]> git.proxmox.com Git - mirror_qemu.git/blob - cpus.c
job: Fix off-by-one assert checks for JobSTT and JobVerbTable
[mirror_qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/config-file.h"
27 #include "cpu.h"
28 #include "monitor/monitor.h"
29 #include "qapi/error.h"
30 #include "qapi/qapi-commands-misc.h"
31 #include "qapi/qapi-events-run-state.h"
32 #include "qapi/qmp/qerror.h"
33 #include "qemu/error-report.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/block-backend.h"
36 #include "exec/gdbstub.h"
37 #include "sysemu/dma.h"
38 #include "sysemu/hw_accel.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/hax.h"
41 #include "sysemu/hvf.h"
42 #include "sysemu/whpx.h"
43 #include "exec/exec-all.h"
44
45 #include "qemu/thread.h"
46 #include "sysemu/cpus.h"
47 #include "sysemu/qtest.h"
48 #include "qemu/main-loop.h"
49 #include "qemu/option.h"
50 #include "qemu/bitmap.h"
51 #include "qemu/seqlock.h"
52 #include "tcg.h"
53 #include "hw/nmi.h"
54 #include "sysemu/replay.h"
55 #include "hw/boards.h"
56
57 #ifdef CONFIG_LINUX
58
59 #include <sys/prctl.h>
60
61 #ifndef PR_MCE_KILL
62 #define PR_MCE_KILL 33
63 #endif
64
65 #ifndef PR_MCE_KILL_SET
66 #define PR_MCE_KILL_SET 1
67 #endif
68
69 #ifndef PR_MCE_KILL_EARLY
70 #define PR_MCE_KILL_EARLY 1
71 #endif
72
73 #endif /* CONFIG_LINUX */
74
75 int64_t max_delay;
76 int64_t max_advance;
77
78 /* vcpu throttling controls */
79 static QEMUTimer *throttle_timer;
80 static unsigned int throttle_percentage;
81
82 #define CPU_THROTTLE_PCT_MIN 1
83 #define CPU_THROTTLE_PCT_MAX 99
84 #define CPU_THROTTLE_TIMESLICE_NS 10000000
85
86 bool cpu_is_stopped(CPUState *cpu)
87 {
88 return cpu->stopped || !runstate_is_running();
89 }
90
91 static bool cpu_thread_is_idle(CPUState *cpu)
92 {
93 if (cpu->stop || cpu->queued_work_first) {
94 return false;
95 }
96 if (cpu_is_stopped(cpu)) {
97 return true;
98 }
99 if (!cpu->halted || cpu_has_work(cpu) ||
100 kvm_halt_in_kernel()) {
101 return false;
102 }
103 return true;
104 }
105
106 static bool all_cpu_threads_idle(void)
107 {
108 CPUState *cpu;
109
110 CPU_FOREACH(cpu) {
111 if (!cpu_thread_is_idle(cpu)) {
112 return false;
113 }
114 }
115 return true;
116 }
117
118 /***********************************************************/
119 /* guest cycle counter */
120
121 /* Protected by TimersState seqlock */
122
123 static bool icount_sleep = true;
124 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
125 #define MAX_ICOUNT_SHIFT 10
126
127 typedef struct TimersState {
128 /* Protected by BQL. */
129 int64_t cpu_ticks_prev;
130 int64_t cpu_ticks_offset;
131
132 /* Protect fields that can be respectively read outside the
133 * BQL, and written from multiple threads.
134 */
135 QemuSeqLock vm_clock_seqlock;
136 QemuSpin vm_clock_lock;
137
138 int16_t cpu_ticks_enabled;
139
140 /* Conversion factor from emulated instructions to virtual clock ticks. */
141 int16_t icount_time_shift;
142
143 /* Compensate for varying guest execution speed. */
144 int64_t qemu_icount_bias;
145
146 int64_t vm_clock_warp_start;
147 int64_t cpu_clock_offset;
148
149 /* Only written by TCG thread */
150 int64_t qemu_icount;
151
152 /* for adjusting icount */
153 QEMUTimer *icount_rt_timer;
154 QEMUTimer *icount_vm_timer;
155 QEMUTimer *icount_warp_timer;
156 } TimersState;
157
158 static TimersState timers_state;
159 bool mttcg_enabled;
160
161 /*
162 * We default to false if we know other options have been enabled
163 * which are currently incompatible with MTTCG. Otherwise when each
164 * guest (target) has been updated to support:
165 * - atomic instructions
166 * - memory ordering primitives (barriers)
167 * they can set the appropriate CONFIG flags in ${target}-softmmu.mak
168 *
169 * Once a guest architecture has been converted to the new primitives
170 * there are two remaining limitations to check.
171 *
172 * - The guest can't be oversized (e.g. 64 bit guest on 32 bit host)
173 * - The host must have a stronger memory order than the guest
174 *
175 * It may be possible in future to support strong guests on weak hosts
176 * but that will require tagging all load/stores in a guest with their
177 * implicit memory order requirements which would likely slow things
178 * down a lot.
179 */
180
181 static bool check_tcg_memory_orders_compatible(void)
182 {
183 #if defined(TCG_GUEST_DEFAULT_MO) && defined(TCG_TARGET_DEFAULT_MO)
184 return (TCG_GUEST_DEFAULT_MO & ~TCG_TARGET_DEFAULT_MO) == 0;
185 #else
186 return false;
187 #endif
188 }
189
190 static bool default_mttcg_enabled(void)
191 {
192 if (use_icount || TCG_OVERSIZED_GUEST) {
193 return false;
194 } else {
195 #ifdef TARGET_SUPPORTS_MTTCG
196 return check_tcg_memory_orders_compatible();
197 #else
198 return false;
199 #endif
200 }
201 }
202
203 void qemu_tcg_configure(QemuOpts *opts, Error **errp)
204 {
205 const char *t = qemu_opt_get(opts, "thread");
206 if (t) {
207 if (strcmp(t, "multi") == 0) {
208 if (TCG_OVERSIZED_GUEST) {
209 error_setg(errp, "No MTTCG when guest word size > hosts");
210 } else if (use_icount) {
211 error_setg(errp, "No MTTCG when icount is enabled");
212 } else {
213 #ifndef TARGET_SUPPORTS_MTTCG
214 warn_report("Guest not yet converted to MTTCG - "
215 "you may get unexpected results");
216 #endif
217 if (!check_tcg_memory_orders_compatible()) {
218 warn_report("Guest expects a stronger memory ordering "
219 "than the host provides");
220 error_printf("This may cause strange/hard to debug errors\n");
221 }
222 mttcg_enabled = true;
223 }
224 } else if (strcmp(t, "single") == 0) {
225 mttcg_enabled = false;
226 } else {
227 error_setg(errp, "Invalid 'thread' setting %s", t);
228 }
229 } else {
230 mttcg_enabled = default_mttcg_enabled();
231 }
232 }
233
234 /* The current number of executed instructions is based on what we
235 * originally budgeted minus the current state of the decrementing
236 * icount counters in extra/u16.low.
237 */
238 static int64_t cpu_get_icount_executed(CPUState *cpu)
239 {
240 return cpu->icount_budget - (cpu->icount_decr.u16.low + cpu->icount_extra);
241 }
242
243 /*
244 * Update the global shared timer_state.qemu_icount to take into
245 * account executed instructions. This is done by the TCG vCPU
246 * thread so the main-loop can see time has moved forward.
247 */
248 static void cpu_update_icount_locked(CPUState *cpu)
249 {
250 int64_t executed = cpu_get_icount_executed(cpu);
251 cpu->icount_budget -= executed;
252
253 atomic_set_i64(&timers_state.qemu_icount,
254 timers_state.qemu_icount + executed);
255 }
256
257 /*
258 * Update the global shared timer_state.qemu_icount to take into
259 * account executed instructions. This is done by the TCG vCPU
260 * thread so the main-loop can see time has moved forward.
261 */
262 void cpu_update_icount(CPUState *cpu)
263 {
264 seqlock_write_lock(&timers_state.vm_clock_seqlock,
265 &timers_state.vm_clock_lock);
266 cpu_update_icount_locked(cpu);
267 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
268 &timers_state.vm_clock_lock);
269 }
270
271 static int64_t cpu_get_icount_raw_locked(void)
272 {
273 CPUState *cpu = current_cpu;
274
275 if (cpu && cpu->running) {
276 if (!cpu->can_do_io) {
277 error_report("Bad icount read");
278 exit(1);
279 }
280 /* Take into account what has run */
281 cpu_update_icount_locked(cpu);
282 }
283 /* The read is protected by the seqlock, but needs atomic64 to avoid UB */
284 return atomic_read_i64(&timers_state.qemu_icount);
285 }
286
287 static int64_t cpu_get_icount_locked(void)
288 {
289 int64_t icount = cpu_get_icount_raw_locked();
290 return atomic_read_i64(&timers_state.qemu_icount_bias) +
291 cpu_icount_to_ns(icount);
292 }
293
294 int64_t cpu_get_icount_raw(void)
295 {
296 int64_t icount;
297 unsigned start;
298
299 do {
300 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
301 icount = cpu_get_icount_raw_locked();
302 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
303
304 return icount;
305 }
306
307 /* Return the virtual CPU time, based on the instruction counter. */
308 int64_t cpu_get_icount(void)
309 {
310 int64_t icount;
311 unsigned start;
312
313 do {
314 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
315 icount = cpu_get_icount_locked();
316 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
317
318 return icount;
319 }
320
321 int64_t cpu_icount_to_ns(int64_t icount)
322 {
323 return icount << atomic_read(&timers_state.icount_time_shift);
324 }
325
326 static int64_t cpu_get_ticks_locked(void)
327 {
328 int64_t ticks = timers_state.cpu_ticks_offset;
329 if (timers_state.cpu_ticks_enabled) {
330 ticks += cpu_get_host_ticks();
331 }
332
333 if (timers_state.cpu_ticks_prev > ticks) {
334 /* Non increasing ticks may happen if the host uses software suspend. */
335 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
336 ticks = timers_state.cpu_ticks_prev;
337 }
338
339 timers_state.cpu_ticks_prev = ticks;
340 return ticks;
341 }
342
343 /* return the time elapsed in VM between vm_start and vm_stop. Unless
344 * icount is active, cpu_get_ticks() uses units of the host CPU cycle
345 * counter.
346 */
347 int64_t cpu_get_ticks(void)
348 {
349 int64_t ticks;
350
351 if (use_icount) {
352 return cpu_get_icount();
353 }
354
355 qemu_spin_lock(&timers_state.vm_clock_lock);
356 ticks = cpu_get_ticks_locked();
357 qemu_spin_unlock(&timers_state.vm_clock_lock);
358 return ticks;
359 }
360
361 static int64_t cpu_get_clock_locked(void)
362 {
363 int64_t time;
364
365 time = timers_state.cpu_clock_offset;
366 if (timers_state.cpu_ticks_enabled) {
367 time += get_clock();
368 }
369
370 return time;
371 }
372
373 /* Return the monotonic time elapsed in VM, i.e.,
374 * the time between vm_start and vm_stop
375 */
376 int64_t cpu_get_clock(void)
377 {
378 int64_t ti;
379 unsigned start;
380
381 do {
382 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
383 ti = cpu_get_clock_locked();
384 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
385
386 return ti;
387 }
388
389 /* enable cpu_get_ticks()
390 * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
391 */
392 void cpu_enable_ticks(void)
393 {
394 seqlock_write_lock(&timers_state.vm_clock_seqlock,
395 &timers_state.vm_clock_lock);
396 if (!timers_state.cpu_ticks_enabled) {
397 timers_state.cpu_ticks_offset -= cpu_get_host_ticks();
398 timers_state.cpu_clock_offset -= get_clock();
399 timers_state.cpu_ticks_enabled = 1;
400 }
401 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
402 &timers_state.vm_clock_lock);
403 }
404
405 /* disable cpu_get_ticks() : the clock is stopped. You must not call
406 * cpu_get_ticks() after that.
407 * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
408 */
409 void cpu_disable_ticks(void)
410 {
411 seqlock_write_lock(&timers_state.vm_clock_seqlock,
412 &timers_state.vm_clock_lock);
413 if (timers_state.cpu_ticks_enabled) {
414 timers_state.cpu_ticks_offset += cpu_get_host_ticks();
415 timers_state.cpu_clock_offset = cpu_get_clock_locked();
416 timers_state.cpu_ticks_enabled = 0;
417 }
418 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
419 &timers_state.vm_clock_lock);
420 }
421
422 /* Correlation between real and virtual time is always going to be
423 fairly approximate, so ignore small variation.
424 When the guest is idle real and virtual time will be aligned in
425 the IO wait loop. */
426 #define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
427
428 static void icount_adjust(void)
429 {
430 int64_t cur_time;
431 int64_t cur_icount;
432 int64_t delta;
433
434 /* Protected by TimersState mutex. */
435 static int64_t last_delta;
436
437 /* If the VM is not running, then do nothing. */
438 if (!runstate_is_running()) {
439 return;
440 }
441
442 seqlock_write_lock(&timers_state.vm_clock_seqlock,
443 &timers_state.vm_clock_lock);
444 cur_time = cpu_get_clock_locked();
445 cur_icount = cpu_get_icount_locked();
446
447 delta = cur_icount - cur_time;
448 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
449 if (delta > 0
450 && last_delta + ICOUNT_WOBBLE < delta * 2
451 && timers_state.icount_time_shift > 0) {
452 /* The guest is getting too far ahead. Slow time down. */
453 atomic_set(&timers_state.icount_time_shift,
454 timers_state.icount_time_shift - 1);
455 }
456 if (delta < 0
457 && last_delta - ICOUNT_WOBBLE > delta * 2
458 && timers_state.icount_time_shift < MAX_ICOUNT_SHIFT) {
459 /* The guest is getting too far behind. Speed time up. */
460 atomic_set(&timers_state.icount_time_shift,
461 timers_state.icount_time_shift + 1);
462 }
463 last_delta = delta;
464 atomic_set_i64(&timers_state.qemu_icount_bias,
465 cur_icount - (timers_state.qemu_icount
466 << timers_state.icount_time_shift));
467 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
468 &timers_state.vm_clock_lock);
469 }
470
471 static void icount_adjust_rt(void *opaque)
472 {
473 timer_mod(timers_state.icount_rt_timer,
474 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
475 icount_adjust();
476 }
477
478 static void icount_adjust_vm(void *opaque)
479 {
480 timer_mod(timers_state.icount_vm_timer,
481 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
482 NANOSECONDS_PER_SECOND / 10);
483 icount_adjust();
484 }
485
486 static int64_t qemu_icount_round(int64_t count)
487 {
488 int shift = atomic_read(&timers_state.icount_time_shift);
489 return (count + (1 << shift) - 1) >> shift;
490 }
491
492 static void icount_warp_rt(void)
493 {
494 unsigned seq;
495 int64_t warp_start;
496
497 /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
498 * changes from -1 to another value, so the race here is okay.
499 */
500 do {
501 seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
502 warp_start = timers_state.vm_clock_warp_start;
503 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));
504
505 if (warp_start == -1) {
506 return;
507 }
508
509 seqlock_write_lock(&timers_state.vm_clock_seqlock,
510 &timers_state.vm_clock_lock);
511 if (runstate_is_running()) {
512 int64_t clock = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT,
513 cpu_get_clock_locked());
514 int64_t warp_delta;
515
516 warp_delta = clock - timers_state.vm_clock_warp_start;
517 if (use_icount == 2) {
518 /*
519 * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
520 * far ahead of real time.
521 */
522 int64_t cur_icount = cpu_get_icount_locked();
523 int64_t delta = clock - cur_icount;
524 warp_delta = MIN(warp_delta, delta);
525 }
526 atomic_set_i64(&timers_state.qemu_icount_bias,
527 timers_state.qemu_icount_bias + warp_delta);
528 }
529 timers_state.vm_clock_warp_start = -1;
530 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
531 &timers_state.vm_clock_lock);
532
533 if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
534 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
535 }
536 }
537
538 static void icount_timer_cb(void *opaque)
539 {
540 /* No need for a checkpoint because the timer already synchronizes
541 * with CHECKPOINT_CLOCK_VIRTUAL_RT.
542 */
543 icount_warp_rt();
544 }
545
546 void qtest_clock_warp(int64_t dest)
547 {
548 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
549 AioContext *aio_context;
550 assert(qtest_enabled());
551 aio_context = qemu_get_aio_context();
552 while (clock < dest) {
553 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
554 int64_t warp = qemu_soonest_timeout(dest - clock, deadline);
555
556 seqlock_write_lock(&timers_state.vm_clock_seqlock,
557 &timers_state.vm_clock_lock);
558 atomic_set_i64(&timers_state.qemu_icount_bias,
559 timers_state.qemu_icount_bias + warp);
560 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
561 &timers_state.vm_clock_lock);
562
563 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
564 timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]);
565 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
566 }
567 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
568 }
569
570 void qemu_start_warp_timer(void)
571 {
572 int64_t clock;
573 int64_t deadline;
574
575 if (!use_icount) {
576 return;
577 }
578
579 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
580 * do not fire, so computing the deadline does not make sense.
581 */
582 if (!runstate_is_running()) {
583 return;
584 }
585
586 if (replay_mode != REPLAY_MODE_PLAY) {
587 if (!all_cpu_threads_idle()) {
588 return;
589 }
590
591 if (qtest_enabled()) {
592 /* When testing, qtest commands advance icount. */
593 return;
594 }
595
596 replay_checkpoint(CHECKPOINT_CLOCK_WARP_START);
597 } else {
598 /* warp clock deterministically in record/replay mode */
599 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
600 /* vCPU is sleeping and warp can't be started.
601 It is probably a race condition: notification sent
602 to vCPU was processed in advance and vCPU went to sleep.
603 Therefore we have to wake it up for doing someting. */
604 if (replay_has_checkpoint()) {
605 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
606 }
607 return;
608 }
609 }
610
611 /* We want to use the earliest deadline from ALL vm_clocks */
612 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
613 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
614 if (deadline < 0) {
615 static bool notified;
616 if (!icount_sleep && !notified) {
617 warn_report("icount sleep disabled and no active timers");
618 notified = true;
619 }
620 return;
621 }
622
623 if (deadline > 0) {
624 /*
625 * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
626 * sleep. Otherwise, the CPU might be waiting for a future timer
627 * interrupt to wake it up, but the interrupt never comes because
628 * the vCPU isn't running any insns and thus doesn't advance the
629 * QEMU_CLOCK_VIRTUAL.
630 */
631 if (!icount_sleep) {
632 /*
633 * We never let VCPUs sleep in no sleep icount mode.
634 * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
635 * to the next QEMU_CLOCK_VIRTUAL event and notify it.
636 * It is useful when we want a deterministic execution time,
637 * isolated from host latencies.
638 */
639 seqlock_write_lock(&timers_state.vm_clock_seqlock,
640 &timers_state.vm_clock_lock);
641 atomic_set_i64(&timers_state.qemu_icount_bias,
642 timers_state.qemu_icount_bias + deadline);
643 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
644 &timers_state.vm_clock_lock);
645 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
646 } else {
647 /*
648 * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
649 * "real" time, (related to the time left until the next event) has
650 * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
651 * This avoids that the warps are visible externally; for example,
652 * you will not be sending network packets continuously instead of
653 * every 100ms.
654 */
655 seqlock_write_lock(&timers_state.vm_clock_seqlock,
656 &timers_state.vm_clock_lock);
657 if (timers_state.vm_clock_warp_start == -1
658 || timers_state.vm_clock_warp_start > clock) {
659 timers_state.vm_clock_warp_start = clock;
660 }
661 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
662 &timers_state.vm_clock_lock);
663 timer_mod_anticipate(timers_state.icount_warp_timer,
664 clock + deadline);
665 }
666 } else if (deadline == 0) {
667 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
668 }
669 }
670
671 static void qemu_account_warp_timer(void)
672 {
673 if (!use_icount || !icount_sleep) {
674 return;
675 }
676
677 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
678 * do not fire, so computing the deadline does not make sense.
679 */
680 if (!runstate_is_running()) {
681 return;
682 }
683
684 /* warp clock deterministically in record/replay mode */
685 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
686 return;
687 }
688
689 timer_del(timers_state.icount_warp_timer);
690 icount_warp_rt();
691 }
692
693 static bool icount_state_needed(void *opaque)
694 {
695 return use_icount;
696 }
697
698 static bool warp_timer_state_needed(void *opaque)
699 {
700 TimersState *s = opaque;
701 return s->icount_warp_timer != NULL;
702 }
703
704 static bool adjust_timers_state_needed(void *opaque)
705 {
706 TimersState *s = opaque;
707 return s->icount_rt_timer != NULL;
708 }
709
710 /*
711 * Subsection for warp timer migration is optional, because may not be created
712 */
713 static const VMStateDescription icount_vmstate_warp_timer = {
714 .name = "timer/icount/warp_timer",
715 .version_id = 1,
716 .minimum_version_id = 1,
717 .needed = warp_timer_state_needed,
718 .fields = (VMStateField[]) {
719 VMSTATE_INT64(vm_clock_warp_start, TimersState),
720 VMSTATE_TIMER_PTR(icount_warp_timer, TimersState),
721 VMSTATE_END_OF_LIST()
722 }
723 };
724
725 static const VMStateDescription icount_vmstate_adjust_timers = {
726 .name = "timer/icount/timers",
727 .version_id = 1,
728 .minimum_version_id = 1,
729 .needed = adjust_timers_state_needed,
730 .fields = (VMStateField[]) {
731 VMSTATE_TIMER_PTR(icount_rt_timer, TimersState),
732 VMSTATE_TIMER_PTR(icount_vm_timer, TimersState),
733 VMSTATE_END_OF_LIST()
734 }
735 };
736
737 /*
738 * This is a subsection for icount migration.
739 */
740 static const VMStateDescription icount_vmstate_timers = {
741 .name = "timer/icount",
742 .version_id = 1,
743 .minimum_version_id = 1,
744 .needed = icount_state_needed,
745 .fields = (VMStateField[]) {
746 VMSTATE_INT64(qemu_icount_bias, TimersState),
747 VMSTATE_INT64(qemu_icount, TimersState),
748 VMSTATE_END_OF_LIST()
749 },
750 .subsections = (const VMStateDescription*[]) {
751 &icount_vmstate_warp_timer,
752 &icount_vmstate_adjust_timers,
753 NULL
754 }
755 };
756
757 static const VMStateDescription vmstate_timers = {
758 .name = "timer",
759 .version_id = 2,
760 .minimum_version_id = 1,
761 .fields = (VMStateField[]) {
762 VMSTATE_INT64(cpu_ticks_offset, TimersState),
763 VMSTATE_UNUSED(8),
764 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
765 VMSTATE_END_OF_LIST()
766 },
767 .subsections = (const VMStateDescription*[]) {
768 &icount_vmstate_timers,
769 NULL
770 }
771 };
772
773 static void cpu_throttle_thread(CPUState *cpu, run_on_cpu_data opaque)
774 {
775 double pct;
776 double throttle_ratio;
777 long sleeptime_ns;
778
779 if (!cpu_throttle_get_percentage()) {
780 return;
781 }
782
783 pct = (double)cpu_throttle_get_percentage()/100;
784 throttle_ratio = pct / (1 - pct);
785 sleeptime_ns = (long)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS);
786
787 qemu_mutex_unlock_iothread();
788 g_usleep(sleeptime_ns / 1000); /* Convert ns to us for usleep call */
789 qemu_mutex_lock_iothread();
790 atomic_set(&cpu->throttle_thread_scheduled, 0);
791 }
792
793 static void cpu_throttle_timer_tick(void *opaque)
794 {
795 CPUState *cpu;
796 double pct;
797
798 /* Stop the timer if needed */
799 if (!cpu_throttle_get_percentage()) {
800 return;
801 }
802 CPU_FOREACH(cpu) {
803 if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) {
804 async_run_on_cpu(cpu, cpu_throttle_thread,
805 RUN_ON_CPU_NULL);
806 }
807 }
808
809 pct = (double)cpu_throttle_get_percentage()/100;
810 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
811 CPU_THROTTLE_TIMESLICE_NS / (1-pct));
812 }
813
814 void cpu_throttle_set(int new_throttle_pct)
815 {
816 /* Ensure throttle percentage is within valid range */
817 new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX);
818 new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN);
819
820 atomic_set(&throttle_percentage, new_throttle_pct);
821
822 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
823 CPU_THROTTLE_TIMESLICE_NS);
824 }
825
826 void cpu_throttle_stop(void)
827 {
828 atomic_set(&throttle_percentage, 0);
829 }
830
831 bool cpu_throttle_active(void)
832 {
833 return (cpu_throttle_get_percentage() != 0);
834 }
835
836 int cpu_throttle_get_percentage(void)
837 {
838 return atomic_read(&throttle_percentage);
839 }
840
841 void cpu_ticks_init(void)
842 {
843 seqlock_init(&timers_state.vm_clock_seqlock);
844 qemu_spin_init(&timers_state.vm_clock_lock);
845 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
846 throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
847 cpu_throttle_timer_tick, NULL);
848 }
849
850 void configure_icount(QemuOpts *opts, Error **errp)
851 {
852 const char *option;
853 char *rem_str = NULL;
854
855 option = qemu_opt_get(opts, "shift");
856 if (!option) {
857 if (qemu_opt_get(opts, "align") != NULL) {
858 error_setg(errp, "Please specify shift option when using align");
859 }
860 return;
861 }
862
863 icount_sleep = qemu_opt_get_bool(opts, "sleep", true);
864 if (icount_sleep) {
865 timers_state.icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
866 icount_timer_cb, NULL);
867 }
868
869 icount_align_option = qemu_opt_get_bool(opts, "align", false);
870
871 if (icount_align_option && !icount_sleep) {
872 error_setg(errp, "align=on and sleep=off are incompatible");
873 }
874 if (strcmp(option, "auto") != 0) {
875 errno = 0;
876 timers_state.icount_time_shift = strtol(option, &rem_str, 0);
877 if (errno != 0 || *rem_str != '\0' || !strlen(option)) {
878 error_setg(errp, "icount: Invalid shift value");
879 }
880 use_icount = 1;
881 return;
882 } else if (icount_align_option) {
883 error_setg(errp, "shift=auto and align=on are incompatible");
884 } else if (!icount_sleep) {
885 error_setg(errp, "shift=auto and sleep=off are incompatible");
886 }
887
888 use_icount = 2;
889
890 /* 125MIPS seems a reasonable initial guess at the guest speed.
891 It will be corrected fairly quickly anyway. */
892 timers_state.icount_time_shift = 3;
893
894 /* Have both realtime and virtual time triggers for speed adjustment.
895 The realtime trigger catches emulated time passing too slowly,
896 the virtual time trigger catches emulated time passing too fast.
897 Realtime triggers occur even when idle, so use them less frequently
898 than VM triggers. */
899 timers_state.vm_clock_warp_start = -1;
900 timers_state.icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
901 icount_adjust_rt, NULL);
902 timer_mod(timers_state.icount_rt_timer,
903 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
904 timers_state.icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
905 icount_adjust_vm, NULL);
906 timer_mod(timers_state.icount_vm_timer,
907 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
908 NANOSECONDS_PER_SECOND / 10);
909 }
910
911 /***********************************************************/
912 /* TCG vCPU kick timer
913 *
914 * The kick timer is responsible for moving single threaded vCPU
915 * emulation on to the next vCPU. If more than one vCPU is running a
916 * timer event with force a cpu->exit so the next vCPU can get
917 * scheduled.
918 *
919 * The timer is removed if all vCPUs are idle and restarted again once
920 * idleness is complete.
921 */
922
923 static QEMUTimer *tcg_kick_vcpu_timer;
924 static CPUState *tcg_current_rr_cpu;
925
926 #define TCG_KICK_PERIOD (NANOSECONDS_PER_SECOND / 10)
927
928 static inline int64_t qemu_tcg_next_kick(void)
929 {
930 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + TCG_KICK_PERIOD;
931 }
932
933 /* Kick the currently round-robin scheduled vCPU */
934 static void qemu_cpu_kick_rr_cpu(void)
935 {
936 CPUState *cpu;
937 do {
938 cpu = atomic_mb_read(&tcg_current_rr_cpu);
939 if (cpu) {
940 cpu_exit(cpu);
941 }
942 } while (cpu != atomic_mb_read(&tcg_current_rr_cpu));
943 }
944
945 static void do_nothing(CPUState *cpu, run_on_cpu_data unused)
946 {
947 }
948
949 void qemu_timer_notify_cb(void *opaque, QEMUClockType type)
950 {
951 if (!use_icount || type != QEMU_CLOCK_VIRTUAL) {
952 qemu_notify_event();
953 return;
954 }
955
956 if (qemu_in_vcpu_thread()) {
957 /* A CPU is currently running; kick it back out to the
958 * tcg_cpu_exec() loop so it will recalculate its
959 * icount deadline immediately.
960 */
961 qemu_cpu_kick(current_cpu);
962 } else if (first_cpu) {
963 /* qemu_cpu_kick is not enough to kick a halted CPU out of
964 * qemu_tcg_wait_io_event. async_run_on_cpu, instead,
965 * causes cpu_thread_is_idle to return false. This way,
966 * handle_icount_deadline can run.
967 * If we have no CPUs at all for some reason, we don't
968 * need to do anything.
969 */
970 async_run_on_cpu(first_cpu, do_nothing, RUN_ON_CPU_NULL);
971 }
972 }
973
974 static void kick_tcg_thread(void *opaque)
975 {
976 timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
977 qemu_cpu_kick_rr_cpu();
978 }
979
980 static void start_tcg_kick_timer(void)
981 {
982 assert(!mttcg_enabled);
983 if (!tcg_kick_vcpu_timer && CPU_NEXT(first_cpu)) {
984 tcg_kick_vcpu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
985 kick_tcg_thread, NULL);
986 }
987 if (tcg_kick_vcpu_timer && !timer_pending(tcg_kick_vcpu_timer)) {
988 timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
989 }
990 }
991
992 static void stop_tcg_kick_timer(void)
993 {
994 assert(!mttcg_enabled);
995 if (tcg_kick_vcpu_timer && timer_pending(tcg_kick_vcpu_timer)) {
996 timer_del(tcg_kick_vcpu_timer);
997 }
998 }
999
1000 /***********************************************************/
1001 void hw_error(const char *fmt, ...)
1002 {
1003 va_list ap;
1004 CPUState *cpu;
1005
1006 va_start(ap, fmt);
1007 fprintf(stderr, "qemu: hardware error: ");
1008 vfprintf(stderr, fmt, ap);
1009 fprintf(stderr, "\n");
1010 CPU_FOREACH(cpu) {
1011 fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
1012 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU);
1013 }
1014 va_end(ap);
1015 abort();
1016 }
1017
1018 void cpu_synchronize_all_states(void)
1019 {
1020 CPUState *cpu;
1021
1022 CPU_FOREACH(cpu) {
1023 cpu_synchronize_state(cpu);
1024 /* TODO: move to cpu_synchronize_state() */
1025 if (hvf_enabled()) {
1026 hvf_cpu_synchronize_state(cpu);
1027 }
1028 }
1029 }
1030
1031 void cpu_synchronize_all_post_reset(void)
1032 {
1033 CPUState *cpu;
1034
1035 CPU_FOREACH(cpu) {
1036 cpu_synchronize_post_reset(cpu);
1037 /* TODO: move to cpu_synchronize_post_reset() */
1038 if (hvf_enabled()) {
1039 hvf_cpu_synchronize_post_reset(cpu);
1040 }
1041 }
1042 }
1043
1044 void cpu_synchronize_all_post_init(void)
1045 {
1046 CPUState *cpu;
1047
1048 CPU_FOREACH(cpu) {
1049 cpu_synchronize_post_init(cpu);
1050 /* TODO: move to cpu_synchronize_post_init() */
1051 if (hvf_enabled()) {
1052 hvf_cpu_synchronize_post_init(cpu);
1053 }
1054 }
1055 }
1056
1057 void cpu_synchronize_all_pre_loadvm(void)
1058 {
1059 CPUState *cpu;
1060
1061 CPU_FOREACH(cpu) {
1062 cpu_synchronize_pre_loadvm(cpu);
1063 }
1064 }
1065
1066 static int do_vm_stop(RunState state, bool send_stop)
1067 {
1068 int ret = 0;
1069
1070 if (runstate_is_running()) {
1071 cpu_disable_ticks();
1072 pause_all_vcpus();
1073 runstate_set(state);
1074 vm_state_notify(0, state);
1075 if (send_stop) {
1076 qapi_event_send_stop();
1077 }
1078 }
1079
1080 bdrv_drain_all();
1081 replay_disable_events();
1082 ret = bdrv_flush_all();
1083
1084 return ret;
1085 }
1086
1087 /* Special vm_stop() variant for terminating the process. Historically clients
1088 * did not expect a QMP STOP event and so we need to retain compatibility.
1089 */
1090 int vm_shutdown(void)
1091 {
1092 return do_vm_stop(RUN_STATE_SHUTDOWN, false);
1093 }
1094
1095 static bool cpu_can_run(CPUState *cpu)
1096 {
1097 if (cpu->stop) {
1098 return false;
1099 }
1100 if (cpu_is_stopped(cpu)) {
1101 return false;
1102 }
1103 return true;
1104 }
1105
1106 static void cpu_handle_guest_debug(CPUState *cpu)
1107 {
1108 gdb_set_stop_cpu(cpu);
1109 qemu_system_debug_request();
1110 cpu->stopped = true;
1111 }
1112
1113 #ifdef CONFIG_LINUX
1114 static void sigbus_reraise(void)
1115 {
1116 sigset_t set;
1117 struct sigaction action;
1118
1119 memset(&action, 0, sizeof(action));
1120 action.sa_handler = SIG_DFL;
1121 if (!sigaction(SIGBUS, &action, NULL)) {
1122 raise(SIGBUS);
1123 sigemptyset(&set);
1124 sigaddset(&set, SIGBUS);
1125 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
1126 }
1127 perror("Failed to re-raise SIGBUS!\n");
1128 abort();
1129 }
1130
1131 static void sigbus_handler(int n, siginfo_t *siginfo, void *ctx)
1132 {
1133 if (siginfo->si_code != BUS_MCEERR_AO && siginfo->si_code != BUS_MCEERR_AR) {
1134 sigbus_reraise();
1135 }
1136
1137 if (current_cpu) {
1138 /* Called asynchronously in VCPU thread. */
1139 if (kvm_on_sigbus_vcpu(current_cpu, siginfo->si_code, siginfo->si_addr)) {
1140 sigbus_reraise();
1141 }
1142 } else {
1143 /* Called synchronously (via signalfd) in main thread. */
1144 if (kvm_on_sigbus(siginfo->si_code, siginfo->si_addr)) {
1145 sigbus_reraise();
1146 }
1147 }
1148 }
1149
1150 static void qemu_init_sigbus(void)
1151 {
1152 struct sigaction action;
1153
1154 memset(&action, 0, sizeof(action));
1155 action.sa_flags = SA_SIGINFO;
1156 action.sa_sigaction = sigbus_handler;
1157 sigaction(SIGBUS, &action, NULL);
1158
1159 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
1160 }
1161 #else /* !CONFIG_LINUX */
1162 static void qemu_init_sigbus(void)
1163 {
1164 }
1165 #endif /* !CONFIG_LINUX */
1166
1167 static QemuMutex qemu_global_mutex;
1168
1169 static QemuThread io_thread;
1170
1171 /* cpu creation */
1172 static QemuCond qemu_cpu_cond;
1173 /* system init */
1174 static QemuCond qemu_pause_cond;
1175
1176 void qemu_init_cpu_loop(void)
1177 {
1178 qemu_init_sigbus();
1179 qemu_cond_init(&qemu_cpu_cond);
1180 qemu_cond_init(&qemu_pause_cond);
1181 qemu_mutex_init(&qemu_global_mutex);
1182
1183 qemu_thread_get_self(&io_thread);
1184 }
1185
1186 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
1187 {
1188 do_run_on_cpu(cpu, func, data, &qemu_global_mutex);
1189 }
1190
1191 static void qemu_kvm_destroy_vcpu(CPUState *cpu)
1192 {
1193 if (kvm_destroy_vcpu(cpu) < 0) {
1194 error_report("kvm_destroy_vcpu failed");
1195 exit(EXIT_FAILURE);
1196 }
1197 }
1198
1199 static void qemu_tcg_destroy_vcpu(CPUState *cpu)
1200 {
1201 }
1202
1203 static void qemu_cpu_stop(CPUState *cpu, bool exit)
1204 {
1205 g_assert(qemu_cpu_is_self(cpu));
1206 cpu->stop = false;
1207 cpu->stopped = true;
1208 if (exit) {
1209 cpu_exit(cpu);
1210 }
1211 qemu_cond_broadcast(&qemu_pause_cond);
1212 }
1213
1214 static void qemu_wait_io_event_common(CPUState *cpu)
1215 {
1216 atomic_mb_set(&cpu->thread_kicked, false);
1217 if (cpu->stop) {
1218 qemu_cpu_stop(cpu, false);
1219 }
1220 process_queued_cpu_work(cpu);
1221 }
1222
1223 static void qemu_tcg_rr_wait_io_event(CPUState *cpu)
1224 {
1225 while (all_cpu_threads_idle()) {
1226 stop_tcg_kick_timer();
1227 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1228 }
1229
1230 start_tcg_kick_timer();
1231
1232 qemu_wait_io_event_common(cpu);
1233 }
1234
1235 static void qemu_wait_io_event(CPUState *cpu)
1236 {
1237 while (cpu_thread_is_idle(cpu)) {
1238 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1239 }
1240
1241 #ifdef _WIN32
1242 /* Eat dummy APC queued by qemu_cpu_kick_thread. */
1243 if (!tcg_enabled()) {
1244 SleepEx(0, TRUE);
1245 }
1246 #endif
1247 qemu_wait_io_event_common(cpu);
1248 }
1249
1250 static void *qemu_kvm_cpu_thread_fn(void *arg)
1251 {
1252 CPUState *cpu = arg;
1253 int r;
1254
1255 rcu_register_thread();
1256
1257 qemu_mutex_lock_iothread();
1258 qemu_thread_get_self(cpu->thread);
1259 cpu->thread_id = qemu_get_thread_id();
1260 cpu->can_do_io = 1;
1261 current_cpu = cpu;
1262
1263 r = kvm_init_vcpu(cpu);
1264 if (r < 0) {
1265 error_report("kvm_init_vcpu failed: %s", strerror(-r));
1266 exit(1);
1267 }
1268
1269 kvm_init_cpu_signals(cpu);
1270
1271 /* signal CPU creation */
1272 cpu->created = true;
1273 qemu_cond_signal(&qemu_cpu_cond);
1274
1275 do {
1276 if (cpu_can_run(cpu)) {
1277 r = kvm_cpu_exec(cpu);
1278 if (r == EXCP_DEBUG) {
1279 cpu_handle_guest_debug(cpu);
1280 }
1281 }
1282 qemu_wait_io_event(cpu);
1283 } while (!cpu->unplug || cpu_can_run(cpu));
1284
1285 qemu_kvm_destroy_vcpu(cpu);
1286 cpu->created = false;
1287 qemu_cond_signal(&qemu_cpu_cond);
1288 qemu_mutex_unlock_iothread();
1289 rcu_unregister_thread();
1290 return NULL;
1291 }
1292
1293 static void *qemu_dummy_cpu_thread_fn(void *arg)
1294 {
1295 #ifdef _WIN32
1296 error_report("qtest is not supported under Windows");
1297 exit(1);
1298 #else
1299 CPUState *cpu = arg;
1300 sigset_t waitset;
1301 int r;
1302
1303 rcu_register_thread();
1304
1305 qemu_mutex_lock_iothread();
1306 qemu_thread_get_self(cpu->thread);
1307 cpu->thread_id = qemu_get_thread_id();
1308 cpu->can_do_io = 1;
1309 current_cpu = cpu;
1310
1311 sigemptyset(&waitset);
1312 sigaddset(&waitset, SIG_IPI);
1313
1314 /* signal CPU creation */
1315 cpu->created = true;
1316 qemu_cond_signal(&qemu_cpu_cond);
1317
1318 do {
1319 qemu_mutex_unlock_iothread();
1320 do {
1321 int sig;
1322 r = sigwait(&waitset, &sig);
1323 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
1324 if (r == -1) {
1325 perror("sigwait");
1326 exit(1);
1327 }
1328 qemu_mutex_lock_iothread();
1329 qemu_wait_io_event(cpu);
1330 } while (!cpu->unplug);
1331
1332 rcu_unregister_thread();
1333 return NULL;
1334 #endif
1335 }
1336
1337 static int64_t tcg_get_icount_limit(void)
1338 {
1339 int64_t deadline;
1340
1341 if (replay_mode != REPLAY_MODE_PLAY) {
1342 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1343
1344 /* Maintain prior (possibly buggy) behaviour where if no deadline
1345 * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
1346 * INT32_MAX nanoseconds ahead, we still use INT32_MAX
1347 * nanoseconds.
1348 */
1349 if ((deadline < 0) || (deadline > INT32_MAX)) {
1350 deadline = INT32_MAX;
1351 }
1352
1353 return qemu_icount_round(deadline);
1354 } else {
1355 return replay_get_instructions();
1356 }
1357 }
1358
1359 static void handle_icount_deadline(void)
1360 {
1361 assert(qemu_in_vcpu_thread());
1362 if (use_icount) {
1363 int64_t deadline =
1364 qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1365
1366 if (deadline == 0) {
1367 /* Wake up other AioContexts. */
1368 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
1369 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
1370 }
1371 }
1372 }
1373
1374 static void prepare_icount_for_run(CPUState *cpu)
1375 {
1376 if (use_icount) {
1377 int insns_left;
1378
1379 /* These should always be cleared by process_icount_data after
1380 * each vCPU execution. However u16.high can be raised
1381 * asynchronously by cpu_exit/cpu_interrupt/tcg_handle_interrupt
1382 */
1383 g_assert(cpu->icount_decr.u16.low == 0);
1384 g_assert(cpu->icount_extra == 0);
1385
1386 cpu->icount_budget = tcg_get_icount_limit();
1387 insns_left = MIN(0xffff, cpu->icount_budget);
1388 cpu->icount_decr.u16.low = insns_left;
1389 cpu->icount_extra = cpu->icount_budget - insns_left;
1390
1391 replay_mutex_lock();
1392 }
1393 }
1394
1395 static void process_icount_data(CPUState *cpu)
1396 {
1397 if (use_icount) {
1398 /* Account for executed instructions */
1399 cpu_update_icount(cpu);
1400
1401 /* Reset the counters */
1402 cpu->icount_decr.u16.low = 0;
1403 cpu->icount_extra = 0;
1404 cpu->icount_budget = 0;
1405
1406 replay_account_executed_instructions();
1407
1408 replay_mutex_unlock();
1409 }
1410 }
1411
1412
1413 static int tcg_cpu_exec(CPUState *cpu)
1414 {
1415 int ret;
1416 #ifdef CONFIG_PROFILER
1417 int64_t ti;
1418 #endif
1419
1420 assert(tcg_enabled());
1421 #ifdef CONFIG_PROFILER
1422 ti = profile_getclock();
1423 #endif
1424 cpu_exec_start(cpu);
1425 ret = cpu_exec(cpu);
1426 cpu_exec_end(cpu);
1427 #ifdef CONFIG_PROFILER
1428 atomic_set(&tcg_ctx->prof.cpu_exec_time,
1429 tcg_ctx->prof.cpu_exec_time + profile_getclock() - ti);
1430 #endif
1431 return ret;
1432 }
1433
1434 /* Destroy any remaining vCPUs which have been unplugged and have
1435 * finished running
1436 */
1437 static void deal_with_unplugged_cpus(void)
1438 {
1439 CPUState *cpu;
1440
1441 CPU_FOREACH(cpu) {
1442 if (cpu->unplug && !cpu_can_run(cpu)) {
1443 qemu_tcg_destroy_vcpu(cpu);
1444 cpu->created = false;
1445 qemu_cond_signal(&qemu_cpu_cond);
1446 break;
1447 }
1448 }
1449 }
1450
1451 /* Single-threaded TCG
1452 *
1453 * In the single-threaded case each vCPU is simulated in turn. If
1454 * there is more than a single vCPU we create a simple timer to kick
1455 * the vCPU and ensure we don't get stuck in a tight loop in one vCPU.
1456 * This is done explicitly rather than relying on side-effects
1457 * elsewhere.
1458 */
1459
1460 static void *qemu_tcg_rr_cpu_thread_fn(void *arg)
1461 {
1462 CPUState *cpu = arg;
1463
1464 assert(tcg_enabled());
1465 rcu_register_thread();
1466 tcg_register_thread();
1467
1468 qemu_mutex_lock_iothread();
1469 qemu_thread_get_self(cpu->thread);
1470
1471 cpu->thread_id = qemu_get_thread_id();
1472 cpu->created = true;
1473 cpu->can_do_io = 1;
1474 qemu_cond_signal(&qemu_cpu_cond);
1475
1476 /* wait for initial kick-off after machine start */
1477 while (first_cpu->stopped) {
1478 qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
1479
1480 /* process any pending work */
1481 CPU_FOREACH(cpu) {
1482 current_cpu = cpu;
1483 qemu_wait_io_event_common(cpu);
1484 }
1485 }
1486
1487 start_tcg_kick_timer();
1488
1489 cpu = first_cpu;
1490
1491 /* process any pending work */
1492 cpu->exit_request = 1;
1493
1494 while (1) {
1495 qemu_mutex_unlock_iothread();
1496 replay_mutex_lock();
1497 qemu_mutex_lock_iothread();
1498 /* Account partial waits to QEMU_CLOCK_VIRTUAL. */
1499 qemu_account_warp_timer();
1500
1501 /* Run the timers here. This is much more efficient than
1502 * waking up the I/O thread and waiting for completion.
1503 */
1504 handle_icount_deadline();
1505
1506 replay_mutex_unlock();
1507
1508 if (!cpu) {
1509 cpu = first_cpu;
1510 }
1511
1512 while (cpu && !cpu->queued_work_first && !cpu->exit_request) {
1513
1514 atomic_mb_set(&tcg_current_rr_cpu, cpu);
1515 current_cpu = cpu;
1516
1517 qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
1518 (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
1519
1520 if (cpu_can_run(cpu)) {
1521 int r;
1522
1523 qemu_mutex_unlock_iothread();
1524 prepare_icount_for_run(cpu);
1525
1526 r = tcg_cpu_exec(cpu);
1527
1528 process_icount_data(cpu);
1529 qemu_mutex_lock_iothread();
1530
1531 if (r == EXCP_DEBUG) {
1532 cpu_handle_guest_debug(cpu);
1533 break;
1534 } else if (r == EXCP_ATOMIC) {
1535 qemu_mutex_unlock_iothread();
1536 cpu_exec_step_atomic(cpu);
1537 qemu_mutex_lock_iothread();
1538 break;
1539 }
1540 } else if (cpu->stop) {
1541 if (cpu->unplug) {
1542 cpu = CPU_NEXT(cpu);
1543 }
1544 break;
1545 }
1546
1547 cpu = CPU_NEXT(cpu);
1548 } /* while (cpu && !cpu->exit_request).. */
1549
1550 /* Does not need atomic_mb_set because a spurious wakeup is okay. */
1551 atomic_set(&tcg_current_rr_cpu, NULL);
1552
1553 if (cpu && cpu->exit_request) {
1554 atomic_mb_set(&cpu->exit_request, 0);
1555 }
1556
1557 if (use_icount && all_cpu_threads_idle()) {
1558 /*
1559 * When all cpus are sleeping (e.g in WFI), to avoid a deadlock
1560 * in the main_loop, wake it up in order to start the warp timer.
1561 */
1562 qemu_notify_event();
1563 }
1564
1565 qemu_tcg_rr_wait_io_event(cpu ? cpu : first_cpu);
1566 deal_with_unplugged_cpus();
1567 }
1568
1569 rcu_unregister_thread();
1570 return NULL;
1571 }
1572
1573 static void *qemu_hax_cpu_thread_fn(void *arg)
1574 {
1575 CPUState *cpu = arg;
1576 int r;
1577
1578 rcu_register_thread();
1579 qemu_mutex_lock_iothread();
1580 qemu_thread_get_self(cpu->thread);
1581
1582 cpu->thread_id = qemu_get_thread_id();
1583 cpu->created = true;
1584 cpu->halted = 0;
1585 current_cpu = cpu;
1586
1587 hax_init_vcpu(cpu);
1588 qemu_cond_signal(&qemu_cpu_cond);
1589
1590 do {
1591 if (cpu_can_run(cpu)) {
1592 r = hax_smp_cpu_exec(cpu);
1593 if (r == EXCP_DEBUG) {
1594 cpu_handle_guest_debug(cpu);
1595 }
1596 }
1597
1598 qemu_wait_io_event(cpu);
1599 } while (!cpu->unplug || cpu_can_run(cpu));
1600 rcu_unregister_thread();
1601 return NULL;
1602 }
1603
1604 /* The HVF-specific vCPU thread function. This one should only run when the host
1605 * CPU supports the VMX "unrestricted guest" feature. */
1606 static void *qemu_hvf_cpu_thread_fn(void *arg)
1607 {
1608 CPUState *cpu = arg;
1609
1610 int r;
1611
1612 assert(hvf_enabled());
1613
1614 rcu_register_thread();
1615
1616 qemu_mutex_lock_iothread();
1617 qemu_thread_get_self(cpu->thread);
1618
1619 cpu->thread_id = qemu_get_thread_id();
1620 cpu->can_do_io = 1;
1621 current_cpu = cpu;
1622
1623 hvf_init_vcpu(cpu);
1624
1625 /* signal CPU creation */
1626 cpu->created = true;
1627 qemu_cond_signal(&qemu_cpu_cond);
1628
1629 do {
1630 if (cpu_can_run(cpu)) {
1631 r = hvf_vcpu_exec(cpu);
1632 if (r == EXCP_DEBUG) {
1633 cpu_handle_guest_debug(cpu);
1634 }
1635 }
1636 qemu_wait_io_event(cpu);
1637 } while (!cpu->unplug || cpu_can_run(cpu));
1638
1639 hvf_vcpu_destroy(cpu);
1640 cpu->created = false;
1641 qemu_cond_signal(&qemu_cpu_cond);
1642 qemu_mutex_unlock_iothread();
1643 rcu_unregister_thread();
1644 return NULL;
1645 }
1646
1647 static void *qemu_whpx_cpu_thread_fn(void *arg)
1648 {
1649 CPUState *cpu = arg;
1650 int r;
1651
1652 rcu_register_thread();
1653
1654 qemu_mutex_lock_iothread();
1655 qemu_thread_get_self(cpu->thread);
1656 cpu->thread_id = qemu_get_thread_id();
1657 current_cpu = cpu;
1658
1659 r = whpx_init_vcpu(cpu);
1660 if (r < 0) {
1661 fprintf(stderr, "whpx_init_vcpu failed: %s\n", strerror(-r));
1662 exit(1);
1663 }
1664
1665 /* signal CPU creation */
1666 cpu->created = true;
1667 qemu_cond_signal(&qemu_cpu_cond);
1668
1669 do {
1670 if (cpu_can_run(cpu)) {
1671 r = whpx_vcpu_exec(cpu);
1672 if (r == EXCP_DEBUG) {
1673 cpu_handle_guest_debug(cpu);
1674 }
1675 }
1676 while (cpu_thread_is_idle(cpu)) {
1677 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1678 }
1679 qemu_wait_io_event_common(cpu);
1680 } while (!cpu->unplug || cpu_can_run(cpu));
1681
1682 whpx_destroy_vcpu(cpu);
1683 cpu->created = false;
1684 qemu_cond_signal(&qemu_cpu_cond);
1685 qemu_mutex_unlock_iothread();
1686 rcu_unregister_thread();
1687 return NULL;
1688 }
1689
1690 #ifdef _WIN32
1691 static void CALLBACK dummy_apc_func(ULONG_PTR unused)
1692 {
1693 }
1694 #endif
1695
1696 /* Multi-threaded TCG
1697 *
1698 * In the multi-threaded case each vCPU has its own thread. The TLS
1699 * variable current_cpu can be used deep in the code to find the
1700 * current CPUState for a given thread.
1701 */
1702
1703 static void *qemu_tcg_cpu_thread_fn(void *arg)
1704 {
1705 CPUState *cpu = arg;
1706
1707 assert(tcg_enabled());
1708 g_assert(!use_icount);
1709
1710 rcu_register_thread();
1711 tcg_register_thread();
1712
1713 qemu_mutex_lock_iothread();
1714 qemu_thread_get_self(cpu->thread);
1715
1716 cpu->thread_id = qemu_get_thread_id();
1717 cpu->created = true;
1718 cpu->can_do_io = 1;
1719 current_cpu = cpu;
1720 qemu_cond_signal(&qemu_cpu_cond);
1721
1722 /* process any pending work */
1723 cpu->exit_request = 1;
1724
1725 do {
1726 if (cpu_can_run(cpu)) {
1727 int r;
1728 qemu_mutex_unlock_iothread();
1729 r = tcg_cpu_exec(cpu);
1730 qemu_mutex_lock_iothread();
1731 switch (r) {
1732 case EXCP_DEBUG:
1733 cpu_handle_guest_debug(cpu);
1734 break;
1735 case EXCP_HALTED:
1736 /* during start-up the vCPU is reset and the thread is
1737 * kicked several times. If we don't ensure we go back
1738 * to sleep in the halted state we won't cleanly
1739 * start-up when the vCPU is enabled.
1740 *
1741 * cpu->halted should ensure we sleep in wait_io_event
1742 */
1743 g_assert(cpu->halted);
1744 break;
1745 case EXCP_ATOMIC:
1746 qemu_mutex_unlock_iothread();
1747 cpu_exec_step_atomic(cpu);
1748 qemu_mutex_lock_iothread();
1749 default:
1750 /* Ignore everything else? */
1751 break;
1752 }
1753 }
1754
1755 atomic_mb_set(&cpu->exit_request, 0);
1756 qemu_wait_io_event(cpu);
1757 } while (!cpu->unplug || cpu_can_run(cpu));
1758
1759 qemu_tcg_destroy_vcpu(cpu);
1760 cpu->created = false;
1761 qemu_cond_signal(&qemu_cpu_cond);
1762 qemu_mutex_unlock_iothread();
1763 rcu_unregister_thread();
1764 return NULL;
1765 }
1766
1767 static void qemu_cpu_kick_thread(CPUState *cpu)
1768 {
1769 #ifndef _WIN32
1770 int err;
1771
1772 if (cpu->thread_kicked) {
1773 return;
1774 }
1775 cpu->thread_kicked = true;
1776 err = pthread_kill(cpu->thread->thread, SIG_IPI);
1777 if (err) {
1778 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
1779 exit(1);
1780 }
1781 #else /* _WIN32 */
1782 if (!qemu_cpu_is_self(cpu)) {
1783 if (whpx_enabled()) {
1784 whpx_vcpu_kick(cpu);
1785 } else if (!QueueUserAPC(dummy_apc_func, cpu->hThread, 0)) {
1786 fprintf(stderr, "%s: QueueUserAPC failed with error %lu\n",
1787 __func__, GetLastError());
1788 exit(1);
1789 }
1790 }
1791 #endif
1792 }
1793
1794 void qemu_cpu_kick(CPUState *cpu)
1795 {
1796 qemu_cond_broadcast(cpu->halt_cond);
1797 if (tcg_enabled()) {
1798 cpu_exit(cpu);
1799 /* NOP unless doing single-thread RR */
1800 qemu_cpu_kick_rr_cpu();
1801 } else {
1802 if (hax_enabled()) {
1803 /*
1804 * FIXME: race condition with the exit_request check in
1805 * hax_vcpu_hax_exec
1806 */
1807 cpu->exit_request = 1;
1808 }
1809 qemu_cpu_kick_thread(cpu);
1810 }
1811 }
1812
1813 void qemu_cpu_kick_self(void)
1814 {
1815 assert(current_cpu);
1816 qemu_cpu_kick_thread(current_cpu);
1817 }
1818
1819 bool qemu_cpu_is_self(CPUState *cpu)
1820 {
1821 return qemu_thread_is_self(cpu->thread);
1822 }
1823
1824 bool qemu_in_vcpu_thread(void)
1825 {
1826 return current_cpu && qemu_cpu_is_self(current_cpu);
1827 }
1828
1829 static __thread bool iothread_locked = false;
1830
1831 bool qemu_mutex_iothread_locked(void)
1832 {
1833 return iothread_locked;
1834 }
1835
1836 /*
1837 * The BQL is taken from so many places that it is worth profiling the
1838 * callers directly, instead of funneling them all through a single function.
1839 */
1840 void qemu_mutex_lock_iothread_impl(const char *file, int line)
1841 {
1842 QemuMutexLockFunc bql_lock = atomic_read(&qemu_bql_mutex_lock_func);
1843
1844 g_assert(!qemu_mutex_iothread_locked());
1845 bql_lock(&qemu_global_mutex, file, line);
1846 iothread_locked = true;
1847 }
1848
1849 void qemu_mutex_unlock_iothread(void)
1850 {
1851 g_assert(qemu_mutex_iothread_locked());
1852 iothread_locked = false;
1853 qemu_mutex_unlock(&qemu_global_mutex);
1854 }
1855
1856 static bool all_vcpus_paused(void)
1857 {
1858 CPUState *cpu;
1859
1860 CPU_FOREACH(cpu) {
1861 if (!cpu->stopped) {
1862 return false;
1863 }
1864 }
1865
1866 return true;
1867 }
1868
1869 void pause_all_vcpus(void)
1870 {
1871 CPUState *cpu;
1872
1873 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
1874 CPU_FOREACH(cpu) {
1875 if (qemu_cpu_is_self(cpu)) {
1876 qemu_cpu_stop(cpu, true);
1877 } else {
1878 cpu->stop = true;
1879 qemu_cpu_kick(cpu);
1880 }
1881 }
1882
1883 /* We need to drop the replay_lock so any vCPU threads woken up
1884 * can finish their replay tasks
1885 */
1886 replay_mutex_unlock();
1887
1888 while (!all_vcpus_paused()) {
1889 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
1890 CPU_FOREACH(cpu) {
1891 qemu_cpu_kick(cpu);
1892 }
1893 }
1894
1895 qemu_mutex_unlock_iothread();
1896 replay_mutex_lock();
1897 qemu_mutex_lock_iothread();
1898 }
1899
1900 void cpu_resume(CPUState *cpu)
1901 {
1902 cpu->stop = false;
1903 cpu->stopped = false;
1904 qemu_cpu_kick(cpu);
1905 }
1906
1907 void resume_all_vcpus(void)
1908 {
1909 CPUState *cpu;
1910
1911 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
1912 CPU_FOREACH(cpu) {
1913 cpu_resume(cpu);
1914 }
1915 }
1916
1917 void cpu_remove_sync(CPUState *cpu)
1918 {
1919 cpu->stop = true;
1920 cpu->unplug = true;
1921 qemu_cpu_kick(cpu);
1922 qemu_mutex_unlock_iothread();
1923 qemu_thread_join(cpu->thread);
1924 qemu_mutex_lock_iothread();
1925 }
1926
1927 /* For temporary buffers for forming a name */
1928 #define VCPU_THREAD_NAME_SIZE 16
1929
1930 static void qemu_tcg_init_vcpu(CPUState *cpu)
1931 {
1932 char thread_name[VCPU_THREAD_NAME_SIZE];
1933 static QemuCond *single_tcg_halt_cond;
1934 static QemuThread *single_tcg_cpu_thread;
1935 static int tcg_region_inited;
1936
1937 assert(tcg_enabled());
1938 /*
1939 * Initialize TCG regions--once. Now is a good time, because:
1940 * (1) TCG's init context, prologue and target globals have been set up.
1941 * (2) qemu_tcg_mttcg_enabled() works now (TCG init code runs before the
1942 * -accel flag is processed, so the check doesn't work then).
1943 */
1944 if (!tcg_region_inited) {
1945 tcg_region_inited = 1;
1946 tcg_region_init();
1947 }
1948
1949 if (qemu_tcg_mttcg_enabled() || !single_tcg_cpu_thread) {
1950 cpu->thread = g_malloc0(sizeof(QemuThread));
1951 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1952 qemu_cond_init(cpu->halt_cond);
1953
1954 if (qemu_tcg_mttcg_enabled()) {
1955 /* create a thread per vCPU with TCG (MTTCG) */
1956 parallel_cpus = true;
1957 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG",
1958 cpu->cpu_index);
1959
1960 qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn,
1961 cpu, QEMU_THREAD_JOINABLE);
1962
1963 } else {
1964 /* share a single thread for all cpus with TCG */
1965 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "ALL CPUs/TCG");
1966 qemu_thread_create(cpu->thread, thread_name,
1967 qemu_tcg_rr_cpu_thread_fn,
1968 cpu, QEMU_THREAD_JOINABLE);
1969
1970 single_tcg_halt_cond = cpu->halt_cond;
1971 single_tcg_cpu_thread = cpu->thread;
1972 }
1973 #ifdef _WIN32
1974 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1975 #endif
1976 } else {
1977 /* For non-MTTCG cases we share the thread */
1978 cpu->thread = single_tcg_cpu_thread;
1979 cpu->halt_cond = single_tcg_halt_cond;
1980 cpu->thread_id = first_cpu->thread_id;
1981 cpu->can_do_io = 1;
1982 cpu->created = true;
1983 }
1984 }
1985
1986 static void qemu_hax_start_vcpu(CPUState *cpu)
1987 {
1988 char thread_name[VCPU_THREAD_NAME_SIZE];
1989
1990 cpu->thread = g_malloc0(sizeof(QemuThread));
1991 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1992 qemu_cond_init(cpu->halt_cond);
1993
1994 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HAX",
1995 cpu->cpu_index);
1996 qemu_thread_create(cpu->thread, thread_name, qemu_hax_cpu_thread_fn,
1997 cpu, QEMU_THREAD_JOINABLE);
1998 #ifdef _WIN32
1999 cpu->hThread = qemu_thread_get_handle(cpu->thread);
2000 #endif
2001 }
2002
2003 static void qemu_kvm_start_vcpu(CPUState *cpu)
2004 {
2005 char thread_name[VCPU_THREAD_NAME_SIZE];
2006
2007 cpu->thread = g_malloc0(sizeof(QemuThread));
2008 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2009 qemu_cond_init(cpu->halt_cond);
2010 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM",
2011 cpu->cpu_index);
2012 qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn,
2013 cpu, QEMU_THREAD_JOINABLE);
2014 }
2015
2016 static void qemu_hvf_start_vcpu(CPUState *cpu)
2017 {
2018 char thread_name[VCPU_THREAD_NAME_SIZE];
2019
2020 /* HVF currently does not support TCG, and only runs in
2021 * unrestricted-guest mode. */
2022 assert(hvf_enabled());
2023
2024 cpu->thread = g_malloc0(sizeof(QemuThread));
2025 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2026 qemu_cond_init(cpu->halt_cond);
2027
2028 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF",
2029 cpu->cpu_index);
2030 qemu_thread_create(cpu->thread, thread_name, qemu_hvf_cpu_thread_fn,
2031 cpu, QEMU_THREAD_JOINABLE);
2032 }
2033
2034 static void qemu_whpx_start_vcpu(CPUState *cpu)
2035 {
2036 char thread_name[VCPU_THREAD_NAME_SIZE];
2037
2038 cpu->thread = g_malloc0(sizeof(QemuThread));
2039 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2040 qemu_cond_init(cpu->halt_cond);
2041 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/WHPX",
2042 cpu->cpu_index);
2043 qemu_thread_create(cpu->thread, thread_name, qemu_whpx_cpu_thread_fn,
2044 cpu, QEMU_THREAD_JOINABLE);
2045 #ifdef _WIN32
2046 cpu->hThread = qemu_thread_get_handle(cpu->thread);
2047 #endif
2048 }
2049
2050 static void qemu_dummy_start_vcpu(CPUState *cpu)
2051 {
2052 char thread_name[VCPU_THREAD_NAME_SIZE];
2053
2054 cpu->thread = g_malloc0(sizeof(QemuThread));
2055 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2056 qemu_cond_init(cpu->halt_cond);
2057 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY",
2058 cpu->cpu_index);
2059 qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu,
2060 QEMU_THREAD_JOINABLE);
2061 }
2062
2063 void qemu_init_vcpu(CPUState *cpu)
2064 {
2065 cpu->nr_cores = smp_cores;
2066 cpu->nr_threads = smp_threads;
2067 cpu->stopped = true;
2068
2069 if (!cpu->as) {
2070 /* If the target cpu hasn't set up any address spaces itself,
2071 * give it the default one.
2072 */
2073 cpu->num_ases = 1;
2074 cpu_address_space_init(cpu, 0, "cpu-memory", cpu->memory);
2075 }
2076
2077 if (kvm_enabled()) {
2078 qemu_kvm_start_vcpu(cpu);
2079 } else if (hax_enabled()) {
2080 qemu_hax_start_vcpu(cpu);
2081 } else if (hvf_enabled()) {
2082 qemu_hvf_start_vcpu(cpu);
2083 } else if (tcg_enabled()) {
2084 qemu_tcg_init_vcpu(cpu);
2085 } else if (whpx_enabled()) {
2086 qemu_whpx_start_vcpu(cpu);
2087 } else {
2088 qemu_dummy_start_vcpu(cpu);
2089 }
2090
2091 while (!cpu->created) {
2092 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
2093 }
2094 }
2095
2096 void cpu_stop_current(void)
2097 {
2098 if (current_cpu) {
2099 qemu_cpu_stop(current_cpu, true);
2100 }
2101 }
2102
2103 int vm_stop(RunState state)
2104 {
2105 if (qemu_in_vcpu_thread()) {
2106 qemu_system_vmstop_request_prepare();
2107 qemu_system_vmstop_request(state);
2108 /*
2109 * FIXME: should not return to device code in case
2110 * vm_stop() has been requested.
2111 */
2112 cpu_stop_current();
2113 return 0;
2114 }
2115
2116 return do_vm_stop(state, true);
2117 }
2118
2119 /**
2120 * Prepare for (re)starting the VM.
2121 * Returns -1 if the vCPUs are not to be restarted (e.g. if they are already
2122 * running or in case of an error condition), 0 otherwise.
2123 */
2124 int vm_prepare_start(void)
2125 {
2126 RunState requested;
2127
2128 qemu_vmstop_requested(&requested);
2129 if (runstate_is_running() && requested == RUN_STATE__MAX) {
2130 return -1;
2131 }
2132
2133 /* Ensure that a STOP/RESUME pair of events is emitted if a
2134 * vmstop request was pending. The BLOCK_IO_ERROR event, for
2135 * example, according to documentation is always followed by
2136 * the STOP event.
2137 */
2138 if (runstate_is_running()) {
2139 qapi_event_send_stop();
2140 qapi_event_send_resume();
2141 return -1;
2142 }
2143
2144 /* We are sending this now, but the CPUs will be resumed shortly later */
2145 qapi_event_send_resume();
2146
2147 replay_enable_events();
2148 cpu_enable_ticks();
2149 runstate_set(RUN_STATE_RUNNING);
2150 vm_state_notify(1, RUN_STATE_RUNNING);
2151 return 0;
2152 }
2153
2154 void vm_start(void)
2155 {
2156 if (!vm_prepare_start()) {
2157 resume_all_vcpus();
2158 }
2159 }
2160
2161 /* does a state transition even if the VM is already stopped,
2162 current state is forgotten forever */
2163 int vm_stop_force_state(RunState state)
2164 {
2165 if (runstate_is_running()) {
2166 return vm_stop(state);
2167 } else {
2168 runstate_set(state);
2169
2170 bdrv_drain_all();
2171 /* Make sure to return an error if the flush in a previous vm_stop()
2172 * failed. */
2173 return bdrv_flush_all();
2174 }
2175 }
2176
2177 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
2178 {
2179 /* XXX: implement xxx_cpu_list for targets that still miss it */
2180 #if defined(cpu_list)
2181 cpu_list(f, cpu_fprintf);
2182 #endif
2183 }
2184
2185 CpuInfoList *qmp_query_cpus(Error **errp)
2186 {
2187 MachineState *ms = MACHINE(qdev_get_machine());
2188 MachineClass *mc = MACHINE_GET_CLASS(ms);
2189 CpuInfoList *head = NULL, *cur_item = NULL;
2190 CPUState *cpu;
2191
2192 CPU_FOREACH(cpu) {
2193 CpuInfoList *info;
2194 #if defined(TARGET_I386)
2195 X86CPU *x86_cpu = X86_CPU(cpu);
2196 CPUX86State *env = &x86_cpu->env;
2197 #elif defined(TARGET_PPC)
2198 PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu);
2199 CPUPPCState *env = &ppc_cpu->env;
2200 #elif defined(TARGET_SPARC)
2201 SPARCCPU *sparc_cpu = SPARC_CPU(cpu);
2202 CPUSPARCState *env = &sparc_cpu->env;
2203 #elif defined(TARGET_RISCV)
2204 RISCVCPU *riscv_cpu = RISCV_CPU(cpu);
2205 CPURISCVState *env = &riscv_cpu->env;
2206 #elif defined(TARGET_MIPS)
2207 MIPSCPU *mips_cpu = MIPS_CPU(cpu);
2208 CPUMIPSState *env = &mips_cpu->env;
2209 #elif defined(TARGET_TRICORE)
2210 TriCoreCPU *tricore_cpu = TRICORE_CPU(cpu);
2211 CPUTriCoreState *env = &tricore_cpu->env;
2212 #elif defined(TARGET_S390X)
2213 S390CPU *s390_cpu = S390_CPU(cpu);
2214 CPUS390XState *env = &s390_cpu->env;
2215 #endif
2216
2217 cpu_synchronize_state(cpu);
2218
2219 info = g_malloc0(sizeof(*info));
2220 info->value = g_malloc0(sizeof(*info->value));
2221 info->value->CPU = cpu->cpu_index;
2222 info->value->current = (cpu == first_cpu);
2223 info->value->halted = cpu->halted;
2224 info->value->qom_path = object_get_canonical_path(OBJECT(cpu));
2225 info->value->thread_id = cpu->thread_id;
2226 #if defined(TARGET_I386)
2227 info->value->arch = CPU_INFO_ARCH_X86;
2228 info->value->u.x86.pc = env->eip + env->segs[R_CS].base;
2229 #elif defined(TARGET_PPC)
2230 info->value->arch = CPU_INFO_ARCH_PPC;
2231 info->value->u.ppc.nip = env->nip;
2232 #elif defined(TARGET_SPARC)
2233 info->value->arch = CPU_INFO_ARCH_SPARC;
2234 info->value->u.q_sparc.pc = env->pc;
2235 info->value->u.q_sparc.npc = env->npc;
2236 #elif defined(TARGET_MIPS)
2237 info->value->arch = CPU_INFO_ARCH_MIPS;
2238 info->value->u.q_mips.PC = env->active_tc.PC;
2239 #elif defined(TARGET_TRICORE)
2240 info->value->arch = CPU_INFO_ARCH_TRICORE;
2241 info->value->u.tricore.PC = env->PC;
2242 #elif defined(TARGET_S390X)
2243 info->value->arch = CPU_INFO_ARCH_S390;
2244 info->value->u.s390.cpu_state = env->cpu_state;
2245 #elif defined(TARGET_RISCV)
2246 info->value->arch = CPU_INFO_ARCH_RISCV;
2247 info->value->u.riscv.pc = env->pc;
2248 #else
2249 info->value->arch = CPU_INFO_ARCH_OTHER;
2250 #endif
2251 info->value->has_props = !!mc->cpu_index_to_instance_props;
2252 if (info->value->has_props) {
2253 CpuInstanceProperties *props;
2254 props = g_malloc0(sizeof(*props));
2255 *props = mc->cpu_index_to_instance_props(ms, cpu->cpu_index);
2256 info->value->props = props;
2257 }
2258
2259 /* XXX: waiting for the qapi to support GSList */
2260 if (!cur_item) {
2261 head = cur_item = info;
2262 } else {
2263 cur_item->next = info;
2264 cur_item = info;
2265 }
2266 }
2267
2268 return head;
2269 }
2270
2271 static CpuInfoArch sysemu_target_to_cpuinfo_arch(SysEmuTarget target)
2272 {
2273 /*
2274 * The @SysEmuTarget -> @CpuInfoArch mapping below is based on the
2275 * TARGET_ARCH -> TARGET_BASE_ARCH mapping in the "configure" script.
2276 */
2277 switch (target) {
2278 case SYS_EMU_TARGET_I386:
2279 case SYS_EMU_TARGET_X86_64:
2280 return CPU_INFO_ARCH_X86;
2281
2282 case SYS_EMU_TARGET_PPC:
2283 case SYS_EMU_TARGET_PPC64:
2284 return CPU_INFO_ARCH_PPC;
2285
2286 case SYS_EMU_TARGET_SPARC:
2287 case SYS_EMU_TARGET_SPARC64:
2288 return CPU_INFO_ARCH_SPARC;
2289
2290 case SYS_EMU_TARGET_MIPS:
2291 case SYS_EMU_TARGET_MIPSEL:
2292 case SYS_EMU_TARGET_MIPS64:
2293 case SYS_EMU_TARGET_MIPS64EL:
2294 return CPU_INFO_ARCH_MIPS;
2295
2296 case SYS_EMU_TARGET_TRICORE:
2297 return CPU_INFO_ARCH_TRICORE;
2298
2299 case SYS_EMU_TARGET_S390X:
2300 return CPU_INFO_ARCH_S390;
2301
2302 case SYS_EMU_TARGET_RISCV32:
2303 case SYS_EMU_TARGET_RISCV64:
2304 return CPU_INFO_ARCH_RISCV;
2305
2306 default:
2307 return CPU_INFO_ARCH_OTHER;
2308 }
2309 }
2310
2311 static void cpustate_to_cpuinfo_s390(CpuInfoS390 *info, const CPUState *cpu)
2312 {
2313 #ifdef TARGET_S390X
2314 S390CPU *s390_cpu = S390_CPU(cpu);
2315 CPUS390XState *env = &s390_cpu->env;
2316
2317 info->cpu_state = env->cpu_state;
2318 #else
2319 abort();
2320 #endif
2321 }
2322
2323 /*
2324 * fast means: we NEVER interrupt vCPU threads to retrieve
2325 * information from KVM.
2326 */
2327 CpuInfoFastList *qmp_query_cpus_fast(Error **errp)
2328 {
2329 MachineState *ms = MACHINE(qdev_get_machine());
2330 MachineClass *mc = MACHINE_GET_CLASS(ms);
2331 CpuInfoFastList *head = NULL, *cur_item = NULL;
2332 SysEmuTarget target = qapi_enum_parse(&SysEmuTarget_lookup, TARGET_NAME,
2333 -1, &error_abort);
2334 CPUState *cpu;
2335
2336 CPU_FOREACH(cpu) {
2337 CpuInfoFastList *info = g_malloc0(sizeof(*info));
2338 info->value = g_malloc0(sizeof(*info->value));
2339
2340 info->value->cpu_index = cpu->cpu_index;
2341 info->value->qom_path = object_get_canonical_path(OBJECT(cpu));
2342 info->value->thread_id = cpu->thread_id;
2343
2344 info->value->has_props = !!mc->cpu_index_to_instance_props;
2345 if (info->value->has_props) {
2346 CpuInstanceProperties *props;
2347 props = g_malloc0(sizeof(*props));
2348 *props = mc->cpu_index_to_instance_props(ms, cpu->cpu_index);
2349 info->value->props = props;
2350 }
2351
2352 info->value->arch = sysemu_target_to_cpuinfo_arch(target);
2353 info->value->target = target;
2354 if (target == SYS_EMU_TARGET_S390X) {
2355 cpustate_to_cpuinfo_s390(&info->value->u.s390x, cpu);
2356 }
2357
2358 if (!cur_item) {
2359 head = cur_item = info;
2360 } else {
2361 cur_item->next = info;
2362 cur_item = info;
2363 }
2364 }
2365
2366 return head;
2367 }
2368
2369 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
2370 bool has_cpu, int64_t cpu_index, Error **errp)
2371 {
2372 FILE *f;
2373 uint32_t l;
2374 CPUState *cpu;
2375 uint8_t buf[1024];
2376 int64_t orig_addr = addr, orig_size = size;
2377
2378 if (!has_cpu) {
2379 cpu_index = 0;
2380 }
2381
2382 cpu = qemu_get_cpu(cpu_index);
2383 if (cpu == NULL) {
2384 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
2385 "a CPU number");
2386 return;
2387 }
2388
2389 f = fopen(filename, "wb");
2390 if (!f) {
2391 error_setg_file_open(errp, errno, filename);
2392 return;
2393 }
2394
2395 while (size != 0) {
2396 l = sizeof(buf);
2397 if (l > size)
2398 l = size;
2399 if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
2400 error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64
2401 " specified", orig_addr, orig_size);
2402 goto exit;
2403 }
2404 if (fwrite(buf, 1, l, f) != l) {
2405 error_setg(errp, QERR_IO_ERROR);
2406 goto exit;
2407 }
2408 addr += l;
2409 size -= l;
2410 }
2411
2412 exit:
2413 fclose(f);
2414 }
2415
2416 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
2417 Error **errp)
2418 {
2419 FILE *f;
2420 uint32_t l;
2421 uint8_t buf[1024];
2422
2423 f = fopen(filename, "wb");
2424 if (!f) {
2425 error_setg_file_open(errp, errno, filename);
2426 return;
2427 }
2428
2429 while (size != 0) {
2430 l = sizeof(buf);
2431 if (l > size)
2432 l = size;
2433 cpu_physical_memory_read(addr, buf, l);
2434 if (fwrite(buf, 1, l, f) != l) {
2435 error_setg(errp, QERR_IO_ERROR);
2436 goto exit;
2437 }
2438 addr += l;
2439 size -= l;
2440 }
2441
2442 exit:
2443 fclose(f);
2444 }
2445
2446 void qmp_inject_nmi(Error **errp)
2447 {
2448 nmi_monitor_handle(monitor_get_cpu_index(), errp);
2449 }
2450
2451 void dump_drift_info(FILE *f, fprintf_function cpu_fprintf)
2452 {
2453 if (!use_icount) {
2454 return;
2455 }
2456
2457 cpu_fprintf(f, "Host - Guest clock %"PRIi64" ms\n",
2458 (cpu_get_clock() - cpu_get_icount())/SCALE_MS);
2459 if (icount_align_option) {
2460 cpu_fprintf(f, "Max guest delay %"PRIi64" ms\n", -max_delay/SCALE_MS);
2461 cpu_fprintf(f, "Max guest advance %"PRIi64" ms\n", max_advance/SCALE_MS);
2462 } else {
2463 cpu_fprintf(f, "Max guest delay NA\n");
2464 cpu_fprintf(f, "Max guest advance NA\n");
2465 }
2466 }