]> git.proxmox.com Git - mirror_qemu.git/blob - dump/dump.c
Merge tag 'pull-hex-20231018' of https://github.com/quic/qemu into staging
[mirror_qemu.git] / dump / dump.c
1 /*
2 * QEMU dump
3 *
4 * Copyright Fujitsu, Corp. 2011, 2012
5 *
6 * Authors:
7 * Wen Congyang <wency@cn.fujitsu.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13
14 #include "qemu/osdep.h"
15 #include "qemu/cutils.h"
16 #include "elf.h"
17 #include "qemu/bswap.h"
18 #include "exec/target_page.h"
19 #include "monitor/monitor.h"
20 #include "sysemu/dump.h"
21 #include "sysemu/runstate.h"
22 #include "sysemu/cpus.h"
23 #include "qapi/error.h"
24 #include "qapi/qapi-commands-dump.h"
25 #include "qapi/qapi-events-dump.h"
26 #include "qapi/qmp/qerror.h"
27 #include "qemu/error-report.h"
28 #include "qemu/main-loop.h"
29 #include "hw/misc/vmcoreinfo.h"
30 #include "migration/blocker.h"
31 #include "hw/core/cpu.h"
32 #include "win_dump.h"
33
34 #include <zlib.h>
35 #ifdef CONFIG_LZO
36 #include <lzo/lzo1x.h>
37 #endif
38 #ifdef CONFIG_SNAPPY
39 #include <snappy-c.h>
40 #endif
41 #ifndef ELF_MACHINE_UNAME
42 #define ELF_MACHINE_UNAME "Unknown"
43 #endif
44
45 #define MAX_GUEST_NOTE_SIZE (1 << 20) /* 1MB should be enough */
46
47 static Error *dump_migration_blocker;
48
49 #define ELF_NOTE_SIZE(hdr_size, name_size, desc_size) \
50 ((DIV_ROUND_UP((hdr_size), 4) + \
51 DIV_ROUND_UP((name_size), 4) + \
52 DIV_ROUND_UP((desc_size), 4)) * 4)
53
54 static inline bool dump_is_64bit(DumpState *s)
55 {
56 return s->dump_info.d_class == ELFCLASS64;
57 }
58
59 static inline bool dump_has_filter(DumpState *s)
60 {
61 return s->filter_area_length > 0;
62 }
63
64 uint16_t cpu_to_dump16(DumpState *s, uint16_t val)
65 {
66 if (s->dump_info.d_endian == ELFDATA2LSB) {
67 val = cpu_to_le16(val);
68 } else {
69 val = cpu_to_be16(val);
70 }
71
72 return val;
73 }
74
75 uint32_t cpu_to_dump32(DumpState *s, uint32_t val)
76 {
77 if (s->dump_info.d_endian == ELFDATA2LSB) {
78 val = cpu_to_le32(val);
79 } else {
80 val = cpu_to_be32(val);
81 }
82
83 return val;
84 }
85
86 uint64_t cpu_to_dump64(DumpState *s, uint64_t val)
87 {
88 if (s->dump_info.d_endian == ELFDATA2LSB) {
89 val = cpu_to_le64(val);
90 } else {
91 val = cpu_to_be64(val);
92 }
93
94 return val;
95 }
96
97 static int dump_cleanup(DumpState *s)
98 {
99 guest_phys_blocks_free(&s->guest_phys_blocks);
100 memory_mapping_list_free(&s->list);
101 close(s->fd);
102 g_free(s->guest_note);
103 g_array_unref(s->string_table_buf);
104 s->guest_note = NULL;
105 if (s->resume) {
106 if (s->detached) {
107 qemu_mutex_lock_iothread();
108 }
109 vm_start();
110 if (s->detached) {
111 qemu_mutex_unlock_iothread();
112 }
113 }
114 migrate_del_blocker(&dump_migration_blocker);
115
116 return 0;
117 }
118
119 static int fd_write_vmcore(const void *buf, size_t size, void *opaque)
120 {
121 DumpState *s = opaque;
122 size_t written_size;
123
124 written_size = qemu_write_full(s->fd, buf, size);
125 if (written_size != size) {
126 return -errno;
127 }
128
129 return 0;
130 }
131
132 static void prepare_elf64_header(DumpState *s, Elf64_Ehdr *elf_header)
133 {
134 /*
135 * phnum in the elf header is 16 bit, if we have more segments we
136 * set phnum to PN_XNUM and write the real number of segments to a
137 * special section.
138 */
139 uint16_t phnum = MIN(s->phdr_num, PN_XNUM);
140
141 memset(elf_header, 0, sizeof(Elf64_Ehdr));
142 memcpy(elf_header, ELFMAG, SELFMAG);
143 elf_header->e_ident[EI_CLASS] = ELFCLASS64;
144 elf_header->e_ident[EI_DATA] = s->dump_info.d_endian;
145 elf_header->e_ident[EI_VERSION] = EV_CURRENT;
146 elf_header->e_type = cpu_to_dump16(s, ET_CORE);
147 elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine);
148 elf_header->e_version = cpu_to_dump32(s, EV_CURRENT);
149 elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header));
150 elf_header->e_phoff = cpu_to_dump64(s, s->phdr_offset);
151 elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf64_Phdr));
152 elf_header->e_phnum = cpu_to_dump16(s, phnum);
153 elf_header->e_shoff = cpu_to_dump64(s, s->shdr_offset);
154 elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf64_Shdr));
155 elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num);
156 elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1);
157 }
158
159 static void prepare_elf32_header(DumpState *s, Elf32_Ehdr *elf_header)
160 {
161 /*
162 * phnum in the elf header is 16 bit, if we have more segments we
163 * set phnum to PN_XNUM and write the real number of segments to a
164 * special section.
165 */
166 uint16_t phnum = MIN(s->phdr_num, PN_XNUM);
167
168 memset(elf_header, 0, sizeof(Elf32_Ehdr));
169 memcpy(elf_header, ELFMAG, SELFMAG);
170 elf_header->e_ident[EI_CLASS] = ELFCLASS32;
171 elf_header->e_ident[EI_DATA] = s->dump_info.d_endian;
172 elf_header->e_ident[EI_VERSION] = EV_CURRENT;
173 elf_header->e_type = cpu_to_dump16(s, ET_CORE);
174 elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine);
175 elf_header->e_version = cpu_to_dump32(s, EV_CURRENT);
176 elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header));
177 elf_header->e_phoff = cpu_to_dump32(s, s->phdr_offset);
178 elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf32_Phdr));
179 elf_header->e_phnum = cpu_to_dump16(s, phnum);
180 elf_header->e_shoff = cpu_to_dump32(s, s->shdr_offset);
181 elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf32_Shdr));
182 elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num);
183 elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1);
184 }
185
186 static void write_elf_header(DumpState *s, Error **errp)
187 {
188 Elf32_Ehdr elf32_header;
189 Elf64_Ehdr elf64_header;
190 size_t header_size;
191 void *header_ptr;
192 int ret;
193
194 /* The NULL header and the shstrtab are always defined */
195 assert(s->shdr_num >= 2);
196 if (dump_is_64bit(s)) {
197 prepare_elf64_header(s, &elf64_header);
198 header_size = sizeof(elf64_header);
199 header_ptr = &elf64_header;
200 } else {
201 prepare_elf32_header(s, &elf32_header);
202 header_size = sizeof(elf32_header);
203 header_ptr = &elf32_header;
204 }
205
206 ret = fd_write_vmcore(header_ptr, header_size, s);
207 if (ret < 0) {
208 error_setg_errno(errp, -ret, "dump: failed to write elf header");
209 }
210 }
211
212 static void write_elf64_load(DumpState *s, MemoryMapping *memory_mapping,
213 int phdr_index, hwaddr offset,
214 hwaddr filesz, Error **errp)
215 {
216 Elf64_Phdr phdr;
217 int ret;
218
219 memset(&phdr, 0, sizeof(Elf64_Phdr));
220 phdr.p_type = cpu_to_dump32(s, PT_LOAD);
221 phdr.p_offset = cpu_to_dump64(s, offset);
222 phdr.p_paddr = cpu_to_dump64(s, memory_mapping->phys_addr);
223 phdr.p_filesz = cpu_to_dump64(s, filesz);
224 phdr.p_memsz = cpu_to_dump64(s, memory_mapping->length);
225 phdr.p_vaddr = cpu_to_dump64(s, memory_mapping->virt_addr) ?: phdr.p_paddr;
226
227 assert(memory_mapping->length >= filesz);
228
229 ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
230 if (ret < 0) {
231 error_setg_errno(errp, -ret,
232 "dump: failed to write program header table");
233 }
234 }
235
236 static void write_elf32_load(DumpState *s, MemoryMapping *memory_mapping,
237 int phdr_index, hwaddr offset,
238 hwaddr filesz, Error **errp)
239 {
240 Elf32_Phdr phdr;
241 int ret;
242
243 memset(&phdr, 0, sizeof(Elf32_Phdr));
244 phdr.p_type = cpu_to_dump32(s, PT_LOAD);
245 phdr.p_offset = cpu_to_dump32(s, offset);
246 phdr.p_paddr = cpu_to_dump32(s, memory_mapping->phys_addr);
247 phdr.p_filesz = cpu_to_dump32(s, filesz);
248 phdr.p_memsz = cpu_to_dump32(s, memory_mapping->length);
249 phdr.p_vaddr =
250 cpu_to_dump32(s, memory_mapping->virt_addr) ?: phdr.p_paddr;
251
252 assert(memory_mapping->length >= filesz);
253
254 ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
255 if (ret < 0) {
256 error_setg_errno(errp, -ret,
257 "dump: failed to write program header table");
258 }
259 }
260
261 static void prepare_elf64_phdr_note(DumpState *s, Elf64_Phdr *phdr)
262 {
263 memset(phdr, 0, sizeof(*phdr));
264 phdr->p_type = cpu_to_dump32(s, PT_NOTE);
265 phdr->p_offset = cpu_to_dump64(s, s->note_offset);
266 phdr->p_paddr = 0;
267 phdr->p_filesz = cpu_to_dump64(s, s->note_size);
268 phdr->p_memsz = cpu_to_dump64(s, s->note_size);
269 phdr->p_vaddr = 0;
270 }
271
272 static inline int cpu_index(CPUState *cpu)
273 {
274 return cpu->cpu_index + 1;
275 }
276
277 static void write_guest_note(WriteCoreDumpFunction f, DumpState *s,
278 Error **errp)
279 {
280 int ret;
281
282 if (s->guest_note) {
283 ret = f(s->guest_note, s->guest_note_size, s);
284 if (ret < 0) {
285 error_setg(errp, "dump: failed to write guest note");
286 }
287 }
288 }
289
290 static void write_elf64_notes(WriteCoreDumpFunction f, DumpState *s,
291 Error **errp)
292 {
293 CPUState *cpu;
294 int ret;
295 int id;
296
297 CPU_FOREACH(cpu) {
298 id = cpu_index(cpu);
299 ret = cpu_write_elf64_note(f, cpu, id, s);
300 if (ret < 0) {
301 error_setg(errp, "dump: failed to write elf notes");
302 return;
303 }
304 }
305
306 CPU_FOREACH(cpu) {
307 ret = cpu_write_elf64_qemunote(f, cpu, s);
308 if (ret < 0) {
309 error_setg(errp, "dump: failed to write CPU status");
310 return;
311 }
312 }
313
314 write_guest_note(f, s, errp);
315 }
316
317 static void prepare_elf32_phdr_note(DumpState *s, Elf32_Phdr *phdr)
318 {
319 memset(phdr, 0, sizeof(*phdr));
320 phdr->p_type = cpu_to_dump32(s, PT_NOTE);
321 phdr->p_offset = cpu_to_dump32(s, s->note_offset);
322 phdr->p_paddr = 0;
323 phdr->p_filesz = cpu_to_dump32(s, s->note_size);
324 phdr->p_memsz = cpu_to_dump32(s, s->note_size);
325 phdr->p_vaddr = 0;
326 }
327
328 static void write_elf32_notes(WriteCoreDumpFunction f, DumpState *s,
329 Error **errp)
330 {
331 CPUState *cpu;
332 int ret;
333 int id;
334
335 CPU_FOREACH(cpu) {
336 id = cpu_index(cpu);
337 ret = cpu_write_elf32_note(f, cpu, id, s);
338 if (ret < 0) {
339 error_setg(errp, "dump: failed to write elf notes");
340 return;
341 }
342 }
343
344 CPU_FOREACH(cpu) {
345 ret = cpu_write_elf32_qemunote(f, cpu, s);
346 if (ret < 0) {
347 error_setg(errp, "dump: failed to write CPU status");
348 return;
349 }
350 }
351
352 write_guest_note(f, s, errp);
353 }
354
355 static void write_elf_phdr_note(DumpState *s, Error **errp)
356 {
357 Elf32_Phdr phdr32;
358 Elf64_Phdr phdr64;
359 void *phdr;
360 size_t size;
361 int ret;
362
363 if (dump_is_64bit(s)) {
364 prepare_elf64_phdr_note(s, &phdr64);
365 size = sizeof(phdr64);
366 phdr = &phdr64;
367 } else {
368 prepare_elf32_phdr_note(s, &phdr32);
369 size = sizeof(phdr32);
370 phdr = &phdr32;
371 }
372
373 ret = fd_write_vmcore(phdr, size, s);
374 if (ret < 0) {
375 error_setg_errno(errp, -ret,
376 "dump: failed to write program header table");
377 }
378 }
379
380 static void prepare_elf_section_hdr_zero(DumpState *s)
381 {
382 if (dump_is_64bit(s)) {
383 Elf64_Shdr *shdr64 = s->elf_section_hdrs;
384
385 shdr64->sh_info = cpu_to_dump32(s, s->phdr_num);
386 } else {
387 Elf32_Shdr *shdr32 = s->elf_section_hdrs;
388
389 shdr32->sh_info = cpu_to_dump32(s, s->phdr_num);
390 }
391 }
392
393 static void prepare_elf_section_hdr_string(DumpState *s, void *buff)
394 {
395 uint64_t index = s->string_table_buf->len;
396 const char strtab[] = ".shstrtab";
397 Elf32_Shdr shdr32 = {};
398 Elf64_Shdr shdr64 = {};
399 int shdr_size;
400 void *shdr;
401
402 g_array_append_vals(s->string_table_buf, strtab, sizeof(strtab));
403 if (dump_is_64bit(s)) {
404 shdr_size = sizeof(Elf64_Shdr);
405 shdr64.sh_type = SHT_STRTAB;
406 shdr64.sh_offset = s->section_offset + s->elf_section_data_size;
407 shdr64.sh_name = index;
408 shdr64.sh_size = s->string_table_buf->len;
409 shdr = &shdr64;
410 } else {
411 shdr_size = sizeof(Elf32_Shdr);
412 shdr32.sh_type = SHT_STRTAB;
413 shdr32.sh_offset = s->section_offset + s->elf_section_data_size;
414 shdr32.sh_name = index;
415 shdr32.sh_size = s->string_table_buf->len;
416 shdr = &shdr32;
417 }
418 memcpy(buff, shdr, shdr_size);
419 }
420
421 static bool prepare_elf_section_hdrs(DumpState *s, Error **errp)
422 {
423 size_t len, sizeof_shdr;
424 void *buff_hdr;
425
426 /*
427 * Section ordering:
428 * - HDR zero
429 * - Arch section hdrs
430 * - String table hdr
431 */
432 sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr);
433 len = sizeof_shdr * s->shdr_num;
434 s->elf_section_hdrs = g_malloc0(len);
435 buff_hdr = s->elf_section_hdrs;
436
437 /*
438 * The first section header is ALWAYS a special initial section
439 * header.
440 *
441 * The header should be 0 with one exception being that if
442 * phdr_num is PN_XNUM then the sh_info field contains the real
443 * number of segment entries.
444 *
445 * As we zero allocate the buffer we will only need to modify
446 * sh_info for the PN_XNUM case.
447 */
448 if (s->phdr_num >= PN_XNUM) {
449 prepare_elf_section_hdr_zero(s);
450 }
451 buff_hdr += sizeof_shdr;
452
453 /* Add architecture defined section headers */
454 if (s->dump_info.arch_sections_write_hdr_fn
455 && s->shdr_num > 2) {
456 buff_hdr += s->dump_info.arch_sections_write_hdr_fn(s, buff_hdr);
457
458 if (s->shdr_num >= SHN_LORESERVE) {
459 error_setg_errno(errp, EINVAL,
460 "dump: too many architecture defined sections");
461 return false;
462 }
463 }
464
465 /*
466 * String table is the last section since strings are added via
467 * arch_sections_write_hdr().
468 */
469 prepare_elf_section_hdr_string(s, buff_hdr);
470 return true;
471 }
472
473 static void write_elf_section_headers(DumpState *s, Error **errp)
474 {
475 size_t sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr);
476 int ret;
477
478 if (!prepare_elf_section_hdrs(s, errp)) {
479 return;
480 }
481
482 ret = fd_write_vmcore(s->elf_section_hdrs, s->shdr_num * sizeof_shdr, s);
483 if (ret < 0) {
484 error_setg_errno(errp, -ret, "dump: failed to write section headers");
485 }
486
487 g_free(s->elf_section_hdrs);
488 }
489
490 static void write_elf_sections(DumpState *s, Error **errp)
491 {
492 int ret;
493
494 if (s->elf_section_data_size) {
495 /* Write architecture section data */
496 ret = fd_write_vmcore(s->elf_section_data,
497 s->elf_section_data_size, s);
498 if (ret < 0) {
499 error_setg_errno(errp, -ret,
500 "dump: failed to write architecture section data");
501 return;
502 }
503 }
504
505 /* Write string table */
506 ret = fd_write_vmcore(s->string_table_buf->data,
507 s->string_table_buf->len, s);
508 if (ret < 0) {
509 error_setg_errno(errp, -ret, "dump: failed to write string table data");
510 }
511 }
512
513 static void write_data(DumpState *s, void *buf, int length, Error **errp)
514 {
515 int ret;
516
517 ret = fd_write_vmcore(buf, length, s);
518 if (ret < 0) {
519 error_setg_errno(errp, -ret, "dump: failed to save memory");
520 } else {
521 s->written_size += length;
522 }
523 }
524
525 /* write the memory to vmcore. 1 page per I/O. */
526 static void write_memory(DumpState *s, GuestPhysBlock *block, ram_addr_t start,
527 int64_t size, Error **errp)
528 {
529 ERRP_GUARD();
530 int64_t i;
531
532 for (i = 0; i < size / s->dump_info.page_size; i++) {
533 write_data(s, block->host_addr + start + i * s->dump_info.page_size,
534 s->dump_info.page_size, errp);
535 if (*errp) {
536 return;
537 }
538 }
539
540 if ((size % s->dump_info.page_size) != 0) {
541 write_data(s, block->host_addr + start + i * s->dump_info.page_size,
542 size % s->dump_info.page_size, errp);
543 if (*errp) {
544 return;
545 }
546 }
547 }
548
549 /* get the memory's offset and size in the vmcore */
550 static void get_offset_range(hwaddr phys_addr,
551 ram_addr_t mapping_length,
552 DumpState *s,
553 hwaddr *p_offset,
554 hwaddr *p_filesz)
555 {
556 GuestPhysBlock *block;
557 hwaddr offset = s->memory_offset;
558 int64_t size_in_block, start;
559
560 /* When the memory is not stored into vmcore, offset will be -1 */
561 *p_offset = -1;
562 *p_filesz = 0;
563
564 if (dump_has_filter(s)) {
565 if (phys_addr < s->filter_area_begin ||
566 phys_addr >= s->filter_area_begin + s->filter_area_length) {
567 return;
568 }
569 }
570
571 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
572 if (dump_has_filter(s)) {
573 if (block->target_start >= s->filter_area_begin + s->filter_area_length ||
574 block->target_end <= s->filter_area_begin) {
575 /* This block is out of the range */
576 continue;
577 }
578
579 if (s->filter_area_begin <= block->target_start) {
580 start = block->target_start;
581 } else {
582 start = s->filter_area_begin;
583 }
584
585 size_in_block = block->target_end - start;
586 if (s->filter_area_begin + s->filter_area_length < block->target_end) {
587 size_in_block -= block->target_end - (s->filter_area_begin + s->filter_area_length);
588 }
589 } else {
590 start = block->target_start;
591 size_in_block = block->target_end - block->target_start;
592 }
593
594 if (phys_addr >= start && phys_addr < start + size_in_block) {
595 *p_offset = phys_addr - start + offset;
596
597 /* The offset range mapped from the vmcore file must not spill over
598 * the GuestPhysBlock, clamp it. The rest of the mapping will be
599 * zero-filled in memory at load time; see
600 * <http://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html>.
601 */
602 *p_filesz = phys_addr + mapping_length <= start + size_in_block ?
603 mapping_length :
604 size_in_block - (phys_addr - start);
605 return;
606 }
607
608 offset += size_in_block;
609 }
610 }
611
612 static void write_elf_phdr_loads(DumpState *s, Error **errp)
613 {
614 ERRP_GUARD();
615 hwaddr offset, filesz;
616 MemoryMapping *memory_mapping;
617 uint32_t phdr_index = 1;
618
619 QTAILQ_FOREACH(memory_mapping, &s->list.head, next) {
620 get_offset_range(memory_mapping->phys_addr,
621 memory_mapping->length,
622 s, &offset, &filesz);
623 if (dump_is_64bit(s)) {
624 write_elf64_load(s, memory_mapping, phdr_index++, offset,
625 filesz, errp);
626 } else {
627 write_elf32_load(s, memory_mapping, phdr_index++, offset,
628 filesz, errp);
629 }
630
631 if (*errp) {
632 return;
633 }
634
635 if (phdr_index >= s->phdr_num) {
636 break;
637 }
638 }
639 }
640
641 static void write_elf_notes(DumpState *s, Error **errp)
642 {
643 if (dump_is_64bit(s)) {
644 write_elf64_notes(fd_write_vmcore, s, errp);
645 } else {
646 write_elf32_notes(fd_write_vmcore, s, errp);
647 }
648 }
649
650 /* write elf header, PT_NOTE and elf note to vmcore. */
651 static void dump_begin(DumpState *s, Error **errp)
652 {
653 ERRP_GUARD();
654
655 /*
656 * the vmcore's format is:
657 * --------------
658 * | elf header |
659 * --------------
660 * | sctn_hdr |
661 * --------------
662 * | PT_NOTE |
663 * --------------
664 * | PT_LOAD |
665 * --------------
666 * | ...... |
667 * --------------
668 * | PT_LOAD |
669 * --------------
670 * | elf note |
671 * --------------
672 * | memory |
673 * --------------
674 *
675 * we only know where the memory is saved after we write elf note into
676 * vmcore.
677 */
678
679 /* write elf header to vmcore */
680 write_elf_header(s, errp);
681 if (*errp) {
682 return;
683 }
684
685 /* write section headers to vmcore */
686 write_elf_section_headers(s, errp);
687 if (*errp) {
688 return;
689 }
690
691 /* write PT_NOTE to vmcore */
692 write_elf_phdr_note(s, errp);
693 if (*errp) {
694 return;
695 }
696
697 /* write all PT_LOADs to vmcore */
698 write_elf_phdr_loads(s, errp);
699 if (*errp) {
700 return;
701 }
702
703 /* write notes to vmcore */
704 write_elf_notes(s, errp);
705 }
706
707 int64_t dump_filtered_memblock_size(GuestPhysBlock *block,
708 int64_t filter_area_start,
709 int64_t filter_area_length)
710 {
711 int64_t size, left, right;
712
713 /* No filter, return full size */
714 if (!filter_area_length) {
715 return block->target_end - block->target_start;
716 }
717
718 /* calculate the overlapped region. */
719 left = MAX(filter_area_start, block->target_start);
720 right = MIN(filter_area_start + filter_area_length, block->target_end);
721 size = right - left;
722 size = size > 0 ? size : 0;
723
724 return size;
725 }
726
727 int64_t dump_filtered_memblock_start(GuestPhysBlock *block,
728 int64_t filter_area_start,
729 int64_t filter_area_length)
730 {
731 if (filter_area_length) {
732 /* return -1 if the block is not within filter area */
733 if (block->target_start >= filter_area_start + filter_area_length ||
734 block->target_end <= filter_area_start) {
735 return -1;
736 }
737
738 if (filter_area_start > block->target_start) {
739 return filter_area_start - block->target_start;
740 }
741 }
742
743 return 0;
744 }
745
746 /* write all memory to vmcore */
747 static void dump_iterate(DumpState *s, Error **errp)
748 {
749 ERRP_GUARD();
750 GuestPhysBlock *block;
751 int64_t memblock_size, memblock_start;
752
753 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
754 memblock_start = dump_filtered_memblock_start(block, s->filter_area_begin, s->filter_area_length);
755 if (memblock_start == -1) {
756 continue;
757 }
758
759 memblock_size = dump_filtered_memblock_size(block, s->filter_area_begin, s->filter_area_length);
760
761 /* Write the memory to file */
762 write_memory(s, block, memblock_start, memblock_size, errp);
763 if (*errp) {
764 return;
765 }
766 }
767 }
768
769 static void dump_end(DumpState *s, Error **errp)
770 {
771 int rc;
772
773 if (s->elf_section_data_size) {
774 s->elf_section_data = g_malloc0(s->elf_section_data_size);
775 }
776
777 /* Adds the architecture defined section data to s->elf_section_data */
778 if (s->dump_info.arch_sections_write_fn &&
779 s->elf_section_data_size) {
780 rc = s->dump_info.arch_sections_write_fn(s, s->elf_section_data);
781 if (rc) {
782 error_setg_errno(errp, rc,
783 "dump: failed to get arch section data");
784 g_free(s->elf_section_data);
785 return;
786 }
787 }
788
789 /* write sections to vmcore */
790 write_elf_sections(s, errp);
791 }
792
793 static void create_vmcore(DumpState *s, Error **errp)
794 {
795 ERRP_GUARD();
796
797 dump_begin(s, errp);
798 if (*errp) {
799 return;
800 }
801
802 /* Iterate over memory and dump it to file */
803 dump_iterate(s, errp);
804 if (*errp) {
805 return;
806 }
807
808 /* Write the section data */
809 dump_end(s, errp);
810 }
811
812 static int write_start_flat_header(int fd)
813 {
814 MakedumpfileHeader *mh;
815 int ret = 0;
816
817 QEMU_BUILD_BUG_ON(sizeof *mh > MAX_SIZE_MDF_HEADER);
818 mh = g_malloc0(MAX_SIZE_MDF_HEADER);
819
820 memcpy(mh->signature, MAKEDUMPFILE_SIGNATURE,
821 MIN(sizeof mh->signature, sizeof MAKEDUMPFILE_SIGNATURE));
822
823 mh->type = cpu_to_be64(TYPE_FLAT_HEADER);
824 mh->version = cpu_to_be64(VERSION_FLAT_HEADER);
825
826 size_t written_size;
827 written_size = qemu_write_full(fd, mh, MAX_SIZE_MDF_HEADER);
828 if (written_size != MAX_SIZE_MDF_HEADER) {
829 ret = -1;
830 }
831
832 g_free(mh);
833 return ret;
834 }
835
836 static int write_end_flat_header(int fd)
837 {
838 MakedumpfileDataHeader mdh;
839
840 mdh.offset = END_FLAG_FLAT_HEADER;
841 mdh.buf_size = END_FLAG_FLAT_HEADER;
842
843 size_t written_size;
844 written_size = qemu_write_full(fd, &mdh, sizeof(mdh));
845 if (written_size != sizeof(mdh)) {
846 return -1;
847 }
848
849 return 0;
850 }
851
852 static int write_buffer(int fd, off_t offset, const void *buf, size_t size)
853 {
854 size_t written_size;
855 MakedumpfileDataHeader mdh;
856
857 mdh.offset = cpu_to_be64(offset);
858 mdh.buf_size = cpu_to_be64(size);
859
860 written_size = qemu_write_full(fd, &mdh, sizeof(mdh));
861 if (written_size != sizeof(mdh)) {
862 return -1;
863 }
864
865 written_size = qemu_write_full(fd, buf, size);
866 if (written_size != size) {
867 return -1;
868 }
869
870 return 0;
871 }
872
873 static int buf_write_note(const void *buf, size_t size, void *opaque)
874 {
875 DumpState *s = opaque;
876
877 /* note_buf is not enough */
878 if (s->note_buf_offset + size > s->note_size) {
879 return -1;
880 }
881
882 memcpy(s->note_buf + s->note_buf_offset, buf, size);
883
884 s->note_buf_offset += size;
885
886 return 0;
887 }
888
889 /*
890 * This function retrieves various sizes from an elf header.
891 *
892 * @note has to be a valid ELF note. The return sizes are unmodified
893 * (not padded or rounded up to be multiple of 4).
894 */
895 static void get_note_sizes(DumpState *s, const void *note,
896 uint64_t *note_head_size,
897 uint64_t *name_size,
898 uint64_t *desc_size)
899 {
900 uint64_t note_head_sz;
901 uint64_t name_sz;
902 uint64_t desc_sz;
903
904 if (dump_is_64bit(s)) {
905 const Elf64_Nhdr *hdr = note;
906 note_head_sz = sizeof(Elf64_Nhdr);
907 name_sz = cpu_to_dump64(s, hdr->n_namesz);
908 desc_sz = cpu_to_dump64(s, hdr->n_descsz);
909 } else {
910 const Elf32_Nhdr *hdr = note;
911 note_head_sz = sizeof(Elf32_Nhdr);
912 name_sz = cpu_to_dump32(s, hdr->n_namesz);
913 desc_sz = cpu_to_dump32(s, hdr->n_descsz);
914 }
915
916 if (note_head_size) {
917 *note_head_size = note_head_sz;
918 }
919 if (name_size) {
920 *name_size = name_sz;
921 }
922 if (desc_size) {
923 *desc_size = desc_sz;
924 }
925 }
926
927 static bool note_name_equal(DumpState *s,
928 const uint8_t *note, const char *name)
929 {
930 int len = strlen(name) + 1;
931 uint64_t head_size, name_size;
932
933 get_note_sizes(s, note, &head_size, &name_size, NULL);
934 head_size = ROUND_UP(head_size, 4);
935
936 return name_size == len && memcmp(note + head_size, name, len) == 0;
937 }
938
939 /* write common header, sub header and elf note to vmcore */
940 static void create_header32(DumpState *s, Error **errp)
941 {
942 ERRP_GUARD();
943 DiskDumpHeader32 *dh = NULL;
944 KdumpSubHeader32 *kh = NULL;
945 size_t size;
946 uint32_t block_size;
947 uint32_t sub_hdr_size;
948 uint32_t bitmap_blocks;
949 uint32_t status = 0;
950 uint64_t offset_note;
951
952 /* write common header, the version of kdump-compressed format is 6th */
953 size = sizeof(DiskDumpHeader32);
954 dh = g_malloc0(size);
955
956 memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN);
957 dh->header_version = cpu_to_dump32(s, 6);
958 block_size = s->dump_info.page_size;
959 dh->block_size = cpu_to_dump32(s, block_size);
960 sub_hdr_size = sizeof(struct KdumpSubHeader32) + s->note_size;
961 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
962 dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size);
963 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
964 dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX));
965 dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus);
966 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
967 dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks);
968 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
969
970 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
971 status |= DUMP_DH_COMPRESSED_ZLIB;
972 }
973 #ifdef CONFIG_LZO
974 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
975 status |= DUMP_DH_COMPRESSED_LZO;
976 }
977 #endif
978 #ifdef CONFIG_SNAPPY
979 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
980 status |= DUMP_DH_COMPRESSED_SNAPPY;
981 }
982 #endif
983 dh->status = cpu_to_dump32(s, status);
984
985 if (write_buffer(s->fd, 0, dh, size) < 0) {
986 error_setg(errp, "dump: failed to write disk dump header");
987 goto out;
988 }
989
990 /* write sub header */
991 size = sizeof(KdumpSubHeader32);
992 kh = g_malloc0(size);
993
994 /* 64bit max_mapnr_64 */
995 kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr);
996 kh->phys_base = cpu_to_dump32(s, s->dump_info.phys_base);
997 kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL);
998
999 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
1000 if (s->guest_note &&
1001 note_name_equal(s, s->guest_note, "VMCOREINFO")) {
1002 uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo;
1003
1004 get_note_sizes(s, s->guest_note,
1005 &hsize, &name_size, &size_vmcoreinfo_desc);
1006 offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size +
1007 (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4;
1008 kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo);
1009 kh->size_vmcoreinfo = cpu_to_dump32(s, size_vmcoreinfo_desc);
1010 }
1011
1012 kh->offset_note = cpu_to_dump64(s, offset_note);
1013 kh->note_size = cpu_to_dump32(s, s->note_size);
1014
1015 if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS *
1016 block_size, kh, size) < 0) {
1017 error_setg(errp, "dump: failed to write kdump sub header");
1018 goto out;
1019 }
1020
1021 /* write note */
1022 s->note_buf = g_malloc0(s->note_size);
1023 s->note_buf_offset = 0;
1024
1025 /* use s->note_buf to store notes temporarily */
1026 write_elf32_notes(buf_write_note, s, errp);
1027 if (*errp) {
1028 goto out;
1029 }
1030 if (write_buffer(s->fd, offset_note, s->note_buf,
1031 s->note_size) < 0) {
1032 error_setg(errp, "dump: failed to write notes");
1033 goto out;
1034 }
1035
1036 /* get offset of dump_bitmap */
1037 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
1038 block_size;
1039
1040 /* get offset of page */
1041 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
1042 block_size;
1043
1044 out:
1045 g_free(dh);
1046 g_free(kh);
1047 g_free(s->note_buf);
1048 }
1049
1050 /* write common header, sub header and elf note to vmcore */
1051 static void create_header64(DumpState *s, Error **errp)
1052 {
1053 ERRP_GUARD();
1054 DiskDumpHeader64 *dh = NULL;
1055 KdumpSubHeader64 *kh = NULL;
1056 size_t size;
1057 uint32_t block_size;
1058 uint32_t sub_hdr_size;
1059 uint32_t bitmap_blocks;
1060 uint32_t status = 0;
1061 uint64_t offset_note;
1062
1063 /* write common header, the version of kdump-compressed format is 6th */
1064 size = sizeof(DiskDumpHeader64);
1065 dh = g_malloc0(size);
1066
1067 memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN);
1068 dh->header_version = cpu_to_dump32(s, 6);
1069 block_size = s->dump_info.page_size;
1070 dh->block_size = cpu_to_dump32(s, block_size);
1071 sub_hdr_size = sizeof(struct KdumpSubHeader64) + s->note_size;
1072 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
1073 dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size);
1074 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
1075 dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX));
1076 dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus);
1077 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
1078 dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks);
1079 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
1080
1081 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
1082 status |= DUMP_DH_COMPRESSED_ZLIB;
1083 }
1084 #ifdef CONFIG_LZO
1085 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
1086 status |= DUMP_DH_COMPRESSED_LZO;
1087 }
1088 #endif
1089 #ifdef CONFIG_SNAPPY
1090 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
1091 status |= DUMP_DH_COMPRESSED_SNAPPY;
1092 }
1093 #endif
1094 dh->status = cpu_to_dump32(s, status);
1095
1096 if (write_buffer(s->fd, 0, dh, size) < 0) {
1097 error_setg(errp, "dump: failed to write disk dump header");
1098 goto out;
1099 }
1100
1101 /* write sub header */
1102 size = sizeof(KdumpSubHeader64);
1103 kh = g_malloc0(size);
1104
1105 /* 64bit max_mapnr_64 */
1106 kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr);
1107 kh->phys_base = cpu_to_dump64(s, s->dump_info.phys_base);
1108 kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL);
1109
1110 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
1111 if (s->guest_note &&
1112 note_name_equal(s, s->guest_note, "VMCOREINFO")) {
1113 uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo;
1114
1115 get_note_sizes(s, s->guest_note,
1116 &hsize, &name_size, &size_vmcoreinfo_desc);
1117 offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size +
1118 (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4;
1119 kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo);
1120 kh->size_vmcoreinfo = cpu_to_dump64(s, size_vmcoreinfo_desc);
1121 }
1122
1123 kh->offset_note = cpu_to_dump64(s, offset_note);
1124 kh->note_size = cpu_to_dump64(s, s->note_size);
1125
1126 if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS *
1127 block_size, kh, size) < 0) {
1128 error_setg(errp, "dump: failed to write kdump sub header");
1129 goto out;
1130 }
1131
1132 /* write note */
1133 s->note_buf = g_malloc0(s->note_size);
1134 s->note_buf_offset = 0;
1135
1136 /* use s->note_buf to store notes temporarily */
1137 write_elf64_notes(buf_write_note, s, errp);
1138 if (*errp) {
1139 goto out;
1140 }
1141
1142 if (write_buffer(s->fd, offset_note, s->note_buf,
1143 s->note_size) < 0) {
1144 error_setg(errp, "dump: failed to write notes");
1145 goto out;
1146 }
1147
1148 /* get offset of dump_bitmap */
1149 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
1150 block_size;
1151
1152 /* get offset of page */
1153 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
1154 block_size;
1155
1156 out:
1157 g_free(dh);
1158 g_free(kh);
1159 g_free(s->note_buf);
1160 }
1161
1162 static void write_dump_header(DumpState *s, Error **errp)
1163 {
1164 if (dump_is_64bit(s)) {
1165 create_header64(s, errp);
1166 } else {
1167 create_header32(s, errp);
1168 }
1169 }
1170
1171 static size_t dump_bitmap_get_bufsize(DumpState *s)
1172 {
1173 return s->dump_info.page_size;
1174 }
1175
1176 /*
1177 * set dump_bitmap sequencely. the bit before last_pfn is not allowed to be
1178 * rewritten, so if need to set the first bit, set last_pfn and pfn to 0.
1179 * set_dump_bitmap will always leave the recently set bit un-sync. And setting
1180 * (last bit + sizeof(buf) * 8) to 0 will do flushing the content in buf into
1181 * vmcore, ie. synchronizing un-sync bit into vmcore.
1182 */
1183 static int set_dump_bitmap(uint64_t last_pfn, uint64_t pfn, bool value,
1184 uint8_t *buf, DumpState *s)
1185 {
1186 off_t old_offset, new_offset;
1187 off_t offset_bitmap1, offset_bitmap2;
1188 uint32_t byte, bit;
1189 size_t bitmap_bufsize = dump_bitmap_get_bufsize(s);
1190 size_t bits_per_buf = bitmap_bufsize * CHAR_BIT;
1191
1192 /* should not set the previous place */
1193 assert(last_pfn <= pfn);
1194
1195 /*
1196 * if the bit needed to be set is not cached in buf, flush the data in buf
1197 * to vmcore firstly.
1198 * making new_offset be bigger than old_offset can also sync remained data
1199 * into vmcore.
1200 */
1201 old_offset = bitmap_bufsize * (last_pfn / bits_per_buf);
1202 new_offset = bitmap_bufsize * (pfn / bits_per_buf);
1203
1204 while (old_offset < new_offset) {
1205 /* calculate the offset and write dump_bitmap */
1206 offset_bitmap1 = s->offset_dump_bitmap + old_offset;
1207 if (write_buffer(s->fd, offset_bitmap1, buf,
1208 bitmap_bufsize) < 0) {
1209 return -1;
1210 }
1211
1212 /* dump level 1 is chosen, so 1st and 2nd bitmap are same */
1213 offset_bitmap2 = s->offset_dump_bitmap + s->len_dump_bitmap +
1214 old_offset;
1215 if (write_buffer(s->fd, offset_bitmap2, buf,
1216 bitmap_bufsize) < 0) {
1217 return -1;
1218 }
1219
1220 memset(buf, 0, bitmap_bufsize);
1221 old_offset += bitmap_bufsize;
1222 }
1223
1224 /* get the exact place of the bit in the buf, and set it */
1225 byte = (pfn % bits_per_buf) / CHAR_BIT;
1226 bit = (pfn % bits_per_buf) % CHAR_BIT;
1227 if (value) {
1228 buf[byte] |= 1u << bit;
1229 } else {
1230 buf[byte] &= ~(1u << bit);
1231 }
1232
1233 return 0;
1234 }
1235
1236 static uint64_t dump_paddr_to_pfn(DumpState *s, uint64_t addr)
1237 {
1238 int target_page_shift = ctz32(s->dump_info.page_size);
1239
1240 return (addr >> target_page_shift) - ARCH_PFN_OFFSET;
1241 }
1242
1243 static uint64_t dump_pfn_to_paddr(DumpState *s, uint64_t pfn)
1244 {
1245 int target_page_shift = ctz32(s->dump_info.page_size);
1246
1247 return (pfn + ARCH_PFN_OFFSET) << target_page_shift;
1248 }
1249
1250 /*
1251 * Return the page frame number and the page content in *bufptr. bufptr can be
1252 * NULL. If not NULL, *bufptr must contains a target page size of pre-allocated
1253 * memory. This is not necessarily the memory returned.
1254 */
1255 static bool get_next_page(GuestPhysBlock **blockptr, uint64_t *pfnptr,
1256 uint8_t **bufptr, DumpState *s)
1257 {
1258 GuestPhysBlock *block = *blockptr;
1259 uint32_t page_size = s->dump_info.page_size;
1260 uint8_t *buf = NULL, *hbuf;
1261 hwaddr addr;
1262
1263 /* block == NULL means the start of the iteration */
1264 if (!block) {
1265 block = QTAILQ_FIRST(&s->guest_phys_blocks.head);
1266 *blockptr = block;
1267 addr = block->target_start;
1268 *pfnptr = dump_paddr_to_pfn(s, addr);
1269 } else {
1270 *pfnptr += 1;
1271 addr = dump_pfn_to_paddr(s, *pfnptr);
1272 }
1273 assert(block != NULL);
1274
1275 while (1) {
1276 if (addr >= block->target_start && addr < block->target_end) {
1277 size_t n = MIN(block->target_end - addr, page_size - addr % page_size);
1278 hbuf = block->host_addr + (addr - block->target_start);
1279 if (!buf) {
1280 if (n == page_size) {
1281 /* this is a whole target page, go for it */
1282 assert(addr % page_size == 0);
1283 buf = hbuf;
1284 break;
1285 } else if (bufptr) {
1286 assert(*bufptr);
1287 buf = *bufptr;
1288 memset(buf, 0, page_size);
1289 } else {
1290 return true;
1291 }
1292 }
1293
1294 memcpy(buf + addr % page_size, hbuf, n);
1295 addr += n;
1296 if (addr % page_size == 0 || addr >= block->target_end) {
1297 /* we filled up the page or the current block is finished */
1298 break;
1299 }
1300 } else {
1301 /* the next page is in the next block */
1302 *blockptr = block = QTAILQ_NEXT(block, next);
1303 if (!block) {
1304 break;
1305 }
1306
1307 addr = block->target_start;
1308 /* are we still in the same page? */
1309 if (dump_paddr_to_pfn(s, addr) != *pfnptr) {
1310 if (buf) {
1311 /* no, but we already filled something earlier, return it */
1312 break;
1313 } else {
1314 /* else continue from there */
1315 *pfnptr = dump_paddr_to_pfn(s, addr);
1316 }
1317 }
1318 }
1319 }
1320
1321 if (bufptr) {
1322 *bufptr = buf;
1323 }
1324
1325 return buf != NULL;
1326 }
1327
1328 static void write_dump_bitmap(DumpState *s, Error **errp)
1329 {
1330 int ret = 0;
1331 uint64_t last_pfn, pfn;
1332 void *dump_bitmap_buf;
1333 size_t num_dumpable;
1334 GuestPhysBlock *block_iter = NULL;
1335 size_t bitmap_bufsize = dump_bitmap_get_bufsize(s);
1336 size_t bits_per_buf = bitmap_bufsize * CHAR_BIT;
1337
1338 /* dump_bitmap_buf is used to store dump_bitmap temporarily */
1339 dump_bitmap_buf = g_malloc0(bitmap_bufsize);
1340
1341 num_dumpable = 0;
1342 last_pfn = 0;
1343
1344 /*
1345 * exam memory page by page, and set the bit in dump_bitmap corresponded
1346 * to the existing page.
1347 */
1348 while (get_next_page(&block_iter, &pfn, NULL, s)) {
1349 ret = set_dump_bitmap(last_pfn, pfn, true, dump_bitmap_buf, s);
1350 if (ret < 0) {
1351 error_setg(errp, "dump: failed to set dump_bitmap");
1352 goto out;
1353 }
1354
1355 last_pfn = pfn;
1356 num_dumpable++;
1357 }
1358
1359 /*
1360 * set_dump_bitmap will always leave the recently set bit un-sync. Here we
1361 * set the remaining bits from last_pfn to the end of the bitmap buffer to
1362 * 0. With those set, the un-sync bit will be synchronized into the vmcore.
1363 */
1364 if (num_dumpable > 0) {
1365 ret = set_dump_bitmap(last_pfn, last_pfn + bits_per_buf, false,
1366 dump_bitmap_buf, s);
1367 if (ret < 0) {
1368 error_setg(errp, "dump: failed to sync dump_bitmap");
1369 goto out;
1370 }
1371 }
1372
1373 /* number of dumpable pages that will be dumped later */
1374 s->num_dumpable = num_dumpable;
1375
1376 out:
1377 g_free(dump_bitmap_buf);
1378 }
1379
1380 static void prepare_data_cache(DataCache *data_cache, DumpState *s,
1381 off_t offset)
1382 {
1383 data_cache->fd = s->fd;
1384 data_cache->data_size = 0;
1385 data_cache->buf_size = 4 * dump_bitmap_get_bufsize(s);
1386 data_cache->buf = g_malloc0(data_cache->buf_size);
1387 data_cache->offset = offset;
1388 }
1389
1390 static int write_cache(DataCache *dc, const void *buf, size_t size,
1391 bool flag_sync)
1392 {
1393 /*
1394 * dc->buf_size should not be less than size, otherwise dc will never be
1395 * enough
1396 */
1397 assert(size <= dc->buf_size);
1398
1399 /*
1400 * if flag_sync is set, synchronize data in dc->buf into vmcore.
1401 * otherwise check if the space is enough for caching data in buf, if not,
1402 * write the data in dc->buf to dc->fd and reset dc->buf
1403 */
1404 if ((!flag_sync && dc->data_size + size > dc->buf_size) ||
1405 (flag_sync && dc->data_size > 0)) {
1406 if (write_buffer(dc->fd, dc->offset, dc->buf, dc->data_size) < 0) {
1407 return -1;
1408 }
1409
1410 dc->offset += dc->data_size;
1411 dc->data_size = 0;
1412 }
1413
1414 if (!flag_sync) {
1415 memcpy(dc->buf + dc->data_size, buf, size);
1416 dc->data_size += size;
1417 }
1418
1419 return 0;
1420 }
1421
1422 static void free_data_cache(DataCache *data_cache)
1423 {
1424 g_free(data_cache->buf);
1425 }
1426
1427 static size_t get_len_buf_out(size_t page_size, uint32_t flag_compress)
1428 {
1429 switch (flag_compress) {
1430 case DUMP_DH_COMPRESSED_ZLIB:
1431 return compressBound(page_size);
1432
1433 case DUMP_DH_COMPRESSED_LZO:
1434 /*
1435 * LZO will expand incompressible data by a little amount. Please check
1436 * the following URL to see the expansion calculation:
1437 * http://www.oberhumer.com/opensource/lzo/lzofaq.php
1438 */
1439 return page_size + page_size / 16 + 64 + 3;
1440
1441 #ifdef CONFIG_SNAPPY
1442 case DUMP_DH_COMPRESSED_SNAPPY:
1443 return snappy_max_compressed_length(page_size);
1444 #endif
1445 }
1446 return 0;
1447 }
1448
1449 static void write_dump_pages(DumpState *s, Error **errp)
1450 {
1451 int ret = 0;
1452 DataCache page_desc, page_data;
1453 size_t len_buf_out, size_out;
1454 #ifdef CONFIG_LZO
1455 lzo_bytep wrkmem = NULL;
1456 #endif
1457 uint8_t *buf_out = NULL;
1458 off_t offset_desc, offset_data;
1459 PageDescriptor pd, pd_zero;
1460 uint8_t *buf;
1461 GuestPhysBlock *block_iter = NULL;
1462 uint64_t pfn_iter;
1463 g_autofree uint8_t *page = NULL;
1464
1465 /* get offset of page_desc and page_data in dump file */
1466 offset_desc = s->offset_page;
1467 offset_data = offset_desc + sizeof(PageDescriptor) * s->num_dumpable;
1468
1469 prepare_data_cache(&page_desc, s, offset_desc);
1470 prepare_data_cache(&page_data, s, offset_data);
1471
1472 /* prepare buffer to store compressed data */
1473 len_buf_out = get_len_buf_out(s->dump_info.page_size, s->flag_compress);
1474 assert(len_buf_out != 0);
1475
1476 #ifdef CONFIG_LZO
1477 wrkmem = g_malloc(LZO1X_1_MEM_COMPRESS);
1478 #endif
1479
1480 buf_out = g_malloc(len_buf_out);
1481
1482 /*
1483 * init zero page's page_desc and page_data, because every zero page
1484 * uses the same page_data
1485 */
1486 pd_zero.size = cpu_to_dump32(s, s->dump_info.page_size);
1487 pd_zero.flags = cpu_to_dump32(s, 0);
1488 pd_zero.offset = cpu_to_dump64(s, offset_data);
1489 pd_zero.page_flags = cpu_to_dump64(s, 0);
1490 buf = g_malloc0(s->dump_info.page_size);
1491 ret = write_cache(&page_data, buf, s->dump_info.page_size, false);
1492 g_free(buf);
1493 if (ret < 0) {
1494 error_setg(errp, "dump: failed to write page data (zero page)");
1495 goto out;
1496 }
1497
1498 offset_data += s->dump_info.page_size;
1499 page = g_malloc(s->dump_info.page_size);
1500
1501 /*
1502 * dump memory to vmcore page by page. zero page will all be resided in the
1503 * first page of page section
1504 */
1505 for (buf = page; get_next_page(&block_iter, &pfn_iter, &buf, s); buf = page) {
1506 /* check zero page */
1507 if (buffer_is_zero(buf, s->dump_info.page_size)) {
1508 ret = write_cache(&page_desc, &pd_zero, sizeof(PageDescriptor),
1509 false);
1510 if (ret < 0) {
1511 error_setg(errp, "dump: failed to write page desc");
1512 goto out;
1513 }
1514 } else {
1515 /*
1516 * not zero page, then:
1517 * 1. compress the page
1518 * 2. write the compressed page into the cache of page_data
1519 * 3. get page desc of the compressed page and write it into the
1520 * cache of page_desc
1521 *
1522 * only one compression format will be used here, for
1523 * s->flag_compress is set. But when compression fails to work,
1524 * we fall back to save in plaintext.
1525 */
1526 size_out = len_buf_out;
1527 if ((s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) &&
1528 (compress2(buf_out, (uLongf *)&size_out, buf,
1529 s->dump_info.page_size, Z_BEST_SPEED) == Z_OK) &&
1530 (size_out < s->dump_info.page_size)) {
1531 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_ZLIB);
1532 pd.size = cpu_to_dump32(s, size_out);
1533
1534 ret = write_cache(&page_data, buf_out, size_out, false);
1535 if (ret < 0) {
1536 error_setg(errp, "dump: failed to write page data");
1537 goto out;
1538 }
1539 #ifdef CONFIG_LZO
1540 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_LZO) &&
1541 (lzo1x_1_compress(buf, s->dump_info.page_size, buf_out,
1542 (lzo_uint *)&size_out, wrkmem) == LZO_E_OK) &&
1543 (size_out < s->dump_info.page_size)) {
1544 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_LZO);
1545 pd.size = cpu_to_dump32(s, size_out);
1546
1547 ret = write_cache(&page_data, buf_out, size_out, false);
1548 if (ret < 0) {
1549 error_setg(errp, "dump: failed to write page data");
1550 goto out;
1551 }
1552 #endif
1553 #ifdef CONFIG_SNAPPY
1554 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) &&
1555 (snappy_compress((char *)buf, s->dump_info.page_size,
1556 (char *)buf_out, &size_out) == SNAPPY_OK) &&
1557 (size_out < s->dump_info.page_size)) {
1558 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_SNAPPY);
1559 pd.size = cpu_to_dump32(s, size_out);
1560
1561 ret = write_cache(&page_data, buf_out, size_out, false);
1562 if (ret < 0) {
1563 error_setg(errp, "dump: failed to write page data");
1564 goto out;
1565 }
1566 #endif
1567 } else {
1568 /*
1569 * fall back to save in plaintext, size_out should be
1570 * assigned the target's page size
1571 */
1572 pd.flags = cpu_to_dump32(s, 0);
1573 size_out = s->dump_info.page_size;
1574 pd.size = cpu_to_dump32(s, size_out);
1575
1576 ret = write_cache(&page_data, buf,
1577 s->dump_info.page_size, false);
1578 if (ret < 0) {
1579 error_setg(errp, "dump: failed to write page data");
1580 goto out;
1581 }
1582 }
1583
1584 /* get and write page desc here */
1585 pd.page_flags = cpu_to_dump64(s, 0);
1586 pd.offset = cpu_to_dump64(s, offset_data);
1587 offset_data += size_out;
1588
1589 ret = write_cache(&page_desc, &pd, sizeof(PageDescriptor), false);
1590 if (ret < 0) {
1591 error_setg(errp, "dump: failed to write page desc");
1592 goto out;
1593 }
1594 }
1595 s->written_size += s->dump_info.page_size;
1596 }
1597
1598 ret = write_cache(&page_desc, NULL, 0, true);
1599 if (ret < 0) {
1600 error_setg(errp, "dump: failed to sync cache for page_desc");
1601 goto out;
1602 }
1603 ret = write_cache(&page_data, NULL, 0, true);
1604 if (ret < 0) {
1605 error_setg(errp, "dump: failed to sync cache for page_data");
1606 goto out;
1607 }
1608
1609 out:
1610 free_data_cache(&page_desc);
1611 free_data_cache(&page_data);
1612
1613 #ifdef CONFIG_LZO
1614 g_free(wrkmem);
1615 #endif
1616
1617 g_free(buf_out);
1618 }
1619
1620 static void create_kdump_vmcore(DumpState *s, Error **errp)
1621 {
1622 ERRP_GUARD();
1623 int ret;
1624
1625 /*
1626 * the kdump-compressed format is:
1627 * File offset
1628 * +------------------------------------------+ 0x0
1629 * | main header (struct disk_dump_header) |
1630 * |------------------------------------------+ block 1
1631 * | sub header (struct kdump_sub_header) |
1632 * |------------------------------------------+ block 2
1633 * | 1st-dump_bitmap |
1634 * |------------------------------------------+ block 2 + X blocks
1635 * | 2nd-dump_bitmap | (aligned by block)
1636 * |------------------------------------------+ block 2 + 2 * X blocks
1637 * | page desc for pfn 0 (struct page_desc) | (aligned by block)
1638 * | page desc for pfn 1 (struct page_desc) |
1639 * | : |
1640 * |------------------------------------------| (not aligned by block)
1641 * | page data (pfn 0) |
1642 * | page data (pfn 1) |
1643 * | : |
1644 * +------------------------------------------+
1645 */
1646
1647 ret = write_start_flat_header(s->fd);
1648 if (ret < 0) {
1649 error_setg(errp, "dump: failed to write start flat header");
1650 return;
1651 }
1652
1653 write_dump_header(s, errp);
1654 if (*errp) {
1655 return;
1656 }
1657
1658 write_dump_bitmap(s, errp);
1659 if (*errp) {
1660 return;
1661 }
1662
1663 write_dump_pages(s, errp);
1664 if (*errp) {
1665 return;
1666 }
1667
1668 ret = write_end_flat_header(s->fd);
1669 if (ret < 0) {
1670 error_setg(errp, "dump: failed to write end flat header");
1671 return;
1672 }
1673 }
1674
1675 static int validate_start_block(DumpState *s)
1676 {
1677 GuestPhysBlock *block;
1678
1679 if (!dump_has_filter(s)) {
1680 return 0;
1681 }
1682
1683 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
1684 /* This block is out of the range */
1685 if (block->target_start >= s->filter_area_begin + s->filter_area_length ||
1686 block->target_end <= s->filter_area_begin) {
1687 continue;
1688 }
1689 return 0;
1690 }
1691
1692 return -1;
1693 }
1694
1695 static void get_max_mapnr(DumpState *s)
1696 {
1697 GuestPhysBlock *last_block;
1698
1699 last_block = QTAILQ_LAST(&s->guest_phys_blocks.head);
1700 s->max_mapnr = dump_paddr_to_pfn(s, last_block->target_end);
1701 }
1702
1703 static DumpState dump_state_global = { .status = DUMP_STATUS_NONE };
1704
1705 static void dump_state_prepare(DumpState *s)
1706 {
1707 /* zero the struct, setting status to active */
1708 *s = (DumpState) { .status = DUMP_STATUS_ACTIVE };
1709 }
1710
1711 bool qemu_system_dump_in_progress(void)
1712 {
1713 DumpState *state = &dump_state_global;
1714 return (qatomic_read(&state->status) == DUMP_STATUS_ACTIVE);
1715 }
1716
1717 /*
1718 * calculate total size of memory to be dumped (taking filter into
1719 * account.)
1720 */
1721 static int64_t dump_calculate_size(DumpState *s)
1722 {
1723 GuestPhysBlock *block;
1724 int64_t total = 0;
1725
1726 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
1727 total += dump_filtered_memblock_size(block,
1728 s->filter_area_begin,
1729 s->filter_area_length);
1730 }
1731
1732 return total;
1733 }
1734
1735 static void vmcoreinfo_update_phys_base(DumpState *s)
1736 {
1737 uint64_t size, note_head_size, name_size, phys_base;
1738 char **lines;
1739 uint8_t *vmci;
1740 size_t i;
1741
1742 if (!note_name_equal(s, s->guest_note, "VMCOREINFO")) {
1743 return;
1744 }
1745
1746 get_note_sizes(s, s->guest_note, &note_head_size, &name_size, &size);
1747 note_head_size = ROUND_UP(note_head_size, 4);
1748
1749 vmci = s->guest_note + note_head_size + ROUND_UP(name_size, 4);
1750 *(vmci + size) = '\0';
1751
1752 lines = g_strsplit((char *)vmci, "\n", -1);
1753 for (i = 0; lines[i]; i++) {
1754 const char *prefix = NULL;
1755
1756 if (s->dump_info.d_machine == EM_X86_64) {
1757 prefix = "NUMBER(phys_base)=";
1758 } else if (s->dump_info.d_machine == EM_AARCH64) {
1759 prefix = "NUMBER(PHYS_OFFSET)=";
1760 }
1761
1762 if (prefix && g_str_has_prefix(lines[i], prefix)) {
1763 if (qemu_strtou64(lines[i] + strlen(prefix), NULL, 16,
1764 &phys_base) < 0) {
1765 warn_report("Failed to read %s", prefix);
1766 } else {
1767 s->dump_info.phys_base = phys_base;
1768 }
1769 break;
1770 }
1771 }
1772
1773 g_strfreev(lines);
1774 }
1775
1776 static void dump_init(DumpState *s, int fd, bool has_format,
1777 DumpGuestMemoryFormat format, bool paging, bool has_filter,
1778 int64_t begin, int64_t length, Error **errp)
1779 {
1780 ERRP_GUARD();
1781 VMCoreInfoState *vmci = vmcoreinfo_find();
1782 CPUState *cpu;
1783 int nr_cpus;
1784 int ret;
1785
1786 s->has_format = has_format;
1787 s->format = format;
1788 s->written_size = 0;
1789
1790 /* kdump-compressed is conflict with paging and filter */
1791 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1792 assert(!paging && !has_filter);
1793 }
1794
1795 if (runstate_is_running()) {
1796 vm_stop(RUN_STATE_SAVE_VM);
1797 s->resume = true;
1798 } else {
1799 s->resume = false;
1800 }
1801
1802 /* If we use KVM, we should synchronize the registers before we get dump
1803 * info or physmap info.
1804 */
1805 cpu_synchronize_all_states();
1806 nr_cpus = 0;
1807 CPU_FOREACH(cpu) {
1808 nr_cpus++;
1809 }
1810
1811 s->fd = fd;
1812 if (has_filter && !length) {
1813 error_setg(errp, QERR_INVALID_PARAMETER, "length");
1814 goto cleanup;
1815 }
1816 s->filter_area_begin = begin;
1817 s->filter_area_length = length;
1818
1819 /* First index is 0, it's the special null name */
1820 s->string_table_buf = g_array_new(FALSE, TRUE, 1);
1821 /*
1822 * Allocate the null name, due to the clearing option set to true
1823 * it will be 0.
1824 */
1825 g_array_set_size(s->string_table_buf, 1);
1826
1827 memory_mapping_list_init(&s->list);
1828
1829 guest_phys_blocks_init(&s->guest_phys_blocks);
1830 guest_phys_blocks_append(&s->guest_phys_blocks);
1831 s->total_size = dump_calculate_size(s);
1832 #ifdef DEBUG_DUMP_GUEST_MEMORY
1833 fprintf(stderr, "DUMP: total memory to dump: %lu\n", s->total_size);
1834 #endif
1835
1836 /* it does not make sense to dump non-existent memory */
1837 if (!s->total_size) {
1838 error_setg(errp, "dump: no guest memory to dump");
1839 goto cleanup;
1840 }
1841
1842 /* Is the filter filtering everything? */
1843 if (validate_start_block(s) == -1) {
1844 error_setg(errp, QERR_INVALID_PARAMETER, "begin");
1845 goto cleanup;
1846 }
1847
1848 /* get dump info: endian, class and architecture.
1849 * If the target architecture is not supported, cpu_get_dump_info() will
1850 * return -1.
1851 */
1852 ret = cpu_get_dump_info(&s->dump_info, &s->guest_phys_blocks);
1853 if (ret < 0) {
1854 error_setg(errp,
1855 "dumping guest memory is not supported on this target");
1856 goto cleanup;
1857 }
1858
1859 if (!s->dump_info.page_size) {
1860 s->dump_info.page_size = qemu_target_page_size();
1861 }
1862
1863 s->note_size = cpu_get_note_size(s->dump_info.d_class,
1864 s->dump_info.d_machine, nr_cpus);
1865 assert(s->note_size >= 0);
1866
1867 /*
1868 * The goal of this block is to (a) update the previously guessed
1869 * phys_base, (b) copy the guest note out of the guest.
1870 * Failure to do so is not fatal for dumping.
1871 */
1872 if (vmci) {
1873 uint64_t addr, note_head_size, name_size, desc_size;
1874 uint32_t size;
1875 uint16_t guest_format;
1876
1877 note_head_size = dump_is_64bit(s) ?
1878 sizeof(Elf64_Nhdr) : sizeof(Elf32_Nhdr);
1879
1880 guest_format = le16_to_cpu(vmci->vmcoreinfo.guest_format);
1881 size = le32_to_cpu(vmci->vmcoreinfo.size);
1882 addr = le64_to_cpu(vmci->vmcoreinfo.paddr);
1883 if (!vmci->has_vmcoreinfo) {
1884 warn_report("guest note is not present");
1885 } else if (size < note_head_size || size > MAX_GUEST_NOTE_SIZE) {
1886 warn_report("guest note size is invalid: %" PRIu32, size);
1887 } else if (guest_format != FW_CFG_VMCOREINFO_FORMAT_ELF) {
1888 warn_report("guest note format is unsupported: %" PRIu16, guest_format);
1889 } else {
1890 s->guest_note = g_malloc(size + 1); /* +1 for adding \0 */
1891 cpu_physical_memory_read(addr, s->guest_note, size);
1892
1893 get_note_sizes(s, s->guest_note, NULL, &name_size, &desc_size);
1894 s->guest_note_size = ELF_NOTE_SIZE(note_head_size, name_size,
1895 desc_size);
1896 if (name_size > MAX_GUEST_NOTE_SIZE ||
1897 desc_size > MAX_GUEST_NOTE_SIZE ||
1898 s->guest_note_size > size) {
1899 warn_report("Invalid guest note header");
1900 g_free(s->guest_note);
1901 s->guest_note = NULL;
1902 } else {
1903 vmcoreinfo_update_phys_base(s);
1904 s->note_size += s->guest_note_size;
1905 }
1906 }
1907 }
1908
1909 /* get memory mapping */
1910 if (paging) {
1911 qemu_get_guest_memory_mapping(&s->list, &s->guest_phys_blocks, errp);
1912 if (*errp) {
1913 goto cleanup;
1914 }
1915 } else {
1916 qemu_get_guest_simple_memory_mapping(&s->list, &s->guest_phys_blocks);
1917 }
1918
1919 s->nr_cpus = nr_cpus;
1920
1921 get_max_mapnr(s);
1922
1923 uint64_t tmp;
1924 tmp = DIV_ROUND_UP(DIV_ROUND_UP(s->max_mapnr, CHAR_BIT),
1925 s->dump_info.page_size);
1926 s->len_dump_bitmap = tmp * s->dump_info.page_size;
1927
1928 /* init for kdump-compressed format */
1929 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1930 switch (format) {
1931 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB:
1932 s->flag_compress = DUMP_DH_COMPRESSED_ZLIB;
1933 break;
1934
1935 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO:
1936 #ifdef CONFIG_LZO
1937 if (lzo_init() != LZO_E_OK) {
1938 error_setg(errp, "failed to initialize the LZO library");
1939 goto cleanup;
1940 }
1941 #endif
1942 s->flag_compress = DUMP_DH_COMPRESSED_LZO;
1943 break;
1944
1945 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY:
1946 s->flag_compress = DUMP_DH_COMPRESSED_SNAPPY;
1947 break;
1948
1949 default:
1950 s->flag_compress = 0;
1951 }
1952
1953 return;
1954 }
1955
1956 if (dump_has_filter(s)) {
1957 memory_mapping_filter(&s->list, s->filter_area_begin, s->filter_area_length);
1958 }
1959
1960 /*
1961 * The first section header is always a special one in which most
1962 * fields are 0. The section header string table is also always
1963 * set.
1964 */
1965 s->shdr_num = 2;
1966
1967 /*
1968 * Adds the number of architecture sections to shdr_num and sets
1969 * elf_section_data_size so we know the offsets and sizes of all
1970 * parts.
1971 */
1972 if (s->dump_info.arch_sections_add_fn) {
1973 s->dump_info.arch_sections_add_fn(s);
1974 }
1975
1976 /*
1977 * calculate shdr_num so we know the offsets and sizes of all
1978 * parts.
1979 * Calculate phdr_num
1980 *
1981 * The absolute maximum amount of phdrs is UINT32_MAX - 1 as
1982 * sh_info is 32 bit. There's special handling once we go over
1983 * UINT16_MAX - 1 but that is handled in the ehdr and section
1984 * code.
1985 */
1986 s->phdr_num = 1; /* Reserve PT_NOTE */
1987 if (s->list.num <= UINT32_MAX - 1) {
1988 s->phdr_num += s->list.num;
1989 } else {
1990 s->phdr_num = UINT32_MAX;
1991 }
1992
1993 /*
1994 * Now that the number of section and program headers is known we
1995 * can calculate the offsets of the headers and data.
1996 */
1997 if (dump_is_64bit(s)) {
1998 s->shdr_offset = sizeof(Elf64_Ehdr);
1999 s->phdr_offset = s->shdr_offset + sizeof(Elf64_Shdr) * s->shdr_num;
2000 s->note_offset = s->phdr_offset + sizeof(Elf64_Phdr) * s->phdr_num;
2001 } else {
2002 s->shdr_offset = sizeof(Elf32_Ehdr);
2003 s->phdr_offset = s->shdr_offset + sizeof(Elf32_Shdr) * s->shdr_num;
2004 s->note_offset = s->phdr_offset + sizeof(Elf32_Phdr) * s->phdr_num;
2005 }
2006 s->memory_offset = s->note_offset + s->note_size;
2007 s->section_offset = s->memory_offset + s->total_size;
2008
2009 return;
2010
2011 cleanup:
2012 dump_cleanup(s);
2013 }
2014
2015 /* this operation might be time consuming. */
2016 static void dump_process(DumpState *s, Error **errp)
2017 {
2018 ERRP_GUARD();
2019 DumpQueryResult *result = NULL;
2020
2021 if (s->has_format && s->format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP) {
2022 create_win_dump(s, errp);
2023 } else if (s->has_format && s->format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
2024 create_kdump_vmcore(s, errp);
2025 } else {
2026 create_vmcore(s, errp);
2027 }
2028
2029 /* make sure status is written after written_size updates */
2030 smp_wmb();
2031 qatomic_set(&s->status,
2032 (*errp ? DUMP_STATUS_FAILED : DUMP_STATUS_COMPLETED));
2033
2034 /* send DUMP_COMPLETED message (unconditionally) */
2035 result = qmp_query_dump(NULL);
2036 /* should never fail */
2037 assert(result);
2038 qapi_event_send_dump_completed(result,
2039 *errp ? error_get_pretty(*errp) : NULL);
2040 qapi_free_DumpQueryResult(result);
2041
2042 dump_cleanup(s);
2043 }
2044
2045 static void *dump_thread(void *data)
2046 {
2047 DumpState *s = (DumpState *)data;
2048 dump_process(s, NULL);
2049 return NULL;
2050 }
2051
2052 DumpQueryResult *qmp_query_dump(Error **errp)
2053 {
2054 DumpQueryResult *result = g_new(DumpQueryResult, 1);
2055 DumpState *state = &dump_state_global;
2056 result->status = qatomic_read(&state->status);
2057 /* make sure we are reading status and written_size in order */
2058 smp_rmb();
2059 result->completed = state->written_size;
2060 result->total = state->total_size;
2061 return result;
2062 }
2063
2064 void qmp_dump_guest_memory(bool paging, const char *file,
2065 bool has_detach, bool detach,
2066 bool has_begin, int64_t begin, bool has_length,
2067 int64_t length, bool has_format,
2068 DumpGuestMemoryFormat format, Error **errp)
2069 {
2070 ERRP_GUARD();
2071 const char *p;
2072 int fd = -1;
2073 DumpState *s;
2074 bool detach_p = false;
2075
2076 if (runstate_check(RUN_STATE_INMIGRATE)) {
2077 error_setg(errp, "Dump not allowed during incoming migration.");
2078 return;
2079 }
2080
2081 /* if there is a dump in background, we should wait until the dump
2082 * finished */
2083 if (qemu_system_dump_in_progress()) {
2084 error_setg(errp, "There is a dump in process, please wait.");
2085 return;
2086 }
2087
2088 /*
2089 * kdump-compressed format need the whole memory dumped, so paging or
2090 * filter is not supported here.
2091 */
2092 if ((has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) &&
2093 (paging || has_begin || has_length)) {
2094 error_setg(errp, "kdump-compressed format doesn't support paging or "
2095 "filter");
2096 return;
2097 }
2098 if (has_begin && !has_length) {
2099 error_setg(errp, QERR_MISSING_PARAMETER, "length");
2100 return;
2101 }
2102 if (!has_begin && has_length) {
2103 error_setg(errp, QERR_MISSING_PARAMETER, "begin");
2104 return;
2105 }
2106 if (has_detach) {
2107 detach_p = detach;
2108 }
2109
2110 /* check whether lzo/snappy is supported */
2111 #ifndef CONFIG_LZO
2112 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO) {
2113 error_setg(errp, "kdump-lzo is not available now");
2114 return;
2115 }
2116 #endif
2117
2118 #ifndef CONFIG_SNAPPY
2119 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY) {
2120 error_setg(errp, "kdump-snappy is not available now");
2121 return;
2122 }
2123 #endif
2124
2125 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP
2126 && !win_dump_available(errp)) {
2127 return;
2128 }
2129
2130 #if !defined(WIN32)
2131 if (strstart(file, "fd:", &p)) {
2132 fd = monitor_get_fd(monitor_cur(), p, errp);
2133 if (fd == -1) {
2134 return;
2135 }
2136 }
2137 #endif
2138
2139 if (strstart(file, "file:", &p)) {
2140 fd = qemu_open_old(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR);
2141 if (fd < 0) {
2142 error_setg_file_open(errp, errno, p);
2143 return;
2144 }
2145 }
2146
2147 if (fd == -1) {
2148 error_setg(errp, QERR_INVALID_PARAMETER, "protocol");
2149 return;
2150 }
2151
2152 if (!dump_migration_blocker) {
2153 error_setg(&dump_migration_blocker,
2154 "Live migration disabled: dump-guest-memory in progress");
2155 }
2156
2157 /*
2158 * Allows even for -only-migratable, but forbid migration during the
2159 * process of dump guest memory.
2160 */
2161 if (migrate_add_blocker_internal(&dump_migration_blocker, errp)) {
2162 /* Remember to release the fd before passing it over to dump state */
2163 close(fd);
2164 return;
2165 }
2166
2167 s = &dump_state_global;
2168 dump_state_prepare(s);
2169
2170 dump_init(s, fd, has_format, format, paging, has_begin,
2171 begin, length, errp);
2172 if (*errp) {
2173 qatomic_set(&s->status, DUMP_STATUS_FAILED);
2174 return;
2175 }
2176
2177 if (detach_p) {
2178 /* detached dump */
2179 s->detached = true;
2180 qemu_thread_create(&s->dump_thread, "dump_thread", dump_thread,
2181 s, QEMU_THREAD_DETACHED);
2182 } else {
2183 /* sync dump */
2184 dump_process(s, errp);
2185 }
2186 }
2187
2188 DumpGuestMemoryCapability *qmp_query_dump_guest_memory_capability(Error **errp)
2189 {
2190 DumpGuestMemoryCapability *cap =
2191 g_new0(DumpGuestMemoryCapability, 1);
2192 DumpGuestMemoryFormatList **tail = &cap->formats;
2193
2194 /* elf is always available */
2195 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_ELF);
2196
2197 /* kdump-zlib is always available */
2198 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB);
2199
2200 /* add new item if kdump-lzo is available */
2201 #ifdef CONFIG_LZO
2202 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO);
2203 #endif
2204
2205 /* add new item if kdump-snappy is available */
2206 #ifdef CONFIG_SNAPPY
2207 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY);
2208 #endif
2209
2210 if (win_dump_available(NULL)) {
2211 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_WIN_DMP);
2212 }
2213
2214 return cap;
2215 }