]> git.proxmox.com Git - mirror_qemu.git/blob - block/qcow2-refcount.c
block: Add errp to b{lk,drv}_truncate()
[mirror_qemu.git] / block / qcow2-refcount.c
1 /*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "qemu/range.h"
31 #include "qemu/bswap.h"
32
33 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size);
34 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
35 int64_t offset, int64_t length, uint64_t addend,
36 bool decrease, enum qcow2_discard_type type);
37
38 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
39 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
40 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
41 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
42 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
43 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
44 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
45
46 static void set_refcount_ro0(void *refcount_array, uint64_t index,
47 uint64_t value);
48 static void set_refcount_ro1(void *refcount_array, uint64_t index,
49 uint64_t value);
50 static void set_refcount_ro2(void *refcount_array, uint64_t index,
51 uint64_t value);
52 static void set_refcount_ro3(void *refcount_array, uint64_t index,
53 uint64_t value);
54 static void set_refcount_ro4(void *refcount_array, uint64_t index,
55 uint64_t value);
56 static void set_refcount_ro5(void *refcount_array, uint64_t index,
57 uint64_t value);
58 static void set_refcount_ro6(void *refcount_array, uint64_t index,
59 uint64_t value);
60
61
62 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
63 &get_refcount_ro0,
64 &get_refcount_ro1,
65 &get_refcount_ro2,
66 &get_refcount_ro3,
67 &get_refcount_ro4,
68 &get_refcount_ro5,
69 &get_refcount_ro6
70 };
71
72 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
73 &set_refcount_ro0,
74 &set_refcount_ro1,
75 &set_refcount_ro2,
76 &set_refcount_ro3,
77 &set_refcount_ro4,
78 &set_refcount_ro5,
79 &set_refcount_ro6
80 };
81
82
83 /*********************************************************/
84 /* refcount handling */
85
86 static void update_max_refcount_table_index(BDRVQcow2State *s)
87 {
88 unsigned i = s->refcount_table_size - 1;
89 while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) {
90 i--;
91 }
92 /* Set s->max_refcount_table_index to the index of the last used entry */
93 s->max_refcount_table_index = i;
94 }
95
96 int qcow2_refcount_init(BlockDriverState *bs)
97 {
98 BDRVQcow2State *s = bs->opaque;
99 unsigned int refcount_table_size2, i;
100 int ret;
101
102 assert(s->refcount_order >= 0 && s->refcount_order <= 6);
103
104 s->get_refcount = get_refcount_funcs[s->refcount_order];
105 s->set_refcount = set_refcount_funcs[s->refcount_order];
106
107 assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
108 refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
109 s->refcount_table = g_try_malloc(refcount_table_size2);
110
111 if (s->refcount_table_size > 0) {
112 if (s->refcount_table == NULL) {
113 ret = -ENOMEM;
114 goto fail;
115 }
116 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
117 ret = bdrv_pread(bs->file, s->refcount_table_offset,
118 s->refcount_table, refcount_table_size2);
119 if (ret < 0) {
120 goto fail;
121 }
122 for(i = 0; i < s->refcount_table_size; i++)
123 be64_to_cpus(&s->refcount_table[i]);
124 update_max_refcount_table_index(s);
125 }
126 return 0;
127 fail:
128 return ret;
129 }
130
131 void qcow2_refcount_close(BlockDriverState *bs)
132 {
133 BDRVQcow2State *s = bs->opaque;
134 g_free(s->refcount_table);
135 }
136
137
138 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
139 {
140 return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
141 }
142
143 static void set_refcount_ro0(void *refcount_array, uint64_t index,
144 uint64_t value)
145 {
146 assert(!(value >> 1));
147 ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
148 ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
149 }
150
151 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
152 {
153 return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
154 & 0x3;
155 }
156
157 static void set_refcount_ro1(void *refcount_array, uint64_t index,
158 uint64_t value)
159 {
160 assert(!(value >> 2));
161 ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
162 ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
163 }
164
165 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
166 {
167 return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
168 & 0xf;
169 }
170
171 static void set_refcount_ro2(void *refcount_array, uint64_t index,
172 uint64_t value)
173 {
174 assert(!(value >> 4));
175 ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
176 ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
177 }
178
179 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
180 {
181 return ((const uint8_t *)refcount_array)[index];
182 }
183
184 static void set_refcount_ro3(void *refcount_array, uint64_t index,
185 uint64_t value)
186 {
187 assert(!(value >> 8));
188 ((uint8_t *)refcount_array)[index] = value;
189 }
190
191 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
192 {
193 return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
194 }
195
196 static void set_refcount_ro4(void *refcount_array, uint64_t index,
197 uint64_t value)
198 {
199 assert(!(value >> 16));
200 ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
201 }
202
203 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
204 {
205 return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
206 }
207
208 static void set_refcount_ro5(void *refcount_array, uint64_t index,
209 uint64_t value)
210 {
211 assert(!(value >> 32));
212 ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
213 }
214
215 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
216 {
217 return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
218 }
219
220 static void set_refcount_ro6(void *refcount_array, uint64_t index,
221 uint64_t value)
222 {
223 ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
224 }
225
226
227 static int load_refcount_block(BlockDriverState *bs,
228 int64_t refcount_block_offset,
229 void **refcount_block)
230 {
231 BDRVQcow2State *s = bs->opaque;
232
233 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
234 return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
235 refcount_block);
236 }
237
238 /*
239 * Retrieves the refcount of the cluster given by its index and stores it in
240 * *refcount. Returns 0 on success and -errno on failure.
241 */
242 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
243 uint64_t *refcount)
244 {
245 BDRVQcow2State *s = bs->opaque;
246 uint64_t refcount_table_index, block_index;
247 int64_t refcount_block_offset;
248 int ret;
249 void *refcount_block;
250
251 refcount_table_index = cluster_index >> s->refcount_block_bits;
252 if (refcount_table_index >= s->refcount_table_size) {
253 *refcount = 0;
254 return 0;
255 }
256 refcount_block_offset =
257 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
258 if (!refcount_block_offset) {
259 *refcount = 0;
260 return 0;
261 }
262
263 if (offset_into_cluster(s, refcount_block_offset)) {
264 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
265 " unaligned (reftable index: %#" PRIx64 ")",
266 refcount_block_offset, refcount_table_index);
267 return -EIO;
268 }
269
270 ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
271 &refcount_block);
272 if (ret < 0) {
273 return ret;
274 }
275
276 block_index = cluster_index & (s->refcount_block_size - 1);
277 *refcount = s->get_refcount(refcount_block, block_index);
278
279 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
280
281 return 0;
282 }
283
284 /*
285 * Rounds the refcount table size up to avoid growing the table for each single
286 * refcount block that is allocated.
287 */
288 static unsigned int next_refcount_table_size(BDRVQcow2State *s,
289 unsigned int min_size)
290 {
291 unsigned int min_clusters = (min_size >> (s->cluster_bits - 3)) + 1;
292 unsigned int refcount_table_clusters =
293 MAX(1, s->refcount_table_size >> (s->cluster_bits - 3));
294
295 while (min_clusters > refcount_table_clusters) {
296 refcount_table_clusters = (refcount_table_clusters * 3 + 1) / 2;
297 }
298
299 return refcount_table_clusters << (s->cluster_bits - 3);
300 }
301
302
303 /* Checks if two offsets are described by the same refcount block */
304 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
305 uint64_t offset_b)
306 {
307 uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
308 uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
309
310 return (block_a == block_b);
311 }
312
313 /*
314 * Loads a refcount block. If it doesn't exist yet, it is allocated first
315 * (including growing the refcount table if needed).
316 *
317 * Returns 0 on success or -errno in error case
318 */
319 static int alloc_refcount_block(BlockDriverState *bs,
320 int64_t cluster_index, void **refcount_block)
321 {
322 BDRVQcow2State *s = bs->opaque;
323 unsigned int refcount_table_index;
324 int ret;
325
326 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
327
328 /* Find the refcount block for the given cluster */
329 refcount_table_index = cluster_index >> s->refcount_block_bits;
330
331 if (refcount_table_index < s->refcount_table_size) {
332
333 uint64_t refcount_block_offset =
334 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
335
336 /* If it's already there, we're done */
337 if (refcount_block_offset) {
338 if (offset_into_cluster(s, refcount_block_offset)) {
339 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
340 PRIx64 " unaligned (reftable index: "
341 "%#x)", refcount_block_offset,
342 refcount_table_index);
343 return -EIO;
344 }
345
346 return load_refcount_block(bs, refcount_block_offset,
347 refcount_block);
348 }
349 }
350
351 /*
352 * If we came here, we need to allocate something. Something is at least
353 * a cluster for the new refcount block. It may also include a new refcount
354 * table if the old refcount table is too small.
355 *
356 * Note that allocating clusters here needs some special care:
357 *
358 * - We can't use the normal qcow2_alloc_clusters(), it would try to
359 * increase the refcount and very likely we would end up with an endless
360 * recursion. Instead we must place the refcount blocks in a way that
361 * they can describe them themselves.
362 *
363 * - We need to consider that at this point we are inside update_refcounts
364 * and potentially doing an initial refcount increase. This means that
365 * some clusters have already been allocated by the caller, but their
366 * refcount isn't accurate yet. If we allocate clusters for metadata, we
367 * need to return -EAGAIN to signal the caller that it needs to restart
368 * the search for free clusters.
369 *
370 * - alloc_clusters_noref and qcow2_free_clusters may load a different
371 * refcount block into the cache
372 */
373
374 *refcount_block = NULL;
375
376 /* We write to the refcount table, so we might depend on L2 tables */
377 ret = qcow2_cache_flush(bs, s->l2_table_cache);
378 if (ret < 0) {
379 return ret;
380 }
381
382 /* Allocate the refcount block itself and mark it as used */
383 int64_t new_block = alloc_clusters_noref(bs, s->cluster_size);
384 if (new_block < 0) {
385 return new_block;
386 }
387
388 #ifdef DEBUG_ALLOC2
389 fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
390 " at %" PRIx64 "\n",
391 refcount_table_index, cluster_index << s->cluster_bits, new_block);
392 #endif
393
394 if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
395 /* Zero the new refcount block before updating it */
396 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
397 refcount_block);
398 if (ret < 0) {
399 goto fail_block;
400 }
401
402 memset(*refcount_block, 0, s->cluster_size);
403
404 /* The block describes itself, need to update the cache */
405 int block_index = (new_block >> s->cluster_bits) &
406 (s->refcount_block_size - 1);
407 s->set_refcount(*refcount_block, block_index, 1);
408 } else {
409 /* Described somewhere else. This can recurse at most twice before we
410 * arrive at a block that describes itself. */
411 ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
412 QCOW2_DISCARD_NEVER);
413 if (ret < 0) {
414 goto fail_block;
415 }
416
417 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
418 if (ret < 0) {
419 goto fail_block;
420 }
421
422 /* Initialize the new refcount block only after updating its refcount,
423 * update_refcount uses the refcount cache itself */
424 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
425 refcount_block);
426 if (ret < 0) {
427 goto fail_block;
428 }
429
430 memset(*refcount_block, 0, s->cluster_size);
431 }
432
433 /* Now the new refcount block needs to be written to disk */
434 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
435 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, *refcount_block);
436 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
437 if (ret < 0) {
438 goto fail_block;
439 }
440
441 /* If the refcount table is big enough, just hook the block up there */
442 if (refcount_table_index < s->refcount_table_size) {
443 uint64_t data64 = cpu_to_be64(new_block);
444 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
445 ret = bdrv_pwrite_sync(bs->file,
446 s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
447 &data64, sizeof(data64));
448 if (ret < 0) {
449 goto fail_block;
450 }
451
452 s->refcount_table[refcount_table_index] = new_block;
453 /* If there's a hole in s->refcount_table then it can happen
454 * that refcount_table_index < s->max_refcount_table_index */
455 s->max_refcount_table_index =
456 MAX(s->max_refcount_table_index, refcount_table_index);
457
458 /* The new refcount block may be where the caller intended to put its
459 * data, so let it restart the search. */
460 return -EAGAIN;
461 }
462
463 qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
464
465 /*
466 * If we come here, we need to grow the refcount table. Again, a new
467 * refcount table needs some space and we can't simply allocate to avoid
468 * endless recursion.
469 *
470 * Therefore let's grab new refcount blocks at the end of the image, which
471 * will describe themselves and the new refcount table. This way we can
472 * reference them only in the new table and do the switch to the new
473 * refcount table at once without producing an inconsistent state in
474 * between.
475 */
476 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
477
478 /* Calculate the number of refcount blocks needed so far; this will be the
479 * basis for calculating the index of the first cluster used for the
480 * self-describing refcount structures which we are about to create.
481 *
482 * Because we reached this point, there cannot be any refcount entries for
483 * cluster_index or higher indices yet. However, because new_block has been
484 * allocated to describe that cluster (and it will assume this role later
485 * on), we cannot use that index; also, new_block may actually have a higher
486 * cluster index than cluster_index, so it needs to be taken into account
487 * here (and 1 needs to be added to its value because that cluster is used).
488 */
489 uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
490 (new_block >> s->cluster_bits) + 1),
491 s->refcount_block_size);
492
493 if (blocks_used > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
494 return -EFBIG;
495 }
496
497 /* And now we need at least one block more for the new metadata */
498 uint64_t table_size = next_refcount_table_size(s, blocks_used + 1);
499 uint64_t last_table_size;
500 uint64_t blocks_clusters;
501 do {
502 uint64_t table_clusters =
503 size_to_clusters(s, table_size * sizeof(uint64_t));
504 blocks_clusters = 1 +
505 DIV_ROUND_UP(table_clusters, s->refcount_block_size);
506 uint64_t meta_clusters = table_clusters + blocks_clusters;
507
508 last_table_size = table_size;
509 table_size = next_refcount_table_size(s, blocks_used +
510 DIV_ROUND_UP(meta_clusters, s->refcount_block_size));
511
512 } while (last_table_size != table_size);
513
514 #ifdef DEBUG_ALLOC2
515 fprintf(stderr, "qcow2: Grow refcount table %" PRId32 " => %" PRId64 "\n",
516 s->refcount_table_size, table_size);
517 #endif
518
519 /* Create the new refcount table and blocks */
520 uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
521 s->cluster_size;
522 uint64_t table_offset = meta_offset + blocks_clusters * s->cluster_size;
523 uint64_t *new_table = g_try_new0(uint64_t, table_size);
524 void *new_blocks = g_try_malloc0(blocks_clusters * s->cluster_size);
525
526 assert(table_size > 0 && blocks_clusters > 0);
527 if (new_table == NULL || new_blocks == NULL) {
528 ret = -ENOMEM;
529 goto fail_table;
530 }
531
532 /* Fill the new refcount table */
533 memcpy(new_table, s->refcount_table,
534 s->refcount_table_size * sizeof(uint64_t));
535 new_table[refcount_table_index] = new_block;
536
537 int i;
538 for (i = 0; i < blocks_clusters; i++) {
539 new_table[blocks_used + i] = meta_offset + (i * s->cluster_size);
540 }
541
542 /* Fill the refcount blocks */
543 uint64_t table_clusters = size_to_clusters(s, table_size * sizeof(uint64_t));
544 int block = 0;
545 for (i = 0; i < table_clusters + blocks_clusters; i++) {
546 s->set_refcount(new_blocks, block++, 1);
547 }
548
549 /* Write refcount blocks to disk */
550 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
551 ret = bdrv_pwrite_sync(bs->file, meta_offset, new_blocks,
552 blocks_clusters * s->cluster_size);
553 g_free(new_blocks);
554 new_blocks = NULL;
555 if (ret < 0) {
556 goto fail_table;
557 }
558
559 /* Write refcount table to disk */
560 for(i = 0; i < table_size; i++) {
561 cpu_to_be64s(&new_table[i]);
562 }
563
564 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
565 ret = bdrv_pwrite_sync(bs->file, table_offset, new_table,
566 table_size * sizeof(uint64_t));
567 if (ret < 0) {
568 goto fail_table;
569 }
570
571 for(i = 0; i < table_size; i++) {
572 be64_to_cpus(&new_table[i]);
573 }
574
575 /* Hook up the new refcount table in the qcow2 header */
576 struct QEMU_PACKED {
577 uint64_t d64;
578 uint32_t d32;
579 } data;
580 data.d64 = cpu_to_be64(table_offset);
581 data.d32 = cpu_to_be32(table_clusters);
582 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
583 ret = bdrv_pwrite_sync(bs->file,
584 offsetof(QCowHeader, refcount_table_offset),
585 &data, sizeof(data));
586 if (ret < 0) {
587 goto fail_table;
588 }
589
590 /* And switch it in memory */
591 uint64_t old_table_offset = s->refcount_table_offset;
592 uint64_t old_table_size = s->refcount_table_size;
593
594 g_free(s->refcount_table);
595 s->refcount_table = new_table;
596 s->refcount_table_size = table_size;
597 s->refcount_table_offset = table_offset;
598 update_max_refcount_table_index(s);
599
600 /* Free old table. */
601 qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
602 QCOW2_DISCARD_OTHER);
603
604 ret = load_refcount_block(bs, new_block, refcount_block);
605 if (ret < 0) {
606 return ret;
607 }
608
609 /* If we were trying to do the initial refcount update for some cluster
610 * allocation, we might have used the same clusters to store newly
611 * allocated metadata. Make the caller search some new space. */
612 return -EAGAIN;
613
614 fail_table:
615 g_free(new_blocks);
616 g_free(new_table);
617 fail_block:
618 if (*refcount_block != NULL) {
619 qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
620 }
621 return ret;
622 }
623
624 void qcow2_process_discards(BlockDriverState *bs, int ret)
625 {
626 BDRVQcow2State *s = bs->opaque;
627 Qcow2DiscardRegion *d, *next;
628
629 QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
630 QTAILQ_REMOVE(&s->discards, d, next);
631
632 /* Discard is optional, ignore the return value */
633 if (ret >= 0) {
634 bdrv_pdiscard(bs->file->bs, d->offset, d->bytes);
635 }
636
637 g_free(d);
638 }
639 }
640
641 static void update_refcount_discard(BlockDriverState *bs,
642 uint64_t offset, uint64_t length)
643 {
644 BDRVQcow2State *s = bs->opaque;
645 Qcow2DiscardRegion *d, *p, *next;
646
647 QTAILQ_FOREACH(d, &s->discards, next) {
648 uint64_t new_start = MIN(offset, d->offset);
649 uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
650
651 if (new_end - new_start <= length + d->bytes) {
652 /* There can't be any overlap, areas ending up here have no
653 * references any more and therefore shouldn't get freed another
654 * time. */
655 assert(d->bytes + length == new_end - new_start);
656 d->offset = new_start;
657 d->bytes = new_end - new_start;
658 goto found;
659 }
660 }
661
662 d = g_malloc(sizeof(*d));
663 *d = (Qcow2DiscardRegion) {
664 .bs = bs,
665 .offset = offset,
666 .bytes = length,
667 };
668 QTAILQ_INSERT_TAIL(&s->discards, d, next);
669
670 found:
671 /* Merge discard requests if they are adjacent now */
672 QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
673 if (p == d
674 || p->offset > d->offset + d->bytes
675 || d->offset > p->offset + p->bytes)
676 {
677 continue;
678 }
679
680 /* Still no overlap possible */
681 assert(p->offset == d->offset + d->bytes
682 || d->offset == p->offset + p->bytes);
683
684 QTAILQ_REMOVE(&s->discards, p, next);
685 d->offset = MIN(d->offset, p->offset);
686 d->bytes += p->bytes;
687 g_free(p);
688 }
689 }
690
691 /* XXX: cache several refcount block clusters ? */
692 /* @addend is the absolute value of the addend; if @decrease is set, @addend
693 * will be subtracted from the current refcount, otherwise it will be added */
694 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
695 int64_t offset,
696 int64_t length,
697 uint64_t addend,
698 bool decrease,
699 enum qcow2_discard_type type)
700 {
701 BDRVQcow2State *s = bs->opaque;
702 int64_t start, last, cluster_offset;
703 void *refcount_block = NULL;
704 int64_t old_table_index = -1;
705 int ret;
706
707 #ifdef DEBUG_ALLOC2
708 fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
709 " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
710 addend);
711 #endif
712 if (length < 0) {
713 return -EINVAL;
714 } else if (length == 0) {
715 return 0;
716 }
717
718 if (decrease) {
719 qcow2_cache_set_dependency(bs, s->refcount_block_cache,
720 s->l2_table_cache);
721 }
722
723 start = start_of_cluster(s, offset);
724 last = start_of_cluster(s, offset + length - 1);
725 for(cluster_offset = start; cluster_offset <= last;
726 cluster_offset += s->cluster_size)
727 {
728 int block_index;
729 uint64_t refcount;
730 int64_t cluster_index = cluster_offset >> s->cluster_bits;
731 int64_t table_index = cluster_index >> s->refcount_block_bits;
732
733 /* Load the refcount block and allocate it if needed */
734 if (table_index != old_table_index) {
735 if (refcount_block) {
736 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
737 }
738 ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
739 if (ret < 0) {
740 goto fail;
741 }
742 }
743 old_table_index = table_index;
744
745 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
746 refcount_block);
747
748 /* we can update the count and save it */
749 block_index = cluster_index & (s->refcount_block_size - 1);
750
751 refcount = s->get_refcount(refcount_block, block_index);
752 if (decrease ? (refcount - addend > refcount)
753 : (refcount + addend < refcount ||
754 refcount + addend > s->refcount_max))
755 {
756 ret = -EINVAL;
757 goto fail;
758 }
759 if (decrease) {
760 refcount -= addend;
761 } else {
762 refcount += addend;
763 }
764 if (refcount == 0 && cluster_index < s->free_cluster_index) {
765 s->free_cluster_index = cluster_index;
766 }
767 s->set_refcount(refcount_block, block_index, refcount);
768
769 if (refcount == 0 && s->discard_passthrough[type]) {
770 update_refcount_discard(bs, cluster_offset, s->cluster_size);
771 }
772 }
773
774 ret = 0;
775 fail:
776 if (!s->cache_discards) {
777 qcow2_process_discards(bs, ret);
778 }
779
780 /* Write last changed block to disk */
781 if (refcount_block) {
782 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
783 }
784
785 /*
786 * Try do undo any updates if an error is returned (This may succeed in
787 * some cases like ENOSPC for allocating a new refcount block)
788 */
789 if (ret < 0) {
790 int dummy;
791 dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
792 !decrease, QCOW2_DISCARD_NEVER);
793 (void)dummy;
794 }
795
796 return ret;
797 }
798
799 /*
800 * Increases or decreases the refcount of a given cluster.
801 *
802 * @addend is the absolute value of the addend; if @decrease is set, @addend
803 * will be subtracted from the current refcount, otherwise it will be added.
804 *
805 * On success 0 is returned; on failure -errno is returned.
806 */
807 int qcow2_update_cluster_refcount(BlockDriverState *bs,
808 int64_t cluster_index,
809 uint64_t addend, bool decrease,
810 enum qcow2_discard_type type)
811 {
812 BDRVQcow2State *s = bs->opaque;
813 int ret;
814
815 ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
816 decrease, type);
817 if (ret < 0) {
818 return ret;
819 }
820
821 return 0;
822 }
823
824
825
826 /*********************************************************/
827 /* cluster allocation functions */
828
829
830
831 /* return < 0 if error */
832 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size)
833 {
834 BDRVQcow2State *s = bs->opaque;
835 uint64_t i, nb_clusters, refcount;
836 int ret;
837
838 /* We can't allocate clusters if they may still be queued for discard. */
839 if (s->cache_discards) {
840 qcow2_process_discards(bs, 0);
841 }
842
843 nb_clusters = size_to_clusters(s, size);
844 retry:
845 for(i = 0; i < nb_clusters; i++) {
846 uint64_t next_cluster_index = s->free_cluster_index++;
847 ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
848
849 if (ret < 0) {
850 return ret;
851 } else if (refcount != 0) {
852 goto retry;
853 }
854 }
855
856 /* Make sure that all offsets in the "allocated" range are representable
857 * in an int64_t */
858 if (s->free_cluster_index > 0 &&
859 s->free_cluster_index - 1 > (INT64_MAX >> s->cluster_bits))
860 {
861 return -EFBIG;
862 }
863
864 #ifdef DEBUG_ALLOC2
865 fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
866 size,
867 (s->free_cluster_index - nb_clusters) << s->cluster_bits);
868 #endif
869 return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
870 }
871
872 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
873 {
874 int64_t offset;
875 int ret;
876
877 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
878 do {
879 offset = alloc_clusters_noref(bs, size);
880 if (offset < 0) {
881 return offset;
882 }
883
884 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
885 } while (ret == -EAGAIN);
886
887 if (ret < 0) {
888 return ret;
889 }
890
891 return offset;
892 }
893
894 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
895 int64_t nb_clusters)
896 {
897 BDRVQcow2State *s = bs->opaque;
898 uint64_t cluster_index, refcount;
899 uint64_t i;
900 int ret;
901
902 assert(nb_clusters >= 0);
903 if (nb_clusters == 0) {
904 return 0;
905 }
906
907 do {
908 /* Check how many clusters there are free */
909 cluster_index = offset >> s->cluster_bits;
910 for(i = 0; i < nb_clusters; i++) {
911 ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
912 if (ret < 0) {
913 return ret;
914 } else if (refcount != 0) {
915 break;
916 }
917 }
918
919 /* And then allocate them */
920 ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
921 QCOW2_DISCARD_NEVER);
922 } while (ret == -EAGAIN);
923
924 if (ret < 0) {
925 return ret;
926 }
927
928 return i;
929 }
930
931 /* only used to allocate compressed sectors. We try to allocate
932 contiguous sectors. size must be <= cluster_size */
933 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
934 {
935 BDRVQcow2State *s = bs->opaque;
936 int64_t offset;
937 size_t free_in_cluster;
938 int ret;
939
940 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
941 assert(size > 0 && size <= s->cluster_size);
942 assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
943
944 offset = s->free_byte_offset;
945
946 if (offset) {
947 uint64_t refcount;
948 ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
949 if (ret < 0) {
950 return ret;
951 }
952
953 if (refcount == s->refcount_max) {
954 offset = 0;
955 }
956 }
957
958 free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
959 do {
960 if (!offset || free_in_cluster < size) {
961 int64_t new_cluster = alloc_clusters_noref(bs, s->cluster_size);
962 if (new_cluster < 0) {
963 return new_cluster;
964 }
965
966 if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
967 offset = new_cluster;
968 free_in_cluster = s->cluster_size;
969 } else {
970 free_in_cluster += s->cluster_size;
971 }
972 }
973
974 assert(offset);
975 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
976 if (ret < 0) {
977 offset = 0;
978 }
979 } while (ret == -EAGAIN);
980 if (ret < 0) {
981 return ret;
982 }
983
984 /* The cluster refcount was incremented; refcount blocks must be flushed
985 * before the caller's L2 table updates. */
986 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
987
988 s->free_byte_offset = offset + size;
989 if (!offset_into_cluster(s, s->free_byte_offset)) {
990 s->free_byte_offset = 0;
991 }
992
993 return offset;
994 }
995
996 void qcow2_free_clusters(BlockDriverState *bs,
997 int64_t offset, int64_t size,
998 enum qcow2_discard_type type)
999 {
1000 int ret;
1001
1002 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
1003 ret = update_refcount(bs, offset, size, 1, true, type);
1004 if (ret < 0) {
1005 fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
1006 /* TODO Remember the clusters to free them later and avoid leaking */
1007 }
1008 }
1009
1010 /*
1011 * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1012 * normal cluster, compressed cluster, etc.)
1013 */
1014 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1015 int nb_clusters, enum qcow2_discard_type type)
1016 {
1017 BDRVQcow2State *s = bs->opaque;
1018
1019 switch (qcow2_get_cluster_type(l2_entry)) {
1020 case QCOW2_CLUSTER_COMPRESSED:
1021 {
1022 int nb_csectors;
1023 nb_csectors = ((l2_entry >> s->csize_shift) &
1024 s->csize_mask) + 1;
1025 qcow2_free_clusters(bs,
1026 (l2_entry & s->cluster_offset_mask) & ~511,
1027 nb_csectors * 512, type);
1028 }
1029 break;
1030 case QCOW2_CLUSTER_NORMAL:
1031 case QCOW2_CLUSTER_ZERO:
1032 if (l2_entry & L2E_OFFSET_MASK) {
1033 if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1034 qcow2_signal_corruption(bs, false, -1, -1,
1035 "Cannot free unaligned cluster %#llx",
1036 l2_entry & L2E_OFFSET_MASK);
1037 } else {
1038 qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1039 nb_clusters << s->cluster_bits, type);
1040 }
1041 }
1042 break;
1043 case QCOW2_CLUSTER_UNALLOCATED:
1044 break;
1045 default:
1046 abort();
1047 }
1048 }
1049
1050
1051
1052 /*********************************************************/
1053 /* snapshots and image creation */
1054
1055
1056
1057 /* update the refcounts of snapshots and the copied flag */
1058 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1059 int64_t l1_table_offset, int l1_size, int addend)
1060 {
1061 BDRVQcow2State *s = bs->opaque;
1062 uint64_t *l1_table, *l2_table, l2_offset, offset, l1_size2, refcount;
1063 bool l1_allocated = false;
1064 int64_t old_offset, old_l2_offset;
1065 int i, j, l1_modified = 0, nb_csectors;
1066 int ret;
1067
1068 assert(addend >= -1 && addend <= 1);
1069
1070 l2_table = NULL;
1071 l1_table = NULL;
1072 l1_size2 = l1_size * sizeof(uint64_t);
1073
1074 s->cache_discards = true;
1075
1076 /* WARNING: qcow2_snapshot_goto relies on this function not using the
1077 * l1_table_offset when it is the current s->l1_table_offset! Be careful
1078 * when changing this! */
1079 if (l1_table_offset != s->l1_table_offset) {
1080 l1_table = g_try_malloc0(align_offset(l1_size2, 512));
1081 if (l1_size2 && l1_table == NULL) {
1082 ret = -ENOMEM;
1083 goto fail;
1084 }
1085 l1_allocated = true;
1086
1087 ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1088 if (ret < 0) {
1089 goto fail;
1090 }
1091
1092 for(i = 0;i < l1_size; i++)
1093 be64_to_cpus(&l1_table[i]);
1094 } else {
1095 assert(l1_size == s->l1_size);
1096 l1_table = s->l1_table;
1097 l1_allocated = false;
1098 }
1099
1100 for(i = 0; i < l1_size; i++) {
1101 l2_offset = l1_table[i];
1102 if (l2_offset) {
1103 old_l2_offset = l2_offset;
1104 l2_offset &= L1E_OFFSET_MASK;
1105
1106 if (offset_into_cluster(s, l2_offset)) {
1107 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1108 PRIx64 " unaligned (L1 index: %#x)",
1109 l2_offset, i);
1110 ret = -EIO;
1111 goto fail;
1112 }
1113
1114 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1115 (void**) &l2_table);
1116 if (ret < 0) {
1117 goto fail;
1118 }
1119
1120 for(j = 0; j < s->l2_size; j++) {
1121 uint64_t cluster_index;
1122
1123 offset = be64_to_cpu(l2_table[j]);
1124 old_offset = offset;
1125 offset &= ~QCOW_OFLAG_COPIED;
1126
1127 switch (qcow2_get_cluster_type(offset)) {
1128 case QCOW2_CLUSTER_COMPRESSED:
1129 nb_csectors = ((offset >> s->csize_shift) &
1130 s->csize_mask) + 1;
1131 if (addend != 0) {
1132 ret = update_refcount(bs,
1133 (offset & s->cluster_offset_mask) & ~511,
1134 nb_csectors * 512, abs(addend), addend < 0,
1135 QCOW2_DISCARD_SNAPSHOT);
1136 if (ret < 0) {
1137 goto fail;
1138 }
1139 }
1140 /* compressed clusters are never modified */
1141 refcount = 2;
1142 break;
1143
1144 case QCOW2_CLUSTER_NORMAL:
1145 case QCOW2_CLUSTER_ZERO:
1146 if (offset_into_cluster(s, offset & L2E_OFFSET_MASK)) {
1147 qcow2_signal_corruption(bs, true, -1, -1, "Data "
1148 "cluster offset %#llx "
1149 "unaligned (L2 offset: %#"
1150 PRIx64 ", L2 index: %#x)",
1151 offset & L2E_OFFSET_MASK,
1152 l2_offset, j);
1153 ret = -EIO;
1154 goto fail;
1155 }
1156
1157 cluster_index = (offset & L2E_OFFSET_MASK) >> s->cluster_bits;
1158 if (!cluster_index) {
1159 /* unallocated */
1160 refcount = 0;
1161 break;
1162 }
1163 if (addend != 0) {
1164 ret = qcow2_update_cluster_refcount(bs,
1165 cluster_index, abs(addend), addend < 0,
1166 QCOW2_DISCARD_SNAPSHOT);
1167 if (ret < 0) {
1168 goto fail;
1169 }
1170 }
1171
1172 ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1173 if (ret < 0) {
1174 goto fail;
1175 }
1176 break;
1177
1178 case QCOW2_CLUSTER_UNALLOCATED:
1179 refcount = 0;
1180 break;
1181
1182 default:
1183 abort();
1184 }
1185
1186 if (refcount == 1) {
1187 offset |= QCOW_OFLAG_COPIED;
1188 }
1189 if (offset != old_offset) {
1190 if (addend > 0) {
1191 qcow2_cache_set_dependency(bs, s->l2_table_cache,
1192 s->refcount_block_cache);
1193 }
1194 l2_table[j] = cpu_to_be64(offset);
1195 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache,
1196 l2_table);
1197 }
1198 }
1199
1200 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1201
1202 if (addend != 0) {
1203 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1204 s->cluster_bits,
1205 abs(addend), addend < 0,
1206 QCOW2_DISCARD_SNAPSHOT);
1207 if (ret < 0) {
1208 goto fail;
1209 }
1210 }
1211 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1212 &refcount);
1213 if (ret < 0) {
1214 goto fail;
1215 } else if (refcount == 1) {
1216 l2_offset |= QCOW_OFLAG_COPIED;
1217 }
1218 if (l2_offset != old_l2_offset) {
1219 l1_table[i] = l2_offset;
1220 l1_modified = 1;
1221 }
1222 }
1223 }
1224
1225 ret = bdrv_flush(bs);
1226 fail:
1227 if (l2_table) {
1228 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1229 }
1230
1231 s->cache_discards = false;
1232 qcow2_process_discards(bs, ret);
1233
1234 /* Update L1 only if it isn't deleted anyway (addend = -1) */
1235 if (ret == 0 && addend >= 0 && l1_modified) {
1236 for (i = 0; i < l1_size; i++) {
1237 cpu_to_be64s(&l1_table[i]);
1238 }
1239
1240 ret = bdrv_pwrite_sync(bs->file, l1_table_offset,
1241 l1_table, l1_size2);
1242
1243 for (i = 0; i < l1_size; i++) {
1244 be64_to_cpus(&l1_table[i]);
1245 }
1246 }
1247 if (l1_allocated)
1248 g_free(l1_table);
1249 return ret;
1250 }
1251
1252
1253
1254
1255 /*********************************************************/
1256 /* refcount checking functions */
1257
1258
1259 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1260 {
1261 /* This assertion holds because there is no way we can address more than
1262 * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1263 * offsets have to be representable in bytes); due to every cluster
1264 * corresponding to one refcount entry, we are well below that limit */
1265 assert(entries < (UINT64_C(1) << (64 - 9)));
1266
1267 /* Thanks to the assertion this will not overflow, because
1268 * s->refcount_order < 7.
1269 * (note: x << s->refcount_order == x * s->refcount_bits) */
1270 return DIV_ROUND_UP(entries << s->refcount_order, 8);
1271 }
1272
1273 /**
1274 * Reallocates *array so that it can hold new_size entries. *size must contain
1275 * the current number of entries in *array. If the reallocation fails, *array
1276 * and *size will not be modified and -errno will be returned. If the
1277 * reallocation is successful, *array will be set to the new buffer, *size
1278 * will be set to new_size and 0 will be returned. The size of the reallocated
1279 * refcount array buffer will be aligned to a cluster boundary, and the newly
1280 * allocated area will be zeroed.
1281 */
1282 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1283 int64_t *size, int64_t new_size)
1284 {
1285 int64_t old_byte_size, new_byte_size;
1286 void *new_ptr;
1287
1288 /* Round to clusters so the array can be directly written to disk */
1289 old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1290 * s->cluster_size;
1291 new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1292 * s->cluster_size;
1293
1294 if (new_byte_size == old_byte_size) {
1295 *size = new_size;
1296 return 0;
1297 }
1298
1299 assert(new_byte_size > 0);
1300
1301 if (new_byte_size > SIZE_MAX) {
1302 return -ENOMEM;
1303 }
1304
1305 new_ptr = g_try_realloc(*array, new_byte_size);
1306 if (!new_ptr) {
1307 return -ENOMEM;
1308 }
1309
1310 if (new_byte_size > old_byte_size) {
1311 memset((char *)new_ptr + old_byte_size, 0,
1312 new_byte_size - old_byte_size);
1313 }
1314
1315 *array = new_ptr;
1316 *size = new_size;
1317
1318 return 0;
1319 }
1320
1321 /*
1322 * Increases the refcount for a range of clusters in a given refcount table.
1323 * This is used to construct a temporary refcount table out of L1 and L2 tables
1324 * which can be compared to the refcount table saved in the image.
1325 *
1326 * Modifies the number of errors in res.
1327 */
1328 static int inc_refcounts(BlockDriverState *bs,
1329 BdrvCheckResult *res,
1330 void **refcount_table,
1331 int64_t *refcount_table_size,
1332 int64_t offset, int64_t size)
1333 {
1334 BDRVQcow2State *s = bs->opaque;
1335 uint64_t start, last, cluster_offset, k, refcount;
1336 int ret;
1337
1338 if (size <= 0) {
1339 return 0;
1340 }
1341
1342 start = start_of_cluster(s, offset);
1343 last = start_of_cluster(s, offset + size - 1);
1344 for(cluster_offset = start; cluster_offset <= last;
1345 cluster_offset += s->cluster_size) {
1346 k = cluster_offset >> s->cluster_bits;
1347 if (k >= *refcount_table_size) {
1348 ret = realloc_refcount_array(s, refcount_table,
1349 refcount_table_size, k + 1);
1350 if (ret < 0) {
1351 res->check_errors++;
1352 return ret;
1353 }
1354 }
1355
1356 refcount = s->get_refcount(*refcount_table, k);
1357 if (refcount == s->refcount_max) {
1358 fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1359 "\n", cluster_offset);
1360 fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1361 "width or qemu-img convert to create a clean copy if the "
1362 "image cannot be opened for writing\n");
1363 res->corruptions++;
1364 continue;
1365 }
1366 s->set_refcount(*refcount_table, k, refcount + 1);
1367 }
1368
1369 return 0;
1370 }
1371
1372 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1373 enum {
1374 CHECK_FRAG_INFO = 0x2, /* update BlockFragInfo counters */
1375 };
1376
1377 /*
1378 * Increases the refcount in the given refcount table for the all clusters
1379 * referenced in the L2 table. While doing so, performs some checks on L2
1380 * entries.
1381 *
1382 * Returns the number of errors found by the checks or -errno if an internal
1383 * error occurred.
1384 */
1385 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1386 void **refcount_table,
1387 int64_t *refcount_table_size, int64_t l2_offset,
1388 int flags)
1389 {
1390 BDRVQcow2State *s = bs->opaque;
1391 uint64_t *l2_table, l2_entry;
1392 uint64_t next_contiguous_offset = 0;
1393 int i, l2_size, nb_csectors, ret;
1394
1395 /* Read L2 table from disk */
1396 l2_size = s->l2_size * sizeof(uint64_t);
1397 l2_table = g_malloc(l2_size);
1398
1399 ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size);
1400 if (ret < 0) {
1401 fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1402 res->check_errors++;
1403 goto fail;
1404 }
1405
1406 /* Do the actual checks */
1407 for(i = 0; i < s->l2_size; i++) {
1408 l2_entry = be64_to_cpu(l2_table[i]);
1409
1410 switch (qcow2_get_cluster_type(l2_entry)) {
1411 case QCOW2_CLUSTER_COMPRESSED:
1412 /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1413 if (l2_entry & QCOW_OFLAG_COPIED) {
1414 fprintf(stderr, "ERROR: cluster %" PRId64 ": "
1415 "copied flag must never be set for compressed "
1416 "clusters\n", l2_entry >> s->cluster_bits);
1417 l2_entry &= ~QCOW_OFLAG_COPIED;
1418 res->corruptions++;
1419 }
1420
1421 /* Mark cluster as used */
1422 nb_csectors = ((l2_entry >> s->csize_shift) &
1423 s->csize_mask) + 1;
1424 l2_entry &= s->cluster_offset_mask;
1425 ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1426 l2_entry & ~511, nb_csectors * 512);
1427 if (ret < 0) {
1428 goto fail;
1429 }
1430
1431 if (flags & CHECK_FRAG_INFO) {
1432 res->bfi.allocated_clusters++;
1433 res->bfi.compressed_clusters++;
1434
1435 /* Compressed clusters are fragmented by nature. Since they
1436 * take up sub-sector space but we only have sector granularity
1437 * I/O we need to re-read the same sectors even for adjacent
1438 * compressed clusters.
1439 */
1440 res->bfi.fragmented_clusters++;
1441 }
1442 break;
1443
1444 case QCOW2_CLUSTER_ZERO:
1445 if ((l2_entry & L2E_OFFSET_MASK) == 0) {
1446 break;
1447 }
1448 /* fall through */
1449
1450 case QCOW2_CLUSTER_NORMAL:
1451 {
1452 uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1453
1454 if (flags & CHECK_FRAG_INFO) {
1455 res->bfi.allocated_clusters++;
1456 if (next_contiguous_offset &&
1457 offset != next_contiguous_offset) {
1458 res->bfi.fragmented_clusters++;
1459 }
1460 next_contiguous_offset = offset + s->cluster_size;
1461 }
1462
1463 /* Mark cluster as used */
1464 ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1465 offset, s->cluster_size);
1466 if (ret < 0) {
1467 goto fail;
1468 }
1469
1470 /* Correct offsets are cluster aligned */
1471 if (offset_into_cluster(s, offset)) {
1472 fprintf(stderr, "ERROR offset=%" PRIx64 ": Cluster is not "
1473 "properly aligned; L2 entry corrupted.\n", offset);
1474 res->corruptions++;
1475 }
1476 break;
1477 }
1478
1479 case QCOW2_CLUSTER_UNALLOCATED:
1480 break;
1481
1482 default:
1483 abort();
1484 }
1485 }
1486
1487 g_free(l2_table);
1488 return 0;
1489
1490 fail:
1491 g_free(l2_table);
1492 return ret;
1493 }
1494
1495 /*
1496 * Increases the refcount for the L1 table, its L2 tables and all referenced
1497 * clusters in the given refcount table. While doing so, performs some checks
1498 * on L1 and L2 entries.
1499 *
1500 * Returns the number of errors found by the checks or -errno if an internal
1501 * error occurred.
1502 */
1503 static int check_refcounts_l1(BlockDriverState *bs,
1504 BdrvCheckResult *res,
1505 void **refcount_table,
1506 int64_t *refcount_table_size,
1507 int64_t l1_table_offset, int l1_size,
1508 int flags)
1509 {
1510 BDRVQcow2State *s = bs->opaque;
1511 uint64_t *l1_table = NULL, l2_offset, l1_size2;
1512 int i, ret;
1513
1514 l1_size2 = l1_size * sizeof(uint64_t);
1515
1516 /* Mark L1 table as used */
1517 ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1518 l1_table_offset, l1_size2);
1519 if (ret < 0) {
1520 goto fail;
1521 }
1522
1523 /* Read L1 table entries from disk */
1524 if (l1_size2 > 0) {
1525 l1_table = g_try_malloc(l1_size2);
1526 if (l1_table == NULL) {
1527 ret = -ENOMEM;
1528 res->check_errors++;
1529 goto fail;
1530 }
1531 ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1532 if (ret < 0) {
1533 fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1534 res->check_errors++;
1535 goto fail;
1536 }
1537 for(i = 0;i < l1_size; i++)
1538 be64_to_cpus(&l1_table[i]);
1539 }
1540
1541 /* Do the actual checks */
1542 for(i = 0; i < l1_size; i++) {
1543 l2_offset = l1_table[i];
1544 if (l2_offset) {
1545 /* Mark L2 table as used */
1546 l2_offset &= L1E_OFFSET_MASK;
1547 ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1548 l2_offset, s->cluster_size);
1549 if (ret < 0) {
1550 goto fail;
1551 }
1552
1553 /* L2 tables are cluster aligned */
1554 if (offset_into_cluster(s, l2_offset)) {
1555 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1556 "cluster aligned; L1 entry corrupted\n", l2_offset);
1557 res->corruptions++;
1558 }
1559
1560 /* Process and check L2 entries */
1561 ret = check_refcounts_l2(bs, res, refcount_table,
1562 refcount_table_size, l2_offset, flags);
1563 if (ret < 0) {
1564 goto fail;
1565 }
1566 }
1567 }
1568 g_free(l1_table);
1569 return 0;
1570
1571 fail:
1572 g_free(l1_table);
1573 return ret;
1574 }
1575
1576 /*
1577 * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1578 *
1579 * This function does not print an error message nor does it increment
1580 * check_errors if qcow2_get_refcount fails (this is because such an error will
1581 * have been already detected and sufficiently signaled by the calling function
1582 * (qcow2_check_refcounts) by the time this function is called).
1583 */
1584 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1585 BdrvCheckMode fix)
1586 {
1587 BDRVQcow2State *s = bs->opaque;
1588 uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1589 int ret;
1590 uint64_t refcount;
1591 int i, j;
1592
1593 for (i = 0; i < s->l1_size; i++) {
1594 uint64_t l1_entry = s->l1_table[i];
1595 uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1596 bool l2_dirty = false;
1597
1598 if (!l2_offset) {
1599 continue;
1600 }
1601
1602 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1603 &refcount);
1604 if (ret < 0) {
1605 /* don't print message nor increment check_errors */
1606 continue;
1607 }
1608 if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1609 fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1610 "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1611 fix & BDRV_FIX_ERRORS ? "Repairing" :
1612 "ERROR",
1613 i, l1_entry, refcount);
1614 if (fix & BDRV_FIX_ERRORS) {
1615 s->l1_table[i] = refcount == 1
1616 ? l1_entry | QCOW_OFLAG_COPIED
1617 : l1_entry & ~QCOW_OFLAG_COPIED;
1618 ret = qcow2_write_l1_entry(bs, i);
1619 if (ret < 0) {
1620 res->check_errors++;
1621 goto fail;
1622 }
1623 res->corruptions_fixed++;
1624 } else {
1625 res->corruptions++;
1626 }
1627 }
1628
1629 ret = bdrv_pread(bs->file, l2_offset, l2_table,
1630 s->l2_size * sizeof(uint64_t));
1631 if (ret < 0) {
1632 fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1633 strerror(-ret));
1634 res->check_errors++;
1635 goto fail;
1636 }
1637
1638 for (j = 0; j < s->l2_size; j++) {
1639 uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1640 uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
1641 int cluster_type = qcow2_get_cluster_type(l2_entry);
1642
1643 if ((cluster_type == QCOW2_CLUSTER_NORMAL) ||
1644 ((cluster_type == QCOW2_CLUSTER_ZERO) && (data_offset != 0))) {
1645 ret = qcow2_get_refcount(bs,
1646 data_offset >> s->cluster_bits,
1647 &refcount);
1648 if (ret < 0) {
1649 /* don't print message nor increment check_errors */
1650 continue;
1651 }
1652 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
1653 fprintf(stderr, "%s OFLAG_COPIED data cluster: "
1654 "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1655 fix & BDRV_FIX_ERRORS ? "Repairing" :
1656 "ERROR",
1657 l2_entry, refcount);
1658 if (fix & BDRV_FIX_ERRORS) {
1659 l2_table[j] = cpu_to_be64(refcount == 1
1660 ? l2_entry | QCOW_OFLAG_COPIED
1661 : l2_entry & ~QCOW_OFLAG_COPIED);
1662 l2_dirty = true;
1663 res->corruptions_fixed++;
1664 } else {
1665 res->corruptions++;
1666 }
1667 }
1668 }
1669 }
1670
1671 if (l2_dirty) {
1672 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1673 l2_offset, s->cluster_size);
1674 if (ret < 0) {
1675 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1676 "overlap check failed: %s\n", strerror(-ret));
1677 res->check_errors++;
1678 goto fail;
1679 }
1680
1681 ret = bdrv_pwrite(bs->file, l2_offset, l2_table,
1682 s->cluster_size);
1683 if (ret < 0) {
1684 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1685 strerror(-ret));
1686 res->check_errors++;
1687 goto fail;
1688 }
1689 }
1690 }
1691
1692 ret = 0;
1693
1694 fail:
1695 qemu_vfree(l2_table);
1696 return ret;
1697 }
1698
1699 /*
1700 * Checks consistency of refblocks and accounts for each refblock in
1701 * *refcount_table.
1702 */
1703 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
1704 BdrvCheckMode fix, bool *rebuild,
1705 void **refcount_table, int64_t *nb_clusters)
1706 {
1707 BDRVQcow2State *s = bs->opaque;
1708 int64_t i, size;
1709 int ret;
1710
1711 for(i = 0; i < s->refcount_table_size; i++) {
1712 uint64_t offset, cluster;
1713 offset = s->refcount_table[i];
1714 cluster = offset >> s->cluster_bits;
1715
1716 /* Refcount blocks are cluster aligned */
1717 if (offset_into_cluster(s, offset)) {
1718 fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
1719 "cluster aligned; refcount table entry corrupted\n", i);
1720 res->corruptions++;
1721 *rebuild = true;
1722 continue;
1723 }
1724
1725 if (cluster >= *nb_clusters) {
1726 fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
1727 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
1728
1729 if (fix & BDRV_FIX_ERRORS) {
1730 int64_t new_nb_clusters;
1731 Error *local_err = NULL;
1732
1733 if (offset > INT64_MAX - s->cluster_size) {
1734 ret = -EINVAL;
1735 goto resize_fail;
1736 }
1737
1738 ret = bdrv_truncate(bs->file, offset + s->cluster_size,
1739 &local_err);
1740 if (ret < 0) {
1741 error_report_err(local_err);
1742 goto resize_fail;
1743 }
1744 size = bdrv_getlength(bs->file->bs);
1745 if (size < 0) {
1746 ret = size;
1747 goto resize_fail;
1748 }
1749
1750 new_nb_clusters = size_to_clusters(s, size);
1751 assert(new_nb_clusters >= *nb_clusters);
1752
1753 ret = realloc_refcount_array(s, refcount_table,
1754 nb_clusters, new_nb_clusters);
1755 if (ret < 0) {
1756 res->check_errors++;
1757 return ret;
1758 }
1759
1760 if (cluster >= *nb_clusters) {
1761 ret = -EINVAL;
1762 goto resize_fail;
1763 }
1764
1765 res->corruptions_fixed++;
1766 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1767 offset, s->cluster_size);
1768 if (ret < 0) {
1769 return ret;
1770 }
1771 /* No need to check whether the refcount is now greater than 1:
1772 * This area was just allocated and zeroed, so it can only be
1773 * exactly 1 after inc_refcounts() */
1774 continue;
1775
1776 resize_fail:
1777 res->corruptions++;
1778 *rebuild = true;
1779 fprintf(stderr, "ERROR could not resize image: %s\n",
1780 strerror(-ret));
1781 } else {
1782 res->corruptions++;
1783 }
1784 continue;
1785 }
1786
1787 if (offset != 0) {
1788 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1789 offset, s->cluster_size);
1790 if (ret < 0) {
1791 return ret;
1792 }
1793 if (s->get_refcount(*refcount_table, cluster) != 1) {
1794 fprintf(stderr, "ERROR refcount block %" PRId64
1795 " refcount=%" PRIu64 "\n", i,
1796 s->get_refcount(*refcount_table, cluster));
1797 res->corruptions++;
1798 *rebuild = true;
1799 }
1800 }
1801 }
1802
1803 return 0;
1804 }
1805
1806 /*
1807 * Calculates an in-memory refcount table.
1808 */
1809 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1810 BdrvCheckMode fix, bool *rebuild,
1811 void **refcount_table, int64_t *nb_clusters)
1812 {
1813 BDRVQcow2State *s = bs->opaque;
1814 int64_t i;
1815 QCowSnapshot *sn;
1816 int ret;
1817
1818 if (!*refcount_table) {
1819 int64_t old_size = 0;
1820 ret = realloc_refcount_array(s, refcount_table,
1821 &old_size, *nb_clusters);
1822 if (ret < 0) {
1823 res->check_errors++;
1824 return ret;
1825 }
1826 }
1827
1828 /* header */
1829 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1830 0, s->cluster_size);
1831 if (ret < 0) {
1832 return ret;
1833 }
1834
1835 /* current L1 table */
1836 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1837 s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO);
1838 if (ret < 0) {
1839 return ret;
1840 }
1841
1842 /* snapshots */
1843 for (i = 0; i < s->nb_snapshots; i++) {
1844 sn = s->snapshots + i;
1845 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1846 sn->l1_table_offset, sn->l1_size, 0);
1847 if (ret < 0) {
1848 return ret;
1849 }
1850 }
1851 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1852 s->snapshots_offset, s->snapshots_size);
1853 if (ret < 0) {
1854 return ret;
1855 }
1856
1857 /* refcount data */
1858 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1859 s->refcount_table_offset,
1860 s->refcount_table_size * sizeof(uint64_t));
1861 if (ret < 0) {
1862 return ret;
1863 }
1864
1865 return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
1866 }
1867
1868 /*
1869 * Compares the actual reference count for each cluster in the image against the
1870 * refcount as reported by the refcount structures on-disk.
1871 */
1872 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1873 BdrvCheckMode fix, bool *rebuild,
1874 int64_t *highest_cluster,
1875 void *refcount_table, int64_t nb_clusters)
1876 {
1877 BDRVQcow2State *s = bs->opaque;
1878 int64_t i;
1879 uint64_t refcount1, refcount2;
1880 int ret;
1881
1882 for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
1883 ret = qcow2_get_refcount(bs, i, &refcount1);
1884 if (ret < 0) {
1885 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
1886 i, strerror(-ret));
1887 res->check_errors++;
1888 continue;
1889 }
1890
1891 refcount2 = s->get_refcount(refcount_table, i);
1892
1893 if (refcount1 > 0 || refcount2 > 0) {
1894 *highest_cluster = i;
1895 }
1896
1897 if (refcount1 != refcount2) {
1898 /* Check if we're allowed to fix the mismatch */
1899 int *num_fixed = NULL;
1900 if (refcount1 == 0) {
1901 *rebuild = true;
1902 } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
1903 num_fixed = &res->leaks_fixed;
1904 } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
1905 num_fixed = &res->corruptions_fixed;
1906 }
1907
1908 fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
1909 " reference=%" PRIu64 "\n",
1910 num_fixed != NULL ? "Repairing" :
1911 refcount1 < refcount2 ? "ERROR" :
1912 "Leaked",
1913 i, refcount1, refcount2);
1914
1915 if (num_fixed) {
1916 ret = update_refcount(bs, i << s->cluster_bits, 1,
1917 refcount_diff(refcount1, refcount2),
1918 refcount1 > refcount2,
1919 QCOW2_DISCARD_ALWAYS);
1920 if (ret >= 0) {
1921 (*num_fixed)++;
1922 continue;
1923 }
1924 }
1925
1926 /* And if we couldn't, print an error */
1927 if (refcount1 < refcount2) {
1928 res->corruptions++;
1929 } else {
1930 res->leaks++;
1931 }
1932 }
1933 }
1934 }
1935
1936 /*
1937 * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
1938 * the on-disk refcount structures.
1939 *
1940 * On input, *first_free_cluster tells where to start looking, and need not
1941 * actually be a free cluster; the returned offset will not be before that
1942 * cluster. On output, *first_free_cluster points to the first gap found, even
1943 * if that gap was too small to be used as the returned offset.
1944 *
1945 * Note that *first_free_cluster is a cluster index whereas the return value is
1946 * an offset.
1947 */
1948 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
1949 int cluster_count,
1950 void **refcount_table,
1951 int64_t *imrt_nb_clusters,
1952 int64_t *first_free_cluster)
1953 {
1954 BDRVQcow2State *s = bs->opaque;
1955 int64_t cluster = *first_free_cluster, i;
1956 bool first_gap = true;
1957 int contiguous_free_clusters;
1958 int ret;
1959
1960 /* Starting at *first_free_cluster, find a range of at least cluster_count
1961 * continuously free clusters */
1962 for (contiguous_free_clusters = 0;
1963 cluster < *imrt_nb_clusters &&
1964 contiguous_free_clusters < cluster_count;
1965 cluster++)
1966 {
1967 if (!s->get_refcount(*refcount_table, cluster)) {
1968 contiguous_free_clusters++;
1969 if (first_gap) {
1970 /* If this is the first free cluster found, update
1971 * *first_free_cluster accordingly */
1972 *first_free_cluster = cluster;
1973 first_gap = false;
1974 }
1975 } else if (contiguous_free_clusters) {
1976 contiguous_free_clusters = 0;
1977 }
1978 }
1979
1980 /* If contiguous_free_clusters is greater than zero, it contains the number
1981 * of continuously free clusters until the current cluster; the first free
1982 * cluster in the current "gap" is therefore
1983 * cluster - contiguous_free_clusters */
1984
1985 /* If no such range could be found, grow the in-memory refcount table
1986 * accordingly to append free clusters at the end of the image */
1987 if (contiguous_free_clusters < cluster_count) {
1988 /* contiguous_free_clusters clusters are already empty at the image end;
1989 * we need cluster_count clusters; therefore, we have to allocate
1990 * cluster_count - contiguous_free_clusters new clusters at the end of
1991 * the image (which is the current value of cluster; note that cluster
1992 * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
1993 * the image end) */
1994 ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
1995 cluster + cluster_count
1996 - contiguous_free_clusters);
1997 if (ret < 0) {
1998 return ret;
1999 }
2000 }
2001
2002 /* Go back to the first free cluster */
2003 cluster -= contiguous_free_clusters;
2004 for (i = 0; i < cluster_count; i++) {
2005 s->set_refcount(*refcount_table, cluster + i, 1);
2006 }
2007
2008 return cluster << s->cluster_bits;
2009 }
2010
2011 /*
2012 * Creates a new refcount structure based solely on the in-memory information
2013 * given through *refcount_table. All necessary allocations will be reflected
2014 * in that array.
2015 *
2016 * On success, the old refcount structure is leaked (it will be covered by the
2017 * new refcount structure).
2018 */
2019 static int rebuild_refcount_structure(BlockDriverState *bs,
2020 BdrvCheckResult *res,
2021 void **refcount_table,
2022 int64_t *nb_clusters)
2023 {
2024 BDRVQcow2State *s = bs->opaque;
2025 int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2026 int64_t refblock_offset, refblock_start, refblock_index;
2027 uint32_t reftable_size = 0;
2028 uint64_t *on_disk_reftable = NULL;
2029 void *on_disk_refblock;
2030 int ret = 0;
2031 struct {
2032 uint64_t reftable_offset;
2033 uint32_t reftable_clusters;
2034 } QEMU_PACKED reftable_offset_and_clusters;
2035
2036 qcow2_cache_empty(bs, s->refcount_block_cache);
2037
2038 write_refblocks:
2039 for (; cluster < *nb_clusters; cluster++) {
2040 if (!s->get_refcount(*refcount_table, cluster)) {
2041 continue;
2042 }
2043
2044 refblock_index = cluster >> s->refcount_block_bits;
2045 refblock_start = refblock_index << s->refcount_block_bits;
2046
2047 /* Don't allocate a cluster in a refblock already written to disk */
2048 if (first_free_cluster < refblock_start) {
2049 first_free_cluster = refblock_start;
2050 }
2051 refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2052 nb_clusters, &first_free_cluster);
2053 if (refblock_offset < 0) {
2054 fprintf(stderr, "ERROR allocating refblock: %s\n",
2055 strerror(-refblock_offset));
2056 res->check_errors++;
2057 ret = refblock_offset;
2058 goto fail;
2059 }
2060
2061 if (reftable_size <= refblock_index) {
2062 uint32_t old_reftable_size = reftable_size;
2063 uint64_t *new_on_disk_reftable;
2064
2065 reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2066 s->cluster_size) / sizeof(uint64_t);
2067 new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2068 reftable_size *
2069 sizeof(uint64_t));
2070 if (!new_on_disk_reftable) {
2071 res->check_errors++;
2072 ret = -ENOMEM;
2073 goto fail;
2074 }
2075 on_disk_reftable = new_on_disk_reftable;
2076
2077 memset(on_disk_reftable + old_reftable_size, 0,
2078 (reftable_size - old_reftable_size) * sizeof(uint64_t));
2079
2080 /* The offset we have for the reftable is now no longer valid;
2081 * this will leak that range, but we can easily fix that by running
2082 * a leak-fixing check after this rebuild operation */
2083 reftable_offset = -1;
2084 }
2085 on_disk_reftable[refblock_index] = refblock_offset;
2086
2087 /* If this is apparently the last refblock (for now), try to squeeze the
2088 * reftable in */
2089 if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2090 reftable_offset < 0)
2091 {
2092 uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2093 sizeof(uint64_t));
2094 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2095 refcount_table, nb_clusters,
2096 &first_free_cluster);
2097 if (reftable_offset < 0) {
2098 fprintf(stderr, "ERROR allocating reftable: %s\n",
2099 strerror(-reftable_offset));
2100 res->check_errors++;
2101 ret = reftable_offset;
2102 goto fail;
2103 }
2104 }
2105
2106 ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2107 s->cluster_size);
2108 if (ret < 0) {
2109 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2110 goto fail;
2111 }
2112
2113 /* The size of *refcount_table is always cluster-aligned, therefore the
2114 * write operation will not overflow */
2115 on_disk_refblock = (void *)((char *) *refcount_table +
2116 refblock_index * s->cluster_size);
2117
2118 ret = bdrv_write(bs->file, refblock_offset / BDRV_SECTOR_SIZE,
2119 on_disk_refblock, s->cluster_sectors);
2120 if (ret < 0) {
2121 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2122 goto fail;
2123 }
2124
2125 /* Go to the end of this refblock */
2126 cluster = refblock_start + s->refcount_block_size - 1;
2127 }
2128
2129 if (reftable_offset < 0) {
2130 uint64_t post_refblock_start, reftable_clusters;
2131
2132 post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2133 reftable_clusters = size_to_clusters(s,
2134 reftable_size * sizeof(uint64_t));
2135 /* Not pretty but simple */
2136 if (first_free_cluster < post_refblock_start) {
2137 first_free_cluster = post_refblock_start;
2138 }
2139 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2140 refcount_table, nb_clusters,
2141 &first_free_cluster);
2142 if (reftable_offset < 0) {
2143 fprintf(stderr, "ERROR allocating reftable: %s\n",
2144 strerror(-reftable_offset));
2145 res->check_errors++;
2146 ret = reftable_offset;
2147 goto fail;
2148 }
2149
2150 goto write_refblocks;
2151 }
2152
2153 assert(on_disk_reftable);
2154
2155 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2156 cpu_to_be64s(&on_disk_reftable[refblock_index]);
2157 }
2158
2159 ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2160 reftable_size * sizeof(uint64_t));
2161 if (ret < 0) {
2162 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2163 goto fail;
2164 }
2165
2166 assert(reftable_size < INT_MAX / sizeof(uint64_t));
2167 ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable,
2168 reftable_size * sizeof(uint64_t));
2169 if (ret < 0) {
2170 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2171 goto fail;
2172 }
2173
2174 /* Enter new reftable into the image header */
2175 reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset);
2176 reftable_offset_and_clusters.reftable_clusters =
2177 cpu_to_be32(size_to_clusters(s, reftable_size * sizeof(uint64_t)));
2178 ret = bdrv_pwrite_sync(bs->file,
2179 offsetof(QCowHeader, refcount_table_offset),
2180 &reftable_offset_and_clusters,
2181 sizeof(reftable_offset_and_clusters));
2182 if (ret < 0) {
2183 fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2184 goto fail;
2185 }
2186
2187 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2188 be64_to_cpus(&on_disk_reftable[refblock_index]);
2189 }
2190 s->refcount_table = on_disk_reftable;
2191 s->refcount_table_offset = reftable_offset;
2192 s->refcount_table_size = reftable_size;
2193 update_max_refcount_table_index(s);
2194
2195 return 0;
2196
2197 fail:
2198 g_free(on_disk_reftable);
2199 return ret;
2200 }
2201
2202 /*
2203 * Checks an image for refcount consistency.
2204 *
2205 * Returns 0 if no errors are found, the number of errors in case the image is
2206 * detected as corrupted, and -errno when an internal error occurred.
2207 */
2208 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2209 BdrvCheckMode fix)
2210 {
2211 BDRVQcow2State *s = bs->opaque;
2212 BdrvCheckResult pre_compare_res;
2213 int64_t size, highest_cluster, nb_clusters;
2214 void *refcount_table = NULL;
2215 bool rebuild = false;
2216 int ret;
2217
2218 size = bdrv_getlength(bs->file->bs);
2219 if (size < 0) {
2220 res->check_errors++;
2221 return size;
2222 }
2223
2224 nb_clusters = size_to_clusters(s, size);
2225 if (nb_clusters > INT_MAX) {
2226 res->check_errors++;
2227 return -EFBIG;
2228 }
2229
2230 res->bfi.total_clusters =
2231 size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2232
2233 ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2234 &nb_clusters);
2235 if (ret < 0) {
2236 goto fail;
2237 }
2238
2239 /* In case we don't need to rebuild the refcount structure (but want to fix
2240 * something), this function is immediately called again, in which case the
2241 * result should be ignored */
2242 pre_compare_res = *res;
2243 compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2244 nb_clusters);
2245
2246 if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2247 BdrvCheckResult old_res = *res;
2248 int fresh_leaks = 0;
2249
2250 fprintf(stderr, "Rebuilding refcount structure\n");
2251 ret = rebuild_refcount_structure(bs, res, &refcount_table,
2252 &nb_clusters);
2253 if (ret < 0) {
2254 goto fail;
2255 }
2256
2257 res->corruptions = 0;
2258 res->leaks = 0;
2259
2260 /* Because the old reftable has been exchanged for a new one the
2261 * references have to be recalculated */
2262 rebuild = false;
2263 memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2264 ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2265 &nb_clusters);
2266 if (ret < 0) {
2267 goto fail;
2268 }
2269
2270 if (fix & BDRV_FIX_LEAKS) {
2271 /* The old refcount structures are now leaked, fix it; the result
2272 * can be ignored, aside from leaks which were introduced by
2273 * rebuild_refcount_structure() that could not be fixed */
2274 BdrvCheckResult saved_res = *res;
2275 *res = (BdrvCheckResult){ 0 };
2276
2277 compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2278 &highest_cluster, refcount_table, nb_clusters);
2279 if (rebuild) {
2280 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2281 "broken\n");
2282 }
2283
2284 /* Any leaks accounted for here were introduced by
2285 * rebuild_refcount_structure() because that function has created a
2286 * new refcount structure from scratch */
2287 fresh_leaks = res->leaks;
2288 *res = saved_res;
2289 }
2290
2291 if (res->corruptions < old_res.corruptions) {
2292 res->corruptions_fixed += old_res.corruptions - res->corruptions;
2293 }
2294 if (res->leaks < old_res.leaks) {
2295 res->leaks_fixed += old_res.leaks - res->leaks;
2296 }
2297 res->leaks += fresh_leaks;
2298 } else if (fix) {
2299 if (rebuild) {
2300 fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2301 res->check_errors++;
2302 ret = -EIO;
2303 goto fail;
2304 }
2305
2306 if (res->leaks || res->corruptions) {
2307 *res = pre_compare_res;
2308 compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2309 refcount_table, nb_clusters);
2310 }
2311 }
2312
2313 /* check OFLAG_COPIED */
2314 ret = check_oflag_copied(bs, res, fix);
2315 if (ret < 0) {
2316 goto fail;
2317 }
2318
2319 res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2320 ret = 0;
2321
2322 fail:
2323 g_free(refcount_table);
2324
2325 return ret;
2326 }
2327
2328 #define overlaps_with(ofs, sz) \
2329 ranges_overlap(offset, size, ofs, sz)
2330
2331 /*
2332 * Checks if the given offset into the image file is actually free to use by
2333 * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2334 * i.e. a sanity check without relying on the refcount tables.
2335 *
2336 * The ign parameter specifies what checks not to perform (being a bitmask of
2337 * QCow2MetadataOverlap values), i.e., what sections to ignore.
2338 *
2339 * Returns:
2340 * - 0 if writing to this offset will not affect the mentioned metadata
2341 * - a positive QCow2MetadataOverlap value indicating one overlapping section
2342 * - a negative value (-errno) indicating an error while performing a check,
2343 * e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2344 */
2345 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2346 int64_t size)
2347 {
2348 BDRVQcow2State *s = bs->opaque;
2349 int chk = s->overlap_check & ~ign;
2350 int i, j;
2351
2352 if (!size) {
2353 return 0;
2354 }
2355
2356 if (chk & QCOW2_OL_MAIN_HEADER) {
2357 if (offset < s->cluster_size) {
2358 return QCOW2_OL_MAIN_HEADER;
2359 }
2360 }
2361
2362 /* align range to test to cluster boundaries */
2363 size = align_offset(offset_into_cluster(s, offset) + size, s->cluster_size);
2364 offset = start_of_cluster(s, offset);
2365
2366 if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2367 if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2368 return QCOW2_OL_ACTIVE_L1;
2369 }
2370 }
2371
2372 if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2373 if (overlaps_with(s->refcount_table_offset,
2374 s->refcount_table_size * sizeof(uint64_t))) {
2375 return QCOW2_OL_REFCOUNT_TABLE;
2376 }
2377 }
2378
2379 if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2380 if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2381 return QCOW2_OL_SNAPSHOT_TABLE;
2382 }
2383 }
2384
2385 if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2386 for (i = 0; i < s->nb_snapshots; i++) {
2387 if (s->snapshots[i].l1_size &&
2388 overlaps_with(s->snapshots[i].l1_table_offset,
2389 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2390 return QCOW2_OL_INACTIVE_L1;
2391 }
2392 }
2393 }
2394
2395 if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2396 for (i = 0; i < s->l1_size; i++) {
2397 if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2398 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2399 s->cluster_size)) {
2400 return QCOW2_OL_ACTIVE_L2;
2401 }
2402 }
2403 }
2404
2405 if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2406 unsigned last_entry = s->max_refcount_table_index;
2407 assert(last_entry < s->refcount_table_size);
2408 assert(last_entry + 1 == s->refcount_table_size ||
2409 (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0);
2410 for (i = 0; i <= last_entry; i++) {
2411 if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2412 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2413 s->cluster_size)) {
2414 return QCOW2_OL_REFCOUNT_BLOCK;
2415 }
2416 }
2417 }
2418
2419 if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2420 for (i = 0; i < s->nb_snapshots; i++) {
2421 uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2422 uint32_t l1_sz = s->snapshots[i].l1_size;
2423 uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
2424 uint64_t *l1 = g_try_malloc(l1_sz2);
2425 int ret;
2426
2427 if (l1_sz2 && l1 == NULL) {
2428 return -ENOMEM;
2429 }
2430
2431 ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2);
2432 if (ret < 0) {
2433 g_free(l1);
2434 return ret;
2435 }
2436
2437 for (j = 0; j < l1_sz; j++) {
2438 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2439 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
2440 g_free(l1);
2441 return QCOW2_OL_INACTIVE_L2;
2442 }
2443 }
2444
2445 g_free(l1);
2446 }
2447 }
2448
2449 return 0;
2450 }
2451
2452 static const char *metadata_ol_names[] = {
2453 [QCOW2_OL_MAIN_HEADER_BITNR] = "qcow2_header",
2454 [QCOW2_OL_ACTIVE_L1_BITNR] = "active L1 table",
2455 [QCOW2_OL_ACTIVE_L2_BITNR] = "active L2 table",
2456 [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table",
2457 [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block",
2458 [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table",
2459 [QCOW2_OL_INACTIVE_L1_BITNR] = "inactive L1 table",
2460 [QCOW2_OL_INACTIVE_L2_BITNR] = "inactive L2 table",
2461 };
2462
2463 /*
2464 * First performs a check for metadata overlaps (through
2465 * qcow2_check_metadata_overlap); if that fails with a negative value (error
2466 * while performing a check), that value is returned. If an impending overlap
2467 * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2468 * and -EIO returned.
2469 *
2470 * Returns 0 if there were neither overlaps nor errors while checking for
2471 * overlaps; or a negative value (-errno) on error.
2472 */
2473 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
2474 int64_t size)
2475 {
2476 int ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
2477
2478 if (ret < 0) {
2479 return ret;
2480 } else if (ret > 0) {
2481 int metadata_ol_bitnr = ctz32(ret);
2482 assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2483
2484 qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2485 "write on metadata (overlaps with %s)",
2486 metadata_ol_names[metadata_ol_bitnr]);
2487 return -EIO;
2488 }
2489
2490 return 0;
2491 }
2492
2493 /* A pointer to a function of this type is given to walk_over_reftable(). That
2494 * function will create refblocks and pass them to a RefblockFinishOp once they
2495 * are completed (@refblock). @refblock_empty is set if the refblock is
2496 * completely empty.
2497 *
2498 * Along with the refblock, a corresponding reftable entry is passed, in the
2499 * reftable @reftable (which may be reallocated) at @reftable_index.
2500 *
2501 * @allocated should be set to true if a new cluster has been allocated.
2502 */
2503 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
2504 uint64_t reftable_index, uint64_t *reftable_size,
2505 void *refblock, bool refblock_empty,
2506 bool *allocated, Error **errp);
2507
2508 /**
2509 * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2510 * it is not empty) and inserts its offset into the new reftable. The size of
2511 * this new reftable is increased as required.
2512 */
2513 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
2514 uint64_t reftable_index, uint64_t *reftable_size,
2515 void *refblock, bool refblock_empty, bool *allocated,
2516 Error **errp)
2517 {
2518 BDRVQcow2State *s = bs->opaque;
2519 int64_t offset;
2520
2521 if (!refblock_empty && reftable_index >= *reftable_size) {
2522 uint64_t *new_reftable;
2523 uint64_t new_reftable_size;
2524
2525 new_reftable_size = ROUND_UP(reftable_index + 1,
2526 s->cluster_size / sizeof(uint64_t));
2527 if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
2528 error_setg(errp,
2529 "This operation would make the refcount table grow "
2530 "beyond the maximum size supported by QEMU, aborting");
2531 return -ENOTSUP;
2532 }
2533
2534 new_reftable = g_try_realloc(*reftable, new_reftable_size *
2535 sizeof(uint64_t));
2536 if (!new_reftable) {
2537 error_setg(errp, "Failed to increase reftable buffer size");
2538 return -ENOMEM;
2539 }
2540
2541 memset(new_reftable + *reftable_size, 0,
2542 (new_reftable_size - *reftable_size) * sizeof(uint64_t));
2543
2544 *reftable = new_reftable;
2545 *reftable_size = new_reftable_size;
2546 }
2547
2548 if (!refblock_empty && !(*reftable)[reftable_index]) {
2549 offset = qcow2_alloc_clusters(bs, s->cluster_size);
2550 if (offset < 0) {
2551 error_setg_errno(errp, -offset, "Failed to allocate refblock");
2552 return offset;
2553 }
2554 (*reftable)[reftable_index] = offset;
2555 *allocated = true;
2556 }
2557
2558 return 0;
2559 }
2560
2561 /**
2562 * This "operation" for walk_over_reftable() writes the refblock to disk at the
2563 * offset specified by the new reftable's entry. It does not modify the new
2564 * reftable or change any refcounts.
2565 */
2566 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
2567 uint64_t reftable_index, uint64_t *reftable_size,
2568 void *refblock, bool refblock_empty, bool *allocated,
2569 Error **errp)
2570 {
2571 BDRVQcow2State *s = bs->opaque;
2572 int64_t offset;
2573 int ret;
2574
2575 if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
2576 offset = (*reftable)[reftable_index];
2577
2578 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
2579 if (ret < 0) {
2580 error_setg_errno(errp, -ret, "Overlap check failed");
2581 return ret;
2582 }
2583
2584 ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size);
2585 if (ret < 0) {
2586 error_setg_errno(errp, -ret, "Failed to write refblock");
2587 return ret;
2588 }
2589 } else {
2590 assert(refblock_empty);
2591 }
2592
2593 return 0;
2594 }
2595
2596 /**
2597 * This function walks over the existing reftable and every referenced refblock;
2598 * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2599 * create an equal new entry in the passed @new_refblock. Once that
2600 * @new_refblock is completely filled, @operation will be called.
2601 *
2602 * @status_cb and @cb_opaque are used for the amend operation's status callback.
2603 * @index is the index of the walk_over_reftable() calls and @total is the total
2604 * number of walk_over_reftable() calls per amend operation. Both are used for
2605 * calculating the parameters for the status callback.
2606 *
2607 * @allocated is set to true if a new cluster has been allocated.
2608 */
2609 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
2610 uint64_t *new_reftable_index,
2611 uint64_t *new_reftable_size,
2612 void *new_refblock, int new_refblock_size,
2613 int new_refcount_bits,
2614 RefblockFinishOp *operation, bool *allocated,
2615 Qcow2SetRefcountFunc *new_set_refcount,
2616 BlockDriverAmendStatusCB *status_cb,
2617 void *cb_opaque, int index, int total,
2618 Error **errp)
2619 {
2620 BDRVQcow2State *s = bs->opaque;
2621 uint64_t reftable_index;
2622 bool new_refblock_empty = true;
2623 int refblock_index;
2624 int new_refblock_index = 0;
2625 int ret;
2626
2627 for (reftable_index = 0; reftable_index < s->refcount_table_size;
2628 reftable_index++)
2629 {
2630 uint64_t refblock_offset = s->refcount_table[reftable_index]
2631 & REFT_OFFSET_MASK;
2632
2633 status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
2634 (uint64_t)total * s->refcount_table_size, cb_opaque);
2635
2636 if (refblock_offset) {
2637 void *refblock;
2638
2639 if (offset_into_cluster(s, refblock_offset)) {
2640 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
2641 PRIx64 " unaligned (reftable index: %#"
2642 PRIx64 ")", refblock_offset,
2643 reftable_index);
2644 error_setg(errp,
2645 "Image is corrupt (unaligned refblock offset)");
2646 return -EIO;
2647 }
2648
2649 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
2650 &refblock);
2651 if (ret < 0) {
2652 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
2653 return ret;
2654 }
2655
2656 for (refblock_index = 0; refblock_index < s->refcount_block_size;
2657 refblock_index++)
2658 {
2659 uint64_t refcount;
2660
2661 if (new_refblock_index >= new_refblock_size) {
2662 /* new_refblock is now complete */
2663 ret = operation(bs, new_reftable, *new_reftable_index,
2664 new_reftable_size, new_refblock,
2665 new_refblock_empty, allocated, errp);
2666 if (ret < 0) {
2667 qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2668 return ret;
2669 }
2670
2671 (*new_reftable_index)++;
2672 new_refblock_index = 0;
2673 new_refblock_empty = true;
2674 }
2675
2676 refcount = s->get_refcount(refblock, refblock_index);
2677 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
2678 uint64_t offset;
2679
2680 qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2681
2682 offset = ((reftable_index << s->refcount_block_bits)
2683 + refblock_index) << s->cluster_bits;
2684
2685 error_setg(errp, "Cannot decrease refcount entry width to "
2686 "%i bits: Cluster at offset %#" PRIx64 " has a "
2687 "refcount of %" PRIu64, new_refcount_bits,
2688 offset, refcount);
2689 return -EINVAL;
2690 }
2691
2692 if (new_set_refcount) {
2693 new_set_refcount(new_refblock, new_refblock_index++,
2694 refcount);
2695 } else {
2696 new_refblock_index++;
2697 }
2698 new_refblock_empty = new_refblock_empty && refcount == 0;
2699 }
2700
2701 qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2702 } else {
2703 /* No refblock means every refcount is 0 */
2704 for (refblock_index = 0; refblock_index < s->refcount_block_size;
2705 refblock_index++)
2706 {
2707 if (new_refblock_index >= new_refblock_size) {
2708 /* new_refblock is now complete */
2709 ret = operation(bs, new_reftable, *new_reftable_index,
2710 new_reftable_size, new_refblock,
2711 new_refblock_empty, allocated, errp);
2712 if (ret < 0) {
2713 return ret;
2714 }
2715
2716 (*new_reftable_index)++;
2717 new_refblock_index = 0;
2718 new_refblock_empty = true;
2719 }
2720
2721 if (new_set_refcount) {
2722 new_set_refcount(new_refblock, new_refblock_index++, 0);
2723 } else {
2724 new_refblock_index++;
2725 }
2726 }
2727 }
2728 }
2729
2730 if (new_refblock_index > 0) {
2731 /* Complete the potentially existing partially filled final refblock */
2732 if (new_set_refcount) {
2733 for (; new_refblock_index < new_refblock_size;
2734 new_refblock_index++)
2735 {
2736 new_set_refcount(new_refblock, new_refblock_index, 0);
2737 }
2738 }
2739
2740 ret = operation(bs, new_reftable, *new_reftable_index,
2741 new_reftable_size, new_refblock, new_refblock_empty,
2742 allocated, errp);
2743 if (ret < 0) {
2744 return ret;
2745 }
2746
2747 (*new_reftable_index)++;
2748 }
2749
2750 status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
2751 (uint64_t)total * s->refcount_table_size, cb_opaque);
2752
2753 return 0;
2754 }
2755
2756 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
2757 BlockDriverAmendStatusCB *status_cb,
2758 void *cb_opaque, Error **errp)
2759 {
2760 BDRVQcow2State *s = bs->opaque;
2761 Qcow2GetRefcountFunc *new_get_refcount;
2762 Qcow2SetRefcountFunc *new_set_refcount;
2763 void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
2764 uint64_t *new_reftable = NULL, new_reftable_size = 0;
2765 uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
2766 uint64_t new_reftable_index = 0;
2767 uint64_t i;
2768 int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
2769 int new_refblock_size, new_refcount_bits = 1 << refcount_order;
2770 int old_refcount_order;
2771 int walk_index = 0;
2772 int ret;
2773 bool new_allocation;
2774
2775 assert(s->qcow_version >= 3);
2776 assert(refcount_order >= 0 && refcount_order <= 6);
2777
2778 /* see qcow2_open() */
2779 new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
2780
2781 new_get_refcount = get_refcount_funcs[refcount_order];
2782 new_set_refcount = set_refcount_funcs[refcount_order];
2783
2784
2785 do {
2786 int total_walks;
2787
2788 new_allocation = false;
2789
2790 /* At least we have to do this walk and the one which writes the
2791 * refblocks; also, at least we have to do this loop here at least
2792 * twice (normally), first to do the allocations, and second to
2793 * determine that everything is correctly allocated, this then makes
2794 * three walks in total */
2795 total_walks = MAX(walk_index + 2, 3);
2796
2797 /* First, allocate the structures so they are present in the refcount
2798 * structures */
2799 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2800 &new_reftable_size, NULL, new_refblock_size,
2801 new_refcount_bits, &alloc_refblock,
2802 &new_allocation, NULL, status_cb, cb_opaque,
2803 walk_index++, total_walks, errp);
2804 if (ret < 0) {
2805 goto done;
2806 }
2807
2808 new_reftable_index = 0;
2809
2810 if (new_allocation) {
2811 if (new_reftable_offset) {
2812 qcow2_free_clusters(bs, new_reftable_offset,
2813 allocated_reftable_size * sizeof(uint64_t),
2814 QCOW2_DISCARD_NEVER);
2815 }
2816
2817 new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
2818 sizeof(uint64_t));
2819 if (new_reftable_offset < 0) {
2820 error_setg_errno(errp, -new_reftable_offset,
2821 "Failed to allocate the new reftable");
2822 ret = new_reftable_offset;
2823 goto done;
2824 }
2825 allocated_reftable_size = new_reftable_size;
2826 }
2827 } while (new_allocation);
2828
2829 /* Second, write the new refblocks */
2830 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2831 &new_reftable_size, new_refblock,
2832 new_refblock_size, new_refcount_bits,
2833 &flush_refblock, &new_allocation, new_set_refcount,
2834 status_cb, cb_opaque, walk_index, walk_index + 1,
2835 errp);
2836 if (ret < 0) {
2837 goto done;
2838 }
2839 assert(!new_allocation);
2840
2841
2842 /* Write the new reftable */
2843 ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
2844 new_reftable_size * sizeof(uint64_t));
2845 if (ret < 0) {
2846 error_setg_errno(errp, -ret, "Overlap check failed");
2847 goto done;
2848 }
2849
2850 for (i = 0; i < new_reftable_size; i++) {
2851 cpu_to_be64s(&new_reftable[i]);
2852 }
2853
2854 ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable,
2855 new_reftable_size * sizeof(uint64_t));
2856
2857 for (i = 0; i < new_reftable_size; i++) {
2858 be64_to_cpus(&new_reftable[i]);
2859 }
2860
2861 if (ret < 0) {
2862 error_setg_errno(errp, -ret, "Failed to write the new reftable");
2863 goto done;
2864 }
2865
2866
2867 /* Empty the refcount cache */
2868 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
2869 if (ret < 0) {
2870 error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
2871 goto done;
2872 }
2873
2874 /* Update the image header to point to the new reftable; this only updates
2875 * the fields which are relevant to qcow2_update_header(); other fields
2876 * such as s->refcount_table or s->refcount_bits stay stale for now
2877 * (because we have to restore everything if qcow2_update_header() fails) */
2878 old_refcount_order = s->refcount_order;
2879 old_reftable_size = s->refcount_table_size;
2880 old_reftable_offset = s->refcount_table_offset;
2881
2882 s->refcount_order = refcount_order;
2883 s->refcount_table_size = new_reftable_size;
2884 s->refcount_table_offset = new_reftable_offset;
2885
2886 ret = qcow2_update_header(bs);
2887 if (ret < 0) {
2888 s->refcount_order = old_refcount_order;
2889 s->refcount_table_size = old_reftable_size;
2890 s->refcount_table_offset = old_reftable_offset;
2891 error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
2892 goto done;
2893 }
2894
2895 /* Now update the rest of the in-memory information */
2896 old_reftable = s->refcount_table;
2897 s->refcount_table = new_reftable;
2898 update_max_refcount_table_index(s);
2899
2900 s->refcount_bits = 1 << refcount_order;
2901 s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
2902 s->refcount_max += s->refcount_max - 1;
2903
2904 s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
2905 s->refcount_block_size = 1 << s->refcount_block_bits;
2906
2907 s->get_refcount = new_get_refcount;
2908 s->set_refcount = new_set_refcount;
2909
2910 /* For cleaning up all old refblocks and the old reftable below the "done"
2911 * label */
2912 new_reftable = old_reftable;
2913 new_reftable_size = old_reftable_size;
2914 new_reftable_offset = old_reftable_offset;
2915
2916 done:
2917 if (new_reftable) {
2918 /* On success, new_reftable actually points to the old reftable (and
2919 * new_reftable_size is the old reftable's size); but that is just
2920 * fine */
2921 for (i = 0; i < new_reftable_size; i++) {
2922 uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
2923 if (offset) {
2924 qcow2_free_clusters(bs, offset, s->cluster_size,
2925 QCOW2_DISCARD_OTHER);
2926 }
2927 }
2928 g_free(new_reftable);
2929
2930 if (new_reftable_offset > 0) {
2931 qcow2_free_clusters(bs, new_reftable_offset,
2932 new_reftable_size * sizeof(uint64_t),
2933 QCOW2_DISCARD_OTHER);
2934 }
2935 }
2936
2937 qemu_vfree(new_refblock);
2938 return ret;
2939 }