]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "qemu/timer.h"
39 #include "qemu/config-file.h"
40 #include "qemu/error-report.h"
41 #include "qemu/qemu-print.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include "qemu.h"
44 #else /* !CONFIG_USER_ONLY */
45 #include "hw/hw.h"
46 #include "exec/memory.h"
47 #include "exec/ioport.h"
48 #include "sysemu/dma.h"
49 #include "sysemu/numa.h"
50 #include "sysemu/hw_accel.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/xen-mapcache.h"
53 #include "trace-root.h"
54
55 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
56 #include <linux/falloc.h>
57 #endif
58
59 #endif
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "translate-all.h"
63 #include "sysemu/replay.h"
64
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
67 #include "exec/log.h"
68
69 #include "migration/vmstate.h"
70
71 #include "qemu/range.h"
72 #ifndef _WIN32
73 #include "qemu/mmap-alloc.h"
74 #endif
75
76 #include "monitor/monitor.h"
77
78 //#define DEBUG_SUBPAGE
79
80 #if !defined(CONFIG_USER_ONLY)
81 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
82 * are protected by the ramlist lock.
83 */
84 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
85
86 static MemoryRegion *system_memory;
87 static MemoryRegion *system_io;
88
89 AddressSpace address_space_io;
90 AddressSpace address_space_memory;
91
92 MemoryRegion io_mem_rom, io_mem_notdirty;
93 static MemoryRegion io_mem_unassigned;
94 #endif
95
96 #ifdef TARGET_PAGE_BITS_VARY
97 int target_page_bits;
98 bool target_page_bits_decided;
99 #endif
100
101 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
102
103 /* current CPU in the current thread. It is only valid inside
104 cpu_exec() */
105 __thread CPUState *current_cpu;
106 /* 0 = Do not count executed instructions.
107 1 = Precise instruction counting.
108 2 = Adaptive rate instruction counting. */
109 int use_icount;
110
111 uintptr_t qemu_host_page_size;
112 intptr_t qemu_host_page_mask;
113
114 bool set_preferred_target_page_bits(int bits)
115 {
116 /* The target page size is the lowest common denominator for all
117 * the CPUs in the system, so we can only make it smaller, never
118 * larger. And we can't make it smaller once we've committed to
119 * a particular size.
120 */
121 #ifdef TARGET_PAGE_BITS_VARY
122 assert(bits >= TARGET_PAGE_BITS_MIN);
123 if (target_page_bits == 0 || target_page_bits > bits) {
124 if (target_page_bits_decided) {
125 return false;
126 }
127 target_page_bits = bits;
128 }
129 #endif
130 return true;
131 }
132
133 #if !defined(CONFIG_USER_ONLY)
134
135 static void finalize_target_page_bits(void)
136 {
137 #ifdef TARGET_PAGE_BITS_VARY
138 if (target_page_bits == 0) {
139 target_page_bits = TARGET_PAGE_BITS_MIN;
140 }
141 target_page_bits_decided = true;
142 #endif
143 }
144
145 typedef struct PhysPageEntry PhysPageEntry;
146
147 struct PhysPageEntry {
148 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
149 uint32_t skip : 6;
150 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
151 uint32_t ptr : 26;
152 };
153
154 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
155
156 /* Size of the L2 (and L3, etc) page tables. */
157 #define ADDR_SPACE_BITS 64
158
159 #define P_L2_BITS 9
160 #define P_L2_SIZE (1 << P_L2_BITS)
161
162 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
163
164 typedef PhysPageEntry Node[P_L2_SIZE];
165
166 typedef struct PhysPageMap {
167 struct rcu_head rcu;
168
169 unsigned sections_nb;
170 unsigned sections_nb_alloc;
171 unsigned nodes_nb;
172 unsigned nodes_nb_alloc;
173 Node *nodes;
174 MemoryRegionSection *sections;
175 } PhysPageMap;
176
177 struct AddressSpaceDispatch {
178 MemoryRegionSection *mru_section;
179 /* This is a multi-level map on the physical address space.
180 * The bottom level has pointers to MemoryRegionSections.
181 */
182 PhysPageEntry phys_map;
183 PhysPageMap map;
184 };
185
186 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
187 typedef struct subpage_t {
188 MemoryRegion iomem;
189 FlatView *fv;
190 hwaddr base;
191 uint16_t sub_section[];
192 } subpage_t;
193
194 #define PHYS_SECTION_UNASSIGNED 0
195 #define PHYS_SECTION_NOTDIRTY 1
196 #define PHYS_SECTION_ROM 2
197 #define PHYS_SECTION_WATCH 3
198
199 static void io_mem_init(void);
200 static void memory_map_init(void);
201 static void tcg_commit(MemoryListener *listener);
202
203 static MemoryRegion io_mem_watch;
204
205 /**
206 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
207 * @cpu: the CPU whose AddressSpace this is
208 * @as: the AddressSpace itself
209 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
210 * @tcg_as_listener: listener for tracking changes to the AddressSpace
211 */
212 struct CPUAddressSpace {
213 CPUState *cpu;
214 AddressSpace *as;
215 struct AddressSpaceDispatch *memory_dispatch;
216 MemoryListener tcg_as_listener;
217 };
218
219 struct DirtyBitmapSnapshot {
220 ram_addr_t start;
221 ram_addr_t end;
222 unsigned long dirty[];
223 };
224
225 #endif
226
227 #if !defined(CONFIG_USER_ONLY)
228
229 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
230 {
231 static unsigned alloc_hint = 16;
232 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
233 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
234 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
235 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
236 alloc_hint = map->nodes_nb_alloc;
237 }
238 }
239
240 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
241 {
242 unsigned i;
243 uint32_t ret;
244 PhysPageEntry e;
245 PhysPageEntry *p;
246
247 ret = map->nodes_nb++;
248 p = map->nodes[ret];
249 assert(ret != PHYS_MAP_NODE_NIL);
250 assert(ret != map->nodes_nb_alloc);
251
252 e.skip = leaf ? 0 : 1;
253 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
254 for (i = 0; i < P_L2_SIZE; ++i) {
255 memcpy(&p[i], &e, sizeof(e));
256 }
257 return ret;
258 }
259
260 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
261 hwaddr *index, hwaddr *nb, uint16_t leaf,
262 int level)
263 {
264 PhysPageEntry *p;
265 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
266
267 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
268 lp->ptr = phys_map_node_alloc(map, level == 0);
269 }
270 p = map->nodes[lp->ptr];
271 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
272
273 while (*nb && lp < &p[P_L2_SIZE]) {
274 if ((*index & (step - 1)) == 0 && *nb >= step) {
275 lp->skip = 0;
276 lp->ptr = leaf;
277 *index += step;
278 *nb -= step;
279 } else {
280 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
281 }
282 ++lp;
283 }
284 }
285
286 static void phys_page_set(AddressSpaceDispatch *d,
287 hwaddr index, hwaddr nb,
288 uint16_t leaf)
289 {
290 /* Wildly overreserve - it doesn't matter much. */
291 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
292
293 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
294 }
295
296 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
297 * and update our entry so we can skip it and go directly to the destination.
298 */
299 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
300 {
301 unsigned valid_ptr = P_L2_SIZE;
302 int valid = 0;
303 PhysPageEntry *p;
304 int i;
305
306 if (lp->ptr == PHYS_MAP_NODE_NIL) {
307 return;
308 }
309
310 p = nodes[lp->ptr];
311 for (i = 0; i < P_L2_SIZE; i++) {
312 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
313 continue;
314 }
315
316 valid_ptr = i;
317 valid++;
318 if (p[i].skip) {
319 phys_page_compact(&p[i], nodes);
320 }
321 }
322
323 /* We can only compress if there's only one child. */
324 if (valid != 1) {
325 return;
326 }
327
328 assert(valid_ptr < P_L2_SIZE);
329
330 /* Don't compress if it won't fit in the # of bits we have. */
331 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
332 return;
333 }
334
335 lp->ptr = p[valid_ptr].ptr;
336 if (!p[valid_ptr].skip) {
337 /* If our only child is a leaf, make this a leaf. */
338 /* By design, we should have made this node a leaf to begin with so we
339 * should never reach here.
340 * But since it's so simple to handle this, let's do it just in case we
341 * change this rule.
342 */
343 lp->skip = 0;
344 } else {
345 lp->skip += p[valid_ptr].skip;
346 }
347 }
348
349 void address_space_dispatch_compact(AddressSpaceDispatch *d)
350 {
351 if (d->phys_map.skip) {
352 phys_page_compact(&d->phys_map, d->map.nodes);
353 }
354 }
355
356 static inline bool section_covers_addr(const MemoryRegionSection *section,
357 hwaddr addr)
358 {
359 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
360 * the section must cover the entire address space.
361 */
362 return int128_gethi(section->size) ||
363 range_covers_byte(section->offset_within_address_space,
364 int128_getlo(section->size), addr);
365 }
366
367 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
368 {
369 PhysPageEntry lp = d->phys_map, *p;
370 Node *nodes = d->map.nodes;
371 MemoryRegionSection *sections = d->map.sections;
372 hwaddr index = addr >> TARGET_PAGE_BITS;
373 int i;
374
375 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
376 if (lp.ptr == PHYS_MAP_NODE_NIL) {
377 return &sections[PHYS_SECTION_UNASSIGNED];
378 }
379 p = nodes[lp.ptr];
380 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
381 }
382
383 if (section_covers_addr(&sections[lp.ptr], addr)) {
384 return &sections[lp.ptr];
385 } else {
386 return &sections[PHYS_SECTION_UNASSIGNED];
387 }
388 }
389
390 /* Called from RCU critical section */
391 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
392 hwaddr addr,
393 bool resolve_subpage)
394 {
395 MemoryRegionSection *section = atomic_read(&d->mru_section);
396 subpage_t *subpage;
397
398 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
399 !section_covers_addr(section, addr)) {
400 section = phys_page_find(d, addr);
401 atomic_set(&d->mru_section, section);
402 }
403 if (resolve_subpage && section->mr->subpage) {
404 subpage = container_of(section->mr, subpage_t, iomem);
405 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
406 }
407 return section;
408 }
409
410 /* Called from RCU critical section */
411 static MemoryRegionSection *
412 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
413 hwaddr *plen, bool resolve_subpage)
414 {
415 MemoryRegionSection *section;
416 MemoryRegion *mr;
417 Int128 diff;
418
419 section = address_space_lookup_region(d, addr, resolve_subpage);
420 /* Compute offset within MemoryRegionSection */
421 addr -= section->offset_within_address_space;
422
423 /* Compute offset within MemoryRegion */
424 *xlat = addr + section->offset_within_region;
425
426 mr = section->mr;
427
428 /* MMIO registers can be expected to perform full-width accesses based only
429 * on their address, without considering adjacent registers that could
430 * decode to completely different MemoryRegions. When such registers
431 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
432 * regions overlap wildly. For this reason we cannot clamp the accesses
433 * here.
434 *
435 * If the length is small (as is the case for address_space_ldl/stl),
436 * everything works fine. If the incoming length is large, however,
437 * the caller really has to do the clamping through memory_access_size.
438 */
439 if (memory_region_is_ram(mr)) {
440 diff = int128_sub(section->size, int128_make64(addr));
441 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
442 }
443 return section;
444 }
445
446 /**
447 * address_space_translate_iommu - translate an address through an IOMMU
448 * memory region and then through the target address space.
449 *
450 * @iommu_mr: the IOMMU memory region that we start the translation from
451 * @addr: the address to be translated through the MMU
452 * @xlat: the translated address offset within the destination memory region.
453 * It cannot be %NULL.
454 * @plen_out: valid read/write length of the translated address. It
455 * cannot be %NULL.
456 * @page_mask_out: page mask for the translated address. This
457 * should only be meaningful for IOMMU translated
458 * addresses, since there may be huge pages that this bit
459 * would tell. It can be %NULL if we don't care about it.
460 * @is_write: whether the translation operation is for write
461 * @is_mmio: whether this can be MMIO, set true if it can
462 * @target_as: the address space targeted by the IOMMU
463 * @attrs: transaction attributes
464 *
465 * This function is called from RCU critical section. It is the common
466 * part of flatview_do_translate and address_space_translate_cached.
467 */
468 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
469 hwaddr *xlat,
470 hwaddr *plen_out,
471 hwaddr *page_mask_out,
472 bool is_write,
473 bool is_mmio,
474 AddressSpace **target_as,
475 MemTxAttrs attrs)
476 {
477 MemoryRegionSection *section;
478 hwaddr page_mask = (hwaddr)-1;
479
480 do {
481 hwaddr addr = *xlat;
482 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
483 int iommu_idx = 0;
484 IOMMUTLBEntry iotlb;
485
486 if (imrc->attrs_to_index) {
487 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
488 }
489
490 iotlb = imrc->translate(iommu_mr, addr, is_write ?
491 IOMMU_WO : IOMMU_RO, iommu_idx);
492
493 if (!(iotlb.perm & (1 << is_write))) {
494 goto unassigned;
495 }
496
497 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
498 | (addr & iotlb.addr_mask));
499 page_mask &= iotlb.addr_mask;
500 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
501 *target_as = iotlb.target_as;
502
503 section = address_space_translate_internal(
504 address_space_to_dispatch(iotlb.target_as), addr, xlat,
505 plen_out, is_mmio);
506
507 iommu_mr = memory_region_get_iommu(section->mr);
508 } while (unlikely(iommu_mr));
509
510 if (page_mask_out) {
511 *page_mask_out = page_mask;
512 }
513 return *section;
514
515 unassigned:
516 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
517 }
518
519 /**
520 * flatview_do_translate - translate an address in FlatView
521 *
522 * @fv: the flat view that we want to translate on
523 * @addr: the address to be translated in above address space
524 * @xlat: the translated address offset within memory region. It
525 * cannot be @NULL.
526 * @plen_out: valid read/write length of the translated address. It
527 * can be @NULL when we don't care about it.
528 * @page_mask_out: page mask for the translated address. This
529 * should only be meaningful for IOMMU translated
530 * addresses, since there may be huge pages that this bit
531 * would tell. It can be @NULL if we don't care about it.
532 * @is_write: whether the translation operation is for write
533 * @is_mmio: whether this can be MMIO, set true if it can
534 * @target_as: the address space targeted by the IOMMU
535 * @attrs: memory transaction attributes
536 *
537 * This function is called from RCU critical section
538 */
539 static MemoryRegionSection flatview_do_translate(FlatView *fv,
540 hwaddr addr,
541 hwaddr *xlat,
542 hwaddr *plen_out,
543 hwaddr *page_mask_out,
544 bool is_write,
545 bool is_mmio,
546 AddressSpace **target_as,
547 MemTxAttrs attrs)
548 {
549 MemoryRegionSection *section;
550 IOMMUMemoryRegion *iommu_mr;
551 hwaddr plen = (hwaddr)(-1);
552
553 if (!plen_out) {
554 plen_out = &plen;
555 }
556
557 section = address_space_translate_internal(
558 flatview_to_dispatch(fv), addr, xlat,
559 plen_out, is_mmio);
560
561 iommu_mr = memory_region_get_iommu(section->mr);
562 if (unlikely(iommu_mr)) {
563 return address_space_translate_iommu(iommu_mr, xlat,
564 plen_out, page_mask_out,
565 is_write, is_mmio,
566 target_as, attrs);
567 }
568 if (page_mask_out) {
569 /* Not behind an IOMMU, use default page size. */
570 *page_mask_out = ~TARGET_PAGE_MASK;
571 }
572
573 return *section;
574 }
575
576 /* Called from RCU critical section */
577 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
578 bool is_write, MemTxAttrs attrs)
579 {
580 MemoryRegionSection section;
581 hwaddr xlat, page_mask;
582
583 /*
584 * This can never be MMIO, and we don't really care about plen,
585 * but page mask.
586 */
587 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
588 NULL, &page_mask, is_write, false, &as,
589 attrs);
590
591 /* Illegal translation */
592 if (section.mr == &io_mem_unassigned) {
593 goto iotlb_fail;
594 }
595
596 /* Convert memory region offset into address space offset */
597 xlat += section.offset_within_address_space -
598 section.offset_within_region;
599
600 return (IOMMUTLBEntry) {
601 .target_as = as,
602 .iova = addr & ~page_mask,
603 .translated_addr = xlat & ~page_mask,
604 .addr_mask = page_mask,
605 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
606 .perm = IOMMU_RW,
607 };
608
609 iotlb_fail:
610 return (IOMMUTLBEntry) {0};
611 }
612
613 /* Called from RCU critical section */
614 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
615 hwaddr *plen, bool is_write,
616 MemTxAttrs attrs)
617 {
618 MemoryRegion *mr;
619 MemoryRegionSection section;
620 AddressSpace *as = NULL;
621
622 /* This can be MMIO, so setup MMIO bit. */
623 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
624 is_write, true, &as, attrs);
625 mr = section.mr;
626
627 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
628 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
629 *plen = MIN(page, *plen);
630 }
631
632 return mr;
633 }
634
635 typedef struct TCGIOMMUNotifier {
636 IOMMUNotifier n;
637 MemoryRegion *mr;
638 CPUState *cpu;
639 int iommu_idx;
640 bool active;
641 } TCGIOMMUNotifier;
642
643 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
644 {
645 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
646
647 if (!notifier->active) {
648 return;
649 }
650 tlb_flush(notifier->cpu);
651 notifier->active = false;
652 /* We leave the notifier struct on the list to avoid reallocating it later.
653 * Generally the number of IOMMUs a CPU deals with will be small.
654 * In any case we can't unregister the iommu notifier from a notify
655 * callback.
656 */
657 }
658
659 static void tcg_register_iommu_notifier(CPUState *cpu,
660 IOMMUMemoryRegion *iommu_mr,
661 int iommu_idx)
662 {
663 /* Make sure this CPU has an IOMMU notifier registered for this
664 * IOMMU/IOMMU index combination, so that we can flush its TLB
665 * when the IOMMU tells us the mappings we've cached have changed.
666 */
667 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
668 TCGIOMMUNotifier *notifier;
669 int i;
670
671 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
672 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
673 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
674 break;
675 }
676 }
677 if (i == cpu->iommu_notifiers->len) {
678 /* Not found, add a new entry at the end of the array */
679 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
680 notifier = g_new0(TCGIOMMUNotifier, 1);
681 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
682
683 notifier->mr = mr;
684 notifier->iommu_idx = iommu_idx;
685 notifier->cpu = cpu;
686 /* Rather than trying to register interest in the specific part
687 * of the iommu's address space that we've accessed and then
688 * expand it later as subsequent accesses touch more of it, we
689 * just register interest in the whole thing, on the assumption
690 * that iommu reconfiguration will be rare.
691 */
692 iommu_notifier_init(&notifier->n,
693 tcg_iommu_unmap_notify,
694 IOMMU_NOTIFIER_UNMAP,
695 0,
696 HWADDR_MAX,
697 iommu_idx);
698 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
699 }
700
701 if (!notifier->active) {
702 notifier->active = true;
703 }
704 }
705
706 static void tcg_iommu_free_notifier_list(CPUState *cpu)
707 {
708 /* Destroy the CPU's notifier list */
709 int i;
710 TCGIOMMUNotifier *notifier;
711
712 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
713 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
714 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
715 g_free(notifier);
716 }
717 g_array_free(cpu->iommu_notifiers, true);
718 }
719
720 /* Called from RCU critical section */
721 MemoryRegionSection *
722 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
723 hwaddr *xlat, hwaddr *plen,
724 MemTxAttrs attrs, int *prot)
725 {
726 MemoryRegionSection *section;
727 IOMMUMemoryRegion *iommu_mr;
728 IOMMUMemoryRegionClass *imrc;
729 IOMMUTLBEntry iotlb;
730 int iommu_idx;
731 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
732
733 for (;;) {
734 section = address_space_translate_internal(d, addr, &addr, plen, false);
735
736 iommu_mr = memory_region_get_iommu(section->mr);
737 if (!iommu_mr) {
738 break;
739 }
740
741 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
742
743 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
744 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
745 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
746 * doesn't short-cut its translation table walk.
747 */
748 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
749 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
750 | (addr & iotlb.addr_mask));
751 /* Update the caller's prot bits to remove permissions the IOMMU
752 * is giving us a failure response for. If we get down to no
753 * permissions left at all we can give up now.
754 */
755 if (!(iotlb.perm & IOMMU_RO)) {
756 *prot &= ~(PAGE_READ | PAGE_EXEC);
757 }
758 if (!(iotlb.perm & IOMMU_WO)) {
759 *prot &= ~PAGE_WRITE;
760 }
761
762 if (!*prot) {
763 goto translate_fail;
764 }
765
766 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
767 }
768
769 assert(!memory_region_is_iommu(section->mr));
770 *xlat = addr;
771 return section;
772
773 translate_fail:
774 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
775 }
776 #endif
777
778 #if !defined(CONFIG_USER_ONLY)
779
780 static int cpu_common_post_load(void *opaque, int version_id)
781 {
782 CPUState *cpu = opaque;
783
784 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
785 version_id is increased. */
786 cpu->interrupt_request &= ~0x01;
787 tlb_flush(cpu);
788
789 /* loadvm has just updated the content of RAM, bypassing the
790 * usual mechanisms that ensure we flush TBs for writes to
791 * memory we've translated code from. So we must flush all TBs,
792 * which will now be stale.
793 */
794 tb_flush(cpu);
795
796 return 0;
797 }
798
799 static int cpu_common_pre_load(void *opaque)
800 {
801 CPUState *cpu = opaque;
802
803 cpu->exception_index = -1;
804
805 return 0;
806 }
807
808 static bool cpu_common_exception_index_needed(void *opaque)
809 {
810 CPUState *cpu = opaque;
811
812 return tcg_enabled() && cpu->exception_index != -1;
813 }
814
815 static const VMStateDescription vmstate_cpu_common_exception_index = {
816 .name = "cpu_common/exception_index",
817 .version_id = 1,
818 .minimum_version_id = 1,
819 .needed = cpu_common_exception_index_needed,
820 .fields = (VMStateField[]) {
821 VMSTATE_INT32(exception_index, CPUState),
822 VMSTATE_END_OF_LIST()
823 }
824 };
825
826 static bool cpu_common_crash_occurred_needed(void *opaque)
827 {
828 CPUState *cpu = opaque;
829
830 return cpu->crash_occurred;
831 }
832
833 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
834 .name = "cpu_common/crash_occurred",
835 .version_id = 1,
836 .minimum_version_id = 1,
837 .needed = cpu_common_crash_occurred_needed,
838 .fields = (VMStateField[]) {
839 VMSTATE_BOOL(crash_occurred, CPUState),
840 VMSTATE_END_OF_LIST()
841 }
842 };
843
844 const VMStateDescription vmstate_cpu_common = {
845 .name = "cpu_common",
846 .version_id = 1,
847 .minimum_version_id = 1,
848 .pre_load = cpu_common_pre_load,
849 .post_load = cpu_common_post_load,
850 .fields = (VMStateField[]) {
851 VMSTATE_UINT32(halted, CPUState),
852 VMSTATE_UINT32(interrupt_request, CPUState),
853 VMSTATE_END_OF_LIST()
854 },
855 .subsections = (const VMStateDescription*[]) {
856 &vmstate_cpu_common_exception_index,
857 &vmstate_cpu_common_crash_occurred,
858 NULL
859 }
860 };
861
862 #endif
863
864 CPUState *qemu_get_cpu(int index)
865 {
866 CPUState *cpu;
867
868 CPU_FOREACH(cpu) {
869 if (cpu->cpu_index == index) {
870 return cpu;
871 }
872 }
873
874 return NULL;
875 }
876
877 #if !defined(CONFIG_USER_ONLY)
878 void cpu_address_space_init(CPUState *cpu, int asidx,
879 const char *prefix, MemoryRegion *mr)
880 {
881 CPUAddressSpace *newas;
882 AddressSpace *as = g_new0(AddressSpace, 1);
883 char *as_name;
884
885 assert(mr);
886 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
887 address_space_init(as, mr, as_name);
888 g_free(as_name);
889
890 /* Target code should have set num_ases before calling us */
891 assert(asidx < cpu->num_ases);
892
893 if (asidx == 0) {
894 /* address space 0 gets the convenience alias */
895 cpu->as = as;
896 }
897
898 /* KVM cannot currently support multiple address spaces. */
899 assert(asidx == 0 || !kvm_enabled());
900
901 if (!cpu->cpu_ases) {
902 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
903 }
904
905 newas = &cpu->cpu_ases[asidx];
906 newas->cpu = cpu;
907 newas->as = as;
908 if (tcg_enabled()) {
909 newas->tcg_as_listener.commit = tcg_commit;
910 memory_listener_register(&newas->tcg_as_listener, as);
911 }
912 }
913
914 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
915 {
916 /* Return the AddressSpace corresponding to the specified index */
917 return cpu->cpu_ases[asidx].as;
918 }
919 #endif
920
921 void cpu_exec_unrealizefn(CPUState *cpu)
922 {
923 CPUClass *cc = CPU_GET_CLASS(cpu);
924
925 cpu_list_remove(cpu);
926
927 if (cc->vmsd != NULL) {
928 vmstate_unregister(NULL, cc->vmsd, cpu);
929 }
930 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
931 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
932 }
933 #ifndef CONFIG_USER_ONLY
934 tcg_iommu_free_notifier_list(cpu);
935 #endif
936 }
937
938 Property cpu_common_props[] = {
939 #ifndef CONFIG_USER_ONLY
940 /* Create a memory property for softmmu CPU object,
941 * so users can wire up its memory. (This can't go in qom/cpu.c
942 * because that file is compiled only once for both user-mode
943 * and system builds.) The default if no link is set up is to use
944 * the system address space.
945 */
946 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
947 MemoryRegion *),
948 #endif
949 DEFINE_PROP_END_OF_LIST(),
950 };
951
952 void cpu_exec_initfn(CPUState *cpu)
953 {
954 cpu->as = NULL;
955 cpu->num_ases = 0;
956
957 #ifndef CONFIG_USER_ONLY
958 cpu->thread_id = qemu_get_thread_id();
959 cpu->memory = system_memory;
960 object_ref(OBJECT(cpu->memory));
961 #endif
962 }
963
964 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
965 {
966 CPUClass *cc = CPU_GET_CLASS(cpu);
967 static bool tcg_target_initialized;
968
969 cpu_list_add(cpu);
970
971 if (tcg_enabled() && !tcg_target_initialized) {
972 tcg_target_initialized = true;
973 cc->tcg_initialize();
974 }
975 tlb_init(cpu);
976
977 #ifndef CONFIG_USER_ONLY
978 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
979 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
980 }
981 if (cc->vmsd != NULL) {
982 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
983 }
984
985 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
986 #endif
987 }
988
989 const char *parse_cpu_option(const char *cpu_option)
990 {
991 ObjectClass *oc;
992 CPUClass *cc;
993 gchar **model_pieces;
994 const char *cpu_type;
995
996 model_pieces = g_strsplit(cpu_option, ",", 2);
997 if (!model_pieces[0]) {
998 error_report("-cpu option cannot be empty");
999 exit(1);
1000 }
1001
1002 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
1003 if (oc == NULL) {
1004 error_report("unable to find CPU model '%s'", model_pieces[0]);
1005 g_strfreev(model_pieces);
1006 exit(EXIT_FAILURE);
1007 }
1008
1009 cpu_type = object_class_get_name(oc);
1010 cc = CPU_CLASS(oc);
1011 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1012 g_strfreev(model_pieces);
1013 return cpu_type;
1014 }
1015
1016 #if defined(CONFIG_USER_ONLY)
1017 void tb_invalidate_phys_addr(target_ulong addr)
1018 {
1019 mmap_lock();
1020 tb_invalidate_phys_page_range(addr, addr + 1, 0);
1021 mmap_unlock();
1022 }
1023
1024 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1025 {
1026 tb_invalidate_phys_addr(pc);
1027 }
1028 #else
1029 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1030 {
1031 ram_addr_t ram_addr;
1032 MemoryRegion *mr;
1033 hwaddr l = 1;
1034
1035 if (!tcg_enabled()) {
1036 return;
1037 }
1038
1039 rcu_read_lock();
1040 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1041 if (!(memory_region_is_ram(mr)
1042 || memory_region_is_romd(mr))) {
1043 rcu_read_unlock();
1044 return;
1045 }
1046 ram_addr = memory_region_get_ram_addr(mr) + addr;
1047 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1048 rcu_read_unlock();
1049 }
1050
1051 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1052 {
1053 MemTxAttrs attrs;
1054 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1055 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1056 if (phys != -1) {
1057 /* Locks grabbed by tb_invalidate_phys_addr */
1058 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1059 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1060 }
1061 }
1062 #endif
1063
1064 #if defined(CONFIG_USER_ONLY)
1065 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1066
1067 {
1068 }
1069
1070 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1071 int flags)
1072 {
1073 return -ENOSYS;
1074 }
1075
1076 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1077 {
1078 }
1079
1080 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1081 int flags, CPUWatchpoint **watchpoint)
1082 {
1083 return -ENOSYS;
1084 }
1085 #else
1086 /* Add a watchpoint. */
1087 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1088 int flags, CPUWatchpoint **watchpoint)
1089 {
1090 CPUWatchpoint *wp;
1091
1092 /* forbid ranges which are empty or run off the end of the address space */
1093 if (len == 0 || (addr + len - 1) < addr) {
1094 error_report("tried to set invalid watchpoint at %"
1095 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1096 return -EINVAL;
1097 }
1098 wp = g_malloc(sizeof(*wp));
1099
1100 wp->vaddr = addr;
1101 wp->len = len;
1102 wp->flags = flags;
1103
1104 /* keep all GDB-injected watchpoints in front */
1105 if (flags & BP_GDB) {
1106 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1107 } else {
1108 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1109 }
1110
1111 tlb_flush_page(cpu, addr);
1112
1113 if (watchpoint)
1114 *watchpoint = wp;
1115 return 0;
1116 }
1117
1118 /* Remove a specific watchpoint. */
1119 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1120 int flags)
1121 {
1122 CPUWatchpoint *wp;
1123
1124 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1125 if (addr == wp->vaddr && len == wp->len
1126 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1127 cpu_watchpoint_remove_by_ref(cpu, wp);
1128 return 0;
1129 }
1130 }
1131 return -ENOENT;
1132 }
1133
1134 /* Remove a specific watchpoint by reference. */
1135 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1136 {
1137 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1138
1139 tlb_flush_page(cpu, watchpoint->vaddr);
1140
1141 g_free(watchpoint);
1142 }
1143
1144 /* Remove all matching watchpoints. */
1145 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1146 {
1147 CPUWatchpoint *wp, *next;
1148
1149 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1150 if (wp->flags & mask) {
1151 cpu_watchpoint_remove_by_ref(cpu, wp);
1152 }
1153 }
1154 }
1155
1156 /* Return true if this watchpoint address matches the specified
1157 * access (ie the address range covered by the watchpoint overlaps
1158 * partially or completely with the address range covered by the
1159 * access).
1160 */
1161 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1162 vaddr addr,
1163 vaddr len)
1164 {
1165 /* We know the lengths are non-zero, but a little caution is
1166 * required to avoid errors in the case where the range ends
1167 * exactly at the top of the address space and so addr + len
1168 * wraps round to zero.
1169 */
1170 vaddr wpend = wp->vaddr + wp->len - 1;
1171 vaddr addrend = addr + len - 1;
1172
1173 return !(addr > wpend || wp->vaddr > addrend);
1174 }
1175
1176 #endif
1177
1178 /* Add a breakpoint. */
1179 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1180 CPUBreakpoint **breakpoint)
1181 {
1182 CPUBreakpoint *bp;
1183
1184 bp = g_malloc(sizeof(*bp));
1185
1186 bp->pc = pc;
1187 bp->flags = flags;
1188
1189 /* keep all GDB-injected breakpoints in front */
1190 if (flags & BP_GDB) {
1191 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1192 } else {
1193 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1194 }
1195
1196 breakpoint_invalidate(cpu, pc);
1197
1198 if (breakpoint) {
1199 *breakpoint = bp;
1200 }
1201 return 0;
1202 }
1203
1204 /* Remove a specific breakpoint. */
1205 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1206 {
1207 CPUBreakpoint *bp;
1208
1209 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1210 if (bp->pc == pc && bp->flags == flags) {
1211 cpu_breakpoint_remove_by_ref(cpu, bp);
1212 return 0;
1213 }
1214 }
1215 return -ENOENT;
1216 }
1217
1218 /* Remove a specific breakpoint by reference. */
1219 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1220 {
1221 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1222
1223 breakpoint_invalidate(cpu, breakpoint->pc);
1224
1225 g_free(breakpoint);
1226 }
1227
1228 /* Remove all matching breakpoints. */
1229 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1230 {
1231 CPUBreakpoint *bp, *next;
1232
1233 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1234 if (bp->flags & mask) {
1235 cpu_breakpoint_remove_by_ref(cpu, bp);
1236 }
1237 }
1238 }
1239
1240 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1241 CPU loop after each instruction */
1242 void cpu_single_step(CPUState *cpu, int enabled)
1243 {
1244 if (cpu->singlestep_enabled != enabled) {
1245 cpu->singlestep_enabled = enabled;
1246 if (kvm_enabled()) {
1247 kvm_update_guest_debug(cpu, 0);
1248 } else {
1249 /* must flush all the translated code to avoid inconsistencies */
1250 /* XXX: only flush what is necessary */
1251 tb_flush(cpu);
1252 }
1253 }
1254 }
1255
1256 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1257 {
1258 va_list ap;
1259 va_list ap2;
1260
1261 va_start(ap, fmt);
1262 va_copy(ap2, ap);
1263 fprintf(stderr, "qemu: fatal: ");
1264 vfprintf(stderr, fmt, ap);
1265 fprintf(stderr, "\n");
1266 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1267 if (qemu_log_separate()) {
1268 qemu_log_lock();
1269 qemu_log("qemu: fatal: ");
1270 qemu_log_vprintf(fmt, ap2);
1271 qemu_log("\n");
1272 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1273 qemu_log_flush();
1274 qemu_log_unlock();
1275 qemu_log_close();
1276 }
1277 va_end(ap2);
1278 va_end(ap);
1279 replay_finish();
1280 #if defined(CONFIG_USER_ONLY)
1281 {
1282 struct sigaction act;
1283 sigfillset(&act.sa_mask);
1284 act.sa_handler = SIG_DFL;
1285 act.sa_flags = 0;
1286 sigaction(SIGABRT, &act, NULL);
1287 }
1288 #endif
1289 abort();
1290 }
1291
1292 #if !defined(CONFIG_USER_ONLY)
1293 /* Called from RCU critical section */
1294 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1295 {
1296 RAMBlock *block;
1297
1298 block = atomic_rcu_read(&ram_list.mru_block);
1299 if (block && addr - block->offset < block->max_length) {
1300 return block;
1301 }
1302 RAMBLOCK_FOREACH(block) {
1303 if (addr - block->offset < block->max_length) {
1304 goto found;
1305 }
1306 }
1307
1308 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1309 abort();
1310
1311 found:
1312 /* It is safe to write mru_block outside the iothread lock. This
1313 * is what happens:
1314 *
1315 * mru_block = xxx
1316 * rcu_read_unlock()
1317 * xxx removed from list
1318 * rcu_read_lock()
1319 * read mru_block
1320 * mru_block = NULL;
1321 * call_rcu(reclaim_ramblock, xxx);
1322 * rcu_read_unlock()
1323 *
1324 * atomic_rcu_set is not needed here. The block was already published
1325 * when it was placed into the list. Here we're just making an extra
1326 * copy of the pointer.
1327 */
1328 ram_list.mru_block = block;
1329 return block;
1330 }
1331
1332 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1333 {
1334 CPUState *cpu;
1335 ram_addr_t start1;
1336 RAMBlock *block;
1337 ram_addr_t end;
1338
1339 assert(tcg_enabled());
1340 end = TARGET_PAGE_ALIGN(start + length);
1341 start &= TARGET_PAGE_MASK;
1342
1343 rcu_read_lock();
1344 block = qemu_get_ram_block(start);
1345 assert(block == qemu_get_ram_block(end - 1));
1346 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1347 CPU_FOREACH(cpu) {
1348 tlb_reset_dirty(cpu, start1, length);
1349 }
1350 rcu_read_unlock();
1351 }
1352
1353 /* Note: start and end must be within the same ram block. */
1354 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1355 ram_addr_t length,
1356 unsigned client)
1357 {
1358 DirtyMemoryBlocks *blocks;
1359 unsigned long end, page;
1360 bool dirty = false;
1361
1362 if (length == 0) {
1363 return false;
1364 }
1365
1366 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1367 page = start >> TARGET_PAGE_BITS;
1368
1369 rcu_read_lock();
1370
1371 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1372
1373 while (page < end) {
1374 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1375 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1376 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1377
1378 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1379 offset, num);
1380 page += num;
1381 }
1382
1383 rcu_read_unlock();
1384
1385 if (dirty && tcg_enabled()) {
1386 tlb_reset_dirty_range_all(start, length);
1387 }
1388
1389 return dirty;
1390 }
1391
1392 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1393 (ram_addr_t start, ram_addr_t length, unsigned client)
1394 {
1395 DirtyMemoryBlocks *blocks;
1396 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1397 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1398 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1399 DirtyBitmapSnapshot *snap;
1400 unsigned long page, end, dest;
1401
1402 snap = g_malloc0(sizeof(*snap) +
1403 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1404 snap->start = first;
1405 snap->end = last;
1406
1407 page = first >> TARGET_PAGE_BITS;
1408 end = last >> TARGET_PAGE_BITS;
1409 dest = 0;
1410
1411 rcu_read_lock();
1412
1413 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1414
1415 while (page < end) {
1416 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1417 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1418 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1419
1420 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1421 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1422 offset >>= BITS_PER_LEVEL;
1423
1424 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1425 blocks->blocks[idx] + offset,
1426 num);
1427 page += num;
1428 dest += num >> BITS_PER_LEVEL;
1429 }
1430
1431 rcu_read_unlock();
1432
1433 if (tcg_enabled()) {
1434 tlb_reset_dirty_range_all(start, length);
1435 }
1436
1437 return snap;
1438 }
1439
1440 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1441 ram_addr_t start,
1442 ram_addr_t length)
1443 {
1444 unsigned long page, end;
1445
1446 assert(start >= snap->start);
1447 assert(start + length <= snap->end);
1448
1449 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1450 page = (start - snap->start) >> TARGET_PAGE_BITS;
1451
1452 while (page < end) {
1453 if (test_bit(page, snap->dirty)) {
1454 return true;
1455 }
1456 page++;
1457 }
1458 return false;
1459 }
1460
1461 /* Called from RCU critical section */
1462 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1463 MemoryRegionSection *section,
1464 target_ulong vaddr,
1465 hwaddr paddr, hwaddr xlat,
1466 int prot,
1467 target_ulong *address)
1468 {
1469 hwaddr iotlb;
1470 CPUWatchpoint *wp;
1471
1472 if (memory_region_is_ram(section->mr)) {
1473 /* Normal RAM. */
1474 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1475 if (!section->readonly) {
1476 iotlb |= PHYS_SECTION_NOTDIRTY;
1477 } else {
1478 iotlb |= PHYS_SECTION_ROM;
1479 }
1480 } else {
1481 AddressSpaceDispatch *d;
1482
1483 d = flatview_to_dispatch(section->fv);
1484 iotlb = section - d->map.sections;
1485 iotlb += xlat;
1486 }
1487
1488 /* Make accesses to pages with watchpoints go via the
1489 watchpoint trap routines. */
1490 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1491 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1492 /* Avoid trapping reads of pages with a write breakpoint. */
1493 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1494 iotlb = PHYS_SECTION_WATCH + paddr;
1495 *address |= TLB_MMIO;
1496 break;
1497 }
1498 }
1499 }
1500
1501 return iotlb;
1502 }
1503 #endif /* defined(CONFIG_USER_ONLY) */
1504
1505 #if !defined(CONFIG_USER_ONLY)
1506
1507 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1508 uint16_t section);
1509 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1510
1511 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1512 qemu_anon_ram_alloc;
1513
1514 /*
1515 * Set a custom physical guest memory alloator.
1516 * Accelerators with unusual needs may need this. Hopefully, we can
1517 * get rid of it eventually.
1518 */
1519 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1520 {
1521 phys_mem_alloc = alloc;
1522 }
1523
1524 static uint16_t phys_section_add(PhysPageMap *map,
1525 MemoryRegionSection *section)
1526 {
1527 /* The physical section number is ORed with a page-aligned
1528 * pointer to produce the iotlb entries. Thus it should
1529 * never overflow into the page-aligned value.
1530 */
1531 assert(map->sections_nb < TARGET_PAGE_SIZE);
1532
1533 if (map->sections_nb == map->sections_nb_alloc) {
1534 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1535 map->sections = g_renew(MemoryRegionSection, map->sections,
1536 map->sections_nb_alloc);
1537 }
1538 map->sections[map->sections_nb] = *section;
1539 memory_region_ref(section->mr);
1540 return map->sections_nb++;
1541 }
1542
1543 static void phys_section_destroy(MemoryRegion *mr)
1544 {
1545 bool have_sub_page = mr->subpage;
1546
1547 memory_region_unref(mr);
1548
1549 if (have_sub_page) {
1550 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1551 object_unref(OBJECT(&subpage->iomem));
1552 g_free(subpage);
1553 }
1554 }
1555
1556 static void phys_sections_free(PhysPageMap *map)
1557 {
1558 while (map->sections_nb > 0) {
1559 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1560 phys_section_destroy(section->mr);
1561 }
1562 g_free(map->sections);
1563 g_free(map->nodes);
1564 }
1565
1566 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1567 {
1568 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1569 subpage_t *subpage;
1570 hwaddr base = section->offset_within_address_space
1571 & TARGET_PAGE_MASK;
1572 MemoryRegionSection *existing = phys_page_find(d, base);
1573 MemoryRegionSection subsection = {
1574 .offset_within_address_space = base,
1575 .size = int128_make64(TARGET_PAGE_SIZE),
1576 };
1577 hwaddr start, end;
1578
1579 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1580
1581 if (!(existing->mr->subpage)) {
1582 subpage = subpage_init(fv, base);
1583 subsection.fv = fv;
1584 subsection.mr = &subpage->iomem;
1585 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1586 phys_section_add(&d->map, &subsection));
1587 } else {
1588 subpage = container_of(existing->mr, subpage_t, iomem);
1589 }
1590 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1591 end = start + int128_get64(section->size) - 1;
1592 subpage_register(subpage, start, end,
1593 phys_section_add(&d->map, section));
1594 }
1595
1596
1597 static void register_multipage(FlatView *fv,
1598 MemoryRegionSection *section)
1599 {
1600 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1601 hwaddr start_addr = section->offset_within_address_space;
1602 uint16_t section_index = phys_section_add(&d->map, section);
1603 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1604 TARGET_PAGE_BITS));
1605
1606 assert(num_pages);
1607 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1608 }
1609
1610 /*
1611 * The range in *section* may look like this:
1612 *
1613 * |s|PPPPPPP|s|
1614 *
1615 * where s stands for subpage and P for page.
1616 */
1617 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1618 {
1619 MemoryRegionSection remain = *section;
1620 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1621
1622 /* register first subpage */
1623 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1624 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1625 - remain.offset_within_address_space;
1626
1627 MemoryRegionSection now = remain;
1628 now.size = int128_min(int128_make64(left), now.size);
1629 register_subpage(fv, &now);
1630 if (int128_eq(remain.size, now.size)) {
1631 return;
1632 }
1633 remain.size = int128_sub(remain.size, now.size);
1634 remain.offset_within_address_space += int128_get64(now.size);
1635 remain.offset_within_region += int128_get64(now.size);
1636 }
1637
1638 /* register whole pages */
1639 if (int128_ge(remain.size, page_size)) {
1640 MemoryRegionSection now = remain;
1641 now.size = int128_and(now.size, int128_neg(page_size));
1642 register_multipage(fv, &now);
1643 if (int128_eq(remain.size, now.size)) {
1644 return;
1645 }
1646 remain.size = int128_sub(remain.size, now.size);
1647 remain.offset_within_address_space += int128_get64(now.size);
1648 remain.offset_within_region += int128_get64(now.size);
1649 }
1650
1651 /* register last subpage */
1652 register_subpage(fv, &remain);
1653 }
1654
1655 void qemu_flush_coalesced_mmio_buffer(void)
1656 {
1657 if (kvm_enabled())
1658 kvm_flush_coalesced_mmio_buffer();
1659 }
1660
1661 void qemu_mutex_lock_ramlist(void)
1662 {
1663 qemu_mutex_lock(&ram_list.mutex);
1664 }
1665
1666 void qemu_mutex_unlock_ramlist(void)
1667 {
1668 qemu_mutex_unlock(&ram_list.mutex);
1669 }
1670
1671 void ram_block_dump(Monitor *mon)
1672 {
1673 RAMBlock *block;
1674 char *psize;
1675
1676 rcu_read_lock();
1677 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1678 "Block Name", "PSize", "Offset", "Used", "Total");
1679 RAMBLOCK_FOREACH(block) {
1680 psize = size_to_str(block->page_size);
1681 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1682 " 0x%016" PRIx64 "\n", block->idstr, psize,
1683 (uint64_t)block->offset,
1684 (uint64_t)block->used_length,
1685 (uint64_t)block->max_length);
1686 g_free(psize);
1687 }
1688 rcu_read_unlock();
1689 }
1690
1691 #ifdef __linux__
1692 /*
1693 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1694 * may or may not name the same files / on the same filesystem now as
1695 * when we actually open and map them. Iterate over the file
1696 * descriptors instead, and use qemu_fd_getpagesize().
1697 */
1698 static int find_min_backend_pagesize(Object *obj, void *opaque)
1699 {
1700 long *hpsize_min = opaque;
1701
1702 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1703 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1704 long hpsize = host_memory_backend_pagesize(backend);
1705
1706 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1707 *hpsize_min = hpsize;
1708 }
1709 }
1710
1711 return 0;
1712 }
1713
1714 static int find_max_backend_pagesize(Object *obj, void *opaque)
1715 {
1716 long *hpsize_max = opaque;
1717
1718 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1719 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1720 long hpsize = host_memory_backend_pagesize(backend);
1721
1722 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1723 *hpsize_max = hpsize;
1724 }
1725 }
1726
1727 return 0;
1728 }
1729
1730 /*
1731 * TODO: We assume right now that all mapped host memory backends are
1732 * used as RAM, however some might be used for different purposes.
1733 */
1734 long qemu_minrampagesize(void)
1735 {
1736 long hpsize = LONG_MAX;
1737 long mainrampagesize;
1738 Object *memdev_root;
1739
1740 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1741
1742 /* it's possible we have memory-backend objects with
1743 * hugepage-backed RAM. these may get mapped into system
1744 * address space via -numa parameters or memory hotplug
1745 * hooks. we want to take these into account, but we
1746 * also want to make sure these supported hugepage
1747 * sizes are applicable across the entire range of memory
1748 * we may boot from, so we take the min across all
1749 * backends, and assume normal pages in cases where a
1750 * backend isn't backed by hugepages.
1751 */
1752 memdev_root = object_resolve_path("/objects", NULL);
1753 if (memdev_root) {
1754 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1755 }
1756 if (hpsize == LONG_MAX) {
1757 /* No additional memory regions found ==> Report main RAM page size */
1758 return mainrampagesize;
1759 }
1760
1761 /* If NUMA is disabled or the NUMA nodes are not backed with a
1762 * memory-backend, then there is at least one node using "normal" RAM,
1763 * so if its page size is smaller we have got to report that size instead.
1764 */
1765 if (hpsize > mainrampagesize &&
1766 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1767 static bool warned;
1768 if (!warned) {
1769 error_report("Huge page support disabled (n/a for main memory).");
1770 warned = true;
1771 }
1772 return mainrampagesize;
1773 }
1774
1775 return hpsize;
1776 }
1777
1778 long qemu_maxrampagesize(void)
1779 {
1780 long pagesize = qemu_mempath_getpagesize(mem_path);
1781 Object *memdev_root = object_resolve_path("/objects", NULL);
1782
1783 if (memdev_root) {
1784 object_child_foreach(memdev_root, find_max_backend_pagesize,
1785 &pagesize);
1786 }
1787 return pagesize;
1788 }
1789 #else
1790 long qemu_minrampagesize(void)
1791 {
1792 return getpagesize();
1793 }
1794 long qemu_maxrampagesize(void)
1795 {
1796 return getpagesize();
1797 }
1798 #endif
1799
1800 #ifdef CONFIG_POSIX
1801 static int64_t get_file_size(int fd)
1802 {
1803 int64_t size = lseek(fd, 0, SEEK_END);
1804 if (size < 0) {
1805 return -errno;
1806 }
1807 return size;
1808 }
1809
1810 static int file_ram_open(const char *path,
1811 const char *region_name,
1812 bool *created,
1813 Error **errp)
1814 {
1815 char *filename;
1816 char *sanitized_name;
1817 char *c;
1818 int fd = -1;
1819
1820 *created = false;
1821 for (;;) {
1822 fd = open(path, O_RDWR);
1823 if (fd >= 0) {
1824 /* @path names an existing file, use it */
1825 break;
1826 }
1827 if (errno == ENOENT) {
1828 /* @path names a file that doesn't exist, create it */
1829 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1830 if (fd >= 0) {
1831 *created = true;
1832 break;
1833 }
1834 } else if (errno == EISDIR) {
1835 /* @path names a directory, create a file there */
1836 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1837 sanitized_name = g_strdup(region_name);
1838 for (c = sanitized_name; *c != '\0'; c++) {
1839 if (*c == '/') {
1840 *c = '_';
1841 }
1842 }
1843
1844 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1845 sanitized_name);
1846 g_free(sanitized_name);
1847
1848 fd = mkstemp(filename);
1849 if (fd >= 0) {
1850 unlink(filename);
1851 g_free(filename);
1852 break;
1853 }
1854 g_free(filename);
1855 }
1856 if (errno != EEXIST && errno != EINTR) {
1857 error_setg_errno(errp, errno,
1858 "can't open backing store %s for guest RAM",
1859 path);
1860 return -1;
1861 }
1862 /*
1863 * Try again on EINTR and EEXIST. The latter happens when
1864 * something else creates the file between our two open().
1865 */
1866 }
1867
1868 return fd;
1869 }
1870
1871 static void *file_ram_alloc(RAMBlock *block,
1872 ram_addr_t memory,
1873 int fd,
1874 bool truncate,
1875 Error **errp)
1876 {
1877 MachineState *ms = MACHINE(qdev_get_machine());
1878 void *area;
1879
1880 block->page_size = qemu_fd_getpagesize(fd);
1881 if (block->mr->align % block->page_size) {
1882 error_setg(errp, "alignment 0x%" PRIx64
1883 " must be multiples of page size 0x%zx",
1884 block->mr->align, block->page_size);
1885 return NULL;
1886 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1887 error_setg(errp, "alignment 0x%" PRIx64
1888 " must be a power of two", block->mr->align);
1889 return NULL;
1890 }
1891 block->mr->align = MAX(block->page_size, block->mr->align);
1892 #if defined(__s390x__)
1893 if (kvm_enabled()) {
1894 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1895 }
1896 #endif
1897
1898 if (memory < block->page_size) {
1899 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1900 "or larger than page size 0x%zx",
1901 memory, block->page_size);
1902 return NULL;
1903 }
1904
1905 memory = ROUND_UP(memory, block->page_size);
1906
1907 /*
1908 * ftruncate is not supported by hugetlbfs in older
1909 * hosts, so don't bother bailing out on errors.
1910 * If anything goes wrong with it under other filesystems,
1911 * mmap will fail.
1912 *
1913 * Do not truncate the non-empty backend file to avoid corrupting
1914 * the existing data in the file. Disabling shrinking is not
1915 * enough. For example, the current vNVDIMM implementation stores
1916 * the guest NVDIMM labels at the end of the backend file. If the
1917 * backend file is later extended, QEMU will not be able to find
1918 * those labels. Therefore, extending the non-empty backend file
1919 * is disabled as well.
1920 */
1921 if (truncate && ftruncate(fd, memory)) {
1922 perror("ftruncate");
1923 }
1924
1925 area = qemu_ram_mmap(fd, memory, block->mr->align,
1926 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1927 if (area == MAP_FAILED) {
1928 error_setg_errno(errp, errno,
1929 "unable to map backing store for guest RAM");
1930 return NULL;
1931 }
1932
1933 if (mem_prealloc) {
1934 os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
1935 if (errp && *errp) {
1936 qemu_ram_munmap(fd, area, memory);
1937 return NULL;
1938 }
1939 }
1940
1941 block->fd = fd;
1942 return area;
1943 }
1944 #endif
1945
1946 /* Allocate space within the ram_addr_t space that governs the
1947 * dirty bitmaps.
1948 * Called with the ramlist lock held.
1949 */
1950 static ram_addr_t find_ram_offset(ram_addr_t size)
1951 {
1952 RAMBlock *block, *next_block;
1953 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1954
1955 assert(size != 0); /* it would hand out same offset multiple times */
1956
1957 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1958 return 0;
1959 }
1960
1961 RAMBLOCK_FOREACH(block) {
1962 ram_addr_t candidate, next = RAM_ADDR_MAX;
1963
1964 /* Align blocks to start on a 'long' in the bitmap
1965 * which makes the bitmap sync'ing take the fast path.
1966 */
1967 candidate = block->offset + block->max_length;
1968 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1969
1970 /* Search for the closest following block
1971 * and find the gap.
1972 */
1973 RAMBLOCK_FOREACH(next_block) {
1974 if (next_block->offset >= candidate) {
1975 next = MIN(next, next_block->offset);
1976 }
1977 }
1978
1979 /* If it fits remember our place and remember the size
1980 * of gap, but keep going so that we might find a smaller
1981 * gap to fill so avoiding fragmentation.
1982 */
1983 if (next - candidate >= size && next - candidate < mingap) {
1984 offset = candidate;
1985 mingap = next - candidate;
1986 }
1987
1988 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1989 }
1990
1991 if (offset == RAM_ADDR_MAX) {
1992 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1993 (uint64_t)size);
1994 abort();
1995 }
1996
1997 trace_find_ram_offset(size, offset);
1998
1999 return offset;
2000 }
2001
2002 static unsigned long last_ram_page(void)
2003 {
2004 RAMBlock *block;
2005 ram_addr_t last = 0;
2006
2007 rcu_read_lock();
2008 RAMBLOCK_FOREACH(block) {
2009 last = MAX(last, block->offset + block->max_length);
2010 }
2011 rcu_read_unlock();
2012 return last >> TARGET_PAGE_BITS;
2013 }
2014
2015 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2016 {
2017 int ret;
2018
2019 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2020 if (!machine_dump_guest_core(current_machine)) {
2021 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2022 if (ret) {
2023 perror("qemu_madvise");
2024 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2025 "but dump_guest_core=off specified\n");
2026 }
2027 }
2028 }
2029
2030 const char *qemu_ram_get_idstr(RAMBlock *rb)
2031 {
2032 return rb->idstr;
2033 }
2034
2035 void *qemu_ram_get_host_addr(RAMBlock *rb)
2036 {
2037 return rb->host;
2038 }
2039
2040 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2041 {
2042 return rb->offset;
2043 }
2044
2045 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2046 {
2047 return rb->used_length;
2048 }
2049
2050 bool qemu_ram_is_shared(RAMBlock *rb)
2051 {
2052 return rb->flags & RAM_SHARED;
2053 }
2054
2055 /* Note: Only set at the start of postcopy */
2056 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2057 {
2058 return rb->flags & RAM_UF_ZEROPAGE;
2059 }
2060
2061 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2062 {
2063 rb->flags |= RAM_UF_ZEROPAGE;
2064 }
2065
2066 bool qemu_ram_is_migratable(RAMBlock *rb)
2067 {
2068 return rb->flags & RAM_MIGRATABLE;
2069 }
2070
2071 void qemu_ram_set_migratable(RAMBlock *rb)
2072 {
2073 rb->flags |= RAM_MIGRATABLE;
2074 }
2075
2076 void qemu_ram_unset_migratable(RAMBlock *rb)
2077 {
2078 rb->flags &= ~RAM_MIGRATABLE;
2079 }
2080
2081 /* Called with iothread lock held. */
2082 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2083 {
2084 RAMBlock *block;
2085
2086 assert(new_block);
2087 assert(!new_block->idstr[0]);
2088
2089 if (dev) {
2090 char *id = qdev_get_dev_path(dev);
2091 if (id) {
2092 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2093 g_free(id);
2094 }
2095 }
2096 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2097
2098 rcu_read_lock();
2099 RAMBLOCK_FOREACH(block) {
2100 if (block != new_block &&
2101 !strcmp(block->idstr, new_block->idstr)) {
2102 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2103 new_block->idstr);
2104 abort();
2105 }
2106 }
2107 rcu_read_unlock();
2108 }
2109
2110 /* Called with iothread lock held. */
2111 void qemu_ram_unset_idstr(RAMBlock *block)
2112 {
2113 /* FIXME: arch_init.c assumes that this is not called throughout
2114 * migration. Ignore the problem since hot-unplug during migration
2115 * does not work anyway.
2116 */
2117 if (block) {
2118 memset(block->idstr, 0, sizeof(block->idstr));
2119 }
2120 }
2121
2122 size_t qemu_ram_pagesize(RAMBlock *rb)
2123 {
2124 return rb->page_size;
2125 }
2126
2127 /* Returns the largest size of page in use */
2128 size_t qemu_ram_pagesize_largest(void)
2129 {
2130 RAMBlock *block;
2131 size_t largest = 0;
2132
2133 RAMBLOCK_FOREACH(block) {
2134 largest = MAX(largest, qemu_ram_pagesize(block));
2135 }
2136
2137 return largest;
2138 }
2139
2140 static int memory_try_enable_merging(void *addr, size_t len)
2141 {
2142 if (!machine_mem_merge(current_machine)) {
2143 /* disabled by the user */
2144 return 0;
2145 }
2146
2147 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2148 }
2149
2150 /* Only legal before guest might have detected the memory size: e.g. on
2151 * incoming migration, or right after reset.
2152 *
2153 * As memory core doesn't know how is memory accessed, it is up to
2154 * resize callback to update device state and/or add assertions to detect
2155 * misuse, if necessary.
2156 */
2157 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2158 {
2159 assert(block);
2160
2161 newsize = HOST_PAGE_ALIGN(newsize);
2162
2163 if (block->used_length == newsize) {
2164 return 0;
2165 }
2166
2167 if (!(block->flags & RAM_RESIZEABLE)) {
2168 error_setg_errno(errp, EINVAL,
2169 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2170 " in != 0x" RAM_ADDR_FMT, block->idstr,
2171 newsize, block->used_length);
2172 return -EINVAL;
2173 }
2174
2175 if (block->max_length < newsize) {
2176 error_setg_errno(errp, EINVAL,
2177 "Length too large: %s: 0x" RAM_ADDR_FMT
2178 " > 0x" RAM_ADDR_FMT, block->idstr,
2179 newsize, block->max_length);
2180 return -EINVAL;
2181 }
2182
2183 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2184 block->used_length = newsize;
2185 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2186 DIRTY_CLIENTS_ALL);
2187 memory_region_set_size(block->mr, newsize);
2188 if (block->resized) {
2189 block->resized(block->idstr, newsize, block->host);
2190 }
2191 return 0;
2192 }
2193
2194 /* Called with ram_list.mutex held */
2195 static void dirty_memory_extend(ram_addr_t old_ram_size,
2196 ram_addr_t new_ram_size)
2197 {
2198 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2199 DIRTY_MEMORY_BLOCK_SIZE);
2200 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2201 DIRTY_MEMORY_BLOCK_SIZE);
2202 int i;
2203
2204 /* Only need to extend if block count increased */
2205 if (new_num_blocks <= old_num_blocks) {
2206 return;
2207 }
2208
2209 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2210 DirtyMemoryBlocks *old_blocks;
2211 DirtyMemoryBlocks *new_blocks;
2212 int j;
2213
2214 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2215 new_blocks = g_malloc(sizeof(*new_blocks) +
2216 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2217
2218 if (old_num_blocks) {
2219 memcpy(new_blocks->blocks, old_blocks->blocks,
2220 old_num_blocks * sizeof(old_blocks->blocks[0]));
2221 }
2222
2223 for (j = old_num_blocks; j < new_num_blocks; j++) {
2224 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2225 }
2226
2227 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2228
2229 if (old_blocks) {
2230 g_free_rcu(old_blocks, rcu);
2231 }
2232 }
2233 }
2234
2235 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2236 {
2237 RAMBlock *block;
2238 RAMBlock *last_block = NULL;
2239 ram_addr_t old_ram_size, new_ram_size;
2240 Error *err = NULL;
2241
2242 old_ram_size = last_ram_page();
2243
2244 qemu_mutex_lock_ramlist();
2245 new_block->offset = find_ram_offset(new_block->max_length);
2246
2247 if (!new_block->host) {
2248 if (xen_enabled()) {
2249 xen_ram_alloc(new_block->offset, new_block->max_length,
2250 new_block->mr, &err);
2251 if (err) {
2252 error_propagate(errp, err);
2253 qemu_mutex_unlock_ramlist();
2254 return;
2255 }
2256 } else {
2257 new_block->host = phys_mem_alloc(new_block->max_length,
2258 &new_block->mr->align, shared);
2259 if (!new_block->host) {
2260 error_setg_errno(errp, errno,
2261 "cannot set up guest memory '%s'",
2262 memory_region_name(new_block->mr));
2263 qemu_mutex_unlock_ramlist();
2264 return;
2265 }
2266 memory_try_enable_merging(new_block->host, new_block->max_length);
2267 }
2268 }
2269
2270 new_ram_size = MAX(old_ram_size,
2271 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2272 if (new_ram_size > old_ram_size) {
2273 dirty_memory_extend(old_ram_size, new_ram_size);
2274 }
2275 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2276 * QLIST (which has an RCU-friendly variant) does not have insertion at
2277 * tail, so save the last element in last_block.
2278 */
2279 RAMBLOCK_FOREACH(block) {
2280 last_block = block;
2281 if (block->max_length < new_block->max_length) {
2282 break;
2283 }
2284 }
2285 if (block) {
2286 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2287 } else if (last_block) {
2288 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2289 } else { /* list is empty */
2290 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2291 }
2292 ram_list.mru_block = NULL;
2293
2294 /* Write list before version */
2295 smp_wmb();
2296 ram_list.version++;
2297 qemu_mutex_unlock_ramlist();
2298
2299 cpu_physical_memory_set_dirty_range(new_block->offset,
2300 new_block->used_length,
2301 DIRTY_CLIENTS_ALL);
2302
2303 if (new_block->host) {
2304 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2305 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2306 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2307 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2308 ram_block_notify_add(new_block->host, new_block->max_length);
2309 }
2310 }
2311
2312 #ifdef CONFIG_POSIX
2313 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2314 uint32_t ram_flags, int fd,
2315 Error **errp)
2316 {
2317 RAMBlock *new_block;
2318 Error *local_err = NULL;
2319 int64_t file_size;
2320
2321 /* Just support these ram flags by now. */
2322 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2323
2324 if (xen_enabled()) {
2325 error_setg(errp, "-mem-path not supported with Xen");
2326 return NULL;
2327 }
2328
2329 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2330 error_setg(errp,
2331 "host lacks kvm mmu notifiers, -mem-path unsupported");
2332 return NULL;
2333 }
2334
2335 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2336 /*
2337 * file_ram_alloc() needs to allocate just like
2338 * phys_mem_alloc, but we haven't bothered to provide
2339 * a hook there.
2340 */
2341 error_setg(errp,
2342 "-mem-path not supported with this accelerator");
2343 return NULL;
2344 }
2345
2346 size = HOST_PAGE_ALIGN(size);
2347 file_size = get_file_size(fd);
2348 if (file_size > 0 && file_size < size) {
2349 error_setg(errp, "backing store %s size 0x%" PRIx64
2350 " does not match 'size' option 0x" RAM_ADDR_FMT,
2351 mem_path, file_size, size);
2352 return NULL;
2353 }
2354
2355 new_block = g_malloc0(sizeof(*new_block));
2356 new_block->mr = mr;
2357 new_block->used_length = size;
2358 new_block->max_length = size;
2359 new_block->flags = ram_flags;
2360 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2361 if (!new_block->host) {
2362 g_free(new_block);
2363 return NULL;
2364 }
2365
2366 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2367 if (local_err) {
2368 g_free(new_block);
2369 error_propagate(errp, local_err);
2370 return NULL;
2371 }
2372 return new_block;
2373
2374 }
2375
2376
2377 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2378 uint32_t ram_flags, const char *mem_path,
2379 Error **errp)
2380 {
2381 int fd;
2382 bool created;
2383 RAMBlock *block;
2384
2385 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2386 if (fd < 0) {
2387 return NULL;
2388 }
2389
2390 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2391 if (!block) {
2392 if (created) {
2393 unlink(mem_path);
2394 }
2395 close(fd);
2396 return NULL;
2397 }
2398
2399 return block;
2400 }
2401 #endif
2402
2403 static
2404 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2405 void (*resized)(const char*,
2406 uint64_t length,
2407 void *host),
2408 void *host, bool resizeable, bool share,
2409 MemoryRegion *mr, Error **errp)
2410 {
2411 RAMBlock *new_block;
2412 Error *local_err = NULL;
2413
2414 size = HOST_PAGE_ALIGN(size);
2415 max_size = HOST_PAGE_ALIGN(max_size);
2416 new_block = g_malloc0(sizeof(*new_block));
2417 new_block->mr = mr;
2418 new_block->resized = resized;
2419 new_block->used_length = size;
2420 new_block->max_length = max_size;
2421 assert(max_size >= size);
2422 new_block->fd = -1;
2423 new_block->page_size = getpagesize();
2424 new_block->host = host;
2425 if (host) {
2426 new_block->flags |= RAM_PREALLOC;
2427 }
2428 if (resizeable) {
2429 new_block->flags |= RAM_RESIZEABLE;
2430 }
2431 ram_block_add(new_block, &local_err, share);
2432 if (local_err) {
2433 g_free(new_block);
2434 error_propagate(errp, local_err);
2435 return NULL;
2436 }
2437 return new_block;
2438 }
2439
2440 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2441 MemoryRegion *mr, Error **errp)
2442 {
2443 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2444 false, mr, errp);
2445 }
2446
2447 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2448 MemoryRegion *mr, Error **errp)
2449 {
2450 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2451 share, mr, errp);
2452 }
2453
2454 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2455 void (*resized)(const char*,
2456 uint64_t length,
2457 void *host),
2458 MemoryRegion *mr, Error **errp)
2459 {
2460 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2461 false, mr, errp);
2462 }
2463
2464 static void reclaim_ramblock(RAMBlock *block)
2465 {
2466 if (block->flags & RAM_PREALLOC) {
2467 ;
2468 } else if (xen_enabled()) {
2469 xen_invalidate_map_cache_entry(block->host);
2470 #ifndef _WIN32
2471 } else if (block->fd >= 0) {
2472 qemu_ram_munmap(block->fd, block->host, block->max_length);
2473 close(block->fd);
2474 #endif
2475 } else {
2476 qemu_anon_ram_free(block->host, block->max_length);
2477 }
2478 g_free(block);
2479 }
2480
2481 void qemu_ram_free(RAMBlock *block)
2482 {
2483 if (!block) {
2484 return;
2485 }
2486
2487 if (block->host) {
2488 ram_block_notify_remove(block->host, block->max_length);
2489 }
2490
2491 qemu_mutex_lock_ramlist();
2492 QLIST_REMOVE_RCU(block, next);
2493 ram_list.mru_block = NULL;
2494 /* Write list before version */
2495 smp_wmb();
2496 ram_list.version++;
2497 call_rcu(block, reclaim_ramblock, rcu);
2498 qemu_mutex_unlock_ramlist();
2499 }
2500
2501 #ifndef _WIN32
2502 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2503 {
2504 RAMBlock *block;
2505 ram_addr_t offset;
2506 int flags;
2507 void *area, *vaddr;
2508
2509 RAMBLOCK_FOREACH(block) {
2510 offset = addr - block->offset;
2511 if (offset < block->max_length) {
2512 vaddr = ramblock_ptr(block, offset);
2513 if (block->flags & RAM_PREALLOC) {
2514 ;
2515 } else if (xen_enabled()) {
2516 abort();
2517 } else {
2518 flags = MAP_FIXED;
2519 if (block->fd >= 0) {
2520 flags |= (block->flags & RAM_SHARED ?
2521 MAP_SHARED : MAP_PRIVATE);
2522 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2523 flags, block->fd, offset);
2524 } else {
2525 /*
2526 * Remap needs to match alloc. Accelerators that
2527 * set phys_mem_alloc never remap. If they did,
2528 * we'd need a remap hook here.
2529 */
2530 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2531
2532 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2533 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2534 flags, -1, 0);
2535 }
2536 if (area != vaddr) {
2537 error_report("Could not remap addr: "
2538 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2539 length, addr);
2540 exit(1);
2541 }
2542 memory_try_enable_merging(vaddr, length);
2543 qemu_ram_setup_dump(vaddr, length);
2544 }
2545 }
2546 }
2547 }
2548 #endif /* !_WIN32 */
2549
2550 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2551 * This should not be used for general purpose DMA. Use address_space_map
2552 * or address_space_rw instead. For local memory (e.g. video ram) that the
2553 * device owns, use memory_region_get_ram_ptr.
2554 *
2555 * Called within RCU critical section.
2556 */
2557 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2558 {
2559 RAMBlock *block = ram_block;
2560
2561 if (block == NULL) {
2562 block = qemu_get_ram_block(addr);
2563 addr -= block->offset;
2564 }
2565
2566 if (xen_enabled() && block->host == NULL) {
2567 /* We need to check if the requested address is in the RAM
2568 * because we don't want to map the entire memory in QEMU.
2569 * In that case just map until the end of the page.
2570 */
2571 if (block->offset == 0) {
2572 return xen_map_cache(addr, 0, 0, false);
2573 }
2574
2575 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2576 }
2577 return ramblock_ptr(block, addr);
2578 }
2579
2580 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2581 * but takes a size argument.
2582 *
2583 * Called within RCU critical section.
2584 */
2585 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2586 hwaddr *size, bool lock)
2587 {
2588 RAMBlock *block = ram_block;
2589 if (*size == 0) {
2590 return NULL;
2591 }
2592
2593 if (block == NULL) {
2594 block = qemu_get_ram_block(addr);
2595 addr -= block->offset;
2596 }
2597 *size = MIN(*size, block->max_length - addr);
2598
2599 if (xen_enabled() && block->host == NULL) {
2600 /* We need to check if the requested address is in the RAM
2601 * because we don't want to map the entire memory in QEMU.
2602 * In that case just map the requested area.
2603 */
2604 if (block->offset == 0) {
2605 return xen_map_cache(addr, *size, lock, lock);
2606 }
2607
2608 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2609 }
2610
2611 return ramblock_ptr(block, addr);
2612 }
2613
2614 /* Return the offset of a hostpointer within a ramblock */
2615 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2616 {
2617 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2618 assert((uintptr_t)host >= (uintptr_t)rb->host);
2619 assert(res < rb->max_length);
2620
2621 return res;
2622 }
2623
2624 /*
2625 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2626 * in that RAMBlock.
2627 *
2628 * ptr: Host pointer to look up
2629 * round_offset: If true round the result offset down to a page boundary
2630 * *ram_addr: set to result ram_addr
2631 * *offset: set to result offset within the RAMBlock
2632 *
2633 * Returns: RAMBlock (or NULL if not found)
2634 *
2635 * By the time this function returns, the returned pointer is not protected
2636 * by RCU anymore. If the caller is not within an RCU critical section and
2637 * does not hold the iothread lock, it must have other means of protecting the
2638 * pointer, such as a reference to the region that includes the incoming
2639 * ram_addr_t.
2640 */
2641 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2642 ram_addr_t *offset)
2643 {
2644 RAMBlock *block;
2645 uint8_t *host = ptr;
2646
2647 if (xen_enabled()) {
2648 ram_addr_t ram_addr;
2649 rcu_read_lock();
2650 ram_addr = xen_ram_addr_from_mapcache(ptr);
2651 block = qemu_get_ram_block(ram_addr);
2652 if (block) {
2653 *offset = ram_addr - block->offset;
2654 }
2655 rcu_read_unlock();
2656 return block;
2657 }
2658
2659 rcu_read_lock();
2660 block = atomic_rcu_read(&ram_list.mru_block);
2661 if (block && block->host && host - block->host < block->max_length) {
2662 goto found;
2663 }
2664
2665 RAMBLOCK_FOREACH(block) {
2666 /* This case append when the block is not mapped. */
2667 if (block->host == NULL) {
2668 continue;
2669 }
2670 if (host - block->host < block->max_length) {
2671 goto found;
2672 }
2673 }
2674
2675 rcu_read_unlock();
2676 return NULL;
2677
2678 found:
2679 *offset = (host - block->host);
2680 if (round_offset) {
2681 *offset &= TARGET_PAGE_MASK;
2682 }
2683 rcu_read_unlock();
2684 return block;
2685 }
2686
2687 /*
2688 * Finds the named RAMBlock
2689 *
2690 * name: The name of RAMBlock to find
2691 *
2692 * Returns: RAMBlock (or NULL if not found)
2693 */
2694 RAMBlock *qemu_ram_block_by_name(const char *name)
2695 {
2696 RAMBlock *block;
2697
2698 RAMBLOCK_FOREACH(block) {
2699 if (!strcmp(name, block->idstr)) {
2700 return block;
2701 }
2702 }
2703
2704 return NULL;
2705 }
2706
2707 /* Some of the softmmu routines need to translate from a host pointer
2708 (typically a TLB entry) back to a ram offset. */
2709 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2710 {
2711 RAMBlock *block;
2712 ram_addr_t offset;
2713
2714 block = qemu_ram_block_from_host(ptr, false, &offset);
2715 if (!block) {
2716 return RAM_ADDR_INVALID;
2717 }
2718
2719 return block->offset + offset;
2720 }
2721
2722 /* Called within RCU critical section. */
2723 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2724 CPUState *cpu,
2725 vaddr mem_vaddr,
2726 ram_addr_t ram_addr,
2727 unsigned size)
2728 {
2729 ndi->cpu = cpu;
2730 ndi->ram_addr = ram_addr;
2731 ndi->mem_vaddr = mem_vaddr;
2732 ndi->size = size;
2733 ndi->pages = NULL;
2734
2735 assert(tcg_enabled());
2736 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2737 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2738 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2739 }
2740 }
2741
2742 /* Called within RCU critical section. */
2743 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2744 {
2745 if (ndi->pages) {
2746 assert(tcg_enabled());
2747 page_collection_unlock(ndi->pages);
2748 ndi->pages = NULL;
2749 }
2750
2751 /* Set both VGA and migration bits for simplicity and to remove
2752 * the notdirty callback faster.
2753 */
2754 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2755 DIRTY_CLIENTS_NOCODE);
2756 /* we remove the notdirty callback only if the code has been
2757 flushed */
2758 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2759 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2760 }
2761 }
2762
2763 /* Called within RCU critical section. */
2764 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2765 uint64_t val, unsigned size)
2766 {
2767 NotDirtyInfo ndi;
2768
2769 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2770 ram_addr, size);
2771
2772 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2773 memory_notdirty_write_complete(&ndi);
2774 }
2775
2776 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2777 unsigned size, bool is_write,
2778 MemTxAttrs attrs)
2779 {
2780 return is_write;
2781 }
2782
2783 static const MemoryRegionOps notdirty_mem_ops = {
2784 .write = notdirty_mem_write,
2785 .valid.accepts = notdirty_mem_accepts,
2786 .endianness = DEVICE_NATIVE_ENDIAN,
2787 .valid = {
2788 .min_access_size = 1,
2789 .max_access_size = 8,
2790 .unaligned = false,
2791 },
2792 .impl = {
2793 .min_access_size = 1,
2794 .max_access_size = 8,
2795 .unaligned = false,
2796 },
2797 };
2798
2799 /* Generate a debug exception if a watchpoint has been hit. */
2800 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2801 {
2802 CPUState *cpu = current_cpu;
2803 CPUClass *cc = CPU_GET_CLASS(cpu);
2804 target_ulong vaddr;
2805 CPUWatchpoint *wp;
2806
2807 assert(tcg_enabled());
2808 if (cpu->watchpoint_hit) {
2809 /* We re-entered the check after replacing the TB. Now raise
2810 * the debug interrupt so that is will trigger after the
2811 * current instruction. */
2812 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2813 return;
2814 }
2815 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2816 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2817 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2818 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2819 && (wp->flags & flags)) {
2820 if (flags == BP_MEM_READ) {
2821 wp->flags |= BP_WATCHPOINT_HIT_READ;
2822 } else {
2823 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2824 }
2825 wp->hitaddr = vaddr;
2826 wp->hitattrs = attrs;
2827 if (!cpu->watchpoint_hit) {
2828 if (wp->flags & BP_CPU &&
2829 !cc->debug_check_watchpoint(cpu, wp)) {
2830 wp->flags &= ~BP_WATCHPOINT_HIT;
2831 continue;
2832 }
2833 cpu->watchpoint_hit = wp;
2834
2835 mmap_lock();
2836 tb_check_watchpoint(cpu);
2837 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2838 cpu->exception_index = EXCP_DEBUG;
2839 mmap_unlock();
2840 cpu_loop_exit(cpu);
2841 } else {
2842 /* Force execution of one insn next time. */
2843 cpu->cflags_next_tb = 1 | curr_cflags();
2844 mmap_unlock();
2845 cpu_loop_exit_noexc(cpu);
2846 }
2847 }
2848 } else {
2849 wp->flags &= ~BP_WATCHPOINT_HIT;
2850 }
2851 }
2852 }
2853
2854 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2855 so these check for a hit then pass through to the normal out-of-line
2856 phys routines. */
2857 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2858 unsigned size, MemTxAttrs attrs)
2859 {
2860 MemTxResult res;
2861 uint64_t data;
2862 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2863 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2864
2865 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2866 switch (size) {
2867 case 1:
2868 data = address_space_ldub(as, addr, attrs, &res);
2869 break;
2870 case 2:
2871 data = address_space_lduw(as, addr, attrs, &res);
2872 break;
2873 case 4:
2874 data = address_space_ldl(as, addr, attrs, &res);
2875 break;
2876 case 8:
2877 data = address_space_ldq(as, addr, attrs, &res);
2878 break;
2879 default: abort();
2880 }
2881 *pdata = data;
2882 return res;
2883 }
2884
2885 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2886 uint64_t val, unsigned size,
2887 MemTxAttrs attrs)
2888 {
2889 MemTxResult res;
2890 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2891 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2892
2893 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2894 switch (size) {
2895 case 1:
2896 address_space_stb(as, addr, val, attrs, &res);
2897 break;
2898 case 2:
2899 address_space_stw(as, addr, val, attrs, &res);
2900 break;
2901 case 4:
2902 address_space_stl(as, addr, val, attrs, &res);
2903 break;
2904 case 8:
2905 address_space_stq(as, addr, val, attrs, &res);
2906 break;
2907 default: abort();
2908 }
2909 return res;
2910 }
2911
2912 static const MemoryRegionOps watch_mem_ops = {
2913 .read_with_attrs = watch_mem_read,
2914 .write_with_attrs = watch_mem_write,
2915 .endianness = DEVICE_NATIVE_ENDIAN,
2916 .valid = {
2917 .min_access_size = 1,
2918 .max_access_size = 8,
2919 .unaligned = false,
2920 },
2921 .impl = {
2922 .min_access_size = 1,
2923 .max_access_size = 8,
2924 .unaligned = false,
2925 },
2926 };
2927
2928 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2929 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2930 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2931 const uint8_t *buf, hwaddr len);
2932 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2933 bool is_write, MemTxAttrs attrs);
2934
2935 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2936 unsigned len, MemTxAttrs attrs)
2937 {
2938 subpage_t *subpage = opaque;
2939 uint8_t buf[8];
2940 MemTxResult res;
2941
2942 #if defined(DEBUG_SUBPAGE)
2943 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2944 subpage, len, addr);
2945 #endif
2946 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2947 if (res) {
2948 return res;
2949 }
2950 *data = ldn_p(buf, len);
2951 return MEMTX_OK;
2952 }
2953
2954 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2955 uint64_t value, unsigned len, MemTxAttrs attrs)
2956 {
2957 subpage_t *subpage = opaque;
2958 uint8_t buf[8];
2959
2960 #if defined(DEBUG_SUBPAGE)
2961 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2962 " value %"PRIx64"\n",
2963 __func__, subpage, len, addr, value);
2964 #endif
2965 stn_p(buf, len, value);
2966 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2967 }
2968
2969 static bool subpage_accepts(void *opaque, hwaddr addr,
2970 unsigned len, bool is_write,
2971 MemTxAttrs attrs)
2972 {
2973 subpage_t *subpage = opaque;
2974 #if defined(DEBUG_SUBPAGE)
2975 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2976 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2977 #endif
2978
2979 return flatview_access_valid(subpage->fv, addr + subpage->base,
2980 len, is_write, attrs);
2981 }
2982
2983 static const MemoryRegionOps subpage_ops = {
2984 .read_with_attrs = subpage_read,
2985 .write_with_attrs = subpage_write,
2986 .impl.min_access_size = 1,
2987 .impl.max_access_size = 8,
2988 .valid.min_access_size = 1,
2989 .valid.max_access_size = 8,
2990 .valid.accepts = subpage_accepts,
2991 .endianness = DEVICE_NATIVE_ENDIAN,
2992 };
2993
2994 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2995 uint16_t section)
2996 {
2997 int idx, eidx;
2998
2999 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3000 return -1;
3001 idx = SUBPAGE_IDX(start);
3002 eidx = SUBPAGE_IDX(end);
3003 #if defined(DEBUG_SUBPAGE)
3004 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
3005 __func__, mmio, start, end, idx, eidx, section);
3006 #endif
3007 for (; idx <= eidx; idx++) {
3008 mmio->sub_section[idx] = section;
3009 }
3010
3011 return 0;
3012 }
3013
3014 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
3015 {
3016 subpage_t *mmio;
3017
3018 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
3019 mmio->fv = fv;
3020 mmio->base = base;
3021 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
3022 NULL, TARGET_PAGE_SIZE);
3023 mmio->iomem.subpage = true;
3024 #if defined(DEBUG_SUBPAGE)
3025 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
3026 mmio, base, TARGET_PAGE_SIZE);
3027 #endif
3028 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
3029
3030 return mmio;
3031 }
3032
3033 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
3034 {
3035 assert(fv);
3036 MemoryRegionSection section = {
3037 .fv = fv,
3038 .mr = mr,
3039 .offset_within_address_space = 0,
3040 .offset_within_region = 0,
3041 .size = int128_2_64(),
3042 };
3043
3044 return phys_section_add(map, &section);
3045 }
3046
3047 static void readonly_mem_write(void *opaque, hwaddr addr,
3048 uint64_t val, unsigned size)
3049 {
3050 /* Ignore any write to ROM. */
3051 }
3052
3053 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
3054 unsigned size, bool is_write,
3055 MemTxAttrs attrs)
3056 {
3057 return is_write;
3058 }
3059
3060 /* This will only be used for writes, because reads are special cased
3061 * to directly access the underlying host ram.
3062 */
3063 static const MemoryRegionOps readonly_mem_ops = {
3064 .write = readonly_mem_write,
3065 .valid.accepts = readonly_mem_accepts,
3066 .endianness = DEVICE_NATIVE_ENDIAN,
3067 .valid = {
3068 .min_access_size = 1,
3069 .max_access_size = 8,
3070 .unaligned = false,
3071 },
3072 .impl = {
3073 .min_access_size = 1,
3074 .max_access_size = 8,
3075 .unaligned = false,
3076 },
3077 };
3078
3079 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3080 hwaddr index, MemTxAttrs attrs)
3081 {
3082 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3083 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3084 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3085 MemoryRegionSection *sections = d->map.sections;
3086
3087 return &sections[index & ~TARGET_PAGE_MASK];
3088 }
3089
3090 static void io_mem_init(void)
3091 {
3092 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3093 NULL, NULL, UINT64_MAX);
3094 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3095 NULL, UINT64_MAX);
3096
3097 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3098 * which can be called without the iothread mutex.
3099 */
3100 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3101 NULL, UINT64_MAX);
3102 memory_region_clear_global_locking(&io_mem_notdirty);
3103
3104 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3105 NULL, UINT64_MAX);
3106 }
3107
3108 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3109 {
3110 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3111 uint16_t n;
3112
3113 n = dummy_section(&d->map, fv, &io_mem_unassigned);
3114 assert(n == PHYS_SECTION_UNASSIGNED);
3115 n = dummy_section(&d->map, fv, &io_mem_notdirty);
3116 assert(n == PHYS_SECTION_NOTDIRTY);
3117 n = dummy_section(&d->map, fv, &io_mem_rom);
3118 assert(n == PHYS_SECTION_ROM);
3119 n = dummy_section(&d->map, fv, &io_mem_watch);
3120 assert(n == PHYS_SECTION_WATCH);
3121
3122 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3123
3124 return d;
3125 }
3126
3127 void address_space_dispatch_free(AddressSpaceDispatch *d)
3128 {
3129 phys_sections_free(&d->map);
3130 g_free(d);
3131 }
3132
3133 static void tcg_commit(MemoryListener *listener)
3134 {
3135 CPUAddressSpace *cpuas;
3136 AddressSpaceDispatch *d;
3137
3138 assert(tcg_enabled());
3139 /* since each CPU stores ram addresses in its TLB cache, we must
3140 reset the modified entries */
3141 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3142 cpu_reloading_memory_map();
3143 /* The CPU and TLB are protected by the iothread lock.
3144 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3145 * may have split the RCU critical section.
3146 */
3147 d = address_space_to_dispatch(cpuas->as);
3148 atomic_rcu_set(&cpuas->memory_dispatch, d);
3149 tlb_flush(cpuas->cpu);
3150 }
3151
3152 static void memory_map_init(void)
3153 {
3154 system_memory = g_malloc(sizeof(*system_memory));
3155
3156 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3157 address_space_init(&address_space_memory, system_memory, "memory");
3158
3159 system_io = g_malloc(sizeof(*system_io));
3160 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3161 65536);
3162 address_space_init(&address_space_io, system_io, "I/O");
3163 }
3164
3165 MemoryRegion *get_system_memory(void)
3166 {
3167 return system_memory;
3168 }
3169
3170 MemoryRegion *get_system_io(void)
3171 {
3172 return system_io;
3173 }
3174
3175 #endif /* !defined(CONFIG_USER_ONLY) */
3176
3177 /* physical memory access (slow version, mainly for debug) */
3178 #if defined(CONFIG_USER_ONLY)
3179 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3180 uint8_t *buf, target_ulong len, int is_write)
3181 {
3182 int flags;
3183 target_ulong l, page;
3184 void * p;
3185
3186 while (len > 0) {
3187 page = addr & TARGET_PAGE_MASK;
3188 l = (page + TARGET_PAGE_SIZE) - addr;
3189 if (l > len)
3190 l = len;
3191 flags = page_get_flags(page);
3192 if (!(flags & PAGE_VALID))
3193 return -1;
3194 if (is_write) {
3195 if (!(flags & PAGE_WRITE))
3196 return -1;
3197 /* XXX: this code should not depend on lock_user */
3198 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3199 return -1;
3200 memcpy(p, buf, l);
3201 unlock_user(p, addr, l);
3202 } else {
3203 if (!(flags & PAGE_READ))
3204 return -1;
3205 /* XXX: this code should not depend on lock_user */
3206 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3207 return -1;
3208 memcpy(buf, p, l);
3209 unlock_user(p, addr, 0);
3210 }
3211 len -= l;
3212 buf += l;
3213 addr += l;
3214 }
3215 return 0;
3216 }
3217
3218 #else
3219
3220 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3221 hwaddr length)
3222 {
3223 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3224 addr += memory_region_get_ram_addr(mr);
3225
3226 /* No early return if dirty_log_mask is or becomes 0, because
3227 * cpu_physical_memory_set_dirty_range will still call
3228 * xen_modified_memory.
3229 */
3230 if (dirty_log_mask) {
3231 dirty_log_mask =
3232 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3233 }
3234 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3235 assert(tcg_enabled());
3236 tb_invalidate_phys_range(addr, addr + length);
3237 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3238 }
3239 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3240 }
3241
3242 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3243 {
3244 /*
3245 * In principle this function would work on other memory region types too,
3246 * but the ROM device use case is the only one where this operation is
3247 * necessary. Other memory regions should use the
3248 * address_space_read/write() APIs.
3249 */
3250 assert(memory_region_is_romd(mr));
3251
3252 invalidate_and_set_dirty(mr, addr, size);
3253 }
3254
3255 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3256 {
3257 unsigned access_size_max = mr->ops->valid.max_access_size;
3258
3259 /* Regions are assumed to support 1-4 byte accesses unless
3260 otherwise specified. */
3261 if (access_size_max == 0) {
3262 access_size_max = 4;
3263 }
3264
3265 /* Bound the maximum access by the alignment of the address. */
3266 if (!mr->ops->impl.unaligned) {
3267 unsigned align_size_max = addr & -addr;
3268 if (align_size_max != 0 && align_size_max < access_size_max) {
3269 access_size_max = align_size_max;
3270 }
3271 }
3272
3273 /* Don't attempt accesses larger than the maximum. */
3274 if (l > access_size_max) {
3275 l = access_size_max;
3276 }
3277 l = pow2floor(l);
3278
3279 return l;
3280 }
3281
3282 static bool prepare_mmio_access(MemoryRegion *mr)
3283 {
3284 bool unlocked = !qemu_mutex_iothread_locked();
3285 bool release_lock = false;
3286
3287 if (unlocked && mr->global_locking) {
3288 qemu_mutex_lock_iothread();
3289 unlocked = false;
3290 release_lock = true;
3291 }
3292 if (mr->flush_coalesced_mmio) {
3293 if (unlocked) {
3294 qemu_mutex_lock_iothread();
3295 }
3296 qemu_flush_coalesced_mmio_buffer();
3297 if (unlocked) {
3298 qemu_mutex_unlock_iothread();
3299 }
3300 }
3301
3302 return release_lock;
3303 }
3304
3305 /* Called within RCU critical section. */
3306 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3307 MemTxAttrs attrs,
3308 const uint8_t *buf,
3309 hwaddr len, hwaddr addr1,
3310 hwaddr l, MemoryRegion *mr)
3311 {
3312 uint8_t *ptr;
3313 uint64_t val;
3314 MemTxResult result = MEMTX_OK;
3315 bool release_lock = false;
3316
3317 for (;;) {
3318 if (!memory_access_is_direct(mr, true)) {
3319 release_lock |= prepare_mmio_access(mr);
3320 l = memory_access_size(mr, l, addr1);
3321 /* XXX: could force current_cpu to NULL to avoid
3322 potential bugs */
3323 val = ldn_p(buf, l);
3324 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
3325 } else {
3326 /* RAM case */
3327 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3328 memcpy(ptr, buf, l);
3329 invalidate_and_set_dirty(mr, addr1, l);
3330 }
3331
3332 if (release_lock) {
3333 qemu_mutex_unlock_iothread();
3334 release_lock = false;
3335 }
3336
3337 len -= l;
3338 buf += l;
3339 addr += l;
3340
3341 if (!len) {
3342 break;
3343 }
3344
3345 l = len;
3346 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3347 }
3348
3349 return result;
3350 }
3351
3352 /* Called from RCU critical section. */
3353 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3354 const uint8_t *buf, hwaddr len)
3355 {
3356 hwaddr l;
3357 hwaddr addr1;
3358 MemoryRegion *mr;
3359 MemTxResult result = MEMTX_OK;
3360
3361 l = len;
3362 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3363 result = flatview_write_continue(fv, addr, attrs, buf, len,
3364 addr1, l, mr);
3365
3366 return result;
3367 }
3368
3369 /* Called within RCU critical section. */
3370 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3371 MemTxAttrs attrs, uint8_t *buf,
3372 hwaddr len, hwaddr addr1, hwaddr l,
3373 MemoryRegion *mr)
3374 {
3375 uint8_t *ptr;
3376 uint64_t val;
3377 MemTxResult result = MEMTX_OK;
3378 bool release_lock = false;
3379
3380 for (;;) {
3381 if (!memory_access_is_direct(mr, false)) {
3382 /* I/O case */
3383 release_lock |= prepare_mmio_access(mr);
3384 l = memory_access_size(mr, l, addr1);
3385 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3386 stn_p(buf, l, val);
3387 } else {
3388 /* RAM case */
3389 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3390 memcpy(buf, ptr, l);
3391 }
3392
3393 if (release_lock) {
3394 qemu_mutex_unlock_iothread();
3395 release_lock = false;
3396 }
3397
3398 len -= l;
3399 buf += l;
3400 addr += l;
3401
3402 if (!len) {
3403 break;
3404 }
3405
3406 l = len;
3407 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3408 }
3409
3410 return result;
3411 }
3412
3413 /* Called from RCU critical section. */
3414 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3415 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3416 {
3417 hwaddr l;
3418 hwaddr addr1;
3419 MemoryRegion *mr;
3420
3421 l = len;
3422 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3423 return flatview_read_continue(fv, addr, attrs, buf, len,
3424 addr1, l, mr);
3425 }
3426
3427 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3428 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3429 {
3430 MemTxResult result = MEMTX_OK;
3431 FlatView *fv;
3432
3433 if (len > 0) {
3434 rcu_read_lock();
3435 fv = address_space_to_flatview(as);
3436 result = flatview_read(fv, addr, attrs, buf, len);
3437 rcu_read_unlock();
3438 }
3439
3440 return result;
3441 }
3442
3443 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3444 MemTxAttrs attrs,
3445 const uint8_t *buf, hwaddr len)
3446 {
3447 MemTxResult result = MEMTX_OK;
3448 FlatView *fv;
3449
3450 if (len > 0) {
3451 rcu_read_lock();
3452 fv = address_space_to_flatview(as);
3453 result = flatview_write(fv, addr, attrs, buf, len);
3454 rcu_read_unlock();
3455 }
3456
3457 return result;
3458 }
3459
3460 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3461 uint8_t *buf, hwaddr len, bool is_write)
3462 {
3463 if (is_write) {
3464 return address_space_write(as, addr, attrs, buf, len);
3465 } else {
3466 return address_space_read_full(as, addr, attrs, buf, len);
3467 }
3468 }
3469
3470 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3471 hwaddr len, int is_write)
3472 {
3473 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3474 buf, len, is_write);
3475 }
3476
3477 enum write_rom_type {
3478 WRITE_DATA,
3479 FLUSH_CACHE,
3480 };
3481
3482 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3483 hwaddr addr,
3484 MemTxAttrs attrs,
3485 const uint8_t *buf,
3486 hwaddr len,
3487 enum write_rom_type type)
3488 {
3489 hwaddr l;
3490 uint8_t *ptr;
3491 hwaddr addr1;
3492 MemoryRegion *mr;
3493
3494 rcu_read_lock();
3495 while (len > 0) {
3496 l = len;
3497 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3498
3499 if (!(memory_region_is_ram(mr) ||
3500 memory_region_is_romd(mr))) {
3501 l = memory_access_size(mr, l, addr1);
3502 } else {
3503 /* ROM/RAM case */
3504 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3505 switch (type) {
3506 case WRITE_DATA:
3507 memcpy(ptr, buf, l);
3508 invalidate_and_set_dirty(mr, addr1, l);
3509 break;
3510 case FLUSH_CACHE:
3511 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3512 break;
3513 }
3514 }
3515 len -= l;
3516 buf += l;
3517 addr += l;
3518 }
3519 rcu_read_unlock();
3520 return MEMTX_OK;
3521 }
3522
3523 /* used for ROM loading : can write in RAM and ROM */
3524 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3525 MemTxAttrs attrs,
3526 const uint8_t *buf, hwaddr len)
3527 {
3528 return address_space_write_rom_internal(as, addr, attrs,
3529 buf, len, WRITE_DATA);
3530 }
3531
3532 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3533 {
3534 /*
3535 * This function should do the same thing as an icache flush that was
3536 * triggered from within the guest. For TCG we are always cache coherent,
3537 * so there is no need to flush anything. For KVM / Xen we need to flush
3538 * the host's instruction cache at least.
3539 */
3540 if (tcg_enabled()) {
3541 return;
3542 }
3543
3544 address_space_write_rom_internal(&address_space_memory,
3545 start, MEMTXATTRS_UNSPECIFIED,
3546 NULL, len, FLUSH_CACHE);
3547 }
3548
3549 typedef struct {
3550 MemoryRegion *mr;
3551 void *buffer;
3552 hwaddr addr;
3553 hwaddr len;
3554 bool in_use;
3555 } BounceBuffer;
3556
3557 static BounceBuffer bounce;
3558
3559 typedef struct MapClient {
3560 QEMUBH *bh;
3561 QLIST_ENTRY(MapClient) link;
3562 } MapClient;
3563
3564 QemuMutex map_client_list_lock;
3565 static QLIST_HEAD(, MapClient) map_client_list
3566 = QLIST_HEAD_INITIALIZER(map_client_list);
3567
3568 static void cpu_unregister_map_client_do(MapClient *client)
3569 {
3570 QLIST_REMOVE(client, link);
3571 g_free(client);
3572 }
3573
3574 static void cpu_notify_map_clients_locked(void)
3575 {
3576 MapClient *client;
3577
3578 while (!QLIST_EMPTY(&map_client_list)) {
3579 client = QLIST_FIRST(&map_client_list);
3580 qemu_bh_schedule(client->bh);
3581 cpu_unregister_map_client_do(client);
3582 }
3583 }
3584
3585 void cpu_register_map_client(QEMUBH *bh)
3586 {
3587 MapClient *client = g_malloc(sizeof(*client));
3588
3589 qemu_mutex_lock(&map_client_list_lock);
3590 client->bh = bh;
3591 QLIST_INSERT_HEAD(&map_client_list, client, link);
3592 if (!atomic_read(&bounce.in_use)) {
3593 cpu_notify_map_clients_locked();
3594 }
3595 qemu_mutex_unlock(&map_client_list_lock);
3596 }
3597
3598 void cpu_exec_init_all(void)
3599 {
3600 qemu_mutex_init(&ram_list.mutex);
3601 /* The data structures we set up here depend on knowing the page size,
3602 * so no more changes can be made after this point.
3603 * In an ideal world, nothing we did before we had finished the
3604 * machine setup would care about the target page size, and we could
3605 * do this much later, rather than requiring board models to state
3606 * up front what their requirements are.
3607 */
3608 finalize_target_page_bits();
3609 io_mem_init();
3610 memory_map_init();
3611 qemu_mutex_init(&map_client_list_lock);
3612 }
3613
3614 void cpu_unregister_map_client(QEMUBH *bh)
3615 {
3616 MapClient *client;
3617
3618 qemu_mutex_lock(&map_client_list_lock);
3619 QLIST_FOREACH(client, &map_client_list, link) {
3620 if (client->bh == bh) {
3621 cpu_unregister_map_client_do(client);
3622 break;
3623 }
3624 }
3625 qemu_mutex_unlock(&map_client_list_lock);
3626 }
3627
3628 static void cpu_notify_map_clients(void)
3629 {
3630 qemu_mutex_lock(&map_client_list_lock);
3631 cpu_notify_map_clients_locked();
3632 qemu_mutex_unlock(&map_client_list_lock);
3633 }
3634
3635 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3636 bool is_write, MemTxAttrs attrs)
3637 {
3638 MemoryRegion *mr;
3639 hwaddr l, xlat;
3640
3641 while (len > 0) {
3642 l = len;
3643 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3644 if (!memory_access_is_direct(mr, is_write)) {
3645 l = memory_access_size(mr, l, addr);
3646 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3647 return false;
3648 }
3649 }
3650
3651 len -= l;
3652 addr += l;
3653 }
3654 return true;
3655 }
3656
3657 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3658 hwaddr len, bool is_write,
3659 MemTxAttrs attrs)
3660 {
3661 FlatView *fv;
3662 bool result;
3663
3664 rcu_read_lock();
3665 fv = address_space_to_flatview(as);
3666 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3667 rcu_read_unlock();
3668 return result;
3669 }
3670
3671 static hwaddr
3672 flatview_extend_translation(FlatView *fv, hwaddr addr,
3673 hwaddr target_len,
3674 MemoryRegion *mr, hwaddr base, hwaddr len,
3675 bool is_write, MemTxAttrs attrs)
3676 {
3677 hwaddr done = 0;
3678 hwaddr xlat;
3679 MemoryRegion *this_mr;
3680
3681 for (;;) {
3682 target_len -= len;
3683 addr += len;
3684 done += len;
3685 if (target_len == 0) {
3686 return done;
3687 }
3688
3689 len = target_len;
3690 this_mr = flatview_translate(fv, addr, &xlat,
3691 &len, is_write, attrs);
3692 if (this_mr != mr || xlat != base + done) {
3693 return done;
3694 }
3695 }
3696 }
3697
3698 /* Map a physical memory region into a host virtual address.
3699 * May map a subset of the requested range, given by and returned in *plen.
3700 * May return NULL if resources needed to perform the mapping are exhausted.
3701 * Use only for reads OR writes - not for read-modify-write operations.
3702 * Use cpu_register_map_client() to know when retrying the map operation is
3703 * likely to succeed.
3704 */
3705 void *address_space_map(AddressSpace *as,
3706 hwaddr addr,
3707 hwaddr *plen,
3708 bool is_write,
3709 MemTxAttrs attrs)
3710 {
3711 hwaddr len = *plen;
3712 hwaddr l, xlat;
3713 MemoryRegion *mr;
3714 void *ptr;
3715 FlatView *fv;
3716
3717 if (len == 0) {
3718 return NULL;
3719 }
3720
3721 l = len;
3722 rcu_read_lock();
3723 fv = address_space_to_flatview(as);
3724 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3725
3726 if (!memory_access_is_direct(mr, is_write)) {
3727 if (atomic_xchg(&bounce.in_use, true)) {
3728 rcu_read_unlock();
3729 return NULL;
3730 }
3731 /* Avoid unbounded allocations */
3732 l = MIN(l, TARGET_PAGE_SIZE);
3733 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3734 bounce.addr = addr;
3735 bounce.len = l;
3736
3737 memory_region_ref(mr);
3738 bounce.mr = mr;
3739 if (!is_write) {
3740 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3741 bounce.buffer, l);
3742 }
3743
3744 rcu_read_unlock();
3745 *plen = l;
3746 return bounce.buffer;
3747 }
3748
3749
3750 memory_region_ref(mr);
3751 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3752 l, is_write, attrs);
3753 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3754 rcu_read_unlock();
3755
3756 return ptr;
3757 }
3758
3759 /* Unmaps a memory region previously mapped by address_space_map().
3760 * Will also mark the memory as dirty if is_write == 1. access_len gives
3761 * the amount of memory that was actually read or written by the caller.
3762 */
3763 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3764 int is_write, hwaddr access_len)
3765 {
3766 if (buffer != bounce.buffer) {
3767 MemoryRegion *mr;
3768 ram_addr_t addr1;
3769
3770 mr = memory_region_from_host(buffer, &addr1);
3771 assert(mr != NULL);
3772 if (is_write) {
3773 invalidate_and_set_dirty(mr, addr1, access_len);
3774 }
3775 if (xen_enabled()) {
3776 xen_invalidate_map_cache_entry(buffer);
3777 }
3778 memory_region_unref(mr);
3779 return;
3780 }
3781 if (is_write) {
3782 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3783 bounce.buffer, access_len);
3784 }
3785 qemu_vfree(bounce.buffer);
3786 bounce.buffer = NULL;
3787 memory_region_unref(bounce.mr);
3788 atomic_mb_set(&bounce.in_use, false);
3789 cpu_notify_map_clients();
3790 }
3791
3792 void *cpu_physical_memory_map(hwaddr addr,
3793 hwaddr *plen,
3794 int is_write)
3795 {
3796 return address_space_map(&address_space_memory, addr, plen, is_write,
3797 MEMTXATTRS_UNSPECIFIED);
3798 }
3799
3800 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3801 int is_write, hwaddr access_len)
3802 {
3803 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3804 }
3805
3806 #define ARG1_DECL AddressSpace *as
3807 #define ARG1 as
3808 #define SUFFIX
3809 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3810 #define RCU_READ_LOCK(...) rcu_read_lock()
3811 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3812 #include "memory_ldst.inc.c"
3813
3814 int64_t address_space_cache_init(MemoryRegionCache *cache,
3815 AddressSpace *as,
3816 hwaddr addr,
3817 hwaddr len,
3818 bool is_write)
3819 {
3820 AddressSpaceDispatch *d;
3821 hwaddr l;
3822 MemoryRegion *mr;
3823
3824 assert(len > 0);
3825
3826 l = len;
3827 cache->fv = address_space_get_flatview(as);
3828 d = flatview_to_dispatch(cache->fv);
3829 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3830
3831 mr = cache->mrs.mr;
3832 memory_region_ref(mr);
3833 if (memory_access_is_direct(mr, is_write)) {
3834 /* We don't care about the memory attributes here as we're only
3835 * doing this if we found actual RAM, which behaves the same
3836 * regardless of attributes; so UNSPECIFIED is fine.
3837 */
3838 l = flatview_extend_translation(cache->fv, addr, len, mr,
3839 cache->xlat, l, is_write,
3840 MEMTXATTRS_UNSPECIFIED);
3841 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3842 } else {
3843 cache->ptr = NULL;
3844 }
3845
3846 cache->len = l;
3847 cache->is_write = is_write;
3848 return l;
3849 }
3850
3851 void address_space_cache_invalidate(MemoryRegionCache *cache,
3852 hwaddr addr,
3853 hwaddr access_len)
3854 {
3855 assert(cache->is_write);
3856 if (likely(cache->ptr)) {
3857 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3858 }
3859 }
3860
3861 void address_space_cache_destroy(MemoryRegionCache *cache)
3862 {
3863 if (!cache->mrs.mr) {
3864 return;
3865 }
3866
3867 if (xen_enabled()) {
3868 xen_invalidate_map_cache_entry(cache->ptr);
3869 }
3870 memory_region_unref(cache->mrs.mr);
3871 flatview_unref(cache->fv);
3872 cache->mrs.mr = NULL;
3873 cache->fv = NULL;
3874 }
3875
3876 /* Called from RCU critical section. This function has the same
3877 * semantics as address_space_translate, but it only works on a
3878 * predefined range of a MemoryRegion that was mapped with
3879 * address_space_cache_init.
3880 */
3881 static inline MemoryRegion *address_space_translate_cached(
3882 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3883 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3884 {
3885 MemoryRegionSection section;
3886 MemoryRegion *mr;
3887 IOMMUMemoryRegion *iommu_mr;
3888 AddressSpace *target_as;
3889
3890 assert(!cache->ptr);
3891 *xlat = addr + cache->xlat;
3892
3893 mr = cache->mrs.mr;
3894 iommu_mr = memory_region_get_iommu(mr);
3895 if (!iommu_mr) {
3896 /* MMIO region. */
3897 return mr;
3898 }
3899
3900 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3901 NULL, is_write, true,
3902 &target_as, attrs);
3903 return section.mr;
3904 }
3905
3906 /* Called from RCU critical section. address_space_read_cached uses this
3907 * out of line function when the target is an MMIO or IOMMU region.
3908 */
3909 void
3910 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3911 void *buf, hwaddr len)
3912 {
3913 hwaddr addr1, l;
3914 MemoryRegion *mr;
3915
3916 l = len;
3917 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3918 MEMTXATTRS_UNSPECIFIED);
3919 flatview_read_continue(cache->fv,
3920 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3921 addr1, l, mr);
3922 }
3923
3924 /* Called from RCU critical section. address_space_write_cached uses this
3925 * out of line function when the target is an MMIO or IOMMU region.
3926 */
3927 void
3928 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3929 const void *buf, hwaddr len)
3930 {
3931 hwaddr addr1, l;
3932 MemoryRegion *mr;
3933
3934 l = len;
3935 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3936 MEMTXATTRS_UNSPECIFIED);
3937 flatview_write_continue(cache->fv,
3938 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3939 addr1, l, mr);
3940 }
3941
3942 #define ARG1_DECL MemoryRegionCache *cache
3943 #define ARG1 cache
3944 #define SUFFIX _cached_slow
3945 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3946 #define RCU_READ_LOCK() ((void)0)
3947 #define RCU_READ_UNLOCK() ((void)0)
3948 #include "memory_ldst.inc.c"
3949
3950 /* virtual memory access for debug (includes writing to ROM) */
3951 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3952 uint8_t *buf, target_ulong len, int is_write)
3953 {
3954 hwaddr phys_addr;
3955 target_ulong l, page;
3956
3957 cpu_synchronize_state(cpu);
3958 while (len > 0) {
3959 int asidx;
3960 MemTxAttrs attrs;
3961
3962 page = addr & TARGET_PAGE_MASK;
3963 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3964 asidx = cpu_asidx_from_attrs(cpu, attrs);
3965 /* if no physical page mapped, return an error */
3966 if (phys_addr == -1)
3967 return -1;
3968 l = (page + TARGET_PAGE_SIZE) - addr;
3969 if (l > len)
3970 l = len;
3971 phys_addr += (addr & ~TARGET_PAGE_MASK);
3972 if (is_write) {
3973 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3974 attrs, buf, l);
3975 } else {
3976 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3977 attrs, buf, l, 0);
3978 }
3979 len -= l;
3980 buf += l;
3981 addr += l;
3982 }
3983 return 0;
3984 }
3985
3986 /*
3987 * Allows code that needs to deal with migration bitmaps etc to still be built
3988 * target independent.
3989 */
3990 size_t qemu_target_page_size(void)
3991 {
3992 return TARGET_PAGE_SIZE;
3993 }
3994
3995 int qemu_target_page_bits(void)
3996 {
3997 return TARGET_PAGE_BITS;
3998 }
3999
4000 int qemu_target_page_bits_min(void)
4001 {
4002 return TARGET_PAGE_BITS_MIN;
4003 }
4004 #endif
4005
4006 bool target_words_bigendian(void)
4007 {
4008 #if defined(TARGET_WORDS_BIGENDIAN)
4009 return true;
4010 #else
4011 return false;
4012 #endif
4013 }
4014
4015 #ifndef CONFIG_USER_ONLY
4016 bool cpu_physical_memory_is_io(hwaddr phys_addr)
4017 {
4018 MemoryRegion*mr;
4019 hwaddr l = 1;
4020 bool res;
4021
4022 rcu_read_lock();
4023 mr = address_space_translate(&address_space_memory,
4024 phys_addr, &phys_addr, &l, false,
4025 MEMTXATTRS_UNSPECIFIED);
4026
4027 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
4028 rcu_read_unlock();
4029 return res;
4030 }
4031
4032 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
4033 {
4034 RAMBlock *block;
4035 int ret = 0;
4036
4037 rcu_read_lock();
4038 RAMBLOCK_FOREACH(block) {
4039 ret = func(block, opaque);
4040 if (ret) {
4041 break;
4042 }
4043 }
4044 rcu_read_unlock();
4045 return ret;
4046 }
4047
4048 /*
4049 * Unmap pages of memory from start to start+length such that
4050 * they a) read as 0, b) Trigger whatever fault mechanism
4051 * the OS provides for postcopy.
4052 * The pages must be unmapped by the end of the function.
4053 * Returns: 0 on success, none-0 on failure
4054 *
4055 */
4056 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4057 {
4058 int ret = -1;
4059
4060 uint8_t *host_startaddr = rb->host + start;
4061
4062 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4063 error_report("ram_block_discard_range: Unaligned start address: %p",
4064 host_startaddr);
4065 goto err;
4066 }
4067
4068 if ((start + length) <= rb->used_length) {
4069 bool need_madvise, need_fallocate;
4070 uint8_t *host_endaddr = host_startaddr + length;
4071 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4072 error_report("ram_block_discard_range: Unaligned end address: %p",
4073 host_endaddr);
4074 goto err;
4075 }
4076
4077 errno = ENOTSUP; /* If we are missing MADVISE etc */
4078
4079 /* The logic here is messy;
4080 * madvise DONTNEED fails for hugepages
4081 * fallocate works on hugepages and shmem
4082 */
4083 need_madvise = (rb->page_size == qemu_host_page_size);
4084 need_fallocate = rb->fd != -1;
4085 if (need_fallocate) {
4086 /* For a file, this causes the area of the file to be zero'd
4087 * if read, and for hugetlbfs also causes it to be unmapped
4088 * so a userfault will trigger.
4089 */
4090 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4091 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4092 start, length);
4093 if (ret) {
4094 ret = -errno;
4095 error_report("ram_block_discard_range: Failed to fallocate "
4096 "%s:%" PRIx64 " +%zx (%d)",
4097 rb->idstr, start, length, ret);
4098 goto err;
4099 }
4100 #else
4101 ret = -ENOSYS;
4102 error_report("ram_block_discard_range: fallocate not available/file"
4103 "%s:%" PRIx64 " +%zx (%d)",
4104 rb->idstr, start, length, ret);
4105 goto err;
4106 #endif
4107 }
4108 if (need_madvise) {
4109 /* For normal RAM this causes it to be unmapped,
4110 * for shared memory it causes the local mapping to disappear
4111 * and to fall back on the file contents (which we just
4112 * fallocate'd away).
4113 */
4114 #if defined(CONFIG_MADVISE)
4115 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4116 if (ret) {
4117 ret = -errno;
4118 error_report("ram_block_discard_range: Failed to discard range "
4119 "%s:%" PRIx64 " +%zx (%d)",
4120 rb->idstr, start, length, ret);
4121 goto err;
4122 }
4123 #else
4124 ret = -ENOSYS;
4125 error_report("ram_block_discard_range: MADVISE not available"
4126 "%s:%" PRIx64 " +%zx (%d)",
4127 rb->idstr, start, length, ret);
4128 goto err;
4129 #endif
4130 }
4131 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4132 need_madvise, need_fallocate, ret);
4133 } else {
4134 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4135 "/%zx/" RAM_ADDR_FMT")",
4136 rb->idstr, start, length, rb->used_length);
4137 }
4138
4139 err:
4140 return ret;
4141 }
4142
4143 bool ramblock_is_pmem(RAMBlock *rb)
4144 {
4145 return rb->flags & RAM_PMEM;
4146 }
4147
4148 #endif
4149
4150 void page_size_init(void)
4151 {
4152 /* NOTE: we can always suppose that qemu_host_page_size >=
4153 TARGET_PAGE_SIZE */
4154 if (qemu_host_page_size == 0) {
4155 qemu_host_page_size = qemu_real_host_page_size;
4156 }
4157 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4158 qemu_host_page_size = TARGET_PAGE_SIZE;
4159 }
4160 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4161 }
4162
4163 #if !defined(CONFIG_USER_ONLY)
4164
4165 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
4166 {
4167 if (start == end - 1) {
4168 qemu_printf("\t%3d ", start);
4169 } else {
4170 qemu_printf("\t%3d..%-3d ", start, end - 1);
4171 }
4172 qemu_printf(" skip=%d ", skip);
4173 if (ptr == PHYS_MAP_NODE_NIL) {
4174 qemu_printf(" ptr=NIL");
4175 } else if (!skip) {
4176 qemu_printf(" ptr=#%d", ptr);
4177 } else {
4178 qemu_printf(" ptr=[%d]", ptr);
4179 }
4180 qemu_printf("\n");
4181 }
4182
4183 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4184 int128_sub((size), int128_one())) : 0)
4185
4186 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4187 {
4188 int i;
4189
4190 qemu_printf(" Dispatch\n");
4191 qemu_printf(" Physical sections\n");
4192
4193 for (i = 0; i < d->map.sections_nb; ++i) {
4194 MemoryRegionSection *s = d->map.sections + i;
4195 const char *names[] = { " [unassigned]", " [not dirty]",
4196 " [ROM]", " [watch]" };
4197
4198 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4199 " %s%s%s%s%s",
4200 i,
4201 s->offset_within_address_space,
4202 s->offset_within_address_space + MR_SIZE(s->mr->size),
4203 s->mr->name ? s->mr->name : "(noname)",
4204 i < ARRAY_SIZE(names) ? names[i] : "",
4205 s->mr == root ? " [ROOT]" : "",
4206 s == d->mru_section ? " [MRU]" : "",
4207 s->mr->is_iommu ? " [iommu]" : "");
4208
4209 if (s->mr->alias) {
4210 qemu_printf(" alias=%s", s->mr->alias->name ?
4211 s->mr->alias->name : "noname");
4212 }
4213 qemu_printf("\n");
4214 }
4215
4216 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4217 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4218 for (i = 0; i < d->map.nodes_nb; ++i) {
4219 int j, jprev;
4220 PhysPageEntry prev;
4221 Node *n = d->map.nodes + i;
4222
4223 qemu_printf(" [%d]\n", i);
4224
4225 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4226 PhysPageEntry *pe = *n + j;
4227
4228 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4229 continue;
4230 }
4231
4232 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4233
4234 jprev = j;
4235 prev = *pe;
4236 }
4237
4238 if (jprev != ARRAY_SIZE(*n)) {
4239 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4240 }
4241 }
4242 }
4243
4244 #endif