]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
i386: do not migrate MSR_SMI_COUNT on machine types <2.12
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21
22 #include "qemu/cutils.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
26 #include "tcg.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
50
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
53 #endif
54
55 #endif
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
60
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
64
65 #include "migration/vmstate.h"
66
67 #include "qemu/range.h"
68 #ifndef _WIN32
69 #include "qemu/mmap-alloc.h"
70 #endif
71
72 #include "monitor/monitor.h"
73
74 //#define DEBUG_SUBPAGE
75
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
79 */
80 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
81
82 static MemoryRegion *system_memory;
83 static MemoryRegion *system_io;
84
85 AddressSpace address_space_io;
86 AddressSpace address_space_memory;
87
88 MemoryRegion io_mem_rom, io_mem_notdirty;
89 static MemoryRegion io_mem_unassigned;
90
91 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92 #define RAM_PREALLOC (1 << 0)
93
94 /* RAM is mmap-ed with MAP_SHARED */
95 #define RAM_SHARED (1 << 1)
96
97 /* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
99 */
100 #define RAM_RESIZEABLE (1 << 2)
101
102 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
103 * zero the page and wake waiting processes.
104 * (Set during postcopy)
105 */
106 #define RAM_UF_ZEROPAGE (1 << 3)
107
108 /* RAM can be migrated */
109 #define RAM_MIGRATABLE (1 << 4)
110 #endif
111
112 #ifdef TARGET_PAGE_BITS_VARY
113 int target_page_bits;
114 bool target_page_bits_decided;
115 #endif
116
117 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
118 /* current CPU in the current thread. It is only valid inside
119 cpu_exec() */
120 __thread CPUState *current_cpu;
121 /* 0 = Do not count executed instructions.
122 1 = Precise instruction counting.
123 2 = Adaptive rate instruction counting. */
124 int use_icount;
125
126 uintptr_t qemu_host_page_size;
127 intptr_t qemu_host_page_mask;
128
129 bool set_preferred_target_page_bits(int bits)
130 {
131 /* The target page size is the lowest common denominator for all
132 * the CPUs in the system, so we can only make it smaller, never
133 * larger. And we can't make it smaller once we've committed to
134 * a particular size.
135 */
136 #ifdef TARGET_PAGE_BITS_VARY
137 assert(bits >= TARGET_PAGE_BITS_MIN);
138 if (target_page_bits == 0 || target_page_bits > bits) {
139 if (target_page_bits_decided) {
140 return false;
141 }
142 target_page_bits = bits;
143 }
144 #endif
145 return true;
146 }
147
148 #if !defined(CONFIG_USER_ONLY)
149
150 static void finalize_target_page_bits(void)
151 {
152 #ifdef TARGET_PAGE_BITS_VARY
153 if (target_page_bits == 0) {
154 target_page_bits = TARGET_PAGE_BITS_MIN;
155 }
156 target_page_bits_decided = true;
157 #endif
158 }
159
160 typedef struct PhysPageEntry PhysPageEntry;
161
162 struct PhysPageEntry {
163 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
164 uint32_t skip : 6;
165 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
166 uint32_t ptr : 26;
167 };
168
169 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
170
171 /* Size of the L2 (and L3, etc) page tables. */
172 #define ADDR_SPACE_BITS 64
173
174 #define P_L2_BITS 9
175 #define P_L2_SIZE (1 << P_L2_BITS)
176
177 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
178
179 typedef PhysPageEntry Node[P_L2_SIZE];
180
181 typedef struct PhysPageMap {
182 struct rcu_head rcu;
183
184 unsigned sections_nb;
185 unsigned sections_nb_alloc;
186 unsigned nodes_nb;
187 unsigned nodes_nb_alloc;
188 Node *nodes;
189 MemoryRegionSection *sections;
190 } PhysPageMap;
191
192 struct AddressSpaceDispatch {
193 MemoryRegionSection *mru_section;
194 /* This is a multi-level map on the physical address space.
195 * The bottom level has pointers to MemoryRegionSections.
196 */
197 PhysPageEntry phys_map;
198 PhysPageMap map;
199 };
200
201 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
202 typedef struct subpage_t {
203 MemoryRegion iomem;
204 FlatView *fv;
205 hwaddr base;
206 uint16_t sub_section[];
207 } subpage_t;
208
209 #define PHYS_SECTION_UNASSIGNED 0
210 #define PHYS_SECTION_NOTDIRTY 1
211 #define PHYS_SECTION_ROM 2
212 #define PHYS_SECTION_WATCH 3
213
214 static void io_mem_init(void);
215 static void memory_map_init(void);
216 static void tcg_commit(MemoryListener *listener);
217
218 static MemoryRegion io_mem_watch;
219
220 /**
221 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
222 * @cpu: the CPU whose AddressSpace this is
223 * @as: the AddressSpace itself
224 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
225 * @tcg_as_listener: listener for tracking changes to the AddressSpace
226 */
227 struct CPUAddressSpace {
228 CPUState *cpu;
229 AddressSpace *as;
230 struct AddressSpaceDispatch *memory_dispatch;
231 MemoryListener tcg_as_listener;
232 };
233
234 struct DirtyBitmapSnapshot {
235 ram_addr_t start;
236 ram_addr_t end;
237 unsigned long dirty[];
238 };
239
240 #endif
241
242 #if !defined(CONFIG_USER_ONLY)
243
244 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
245 {
246 static unsigned alloc_hint = 16;
247 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
248 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
249 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
250 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
251 alloc_hint = map->nodes_nb_alloc;
252 }
253 }
254
255 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
256 {
257 unsigned i;
258 uint32_t ret;
259 PhysPageEntry e;
260 PhysPageEntry *p;
261
262 ret = map->nodes_nb++;
263 p = map->nodes[ret];
264 assert(ret != PHYS_MAP_NODE_NIL);
265 assert(ret != map->nodes_nb_alloc);
266
267 e.skip = leaf ? 0 : 1;
268 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
269 for (i = 0; i < P_L2_SIZE; ++i) {
270 memcpy(&p[i], &e, sizeof(e));
271 }
272 return ret;
273 }
274
275 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
276 hwaddr *index, hwaddr *nb, uint16_t leaf,
277 int level)
278 {
279 PhysPageEntry *p;
280 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
281
282 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
283 lp->ptr = phys_map_node_alloc(map, level == 0);
284 }
285 p = map->nodes[lp->ptr];
286 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
287
288 while (*nb && lp < &p[P_L2_SIZE]) {
289 if ((*index & (step - 1)) == 0 && *nb >= step) {
290 lp->skip = 0;
291 lp->ptr = leaf;
292 *index += step;
293 *nb -= step;
294 } else {
295 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
296 }
297 ++lp;
298 }
299 }
300
301 static void phys_page_set(AddressSpaceDispatch *d,
302 hwaddr index, hwaddr nb,
303 uint16_t leaf)
304 {
305 /* Wildly overreserve - it doesn't matter much. */
306 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
307
308 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
309 }
310
311 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
312 * and update our entry so we can skip it and go directly to the destination.
313 */
314 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
315 {
316 unsigned valid_ptr = P_L2_SIZE;
317 int valid = 0;
318 PhysPageEntry *p;
319 int i;
320
321 if (lp->ptr == PHYS_MAP_NODE_NIL) {
322 return;
323 }
324
325 p = nodes[lp->ptr];
326 for (i = 0; i < P_L2_SIZE; i++) {
327 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
328 continue;
329 }
330
331 valid_ptr = i;
332 valid++;
333 if (p[i].skip) {
334 phys_page_compact(&p[i], nodes);
335 }
336 }
337
338 /* We can only compress if there's only one child. */
339 if (valid != 1) {
340 return;
341 }
342
343 assert(valid_ptr < P_L2_SIZE);
344
345 /* Don't compress if it won't fit in the # of bits we have. */
346 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
347 return;
348 }
349
350 lp->ptr = p[valid_ptr].ptr;
351 if (!p[valid_ptr].skip) {
352 /* If our only child is a leaf, make this a leaf. */
353 /* By design, we should have made this node a leaf to begin with so we
354 * should never reach here.
355 * But since it's so simple to handle this, let's do it just in case we
356 * change this rule.
357 */
358 lp->skip = 0;
359 } else {
360 lp->skip += p[valid_ptr].skip;
361 }
362 }
363
364 void address_space_dispatch_compact(AddressSpaceDispatch *d)
365 {
366 if (d->phys_map.skip) {
367 phys_page_compact(&d->phys_map, d->map.nodes);
368 }
369 }
370
371 static inline bool section_covers_addr(const MemoryRegionSection *section,
372 hwaddr addr)
373 {
374 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
375 * the section must cover the entire address space.
376 */
377 return int128_gethi(section->size) ||
378 range_covers_byte(section->offset_within_address_space,
379 int128_getlo(section->size), addr);
380 }
381
382 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
383 {
384 PhysPageEntry lp = d->phys_map, *p;
385 Node *nodes = d->map.nodes;
386 MemoryRegionSection *sections = d->map.sections;
387 hwaddr index = addr >> TARGET_PAGE_BITS;
388 int i;
389
390 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
391 if (lp.ptr == PHYS_MAP_NODE_NIL) {
392 return &sections[PHYS_SECTION_UNASSIGNED];
393 }
394 p = nodes[lp.ptr];
395 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
396 }
397
398 if (section_covers_addr(&sections[lp.ptr], addr)) {
399 return &sections[lp.ptr];
400 } else {
401 return &sections[PHYS_SECTION_UNASSIGNED];
402 }
403 }
404
405 bool memory_region_is_unassigned(MemoryRegion *mr)
406 {
407 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
408 && mr != &io_mem_watch;
409 }
410
411 /* Called from RCU critical section */
412 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
413 hwaddr addr,
414 bool resolve_subpage)
415 {
416 MemoryRegionSection *section = atomic_read(&d->mru_section);
417 subpage_t *subpage;
418
419 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
420 !section_covers_addr(section, addr)) {
421 section = phys_page_find(d, addr);
422 atomic_set(&d->mru_section, section);
423 }
424 if (resolve_subpage && section->mr->subpage) {
425 subpage = container_of(section->mr, subpage_t, iomem);
426 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
427 }
428 return section;
429 }
430
431 /* Called from RCU critical section */
432 static MemoryRegionSection *
433 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
434 hwaddr *plen, bool resolve_subpage)
435 {
436 MemoryRegionSection *section;
437 MemoryRegion *mr;
438 Int128 diff;
439
440 section = address_space_lookup_region(d, addr, resolve_subpage);
441 /* Compute offset within MemoryRegionSection */
442 addr -= section->offset_within_address_space;
443
444 /* Compute offset within MemoryRegion */
445 *xlat = addr + section->offset_within_region;
446
447 mr = section->mr;
448
449 /* MMIO registers can be expected to perform full-width accesses based only
450 * on their address, without considering adjacent registers that could
451 * decode to completely different MemoryRegions. When such registers
452 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
453 * regions overlap wildly. For this reason we cannot clamp the accesses
454 * here.
455 *
456 * If the length is small (as is the case for address_space_ldl/stl),
457 * everything works fine. If the incoming length is large, however,
458 * the caller really has to do the clamping through memory_access_size.
459 */
460 if (memory_region_is_ram(mr)) {
461 diff = int128_sub(section->size, int128_make64(addr));
462 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
463 }
464 return section;
465 }
466
467 /**
468 * address_space_translate_iommu - translate an address through an IOMMU
469 * memory region and then through the target address space.
470 *
471 * @iommu_mr: the IOMMU memory region that we start the translation from
472 * @addr: the address to be translated through the MMU
473 * @xlat: the translated address offset within the destination memory region.
474 * It cannot be %NULL.
475 * @plen_out: valid read/write length of the translated address. It
476 * cannot be %NULL.
477 * @page_mask_out: page mask for the translated address. This
478 * should only be meaningful for IOMMU translated
479 * addresses, since there may be huge pages that this bit
480 * would tell. It can be %NULL if we don't care about it.
481 * @is_write: whether the translation operation is for write
482 * @is_mmio: whether this can be MMIO, set true if it can
483 * @target_as: the address space targeted by the IOMMU
484 * @attrs: transaction attributes
485 *
486 * This function is called from RCU critical section. It is the common
487 * part of flatview_do_translate and address_space_translate_cached.
488 */
489 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
490 hwaddr *xlat,
491 hwaddr *plen_out,
492 hwaddr *page_mask_out,
493 bool is_write,
494 bool is_mmio,
495 AddressSpace **target_as,
496 MemTxAttrs attrs)
497 {
498 MemoryRegionSection *section;
499 hwaddr page_mask = (hwaddr)-1;
500
501 do {
502 hwaddr addr = *xlat;
503 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
504 int iommu_idx = 0;
505 IOMMUTLBEntry iotlb;
506
507 if (imrc->attrs_to_index) {
508 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
509 }
510
511 iotlb = imrc->translate(iommu_mr, addr, is_write ?
512 IOMMU_WO : IOMMU_RO, iommu_idx);
513
514 if (!(iotlb.perm & (1 << is_write))) {
515 goto unassigned;
516 }
517
518 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
519 | (addr & iotlb.addr_mask));
520 page_mask &= iotlb.addr_mask;
521 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
522 *target_as = iotlb.target_as;
523
524 section = address_space_translate_internal(
525 address_space_to_dispatch(iotlb.target_as), addr, xlat,
526 plen_out, is_mmio);
527
528 iommu_mr = memory_region_get_iommu(section->mr);
529 } while (unlikely(iommu_mr));
530
531 if (page_mask_out) {
532 *page_mask_out = page_mask;
533 }
534 return *section;
535
536 unassigned:
537 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
538 }
539
540 /**
541 * flatview_do_translate - translate an address in FlatView
542 *
543 * @fv: the flat view that we want to translate on
544 * @addr: the address to be translated in above address space
545 * @xlat: the translated address offset within memory region. It
546 * cannot be @NULL.
547 * @plen_out: valid read/write length of the translated address. It
548 * can be @NULL when we don't care about it.
549 * @page_mask_out: page mask for the translated address. This
550 * should only be meaningful for IOMMU translated
551 * addresses, since there may be huge pages that this bit
552 * would tell. It can be @NULL if we don't care about it.
553 * @is_write: whether the translation operation is for write
554 * @is_mmio: whether this can be MMIO, set true if it can
555 * @target_as: the address space targeted by the IOMMU
556 * @attrs: memory transaction attributes
557 *
558 * This function is called from RCU critical section
559 */
560 static MemoryRegionSection flatview_do_translate(FlatView *fv,
561 hwaddr addr,
562 hwaddr *xlat,
563 hwaddr *plen_out,
564 hwaddr *page_mask_out,
565 bool is_write,
566 bool is_mmio,
567 AddressSpace **target_as,
568 MemTxAttrs attrs)
569 {
570 MemoryRegionSection *section;
571 IOMMUMemoryRegion *iommu_mr;
572 hwaddr plen = (hwaddr)(-1);
573
574 if (!plen_out) {
575 plen_out = &plen;
576 }
577
578 section = address_space_translate_internal(
579 flatview_to_dispatch(fv), addr, xlat,
580 plen_out, is_mmio);
581
582 iommu_mr = memory_region_get_iommu(section->mr);
583 if (unlikely(iommu_mr)) {
584 return address_space_translate_iommu(iommu_mr, xlat,
585 plen_out, page_mask_out,
586 is_write, is_mmio,
587 target_as, attrs);
588 }
589 if (page_mask_out) {
590 /* Not behind an IOMMU, use default page size. */
591 *page_mask_out = ~TARGET_PAGE_MASK;
592 }
593
594 return *section;
595 }
596
597 /* Called from RCU critical section */
598 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
599 bool is_write, MemTxAttrs attrs)
600 {
601 MemoryRegionSection section;
602 hwaddr xlat, page_mask;
603
604 /*
605 * This can never be MMIO, and we don't really care about plen,
606 * but page mask.
607 */
608 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
609 NULL, &page_mask, is_write, false, &as,
610 attrs);
611
612 /* Illegal translation */
613 if (section.mr == &io_mem_unassigned) {
614 goto iotlb_fail;
615 }
616
617 /* Convert memory region offset into address space offset */
618 xlat += section.offset_within_address_space -
619 section.offset_within_region;
620
621 return (IOMMUTLBEntry) {
622 .target_as = as,
623 .iova = addr & ~page_mask,
624 .translated_addr = xlat & ~page_mask,
625 .addr_mask = page_mask,
626 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
627 .perm = IOMMU_RW,
628 };
629
630 iotlb_fail:
631 return (IOMMUTLBEntry) {0};
632 }
633
634 /* Called from RCU critical section */
635 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
636 hwaddr *plen, bool is_write,
637 MemTxAttrs attrs)
638 {
639 MemoryRegion *mr;
640 MemoryRegionSection section;
641 AddressSpace *as = NULL;
642
643 /* This can be MMIO, so setup MMIO bit. */
644 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
645 is_write, true, &as, attrs);
646 mr = section.mr;
647
648 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
649 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
650 *plen = MIN(page, *plen);
651 }
652
653 return mr;
654 }
655
656 typedef struct TCGIOMMUNotifier {
657 IOMMUNotifier n;
658 MemoryRegion *mr;
659 CPUState *cpu;
660 int iommu_idx;
661 bool active;
662 } TCGIOMMUNotifier;
663
664 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
665 {
666 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
667
668 if (!notifier->active) {
669 return;
670 }
671 tlb_flush(notifier->cpu);
672 notifier->active = false;
673 /* We leave the notifier struct on the list to avoid reallocating it later.
674 * Generally the number of IOMMUs a CPU deals with will be small.
675 * In any case we can't unregister the iommu notifier from a notify
676 * callback.
677 */
678 }
679
680 static void tcg_register_iommu_notifier(CPUState *cpu,
681 IOMMUMemoryRegion *iommu_mr,
682 int iommu_idx)
683 {
684 /* Make sure this CPU has an IOMMU notifier registered for this
685 * IOMMU/IOMMU index combination, so that we can flush its TLB
686 * when the IOMMU tells us the mappings we've cached have changed.
687 */
688 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
689 TCGIOMMUNotifier *notifier;
690 int i;
691
692 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
693 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
694 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
695 break;
696 }
697 }
698 if (i == cpu->iommu_notifiers->len) {
699 /* Not found, add a new entry at the end of the array */
700 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
701 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
702
703 notifier->mr = mr;
704 notifier->iommu_idx = iommu_idx;
705 notifier->cpu = cpu;
706 /* Rather than trying to register interest in the specific part
707 * of the iommu's address space that we've accessed and then
708 * expand it later as subsequent accesses touch more of it, we
709 * just register interest in the whole thing, on the assumption
710 * that iommu reconfiguration will be rare.
711 */
712 iommu_notifier_init(&notifier->n,
713 tcg_iommu_unmap_notify,
714 IOMMU_NOTIFIER_UNMAP,
715 0,
716 HWADDR_MAX,
717 iommu_idx);
718 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
719 }
720
721 if (!notifier->active) {
722 notifier->active = true;
723 }
724 }
725
726 static void tcg_iommu_free_notifier_list(CPUState *cpu)
727 {
728 /* Destroy the CPU's notifier list */
729 int i;
730 TCGIOMMUNotifier *notifier;
731
732 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
733 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
734 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
735 }
736 g_array_free(cpu->iommu_notifiers, true);
737 }
738
739 /* Called from RCU critical section */
740 MemoryRegionSection *
741 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
742 hwaddr *xlat, hwaddr *plen,
743 MemTxAttrs attrs, int *prot)
744 {
745 MemoryRegionSection *section;
746 IOMMUMemoryRegion *iommu_mr;
747 IOMMUMemoryRegionClass *imrc;
748 IOMMUTLBEntry iotlb;
749 int iommu_idx;
750 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
751
752 for (;;) {
753 section = address_space_translate_internal(d, addr, &addr, plen, false);
754
755 iommu_mr = memory_region_get_iommu(section->mr);
756 if (!iommu_mr) {
757 break;
758 }
759
760 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
761
762 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
763 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
764 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
765 * doesn't short-cut its translation table walk.
766 */
767 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
768 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
769 | (addr & iotlb.addr_mask));
770 /* Update the caller's prot bits to remove permissions the IOMMU
771 * is giving us a failure response for. If we get down to no
772 * permissions left at all we can give up now.
773 */
774 if (!(iotlb.perm & IOMMU_RO)) {
775 *prot &= ~(PAGE_READ | PAGE_EXEC);
776 }
777 if (!(iotlb.perm & IOMMU_WO)) {
778 *prot &= ~PAGE_WRITE;
779 }
780
781 if (!*prot) {
782 goto translate_fail;
783 }
784
785 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
786 }
787
788 assert(!memory_region_is_iommu(section->mr));
789 *xlat = addr;
790 return section;
791
792 translate_fail:
793 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
794 }
795 #endif
796
797 #if !defined(CONFIG_USER_ONLY)
798
799 static int cpu_common_post_load(void *opaque, int version_id)
800 {
801 CPUState *cpu = opaque;
802
803 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
804 version_id is increased. */
805 cpu->interrupt_request &= ~0x01;
806 tlb_flush(cpu);
807
808 /* loadvm has just updated the content of RAM, bypassing the
809 * usual mechanisms that ensure we flush TBs for writes to
810 * memory we've translated code from. So we must flush all TBs,
811 * which will now be stale.
812 */
813 tb_flush(cpu);
814
815 return 0;
816 }
817
818 static int cpu_common_pre_load(void *opaque)
819 {
820 CPUState *cpu = opaque;
821
822 cpu->exception_index = -1;
823
824 return 0;
825 }
826
827 static bool cpu_common_exception_index_needed(void *opaque)
828 {
829 CPUState *cpu = opaque;
830
831 return tcg_enabled() && cpu->exception_index != -1;
832 }
833
834 static const VMStateDescription vmstate_cpu_common_exception_index = {
835 .name = "cpu_common/exception_index",
836 .version_id = 1,
837 .minimum_version_id = 1,
838 .needed = cpu_common_exception_index_needed,
839 .fields = (VMStateField[]) {
840 VMSTATE_INT32(exception_index, CPUState),
841 VMSTATE_END_OF_LIST()
842 }
843 };
844
845 static bool cpu_common_crash_occurred_needed(void *opaque)
846 {
847 CPUState *cpu = opaque;
848
849 return cpu->crash_occurred;
850 }
851
852 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
853 .name = "cpu_common/crash_occurred",
854 .version_id = 1,
855 .minimum_version_id = 1,
856 .needed = cpu_common_crash_occurred_needed,
857 .fields = (VMStateField[]) {
858 VMSTATE_BOOL(crash_occurred, CPUState),
859 VMSTATE_END_OF_LIST()
860 }
861 };
862
863 const VMStateDescription vmstate_cpu_common = {
864 .name = "cpu_common",
865 .version_id = 1,
866 .minimum_version_id = 1,
867 .pre_load = cpu_common_pre_load,
868 .post_load = cpu_common_post_load,
869 .fields = (VMStateField[]) {
870 VMSTATE_UINT32(halted, CPUState),
871 VMSTATE_UINT32(interrupt_request, CPUState),
872 VMSTATE_END_OF_LIST()
873 },
874 .subsections = (const VMStateDescription*[]) {
875 &vmstate_cpu_common_exception_index,
876 &vmstate_cpu_common_crash_occurred,
877 NULL
878 }
879 };
880
881 #endif
882
883 CPUState *qemu_get_cpu(int index)
884 {
885 CPUState *cpu;
886
887 CPU_FOREACH(cpu) {
888 if (cpu->cpu_index == index) {
889 return cpu;
890 }
891 }
892
893 return NULL;
894 }
895
896 #if !defined(CONFIG_USER_ONLY)
897 void cpu_address_space_init(CPUState *cpu, int asidx,
898 const char *prefix, MemoryRegion *mr)
899 {
900 CPUAddressSpace *newas;
901 AddressSpace *as = g_new0(AddressSpace, 1);
902 char *as_name;
903
904 assert(mr);
905 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
906 address_space_init(as, mr, as_name);
907 g_free(as_name);
908
909 /* Target code should have set num_ases before calling us */
910 assert(asidx < cpu->num_ases);
911
912 if (asidx == 0) {
913 /* address space 0 gets the convenience alias */
914 cpu->as = as;
915 }
916
917 /* KVM cannot currently support multiple address spaces. */
918 assert(asidx == 0 || !kvm_enabled());
919
920 if (!cpu->cpu_ases) {
921 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
922 }
923
924 newas = &cpu->cpu_ases[asidx];
925 newas->cpu = cpu;
926 newas->as = as;
927 if (tcg_enabled()) {
928 newas->tcg_as_listener.commit = tcg_commit;
929 memory_listener_register(&newas->tcg_as_listener, as);
930 }
931 }
932
933 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
934 {
935 /* Return the AddressSpace corresponding to the specified index */
936 return cpu->cpu_ases[asidx].as;
937 }
938 #endif
939
940 void cpu_exec_unrealizefn(CPUState *cpu)
941 {
942 CPUClass *cc = CPU_GET_CLASS(cpu);
943
944 cpu_list_remove(cpu);
945
946 if (cc->vmsd != NULL) {
947 vmstate_unregister(NULL, cc->vmsd, cpu);
948 }
949 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
950 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
951 }
952 #ifndef CONFIG_USER_ONLY
953 tcg_iommu_free_notifier_list(cpu);
954 #endif
955 }
956
957 Property cpu_common_props[] = {
958 #ifndef CONFIG_USER_ONLY
959 /* Create a memory property for softmmu CPU object,
960 * so users can wire up its memory. (This can't go in qom/cpu.c
961 * because that file is compiled only once for both user-mode
962 * and system builds.) The default if no link is set up is to use
963 * the system address space.
964 */
965 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
966 MemoryRegion *),
967 #endif
968 DEFINE_PROP_END_OF_LIST(),
969 };
970
971 void cpu_exec_initfn(CPUState *cpu)
972 {
973 cpu->as = NULL;
974 cpu->num_ases = 0;
975
976 #ifndef CONFIG_USER_ONLY
977 cpu->thread_id = qemu_get_thread_id();
978 cpu->memory = system_memory;
979 object_ref(OBJECT(cpu->memory));
980 #endif
981 }
982
983 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
984 {
985 CPUClass *cc = CPU_GET_CLASS(cpu);
986 static bool tcg_target_initialized;
987
988 cpu_list_add(cpu);
989
990 if (tcg_enabled() && !tcg_target_initialized) {
991 tcg_target_initialized = true;
992 cc->tcg_initialize();
993 }
994
995 #ifndef CONFIG_USER_ONLY
996 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
997 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
998 }
999 if (cc->vmsd != NULL) {
1000 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
1001 }
1002
1003 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier));
1004 #endif
1005 }
1006
1007 const char *parse_cpu_model(const char *cpu_model)
1008 {
1009 ObjectClass *oc;
1010 CPUClass *cc;
1011 gchar **model_pieces;
1012 const char *cpu_type;
1013
1014 model_pieces = g_strsplit(cpu_model, ",", 2);
1015
1016 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
1017 if (oc == NULL) {
1018 error_report("unable to find CPU model '%s'", model_pieces[0]);
1019 g_strfreev(model_pieces);
1020 exit(EXIT_FAILURE);
1021 }
1022
1023 cpu_type = object_class_get_name(oc);
1024 cc = CPU_CLASS(oc);
1025 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1026 g_strfreev(model_pieces);
1027 return cpu_type;
1028 }
1029
1030 #if defined(CONFIG_USER_ONLY)
1031 void tb_invalidate_phys_addr(target_ulong addr)
1032 {
1033 mmap_lock();
1034 tb_invalidate_phys_page_range(addr, addr + 1, 0);
1035 mmap_unlock();
1036 }
1037
1038 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1039 {
1040 tb_invalidate_phys_addr(pc);
1041 }
1042 #else
1043 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1044 {
1045 ram_addr_t ram_addr;
1046 MemoryRegion *mr;
1047 hwaddr l = 1;
1048
1049 if (!tcg_enabled()) {
1050 return;
1051 }
1052
1053 rcu_read_lock();
1054 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1055 if (!(memory_region_is_ram(mr)
1056 || memory_region_is_romd(mr))) {
1057 rcu_read_unlock();
1058 return;
1059 }
1060 ram_addr = memory_region_get_ram_addr(mr) + addr;
1061 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1062 rcu_read_unlock();
1063 }
1064
1065 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1066 {
1067 MemTxAttrs attrs;
1068 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1069 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1070 if (phys != -1) {
1071 /* Locks grabbed by tb_invalidate_phys_addr */
1072 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1073 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1074 }
1075 }
1076 #endif
1077
1078 #if defined(CONFIG_USER_ONLY)
1079 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1080
1081 {
1082 }
1083
1084 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1085 int flags)
1086 {
1087 return -ENOSYS;
1088 }
1089
1090 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1091 {
1092 }
1093
1094 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1095 int flags, CPUWatchpoint **watchpoint)
1096 {
1097 return -ENOSYS;
1098 }
1099 #else
1100 /* Add a watchpoint. */
1101 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1102 int flags, CPUWatchpoint **watchpoint)
1103 {
1104 CPUWatchpoint *wp;
1105
1106 /* forbid ranges which are empty or run off the end of the address space */
1107 if (len == 0 || (addr + len - 1) < addr) {
1108 error_report("tried to set invalid watchpoint at %"
1109 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1110 return -EINVAL;
1111 }
1112 wp = g_malloc(sizeof(*wp));
1113
1114 wp->vaddr = addr;
1115 wp->len = len;
1116 wp->flags = flags;
1117
1118 /* keep all GDB-injected watchpoints in front */
1119 if (flags & BP_GDB) {
1120 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1121 } else {
1122 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1123 }
1124
1125 tlb_flush_page(cpu, addr);
1126
1127 if (watchpoint)
1128 *watchpoint = wp;
1129 return 0;
1130 }
1131
1132 /* Remove a specific watchpoint. */
1133 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1134 int flags)
1135 {
1136 CPUWatchpoint *wp;
1137
1138 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1139 if (addr == wp->vaddr && len == wp->len
1140 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1141 cpu_watchpoint_remove_by_ref(cpu, wp);
1142 return 0;
1143 }
1144 }
1145 return -ENOENT;
1146 }
1147
1148 /* Remove a specific watchpoint by reference. */
1149 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1150 {
1151 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1152
1153 tlb_flush_page(cpu, watchpoint->vaddr);
1154
1155 g_free(watchpoint);
1156 }
1157
1158 /* Remove all matching watchpoints. */
1159 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1160 {
1161 CPUWatchpoint *wp, *next;
1162
1163 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1164 if (wp->flags & mask) {
1165 cpu_watchpoint_remove_by_ref(cpu, wp);
1166 }
1167 }
1168 }
1169
1170 /* Return true if this watchpoint address matches the specified
1171 * access (ie the address range covered by the watchpoint overlaps
1172 * partially or completely with the address range covered by the
1173 * access).
1174 */
1175 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1176 vaddr addr,
1177 vaddr len)
1178 {
1179 /* We know the lengths are non-zero, but a little caution is
1180 * required to avoid errors in the case where the range ends
1181 * exactly at the top of the address space and so addr + len
1182 * wraps round to zero.
1183 */
1184 vaddr wpend = wp->vaddr + wp->len - 1;
1185 vaddr addrend = addr + len - 1;
1186
1187 return !(addr > wpend || wp->vaddr > addrend);
1188 }
1189
1190 #endif
1191
1192 /* Add a breakpoint. */
1193 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1194 CPUBreakpoint **breakpoint)
1195 {
1196 CPUBreakpoint *bp;
1197
1198 bp = g_malloc(sizeof(*bp));
1199
1200 bp->pc = pc;
1201 bp->flags = flags;
1202
1203 /* keep all GDB-injected breakpoints in front */
1204 if (flags & BP_GDB) {
1205 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1206 } else {
1207 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1208 }
1209
1210 breakpoint_invalidate(cpu, pc);
1211
1212 if (breakpoint) {
1213 *breakpoint = bp;
1214 }
1215 return 0;
1216 }
1217
1218 /* Remove a specific breakpoint. */
1219 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1220 {
1221 CPUBreakpoint *bp;
1222
1223 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1224 if (bp->pc == pc && bp->flags == flags) {
1225 cpu_breakpoint_remove_by_ref(cpu, bp);
1226 return 0;
1227 }
1228 }
1229 return -ENOENT;
1230 }
1231
1232 /* Remove a specific breakpoint by reference. */
1233 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1234 {
1235 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1236
1237 breakpoint_invalidate(cpu, breakpoint->pc);
1238
1239 g_free(breakpoint);
1240 }
1241
1242 /* Remove all matching breakpoints. */
1243 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1244 {
1245 CPUBreakpoint *bp, *next;
1246
1247 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1248 if (bp->flags & mask) {
1249 cpu_breakpoint_remove_by_ref(cpu, bp);
1250 }
1251 }
1252 }
1253
1254 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1255 CPU loop after each instruction */
1256 void cpu_single_step(CPUState *cpu, int enabled)
1257 {
1258 if (cpu->singlestep_enabled != enabled) {
1259 cpu->singlestep_enabled = enabled;
1260 if (kvm_enabled()) {
1261 kvm_update_guest_debug(cpu, 0);
1262 } else {
1263 /* must flush all the translated code to avoid inconsistencies */
1264 /* XXX: only flush what is necessary */
1265 tb_flush(cpu);
1266 }
1267 }
1268 }
1269
1270 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1271 {
1272 va_list ap;
1273 va_list ap2;
1274
1275 va_start(ap, fmt);
1276 va_copy(ap2, ap);
1277 fprintf(stderr, "qemu: fatal: ");
1278 vfprintf(stderr, fmt, ap);
1279 fprintf(stderr, "\n");
1280 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1281 if (qemu_log_separate()) {
1282 qemu_log_lock();
1283 qemu_log("qemu: fatal: ");
1284 qemu_log_vprintf(fmt, ap2);
1285 qemu_log("\n");
1286 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1287 qemu_log_flush();
1288 qemu_log_unlock();
1289 qemu_log_close();
1290 }
1291 va_end(ap2);
1292 va_end(ap);
1293 replay_finish();
1294 #if defined(CONFIG_USER_ONLY)
1295 {
1296 struct sigaction act;
1297 sigfillset(&act.sa_mask);
1298 act.sa_handler = SIG_DFL;
1299 act.sa_flags = 0;
1300 sigaction(SIGABRT, &act, NULL);
1301 }
1302 #endif
1303 abort();
1304 }
1305
1306 #if !defined(CONFIG_USER_ONLY)
1307 /* Called from RCU critical section */
1308 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1309 {
1310 RAMBlock *block;
1311
1312 block = atomic_rcu_read(&ram_list.mru_block);
1313 if (block && addr - block->offset < block->max_length) {
1314 return block;
1315 }
1316 RAMBLOCK_FOREACH(block) {
1317 if (addr - block->offset < block->max_length) {
1318 goto found;
1319 }
1320 }
1321
1322 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1323 abort();
1324
1325 found:
1326 /* It is safe to write mru_block outside the iothread lock. This
1327 * is what happens:
1328 *
1329 * mru_block = xxx
1330 * rcu_read_unlock()
1331 * xxx removed from list
1332 * rcu_read_lock()
1333 * read mru_block
1334 * mru_block = NULL;
1335 * call_rcu(reclaim_ramblock, xxx);
1336 * rcu_read_unlock()
1337 *
1338 * atomic_rcu_set is not needed here. The block was already published
1339 * when it was placed into the list. Here we're just making an extra
1340 * copy of the pointer.
1341 */
1342 ram_list.mru_block = block;
1343 return block;
1344 }
1345
1346 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1347 {
1348 CPUState *cpu;
1349 ram_addr_t start1;
1350 RAMBlock *block;
1351 ram_addr_t end;
1352
1353 assert(tcg_enabled());
1354 end = TARGET_PAGE_ALIGN(start + length);
1355 start &= TARGET_PAGE_MASK;
1356
1357 rcu_read_lock();
1358 block = qemu_get_ram_block(start);
1359 assert(block == qemu_get_ram_block(end - 1));
1360 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1361 CPU_FOREACH(cpu) {
1362 tlb_reset_dirty(cpu, start1, length);
1363 }
1364 rcu_read_unlock();
1365 }
1366
1367 /* Note: start and end must be within the same ram block. */
1368 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1369 ram_addr_t length,
1370 unsigned client)
1371 {
1372 DirtyMemoryBlocks *blocks;
1373 unsigned long end, page;
1374 bool dirty = false;
1375
1376 if (length == 0) {
1377 return false;
1378 }
1379
1380 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1381 page = start >> TARGET_PAGE_BITS;
1382
1383 rcu_read_lock();
1384
1385 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1386
1387 while (page < end) {
1388 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1389 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1390 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1391
1392 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1393 offset, num);
1394 page += num;
1395 }
1396
1397 rcu_read_unlock();
1398
1399 if (dirty && tcg_enabled()) {
1400 tlb_reset_dirty_range_all(start, length);
1401 }
1402
1403 return dirty;
1404 }
1405
1406 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1407 (ram_addr_t start, ram_addr_t length, unsigned client)
1408 {
1409 DirtyMemoryBlocks *blocks;
1410 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1411 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1412 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1413 DirtyBitmapSnapshot *snap;
1414 unsigned long page, end, dest;
1415
1416 snap = g_malloc0(sizeof(*snap) +
1417 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1418 snap->start = first;
1419 snap->end = last;
1420
1421 page = first >> TARGET_PAGE_BITS;
1422 end = last >> TARGET_PAGE_BITS;
1423 dest = 0;
1424
1425 rcu_read_lock();
1426
1427 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1428
1429 while (page < end) {
1430 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1431 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1432 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1433
1434 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1435 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1436 offset >>= BITS_PER_LEVEL;
1437
1438 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1439 blocks->blocks[idx] + offset,
1440 num);
1441 page += num;
1442 dest += num >> BITS_PER_LEVEL;
1443 }
1444
1445 rcu_read_unlock();
1446
1447 if (tcg_enabled()) {
1448 tlb_reset_dirty_range_all(start, length);
1449 }
1450
1451 return snap;
1452 }
1453
1454 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1455 ram_addr_t start,
1456 ram_addr_t length)
1457 {
1458 unsigned long page, end;
1459
1460 assert(start >= snap->start);
1461 assert(start + length <= snap->end);
1462
1463 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1464 page = (start - snap->start) >> TARGET_PAGE_BITS;
1465
1466 while (page < end) {
1467 if (test_bit(page, snap->dirty)) {
1468 return true;
1469 }
1470 page++;
1471 }
1472 return false;
1473 }
1474
1475 /* Called from RCU critical section */
1476 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1477 MemoryRegionSection *section,
1478 target_ulong vaddr,
1479 hwaddr paddr, hwaddr xlat,
1480 int prot,
1481 target_ulong *address)
1482 {
1483 hwaddr iotlb;
1484 CPUWatchpoint *wp;
1485
1486 if (memory_region_is_ram(section->mr)) {
1487 /* Normal RAM. */
1488 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1489 if (!section->readonly) {
1490 iotlb |= PHYS_SECTION_NOTDIRTY;
1491 } else {
1492 iotlb |= PHYS_SECTION_ROM;
1493 }
1494 } else {
1495 AddressSpaceDispatch *d;
1496
1497 d = flatview_to_dispatch(section->fv);
1498 iotlb = section - d->map.sections;
1499 iotlb += xlat;
1500 }
1501
1502 /* Make accesses to pages with watchpoints go via the
1503 watchpoint trap routines. */
1504 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1505 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1506 /* Avoid trapping reads of pages with a write breakpoint. */
1507 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1508 iotlb = PHYS_SECTION_WATCH + paddr;
1509 *address |= TLB_MMIO;
1510 break;
1511 }
1512 }
1513 }
1514
1515 return iotlb;
1516 }
1517 #endif /* defined(CONFIG_USER_ONLY) */
1518
1519 #if !defined(CONFIG_USER_ONLY)
1520
1521 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1522 uint16_t section);
1523 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1524
1525 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1526 qemu_anon_ram_alloc;
1527
1528 /*
1529 * Set a custom physical guest memory alloator.
1530 * Accelerators with unusual needs may need this. Hopefully, we can
1531 * get rid of it eventually.
1532 */
1533 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1534 {
1535 phys_mem_alloc = alloc;
1536 }
1537
1538 static uint16_t phys_section_add(PhysPageMap *map,
1539 MemoryRegionSection *section)
1540 {
1541 /* The physical section number is ORed with a page-aligned
1542 * pointer to produce the iotlb entries. Thus it should
1543 * never overflow into the page-aligned value.
1544 */
1545 assert(map->sections_nb < TARGET_PAGE_SIZE);
1546
1547 if (map->sections_nb == map->sections_nb_alloc) {
1548 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1549 map->sections = g_renew(MemoryRegionSection, map->sections,
1550 map->sections_nb_alloc);
1551 }
1552 map->sections[map->sections_nb] = *section;
1553 memory_region_ref(section->mr);
1554 return map->sections_nb++;
1555 }
1556
1557 static void phys_section_destroy(MemoryRegion *mr)
1558 {
1559 bool have_sub_page = mr->subpage;
1560
1561 memory_region_unref(mr);
1562
1563 if (have_sub_page) {
1564 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1565 object_unref(OBJECT(&subpage->iomem));
1566 g_free(subpage);
1567 }
1568 }
1569
1570 static void phys_sections_free(PhysPageMap *map)
1571 {
1572 while (map->sections_nb > 0) {
1573 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1574 phys_section_destroy(section->mr);
1575 }
1576 g_free(map->sections);
1577 g_free(map->nodes);
1578 }
1579
1580 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1581 {
1582 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1583 subpage_t *subpage;
1584 hwaddr base = section->offset_within_address_space
1585 & TARGET_PAGE_MASK;
1586 MemoryRegionSection *existing = phys_page_find(d, base);
1587 MemoryRegionSection subsection = {
1588 .offset_within_address_space = base,
1589 .size = int128_make64(TARGET_PAGE_SIZE),
1590 };
1591 hwaddr start, end;
1592
1593 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1594
1595 if (!(existing->mr->subpage)) {
1596 subpage = subpage_init(fv, base);
1597 subsection.fv = fv;
1598 subsection.mr = &subpage->iomem;
1599 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1600 phys_section_add(&d->map, &subsection));
1601 } else {
1602 subpage = container_of(existing->mr, subpage_t, iomem);
1603 }
1604 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1605 end = start + int128_get64(section->size) - 1;
1606 subpage_register(subpage, start, end,
1607 phys_section_add(&d->map, section));
1608 }
1609
1610
1611 static void register_multipage(FlatView *fv,
1612 MemoryRegionSection *section)
1613 {
1614 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1615 hwaddr start_addr = section->offset_within_address_space;
1616 uint16_t section_index = phys_section_add(&d->map, section);
1617 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1618 TARGET_PAGE_BITS));
1619
1620 assert(num_pages);
1621 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1622 }
1623
1624 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1625 {
1626 MemoryRegionSection now = *section, remain = *section;
1627 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1628
1629 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1630 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1631 - now.offset_within_address_space;
1632
1633 now.size = int128_min(int128_make64(left), now.size);
1634 register_subpage(fv, &now);
1635 } else {
1636 now.size = int128_zero();
1637 }
1638 while (int128_ne(remain.size, now.size)) {
1639 remain.size = int128_sub(remain.size, now.size);
1640 remain.offset_within_address_space += int128_get64(now.size);
1641 remain.offset_within_region += int128_get64(now.size);
1642 now = remain;
1643 if (int128_lt(remain.size, page_size)) {
1644 register_subpage(fv, &now);
1645 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1646 now.size = page_size;
1647 register_subpage(fv, &now);
1648 } else {
1649 now.size = int128_and(now.size, int128_neg(page_size));
1650 register_multipage(fv, &now);
1651 }
1652 }
1653 }
1654
1655 void qemu_flush_coalesced_mmio_buffer(void)
1656 {
1657 if (kvm_enabled())
1658 kvm_flush_coalesced_mmio_buffer();
1659 }
1660
1661 void qemu_mutex_lock_ramlist(void)
1662 {
1663 qemu_mutex_lock(&ram_list.mutex);
1664 }
1665
1666 void qemu_mutex_unlock_ramlist(void)
1667 {
1668 qemu_mutex_unlock(&ram_list.mutex);
1669 }
1670
1671 void ram_block_dump(Monitor *mon)
1672 {
1673 RAMBlock *block;
1674 char *psize;
1675
1676 rcu_read_lock();
1677 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1678 "Block Name", "PSize", "Offset", "Used", "Total");
1679 RAMBLOCK_FOREACH(block) {
1680 psize = size_to_str(block->page_size);
1681 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1682 " 0x%016" PRIx64 "\n", block->idstr, psize,
1683 (uint64_t)block->offset,
1684 (uint64_t)block->used_length,
1685 (uint64_t)block->max_length);
1686 g_free(psize);
1687 }
1688 rcu_read_unlock();
1689 }
1690
1691 #ifdef __linux__
1692 /*
1693 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1694 * may or may not name the same files / on the same filesystem now as
1695 * when we actually open and map them. Iterate over the file
1696 * descriptors instead, and use qemu_fd_getpagesize().
1697 */
1698 static int find_max_supported_pagesize(Object *obj, void *opaque)
1699 {
1700 long *hpsize_min = opaque;
1701
1702 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1703 long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));
1704
1705 if (hpsize < *hpsize_min) {
1706 *hpsize_min = hpsize;
1707 }
1708 }
1709
1710 return 0;
1711 }
1712
1713 long qemu_getrampagesize(void)
1714 {
1715 long hpsize = LONG_MAX;
1716 long mainrampagesize;
1717 Object *memdev_root;
1718
1719 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1720
1721 /* it's possible we have memory-backend objects with
1722 * hugepage-backed RAM. these may get mapped into system
1723 * address space via -numa parameters or memory hotplug
1724 * hooks. we want to take these into account, but we
1725 * also want to make sure these supported hugepage
1726 * sizes are applicable across the entire range of memory
1727 * we may boot from, so we take the min across all
1728 * backends, and assume normal pages in cases where a
1729 * backend isn't backed by hugepages.
1730 */
1731 memdev_root = object_resolve_path("/objects", NULL);
1732 if (memdev_root) {
1733 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1734 }
1735 if (hpsize == LONG_MAX) {
1736 /* No additional memory regions found ==> Report main RAM page size */
1737 return mainrampagesize;
1738 }
1739
1740 /* If NUMA is disabled or the NUMA nodes are not backed with a
1741 * memory-backend, then there is at least one node using "normal" RAM,
1742 * so if its page size is smaller we have got to report that size instead.
1743 */
1744 if (hpsize > mainrampagesize &&
1745 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1746 static bool warned;
1747 if (!warned) {
1748 error_report("Huge page support disabled (n/a for main memory).");
1749 warned = true;
1750 }
1751 return mainrampagesize;
1752 }
1753
1754 return hpsize;
1755 }
1756 #else
1757 long qemu_getrampagesize(void)
1758 {
1759 return getpagesize();
1760 }
1761 #endif
1762
1763 #ifdef __linux__
1764 static int64_t get_file_size(int fd)
1765 {
1766 int64_t size = lseek(fd, 0, SEEK_END);
1767 if (size < 0) {
1768 return -errno;
1769 }
1770 return size;
1771 }
1772
1773 static int file_ram_open(const char *path,
1774 const char *region_name,
1775 bool *created,
1776 Error **errp)
1777 {
1778 char *filename;
1779 char *sanitized_name;
1780 char *c;
1781 int fd = -1;
1782
1783 *created = false;
1784 for (;;) {
1785 fd = open(path, O_RDWR);
1786 if (fd >= 0) {
1787 /* @path names an existing file, use it */
1788 break;
1789 }
1790 if (errno == ENOENT) {
1791 /* @path names a file that doesn't exist, create it */
1792 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1793 if (fd >= 0) {
1794 *created = true;
1795 break;
1796 }
1797 } else if (errno == EISDIR) {
1798 /* @path names a directory, create a file there */
1799 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1800 sanitized_name = g_strdup(region_name);
1801 for (c = sanitized_name; *c != '\0'; c++) {
1802 if (*c == '/') {
1803 *c = '_';
1804 }
1805 }
1806
1807 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1808 sanitized_name);
1809 g_free(sanitized_name);
1810
1811 fd = mkstemp(filename);
1812 if (fd >= 0) {
1813 unlink(filename);
1814 g_free(filename);
1815 break;
1816 }
1817 g_free(filename);
1818 }
1819 if (errno != EEXIST && errno != EINTR) {
1820 error_setg_errno(errp, errno,
1821 "can't open backing store %s for guest RAM",
1822 path);
1823 return -1;
1824 }
1825 /*
1826 * Try again on EINTR and EEXIST. The latter happens when
1827 * something else creates the file between our two open().
1828 */
1829 }
1830
1831 return fd;
1832 }
1833
1834 static void *file_ram_alloc(RAMBlock *block,
1835 ram_addr_t memory,
1836 int fd,
1837 bool truncate,
1838 Error **errp)
1839 {
1840 void *area;
1841
1842 block->page_size = qemu_fd_getpagesize(fd);
1843 if (block->mr->align % block->page_size) {
1844 error_setg(errp, "alignment 0x%" PRIx64
1845 " must be multiples of page size 0x%zx",
1846 block->mr->align, block->page_size);
1847 return NULL;
1848 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1849 error_setg(errp, "alignment 0x%" PRIx64
1850 " must be a power of two", block->mr->align);
1851 return NULL;
1852 }
1853 block->mr->align = MAX(block->page_size, block->mr->align);
1854 #if defined(__s390x__)
1855 if (kvm_enabled()) {
1856 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1857 }
1858 #endif
1859
1860 if (memory < block->page_size) {
1861 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1862 "or larger than page size 0x%zx",
1863 memory, block->page_size);
1864 return NULL;
1865 }
1866
1867 memory = ROUND_UP(memory, block->page_size);
1868
1869 /*
1870 * ftruncate is not supported by hugetlbfs in older
1871 * hosts, so don't bother bailing out on errors.
1872 * If anything goes wrong with it under other filesystems,
1873 * mmap will fail.
1874 *
1875 * Do not truncate the non-empty backend file to avoid corrupting
1876 * the existing data in the file. Disabling shrinking is not
1877 * enough. For example, the current vNVDIMM implementation stores
1878 * the guest NVDIMM labels at the end of the backend file. If the
1879 * backend file is later extended, QEMU will not be able to find
1880 * those labels. Therefore, extending the non-empty backend file
1881 * is disabled as well.
1882 */
1883 if (truncate && ftruncate(fd, memory)) {
1884 perror("ftruncate");
1885 }
1886
1887 area = qemu_ram_mmap(fd, memory, block->mr->align,
1888 block->flags & RAM_SHARED);
1889 if (area == MAP_FAILED) {
1890 error_setg_errno(errp, errno,
1891 "unable to map backing store for guest RAM");
1892 return NULL;
1893 }
1894
1895 if (mem_prealloc) {
1896 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1897 if (errp && *errp) {
1898 qemu_ram_munmap(area, memory);
1899 return NULL;
1900 }
1901 }
1902
1903 block->fd = fd;
1904 return area;
1905 }
1906 #endif
1907
1908 /* Allocate space within the ram_addr_t space that governs the
1909 * dirty bitmaps.
1910 * Called with the ramlist lock held.
1911 */
1912 static ram_addr_t find_ram_offset(ram_addr_t size)
1913 {
1914 RAMBlock *block, *next_block;
1915 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1916
1917 assert(size != 0); /* it would hand out same offset multiple times */
1918
1919 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1920 return 0;
1921 }
1922
1923 RAMBLOCK_FOREACH(block) {
1924 ram_addr_t candidate, next = RAM_ADDR_MAX;
1925
1926 /* Align blocks to start on a 'long' in the bitmap
1927 * which makes the bitmap sync'ing take the fast path.
1928 */
1929 candidate = block->offset + block->max_length;
1930 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1931
1932 /* Search for the closest following block
1933 * and find the gap.
1934 */
1935 RAMBLOCK_FOREACH(next_block) {
1936 if (next_block->offset >= candidate) {
1937 next = MIN(next, next_block->offset);
1938 }
1939 }
1940
1941 /* If it fits remember our place and remember the size
1942 * of gap, but keep going so that we might find a smaller
1943 * gap to fill so avoiding fragmentation.
1944 */
1945 if (next - candidate >= size && next - candidate < mingap) {
1946 offset = candidate;
1947 mingap = next - candidate;
1948 }
1949
1950 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1951 }
1952
1953 if (offset == RAM_ADDR_MAX) {
1954 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1955 (uint64_t)size);
1956 abort();
1957 }
1958
1959 trace_find_ram_offset(size, offset);
1960
1961 return offset;
1962 }
1963
1964 static unsigned long last_ram_page(void)
1965 {
1966 RAMBlock *block;
1967 ram_addr_t last = 0;
1968
1969 rcu_read_lock();
1970 RAMBLOCK_FOREACH(block) {
1971 last = MAX(last, block->offset + block->max_length);
1972 }
1973 rcu_read_unlock();
1974 return last >> TARGET_PAGE_BITS;
1975 }
1976
1977 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1978 {
1979 int ret;
1980
1981 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1982 if (!machine_dump_guest_core(current_machine)) {
1983 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1984 if (ret) {
1985 perror("qemu_madvise");
1986 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1987 "but dump_guest_core=off specified\n");
1988 }
1989 }
1990 }
1991
1992 const char *qemu_ram_get_idstr(RAMBlock *rb)
1993 {
1994 return rb->idstr;
1995 }
1996
1997 bool qemu_ram_is_shared(RAMBlock *rb)
1998 {
1999 return rb->flags & RAM_SHARED;
2000 }
2001
2002 /* Note: Only set at the start of postcopy */
2003 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2004 {
2005 return rb->flags & RAM_UF_ZEROPAGE;
2006 }
2007
2008 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2009 {
2010 rb->flags |= RAM_UF_ZEROPAGE;
2011 }
2012
2013 bool qemu_ram_is_migratable(RAMBlock *rb)
2014 {
2015 return rb->flags & RAM_MIGRATABLE;
2016 }
2017
2018 void qemu_ram_set_migratable(RAMBlock *rb)
2019 {
2020 rb->flags |= RAM_MIGRATABLE;
2021 }
2022
2023 void qemu_ram_unset_migratable(RAMBlock *rb)
2024 {
2025 rb->flags &= ~RAM_MIGRATABLE;
2026 }
2027
2028 /* Called with iothread lock held. */
2029 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2030 {
2031 RAMBlock *block;
2032
2033 assert(new_block);
2034 assert(!new_block->idstr[0]);
2035
2036 if (dev) {
2037 char *id = qdev_get_dev_path(dev);
2038 if (id) {
2039 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2040 g_free(id);
2041 }
2042 }
2043 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2044
2045 rcu_read_lock();
2046 RAMBLOCK_FOREACH(block) {
2047 if (block != new_block &&
2048 !strcmp(block->idstr, new_block->idstr)) {
2049 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2050 new_block->idstr);
2051 abort();
2052 }
2053 }
2054 rcu_read_unlock();
2055 }
2056
2057 /* Called with iothread lock held. */
2058 void qemu_ram_unset_idstr(RAMBlock *block)
2059 {
2060 /* FIXME: arch_init.c assumes that this is not called throughout
2061 * migration. Ignore the problem since hot-unplug during migration
2062 * does not work anyway.
2063 */
2064 if (block) {
2065 memset(block->idstr, 0, sizeof(block->idstr));
2066 }
2067 }
2068
2069 size_t qemu_ram_pagesize(RAMBlock *rb)
2070 {
2071 return rb->page_size;
2072 }
2073
2074 /* Returns the largest size of page in use */
2075 size_t qemu_ram_pagesize_largest(void)
2076 {
2077 RAMBlock *block;
2078 size_t largest = 0;
2079
2080 RAMBLOCK_FOREACH(block) {
2081 largest = MAX(largest, qemu_ram_pagesize(block));
2082 }
2083
2084 return largest;
2085 }
2086
2087 static int memory_try_enable_merging(void *addr, size_t len)
2088 {
2089 if (!machine_mem_merge(current_machine)) {
2090 /* disabled by the user */
2091 return 0;
2092 }
2093
2094 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2095 }
2096
2097 /* Only legal before guest might have detected the memory size: e.g. on
2098 * incoming migration, or right after reset.
2099 *
2100 * As memory core doesn't know how is memory accessed, it is up to
2101 * resize callback to update device state and/or add assertions to detect
2102 * misuse, if necessary.
2103 */
2104 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2105 {
2106 assert(block);
2107
2108 newsize = HOST_PAGE_ALIGN(newsize);
2109
2110 if (block->used_length == newsize) {
2111 return 0;
2112 }
2113
2114 if (!(block->flags & RAM_RESIZEABLE)) {
2115 error_setg_errno(errp, EINVAL,
2116 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2117 " in != 0x" RAM_ADDR_FMT, block->idstr,
2118 newsize, block->used_length);
2119 return -EINVAL;
2120 }
2121
2122 if (block->max_length < newsize) {
2123 error_setg_errno(errp, EINVAL,
2124 "Length too large: %s: 0x" RAM_ADDR_FMT
2125 " > 0x" RAM_ADDR_FMT, block->idstr,
2126 newsize, block->max_length);
2127 return -EINVAL;
2128 }
2129
2130 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2131 block->used_length = newsize;
2132 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2133 DIRTY_CLIENTS_ALL);
2134 memory_region_set_size(block->mr, newsize);
2135 if (block->resized) {
2136 block->resized(block->idstr, newsize, block->host);
2137 }
2138 return 0;
2139 }
2140
2141 /* Called with ram_list.mutex held */
2142 static void dirty_memory_extend(ram_addr_t old_ram_size,
2143 ram_addr_t new_ram_size)
2144 {
2145 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2146 DIRTY_MEMORY_BLOCK_SIZE);
2147 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2148 DIRTY_MEMORY_BLOCK_SIZE);
2149 int i;
2150
2151 /* Only need to extend if block count increased */
2152 if (new_num_blocks <= old_num_blocks) {
2153 return;
2154 }
2155
2156 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2157 DirtyMemoryBlocks *old_blocks;
2158 DirtyMemoryBlocks *new_blocks;
2159 int j;
2160
2161 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2162 new_blocks = g_malloc(sizeof(*new_blocks) +
2163 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2164
2165 if (old_num_blocks) {
2166 memcpy(new_blocks->blocks, old_blocks->blocks,
2167 old_num_blocks * sizeof(old_blocks->blocks[0]));
2168 }
2169
2170 for (j = old_num_blocks; j < new_num_blocks; j++) {
2171 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2172 }
2173
2174 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2175
2176 if (old_blocks) {
2177 g_free_rcu(old_blocks, rcu);
2178 }
2179 }
2180 }
2181
2182 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2183 {
2184 RAMBlock *block;
2185 RAMBlock *last_block = NULL;
2186 ram_addr_t old_ram_size, new_ram_size;
2187 Error *err = NULL;
2188
2189 old_ram_size = last_ram_page();
2190
2191 qemu_mutex_lock_ramlist();
2192 new_block->offset = find_ram_offset(new_block->max_length);
2193
2194 if (!new_block->host) {
2195 if (xen_enabled()) {
2196 xen_ram_alloc(new_block->offset, new_block->max_length,
2197 new_block->mr, &err);
2198 if (err) {
2199 error_propagate(errp, err);
2200 qemu_mutex_unlock_ramlist();
2201 return;
2202 }
2203 } else {
2204 new_block->host = phys_mem_alloc(new_block->max_length,
2205 &new_block->mr->align, shared);
2206 if (!new_block->host) {
2207 error_setg_errno(errp, errno,
2208 "cannot set up guest memory '%s'",
2209 memory_region_name(new_block->mr));
2210 qemu_mutex_unlock_ramlist();
2211 return;
2212 }
2213 memory_try_enable_merging(new_block->host, new_block->max_length);
2214 }
2215 }
2216
2217 new_ram_size = MAX(old_ram_size,
2218 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2219 if (new_ram_size > old_ram_size) {
2220 dirty_memory_extend(old_ram_size, new_ram_size);
2221 }
2222 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2223 * QLIST (which has an RCU-friendly variant) does not have insertion at
2224 * tail, so save the last element in last_block.
2225 */
2226 RAMBLOCK_FOREACH(block) {
2227 last_block = block;
2228 if (block->max_length < new_block->max_length) {
2229 break;
2230 }
2231 }
2232 if (block) {
2233 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2234 } else if (last_block) {
2235 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2236 } else { /* list is empty */
2237 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2238 }
2239 ram_list.mru_block = NULL;
2240
2241 /* Write list before version */
2242 smp_wmb();
2243 ram_list.version++;
2244 qemu_mutex_unlock_ramlist();
2245
2246 cpu_physical_memory_set_dirty_range(new_block->offset,
2247 new_block->used_length,
2248 DIRTY_CLIENTS_ALL);
2249
2250 if (new_block->host) {
2251 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2252 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2253 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2254 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2255 ram_block_notify_add(new_block->host, new_block->max_length);
2256 }
2257 }
2258
2259 #ifdef __linux__
2260 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2261 bool share, int fd,
2262 Error **errp)
2263 {
2264 RAMBlock *new_block;
2265 Error *local_err = NULL;
2266 int64_t file_size;
2267
2268 if (xen_enabled()) {
2269 error_setg(errp, "-mem-path not supported with Xen");
2270 return NULL;
2271 }
2272
2273 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2274 error_setg(errp,
2275 "host lacks kvm mmu notifiers, -mem-path unsupported");
2276 return NULL;
2277 }
2278
2279 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2280 /*
2281 * file_ram_alloc() needs to allocate just like
2282 * phys_mem_alloc, but we haven't bothered to provide
2283 * a hook there.
2284 */
2285 error_setg(errp,
2286 "-mem-path not supported with this accelerator");
2287 return NULL;
2288 }
2289
2290 size = HOST_PAGE_ALIGN(size);
2291 file_size = get_file_size(fd);
2292 if (file_size > 0 && file_size < size) {
2293 error_setg(errp, "backing store %s size 0x%" PRIx64
2294 " does not match 'size' option 0x" RAM_ADDR_FMT,
2295 mem_path, file_size, size);
2296 return NULL;
2297 }
2298
2299 new_block = g_malloc0(sizeof(*new_block));
2300 new_block->mr = mr;
2301 new_block->used_length = size;
2302 new_block->max_length = size;
2303 new_block->flags = share ? RAM_SHARED : 0;
2304 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2305 if (!new_block->host) {
2306 g_free(new_block);
2307 return NULL;
2308 }
2309
2310 ram_block_add(new_block, &local_err, share);
2311 if (local_err) {
2312 g_free(new_block);
2313 error_propagate(errp, local_err);
2314 return NULL;
2315 }
2316 return new_block;
2317
2318 }
2319
2320
2321 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2322 bool share, const char *mem_path,
2323 Error **errp)
2324 {
2325 int fd;
2326 bool created;
2327 RAMBlock *block;
2328
2329 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2330 if (fd < 0) {
2331 return NULL;
2332 }
2333
2334 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2335 if (!block) {
2336 if (created) {
2337 unlink(mem_path);
2338 }
2339 close(fd);
2340 return NULL;
2341 }
2342
2343 return block;
2344 }
2345 #endif
2346
2347 static
2348 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2349 void (*resized)(const char*,
2350 uint64_t length,
2351 void *host),
2352 void *host, bool resizeable, bool share,
2353 MemoryRegion *mr, Error **errp)
2354 {
2355 RAMBlock *new_block;
2356 Error *local_err = NULL;
2357
2358 size = HOST_PAGE_ALIGN(size);
2359 max_size = HOST_PAGE_ALIGN(max_size);
2360 new_block = g_malloc0(sizeof(*new_block));
2361 new_block->mr = mr;
2362 new_block->resized = resized;
2363 new_block->used_length = size;
2364 new_block->max_length = max_size;
2365 assert(max_size >= size);
2366 new_block->fd = -1;
2367 new_block->page_size = getpagesize();
2368 new_block->host = host;
2369 if (host) {
2370 new_block->flags |= RAM_PREALLOC;
2371 }
2372 if (resizeable) {
2373 new_block->flags |= RAM_RESIZEABLE;
2374 }
2375 ram_block_add(new_block, &local_err, share);
2376 if (local_err) {
2377 g_free(new_block);
2378 error_propagate(errp, local_err);
2379 return NULL;
2380 }
2381 return new_block;
2382 }
2383
2384 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2385 MemoryRegion *mr, Error **errp)
2386 {
2387 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2388 false, mr, errp);
2389 }
2390
2391 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2392 MemoryRegion *mr, Error **errp)
2393 {
2394 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2395 share, mr, errp);
2396 }
2397
2398 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2399 void (*resized)(const char*,
2400 uint64_t length,
2401 void *host),
2402 MemoryRegion *mr, Error **errp)
2403 {
2404 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2405 false, mr, errp);
2406 }
2407
2408 static void reclaim_ramblock(RAMBlock *block)
2409 {
2410 if (block->flags & RAM_PREALLOC) {
2411 ;
2412 } else if (xen_enabled()) {
2413 xen_invalidate_map_cache_entry(block->host);
2414 #ifndef _WIN32
2415 } else if (block->fd >= 0) {
2416 qemu_ram_munmap(block->host, block->max_length);
2417 close(block->fd);
2418 #endif
2419 } else {
2420 qemu_anon_ram_free(block->host, block->max_length);
2421 }
2422 g_free(block);
2423 }
2424
2425 void qemu_ram_free(RAMBlock *block)
2426 {
2427 if (!block) {
2428 return;
2429 }
2430
2431 if (block->host) {
2432 ram_block_notify_remove(block->host, block->max_length);
2433 }
2434
2435 qemu_mutex_lock_ramlist();
2436 QLIST_REMOVE_RCU(block, next);
2437 ram_list.mru_block = NULL;
2438 /* Write list before version */
2439 smp_wmb();
2440 ram_list.version++;
2441 call_rcu(block, reclaim_ramblock, rcu);
2442 qemu_mutex_unlock_ramlist();
2443 }
2444
2445 #ifndef _WIN32
2446 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2447 {
2448 RAMBlock *block;
2449 ram_addr_t offset;
2450 int flags;
2451 void *area, *vaddr;
2452
2453 RAMBLOCK_FOREACH(block) {
2454 offset = addr - block->offset;
2455 if (offset < block->max_length) {
2456 vaddr = ramblock_ptr(block, offset);
2457 if (block->flags & RAM_PREALLOC) {
2458 ;
2459 } else if (xen_enabled()) {
2460 abort();
2461 } else {
2462 flags = MAP_FIXED;
2463 if (block->fd >= 0) {
2464 flags |= (block->flags & RAM_SHARED ?
2465 MAP_SHARED : MAP_PRIVATE);
2466 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2467 flags, block->fd, offset);
2468 } else {
2469 /*
2470 * Remap needs to match alloc. Accelerators that
2471 * set phys_mem_alloc never remap. If they did,
2472 * we'd need a remap hook here.
2473 */
2474 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2475
2476 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2477 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2478 flags, -1, 0);
2479 }
2480 if (area != vaddr) {
2481 error_report("Could not remap addr: "
2482 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2483 length, addr);
2484 exit(1);
2485 }
2486 memory_try_enable_merging(vaddr, length);
2487 qemu_ram_setup_dump(vaddr, length);
2488 }
2489 }
2490 }
2491 }
2492 #endif /* !_WIN32 */
2493
2494 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2495 * This should not be used for general purpose DMA. Use address_space_map
2496 * or address_space_rw instead. For local memory (e.g. video ram) that the
2497 * device owns, use memory_region_get_ram_ptr.
2498 *
2499 * Called within RCU critical section.
2500 */
2501 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2502 {
2503 RAMBlock *block = ram_block;
2504
2505 if (block == NULL) {
2506 block = qemu_get_ram_block(addr);
2507 addr -= block->offset;
2508 }
2509
2510 if (xen_enabled() && block->host == NULL) {
2511 /* We need to check if the requested address is in the RAM
2512 * because we don't want to map the entire memory in QEMU.
2513 * In that case just map until the end of the page.
2514 */
2515 if (block->offset == 0) {
2516 return xen_map_cache(addr, 0, 0, false);
2517 }
2518
2519 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2520 }
2521 return ramblock_ptr(block, addr);
2522 }
2523
2524 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2525 * but takes a size argument.
2526 *
2527 * Called within RCU critical section.
2528 */
2529 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2530 hwaddr *size, bool lock)
2531 {
2532 RAMBlock *block = ram_block;
2533 if (*size == 0) {
2534 return NULL;
2535 }
2536
2537 if (block == NULL) {
2538 block = qemu_get_ram_block(addr);
2539 addr -= block->offset;
2540 }
2541 *size = MIN(*size, block->max_length - addr);
2542
2543 if (xen_enabled() && block->host == NULL) {
2544 /* We need to check if the requested address is in the RAM
2545 * because we don't want to map the entire memory in QEMU.
2546 * In that case just map the requested area.
2547 */
2548 if (block->offset == 0) {
2549 return xen_map_cache(addr, *size, lock, lock);
2550 }
2551
2552 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2553 }
2554
2555 return ramblock_ptr(block, addr);
2556 }
2557
2558 /* Return the offset of a hostpointer within a ramblock */
2559 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2560 {
2561 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2562 assert((uintptr_t)host >= (uintptr_t)rb->host);
2563 assert(res < rb->max_length);
2564
2565 return res;
2566 }
2567
2568 /*
2569 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2570 * in that RAMBlock.
2571 *
2572 * ptr: Host pointer to look up
2573 * round_offset: If true round the result offset down to a page boundary
2574 * *ram_addr: set to result ram_addr
2575 * *offset: set to result offset within the RAMBlock
2576 *
2577 * Returns: RAMBlock (or NULL if not found)
2578 *
2579 * By the time this function returns, the returned pointer is not protected
2580 * by RCU anymore. If the caller is not within an RCU critical section and
2581 * does not hold the iothread lock, it must have other means of protecting the
2582 * pointer, such as a reference to the region that includes the incoming
2583 * ram_addr_t.
2584 */
2585 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2586 ram_addr_t *offset)
2587 {
2588 RAMBlock *block;
2589 uint8_t *host = ptr;
2590
2591 if (xen_enabled()) {
2592 ram_addr_t ram_addr;
2593 rcu_read_lock();
2594 ram_addr = xen_ram_addr_from_mapcache(ptr);
2595 block = qemu_get_ram_block(ram_addr);
2596 if (block) {
2597 *offset = ram_addr - block->offset;
2598 }
2599 rcu_read_unlock();
2600 return block;
2601 }
2602
2603 rcu_read_lock();
2604 block = atomic_rcu_read(&ram_list.mru_block);
2605 if (block && block->host && host - block->host < block->max_length) {
2606 goto found;
2607 }
2608
2609 RAMBLOCK_FOREACH(block) {
2610 /* This case append when the block is not mapped. */
2611 if (block->host == NULL) {
2612 continue;
2613 }
2614 if (host - block->host < block->max_length) {
2615 goto found;
2616 }
2617 }
2618
2619 rcu_read_unlock();
2620 return NULL;
2621
2622 found:
2623 *offset = (host - block->host);
2624 if (round_offset) {
2625 *offset &= TARGET_PAGE_MASK;
2626 }
2627 rcu_read_unlock();
2628 return block;
2629 }
2630
2631 /*
2632 * Finds the named RAMBlock
2633 *
2634 * name: The name of RAMBlock to find
2635 *
2636 * Returns: RAMBlock (or NULL if not found)
2637 */
2638 RAMBlock *qemu_ram_block_by_name(const char *name)
2639 {
2640 RAMBlock *block;
2641
2642 RAMBLOCK_FOREACH(block) {
2643 if (!strcmp(name, block->idstr)) {
2644 return block;
2645 }
2646 }
2647
2648 return NULL;
2649 }
2650
2651 /* Some of the softmmu routines need to translate from a host pointer
2652 (typically a TLB entry) back to a ram offset. */
2653 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2654 {
2655 RAMBlock *block;
2656 ram_addr_t offset;
2657
2658 block = qemu_ram_block_from_host(ptr, false, &offset);
2659 if (!block) {
2660 return RAM_ADDR_INVALID;
2661 }
2662
2663 return block->offset + offset;
2664 }
2665
2666 /* Called within RCU critical section. */
2667 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2668 CPUState *cpu,
2669 vaddr mem_vaddr,
2670 ram_addr_t ram_addr,
2671 unsigned size)
2672 {
2673 ndi->cpu = cpu;
2674 ndi->ram_addr = ram_addr;
2675 ndi->mem_vaddr = mem_vaddr;
2676 ndi->size = size;
2677 ndi->pages = NULL;
2678
2679 assert(tcg_enabled());
2680 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2681 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2682 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2683 }
2684 }
2685
2686 /* Called within RCU critical section. */
2687 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2688 {
2689 if (ndi->pages) {
2690 assert(tcg_enabled());
2691 page_collection_unlock(ndi->pages);
2692 ndi->pages = NULL;
2693 }
2694
2695 /* Set both VGA and migration bits for simplicity and to remove
2696 * the notdirty callback faster.
2697 */
2698 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2699 DIRTY_CLIENTS_NOCODE);
2700 /* we remove the notdirty callback only if the code has been
2701 flushed */
2702 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2703 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2704 }
2705 }
2706
2707 /* Called within RCU critical section. */
2708 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2709 uint64_t val, unsigned size)
2710 {
2711 NotDirtyInfo ndi;
2712
2713 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2714 ram_addr, size);
2715
2716 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2717 memory_notdirty_write_complete(&ndi);
2718 }
2719
2720 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2721 unsigned size, bool is_write,
2722 MemTxAttrs attrs)
2723 {
2724 return is_write;
2725 }
2726
2727 static const MemoryRegionOps notdirty_mem_ops = {
2728 .write = notdirty_mem_write,
2729 .valid.accepts = notdirty_mem_accepts,
2730 .endianness = DEVICE_NATIVE_ENDIAN,
2731 .valid = {
2732 .min_access_size = 1,
2733 .max_access_size = 8,
2734 .unaligned = false,
2735 },
2736 .impl = {
2737 .min_access_size = 1,
2738 .max_access_size = 8,
2739 .unaligned = false,
2740 },
2741 };
2742
2743 /* Generate a debug exception if a watchpoint has been hit. */
2744 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2745 {
2746 CPUState *cpu = current_cpu;
2747 CPUClass *cc = CPU_GET_CLASS(cpu);
2748 target_ulong vaddr;
2749 CPUWatchpoint *wp;
2750
2751 assert(tcg_enabled());
2752 if (cpu->watchpoint_hit) {
2753 /* We re-entered the check after replacing the TB. Now raise
2754 * the debug interrupt so that is will trigger after the
2755 * current instruction. */
2756 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2757 return;
2758 }
2759 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2760 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2761 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2762 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2763 && (wp->flags & flags)) {
2764 if (flags == BP_MEM_READ) {
2765 wp->flags |= BP_WATCHPOINT_HIT_READ;
2766 } else {
2767 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2768 }
2769 wp->hitaddr = vaddr;
2770 wp->hitattrs = attrs;
2771 if (!cpu->watchpoint_hit) {
2772 if (wp->flags & BP_CPU &&
2773 !cc->debug_check_watchpoint(cpu, wp)) {
2774 wp->flags &= ~BP_WATCHPOINT_HIT;
2775 continue;
2776 }
2777 cpu->watchpoint_hit = wp;
2778
2779 mmap_lock();
2780 tb_check_watchpoint(cpu);
2781 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2782 cpu->exception_index = EXCP_DEBUG;
2783 mmap_unlock();
2784 cpu_loop_exit(cpu);
2785 } else {
2786 /* Force execution of one insn next time. */
2787 cpu->cflags_next_tb = 1 | curr_cflags();
2788 mmap_unlock();
2789 cpu_loop_exit_noexc(cpu);
2790 }
2791 }
2792 } else {
2793 wp->flags &= ~BP_WATCHPOINT_HIT;
2794 }
2795 }
2796 }
2797
2798 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2799 so these check for a hit then pass through to the normal out-of-line
2800 phys routines. */
2801 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2802 unsigned size, MemTxAttrs attrs)
2803 {
2804 MemTxResult res;
2805 uint64_t data;
2806 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2807 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2808
2809 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2810 switch (size) {
2811 case 1:
2812 data = address_space_ldub(as, addr, attrs, &res);
2813 break;
2814 case 2:
2815 data = address_space_lduw(as, addr, attrs, &res);
2816 break;
2817 case 4:
2818 data = address_space_ldl(as, addr, attrs, &res);
2819 break;
2820 case 8:
2821 data = address_space_ldq(as, addr, attrs, &res);
2822 break;
2823 default: abort();
2824 }
2825 *pdata = data;
2826 return res;
2827 }
2828
2829 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2830 uint64_t val, unsigned size,
2831 MemTxAttrs attrs)
2832 {
2833 MemTxResult res;
2834 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2835 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2836
2837 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2838 switch (size) {
2839 case 1:
2840 address_space_stb(as, addr, val, attrs, &res);
2841 break;
2842 case 2:
2843 address_space_stw(as, addr, val, attrs, &res);
2844 break;
2845 case 4:
2846 address_space_stl(as, addr, val, attrs, &res);
2847 break;
2848 case 8:
2849 address_space_stq(as, addr, val, attrs, &res);
2850 break;
2851 default: abort();
2852 }
2853 return res;
2854 }
2855
2856 static const MemoryRegionOps watch_mem_ops = {
2857 .read_with_attrs = watch_mem_read,
2858 .write_with_attrs = watch_mem_write,
2859 .endianness = DEVICE_NATIVE_ENDIAN,
2860 .valid = {
2861 .min_access_size = 1,
2862 .max_access_size = 8,
2863 .unaligned = false,
2864 },
2865 .impl = {
2866 .min_access_size = 1,
2867 .max_access_size = 8,
2868 .unaligned = false,
2869 },
2870 };
2871
2872 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2873 MemTxAttrs attrs, uint8_t *buf, int len);
2874 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2875 const uint8_t *buf, int len);
2876 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2877 bool is_write, MemTxAttrs attrs);
2878
2879 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2880 unsigned len, MemTxAttrs attrs)
2881 {
2882 subpage_t *subpage = opaque;
2883 uint8_t buf[8];
2884 MemTxResult res;
2885
2886 #if defined(DEBUG_SUBPAGE)
2887 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2888 subpage, len, addr);
2889 #endif
2890 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2891 if (res) {
2892 return res;
2893 }
2894 *data = ldn_p(buf, len);
2895 return MEMTX_OK;
2896 }
2897
2898 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2899 uint64_t value, unsigned len, MemTxAttrs attrs)
2900 {
2901 subpage_t *subpage = opaque;
2902 uint8_t buf[8];
2903
2904 #if defined(DEBUG_SUBPAGE)
2905 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2906 " value %"PRIx64"\n",
2907 __func__, subpage, len, addr, value);
2908 #endif
2909 stn_p(buf, len, value);
2910 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2911 }
2912
2913 static bool subpage_accepts(void *opaque, hwaddr addr,
2914 unsigned len, bool is_write,
2915 MemTxAttrs attrs)
2916 {
2917 subpage_t *subpage = opaque;
2918 #if defined(DEBUG_SUBPAGE)
2919 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2920 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2921 #endif
2922
2923 return flatview_access_valid(subpage->fv, addr + subpage->base,
2924 len, is_write, attrs);
2925 }
2926
2927 static const MemoryRegionOps subpage_ops = {
2928 .read_with_attrs = subpage_read,
2929 .write_with_attrs = subpage_write,
2930 .impl.min_access_size = 1,
2931 .impl.max_access_size = 8,
2932 .valid.min_access_size = 1,
2933 .valid.max_access_size = 8,
2934 .valid.accepts = subpage_accepts,
2935 .endianness = DEVICE_NATIVE_ENDIAN,
2936 };
2937
2938 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2939 uint16_t section)
2940 {
2941 int idx, eidx;
2942
2943 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2944 return -1;
2945 idx = SUBPAGE_IDX(start);
2946 eidx = SUBPAGE_IDX(end);
2947 #if defined(DEBUG_SUBPAGE)
2948 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2949 __func__, mmio, start, end, idx, eidx, section);
2950 #endif
2951 for (; idx <= eidx; idx++) {
2952 mmio->sub_section[idx] = section;
2953 }
2954
2955 return 0;
2956 }
2957
2958 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2959 {
2960 subpage_t *mmio;
2961
2962 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2963 mmio->fv = fv;
2964 mmio->base = base;
2965 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2966 NULL, TARGET_PAGE_SIZE);
2967 mmio->iomem.subpage = true;
2968 #if defined(DEBUG_SUBPAGE)
2969 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2970 mmio, base, TARGET_PAGE_SIZE);
2971 #endif
2972 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2973
2974 return mmio;
2975 }
2976
2977 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2978 {
2979 assert(fv);
2980 MemoryRegionSection section = {
2981 .fv = fv,
2982 .mr = mr,
2983 .offset_within_address_space = 0,
2984 .offset_within_region = 0,
2985 .size = int128_2_64(),
2986 };
2987
2988 return phys_section_add(map, &section);
2989 }
2990
2991 static void readonly_mem_write(void *opaque, hwaddr addr,
2992 uint64_t val, unsigned size)
2993 {
2994 /* Ignore any write to ROM. */
2995 }
2996
2997 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2998 unsigned size, bool is_write,
2999 MemTxAttrs attrs)
3000 {
3001 return is_write;
3002 }
3003
3004 /* This will only be used for writes, because reads are special cased
3005 * to directly access the underlying host ram.
3006 */
3007 static const MemoryRegionOps readonly_mem_ops = {
3008 .write = readonly_mem_write,
3009 .valid.accepts = readonly_mem_accepts,
3010 .endianness = DEVICE_NATIVE_ENDIAN,
3011 .valid = {
3012 .min_access_size = 1,
3013 .max_access_size = 8,
3014 .unaligned = false,
3015 },
3016 .impl = {
3017 .min_access_size = 1,
3018 .max_access_size = 8,
3019 .unaligned = false,
3020 },
3021 };
3022
3023 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3024 hwaddr index, MemTxAttrs attrs)
3025 {
3026 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3027 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3028 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3029 MemoryRegionSection *sections = d->map.sections;
3030
3031 return &sections[index & ~TARGET_PAGE_MASK];
3032 }
3033
3034 static void io_mem_init(void)
3035 {
3036 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3037 NULL, NULL, UINT64_MAX);
3038 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3039 NULL, UINT64_MAX);
3040
3041 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3042 * which can be called without the iothread mutex.
3043 */
3044 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3045 NULL, UINT64_MAX);
3046 memory_region_clear_global_locking(&io_mem_notdirty);
3047
3048 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3049 NULL, UINT64_MAX);
3050 }
3051
3052 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3053 {
3054 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3055 uint16_t n;
3056
3057 n = dummy_section(&d->map, fv, &io_mem_unassigned);
3058 assert(n == PHYS_SECTION_UNASSIGNED);
3059 n = dummy_section(&d->map, fv, &io_mem_notdirty);
3060 assert(n == PHYS_SECTION_NOTDIRTY);
3061 n = dummy_section(&d->map, fv, &io_mem_rom);
3062 assert(n == PHYS_SECTION_ROM);
3063 n = dummy_section(&d->map, fv, &io_mem_watch);
3064 assert(n == PHYS_SECTION_WATCH);
3065
3066 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3067
3068 return d;
3069 }
3070
3071 void address_space_dispatch_free(AddressSpaceDispatch *d)
3072 {
3073 phys_sections_free(&d->map);
3074 g_free(d);
3075 }
3076
3077 static void tcg_commit(MemoryListener *listener)
3078 {
3079 CPUAddressSpace *cpuas;
3080 AddressSpaceDispatch *d;
3081
3082 assert(tcg_enabled());
3083 /* since each CPU stores ram addresses in its TLB cache, we must
3084 reset the modified entries */
3085 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3086 cpu_reloading_memory_map();
3087 /* The CPU and TLB are protected by the iothread lock.
3088 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3089 * may have split the RCU critical section.
3090 */
3091 d = address_space_to_dispatch(cpuas->as);
3092 atomic_rcu_set(&cpuas->memory_dispatch, d);
3093 tlb_flush(cpuas->cpu);
3094 }
3095
3096 static void memory_map_init(void)
3097 {
3098 system_memory = g_malloc(sizeof(*system_memory));
3099
3100 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3101 address_space_init(&address_space_memory, system_memory, "memory");
3102
3103 system_io = g_malloc(sizeof(*system_io));
3104 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3105 65536);
3106 address_space_init(&address_space_io, system_io, "I/O");
3107 }
3108
3109 MemoryRegion *get_system_memory(void)
3110 {
3111 return system_memory;
3112 }
3113
3114 MemoryRegion *get_system_io(void)
3115 {
3116 return system_io;
3117 }
3118
3119 #endif /* !defined(CONFIG_USER_ONLY) */
3120
3121 /* physical memory access (slow version, mainly for debug) */
3122 #if defined(CONFIG_USER_ONLY)
3123 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3124 uint8_t *buf, int len, int is_write)
3125 {
3126 int l, flags;
3127 target_ulong page;
3128 void * p;
3129
3130 while (len > 0) {
3131 page = addr & TARGET_PAGE_MASK;
3132 l = (page + TARGET_PAGE_SIZE) - addr;
3133 if (l > len)
3134 l = len;
3135 flags = page_get_flags(page);
3136 if (!(flags & PAGE_VALID))
3137 return -1;
3138 if (is_write) {
3139 if (!(flags & PAGE_WRITE))
3140 return -1;
3141 /* XXX: this code should not depend on lock_user */
3142 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3143 return -1;
3144 memcpy(p, buf, l);
3145 unlock_user(p, addr, l);
3146 } else {
3147 if (!(flags & PAGE_READ))
3148 return -1;
3149 /* XXX: this code should not depend on lock_user */
3150 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3151 return -1;
3152 memcpy(buf, p, l);
3153 unlock_user(p, addr, 0);
3154 }
3155 len -= l;
3156 buf += l;
3157 addr += l;
3158 }
3159 return 0;
3160 }
3161
3162 #else
3163
3164 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3165 hwaddr length)
3166 {
3167 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3168 addr += memory_region_get_ram_addr(mr);
3169
3170 /* No early return if dirty_log_mask is or becomes 0, because
3171 * cpu_physical_memory_set_dirty_range will still call
3172 * xen_modified_memory.
3173 */
3174 if (dirty_log_mask) {
3175 dirty_log_mask =
3176 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3177 }
3178 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3179 assert(tcg_enabled());
3180 tb_invalidate_phys_range(addr, addr + length);
3181 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3182 }
3183 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3184 }
3185
3186 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3187 {
3188 unsigned access_size_max = mr->ops->valid.max_access_size;
3189
3190 /* Regions are assumed to support 1-4 byte accesses unless
3191 otherwise specified. */
3192 if (access_size_max == 0) {
3193 access_size_max = 4;
3194 }
3195
3196 /* Bound the maximum access by the alignment of the address. */
3197 if (!mr->ops->impl.unaligned) {
3198 unsigned align_size_max = addr & -addr;
3199 if (align_size_max != 0 && align_size_max < access_size_max) {
3200 access_size_max = align_size_max;
3201 }
3202 }
3203
3204 /* Don't attempt accesses larger than the maximum. */
3205 if (l > access_size_max) {
3206 l = access_size_max;
3207 }
3208 l = pow2floor(l);
3209
3210 return l;
3211 }
3212
3213 static bool prepare_mmio_access(MemoryRegion *mr)
3214 {
3215 bool unlocked = !qemu_mutex_iothread_locked();
3216 bool release_lock = false;
3217
3218 if (unlocked && mr->global_locking) {
3219 qemu_mutex_lock_iothread();
3220 unlocked = false;
3221 release_lock = true;
3222 }
3223 if (mr->flush_coalesced_mmio) {
3224 if (unlocked) {
3225 qemu_mutex_lock_iothread();
3226 }
3227 qemu_flush_coalesced_mmio_buffer();
3228 if (unlocked) {
3229 qemu_mutex_unlock_iothread();
3230 }
3231 }
3232
3233 return release_lock;
3234 }
3235
3236 /* Called within RCU critical section. */
3237 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3238 MemTxAttrs attrs,
3239 const uint8_t *buf,
3240 int len, hwaddr addr1,
3241 hwaddr l, MemoryRegion *mr)
3242 {
3243 uint8_t *ptr;
3244 uint64_t val;
3245 MemTxResult result = MEMTX_OK;
3246 bool release_lock = false;
3247
3248 for (;;) {
3249 if (!memory_access_is_direct(mr, true)) {
3250 release_lock |= prepare_mmio_access(mr);
3251 l = memory_access_size(mr, l, addr1);
3252 /* XXX: could force current_cpu to NULL to avoid
3253 potential bugs */
3254 val = ldn_p(buf, l);
3255 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
3256 } else {
3257 /* RAM case */
3258 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3259 memcpy(ptr, buf, l);
3260 invalidate_and_set_dirty(mr, addr1, l);
3261 }
3262
3263 if (release_lock) {
3264 qemu_mutex_unlock_iothread();
3265 release_lock = false;
3266 }
3267
3268 len -= l;
3269 buf += l;
3270 addr += l;
3271
3272 if (!len) {
3273 break;
3274 }
3275
3276 l = len;
3277 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3278 }
3279
3280 return result;
3281 }
3282
3283 /* Called from RCU critical section. */
3284 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3285 const uint8_t *buf, int len)
3286 {
3287 hwaddr l;
3288 hwaddr addr1;
3289 MemoryRegion *mr;
3290 MemTxResult result = MEMTX_OK;
3291
3292 l = len;
3293 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3294 result = flatview_write_continue(fv, addr, attrs, buf, len,
3295 addr1, l, mr);
3296
3297 return result;
3298 }
3299
3300 /* Called within RCU critical section. */
3301 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3302 MemTxAttrs attrs, uint8_t *buf,
3303 int len, hwaddr addr1, hwaddr l,
3304 MemoryRegion *mr)
3305 {
3306 uint8_t *ptr;
3307 uint64_t val;
3308 MemTxResult result = MEMTX_OK;
3309 bool release_lock = false;
3310
3311 for (;;) {
3312 if (!memory_access_is_direct(mr, false)) {
3313 /* I/O case */
3314 release_lock |= prepare_mmio_access(mr);
3315 l = memory_access_size(mr, l, addr1);
3316 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3317 stn_p(buf, l, val);
3318 } else {
3319 /* RAM case */
3320 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3321 memcpy(buf, ptr, l);
3322 }
3323
3324 if (release_lock) {
3325 qemu_mutex_unlock_iothread();
3326 release_lock = false;
3327 }
3328
3329 len -= l;
3330 buf += l;
3331 addr += l;
3332
3333 if (!len) {
3334 break;
3335 }
3336
3337 l = len;
3338 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3339 }
3340
3341 return result;
3342 }
3343
3344 /* Called from RCU critical section. */
3345 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3346 MemTxAttrs attrs, uint8_t *buf, int len)
3347 {
3348 hwaddr l;
3349 hwaddr addr1;
3350 MemoryRegion *mr;
3351
3352 l = len;
3353 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3354 return flatview_read_continue(fv, addr, attrs, buf, len,
3355 addr1, l, mr);
3356 }
3357
3358 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3359 MemTxAttrs attrs, uint8_t *buf, int len)
3360 {
3361 MemTxResult result = MEMTX_OK;
3362 FlatView *fv;
3363
3364 if (len > 0) {
3365 rcu_read_lock();
3366 fv = address_space_to_flatview(as);
3367 result = flatview_read(fv, addr, attrs, buf, len);
3368 rcu_read_unlock();
3369 }
3370
3371 return result;
3372 }
3373
3374 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3375 MemTxAttrs attrs,
3376 const uint8_t *buf, int len)
3377 {
3378 MemTxResult result = MEMTX_OK;
3379 FlatView *fv;
3380
3381 if (len > 0) {
3382 rcu_read_lock();
3383 fv = address_space_to_flatview(as);
3384 result = flatview_write(fv, addr, attrs, buf, len);
3385 rcu_read_unlock();
3386 }
3387
3388 return result;
3389 }
3390
3391 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3392 uint8_t *buf, int len, bool is_write)
3393 {
3394 if (is_write) {
3395 return address_space_write(as, addr, attrs, buf, len);
3396 } else {
3397 return address_space_read_full(as, addr, attrs, buf, len);
3398 }
3399 }
3400
3401 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3402 int len, int is_write)
3403 {
3404 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3405 buf, len, is_write);
3406 }
3407
3408 enum write_rom_type {
3409 WRITE_DATA,
3410 FLUSH_CACHE,
3411 };
3412
3413 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3414 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3415 {
3416 hwaddr l;
3417 uint8_t *ptr;
3418 hwaddr addr1;
3419 MemoryRegion *mr;
3420
3421 rcu_read_lock();
3422 while (len > 0) {
3423 l = len;
3424 mr = address_space_translate(as, addr, &addr1, &l, true,
3425 MEMTXATTRS_UNSPECIFIED);
3426
3427 if (!(memory_region_is_ram(mr) ||
3428 memory_region_is_romd(mr))) {
3429 l = memory_access_size(mr, l, addr1);
3430 } else {
3431 /* ROM/RAM case */
3432 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3433 switch (type) {
3434 case WRITE_DATA:
3435 memcpy(ptr, buf, l);
3436 invalidate_and_set_dirty(mr, addr1, l);
3437 break;
3438 case FLUSH_CACHE:
3439 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3440 break;
3441 }
3442 }
3443 len -= l;
3444 buf += l;
3445 addr += l;
3446 }
3447 rcu_read_unlock();
3448 }
3449
3450 /* used for ROM loading : can write in RAM and ROM */
3451 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3452 const uint8_t *buf, int len)
3453 {
3454 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3455 }
3456
3457 void cpu_flush_icache_range(hwaddr start, int len)
3458 {
3459 /*
3460 * This function should do the same thing as an icache flush that was
3461 * triggered from within the guest. For TCG we are always cache coherent,
3462 * so there is no need to flush anything. For KVM / Xen we need to flush
3463 * the host's instruction cache at least.
3464 */
3465 if (tcg_enabled()) {
3466 return;
3467 }
3468
3469 cpu_physical_memory_write_rom_internal(&address_space_memory,
3470 start, NULL, len, FLUSH_CACHE);
3471 }
3472
3473 typedef struct {
3474 MemoryRegion *mr;
3475 void *buffer;
3476 hwaddr addr;
3477 hwaddr len;
3478 bool in_use;
3479 } BounceBuffer;
3480
3481 static BounceBuffer bounce;
3482
3483 typedef struct MapClient {
3484 QEMUBH *bh;
3485 QLIST_ENTRY(MapClient) link;
3486 } MapClient;
3487
3488 QemuMutex map_client_list_lock;
3489 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3490 = QLIST_HEAD_INITIALIZER(map_client_list);
3491
3492 static void cpu_unregister_map_client_do(MapClient *client)
3493 {
3494 QLIST_REMOVE(client, link);
3495 g_free(client);
3496 }
3497
3498 static void cpu_notify_map_clients_locked(void)
3499 {
3500 MapClient *client;
3501
3502 while (!QLIST_EMPTY(&map_client_list)) {
3503 client = QLIST_FIRST(&map_client_list);
3504 qemu_bh_schedule(client->bh);
3505 cpu_unregister_map_client_do(client);
3506 }
3507 }
3508
3509 void cpu_register_map_client(QEMUBH *bh)
3510 {
3511 MapClient *client = g_malloc(sizeof(*client));
3512
3513 qemu_mutex_lock(&map_client_list_lock);
3514 client->bh = bh;
3515 QLIST_INSERT_HEAD(&map_client_list, client, link);
3516 if (!atomic_read(&bounce.in_use)) {
3517 cpu_notify_map_clients_locked();
3518 }
3519 qemu_mutex_unlock(&map_client_list_lock);
3520 }
3521
3522 void cpu_exec_init_all(void)
3523 {
3524 qemu_mutex_init(&ram_list.mutex);
3525 /* The data structures we set up here depend on knowing the page size,
3526 * so no more changes can be made after this point.
3527 * In an ideal world, nothing we did before we had finished the
3528 * machine setup would care about the target page size, and we could
3529 * do this much later, rather than requiring board models to state
3530 * up front what their requirements are.
3531 */
3532 finalize_target_page_bits();
3533 io_mem_init();
3534 memory_map_init();
3535 qemu_mutex_init(&map_client_list_lock);
3536 }
3537
3538 void cpu_unregister_map_client(QEMUBH *bh)
3539 {
3540 MapClient *client;
3541
3542 qemu_mutex_lock(&map_client_list_lock);
3543 QLIST_FOREACH(client, &map_client_list, link) {
3544 if (client->bh == bh) {
3545 cpu_unregister_map_client_do(client);
3546 break;
3547 }
3548 }
3549 qemu_mutex_unlock(&map_client_list_lock);
3550 }
3551
3552 static void cpu_notify_map_clients(void)
3553 {
3554 qemu_mutex_lock(&map_client_list_lock);
3555 cpu_notify_map_clients_locked();
3556 qemu_mutex_unlock(&map_client_list_lock);
3557 }
3558
3559 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3560 bool is_write, MemTxAttrs attrs)
3561 {
3562 MemoryRegion *mr;
3563 hwaddr l, xlat;
3564
3565 while (len > 0) {
3566 l = len;
3567 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3568 if (!memory_access_is_direct(mr, is_write)) {
3569 l = memory_access_size(mr, l, addr);
3570 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3571 return false;
3572 }
3573 }
3574
3575 len -= l;
3576 addr += l;
3577 }
3578 return true;
3579 }
3580
3581 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3582 int len, bool is_write,
3583 MemTxAttrs attrs)
3584 {
3585 FlatView *fv;
3586 bool result;
3587
3588 rcu_read_lock();
3589 fv = address_space_to_flatview(as);
3590 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3591 rcu_read_unlock();
3592 return result;
3593 }
3594
3595 static hwaddr
3596 flatview_extend_translation(FlatView *fv, hwaddr addr,
3597 hwaddr target_len,
3598 MemoryRegion *mr, hwaddr base, hwaddr len,
3599 bool is_write, MemTxAttrs attrs)
3600 {
3601 hwaddr done = 0;
3602 hwaddr xlat;
3603 MemoryRegion *this_mr;
3604
3605 for (;;) {
3606 target_len -= len;
3607 addr += len;
3608 done += len;
3609 if (target_len == 0) {
3610 return done;
3611 }
3612
3613 len = target_len;
3614 this_mr = flatview_translate(fv, addr, &xlat,
3615 &len, is_write, attrs);
3616 if (this_mr != mr || xlat != base + done) {
3617 return done;
3618 }
3619 }
3620 }
3621
3622 /* Map a physical memory region into a host virtual address.
3623 * May map a subset of the requested range, given by and returned in *plen.
3624 * May return NULL if resources needed to perform the mapping are exhausted.
3625 * Use only for reads OR writes - not for read-modify-write operations.
3626 * Use cpu_register_map_client() to know when retrying the map operation is
3627 * likely to succeed.
3628 */
3629 void *address_space_map(AddressSpace *as,
3630 hwaddr addr,
3631 hwaddr *plen,
3632 bool is_write,
3633 MemTxAttrs attrs)
3634 {
3635 hwaddr len = *plen;
3636 hwaddr l, xlat;
3637 MemoryRegion *mr;
3638 void *ptr;
3639 FlatView *fv;
3640
3641 if (len == 0) {
3642 return NULL;
3643 }
3644
3645 l = len;
3646 rcu_read_lock();
3647 fv = address_space_to_flatview(as);
3648 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3649
3650 if (!memory_access_is_direct(mr, is_write)) {
3651 if (atomic_xchg(&bounce.in_use, true)) {
3652 rcu_read_unlock();
3653 return NULL;
3654 }
3655 /* Avoid unbounded allocations */
3656 l = MIN(l, TARGET_PAGE_SIZE);
3657 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3658 bounce.addr = addr;
3659 bounce.len = l;
3660
3661 memory_region_ref(mr);
3662 bounce.mr = mr;
3663 if (!is_write) {
3664 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3665 bounce.buffer, l);
3666 }
3667
3668 rcu_read_unlock();
3669 *plen = l;
3670 return bounce.buffer;
3671 }
3672
3673
3674 memory_region_ref(mr);
3675 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3676 l, is_write, attrs);
3677 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3678 rcu_read_unlock();
3679
3680 return ptr;
3681 }
3682
3683 /* Unmaps a memory region previously mapped by address_space_map().
3684 * Will also mark the memory as dirty if is_write == 1. access_len gives
3685 * the amount of memory that was actually read or written by the caller.
3686 */
3687 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3688 int is_write, hwaddr access_len)
3689 {
3690 if (buffer != bounce.buffer) {
3691 MemoryRegion *mr;
3692 ram_addr_t addr1;
3693
3694 mr = memory_region_from_host(buffer, &addr1);
3695 assert(mr != NULL);
3696 if (is_write) {
3697 invalidate_and_set_dirty(mr, addr1, access_len);
3698 }
3699 if (xen_enabled()) {
3700 xen_invalidate_map_cache_entry(buffer);
3701 }
3702 memory_region_unref(mr);
3703 return;
3704 }
3705 if (is_write) {
3706 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3707 bounce.buffer, access_len);
3708 }
3709 qemu_vfree(bounce.buffer);
3710 bounce.buffer = NULL;
3711 memory_region_unref(bounce.mr);
3712 atomic_mb_set(&bounce.in_use, false);
3713 cpu_notify_map_clients();
3714 }
3715
3716 void *cpu_physical_memory_map(hwaddr addr,
3717 hwaddr *plen,
3718 int is_write)
3719 {
3720 return address_space_map(&address_space_memory, addr, plen, is_write,
3721 MEMTXATTRS_UNSPECIFIED);
3722 }
3723
3724 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3725 int is_write, hwaddr access_len)
3726 {
3727 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3728 }
3729
3730 #define ARG1_DECL AddressSpace *as
3731 #define ARG1 as
3732 #define SUFFIX
3733 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3734 #define RCU_READ_LOCK(...) rcu_read_lock()
3735 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3736 #include "memory_ldst.inc.c"
3737
3738 int64_t address_space_cache_init(MemoryRegionCache *cache,
3739 AddressSpace *as,
3740 hwaddr addr,
3741 hwaddr len,
3742 bool is_write)
3743 {
3744 AddressSpaceDispatch *d;
3745 hwaddr l;
3746 MemoryRegion *mr;
3747
3748 assert(len > 0);
3749
3750 l = len;
3751 cache->fv = address_space_get_flatview(as);
3752 d = flatview_to_dispatch(cache->fv);
3753 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3754
3755 mr = cache->mrs.mr;
3756 memory_region_ref(mr);
3757 if (memory_access_is_direct(mr, is_write)) {
3758 /* We don't care about the memory attributes here as we're only
3759 * doing this if we found actual RAM, which behaves the same
3760 * regardless of attributes; so UNSPECIFIED is fine.
3761 */
3762 l = flatview_extend_translation(cache->fv, addr, len, mr,
3763 cache->xlat, l, is_write,
3764 MEMTXATTRS_UNSPECIFIED);
3765 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3766 } else {
3767 cache->ptr = NULL;
3768 }
3769
3770 cache->len = l;
3771 cache->is_write = is_write;
3772 return l;
3773 }
3774
3775 void address_space_cache_invalidate(MemoryRegionCache *cache,
3776 hwaddr addr,
3777 hwaddr access_len)
3778 {
3779 assert(cache->is_write);
3780 if (likely(cache->ptr)) {
3781 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3782 }
3783 }
3784
3785 void address_space_cache_destroy(MemoryRegionCache *cache)
3786 {
3787 if (!cache->mrs.mr) {
3788 return;
3789 }
3790
3791 if (xen_enabled()) {
3792 xen_invalidate_map_cache_entry(cache->ptr);
3793 }
3794 memory_region_unref(cache->mrs.mr);
3795 flatview_unref(cache->fv);
3796 cache->mrs.mr = NULL;
3797 cache->fv = NULL;
3798 }
3799
3800 /* Called from RCU critical section. This function has the same
3801 * semantics as address_space_translate, but it only works on a
3802 * predefined range of a MemoryRegion that was mapped with
3803 * address_space_cache_init.
3804 */
3805 static inline MemoryRegion *address_space_translate_cached(
3806 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3807 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3808 {
3809 MemoryRegionSection section;
3810 MemoryRegion *mr;
3811 IOMMUMemoryRegion *iommu_mr;
3812 AddressSpace *target_as;
3813
3814 assert(!cache->ptr);
3815 *xlat = addr + cache->xlat;
3816
3817 mr = cache->mrs.mr;
3818 iommu_mr = memory_region_get_iommu(mr);
3819 if (!iommu_mr) {
3820 /* MMIO region. */
3821 return mr;
3822 }
3823
3824 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3825 NULL, is_write, true,
3826 &target_as, attrs);
3827 return section.mr;
3828 }
3829
3830 /* Called from RCU critical section. address_space_read_cached uses this
3831 * out of line function when the target is an MMIO or IOMMU region.
3832 */
3833 void
3834 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3835 void *buf, int len)
3836 {
3837 hwaddr addr1, l;
3838 MemoryRegion *mr;
3839
3840 l = len;
3841 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3842 MEMTXATTRS_UNSPECIFIED);
3843 flatview_read_continue(cache->fv,
3844 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3845 addr1, l, mr);
3846 }
3847
3848 /* Called from RCU critical section. address_space_write_cached uses this
3849 * out of line function when the target is an MMIO or IOMMU region.
3850 */
3851 void
3852 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3853 const void *buf, int len)
3854 {
3855 hwaddr addr1, l;
3856 MemoryRegion *mr;
3857
3858 l = len;
3859 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3860 MEMTXATTRS_UNSPECIFIED);
3861 flatview_write_continue(cache->fv,
3862 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3863 addr1, l, mr);
3864 }
3865
3866 #define ARG1_DECL MemoryRegionCache *cache
3867 #define ARG1 cache
3868 #define SUFFIX _cached_slow
3869 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3870 #define RCU_READ_LOCK() ((void)0)
3871 #define RCU_READ_UNLOCK() ((void)0)
3872 #include "memory_ldst.inc.c"
3873
3874 /* virtual memory access for debug (includes writing to ROM) */
3875 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3876 uint8_t *buf, int len, int is_write)
3877 {
3878 int l;
3879 hwaddr phys_addr;
3880 target_ulong page;
3881
3882 cpu_synchronize_state(cpu);
3883 while (len > 0) {
3884 int asidx;
3885 MemTxAttrs attrs;
3886
3887 page = addr & TARGET_PAGE_MASK;
3888 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3889 asidx = cpu_asidx_from_attrs(cpu, attrs);
3890 /* if no physical page mapped, return an error */
3891 if (phys_addr == -1)
3892 return -1;
3893 l = (page + TARGET_PAGE_SIZE) - addr;
3894 if (l > len)
3895 l = len;
3896 phys_addr += (addr & ~TARGET_PAGE_MASK);
3897 if (is_write) {
3898 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3899 phys_addr, buf, l);
3900 } else {
3901 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3902 MEMTXATTRS_UNSPECIFIED,
3903 buf, l, 0);
3904 }
3905 len -= l;
3906 buf += l;
3907 addr += l;
3908 }
3909 return 0;
3910 }
3911
3912 /*
3913 * Allows code that needs to deal with migration bitmaps etc to still be built
3914 * target independent.
3915 */
3916 size_t qemu_target_page_size(void)
3917 {
3918 return TARGET_PAGE_SIZE;
3919 }
3920
3921 int qemu_target_page_bits(void)
3922 {
3923 return TARGET_PAGE_BITS;
3924 }
3925
3926 int qemu_target_page_bits_min(void)
3927 {
3928 return TARGET_PAGE_BITS_MIN;
3929 }
3930 #endif
3931
3932 /*
3933 * A helper function for the _utterly broken_ virtio device model to find out if
3934 * it's running on a big endian machine. Don't do this at home kids!
3935 */
3936 bool target_words_bigendian(void);
3937 bool target_words_bigendian(void)
3938 {
3939 #if defined(TARGET_WORDS_BIGENDIAN)
3940 return true;
3941 #else
3942 return false;
3943 #endif
3944 }
3945
3946 #ifndef CONFIG_USER_ONLY
3947 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3948 {
3949 MemoryRegion*mr;
3950 hwaddr l = 1;
3951 bool res;
3952
3953 rcu_read_lock();
3954 mr = address_space_translate(&address_space_memory,
3955 phys_addr, &phys_addr, &l, false,
3956 MEMTXATTRS_UNSPECIFIED);
3957
3958 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3959 rcu_read_unlock();
3960 return res;
3961 }
3962
3963 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3964 {
3965 RAMBlock *block;
3966 int ret = 0;
3967
3968 rcu_read_lock();
3969 RAMBLOCK_FOREACH(block) {
3970 ret = func(block->idstr, block->host, block->offset,
3971 block->used_length, opaque);
3972 if (ret) {
3973 break;
3974 }
3975 }
3976 rcu_read_unlock();
3977 return ret;
3978 }
3979
3980 int qemu_ram_foreach_migratable_block(RAMBlockIterFunc func, void *opaque)
3981 {
3982 RAMBlock *block;
3983 int ret = 0;
3984
3985 rcu_read_lock();
3986 RAMBLOCK_FOREACH(block) {
3987 if (!qemu_ram_is_migratable(block)) {
3988 continue;
3989 }
3990 ret = func(block->idstr, block->host, block->offset,
3991 block->used_length, opaque);
3992 if (ret) {
3993 break;
3994 }
3995 }
3996 rcu_read_unlock();
3997 return ret;
3998 }
3999
4000 /*
4001 * Unmap pages of memory from start to start+length such that
4002 * they a) read as 0, b) Trigger whatever fault mechanism
4003 * the OS provides for postcopy.
4004 * The pages must be unmapped by the end of the function.
4005 * Returns: 0 on success, none-0 on failure
4006 *
4007 */
4008 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4009 {
4010 int ret = -1;
4011
4012 uint8_t *host_startaddr = rb->host + start;
4013
4014 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4015 error_report("ram_block_discard_range: Unaligned start address: %p",
4016 host_startaddr);
4017 goto err;
4018 }
4019
4020 if ((start + length) <= rb->used_length) {
4021 bool need_madvise, need_fallocate;
4022 uint8_t *host_endaddr = host_startaddr + length;
4023 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4024 error_report("ram_block_discard_range: Unaligned end address: %p",
4025 host_endaddr);
4026 goto err;
4027 }
4028
4029 errno = ENOTSUP; /* If we are missing MADVISE etc */
4030
4031 /* The logic here is messy;
4032 * madvise DONTNEED fails for hugepages
4033 * fallocate works on hugepages and shmem
4034 */
4035 need_madvise = (rb->page_size == qemu_host_page_size);
4036 need_fallocate = rb->fd != -1;
4037 if (need_fallocate) {
4038 /* For a file, this causes the area of the file to be zero'd
4039 * if read, and for hugetlbfs also causes it to be unmapped
4040 * so a userfault will trigger.
4041 */
4042 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4043 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4044 start, length);
4045 if (ret) {
4046 ret = -errno;
4047 error_report("ram_block_discard_range: Failed to fallocate "
4048 "%s:%" PRIx64 " +%zx (%d)",
4049 rb->idstr, start, length, ret);
4050 goto err;
4051 }
4052 #else
4053 ret = -ENOSYS;
4054 error_report("ram_block_discard_range: fallocate not available/file"
4055 "%s:%" PRIx64 " +%zx (%d)",
4056 rb->idstr, start, length, ret);
4057 goto err;
4058 #endif
4059 }
4060 if (need_madvise) {
4061 /* For normal RAM this causes it to be unmapped,
4062 * for shared memory it causes the local mapping to disappear
4063 * and to fall back on the file contents (which we just
4064 * fallocate'd away).
4065 */
4066 #if defined(CONFIG_MADVISE)
4067 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4068 if (ret) {
4069 ret = -errno;
4070 error_report("ram_block_discard_range: Failed to discard range "
4071 "%s:%" PRIx64 " +%zx (%d)",
4072 rb->idstr, start, length, ret);
4073 goto err;
4074 }
4075 #else
4076 ret = -ENOSYS;
4077 error_report("ram_block_discard_range: MADVISE not available"
4078 "%s:%" PRIx64 " +%zx (%d)",
4079 rb->idstr, start, length, ret);
4080 goto err;
4081 #endif
4082 }
4083 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4084 need_madvise, need_fallocate, ret);
4085 } else {
4086 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4087 "/%zx/" RAM_ADDR_FMT")",
4088 rb->idstr, start, length, rb->used_length);
4089 }
4090
4091 err:
4092 return ret;
4093 }
4094
4095 #endif
4096
4097 void page_size_init(void)
4098 {
4099 /* NOTE: we can always suppose that qemu_host_page_size >=
4100 TARGET_PAGE_SIZE */
4101 if (qemu_host_page_size == 0) {
4102 qemu_host_page_size = qemu_real_host_page_size;
4103 }
4104 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4105 qemu_host_page_size = TARGET_PAGE_SIZE;
4106 }
4107 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4108 }
4109
4110 #if !defined(CONFIG_USER_ONLY)
4111
4112 static void mtree_print_phys_entries(fprintf_function mon, void *f,
4113 int start, int end, int skip, int ptr)
4114 {
4115 if (start == end - 1) {
4116 mon(f, "\t%3d ", start);
4117 } else {
4118 mon(f, "\t%3d..%-3d ", start, end - 1);
4119 }
4120 mon(f, " skip=%d ", skip);
4121 if (ptr == PHYS_MAP_NODE_NIL) {
4122 mon(f, " ptr=NIL");
4123 } else if (!skip) {
4124 mon(f, " ptr=#%d", ptr);
4125 } else {
4126 mon(f, " ptr=[%d]", ptr);
4127 }
4128 mon(f, "\n");
4129 }
4130
4131 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4132 int128_sub((size), int128_one())) : 0)
4133
4134 void mtree_print_dispatch(fprintf_function mon, void *f,
4135 AddressSpaceDispatch *d, MemoryRegion *root)
4136 {
4137 int i;
4138
4139 mon(f, " Dispatch\n");
4140 mon(f, " Physical sections\n");
4141
4142 for (i = 0; i < d->map.sections_nb; ++i) {
4143 MemoryRegionSection *s = d->map.sections + i;
4144 const char *names[] = { " [unassigned]", " [not dirty]",
4145 " [ROM]", " [watch]" };
4146
4147 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
4148 i,
4149 s->offset_within_address_space,
4150 s->offset_within_address_space + MR_SIZE(s->mr->size),
4151 s->mr->name ? s->mr->name : "(noname)",
4152 i < ARRAY_SIZE(names) ? names[i] : "",
4153 s->mr == root ? " [ROOT]" : "",
4154 s == d->mru_section ? " [MRU]" : "",
4155 s->mr->is_iommu ? " [iommu]" : "");
4156
4157 if (s->mr->alias) {
4158 mon(f, " alias=%s", s->mr->alias->name ?
4159 s->mr->alias->name : "noname");
4160 }
4161 mon(f, "\n");
4162 }
4163
4164 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4165 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4166 for (i = 0; i < d->map.nodes_nb; ++i) {
4167 int j, jprev;
4168 PhysPageEntry prev;
4169 Node *n = d->map.nodes + i;
4170
4171 mon(f, " [%d]\n", i);
4172
4173 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4174 PhysPageEntry *pe = *n + j;
4175
4176 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4177 continue;
4178 }
4179
4180 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4181
4182 jprev = j;
4183 prev = *pe;
4184 }
4185
4186 if (jprev != ARRAY_SIZE(*n)) {
4187 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4188 }
4189 }
4190 }
4191
4192 #endif