]> git.proxmox.com Git - mirror_qemu.git/blob - cpus.c
xhci: add asserts to help with static code analysis
[mirror_qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/config-file.h"
27 #include "cpu.h"
28 #include "monitor/monitor.h"
29 #include "qapi/error.h"
30 #include "qapi/qapi-commands-misc.h"
31 #include "qapi/qapi-events-run-state.h"
32 #include "qapi/qmp/qerror.h"
33 #include "qemu/error-report.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/block-backend.h"
36 #include "exec/gdbstub.h"
37 #include "sysemu/dma.h"
38 #include "sysemu/hw_accel.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/hax.h"
41 #include "sysemu/hvf.h"
42 #include "sysemu/whpx.h"
43 #include "exec/exec-all.h"
44
45 #include "qemu/thread.h"
46 #include "sysemu/cpus.h"
47 #include "sysemu/qtest.h"
48 #include "qemu/main-loop.h"
49 #include "qemu/option.h"
50 #include "qemu/bitmap.h"
51 #include "qemu/seqlock.h"
52 #include "tcg.h"
53 #include "hw/nmi.h"
54 #include "sysemu/replay.h"
55 #include "hw/boards.h"
56
57 #ifdef CONFIG_LINUX
58
59 #include <sys/prctl.h>
60
61 #ifndef PR_MCE_KILL
62 #define PR_MCE_KILL 33
63 #endif
64
65 #ifndef PR_MCE_KILL_SET
66 #define PR_MCE_KILL_SET 1
67 #endif
68
69 #ifndef PR_MCE_KILL_EARLY
70 #define PR_MCE_KILL_EARLY 1
71 #endif
72
73 #endif /* CONFIG_LINUX */
74
75 int64_t max_delay;
76 int64_t max_advance;
77
78 /* vcpu throttling controls */
79 static QEMUTimer *throttle_timer;
80 static unsigned int throttle_percentage;
81
82 #define CPU_THROTTLE_PCT_MIN 1
83 #define CPU_THROTTLE_PCT_MAX 99
84 #define CPU_THROTTLE_TIMESLICE_NS 10000000
85
86 bool cpu_is_stopped(CPUState *cpu)
87 {
88 return cpu->stopped || !runstate_is_running();
89 }
90
91 static bool cpu_thread_is_idle(CPUState *cpu)
92 {
93 if (cpu->stop || cpu->queued_work_first) {
94 return false;
95 }
96 if (cpu_is_stopped(cpu)) {
97 return true;
98 }
99 if (!cpu->halted || cpu_has_work(cpu) ||
100 kvm_halt_in_kernel()) {
101 return false;
102 }
103 return true;
104 }
105
106 static bool all_cpu_threads_idle(void)
107 {
108 CPUState *cpu;
109
110 CPU_FOREACH(cpu) {
111 if (!cpu_thread_is_idle(cpu)) {
112 return false;
113 }
114 }
115 return true;
116 }
117
118 /***********************************************************/
119 /* guest cycle counter */
120
121 /* Protected by TimersState seqlock */
122
123 static bool icount_sleep = true;
124 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
125 #define MAX_ICOUNT_SHIFT 10
126
127 typedef struct TimersState {
128 /* Protected by BQL. */
129 int64_t cpu_ticks_prev;
130 int64_t cpu_ticks_offset;
131
132 /* Protect fields that can be respectively read outside the
133 * BQL, and written from multiple threads.
134 */
135 QemuSeqLock vm_clock_seqlock;
136 QemuSpin vm_clock_lock;
137
138 int16_t cpu_ticks_enabled;
139
140 /* Conversion factor from emulated instructions to virtual clock ticks. */
141 int16_t icount_time_shift;
142
143 /* Compensate for varying guest execution speed. */
144 int64_t qemu_icount_bias;
145
146 int64_t vm_clock_warp_start;
147 int64_t cpu_clock_offset;
148
149 /* Only written by TCG thread */
150 int64_t qemu_icount;
151
152 /* for adjusting icount */
153 QEMUTimer *icount_rt_timer;
154 QEMUTimer *icount_vm_timer;
155 QEMUTimer *icount_warp_timer;
156 } TimersState;
157
158 static TimersState timers_state;
159 bool mttcg_enabled;
160
161 /*
162 * We default to false if we know other options have been enabled
163 * which are currently incompatible with MTTCG. Otherwise when each
164 * guest (target) has been updated to support:
165 * - atomic instructions
166 * - memory ordering primitives (barriers)
167 * they can set the appropriate CONFIG flags in ${target}-softmmu.mak
168 *
169 * Once a guest architecture has been converted to the new primitives
170 * there are two remaining limitations to check.
171 *
172 * - The guest can't be oversized (e.g. 64 bit guest on 32 bit host)
173 * - The host must have a stronger memory order than the guest
174 *
175 * It may be possible in future to support strong guests on weak hosts
176 * but that will require tagging all load/stores in a guest with their
177 * implicit memory order requirements which would likely slow things
178 * down a lot.
179 */
180
181 static bool check_tcg_memory_orders_compatible(void)
182 {
183 #if defined(TCG_GUEST_DEFAULT_MO) && defined(TCG_TARGET_DEFAULT_MO)
184 return (TCG_GUEST_DEFAULT_MO & ~TCG_TARGET_DEFAULT_MO) == 0;
185 #else
186 return false;
187 #endif
188 }
189
190 static bool default_mttcg_enabled(void)
191 {
192 if (use_icount || TCG_OVERSIZED_GUEST) {
193 return false;
194 } else {
195 #ifdef TARGET_SUPPORTS_MTTCG
196 return check_tcg_memory_orders_compatible();
197 #else
198 return false;
199 #endif
200 }
201 }
202
203 void qemu_tcg_configure(QemuOpts *opts, Error **errp)
204 {
205 const char *t = qemu_opt_get(opts, "thread");
206 if (t) {
207 if (strcmp(t, "multi") == 0) {
208 if (TCG_OVERSIZED_GUEST) {
209 error_setg(errp, "No MTTCG when guest word size > hosts");
210 } else if (use_icount) {
211 error_setg(errp, "No MTTCG when icount is enabled");
212 } else {
213 #ifndef TARGET_SUPPORTS_MTTCG
214 warn_report("Guest not yet converted to MTTCG - "
215 "you may get unexpected results");
216 #endif
217 if (!check_tcg_memory_orders_compatible()) {
218 warn_report("Guest expects a stronger memory ordering "
219 "than the host provides");
220 error_printf("This may cause strange/hard to debug errors\n");
221 }
222 mttcg_enabled = true;
223 }
224 } else if (strcmp(t, "single") == 0) {
225 mttcg_enabled = false;
226 } else {
227 error_setg(errp, "Invalid 'thread' setting %s", t);
228 }
229 } else {
230 mttcg_enabled = default_mttcg_enabled();
231 }
232 }
233
234 /* The current number of executed instructions is based on what we
235 * originally budgeted minus the current state of the decrementing
236 * icount counters in extra/u16.low.
237 */
238 static int64_t cpu_get_icount_executed(CPUState *cpu)
239 {
240 return cpu->icount_budget - (cpu->icount_decr.u16.low + cpu->icount_extra);
241 }
242
243 /*
244 * Update the global shared timer_state.qemu_icount to take into
245 * account executed instructions. This is done by the TCG vCPU
246 * thread so the main-loop can see time has moved forward.
247 */
248 static void cpu_update_icount_locked(CPUState *cpu)
249 {
250 int64_t executed = cpu_get_icount_executed(cpu);
251 cpu->icount_budget -= executed;
252
253 atomic_set_i64(&timers_state.qemu_icount,
254 timers_state.qemu_icount + executed);
255 }
256
257 /*
258 * Update the global shared timer_state.qemu_icount to take into
259 * account executed instructions. This is done by the TCG vCPU
260 * thread so the main-loop can see time has moved forward.
261 */
262 void cpu_update_icount(CPUState *cpu)
263 {
264 seqlock_write_lock(&timers_state.vm_clock_seqlock,
265 &timers_state.vm_clock_lock);
266 cpu_update_icount_locked(cpu);
267 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
268 &timers_state.vm_clock_lock);
269 }
270
271 static int64_t cpu_get_icount_raw_locked(void)
272 {
273 CPUState *cpu = current_cpu;
274
275 if (cpu && cpu->running) {
276 if (!cpu->can_do_io) {
277 error_report("Bad icount read");
278 exit(1);
279 }
280 /* Take into account what has run */
281 cpu_update_icount_locked(cpu);
282 }
283 /* The read is protected by the seqlock, but needs atomic64 to avoid UB */
284 return atomic_read_i64(&timers_state.qemu_icount);
285 }
286
287 static int64_t cpu_get_icount_locked(void)
288 {
289 int64_t icount = cpu_get_icount_raw_locked();
290 return atomic_read_i64(&timers_state.qemu_icount_bias) +
291 cpu_icount_to_ns(icount);
292 }
293
294 int64_t cpu_get_icount_raw(void)
295 {
296 int64_t icount;
297 unsigned start;
298
299 do {
300 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
301 icount = cpu_get_icount_raw_locked();
302 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
303
304 return icount;
305 }
306
307 /* Return the virtual CPU time, based on the instruction counter. */
308 int64_t cpu_get_icount(void)
309 {
310 int64_t icount;
311 unsigned start;
312
313 do {
314 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
315 icount = cpu_get_icount_locked();
316 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
317
318 return icount;
319 }
320
321 int64_t cpu_icount_to_ns(int64_t icount)
322 {
323 return icount << atomic_read(&timers_state.icount_time_shift);
324 }
325
326 static int64_t cpu_get_ticks_locked(void)
327 {
328 int64_t ticks = timers_state.cpu_ticks_offset;
329 if (timers_state.cpu_ticks_enabled) {
330 ticks += cpu_get_host_ticks();
331 }
332
333 if (timers_state.cpu_ticks_prev > ticks) {
334 /* Non increasing ticks may happen if the host uses software suspend. */
335 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
336 ticks = timers_state.cpu_ticks_prev;
337 }
338
339 timers_state.cpu_ticks_prev = ticks;
340 return ticks;
341 }
342
343 /* return the time elapsed in VM between vm_start and vm_stop. Unless
344 * icount is active, cpu_get_ticks() uses units of the host CPU cycle
345 * counter.
346 */
347 int64_t cpu_get_ticks(void)
348 {
349 int64_t ticks;
350
351 if (use_icount) {
352 return cpu_get_icount();
353 }
354
355 qemu_spin_lock(&timers_state.vm_clock_lock);
356 ticks = cpu_get_ticks_locked();
357 qemu_spin_unlock(&timers_state.vm_clock_lock);
358 return ticks;
359 }
360
361 static int64_t cpu_get_clock_locked(void)
362 {
363 int64_t time;
364
365 time = timers_state.cpu_clock_offset;
366 if (timers_state.cpu_ticks_enabled) {
367 time += get_clock();
368 }
369
370 return time;
371 }
372
373 /* Return the monotonic time elapsed in VM, i.e.,
374 * the time between vm_start and vm_stop
375 */
376 int64_t cpu_get_clock(void)
377 {
378 int64_t ti;
379 unsigned start;
380
381 do {
382 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
383 ti = cpu_get_clock_locked();
384 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
385
386 return ti;
387 }
388
389 /* enable cpu_get_ticks()
390 * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
391 */
392 void cpu_enable_ticks(void)
393 {
394 seqlock_write_lock(&timers_state.vm_clock_seqlock,
395 &timers_state.vm_clock_lock);
396 if (!timers_state.cpu_ticks_enabled) {
397 timers_state.cpu_ticks_offset -= cpu_get_host_ticks();
398 timers_state.cpu_clock_offset -= get_clock();
399 timers_state.cpu_ticks_enabled = 1;
400 }
401 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
402 &timers_state.vm_clock_lock);
403 }
404
405 /* disable cpu_get_ticks() : the clock is stopped. You must not call
406 * cpu_get_ticks() after that.
407 * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
408 */
409 void cpu_disable_ticks(void)
410 {
411 seqlock_write_lock(&timers_state.vm_clock_seqlock,
412 &timers_state.vm_clock_lock);
413 if (timers_state.cpu_ticks_enabled) {
414 timers_state.cpu_ticks_offset += cpu_get_host_ticks();
415 timers_state.cpu_clock_offset = cpu_get_clock_locked();
416 timers_state.cpu_ticks_enabled = 0;
417 }
418 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
419 &timers_state.vm_clock_lock);
420 }
421
422 /* Correlation between real and virtual time is always going to be
423 fairly approximate, so ignore small variation.
424 When the guest is idle real and virtual time will be aligned in
425 the IO wait loop. */
426 #define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
427
428 static void icount_adjust(void)
429 {
430 int64_t cur_time;
431 int64_t cur_icount;
432 int64_t delta;
433
434 /* Protected by TimersState mutex. */
435 static int64_t last_delta;
436
437 /* If the VM is not running, then do nothing. */
438 if (!runstate_is_running()) {
439 return;
440 }
441
442 seqlock_write_lock(&timers_state.vm_clock_seqlock,
443 &timers_state.vm_clock_lock);
444 cur_time = cpu_get_clock_locked();
445 cur_icount = cpu_get_icount_locked();
446
447 delta = cur_icount - cur_time;
448 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
449 if (delta > 0
450 && last_delta + ICOUNT_WOBBLE < delta * 2
451 && timers_state.icount_time_shift > 0) {
452 /* The guest is getting too far ahead. Slow time down. */
453 atomic_set(&timers_state.icount_time_shift,
454 timers_state.icount_time_shift - 1);
455 }
456 if (delta < 0
457 && last_delta - ICOUNT_WOBBLE > delta * 2
458 && timers_state.icount_time_shift < MAX_ICOUNT_SHIFT) {
459 /* The guest is getting too far behind. Speed time up. */
460 atomic_set(&timers_state.icount_time_shift,
461 timers_state.icount_time_shift + 1);
462 }
463 last_delta = delta;
464 atomic_set_i64(&timers_state.qemu_icount_bias,
465 cur_icount - (timers_state.qemu_icount
466 << timers_state.icount_time_shift));
467 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
468 &timers_state.vm_clock_lock);
469 }
470
471 static void icount_adjust_rt(void *opaque)
472 {
473 timer_mod(timers_state.icount_rt_timer,
474 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
475 icount_adjust();
476 }
477
478 static void icount_adjust_vm(void *opaque)
479 {
480 timer_mod(timers_state.icount_vm_timer,
481 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
482 NANOSECONDS_PER_SECOND / 10);
483 icount_adjust();
484 }
485
486 static int64_t qemu_icount_round(int64_t count)
487 {
488 int shift = atomic_read(&timers_state.icount_time_shift);
489 return (count + (1 << shift) - 1) >> shift;
490 }
491
492 static void icount_warp_rt(void)
493 {
494 unsigned seq;
495 int64_t warp_start;
496
497 /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
498 * changes from -1 to another value, so the race here is okay.
499 */
500 do {
501 seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
502 warp_start = timers_state.vm_clock_warp_start;
503 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));
504
505 if (warp_start == -1) {
506 return;
507 }
508
509 seqlock_write_lock(&timers_state.vm_clock_seqlock,
510 &timers_state.vm_clock_lock);
511 if (runstate_is_running()) {
512 int64_t clock = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT,
513 cpu_get_clock_locked());
514 int64_t warp_delta;
515
516 warp_delta = clock - timers_state.vm_clock_warp_start;
517 if (use_icount == 2) {
518 /*
519 * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
520 * far ahead of real time.
521 */
522 int64_t cur_icount = cpu_get_icount_locked();
523 int64_t delta = clock - cur_icount;
524 warp_delta = MIN(warp_delta, delta);
525 }
526 atomic_set_i64(&timers_state.qemu_icount_bias,
527 timers_state.qemu_icount_bias + warp_delta);
528 }
529 timers_state.vm_clock_warp_start = -1;
530 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
531 &timers_state.vm_clock_lock);
532
533 if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
534 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
535 }
536 }
537
538 static void icount_timer_cb(void *opaque)
539 {
540 /* No need for a checkpoint because the timer already synchronizes
541 * with CHECKPOINT_CLOCK_VIRTUAL_RT.
542 */
543 icount_warp_rt();
544 }
545
546 void qtest_clock_warp(int64_t dest)
547 {
548 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
549 AioContext *aio_context;
550 assert(qtest_enabled());
551 aio_context = qemu_get_aio_context();
552 while (clock < dest) {
553 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
554 int64_t warp = qemu_soonest_timeout(dest - clock, deadline);
555
556 seqlock_write_lock(&timers_state.vm_clock_seqlock,
557 &timers_state.vm_clock_lock);
558 atomic_set_i64(&timers_state.qemu_icount_bias,
559 timers_state.qemu_icount_bias + warp);
560 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
561 &timers_state.vm_clock_lock);
562
563 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
564 timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]);
565 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
566 }
567 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
568 }
569
570 void qemu_start_warp_timer(void)
571 {
572 int64_t clock;
573 int64_t deadline;
574
575 if (!use_icount) {
576 return;
577 }
578
579 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
580 * do not fire, so computing the deadline does not make sense.
581 */
582 if (!runstate_is_running()) {
583 return;
584 }
585
586 if (replay_mode != REPLAY_MODE_PLAY) {
587 if (!all_cpu_threads_idle()) {
588 return;
589 }
590
591 if (qtest_enabled()) {
592 /* When testing, qtest commands advance icount. */
593 return;
594 }
595
596 replay_checkpoint(CHECKPOINT_CLOCK_WARP_START);
597 } else {
598 /* warp clock deterministically in record/replay mode */
599 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
600 /* vCPU is sleeping and warp can't be started.
601 It is probably a race condition: notification sent
602 to vCPU was processed in advance and vCPU went to sleep.
603 Therefore we have to wake it up for doing someting. */
604 if (replay_has_checkpoint()) {
605 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
606 }
607 return;
608 }
609 }
610
611 /* We want to use the earliest deadline from ALL vm_clocks */
612 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
613 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
614 if (deadline < 0) {
615 static bool notified;
616 if (!icount_sleep && !notified) {
617 warn_report("icount sleep disabled and no active timers");
618 notified = true;
619 }
620 return;
621 }
622
623 if (deadline > 0) {
624 /*
625 * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
626 * sleep. Otherwise, the CPU might be waiting for a future timer
627 * interrupt to wake it up, but the interrupt never comes because
628 * the vCPU isn't running any insns and thus doesn't advance the
629 * QEMU_CLOCK_VIRTUAL.
630 */
631 if (!icount_sleep) {
632 /*
633 * We never let VCPUs sleep in no sleep icount mode.
634 * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
635 * to the next QEMU_CLOCK_VIRTUAL event and notify it.
636 * It is useful when we want a deterministic execution time,
637 * isolated from host latencies.
638 */
639 seqlock_write_lock(&timers_state.vm_clock_seqlock,
640 &timers_state.vm_clock_lock);
641 atomic_set_i64(&timers_state.qemu_icount_bias,
642 timers_state.qemu_icount_bias + deadline);
643 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
644 &timers_state.vm_clock_lock);
645 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
646 } else {
647 /*
648 * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
649 * "real" time, (related to the time left until the next event) has
650 * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
651 * This avoids that the warps are visible externally; for example,
652 * you will not be sending network packets continuously instead of
653 * every 100ms.
654 */
655 seqlock_write_lock(&timers_state.vm_clock_seqlock,
656 &timers_state.vm_clock_lock);
657 if (timers_state.vm_clock_warp_start == -1
658 || timers_state.vm_clock_warp_start > clock) {
659 timers_state.vm_clock_warp_start = clock;
660 }
661 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
662 &timers_state.vm_clock_lock);
663 timer_mod_anticipate(timers_state.icount_warp_timer,
664 clock + deadline);
665 }
666 } else if (deadline == 0) {
667 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
668 }
669 }
670
671 static void qemu_account_warp_timer(void)
672 {
673 if (!use_icount || !icount_sleep) {
674 return;
675 }
676
677 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
678 * do not fire, so computing the deadline does not make sense.
679 */
680 if (!runstate_is_running()) {
681 return;
682 }
683
684 /* warp clock deterministically in record/replay mode */
685 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
686 return;
687 }
688
689 timer_del(timers_state.icount_warp_timer);
690 icount_warp_rt();
691 }
692
693 static bool icount_state_needed(void *opaque)
694 {
695 return use_icount;
696 }
697
698 static bool warp_timer_state_needed(void *opaque)
699 {
700 TimersState *s = opaque;
701 return s->icount_warp_timer != NULL;
702 }
703
704 static bool adjust_timers_state_needed(void *opaque)
705 {
706 TimersState *s = opaque;
707 return s->icount_rt_timer != NULL;
708 }
709
710 /*
711 * Subsection for warp timer migration is optional, because may not be created
712 */
713 static const VMStateDescription icount_vmstate_warp_timer = {
714 .name = "timer/icount/warp_timer",
715 .version_id = 1,
716 .minimum_version_id = 1,
717 .needed = warp_timer_state_needed,
718 .fields = (VMStateField[]) {
719 VMSTATE_INT64(vm_clock_warp_start, TimersState),
720 VMSTATE_TIMER_PTR(icount_warp_timer, TimersState),
721 VMSTATE_END_OF_LIST()
722 }
723 };
724
725 static const VMStateDescription icount_vmstate_adjust_timers = {
726 .name = "timer/icount/timers",
727 .version_id = 1,
728 .minimum_version_id = 1,
729 .needed = adjust_timers_state_needed,
730 .fields = (VMStateField[]) {
731 VMSTATE_TIMER_PTR(icount_rt_timer, TimersState),
732 VMSTATE_TIMER_PTR(icount_vm_timer, TimersState),
733 VMSTATE_END_OF_LIST()
734 }
735 };
736
737 /*
738 * This is a subsection for icount migration.
739 */
740 static const VMStateDescription icount_vmstate_timers = {
741 .name = "timer/icount",
742 .version_id = 1,
743 .minimum_version_id = 1,
744 .needed = icount_state_needed,
745 .fields = (VMStateField[]) {
746 VMSTATE_INT64(qemu_icount_bias, TimersState),
747 VMSTATE_INT64(qemu_icount, TimersState),
748 VMSTATE_END_OF_LIST()
749 },
750 .subsections = (const VMStateDescription*[]) {
751 &icount_vmstate_warp_timer,
752 &icount_vmstate_adjust_timers,
753 NULL
754 }
755 };
756
757 static const VMStateDescription vmstate_timers = {
758 .name = "timer",
759 .version_id = 2,
760 .minimum_version_id = 1,
761 .fields = (VMStateField[]) {
762 VMSTATE_INT64(cpu_ticks_offset, TimersState),
763 VMSTATE_UNUSED(8),
764 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
765 VMSTATE_END_OF_LIST()
766 },
767 .subsections = (const VMStateDescription*[]) {
768 &icount_vmstate_timers,
769 NULL
770 }
771 };
772
773 static void cpu_throttle_thread(CPUState *cpu, run_on_cpu_data opaque)
774 {
775 double pct;
776 double throttle_ratio;
777 long sleeptime_ns;
778
779 if (!cpu_throttle_get_percentage()) {
780 return;
781 }
782
783 pct = (double)cpu_throttle_get_percentage()/100;
784 throttle_ratio = pct / (1 - pct);
785 sleeptime_ns = (long)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS);
786
787 qemu_mutex_unlock_iothread();
788 g_usleep(sleeptime_ns / 1000); /* Convert ns to us for usleep call */
789 qemu_mutex_lock_iothread();
790 atomic_set(&cpu->throttle_thread_scheduled, 0);
791 }
792
793 static void cpu_throttle_timer_tick(void *opaque)
794 {
795 CPUState *cpu;
796 double pct;
797
798 /* Stop the timer if needed */
799 if (!cpu_throttle_get_percentage()) {
800 return;
801 }
802 CPU_FOREACH(cpu) {
803 if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) {
804 async_run_on_cpu(cpu, cpu_throttle_thread,
805 RUN_ON_CPU_NULL);
806 }
807 }
808
809 pct = (double)cpu_throttle_get_percentage()/100;
810 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
811 CPU_THROTTLE_TIMESLICE_NS / (1-pct));
812 }
813
814 void cpu_throttle_set(int new_throttle_pct)
815 {
816 /* Ensure throttle percentage is within valid range */
817 new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX);
818 new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN);
819
820 atomic_set(&throttle_percentage, new_throttle_pct);
821
822 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
823 CPU_THROTTLE_TIMESLICE_NS);
824 }
825
826 void cpu_throttle_stop(void)
827 {
828 atomic_set(&throttle_percentage, 0);
829 }
830
831 bool cpu_throttle_active(void)
832 {
833 return (cpu_throttle_get_percentage() != 0);
834 }
835
836 int cpu_throttle_get_percentage(void)
837 {
838 return atomic_read(&throttle_percentage);
839 }
840
841 void cpu_ticks_init(void)
842 {
843 seqlock_init(&timers_state.vm_clock_seqlock);
844 qemu_spin_init(&timers_state.vm_clock_lock);
845 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
846 throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
847 cpu_throttle_timer_tick, NULL);
848 }
849
850 void configure_icount(QemuOpts *opts, Error **errp)
851 {
852 const char *option;
853 char *rem_str = NULL;
854
855 option = qemu_opt_get(opts, "shift");
856 if (!option) {
857 if (qemu_opt_get(opts, "align") != NULL) {
858 error_setg(errp, "Please specify shift option when using align");
859 }
860 return;
861 }
862
863 icount_sleep = qemu_opt_get_bool(opts, "sleep", true);
864 if (icount_sleep) {
865 timers_state.icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
866 icount_timer_cb, NULL);
867 }
868
869 icount_align_option = qemu_opt_get_bool(opts, "align", false);
870
871 if (icount_align_option && !icount_sleep) {
872 error_setg(errp, "align=on and sleep=off are incompatible");
873 }
874 if (strcmp(option, "auto") != 0) {
875 errno = 0;
876 timers_state.icount_time_shift = strtol(option, &rem_str, 0);
877 if (errno != 0 || *rem_str != '\0' || !strlen(option)) {
878 error_setg(errp, "icount: Invalid shift value");
879 }
880 use_icount = 1;
881 return;
882 } else if (icount_align_option) {
883 error_setg(errp, "shift=auto and align=on are incompatible");
884 } else if (!icount_sleep) {
885 error_setg(errp, "shift=auto and sleep=off are incompatible");
886 }
887
888 use_icount = 2;
889
890 /* 125MIPS seems a reasonable initial guess at the guest speed.
891 It will be corrected fairly quickly anyway. */
892 timers_state.icount_time_shift = 3;
893
894 /* Have both realtime and virtual time triggers for speed adjustment.
895 The realtime trigger catches emulated time passing too slowly,
896 the virtual time trigger catches emulated time passing too fast.
897 Realtime triggers occur even when idle, so use them less frequently
898 than VM triggers. */
899 timers_state.vm_clock_warp_start = -1;
900 timers_state.icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
901 icount_adjust_rt, NULL);
902 timer_mod(timers_state.icount_rt_timer,
903 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
904 timers_state.icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
905 icount_adjust_vm, NULL);
906 timer_mod(timers_state.icount_vm_timer,
907 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
908 NANOSECONDS_PER_SECOND / 10);
909 }
910
911 /***********************************************************/
912 /* TCG vCPU kick timer
913 *
914 * The kick timer is responsible for moving single threaded vCPU
915 * emulation on to the next vCPU. If more than one vCPU is running a
916 * timer event with force a cpu->exit so the next vCPU can get
917 * scheduled.
918 *
919 * The timer is removed if all vCPUs are idle and restarted again once
920 * idleness is complete.
921 */
922
923 static QEMUTimer *tcg_kick_vcpu_timer;
924 static CPUState *tcg_current_rr_cpu;
925
926 #define TCG_KICK_PERIOD (NANOSECONDS_PER_SECOND / 10)
927
928 static inline int64_t qemu_tcg_next_kick(void)
929 {
930 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + TCG_KICK_PERIOD;
931 }
932
933 /* Kick the currently round-robin scheduled vCPU */
934 static void qemu_cpu_kick_rr_cpu(void)
935 {
936 CPUState *cpu;
937 do {
938 cpu = atomic_mb_read(&tcg_current_rr_cpu);
939 if (cpu) {
940 cpu_exit(cpu);
941 }
942 } while (cpu != atomic_mb_read(&tcg_current_rr_cpu));
943 }
944
945 static void do_nothing(CPUState *cpu, run_on_cpu_data unused)
946 {
947 }
948
949 void qemu_timer_notify_cb(void *opaque, QEMUClockType type)
950 {
951 if (!use_icount || type != QEMU_CLOCK_VIRTUAL) {
952 qemu_notify_event();
953 return;
954 }
955
956 if (qemu_in_vcpu_thread()) {
957 /* A CPU is currently running; kick it back out to the
958 * tcg_cpu_exec() loop so it will recalculate its
959 * icount deadline immediately.
960 */
961 qemu_cpu_kick(current_cpu);
962 } else if (first_cpu) {
963 /* qemu_cpu_kick is not enough to kick a halted CPU out of
964 * qemu_tcg_wait_io_event. async_run_on_cpu, instead,
965 * causes cpu_thread_is_idle to return false. This way,
966 * handle_icount_deadline can run.
967 * If we have no CPUs at all for some reason, we don't
968 * need to do anything.
969 */
970 async_run_on_cpu(first_cpu, do_nothing, RUN_ON_CPU_NULL);
971 }
972 }
973
974 static void kick_tcg_thread(void *opaque)
975 {
976 timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
977 qemu_cpu_kick_rr_cpu();
978 }
979
980 static void start_tcg_kick_timer(void)
981 {
982 assert(!mttcg_enabled);
983 if (!tcg_kick_vcpu_timer && CPU_NEXT(first_cpu)) {
984 tcg_kick_vcpu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
985 kick_tcg_thread, NULL);
986 }
987 if (tcg_kick_vcpu_timer && !timer_pending(tcg_kick_vcpu_timer)) {
988 timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
989 }
990 }
991
992 static void stop_tcg_kick_timer(void)
993 {
994 assert(!mttcg_enabled);
995 if (tcg_kick_vcpu_timer && timer_pending(tcg_kick_vcpu_timer)) {
996 timer_del(tcg_kick_vcpu_timer);
997 }
998 }
999
1000 /***********************************************************/
1001 void hw_error(const char *fmt, ...)
1002 {
1003 va_list ap;
1004 CPUState *cpu;
1005
1006 va_start(ap, fmt);
1007 fprintf(stderr, "qemu: hardware error: ");
1008 vfprintf(stderr, fmt, ap);
1009 fprintf(stderr, "\n");
1010 CPU_FOREACH(cpu) {
1011 fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
1012 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU);
1013 }
1014 va_end(ap);
1015 abort();
1016 }
1017
1018 void cpu_synchronize_all_states(void)
1019 {
1020 CPUState *cpu;
1021
1022 CPU_FOREACH(cpu) {
1023 cpu_synchronize_state(cpu);
1024 /* TODO: move to cpu_synchronize_state() */
1025 if (hvf_enabled()) {
1026 hvf_cpu_synchronize_state(cpu);
1027 }
1028 }
1029 }
1030
1031 void cpu_synchronize_all_post_reset(void)
1032 {
1033 CPUState *cpu;
1034
1035 CPU_FOREACH(cpu) {
1036 cpu_synchronize_post_reset(cpu);
1037 /* TODO: move to cpu_synchronize_post_reset() */
1038 if (hvf_enabled()) {
1039 hvf_cpu_synchronize_post_reset(cpu);
1040 }
1041 }
1042 }
1043
1044 void cpu_synchronize_all_post_init(void)
1045 {
1046 CPUState *cpu;
1047
1048 CPU_FOREACH(cpu) {
1049 cpu_synchronize_post_init(cpu);
1050 /* TODO: move to cpu_synchronize_post_init() */
1051 if (hvf_enabled()) {
1052 hvf_cpu_synchronize_post_init(cpu);
1053 }
1054 }
1055 }
1056
1057 void cpu_synchronize_all_pre_loadvm(void)
1058 {
1059 CPUState *cpu;
1060
1061 CPU_FOREACH(cpu) {
1062 cpu_synchronize_pre_loadvm(cpu);
1063 }
1064 }
1065
1066 static int do_vm_stop(RunState state, bool send_stop)
1067 {
1068 int ret = 0;
1069
1070 if (runstate_is_running()) {
1071 cpu_disable_ticks();
1072 pause_all_vcpus();
1073 runstate_set(state);
1074 vm_state_notify(0, state);
1075 if (send_stop) {
1076 qapi_event_send_stop();
1077 }
1078 }
1079
1080 bdrv_drain_all();
1081 replay_disable_events();
1082 ret = bdrv_flush_all();
1083
1084 return ret;
1085 }
1086
1087 /* Special vm_stop() variant for terminating the process. Historically clients
1088 * did not expect a QMP STOP event and so we need to retain compatibility.
1089 */
1090 int vm_shutdown(void)
1091 {
1092 return do_vm_stop(RUN_STATE_SHUTDOWN, false);
1093 }
1094
1095 static bool cpu_can_run(CPUState *cpu)
1096 {
1097 if (cpu->stop) {
1098 return false;
1099 }
1100 if (cpu_is_stopped(cpu)) {
1101 return false;
1102 }
1103 return true;
1104 }
1105
1106 static void cpu_handle_guest_debug(CPUState *cpu)
1107 {
1108 gdb_set_stop_cpu(cpu);
1109 qemu_system_debug_request();
1110 cpu->stopped = true;
1111 }
1112
1113 #ifdef CONFIG_LINUX
1114 static void sigbus_reraise(void)
1115 {
1116 sigset_t set;
1117 struct sigaction action;
1118
1119 memset(&action, 0, sizeof(action));
1120 action.sa_handler = SIG_DFL;
1121 if (!sigaction(SIGBUS, &action, NULL)) {
1122 raise(SIGBUS);
1123 sigemptyset(&set);
1124 sigaddset(&set, SIGBUS);
1125 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
1126 }
1127 perror("Failed to re-raise SIGBUS!\n");
1128 abort();
1129 }
1130
1131 static void sigbus_handler(int n, siginfo_t *siginfo, void *ctx)
1132 {
1133 if (siginfo->si_code != BUS_MCEERR_AO && siginfo->si_code != BUS_MCEERR_AR) {
1134 sigbus_reraise();
1135 }
1136
1137 if (current_cpu) {
1138 /* Called asynchronously in VCPU thread. */
1139 if (kvm_on_sigbus_vcpu(current_cpu, siginfo->si_code, siginfo->si_addr)) {
1140 sigbus_reraise();
1141 }
1142 } else {
1143 /* Called synchronously (via signalfd) in main thread. */
1144 if (kvm_on_sigbus(siginfo->si_code, siginfo->si_addr)) {
1145 sigbus_reraise();
1146 }
1147 }
1148 }
1149
1150 static void qemu_init_sigbus(void)
1151 {
1152 struct sigaction action;
1153
1154 memset(&action, 0, sizeof(action));
1155 action.sa_flags = SA_SIGINFO;
1156 action.sa_sigaction = sigbus_handler;
1157 sigaction(SIGBUS, &action, NULL);
1158
1159 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
1160 }
1161 #else /* !CONFIG_LINUX */
1162 static void qemu_init_sigbus(void)
1163 {
1164 }
1165 #endif /* !CONFIG_LINUX */
1166
1167 static QemuMutex qemu_global_mutex;
1168
1169 static QemuThread io_thread;
1170
1171 /* cpu creation */
1172 static QemuCond qemu_cpu_cond;
1173 /* system init */
1174 static QemuCond qemu_pause_cond;
1175
1176 void qemu_init_cpu_loop(void)
1177 {
1178 qemu_init_sigbus();
1179 qemu_cond_init(&qemu_cpu_cond);
1180 qemu_cond_init(&qemu_pause_cond);
1181 qemu_mutex_init(&qemu_global_mutex);
1182
1183 qemu_thread_get_self(&io_thread);
1184 }
1185
1186 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
1187 {
1188 do_run_on_cpu(cpu, func, data, &qemu_global_mutex);
1189 }
1190
1191 static void qemu_kvm_destroy_vcpu(CPUState *cpu)
1192 {
1193 if (kvm_destroy_vcpu(cpu) < 0) {
1194 error_report("kvm_destroy_vcpu failed");
1195 exit(EXIT_FAILURE);
1196 }
1197 }
1198
1199 static void qemu_tcg_destroy_vcpu(CPUState *cpu)
1200 {
1201 }
1202
1203 static void qemu_cpu_stop(CPUState *cpu, bool exit)
1204 {
1205 g_assert(qemu_cpu_is_self(cpu));
1206 cpu->stop = false;
1207 cpu->stopped = true;
1208 if (exit) {
1209 cpu_exit(cpu);
1210 }
1211 qemu_cond_broadcast(&qemu_pause_cond);
1212 }
1213
1214 static void qemu_wait_io_event_common(CPUState *cpu)
1215 {
1216 atomic_mb_set(&cpu->thread_kicked, false);
1217 if (cpu->stop) {
1218 qemu_cpu_stop(cpu, false);
1219 }
1220 process_queued_cpu_work(cpu);
1221 }
1222
1223 static void qemu_tcg_rr_wait_io_event(void)
1224 {
1225 CPUState *cpu;
1226
1227 while (all_cpu_threads_idle()) {
1228 stop_tcg_kick_timer();
1229 qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
1230 }
1231
1232 start_tcg_kick_timer();
1233
1234 CPU_FOREACH(cpu) {
1235 qemu_wait_io_event_common(cpu);
1236 }
1237 }
1238
1239 static void qemu_wait_io_event(CPUState *cpu)
1240 {
1241 while (cpu_thread_is_idle(cpu)) {
1242 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1243 }
1244
1245 #ifdef _WIN32
1246 /* Eat dummy APC queued by qemu_cpu_kick_thread. */
1247 if (!tcg_enabled()) {
1248 SleepEx(0, TRUE);
1249 }
1250 #endif
1251 qemu_wait_io_event_common(cpu);
1252 }
1253
1254 static void *qemu_kvm_cpu_thread_fn(void *arg)
1255 {
1256 CPUState *cpu = arg;
1257 int r;
1258
1259 rcu_register_thread();
1260
1261 qemu_mutex_lock_iothread();
1262 qemu_thread_get_self(cpu->thread);
1263 cpu->thread_id = qemu_get_thread_id();
1264 cpu->can_do_io = 1;
1265 current_cpu = cpu;
1266
1267 r = kvm_init_vcpu(cpu);
1268 if (r < 0) {
1269 error_report("kvm_init_vcpu failed: %s", strerror(-r));
1270 exit(1);
1271 }
1272
1273 kvm_init_cpu_signals(cpu);
1274
1275 /* signal CPU creation */
1276 cpu->created = true;
1277 qemu_cond_signal(&qemu_cpu_cond);
1278
1279 do {
1280 if (cpu_can_run(cpu)) {
1281 r = kvm_cpu_exec(cpu);
1282 if (r == EXCP_DEBUG) {
1283 cpu_handle_guest_debug(cpu);
1284 }
1285 }
1286 qemu_wait_io_event(cpu);
1287 } while (!cpu->unplug || cpu_can_run(cpu));
1288
1289 qemu_kvm_destroy_vcpu(cpu);
1290 cpu->created = false;
1291 qemu_cond_signal(&qemu_cpu_cond);
1292 qemu_mutex_unlock_iothread();
1293 rcu_unregister_thread();
1294 return NULL;
1295 }
1296
1297 static void *qemu_dummy_cpu_thread_fn(void *arg)
1298 {
1299 #ifdef _WIN32
1300 error_report("qtest is not supported under Windows");
1301 exit(1);
1302 #else
1303 CPUState *cpu = arg;
1304 sigset_t waitset;
1305 int r;
1306
1307 rcu_register_thread();
1308
1309 qemu_mutex_lock_iothread();
1310 qemu_thread_get_self(cpu->thread);
1311 cpu->thread_id = qemu_get_thread_id();
1312 cpu->can_do_io = 1;
1313 current_cpu = cpu;
1314
1315 sigemptyset(&waitset);
1316 sigaddset(&waitset, SIG_IPI);
1317
1318 /* signal CPU creation */
1319 cpu->created = true;
1320 qemu_cond_signal(&qemu_cpu_cond);
1321
1322 do {
1323 qemu_mutex_unlock_iothread();
1324 do {
1325 int sig;
1326 r = sigwait(&waitset, &sig);
1327 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
1328 if (r == -1) {
1329 perror("sigwait");
1330 exit(1);
1331 }
1332 qemu_mutex_lock_iothread();
1333 qemu_wait_io_event(cpu);
1334 } while (!cpu->unplug);
1335
1336 rcu_unregister_thread();
1337 return NULL;
1338 #endif
1339 }
1340
1341 static int64_t tcg_get_icount_limit(void)
1342 {
1343 int64_t deadline;
1344
1345 if (replay_mode != REPLAY_MODE_PLAY) {
1346 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1347
1348 /* Maintain prior (possibly buggy) behaviour where if no deadline
1349 * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
1350 * INT32_MAX nanoseconds ahead, we still use INT32_MAX
1351 * nanoseconds.
1352 */
1353 if ((deadline < 0) || (deadline > INT32_MAX)) {
1354 deadline = INT32_MAX;
1355 }
1356
1357 return qemu_icount_round(deadline);
1358 } else {
1359 return replay_get_instructions();
1360 }
1361 }
1362
1363 static void handle_icount_deadline(void)
1364 {
1365 assert(qemu_in_vcpu_thread());
1366 if (use_icount) {
1367 int64_t deadline =
1368 qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1369
1370 if (deadline == 0) {
1371 /* Wake up other AioContexts. */
1372 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
1373 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
1374 }
1375 }
1376 }
1377
1378 static void prepare_icount_for_run(CPUState *cpu)
1379 {
1380 if (use_icount) {
1381 int insns_left;
1382
1383 /* These should always be cleared by process_icount_data after
1384 * each vCPU execution. However u16.high can be raised
1385 * asynchronously by cpu_exit/cpu_interrupt/tcg_handle_interrupt
1386 */
1387 g_assert(cpu->icount_decr.u16.low == 0);
1388 g_assert(cpu->icount_extra == 0);
1389
1390 cpu->icount_budget = tcg_get_icount_limit();
1391 insns_left = MIN(0xffff, cpu->icount_budget);
1392 cpu->icount_decr.u16.low = insns_left;
1393 cpu->icount_extra = cpu->icount_budget - insns_left;
1394
1395 replay_mutex_lock();
1396 }
1397 }
1398
1399 static void process_icount_data(CPUState *cpu)
1400 {
1401 if (use_icount) {
1402 /* Account for executed instructions */
1403 cpu_update_icount(cpu);
1404
1405 /* Reset the counters */
1406 cpu->icount_decr.u16.low = 0;
1407 cpu->icount_extra = 0;
1408 cpu->icount_budget = 0;
1409
1410 replay_account_executed_instructions();
1411
1412 replay_mutex_unlock();
1413 }
1414 }
1415
1416
1417 static int tcg_cpu_exec(CPUState *cpu)
1418 {
1419 int ret;
1420 #ifdef CONFIG_PROFILER
1421 int64_t ti;
1422 #endif
1423
1424 assert(tcg_enabled());
1425 #ifdef CONFIG_PROFILER
1426 ti = profile_getclock();
1427 #endif
1428 cpu_exec_start(cpu);
1429 ret = cpu_exec(cpu);
1430 cpu_exec_end(cpu);
1431 #ifdef CONFIG_PROFILER
1432 atomic_set(&tcg_ctx->prof.cpu_exec_time,
1433 tcg_ctx->prof.cpu_exec_time + profile_getclock() - ti);
1434 #endif
1435 return ret;
1436 }
1437
1438 /* Destroy any remaining vCPUs which have been unplugged and have
1439 * finished running
1440 */
1441 static void deal_with_unplugged_cpus(void)
1442 {
1443 CPUState *cpu;
1444
1445 CPU_FOREACH(cpu) {
1446 if (cpu->unplug && !cpu_can_run(cpu)) {
1447 qemu_tcg_destroy_vcpu(cpu);
1448 cpu->created = false;
1449 qemu_cond_signal(&qemu_cpu_cond);
1450 break;
1451 }
1452 }
1453 }
1454
1455 /* Single-threaded TCG
1456 *
1457 * In the single-threaded case each vCPU is simulated in turn. If
1458 * there is more than a single vCPU we create a simple timer to kick
1459 * the vCPU and ensure we don't get stuck in a tight loop in one vCPU.
1460 * This is done explicitly rather than relying on side-effects
1461 * elsewhere.
1462 */
1463
1464 static void *qemu_tcg_rr_cpu_thread_fn(void *arg)
1465 {
1466 CPUState *cpu = arg;
1467
1468 assert(tcg_enabled());
1469 rcu_register_thread();
1470 tcg_register_thread();
1471
1472 qemu_mutex_lock_iothread();
1473 qemu_thread_get_self(cpu->thread);
1474
1475 cpu->thread_id = qemu_get_thread_id();
1476 cpu->created = true;
1477 cpu->can_do_io = 1;
1478 qemu_cond_signal(&qemu_cpu_cond);
1479
1480 /* wait for initial kick-off after machine start */
1481 while (first_cpu->stopped) {
1482 qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
1483
1484 /* process any pending work */
1485 CPU_FOREACH(cpu) {
1486 current_cpu = cpu;
1487 qemu_wait_io_event_common(cpu);
1488 }
1489 }
1490
1491 start_tcg_kick_timer();
1492
1493 cpu = first_cpu;
1494
1495 /* process any pending work */
1496 cpu->exit_request = 1;
1497
1498 while (1) {
1499 qemu_mutex_unlock_iothread();
1500 replay_mutex_lock();
1501 qemu_mutex_lock_iothread();
1502 /* Account partial waits to QEMU_CLOCK_VIRTUAL. */
1503 qemu_account_warp_timer();
1504
1505 /* Run the timers here. This is much more efficient than
1506 * waking up the I/O thread and waiting for completion.
1507 */
1508 handle_icount_deadline();
1509
1510 replay_mutex_unlock();
1511
1512 if (!cpu) {
1513 cpu = first_cpu;
1514 }
1515
1516 while (cpu && !cpu->queued_work_first && !cpu->exit_request) {
1517
1518 atomic_mb_set(&tcg_current_rr_cpu, cpu);
1519 current_cpu = cpu;
1520
1521 qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
1522 (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
1523
1524 if (cpu_can_run(cpu)) {
1525 int r;
1526
1527 qemu_mutex_unlock_iothread();
1528 prepare_icount_for_run(cpu);
1529
1530 r = tcg_cpu_exec(cpu);
1531
1532 process_icount_data(cpu);
1533 qemu_mutex_lock_iothread();
1534
1535 if (r == EXCP_DEBUG) {
1536 cpu_handle_guest_debug(cpu);
1537 break;
1538 } else if (r == EXCP_ATOMIC) {
1539 qemu_mutex_unlock_iothread();
1540 cpu_exec_step_atomic(cpu);
1541 qemu_mutex_lock_iothread();
1542 break;
1543 }
1544 } else if (cpu->stop) {
1545 if (cpu->unplug) {
1546 cpu = CPU_NEXT(cpu);
1547 }
1548 break;
1549 }
1550
1551 cpu = CPU_NEXT(cpu);
1552 } /* while (cpu && !cpu->exit_request).. */
1553
1554 /* Does not need atomic_mb_set because a spurious wakeup is okay. */
1555 atomic_set(&tcg_current_rr_cpu, NULL);
1556
1557 if (cpu && cpu->exit_request) {
1558 atomic_mb_set(&cpu->exit_request, 0);
1559 }
1560
1561 if (use_icount && all_cpu_threads_idle()) {
1562 /*
1563 * When all cpus are sleeping (e.g in WFI), to avoid a deadlock
1564 * in the main_loop, wake it up in order to start the warp timer.
1565 */
1566 qemu_notify_event();
1567 }
1568
1569 qemu_tcg_rr_wait_io_event();
1570 deal_with_unplugged_cpus();
1571 }
1572
1573 rcu_unregister_thread();
1574 return NULL;
1575 }
1576
1577 static void *qemu_hax_cpu_thread_fn(void *arg)
1578 {
1579 CPUState *cpu = arg;
1580 int r;
1581
1582 rcu_register_thread();
1583 qemu_mutex_lock_iothread();
1584 qemu_thread_get_self(cpu->thread);
1585
1586 cpu->thread_id = qemu_get_thread_id();
1587 cpu->created = true;
1588 cpu->halted = 0;
1589 current_cpu = cpu;
1590
1591 hax_init_vcpu(cpu);
1592 qemu_cond_signal(&qemu_cpu_cond);
1593
1594 do {
1595 if (cpu_can_run(cpu)) {
1596 r = hax_smp_cpu_exec(cpu);
1597 if (r == EXCP_DEBUG) {
1598 cpu_handle_guest_debug(cpu);
1599 }
1600 }
1601
1602 qemu_wait_io_event(cpu);
1603 } while (!cpu->unplug || cpu_can_run(cpu));
1604 rcu_unregister_thread();
1605 return NULL;
1606 }
1607
1608 /* The HVF-specific vCPU thread function. This one should only run when the host
1609 * CPU supports the VMX "unrestricted guest" feature. */
1610 static void *qemu_hvf_cpu_thread_fn(void *arg)
1611 {
1612 CPUState *cpu = arg;
1613
1614 int r;
1615
1616 assert(hvf_enabled());
1617
1618 rcu_register_thread();
1619
1620 qemu_mutex_lock_iothread();
1621 qemu_thread_get_self(cpu->thread);
1622
1623 cpu->thread_id = qemu_get_thread_id();
1624 cpu->can_do_io = 1;
1625 current_cpu = cpu;
1626
1627 hvf_init_vcpu(cpu);
1628
1629 /* signal CPU creation */
1630 cpu->created = true;
1631 qemu_cond_signal(&qemu_cpu_cond);
1632
1633 do {
1634 if (cpu_can_run(cpu)) {
1635 r = hvf_vcpu_exec(cpu);
1636 if (r == EXCP_DEBUG) {
1637 cpu_handle_guest_debug(cpu);
1638 }
1639 }
1640 qemu_wait_io_event(cpu);
1641 } while (!cpu->unplug || cpu_can_run(cpu));
1642
1643 hvf_vcpu_destroy(cpu);
1644 cpu->created = false;
1645 qemu_cond_signal(&qemu_cpu_cond);
1646 qemu_mutex_unlock_iothread();
1647 rcu_unregister_thread();
1648 return NULL;
1649 }
1650
1651 static void *qemu_whpx_cpu_thread_fn(void *arg)
1652 {
1653 CPUState *cpu = arg;
1654 int r;
1655
1656 rcu_register_thread();
1657
1658 qemu_mutex_lock_iothread();
1659 qemu_thread_get_self(cpu->thread);
1660 cpu->thread_id = qemu_get_thread_id();
1661 current_cpu = cpu;
1662
1663 r = whpx_init_vcpu(cpu);
1664 if (r < 0) {
1665 fprintf(stderr, "whpx_init_vcpu failed: %s\n", strerror(-r));
1666 exit(1);
1667 }
1668
1669 /* signal CPU creation */
1670 cpu->created = true;
1671 qemu_cond_signal(&qemu_cpu_cond);
1672
1673 do {
1674 if (cpu_can_run(cpu)) {
1675 r = whpx_vcpu_exec(cpu);
1676 if (r == EXCP_DEBUG) {
1677 cpu_handle_guest_debug(cpu);
1678 }
1679 }
1680 while (cpu_thread_is_idle(cpu)) {
1681 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1682 }
1683 qemu_wait_io_event_common(cpu);
1684 } while (!cpu->unplug || cpu_can_run(cpu));
1685
1686 whpx_destroy_vcpu(cpu);
1687 cpu->created = false;
1688 qemu_cond_signal(&qemu_cpu_cond);
1689 qemu_mutex_unlock_iothread();
1690 rcu_unregister_thread();
1691 return NULL;
1692 }
1693
1694 #ifdef _WIN32
1695 static void CALLBACK dummy_apc_func(ULONG_PTR unused)
1696 {
1697 }
1698 #endif
1699
1700 /* Multi-threaded TCG
1701 *
1702 * In the multi-threaded case each vCPU has its own thread. The TLS
1703 * variable current_cpu can be used deep in the code to find the
1704 * current CPUState for a given thread.
1705 */
1706
1707 static void *qemu_tcg_cpu_thread_fn(void *arg)
1708 {
1709 CPUState *cpu = arg;
1710
1711 assert(tcg_enabled());
1712 g_assert(!use_icount);
1713
1714 rcu_register_thread();
1715 tcg_register_thread();
1716
1717 qemu_mutex_lock_iothread();
1718 qemu_thread_get_self(cpu->thread);
1719
1720 cpu->thread_id = qemu_get_thread_id();
1721 cpu->created = true;
1722 cpu->can_do_io = 1;
1723 current_cpu = cpu;
1724 qemu_cond_signal(&qemu_cpu_cond);
1725
1726 /* process any pending work */
1727 cpu->exit_request = 1;
1728
1729 do {
1730 if (cpu_can_run(cpu)) {
1731 int r;
1732 qemu_mutex_unlock_iothread();
1733 r = tcg_cpu_exec(cpu);
1734 qemu_mutex_lock_iothread();
1735 switch (r) {
1736 case EXCP_DEBUG:
1737 cpu_handle_guest_debug(cpu);
1738 break;
1739 case EXCP_HALTED:
1740 /* during start-up the vCPU is reset and the thread is
1741 * kicked several times. If we don't ensure we go back
1742 * to sleep in the halted state we won't cleanly
1743 * start-up when the vCPU is enabled.
1744 *
1745 * cpu->halted should ensure we sleep in wait_io_event
1746 */
1747 g_assert(cpu->halted);
1748 break;
1749 case EXCP_ATOMIC:
1750 qemu_mutex_unlock_iothread();
1751 cpu_exec_step_atomic(cpu);
1752 qemu_mutex_lock_iothread();
1753 default:
1754 /* Ignore everything else? */
1755 break;
1756 }
1757 }
1758
1759 atomic_mb_set(&cpu->exit_request, 0);
1760 qemu_wait_io_event(cpu);
1761 } while (!cpu->unplug || cpu_can_run(cpu));
1762
1763 qemu_tcg_destroy_vcpu(cpu);
1764 cpu->created = false;
1765 qemu_cond_signal(&qemu_cpu_cond);
1766 qemu_mutex_unlock_iothread();
1767 rcu_unregister_thread();
1768 return NULL;
1769 }
1770
1771 static void qemu_cpu_kick_thread(CPUState *cpu)
1772 {
1773 #ifndef _WIN32
1774 int err;
1775
1776 if (cpu->thread_kicked) {
1777 return;
1778 }
1779 cpu->thread_kicked = true;
1780 err = pthread_kill(cpu->thread->thread, SIG_IPI);
1781 if (err && err != ESRCH) {
1782 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
1783 exit(1);
1784 }
1785 #else /* _WIN32 */
1786 if (!qemu_cpu_is_self(cpu)) {
1787 if (whpx_enabled()) {
1788 whpx_vcpu_kick(cpu);
1789 } else if (!QueueUserAPC(dummy_apc_func, cpu->hThread, 0)) {
1790 fprintf(stderr, "%s: QueueUserAPC failed with error %lu\n",
1791 __func__, GetLastError());
1792 exit(1);
1793 }
1794 }
1795 #endif
1796 }
1797
1798 void qemu_cpu_kick(CPUState *cpu)
1799 {
1800 qemu_cond_broadcast(cpu->halt_cond);
1801 if (tcg_enabled()) {
1802 cpu_exit(cpu);
1803 /* NOP unless doing single-thread RR */
1804 qemu_cpu_kick_rr_cpu();
1805 } else {
1806 if (hax_enabled()) {
1807 /*
1808 * FIXME: race condition with the exit_request check in
1809 * hax_vcpu_hax_exec
1810 */
1811 cpu->exit_request = 1;
1812 }
1813 qemu_cpu_kick_thread(cpu);
1814 }
1815 }
1816
1817 void qemu_cpu_kick_self(void)
1818 {
1819 assert(current_cpu);
1820 qemu_cpu_kick_thread(current_cpu);
1821 }
1822
1823 bool qemu_cpu_is_self(CPUState *cpu)
1824 {
1825 return qemu_thread_is_self(cpu->thread);
1826 }
1827
1828 bool qemu_in_vcpu_thread(void)
1829 {
1830 return current_cpu && qemu_cpu_is_self(current_cpu);
1831 }
1832
1833 static __thread bool iothread_locked = false;
1834
1835 bool qemu_mutex_iothread_locked(void)
1836 {
1837 return iothread_locked;
1838 }
1839
1840 /*
1841 * The BQL is taken from so many places that it is worth profiling the
1842 * callers directly, instead of funneling them all through a single function.
1843 */
1844 void qemu_mutex_lock_iothread_impl(const char *file, int line)
1845 {
1846 QemuMutexLockFunc bql_lock = atomic_read(&qemu_bql_mutex_lock_func);
1847
1848 g_assert(!qemu_mutex_iothread_locked());
1849 bql_lock(&qemu_global_mutex, file, line);
1850 iothread_locked = true;
1851 }
1852
1853 void qemu_mutex_unlock_iothread(void)
1854 {
1855 g_assert(qemu_mutex_iothread_locked());
1856 iothread_locked = false;
1857 qemu_mutex_unlock(&qemu_global_mutex);
1858 }
1859
1860 static bool all_vcpus_paused(void)
1861 {
1862 CPUState *cpu;
1863
1864 CPU_FOREACH(cpu) {
1865 if (!cpu->stopped) {
1866 return false;
1867 }
1868 }
1869
1870 return true;
1871 }
1872
1873 void pause_all_vcpus(void)
1874 {
1875 CPUState *cpu;
1876
1877 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
1878 CPU_FOREACH(cpu) {
1879 if (qemu_cpu_is_self(cpu)) {
1880 qemu_cpu_stop(cpu, true);
1881 } else {
1882 cpu->stop = true;
1883 qemu_cpu_kick(cpu);
1884 }
1885 }
1886
1887 /* We need to drop the replay_lock so any vCPU threads woken up
1888 * can finish their replay tasks
1889 */
1890 replay_mutex_unlock();
1891
1892 while (!all_vcpus_paused()) {
1893 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
1894 CPU_FOREACH(cpu) {
1895 qemu_cpu_kick(cpu);
1896 }
1897 }
1898
1899 qemu_mutex_unlock_iothread();
1900 replay_mutex_lock();
1901 qemu_mutex_lock_iothread();
1902 }
1903
1904 void cpu_resume(CPUState *cpu)
1905 {
1906 cpu->stop = false;
1907 cpu->stopped = false;
1908 qemu_cpu_kick(cpu);
1909 }
1910
1911 void resume_all_vcpus(void)
1912 {
1913 CPUState *cpu;
1914
1915 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
1916 CPU_FOREACH(cpu) {
1917 cpu_resume(cpu);
1918 }
1919 }
1920
1921 void cpu_remove_sync(CPUState *cpu)
1922 {
1923 cpu->stop = true;
1924 cpu->unplug = true;
1925 qemu_cpu_kick(cpu);
1926 qemu_mutex_unlock_iothread();
1927 qemu_thread_join(cpu->thread);
1928 qemu_mutex_lock_iothread();
1929 }
1930
1931 /* For temporary buffers for forming a name */
1932 #define VCPU_THREAD_NAME_SIZE 16
1933
1934 static void qemu_tcg_init_vcpu(CPUState *cpu)
1935 {
1936 char thread_name[VCPU_THREAD_NAME_SIZE];
1937 static QemuCond *single_tcg_halt_cond;
1938 static QemuThread *single_tcg_cpu_thread;
1939 static int tcg_region_inited;
1940
1941 assert(tcg_enabled());
1942 /*
1943 * Initialize TCG regions--once. Now is a good time, because:
1944 * (1) TCG's init context, prologue and target globals have been set up.
1945 * (2) qemu_tcg_mttcg_enabled() works now (TCG init code runs before the
1946 * -accel flag is processed, so the check doesn't work then).
1947 */
1948 if (!tcg_region_inited) {
1949 tcg_region_inited = 1;
1950 tcg_region_init();
1951 }
1952
1953 if (qemu_tcg_mttcg_enabled() || !single_tcg_cpu_thread) {
1954 cpu->thread = g_malloc0(sizeof(QemuThread));
1955 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1956 qemu_cond_init(cpu->halt_cond);
1957
1958 if (qemu_tcg_mttcg_enabled()) {
1959 /* create a thread per vCPU with TCG (MTTCG) */
1960 parallel_cpus = true;
1961 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG",
1962 cpu->cpu_index);
1963
1964 qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn,
1965 cpu, QEMU_THREAD_JOINABLE);
1966
1967 } else {
1968 /* share a single thread for all cpus with TCG */
1969 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "ALL CPUs/TCG");
1970 qemu_thread_create(cpu->thread, thread_name,
1971 qemu_tcg_rr_cpu_thread_fn,
1972 cpu, QEMU_THREAD_JOINABLE);
1973
1974 single_tcg_halt_cond = cpu->halt_cond;
1975 single_tcg_cpu_thread = cpu->thread;
1976 }
1977 #ifdef _WIN32
1978 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1979 #endif
1980 } else {
1981 /* For non-MTTCG cases we share the thread */
1982 cpu->thread = single_tcg_cpu_thread;
1983 cpu->halt_cond = single_tcg_halt_cond;
1984 cpu->thread_id = first_cpu->thread_id;
1985 cpu->can_do_io = 1;
1986 cpu->created = true;
1987 }
1988 }
1989
1990 static void qemu_hax_start_vcpu(CPUState *cpu)
1991 {
1992 char thread_name[VCPU_THREAD_NAME_SIZE];
1993
1994 cpu->thread = g_malloc0(sizeof(QemuThread));
1995 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1996 qemu_cond_init(cpu->halt_cond);
1997
1998 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HAX",
1999 cpu->cpu_index);
2000 qemu_thread_create(cpu->thread, thread_name, qemu_hax_cpu_thread_fn,
2001 cpu, QEMU_THREAD_JOINABLE);
2002 #ifdef _WIN32
2003 cpu->hThread = qemu_thread_get_handle(cpu->thread);
2004 #endif
2005 }
2006
2007 static void qemu_kvm_start_vcpu(CPUState *cpu)
2008 {
2009 char thread_name[VCPU_THREAD_NAME_SIZE];
2010
2011 cpu->thread = g_malloc0(sizeof(QemuThread));
2012 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2013 qemu_cond_init(cpu->halt_cond);
2014 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM",
2015 cpu->cpu_index);
2016 qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn,
2017 cpu, QEMU_THREAD_JOINABLE);
2018 }
2019
2020 static void qemu_hvf_start_vcpu(CPUState *cpu)
2021 {
2022 char thread_name[VCPU_THREAD_NAME_SIZE];
2023
2024 /* HVF currently does not support TCG, and only runs in
2025 * unrestricted-guest mode. */
2026 assert(hvf_enabled());
2027
2028 cpu->thread = g_malloc0(sizeof(QemuThread));
2029 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2030 qemu_cond_init(cpu->halt_cond);
2031
2032 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF",
2033 cpu->cpu_index);
2034 qemu_thread_create(cpu->thread, thread_name, qemu_hvf_cpu_thread_fn,
2035 cpu, QEMU_THREAD_JOINABLE);
2036 }
2037
2038 static void qemu_whpx_start_vcpu(CPUState *cpu)
2039 {
2040 char thread_name[VCPU_THREAD_NAME_SIZE];
2041
2042 cpu->thread = g_malloc0(sizeof(QemuThread));
2043 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2044 qemu_cond_init(cpu->halt_cond);
2045 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/WHPX",
2046 cpu->cpu_index);
2047 qemu_thread_create(cpu->thread, thread_name, qemu_whpx_cpu_thread_fn,
2048 cpu, QEMU_THREAD_JOINABLE);
2049 #ifdef _WIN32
2050 cpu->hThread = qemu_thread_get_handle(cpu->thread);
2051 #endif
2052 }
2053
2054 static void qemu_dummy_start_vcpu(CPUState *cpu)
2055 {
2056 char thread_name[VCPU_THREAD_NAME_SIZE];
2057
2058 cpu->thread = g_malloc0(sizeof(QemuThread));
2059 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2060 qemu_cond_init(cpu->halt_cond);
2061 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY",
2062 cpu->cpu_index);
2063 qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu,
2064 QEMU_THREAD_JOINABLE);
2065 }
2066
2067 void qemu_init_vcpu(CPUState *cpu)
2068 {
2069 cpu->nr_cores = smp_cores;
2070 cpu->nr_threads = smp_threads;
2071 cpu->stopped = true;
2072
2073 if (!cpu->as) {
2074 /* If the target cpu hasn't set up any address spaces itself,
2075 * give it the default one.
2076 */
2077 cpu->num_ases = 1;
2078 cpu_address_space_init(cpu, 0, "cpu-memory", cpu->memory);
2079 }
2080
2081 if (kvm_enabled()) {
2082 qemu_kvm_start_vcpu(cpu);
2083 } else if (hax_enabled()) {
2084 qemu_hax_start_vcpu(cpu);
2085 } else if (hvf_enabled()) {
2086 qemu_hvf_start_vcpu(cpu);
2087 } else if (tcg_enabled()) {
2088 qemu_tcg_init_vcpu(cpu);
2089 } else if (whpx_enabled()) {
2090 qemu_whpx_start_vcpu(cpu);
2091 } else {
2092 qemu_dummy_start_vcpu(cpu);
2093 }
2094
2095 while (!cpu->created) {
2096 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
2097 }
2098 }
2099
2100 void cpu_stop_current(void)
2101 {
2102 if (current_cpu) {
2103 current_cpu->stop = true;
2104 cpu_exit(current_cpu);
2105 }
2106 }
2107
2108 int vm_stop(RunState state)
2109 {
2110 if (qemu_in_vcpu_thread()) {
2111 qemu_system_vmstop_request_prepare();
2112 qemu_system_vmstop_request(state);
2113 /*
2114 * FIXME: should not return to device code in case
2115 * vm_stop() has been requested.
2116 */
2117 cpu_stop_current();
2118 return 0;
2119 }
2120
2121 return do_vm_stop(state, true);
2122 }
2123
2124 /**
2125 * Prepare for (re)starting the VM.
2126 * Returns -1 if the vCPUs are not to be restarted (e.g. if they are already
2127 * running or in case of an error condition), 0 otherwise.
2128 */
2129 int vm_prepare_start(void)
2130 {
2131 RunState requested;
2132
2133 qemu_vmstop_requested(&requested);
2134 if (runstate_is_running() && requested == RUN_STATE__MAX) {
2135 return -1;
2136 }
2137
2138 /* Ensure that a STOP/RESUME pair of events is emitted if a
2139 * vmstop request was pending. The BLOCK_IO_ERROR event, for
2140 * example, according to documentation is always followed by
2141 * the STOP event.
2142 */
2143 if (runstate_is_running()) {
2144 qapi_event_send_stop();
2145 qapi_event_send_resume();
2146 return -1;
2147 }
2148
2149 /* We are sending this now, but the CPUs will be resumed shortly later */
2150 qapi_event_send_resume();
2151
2152 replay_enable_events();
2153 cpu_enable_ticks();
2154 runstate_set(RUN_STATE_RUNNING);
2155 vm_state_notify(1, RUN_STATE_RUNNING);
2156 return 0;
2157 }
2158
2159 void vm_start(void)
2160 {
2161 if (!vm_prepare_start()) {
2162 resume_all_vcpus();
2163 }
2164 }
2165
2166 /* does a state transition even if the VM is already stopped,
2167 current state is forgotten forever */
2168 int vm_stop_force_state(RunState state)
2169 {
2170 if (runstate_is_running()) {
2171 return vm_stop(state);
2172 } else {
2173 runstate_set(state);
2174
2175 bdrv_drain_all();
2176 /* Make sure to return an error if the flush in a previous vm_stop()
2177 * failed. */
2178 return bdrv_flush_all();
2179 }
2180 }
2181
2182 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
2183 {
2184 /* XXX: implement xxx_cpu_list for targets that still miss it */
2185 #if defined(cpu_list)
2186 cpu_list(f, cpu_fprintf);
2187 #endif
2188 }
2189
2190 CpuInfoList *qmp_query_cpus(Error **errp)
2191 {
2192 MachineState *ms = MACHINE(qdev_get_machine());
2193 MachineClass *mc = MACHINE_GET_CLASS(ms);
2194 CpuInfoList *head = NULL, *cur_item = NULL;
2195 CPUState *cpu;
2196
2197 CPU_FOREACH(cpu) {
2198 CpuInfoList *info;
2199 #if defined(TARGET_I386)
2200 X86CPU *x86_cpu = X86_CPU(cpu);
2201 CPUX86State *env = &x86_cpu->env;
2202 #elif defined(TARGET_PPC)
2203 PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu);
2204 CPUPPCState *env = &ppc_cpu->env;
2205 #elif defined(TARGET_SPARC)
2206 SPARCCPU *sparc_cpu = SPARC_CPU(cpu);
2207 CPUSPARCState *env = &sparc_cpu->env;
2208 #elif defined(TARGET_RISCV)
2209 RISCVCPU *riscv_cpu = RISCV_CPU(cpu);
2210 CPURISCVState *env = &riscv_cpu->env;
2211 #elif defined(TARGET_MIPS)
2212 MIPSCPU *mips_cpu = MIPS_CPU(cpu);
2213 CPUMIPSState *env = &mips_cpu->env;
2214 #elif defined(TARGET_TRICORE)
2215 TriCoreCPU *tricore_cpu = TRICORE_CPU(cpu);
2216 CPUTriCoreState *env = &tricore_cpu->env;
2217 #elif defined(TARGET_S390X)
2218 S390CPU *s390_cpu = S390_CPU(cpu);
2219 CPUS390XState *env = &s390_cpu->env;
2220 #endif
2221
2222 cpu_synchronize_state(cpu);
2223
2224 info = g_malloc0(sizeof(*info));
2225 info->value = g_malloc0(sizeof(*info->value));
2226 info->value->CPU = cpu->cpu_index;
2227 info->value->current = (cpu == first_cpu);
2228 info->value->halted = cpu->halted;
2229 info->value->qom_path = object_get_canonical_path(OBJECT(cpu));
2230 info->value->thread_id = cpu->thread_id;
2231 #if defined(TARGET_I386)
2232 info->value->arch = CPU_INFO_ARCH_X86;
2233 info->value->u.x86.pc = env->eip + env->segs[R_CS].base;
2234 #elif defined(TARGET_PPC)
2235 info->value->arch = CPU_INFO_ARCH_PPC;
2236 info->value->u.ppc.nip = env->nip;
2237 #elif defined(TARGET_SPARC)
2238 info->value->arch = CPU_INFO_ARCH_SPARC;
2239 info->value->u.q_sparc.pc = env->pc;
2240 info->value->u.q_sparc.npc = env->npc;
2241 #elif defined(TARGET_MIPS)
2242 info->value->arch = CPU_INFO_ARCH_MIPS;
2243 info->value->u.q_mips.PC = env->active_tc.PC;
2244 #elif defined(TARGET_TRICORE)
2245 info->value->arch = CPU_INFO_ARCH_TRICORE;
2246 info->value->u.tricore.PC = env->PC;
2247 #elif defined(TARGET_S390X)
2248 info->value->arch = CPU_INFO_ARCH_S390;
2249 info->value->u.s390.cpu_state = env->cpu_state;
2250 #elif defined(TARGET_RISCV)
2251 info->value->arch = CPU_INFO_ARCH_RISCV;
2252 info->value->u.riscv.pc = env->pc;
2253 #else
2254 info->value->arch = CPU_INFO_ARCH_OTHER;
2255 #endif
2256 info->value->has_props = !!mc->cpu_index_to_instance_props;
2257 if (info->value->has_props) {
2258 CpuInstanceProperties *props;
2259 props = g_malloc0(sizeof(*props));
2260 *props = mc->cpu_index_to_instance_props(ms, cpu->cpu_index);
2261 info->value->props = props;
2262 }
2263
2264 /* XXX: waiting for the qapi to support GSList */
2265 if (!cur_item) {
2266 head = cur_item = info;
2267 } else {
2268 cur_item->next = info;
2269 cur_item = info;
2270 }
2271 }
2272
2273 return head;
2274 }
2275
2276 static CpuInfoArch sysemu_target_to_cpuinfo_arch(SysEmuTarget target)
2277 {
2278 /*
2279 * The @SysEmuTarget -> @CpuInfoArch mapping below is based on the
2280 * TARGET_ARCH -> TARGET_BASE_ARCH mapping in the "configure" script.
2281 */
2282 switch (target) {
2283 case SYS_EMU_TARGET_I386:
2284 case SYS_EMU_TARGET_X86_64:
2285 return CPU_INFO_ARCH_X86;
2286
2287 case SYS_EMU_TARGET_PPC:
2288 case SYS_EMU_TARGET_PPC64:
2289 return CPU_INFO_ARCH_PPC;
2290
2291 case SYS_EMU_TARGET_SPARC:
2292 case SYS_EMU_TARGET_SPARC64:
2293 return CPU_INFO_ARCH_SPARC;
2294
2295 case SYS_EMU_TARGET_MIPS:
2296 case SYS_EMU_TARGET_MIPSEL:
2297 case SYS_EMU_TARGET_MIPS64:
2298 case SYS_EMU_TARGET_MIPS64EL:
2299 return CPU_INFO_ARCH_MIPS;
2300
2301 case SYS_EMU_TARGET_TRICORE:
2302 return CPU_INFO_ARCH_TRICORE;
2303
2304 case SYS_EMU_TARGET_S390X:
2305 return CPU_INFO_ARCH_S390;
2306
2307 case SYS_EMU_TARGET_RISCV32:
2308 case SYS_EMU_TARGET_RISCV64:
2309 return CPU_INFO_ARCH_RISCV;
2310
2311 default:
2312 return CPU_INFO_ARCH_OTHER;
2313 }
2314 }
2315
2316 static void cpustate_to_cpuinfo_s390(CpuInfoS390 *info, const CPUState *cpu)
2317 {
2318 #ifdef TARGET_S390X
2319 S390CPU *s390_cpu = S390_CPU(cpu);
2320 CPUS390XState *env = &s390_cpu->env;
2321
2322 info->cpu_state = env->cpu_state;
2323 #else
2324 abort();
2325 #endif
2326 }
2327
2328 /*
2329 * fast means: we NEVER interrupt vCPU threads to retrieve
2330 * information from KVM.
2331 */
2332 CpuInfoFastList *qmp_query_cpus_fast(Error **errp)
2333 {
2334 MachineState *ms = MACHINE(qdev_get_machine());
2335 MachineClass *mc = MACHINE_GET_CLASS(ms);
2336 CpuInfoFastList *head = NULL, *cur_item = NULL;
2337 SysEmuTarget target = qapi_enum_parse(&SysEmuTarget_lookup, TARGET_NAME,
2338 -1, &error_abort);
2339 CPUState *cpu;
2340
2341 CPU_FOREACH(cpu) {
2342 CpuInfoFastList *info = g_malloc0(sizeof(*info));
2343 info->value = g_malloc0(sizeof(*info->value));
2344
2345 info->value->cpu_index = cpu->cpu_index;
2346 info->value->qom_path = object_get_canonical_path(OBJECT(cpu));
2347 info->value->thread_id = cpu->thread_id;
2348
2349 info->value->has_props = !!mc->cpu_index_to_instance_props;
2350 if (info->value->has_props) {
2351 CpuInstanceProperties *props;
2352 props = g_malloc0(sizeof(*props));
2353 *props = mc->cpu_index_to_instance_props(ms, cpu->cpu_index);
2354 info->value->props = props;
2355 }
2356
2357 info->value->arch = sysemu_target_to_cpuinfo_arch(target);
2358 info->value->target = target;
2359 if (target == SYS_EMU_TARGET_S390X) {
2360 cpustate_to_cpuinfo_s390(&info->value->u.s390x, cpu);
2361 }
2362
2363 if (!cur_item) {
2364 head = cur_item = info;
2365 } else {
2366 cur_item->next = info;
2367 cur_item = info;
2368 }
2369 }
2370
2371 return head;
2372 }
2373
2374 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
2375 bool has_cpu, int64_t cpu_index, Error **errp)
2376 {
2377 FILE *f;
2378 uint32_t l;
2379 CPUState *cpu;
2380 uint8_t buf[1024];
2381 int64_t orig_addr = addr, orig_size = size;
2382
2383 if (!has_cpu) {
2384 cpu_index = 0;
2385 }
2386
2387 cpu = qemu_get_cpu(cpu_index);
2388 if (cpu == NULL) {
2389 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
2390 "a CPU number");
2391 return;
2392 }
2393
2394 f = fopen(filename, "wb");
2395 if (!f) {
2396 error_setg_file_open(errp, errno, filename);
2397 return;
2398 }
2399
2400 while (size != 0) {
2401 l = sizeof(buf);
2402 if (l > size)
2403 l = size;
2404 if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
2405 error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64
2406 " specified", orig_addr, orig_size);
2407 goto exit;
2408 }
2409 if (fwrite(buf, 1, l, f) != l) {
2410 error_setg(errp, QERR_IO_ERROR);
2411 goto exit;
2412 }
2413 addr += l;
2414 size -= l;
2415 }
2416
2417 exit:
2418 fclose(f);
2419 }
2420
2421 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
2422 Error **errp)
2423 {
2424 FILE *f;
2425 uint32_t l;
2426 uint8_t buf[1024];
2427
2428 f = fopen(filename, "wb");
2429 if (!f) {
2430 error_setg_file_open(errp, errno, filename);
2431 return;
2432 }
2433
2434 while (size != 0) {
2435 l = sizeof(buf);
2436 if (l > size)
2437 l = size;
2438 cpu_physical_memory_read(addr, buf, l);
2439 if (fwrite(buf, 1, l, f) != l) {
2440 error_setg(errp, QERR_IO_ERROR);
2441 goto exit;
2442 }
2443 addr += l;
2444 size -= l;
2445 }
2446
2447 exit:
2448 fclose(f);
2449 }
2450
2451 void qmp_inject_nmi(Error **errp)
2452 {
2453 nmi_monitor_handle(monitor_get_cpu_index(), errp);
2454 }
2455
2456 void dump_drift_info(FILE *f, fprintf_function cpu_fprintf)
2457 {
2458 if (!use_icount) {
2459 return;
2460 }
2461
2462 cpu_fprintf(f, "Host - Guest clock %"PRIi64" ms\n",
2463 (cpu_get_clock() - cpu_get_icount())/SCALE_MS);
2464 if (icount_align_option) {
2465 cpu_fprintf(f, "Max guest delay %"PRIi64" ms\n", -max_delay/SCALE_MS);
2466 cpu_fprintf(f, "Max guest advance %"PRIi64" ms\n", max_advance/SCALE_MS);
2467 } else {
2468 cpu_fprintf(f, "Max guest delay NA\n");
2469 cpu_fprintf(f, "Max guest advance NA\n");
2470 }
2471 }