);
776 return ret;
777 }
778
779 static int64_t nvme_getlength(BlockDriverState *bs)
780 {
781 BDRVNVMeState *s = bs->opaque;
782
783 return s->nsze << BDRV_SECTOR_BITS;
784 }
785
786 /* Called with s->dma_map_lock */
787 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
788 QEMUIOVector *qiov)
789 {
790 int r = 0;
791 BDRVNVMeState *s = bs->opaque;
792
793 s->dma_map_count -= qiov->size;
794 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
795 r = qemu_vfio_dma_reset_temporary(s->vfio);
796 if (!r) {
797 qemu_co_queue_restart_all(&s->dma_flush_queue);
798 }
799 }
800 return r;
801 }
802
803 /* Called with s->dma_map_lock */
804 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
805 NVMeRequest *req, QEMUIOVector *qiov)
806 {
807 BDRVNVMeState *s = bs->opaque;
808 uint64_t *pagelist = req->prp_list_page;
809 int i, j, r;
810 int entries = 0;
811
812 assert(qiov->size);
813 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
814 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
815 for (i = 0; i < qiov->niov; ++i) {
816 bool retry = true;
817 uint64_t iova;
818 try_map:
819 r = qemu_vfio_dma_map(s->vfio,
820 qiov->iov[i].iov_base,
821 qiov->iov[i].iov_len,
822 true, &iova);
823 if (r == -ENOMEM && retry) {
824 retry = false;
825 trace_nvme_dma_flush_queue_wait(s);
826 if (s->dma_map_count) {
827 trace_nvme_dma_map_flush(s);
828 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
829 } else {
830 r = qemu_vfio_dma_reset_temporary(s->vfio);
831 if (r) {
832 goto fail;
833 }
834 }
835 goto try_map;
836 }
837 if (r) {
838 goto fail;
839 }
840
841 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
842 pagelist[entries++] = iova + j * s->page_size;
843 }
844 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
845 qiov->iov[i].iov_len / s->page_size);
846 }
847
848 s->dma_map_count += qiov->size;
849
850 assert(entries <= s->page_size / sizeof(uint64_t));
851 switch (entries) {
852 case 0:
853 abort();
854 case 1:
855 cmd->prp1 = cpu_to_le64(pagelist[0]);
856 cmd->prp2 = 0;
857 break;
858 case 2:
859 cmd->prp1 = cpu_to_le64(pagelist[0]);
860 cmd->prp2 = cpu_to_le64(pagelist[1]);;
861 break;
862 default:
863 cmd->prp1 = cpu_to_le64(pagelist[0]);
864 cmd->prp2 = cpu_to_le64(req->prp_list_iova);
865 for (i = 0; i < entries - 1; ++i) {
866 pagelist[i] = cpu_to_le64(pagelist[i + 1]);
867 }
868 pagelist[entries - 1] = 0;
869 break;
870 }
871 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
872 for (i = 0; i < entries; ++i) {
873 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
874 }
875 return 0;
876 fail:
877 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
878 * increment s->dma_map_count. This is okay for fixed mapping memory areas
879 * because they are already mapped before calling this function; for
880 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
881 * calling qemu_vfio_dma_reset_temporary when necessary. */
882 return r;
883 }
884
885 typedef struct {
886 Coroutine *co;
887 int ret;
888 AioContext *ctx;
889 } NVMeCoData;
890
891 static void nvme_rw_cb_bh(void *opaque)
892 {
893 NVMeCoData *data = opaque;
894 qemu_coroutine_enter(data->co);
895 }
896
897 static void nvme_rw_cb(void *opaque, int ret)
898 {
899 NVMeCoData *data = opaque;
900 data->ret = ret;
901 if (!data->co) {
902 /* The rw coroutine hasn't yielded, don't try to enter. */
903 return;
904 }
905 aio_bh_schedule_oneshot(data->ctx, nvme_rw_cb_bh, data);
906 }
907
908 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
909 uint64_t offset, uint64_t bytes,
910 QEMUIOVector *qiov,
911 bool is_write,
912 int flags)
913 {
914 int r;
915 BDRVNVMeState *s = bs->opaque;
916 NVMeQueuePair *ioq = s->queues[1];
917 NVMeRequest *req;
918 uint32_t cdw12 = (((bytes >> BDRV_SECTOR_BITS) - 1) & 0xFFFF) |
919 (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
920 NvmeCmd cmd = {
921 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
922 .nsid = cpu_to_le32(s->nsid),
923 .cdw10 = cpu_to_le32((offset >> BDRV_SECTOR_BITS) & 0xFFFFFFFF),
924 .cdw11 = cpu_to_le32(((offset >> BDRV_SECTOR_BITS) >> 32) & 0xFFFFFFFF),
925 .cdw12 = cpu_to_le32(cdw12),
926 };
927 NVMeCoData data = {
928 .ctx = bdrv_get_aio_context(bs),
929 .ret = -EINPROGRESS,
930 };
931
932 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
933 assert(s->nr_queues > 1);
934 req = nvme_get_free_req(ioq);
935 assert(req);
936
937 qemu_co_mutex_lock(&s->dma_map_lock);
938 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
939 qemu_co_mutex_unlock(&s->dma_map_lock);
940 if (r) {
941 req->busy = false;
942 return r;
943 }
944 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
945
946 data.co = qemu_coroutine_self();
947 while (data.ret == -EINPROGRESS) {
948 qemu_coroutine_yield();
949 }
950
951 qemu_co_mutex_lock(&s->dma_map_lock);
952 r = nvme_cmd_unmap_qiov(bs, qiov);
953 qemu_co_mutex_unlock(&s->dma_map_lock);
954 if (r) {
955 return r;
956 }
957
958 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
959 return data.ret;
960 }
961
962 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
963 const QEMUIOVector *qiov)
964 {
965 int i;
966 BDRVNVMeState *s = bs->opaque;
967
968 for (i = 0; i < qiov->niov; ++i) {
969 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) ||
970 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) {
971 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
972 qiov->iov[i].iov_len, s->page_size);
973 return false;
974 }
975 }
976 return true;
977 }
978
979 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
980 QEMUIOVector *qiov, bool is_write, int flags)
981 {
982 BDRVNVMeState *s = bs->opaque;
983 int r;
984 uint8_t *buf = NULL;
985 QEMUIOVector local_qiov;
986
987 assert(QEMU_IS_ALIGNED(offset, s->page_size));
988 assert(QEMU_IS_ALIGNED(bytes, s->page_size));
989 assert(bytes <= s->max_transfer);
990 if (nvme_qiov_aligned(bs, qiov)) {
991 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
992 }
993 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
994 buf = qemu_try_blockalign(bs, bytes);
995
996 if (!buf) {
997 return -ENOMEM;
998 }
999 qemu_iovec_init(&local_qiov, 1);
1000 if (is_write) {
1001 qemu_iovec_to_buf(qiov, 0, buf, bytes);
1002 }
1003 qemu_iovec_add(&local_qiov, buf, bytes);
1004 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1005 qemu_iovec_destroy(&local_qiov);
1006 if (!r && !is_write) {
1007 qemu_iovec_from_buf(qiov, 0, buf, bytes);
1008 }
1009 qemu_vfree(buf);
1010 return r;
1011 }
1012
1013 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1014 uint64_t offset, uint64_t bytes,
1015 QEMUIOVector *qiov, int flags)
1016 {
1017 return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1018 }
1019
1020 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1021 uint64_t offset, uint64_t bytes,
1022 QEMUIOVector *qiov, int flags)
1023 {
1024 return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1025 }
1026
1027 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1028 {
1029 BDRVNVMeState *s = bs->opaque;
1030 NVMeQueuePair *ioq = s->queues[1];
1031 NVMeRequest *req;
1032 NvmeCmd cmd = {
1033 .opcode = NVME_CMD_FLUSH,
1034 .nsid = cpu_to_le32(s->nsid),
1035 };
1036 NVMeCoData data = {
1037 .ctx = bdrv_get_aio_context(bs),
1038 .ret = -EINPROGRESS,
1039 };
1040
1041 assert(s->nr_queues > 1);
1042 req = nvme_get_free_req(ioq);
1043 assert(req);
1044 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
1045
1046 data.co = qemu_coroutine_self();
1047 if (data.ret == -EINPROGRESS) {
1048 qemu_coroutine_yield();
1049 }
1050
1051 return data.ret;
1052 }
1053
1054
1055 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1056 BlockReopenQueue *queue, Error **errp)
1057 {
1058 return 0;
1059 }
1060
1061 static void nvme_refresh_filename(BlockDriverState *bs, QDict *opts)
1062 {
1063 qdict_del(opts, "filename");
1064
1065 if (!qdict_size(opts)) {
1066 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "%s://",
1067 bs->drv->format_name);
1068 }
1069
1070 qdict_put_str(opts, "driver", bs->drv->format_name);
1071 bs->full_open_options = qobject_ref(opts);
1072 }
1073
1074 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1075 {
1076 BDRVNVMeState *s = bs->opaque;
1077
1078 bs->bl.opt_mem_alignment = s->page_size;
1079 bs->bl.request_alignment = s->page_size;
1080 bs->bl.max_transfer = s->max_transfer;
1081 }
1082
1083 static void nvme_detach_aio_context(BlockDriverState *bs)
1084 {
1085 BDRVNVMeState *s = bs->opaque;
1086
1087 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
1088 false, NULL, NULL);
1089 }
1090
1091 static void nvme_attach_aio_context(BlockDriverState *bs,
1092 AioContext *new_context)
1093 {
1094 BDRVNVMeState *s = bs->opaque;
1095
1096 s->aio_context = new_context;
1097 aio_set_event_notifier(new_context, &s->irq_notifier,
1098 false, nvme_handle_event, nvme_poll_cb);
1099 }
1100
1101 static void nvme_aio_plug(BlockDriverState *bs)
1102 {
1103 BDRVNVMeState *s = bs->opaque;
1104 s->plugged++;
1105 }
1106
1107 static void nvme_aio_unplug(BlockDriverState *bs)
1108 {
1109 int i;
1110 BDRVNVMeState *s = bs->opaque;
1111 assert(s->plugged);
1112 if (!--s->plugged) {
1113 for (i = 1; i < s->nr_queues; i++) {
1114 NVMeQueuePair *q = s->queues[i];
1115 qemu_mutex_lock(&q->lock);
1116 nvme_kick(s, q);
1117 nvme_process_completion(s, q);
1118 qemu_mutex_unlock(&q->lock);
1119 }
1120 }
1121 }
1122
1123 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1124 {
1125 int ret;
1126 BDRVNVMeState *s = bs->opaque;
1127
1128 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL);
1129 if (ret) {
1130 /* FIXME: we may run out of IOVA addresses after repeated
1131 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1132 * doesn't reclaim addresses for fixed mappings. */
1133 error_report("nvme_register_buf failed: %s", strerror(-ret));
1134 }
1135 }
1136
1137 static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1138 {
1139 BDRVNVMeState *s = bs->opaque;
1140
1141 qemu_vfio_dma_unmap(s->vfio, host);
1142 }
1143
1144 static BlockDriver bdrv_nvme = {
1145 .format_name = "nvme",
1146 .protocol_name = "nvme",
1147 .instance_size = sizeof(BDRVNVMeState),
1148
1149 .bdrv_parse_filename = nvme_parse_filename,
1150 .bdrv_file_open = nvme_file_open,
1151 .bdrv_close = nvme_close,
1152 .bdrv_getlength = nvme_getlength,
1153
1154 .bdrv_co_preadv = nvme_co_preadv,
1155 .bdrv_co_pwritev = nvme_co_pwritev,
1156 .bdrv_co_flush_to_disk = nvme_co_flush,
1157 .bdrv_reopen_prepare = nvme_reopen_prepare,
1158
1159 .bdrv_refresh_filename = nvme_refresh_filename,
1160 .bdrv_refresh_limits = nvme_refresh_limits,
1161
1162 .bdrv_detach_aio_context = nvme_detach_aio_context,
1163 .bdrv_attach_aio_context = nvme_attach_aio_context,
1164
1165 .bdrv_io_plug = nvme_aio_plug,
1166 .bdrv_io_unplug = nvme_aio_unplug,
1167
1168 .bdrv_register_buf = nvme_register_buf,
1169 .bdrv_unregister_buf = nvme_unregister_buf,
1170 };
1171
1172 static void bdrv_nvme_init(void)
1173 {
1174 bdrv_register(&bdrv_nvme);
1175 }
1176
1177 block_init(bdrv_nvme_init);