]> git.proxmox.com Git - mirror_qemu.git/blob - bsd-user/signal.c
bsd-user: Implment madvise(2) to match the linux-user implementation.
[mirror_qemu.git] / bsd-user / signal.c
1 /*
2 * Emulation of BSD signals
3 *
4 * Copyright (c) 2003 - 2008 Fabrice Bellard
5 * Copyright (c) 2013 Stacey Son
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "qemu.h"
24 #include "gdbstub/user.h"
25 #include "signal-common.h"
26 #include "trace.h"
27 #include "hw/core/tcg-cpu-ops.h"
28 #include "host-signal.h"
29
30 static struct target_sigaction sigact_table[TARGET_NSIG];
31 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
32 static void target_to_host_sigset_internal(sigset_t *d,
33 const target_sigset_t *s);
34
35 static inline int on_sig_stack(TaskState *ts, unsigned long sp)
36 {
37 return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size;
38 }
39
40 static inline int sas_ss_flags(TaskState *ts, unsigned long sp)
41 {
42 return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE :
43 on_sig_stack(ts, sp) ? SS_ONSTACK : 0;
44 }
45
46 /*
47 * The BSD ABIs use the same signal numbers across all the CPU architectures, so
48 * (unlike Linux) these functions are just the identity mapping. This might not
49 * be true for XyzBSD running on AbcBSD, which doesn't currently work.
50 */
51 int host_to_target_signal(int sig)
52 {
53 return sig;
54 }
55
56 int target_to_host_signal(int sig)
57 {
58 return sig;
59 }
60
61 static inline void target_sigemptyset(target_sigset_t *set)
62 {
63 memset(set, 0, sizeof(*set));
64 }
65
66 static inline void target_sigaddset(target_sigset_t *set, int signum)
67 {
68 signum--;
69 uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW);
70 set->__bits[signum / TARGET_NSIG_BPW] |= mask;
71 }
72
73 static inline int target_sigismember(const target_sigset_t *set, int signum)
74 {
75 signum--;
76 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
77 return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0;
78 }
79
80 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
81 static inline void rewind_if_in_safe_syscall(void *puc)
82 {
83 ucontext_t *uc = (ucontext_t *)puc;
84 uintptr_t pcreg = host_signal_pc(uc);
85
86 if (pcreg > (uintptr_t)safe_syscall_start
87 && pcreg < (uintptr_t)safe_syscall_end) {
88 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
89 }
90 }
91
92 /*
93 * Note: The following take advantage of the BSD signal property that all
94 * signals are available on all architectures.
95 */
96 static void host_to_target_sigset_internal(target_sigset_t *d,
97 const sigset_t *s)
98 {
99 int i;
100
101 target_sigemptyset(d);
102 for (i = 1; i <= NSIG; i++) {
103 if (sigismember(s, i)) {
104 target_sigaddset(d, host_to_target_signal(i));
105 }
106 }
107 }
108
109 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
110 {
111 target_sigset_t d1;
112 int i;
113
114 host_to_target_sigset_internal(&d1, s);
115 for (i = 0; i < _SIG_WORDS; i++) {
116 d->__bits[i] = tswap32(d1.__bits[i]);
117 }
118 }
119
120 static void target_to_host_sigset_internal(sigset_t *d,
121 const target_sigset_t *s)
122 {
123 int i;
124
125 sigemptyset(d);
126 for (i = 1; i <= TARGET_NSIG; i++) {
127 if (target_sigismember(s, i)) {
128 sigaddset(d, target_to_host_signal(i));
129 }
130 }
131 }
132
133 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
134 {
135 target_sigset_t s1;
136 int i;
137
138 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
139 s1.__bits[i] = tswap32(s->__bits[i]);
140 }
141 target_to_host_sigset_internal(d, &s1);
142 }
143
144 static bool has_trapno(int tsig)
145 {
146 return tsig == TARGET_SIGILL ||
147 tsig == TARGET_SIGFPE ||
148 tsig == TARGET_SIGSEGV ||
149 tsig == TARGET_SIGBUS ||
150 tsig == TARGET_SIGTRAP;
151 }
152
153 /* Siginfo conversion. */
154
155 /*
156 * Populate tinfo w/o swapping based on guessing which fields are valid.
157 */
158 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
159 const siginfo_t *info)
160 {
161 int sig = host_to_target_signal(info->si_signo);
162 int si_code = info->si_code;
163 int si_type;
164
165 /*
166 * Make sure we that the variable portion of the target siginfo is zeroed
167 * out so we don't leak anything into that.
168 */
169 memset(&tinfo->_reason, 0, sizeof(tinfo->_reason));
170
171 /*
172 * This is awkward, because we have to use a combination of the si_code and
173 * si_signo to figure out which of the union's members are valid.o We
174 * therefore make our best guess.
175 *
176 * Once we have made our guess, we record it in the top 16 bits of
177 * the si_code, so that tswap_siginfo() later can use it.
178 * tswap_siginfo() will strip these top bits out before writing
179 * si_code to the guest (sign-extending the lower bits).
180 */
181 tinfo->si_signo = sig;
182 tinfo->si_errno = info->si_errno;
183 tinfo->si_code = info->si_code;
184 tinfo->si_pid = info->si_pid;
185 tinfo->si_uid = info->si_uid;
186 tinfo->si_status = info->si_status;
187 tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr;
188 /*
189 * si_value is opaque to kernel. On all FreeBSD platforms,
190 * sizeof(sival_ptr) >= sizeof(sival_int) so the following
191 * always will copy the larger element.
192 */
193 tinfo->si_value.sival_ptr =
194 (abi_ulong)(unsigned long)info->si_value.sival_ptr;
195
196 switch (si_code) {
197 /*
198 * All the SI_xxx codes that are defined here are global to
199 * all the signals (they have values that none of the other,
200 * more specific signal info will set).
201 */
202 case SI_USER:
203 case SI_LWP:
204 case SI_KERNEL:
205 case SI_QUEUE:
206 case SI_ASYNCIO:
207 /*
208 * Only the fixed parts are valid (though FreeBSD doesn't always
209 * set all the fields to non-zero values.
210 */
211 si_type = QEMU_SI_NOINFO;
212 break;
213 case SI_TIMER:
214 tinfo->_reason._timer._timerid = info->_reason._timer._timerid;
215 tinfo->_reason._timer._overrun = info->_reason._timer._overrun;
216 si_type = QEMU_SI_TIMER;
217 break;
218 case SI_MESGQ:
219 tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd;
220 si_type = QEMU_SI_MESGQ;
221 break;
222 default:
223 /*
224 * We have to go based on the signal number now to figure out
225 * what's valid.
226 */
227 si_type = QEMU_SI_NOINFO;
228 if (has_trapno(sig)) {
229 tinfo->_reason._fault._trapno = info->_reason._fault._trapno;
230 si_type = QEMU_SI_FAULT;
231 }
232 #ifdef TARGET_SIGPOLL
233 /*
234 * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
235 * a chance it may popup in the future.
236 */
237 if (sig == TARGET_SIGPOLL) {
238 tinfo->_reason._poll._band = info->_reason._poll._band;
239 si_type = QEMU_SI_POLL;
240 }
241 #endif
242 /*
243 * Unsure that this can actually be generated, and our support for
244 * capsicum is somewhere between weak and non-existent, but if we get
245 * one, then we know what to save.
246 */
247 #ifdef QEMU_SI_CAPSICUM
248 if (sig == TARGET_SIGTRAP) {
249 tinfo->_reason._capsicum._syscall =
250 info->_reason._capsicum._syscall;
251 si_type = QEMU_SI_CAPSICUM;
252 }
253 #endif
254 break;
255 }
256 tinfo->si_code = deposit32(si_code, 24, 8, si_type);
257 }
258
259 static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info)
260 {
261 int si_type = extract32(info->si_code, 24, 8);
262 int si_code = sextract32(info->si_code, 0, 24);
263
264 __put_user(info->si_signo, &tinfo->si_signo);
265 __put_user(info->si_errno, &tinfo->si_errno);
266 __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */
267 __put_user(info->si_pid, &tinfo->si_pid);
268 __put_user(info->si_uid, &tinfo->si_uid);
269 __put_user(info->si_status, &tinfo->si_status);
270 __put_user(info->si_addr, &tinfo->si_addr);
271 /*
272 * Unswapped, because we passed it through mostly untouched. si_value is
273 * opaque to the kernel, so we didn't bother with potentially wasting cycles
274 * to swap it into host byte order.
275 */
276 tinfo->si_value.sival_ptr = info->si_value.sival_ptr;
277
278 /*
279 * We can use our internal marker of which fields in the structure
280 * are valid, rather than duplicating the guesswork of
281 * host_to_target_siginfo_noswap() here.
282 */
283 switch (si_type) {
284 case QEMU_SI_NOINFO: /* No additional info */
285 break;
286 case QEMU_SI_FAULT:
287 __put_user(info->_reason._fault._trapno,
288 &tinfo->_reason._fault._trapno);
289 break;
290 case QEMU_SI_TIMER:
291 __put_user(info->_reason._timer._timerid,
292 &tinfo->_reason._timer._timerid);
293 __put_user(info->_reason._timer._overrun,
294 &tinfo->_reason._timer._overrun);
295 break;
296 case QEMU_SI_MESGQ:
297 __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd);
298 break;
299 case QEMU_SI_POLL:
300 /* Note: Not generated on FreeBSD */
301 __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band);
302 break;
303 #ifdef QEMU_SI_CAPSICUM
304 case QEMU_SI_CAPSICUM:
305 __put_user(info->_reason._capsicum._syscall,
306 &tinfo->_reason._capsicum._syscall);
307 break;
308 #endif
309 default:
310 g_assert_not_reached();
311 }
312 }
313
314 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
315 {
316 host_to_target_siginfo_noswap(tinfo, info);
317 tswap_siginfo(tinfo, tinfo);
318 }
319
320 int block_signals(void)
321 {
322 TaskState *ts = (TaskState *)thread_cpu->opaque;
323 sigset_t set;
324
325 /*
326 * It's OK to block everything including SIGSEGV, because we won't run any
327 * further guest code before unblocking signals in
328 * process_pending_signals(). We depend on the FreeBSD behavior here where
329 * this will only affect this thread's signal mask. We don't use
330 * pthread_sigmask which might seem more correct because that routine also
331 * does odd things with SIGCANCEL to implement pthread_cancel().
332 */
333 sigfillset(&set);
334 sigprocmask(SIG_SETMASK, &set, 0);
335
336 return qatomic_xchg(&ts->signal_pending, 1);
337 }
338
339 /* Returns 1 if given signal should dump core if not handled. */
340 static int core_dump_signal(int sig)
341 {
342 switch (sig) {
343 case TARGET_SIGABRT:
344 case TARGET_SIGFPE:
345 case TARGET_SIGILL:
346 case TARGET_SIGQUIT:
347 case TARGET_SIGSEGV:
348 case TARGET_SIGTRAP:
349 case TARGET_SIGBUS:
350 return 1;
351 default:
352 return 0;
353 }
354 }
355
356 /* Abort execution with signal. */
357 static G_NORETURN
358 void dump_core_and_abort(int target_sig)
359 {
360 CPUArchState *env = thread_cpu->env_ptr;
361 CPUState *cpu = env_cpu(env);
362 TaskState *ts = cpu->opaque;
363 int core_dumped = 0;
364 int host_sig;
365 struct sigaction act;
366
367 host_sig = target_to_host_signal(target_sig);
368 gdb_signalled(env, target_sig);
369
370 /* Dump core if supported by target binary format */
371 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
372 stop_all_tasks();
373 core_dumped =
374 ((*ts->bprm->core_dump)(target_sig, env) == 0);
375 }
376 if (core_dumped) {
377 struct rlimit nodump;
378
379 /*
380 * We already dumped the core of target process, we don't want
381 * a coredump of qemu itself.
382 */
383 getrlimit(RLIMIT_CORE, &nodump);
384 nodump.rlim_cur = 0;
385 setrlimit(RLIMIT_CORE, &nodump);
386 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) "
387 "- %s\n", target_sig, strsignal(host_sig), "core dumped");
388 }
389
390 /*
391 * The proper exit code for dying from an uncaught signal is
392 * -<signal>. The kernel doesn't allow exit() or _exit() to pass
393 * a negative value. To get the proper exit code we need to
394 * actually die from an uncaught signal. Here the default signal
395 * handler is installed, we send ourself a signal and we wait for
396 * it to arrive.
397 */
398 memset(&act, 0, sizeof(act));
399 sigfillset(&act.sa_mask);
400 act.sa_handler = SIG_DFL;
401 sigaction(host_sig, &act, NULL);
402
403 kill(getpid(), host_sig);
404
405 /*
406 * Make sure the signal isn't masked (just reuse the mask inside
407 * of act).
408 */
409 sigdelset(&act.sa_mask, host_sig);
410 sigsuspend(&act.sa_mask);
411
412 /* unreachable */
413 abort();
414 }
415
416 /*
417 * Queue a signal so that it will be send to the virtual CPU as soon as
418 * possible.
419 */
420 void queue_signal(CPUArchState *env, int sig, int si_type,
421 target_siginfo_t *info)
422 {
423 CPUState *cpu = env_cpu(env);
424 TaskState *ts = cpu->opaque;
425
426 trace_user_queue_signal(env, sig);
427
428 info->si_code = deposit32(info->si_code, 24, 8, si_type);
429
430 ts->sync_signal.info = *info;
431 ts->sync_signal.pending = sig;
432 /* Signal that a new signal is pending. */
433 qatomic_set(&ts->signal_pending, 1);
434 return;
435 }
436
437 static int fatal_signal(int sig)
438 {
439
440 switch (sig) {
441 case TARGET_SIGCHLD:
442 case TARGET_SIGURG:
443 case TARGET_SIGWINCH:
444 case TARGET_SIGINFO:
445 /* Ignored by default. */
446 return 0;
447 case TARGET_SIGCONT:
448 case TARGET_SIGSTOP:
449 case TARGET_SIGTSTP:
450 case TARGET_SIGTTIN:
451 case TARGET_SIGTTOU:
452 /* Job control signals. */
453 return 0;
454 default:
455 return 1;
456 }
457 }
458
459 /*
460 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
461 * 'force' part is handled in process_pending_signals().
462 */
463 void force_sig_fault(int sig, int code, abi_ulong addr)
464 {
465 CPUState *cpu = thread_cpu;
466 CPUArchState *env = cpu->env_ptr;
467 target_siginfo_t info = {};
468
469 info.si_signo = sig;
470 info.si_errno = 0;
471 info.si_code = code;
472 info.si_addr = addr;
473 queue_signal(env, sig, QEMU_SI_FAULT, &info);
474 }
475
476 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
477 {
478 CPUArchState *env = thread_cpu->env_ptr;
479 CPUState *cpu = env_cpu(env);
480 TaskState *ts = cpu->opaque;
481 target_siginfo_t tinfo;
482 ucontext_t *uc = puc;
483 struct emulated_sigtable *k;
484 int guest_sig;
485 uintptr_t pc = 0;
486 bool sync_sig = false;
487
488 /*
489 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
490 * handling wrt signal blocking and unwinding.
491 */
492 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
493 MMUAccessType access_type;
494 uintptr_t host_addr;
495 abi_ptr guest_addr;
496 bool is_write;
497
498 host_addr = (uintptr_t)info->si_addr;
499
500 /*
501 * Convert forcefully to guest address space: addresses outside
502 * reserved_va are still valid to report via SEGV_MAPERR.
503 */
504 guest_addr = h2g_nocheck(host_addr);
505
506 pc = host_signal_pc(uc);
507 is_write = host_signal_write(info, uc);
508 access_type = adjust_signal_pc(&pc, is_write);
509
510 if (host_sig == SIGSEGV) {
511 bool maperr = true;
512
513 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
514 /* If this was a write to a TB protected page, restart. */
515 if (is_write &&
516 handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
517 pc, guest_addr)) {
518 return;
519 }
520
521 /*
522 * With reserved_va, the whole address space is PROT_NONE,
523 * which means that we may get ACCERR when we want MAPERR.
524 */
525 if (page_get_flags(guest_addr) & PAGE_VALID) {
526 maperr = false;
527 } else {
528 info->si_code = SEGV_MAPERR;
529 }
530 }
531
532 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
533 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
534 } else {
535 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
536 if (info->si_code == BUS_ADRALN) {
537 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
538 }
539 }
540
541 sync_sig = true;
542 }
543
544 /* Get the target signal number. */
545 guest_sig = host_to_target_signal(host_sig);
546 if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
547 return;
548 }
549 trace_user_host_signal(cpu, host_sig, guest_sig);
550
551 host_to_target_siginfo_noswap(&tinfo, info);
552
553 k = &ts->sigtab[guest_sig - 1];
554 k->info = tinfo;
555 k->pending = guest_sig;
556 ts->signal_pending = 1;
557
558 /*
559 * For synchronous signals, unwind the cpu state to the faulting
560 * insn and then exit back to the main loop so that the signal
561 * is delivered immediately.
562 */
563 if (sync_sig) {
564 cpu->exception_index = EXCP_INTERRUPT;
565 cpu_loop_exit_restore(cpu, pc);
566 }
567
568 rewind_if_in_safe_syscall(puc);
569
570 /*
571 * Block host signals until target signal handler entered. We
572 * can't block SIGSEGV or SIGBUS while we're executing guest
573 * code in case the guest code provokes one in the window between
574 * now and it getting out to the main loop. Signals will be
575 * unblocked again in process_pending_signals().
576 */
577 sigfillset(&uc->uc_sigmask);
578 sigdelset(&uc->uc_sigmask, SIGSEGV);
579 sigdelset(&uc->uc_sigmask, SIGBUS);
580
581 /* Interrupt the virtual CPU as soon as possible. */
582 cpu_exit(thread_cpu);
583 }
584
585 /* do_sigaltstack() returns target values and errnos. */
586 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */
587 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp)
588 {
589 TaskState *ts = (TaskState *)thread_cpu->opaque;
590 int ret;
591 target_stack_t oss;
592
593 if (uoss_addr) {
594 /* Save current signal stack params */
595 oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp);
596 oss.ss_size = tswapl(ts->sigaltstack_used.ss_size);
597 oss.ss_flags = tswapl(sas_ss_flags(ts, sp));
598 }
599
600 if (uss_addr) {
601 target_stack_t *uss;
602 target_stack_t ss;
603 size_t minstacksize = TARGET_MINSIGSTKSZ;
604
605 ret = -TARGET_EFAULT;
606 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
607 goto out;
608 }
609 __get_user(ss.ss_sp, &uss->ss_sp);
610 __get_user(ss.ss_size, &uss->ss_size);
611 __get_user(ss.ss_flags, &uss->ss_flags);
612 unlock_user_struct(uss, uss_addr, 0);
613
614 ret = -TARGET_EPERM;
615 if (on_sig_stack(ts, sp)) {
616 goto out;
617 }
618
619 ret = -TARGET_EINVAL;
620 if (ss.ss_flags != TARGET_SS_DISABLE
621 && ss.ss_flags != TARGET_SS_ONSTACK
622 && ss.ss_flags != 0) {
623 goto out;
624 }
625
626 if (ss.ss_flags == TARGET_SS_DISABLE) {
627 ss.ss_size = 0;
628 ss.ss_sp = 0;
629 } else {
630 ret = -TARGET_ENOMEM;
631 if (ss.ss_size < minstacksize) {
632 goto out;
633 }
634 }
635
636 ts->sigaltstack_used.ss_sp = ss.ss_sp;
637 ts->sigaltstack_used.ss_size = ss.ss_size;
638 }
639
640 if (uoss_addr) {
641 ret = -TARGET_EFAULT;
642 if (copy_to_user(uoss_addr, &oss, sizeof(oss))) {
643 goto out;
644 }
645 }
646
647 ret = 0;
648 out:
649 return ret;
650 }
651
652 /* do_sigaction() return host values and errnos */
653 int do_sigaction(int sig, const struct target_sigaction *act,
654 struct target_sigaction *oact)
655 {
656 struct target_sigaction *k;
657 struct sigaction act1;
658 int host_sig;
659 int ret = 0;
660
661 if (sig < 1 || sig > TARGET_NSIG) {
662 return -TARGET_EINVAL;
663 }
664
665 if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) &&
666 act != NULL && act->_sa_handler != TARGET_SIG_DFL) {
667 return -TARGET_EINVAL;
668 }
669
670 if (block_signals()) {
671 return -TARGET_ERESTART;
672 }
673
674 k = &sigact_table[sig - 1];
675 if (oact) {
676 oact->_sa_handler = tswapal(k->_sa_handler);
677 oact->sa_flags = tswap32(k->sa_flags);
678 oact->sa_mask = k->sa_mask;
679 }
680 if (act) {
681 k->_sa_handler = tswapal(act->_sa_handler);
682 k->sa_flags = tswap32(act->sa_flags);
683 k->sa_mask = act->sa_mask;
684
685 /* Update the host signal state. */
686 host_sig = target_to_host_signal(sig);
687 if (host_sig != SIGSEGV && host_sig != SIGBUS) {
688 memset(&act1, 0, sizeof(struct sigaction));
689 sigfillset(&act1.sa_mask);
690 act1.sa_flags = SA_SIGINFO;
691 if (k->sa_flags & TARGET_SA_RESTART) {
692 act1.sa_flags |= SA_RESTART;
693 }
694 /*
695 * Note: It is important to update the host kernel signal mask to
696 * avoid getting unexpected interrupted system calls.
697 */
698 if (k->_sa_handler == TARGET_SIG_IGN) {
699 act1.sa_sigaction = (void *)SIG_IGN;
700 } else if (k->_sa_handler == TARGET_SIG_DFL) {
701 if (fatal_signal(sig)) {
702 act1.sa_sigaction = host_signal_handler;
703 } else {
704 act1.sa_sigaction = (void *)SIG_DFL;
705 }
706 } else {
707 act1.sa_sigaction = host_signal_handler;
708 }
709 ret = sigaction(host_sig, &act1, NULL);
710 }
711 }
712 return ret;
713 }
714
715 static inline abi_ulong get_sigframe(struct target_sigaction *ka,
716 CPUArchState *env, size_t frame_size)
717 {
718 TaskState *ts = (TaskState *)thread_cpu->opaque;
719 abi_ulong sp;
720
721 /* Use default user stack */
722 sp = get_sp_from_cpustate(env);
723
724 if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) {
725 sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
726 }
727
728 /* TODO: make this a target_arch function / define */
729 #if defined(TARGET_ARM)
730 return (sp - frame_size) & ~7;
731 #elif defined(TARGET_AARCH64)
732 return (sp - frame_size) & ~15;
733 #else
734 return sp - frame_size;
735 #endif
736 }
737
738 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */
739
740 static void setup_frame(int sig, int code, struct target_sigaction *ka,
741 target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env)
742 {
743 struct target_sigframe *frame;
744 abi_ulong frame_addr;
745 int i;
746
747 frame_addr = get_sigframe(ka, env, sizeof(*frame));
748 trace_user_setup_frame(env, frame_addr);
749 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) {
750 unlock_user_struct(frame, frame_addr, 1);
751 dump_core_and_abort(TARGET_SIGILL);
752 return;
753 }
754
755 memset(frame, 0, sizeof(*frame));
756 setup_sigframe_arch(env, frame_addr, frame, 0);
757
758 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
759 __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]);
760 }
761
762 if (tinfo) {
763 frame->sf_si.si_signo = tinfo->si_signo;
764 frame->sf_si.si_errno = tinfo->si_errno;
765 frame->sf_si.si_code = tinfo->si_code;
766 frame->sf_si.si_pid = tinfo->si_pid;
767 frame->sf_si.si_uid = tinfo->si_uid;
768 frame->sf_si.si_status = tinfo->si_status;
769 frame->sf_si.si_addr = tinfo->si_addr;
770 /* see host_to_target_siginfo_noswap() for more details */
771 frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr;
772 /*
773 * At this point, whatever is in the _reason union is complete
774 * and in target order, so just copy the whole thing over, even
775 * if it's too large for this specific signal.
776 * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured
777 * that's so.
778 */
779 memcpy(&frame->sf_si._reason, &tinfo->_reason,
780 sizeof(tinfo->_reason));
781 }
782
783 set_sigtramp_args(env, sig, frame, frame_addr, ka);
784
785 unlock_user_struct(frame, frame_addr, 1);
786 }
787
788 static int reset_signal_mask(target_ucontext_t *ucontext)
789 {
790 int i;
791 sigset_t blocked;
792 target_sigset_t target_set;
793 TaskState *ts = (TaskState *)thread_cpu->opaque;
794
795 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
796 __get_user(target_set.__bits[i], &ucontext->uc_sigmask.__bits[i]);
797 }
798 target_to_host_sigset_internal(&blocked, &target_set);
799 ts->signal_mask = blocked;
800
801 return 0;
802 }
803
804 /* See sys/$M/$M/exec_machdep.c sigreturn() */
805 long do_sigreturn(CPUArchState *env, abi_ulong addr)
806 {
807 long ret;
808 abi_ulong target_ucontext;
809 target_ucontext_t *ucontext = NULL;
810
811 /* Get the target ucontext address from the stack frame */
812 ret = get_ucontext_sigreturn(env, addr, &target_ucontext);
813 if (is_error(ret)) {
814 return ret;
815 }
816 trace_user_do_sigreturn(env, addr);
817 if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) {
818 goto badframe;
819 }
820
821 /* Set the register state back to before the signal. */
822 if (set_mcontext(env, &ucontext->uc_mcontext, 1)) {
823 goto badframe;
824 }
825
826 /* And reset the signal mask. */
827 if (reset_signal_mask(ucontext)) {
828 goto badframe;
829 }
830
831 unlock_user_struct(ucontext, target_ucontext, 0);
832 return -TARGET_EJUSTRETURN;
833
834 badframe:
835 if (ucontext != NULL) {
836 unlock_user_struct(ucontext, target_ucontext, 0);
837 }
838 return -TARGET_EFAULT;
839 }
840
841 void signal_init(void)
842 {
843 TaskState *ts = (TaskState *)thread_cpu->opaque;
844 struct sigaction act;
845 struct sigaction oact;
846 int i;
847 int host_sig;
848
849 /* Set the signal mask from the host mask. */
850 sigprocmask(0, 0, &ts->signal_mask);
851
852 sigfillset(&act.sa_mask);
853 act.sa_sigaction = host_signal_handler;
854 act.sa_flags = SA_SIGINFO;
855
856 for (i = 1; i <= TARGET_NSIG; i++) {
857 #ifdef CONFIG_GPROF
858 if (i == TARGET_SIGPROF) {
859 continue;
860 }
861 #endif
862 host_sig = target_to_host_signal(i);
863 sigaction(host_sig, NULL, &oact);
864 if (oact.sa_sigaction == (void *)SIG_IGN) {
865 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
866 } else if (oact.sa_sigaction == (void *)SIG_DFL) {
867 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
868 }
869 /*
870 * If there's already a handler installed then something has
871 * gone horribly wrong, so don't even try to handle that case.
872 * Install some handlers for our own use. We need at least
873 * SIGSEGV and SIGBUS, to detect exceptions. We can not just
874 * trap all signals because it affects syscall interrupt
875 * behavior. But do trap all default-fatal signals.
876 */
877 if (fatal_signal(i)) {
878 sigaction(host_sig, &act, NULL);
879 }
880 }
881 }
882
883 static void handle_pending_signal(CPUArchState *env, int sig,
884 struct emulated_sigtable *k)
885 {
886 CPUState *cpu = env_cpu(env);
887 TaskState *ts = cpu->opaque;
888 struct target_sigaction *sa;
889 int code;
890 sigset_t set;
891 abi_ulong handler;
892 target_siginfo_t tinfo;
893 target_sigset_t target_old_set;
894
895 trace_user_handle_signal(env, sig);
896
897 k->pending = 0;
898
899 sig = gdb_handlesig(cpu, sig);
900 if (!sig) {
901 sa = NULL;
902 handler = TARGET_SIG_IGN;
903 } else {
904 sa = &sigact_table[sig - 1];
905 handler = sa->_sa_handler;
906 }
907
908 if (do_strace) {
909 print_taken_signal(sig, &k->info);
910 }
911
912 if (handler == TARGET_SIG_DFL) {
913 /*
914 * default handler : ignore some signal. The other are job
915 * control or fatal.
916 */
917 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN ||
918 sig == TARGET_SIGTTOU) {
919 kill(getpid(), SIGSTOP);
920 } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG &&
921 sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH &&
922 sig != TARGET_SIGCONT) {
923 dump_core_and_abort(sig);
924 }
925 } else if (handler == TARGET_SIG_IGN) {
926 /* ignore sig */
927 } else if (handler == TARGET_SIG_ERR) {
928 dump_core_and_abort(sig);
929 } else {
930 /* compute the blocked signals during the handler execution */
931 sigset_t *blocked_set;
932
933 target_to_host_sigset(&set, &sa->sa_mask);
934 /*
935 * SA_NODEFER indicates that the current signal should not be
936 * blocked during the handler.
937 */
938 if (!(sa->sa_flags & TARGET_SA_NODEFER)) {
939 sigaddset(&set, target_to_host_signal(sig));
940 }
941
942 /*
943 * Save the previous blocked signal state to restore it at the
944 * end of the signal execution (see do_sigreturn).
945 */
946 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
947
948 blocked_set = ts->in_sigsuspend ?
949 &ts->sigsuspend_mask : &ts->signal_mask;
950 sigorset(&ts->signal_mask, blocked_set, &set);
951 ts->in_sigsuspend = false;
952 sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL);
953
954 /* XXX VM86 on x86 ??? */
955
956 code = k->info.si_code; /* From host, so no si_type */
957 /* prepare the stack frame of the virtual CPU */
958 if (sa->sa_flags & TARGET_SA_SIGINFO) {
959 tswap_siginfo(&tinfo, &k->info);
960 setup_frame(sig, code, sa, &target_old_set, &tinfo, env);
961 } else {
962 setup_frame(sig, code, sa, &target_old_set, NULL, env);
963 }
964 if (sa->sa_flags & TARGET_SA_RESETHAND) {
965 sa->_sa_handler = TARGET_SIG_DFL;
966 }
967 }
968 }
969
970 void process_pending_signals(CPUArchState *env)
971 {
972 CPUState *cpu = env_cpu(env);
973 int sig;
974 sigset_t *blocked_set, set;
975 struct emulated_sigtable *k;
976 TaskState *ts = cpu->opaque;
977
978 while (qatomic_read(&ts->signal_pending)) {
979 sigfillset(&set);
980 sigprocmask(SIG_SETMASK, &set, 0);
981
982 restart_scan:
983 sig = ts->sync_signal.pending;
984 if (sig) {
985 /*
986 * Synchronous signals are forced by the emulated CPU in some way.
987 * If they are set to ignore, restore the default handler (see
988 * sys/kern_sig.c trapsignal() and execsigs() for this behavior)
989 * though maybe this is done only when forcing exit for non SIGCHLD.
990 */
991 if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) ||
992 sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
993 sigdelset(&ts->signal_mask, target_to_host_signal(sig));
994 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
995 }
996 handle_pending_signal(env, sig, &ts->sync_signal);
997 }
998
999 k = ts->sigtab;
1000 for (sig = 1; sig <= TARGET_NSIG; sig++, k++) {
1001 blocked_set = ts->in_sigsuspend ?
1002 &ts->sigsuspend_mask : &ts->signal_mask;
1003 if (k->pending &&
1004 !sigismember(blocked_set, target_to_host_signal(sig))) {
1005 handle_pending_signal(env, sig, k);
1006 /*
1007 * Restart scan from the beginning, as handle_pending_signal
1008 * might have resulted in a new synchronous signal (eg SIGSEGV).
1009 */
1010 goto restart_scan;
1011 }
1012 }
1013
1014 /*
1015 * Unblock signals and check one more time. Unblocking signals may cause
1016 * us to take another host signal, which will set signal_pending again.
1017 */
1018 qatomic_set(&ts->signal_pending, 0);
1019 ts->in_sigsuspend = false;
1020 set = ts->signal_mask;
1021 sigdelset(&set, SIGSEGV);
1022 sigdelset(&set, SIGBUS);
1023 sigprocmask(SIG_SETMASK, &set, 0);
1024 }
1025 ts->in_sigsuspend = false;
1026 }
1027
1028 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
1029 MMUAccessType access_type, bool maperr, uintptr_t ra)
1030 {
1031 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1032
1033 if (tcg_ops->record_sigsegv) {
1034 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
1035 }
1036
1037 force_sig_fault(TARGET_SIGSEGV,
1038 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
1039 addr);
1040 cpu->exception_index = EXCP_INTERRUPT;
1041 cpu_loop_exit_restore(cpu, ra);
1042 }
1043
1044 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
1045 MMUAccessType access_type, uintptr_t ra)
1046 {
1047 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1048
1049 if (tcg_ops->record_sigbus) {
1050 tcg_ops->record_sigbus(cpu, addr, access_type, ra);
1051 }
1052
1053 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
1054 cpu->exception_index = EXCP_INTERRUPT;
1055 cpu_loop_exit_restore(cpu, ra);
1056 }