]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
Merge remote-tracking branch 'remotes/vivier2/tags/linux-user-for-5.1-pull-request...
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg/tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/qtest.h"
39 #include "qemu/timer.h"
40 #include "qemu/config-file.h"
41 #include "qemu/error-report.h"
42 #include "qemu/qemu-print.h"
43 #if defined(CONFIG_USER_ONLY)
44 #include "qemu.h"
45 #else /* !CONFIG_USER_ONLY */
46 #include "exec/memory.h"
47 #include "exec/ioport.h"
48 #include "sysemu/dma.h"
49 #include "sysemu/hostmem.h"
50 #include "sysemu/hw_accel.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/xen-mapcache.h"
53 #include "trace-root.h"
54
55 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
56 #include <linux/falloc.h>
57 #endif
58
59 #endif
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "translate-all.h"
63 #include "sysemu/replay.h"
64
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
67 #include "exec/log.h"
68
69 #include "qemu/pmem.h"
70
71 #include "migration/vmstate.h"
72
73 #include "qemu/range.h"
74 #ifndef _WIN32
75 #include "qemu/mmap-alloc.h"
76 #endif
77
78 #include "monitor/monitor.h"
79
80 //#define DEBUG_SUBPAGE
81
82 #if !defined(CONFIG_USER_ONLY)
83 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
84 * are protected by the ramlist lock.
85 */
86 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
87
88 static MemoryRegion *system_memory;
89 static MemoryRegion *system_io;
90
91 AddressSpace address_space_io;
92 AddressSpace address_space_memory;
93
94 static MemoryRegion io_mem_unassigned;
95 #endif
96
97 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
98
99 /* current CPU in the current thread. It is only valid inside
100 cpu_exec() */
101 __thread CPUState *current_cpu;
102
103 uintptr_t qemu_host_page_size;
104 intptr_t qemu_host_page_mask;
105
106 #if !defined(CONFIG_USER_ONLY)
107 /* 0 = Do not count executed instructions.
108 1 = Precise instruction counting.
109 2 = Adaptive rate instruction counting. */
110 int use_icount;
111
112 typedef struct PhysPageEntry PhysPageEntry;
113
114 struct PhysPageEntry {
115 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
116 uint32_t skip : 6;
117 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
118 uint32_t ptr : 26;
119 };
120
121 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
122
123 /* Size of the L2 (and L3, etc) page tables. */
124 #define ADDR_SPACE_BITS 64
125
126 #define P_L2_BITS 9
127 #define P_L2_SIZE (1 << P_L2_BITS)
128
129 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
130
131 typedef PhysPageEntry Node[P_L2_SIZE];
132
133 typedef struct PhysPageMap {
134 struct rcu_head rcu;
135
136 unsigned sections_nb;
137 unsigned sections_nb_alloc;
138 unsigned nodes_nb;
139 unsigned nodes_nb_alloc;
140 Node *nodes;
141 MemoryRegionSection *sections;
142 } PhysPageMap;
143
144 struct AddressSpaceDispatch {
145 MemoryRegionSection *mru_section;
146 /* This is a multi-level map on the physical address space.
147 * The bottom level has pointers to MemoryRegionSections.
148 */
149 PhysPageEntry phys_map;
150 PhysPageMap map;
151 };
152
153 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
154 typedef struct subpage_t {
155 MemoryRegion iomem;
156 FlatView *fv;
157 hwaddr base;
158 uint16_t sub_section[];
159 } subpage_t;
160
161 #define PHYS_SECTION_UNASSIGNED 0
162
163 static void io_mem_init(void);
164 static void memory_map_init(void);
165 static void tcg_log_global_after_sync(MemoryListener *listener);
166 static void tcg_commit(MemoryListener *listener);
167
168 /**
169 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
170 * @cpu: the CPU whose AddressSpace this is
171 * @as: the AddressSpace itself
172 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
173 * @tcg_as_listener: listener for tracking changes to the AddressSpace
174 */
175 struct CPUAddressSpace {
176 CPUState *cpu;
177 AddressSpace *as;
178 struct AddressSpaceDispatch *memory_dispatch;
179 MemoryListener tcg_as_listener;
180 };
181
182 struct DirtyBitmapSnapshot {
183 ram_addr_t start;
184 ram_addr_t end;
185 unsigned long dirty[];
186 };
187
188 #endif
189
190 #if !defined(CONFIG_USER_ONLY)
191
192 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
193 {
194 static unsigned alloc_hint = 16;
195 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
196 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
197 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
198 alloc_hint = map->nodes_nb_alloc;
199 }
200 }
201
202 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
203 {
204 unsigned i;
205 uint32_t ret;
206 PhysPageEntry e;
207 PhysPageEntry *p;
208
209 ret = map->nodes_nb++;
210 p = map->nodes[ret];
211 assert(ret != PHYS_MAP_NODE_NIL);
212 assert(ret != map->nodes_nb_alloc);
213
214 e.skip = leaf ? 0 : 1;
215 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
216 for (i = 0; i < P_L2_SIZE; ++i) {
217 memcpy(&p[i], &e, sizeof(e));
218 }
219 return ret;
220 }
221
222 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
223 hwaddr *index, uint64_t *nb, uint16_t leaf,
224 int level)
225 {
226 PhysPageEntry *p;
227 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
228
229 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
230 lp->ptr = phys_map_node_alloc(map, level == 0);
231 }
232 p = map->nodes[lp->ptr];
233 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
234
235 while (*nb && lp < &p[P_L2_SIZE]) {
236 if ((*index & (step - 1)) == 0 && *nb >= step) {
237 lp->skip = 0;
238 lp->ptr = leaf;
239 *index += step;
240 *nb -= step;
241 } else {
242 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
243 }
244 ++lp;
245 }
246 }
247
248 static void phys_page_set(AddressSpaceDispatch *d,
249 hwaddr index, uint64_t nb,
250 uint16_t leaf)
251 {
252 /* Wildly overreserve - it doesn't matter much. */
253 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
254
255 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
256 }
257
258 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
259 * and update our entry so we can skip it and go directly to the destination.
260 */
261 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
262 {
263 unsigned valid_ptr = P_L2_SIZE;
264 int valid = 0;
265 PhysPageEntry *p;
266 int i;
267
268 if (lp->ptr == PHYS_MAP_NODE_NIL) {
269 return;
270 }
271
272 p = nodes[lp->ptr];
273 for (i = 0; i < P_L2_SIZE; i++) {
274 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
275 continue;
276 }
277
278 valid_ptr = i;
279 valid++;
280 if (p[i].skip) {
281 phys_page_compact(&p[i], nodes);
282 }
283 }
284
285 /* We can only compress if there's only one child. */
286 if (valid != 1) {
287 return;
288 }
289
290 assert(valid_ptr < P_L2_SIZE);
291
292 /* Don't compress if it won't fit in the # of bits we have. */
293 if (P_L2_LEVELS >= (1 << 6) &&
294 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
295 return;
296 }
297
298 lp->ptr = p[valid_ptr].ptr;
299 if (!p[valid_ptr].skip) {
300 /* If our only child is a leaf, make this a leaf. */
301 /* By design, we should have made this node a leaf to begin with so we
302 * should never reach here.
303 * But since it's so simple to handle this, let's do it just in case we
304 * change this rule.
305 */
306 lp->skip = 0;
307 } else {
308 lp->skip += p[valid_ptr].skip;
309 }
310 }
311
312 void address_space_dispatch_compact(AddressSpaceDispatch *d)
313 {
314 if (d->phys_map.skip) {
315 phys_page_compact(&d->phys_map, d->map.nodes);
316 }
317 }
318
319 static inline bool section_covers_addr(const MemoryRegionSection *section,
320 hwaddr addr)
321 {
322 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
323 * the section must cover the entire address space.
324 */
325 return int128_gethi(section->size) ||
326 range_covers_byte(section->offset_within_address_space,
327 int128_getlo(section->size), addr);
328 }
329
330 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
331 {
332 PhysPageEntry lp = d->phys_map, *p;
333 Node *nodes = d->map.nodes;
334 MemoryRegionSection *sections = d->map.sections;
335 hwaddr index = addr >> TARGET_PAGE_BITS;
336 int i;
337
338 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
339 if (lp.ptr == PHYS_MAP_NODE_NIL) {
340 return &sections[PHYS_SECTION_UNASSIGNED];
341 }
342 p = nodes[lp.ptr];
343 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
344 }
345
346 if (section_covers_addr(&sections[lp.ptr], addr)) {
347 return &sections[lp.ptr];
348 } else {
349 return &sections[PHYS_SECTION_UNASSIGNED];
350 }
351 }
352
353 /* Called from RCU critical section */
354 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
355 hwaddr addr,
356 bool resolve_subpage)
357 {
358 MemoryRegionSection *section = atomic_read(&d->mru_section);
359 subpage_t *subpage;
360
361 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
362 !section_covers_addr(section, addr)) {
363 section = phys_page_find(d, addr);
364 atomic_set(&d->mru_section, section);
365 }
366 if (resolve_subpage && section->mr->subpage) {
367 subpage = container_of(section->mr, subpage_t, iomem);
368 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
369 }
370 return section;
371 }
372
373 /* Called from RCU critical section */
374 static MemoryRegionSection *
375 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
376 hwaddr *plen, bool resolve_subpage)
377 {
378 MemoryRegionSection *section;
379 MemoryRegion *mr;
380 Int128 diff;
381
382 section = address_space_lookup_region(d, addr, resolve_subpage);
383 /* Compute offset within MemoryRegionSection */
384 addr -= section->offset_within_address_space;
385
386 /* Compute offset within MemoryRegion */
387 *xlat = addr + section->offset_within_region;
388
389 mr = section->mr;
390
391 /* MMIO registers can be expected to perform full-width accesses based only
392 * on their address, without considering adjacent registers that could
393 * decode to completely different MemoryRegions. When such registers
394 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
395 * regions overlap wildly. For this reason we cannot clamp the accesses
396 * here.
397 *
398 * If the length is small (as is the case for address_space_ldl/stl),
399 * everything works fine. If the incoming length is large, however,
400 * the caller really has to do the clamping through memory_access_size.
401 */
402 if (memory_region_is_ram(mr)) {
403 diff = int128_sub(section->size, int128_make64(addr));
404 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
405 }
406 return section;
407 }
408
409 /**
410 * address_space_translate_iommu - translate an address through an IOMMU
411 * memory region and then through the target address space.
412 *
413 * @iommu_mr: the IOMMU memory region that we start the translation from
414 * @addr: the address to be translated through the MMU
415 * @xlat: the translated address offset within the destination memory region.
416 * It cannot be %NULL.
417 * @plen_out: valid read/write length of the translated address. It
418 * cannot be %NULL.
419 * @page_mask_out: page mask for the translated address. This
420 * should only be meaningful for IOMMU translated
421 * addresses, since there may be huge pages that this bit
422 * would tell. It can be %NULL if we don't care about it.
423 * @is_write: whether the translation operation is for write
424 * @is_mmio: whether this can be MMIO, set true if it can
425 * @target_as: the address space targeted by the IOMMU
426 * @attrs: transaction attributes
427 *
428 * This function is called from RCU critical section. It is the common
429 * part of flatview_do_translate and address_space_translate_cached.
430 */
431 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
432 hwaddr *xlat,
433 hwaddr *plen_out,
434 hwaddr *page_mask_out,
435 bool is_write,
436 bool is_mmio,
437 AddressSpace **target_as,
438 MemTxAttrs attrs)
439 {
440 MemoryRegionSection *section;
441 hwaddr page_mask = (hwaddr)-1;
442
443 do {
444 hwaddr addr = *xlat;
445 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
446 int iommu_idx = 0;
447 IOMMUTLBEntry iotlb;
448
449 if (imrc->attrs_to_index) {
450 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
451 }
452
453 iotlb = imrc->translate(iommu_mr, addr, is_write ?
454 IOMMU_WO : IOMMU_RO, iommu_idx);
455
456 if (!(iotlb.perm & (1 << is_write))) {
457 goto unassigned;
458 }
459
460 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
461 | (addr & iotlb.addr_mask));
462 page_mask &= iotlb.addr_mask;
463 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
464 *target_as = iotlb.target_as;
465
466 section = address_space_translate_internal(
467 address_space_to_dispatch(iotlb.target_as), addr, xlat,
468 plen_out, is_mmio);
469
470 iommu_mr = memory_region_get_iommu(section->mr);
471 } while (unlikely(iommu_mr));
472
473 if (page_mask_out) {
474 *page_mask_out = page_mask;
475 }
476 return *section;
477
478 unassigned:
479 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
480 }
481
482 /**
483 * flatview_do_translate - translate an address in FlatView
484 *
485 * @fv: the flat view that we want to translate on
486 * @addr: the address to be translated in above address space
487 * @xlat: the translated address offset within memory region. It
488 * cannot be @NULL.
489 * @plen_out: valid read/write length of the translated address. It
490 * can be @NULL when we don't care about it.
491 * @page_mask_out: page mask for the translated address. This
492 * should only be meaningful for IOMMU translated
493 * addresses, since there may be huge pages that this bit
494 * would tell. It can be @NULL if we don't care about it.
495 * @is_write: whether the translation operation is for write
496 * @is_mmio: whether this can be MMIO, set true if it can
497 * @target_as: the address space targeted by the IOMMU
498 * @attrs: memory transaction attributes
499 *
500 * This function is called from RCU critical section
501 */
502 static MemoryRegionSection flatview_do_translate(FlatView *fv,
503 hwaddr addr,
504 hwaddr *xlat,
505 hwaddr *plen_out,
506 hwaddr *page_mask_out,
507 bool is_write,
508 bool is_mmio,
509 AddressSpace **target_as,
510 MemTxAttrs attrs)
511 {
512 MemoryRegionSection *section;
513 IOMMUMemoryRegion *iommu_mr;
514 hwaddr plen = (hwaddr)(-1);
515
516 if (!plen_out) {
517 plen_out = &plen;
518 }
519
520 section = address_space_translate_internal(
521 flatview_to_dispatch(fv), addr, xlat,
522 plen_out, is_mmio);
523
524 iommu_mr = memory_region_get_iommu(section->mr);
525 if (unlikely(iommu_mr)) {
526 return address_space_translate_iommu(iommu_mr, xlat,
527 plen_out, page_mask_out,
528 is_write, is_mmio,
529 target_as, attrs);
530 }
531 if (page_mask_out) {
532 /* Not behind an IOMMU, use default page size. */
533 *page_mask_out = ~TARGET_PAGE_MASK;
534 }
535
536 return *section;
537 }
538
539 /* Called from RCU critical section */
540 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
541 bool is_write, MemTxAttrs attrs)
542 {
543 MemoryRegionSection section;
544 hwaddr xlat, page_mask;
545
546 /*
547 * This can never be MMIO, and we don't really care about plen,
548 * but page mask.
549 */
550 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
551 NULL, &page_mask, is_write, false, &as,
552 attrs);
553
554 /* Illegal translation */
555 if (section.mr == &io_mem_unassigned) {
556 goto iotlb_fail;
557 }
558
559 /* Convert memory region offset into address space offset */
560 xlat += section.offset_within_address_space -
561 section.offset_within_region;
562
563 return (IOMMUTLBEntry) {
564 .target_as = as,
565 .iova = addr & ~page_mask,
566 .translated_addr = xlat & ~page_mask,
567 .addr_mask = page_mask,
568 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
569 .perm = IOMMU_RW,
570 };
571
572 iotlb_fail:
573 return (IOMMUTLBEntry) {0};
574 }
575
576 /* Called from RCU critical section */
577 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
578 hwaddr *plen, bool is_write,
579 MemTxAttrs attrs)
580 {
581 MemoryRegion *mr;
582 MemoryRegionSection section;
583 AddressSpace *as = NULL;
584
585 /* This can be MMIO, so setup MMIO bit. */
586 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
587 is_write, true, &as, attrs);
588 mr = section.mr;
589
590 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
591 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
592 *plen = MIN(page, *plen);
593 }
594
595 return mr;
596 }
597
598 typedef struct TCGIOMMUNotifier {
599 IOMMUNotifier n;
600 MemoryRegion *mr;
601 CPUState *cpu;
602 int iommu_idx;
603 bool active;
604 } TCGIOMMUNotifier;
605
606 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
607 {
608 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
609
610 if (!notifier->active) {
611 return;
612 }
613 tlb_flush(notifier->cpu);
614 notifier->active = false;
615 /* We leave the notifier struct on the list to avoid reallocating it later.
616 * Generally the number of IOMMUs a CPU deals with will be small.
617 * In any case we can't unregister the iommu notifier from a notify
618 * callback.
619 */
620 }
621
622 static void tcg_register_iommu_notifier(CPUState *cpu,
623 IOMMUMemoryRegion *iommu_mr,
624 int iommu_idx)
625 {
626 /* Make sure this CPU has an IOMMU notifier registered for this
627 * IOMMU/IOMMU index combination, so that we can flush its TLB
628 * when the IOMMU tells us the mappings we've cached have changed.
629 */
630 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
631 TCGIOMMUNotifier *notifier;
632 Error *err = NULL;
633 int i, ret;
634
635 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
636 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
637 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
638 break;
639 }
640 }
641 if (i == cpu->iommu_notifiers->len) {
642 /* Not found, add a new entry at the end of the array */
643 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
644 notifier = g_new0(TCGIOMMUNotifier, 1);
645 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
646
647 notifier->mr = mr;
648 notifier->iommu_idx = iommu_idx;
649 notifier->cpu = cpu;
650 /* Rather than trying to register interest in the specific part
651 * of the iommu's address space that we've accessed and then
652 * expand it later as subsequent accesses touch more of it, we
653 * just register interest in the whole thing, on the assumption
654 * that iommu reconfiguration will be rare.
655 */
656 iommu_notifier_init(&notifier->n,
657 tcg_iommu_unmap_notify,
658 IOMMU_NOTIFIER_UNMAP,
659 0,
660 HWADDR_MAX,
661 iommu_idx);
662 ret = memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
663 &err);
664 if (ret) {
665 error_report_err(err);
666 exit(1);
667 }
668 }
669
670 if (!notifier->active) {
671 notifier->active = true;
672 }
673 }
674
675 static void tcg_iommu_free_notifier_list(CPUState *cpu)
676 {
677 /* Destroy the CPU's notifier list */
678 int i;
679 TCGIOMMUNotifier *notifier;
680
681 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
682 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
683 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
684 g_free(notifier);
685 }
686 g_array_free(cpu->iommu_notifiers, true);
687 }
688
689 /* Called from RCU critical section */
690 MemoryRegionSection *
691 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
692 hwaddr *xlat, hwaddr *plen,
693 MemTxAttrs attrs, int *prot)
694 {
695 MemoryRegionSection *section;
696 IOMMUMemoryRegion *iommu_mr;
697 IOMMUMemoryRegionClass *imrc;
698 IOMMUTLBEntry iotlb;
699 int iommu_idx;
700 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
701
702 for (;;) {
703 section = address_space_translate_internal(d, addr, &addr, plen, false);
704
705 iommu_mr = memory_region_get_iommu(section->mr);
706 if (!iommu_mr) {
707 break;
708 }
709
710 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
711
712 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
713 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
714 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
715 * doesn't short-cut its translation table walk.
716 */
717 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
718 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
719 | (addr & iotlb.addr_mask));
720 /* Update the caller's prot bits to remove permissions the IOMMU
721 * is giving us a failure response for. If we get down to no
722 * permissions left at all we can give up now.
723 */
724 if (!(iotlb.perm & IOMMU_RO)) {
725 *prot &= ~(PAGE_READ | PAGE_EXEC);
726 }
727 if (!(iotlb.perm & IOMMU_WO)) {
728 *prot &= ~PAGE_WRITE;
729 }
730
731 if (!*prot) {
732 goto translate_fail;
733 }
734
735 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
736 }
737
738 assert(!memory_region_is_iommu(section->mr));
739 *xlat = addr;
740 return section;
741
742 translate_fail:
743 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
744 }
745 #endif
746
747 #if !defined(CONFIG_USER_ONLY)
748
749 static int cpu_common_post_load(void *opaque, int version_id)
750 {
751 CPUState *cpu = opaque;
752
753 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
754 version_id is increased. */
755 cpu->interrupt_request &= ~0x01;
756 tlb_flush(cpu);
757
758 /* loadvm has just updated the content of RAM, bypassing the
759 * usual mechanisms that ensure we flush TBs for writes to
760 * memory we've translated code from. So we must flush all TBs,
761 * which will now be stale.
762 */
763 tb_flush(cpu);
764
765 return 0;
766 }
767
768 static int cpu_common_pre_load(void *opaque)
769 {
770 CPUState *cpu = opaque;
771
772 cpu->exception_index = -1;
773
774 return 0;
775 }
776
777 static bool cpu_common_exception_index_needed(void *opaque)
778 {
779 CPUState *cpu = opaque;
780
781 return tcg_enabled() && cpu->exception_index != -1;
782 }
783
784 static const VMStateDescription vmstate_cpu_common_exception_index = {
785 .name = "cpu_common/exception_index",
786 .version_id = 1,
787 .minimum_version_id = 1,
788 .needed = cpu_common_exception_index_needed,
789 .fields = (VMStateField[]) {
790 VMSTATE_INT32(exception_index, CPUState),
791 VMSTATE_END_OF_LIST()
792 }
793 };
794
795 static bool cpu_common_crash_occurred_needed(void *opaque)
796 {
797 CPUState *cpu = opaque;
798
799 return cpu->crash_occurred;
800 }
801
802 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
803 .name = "cpu_common/crash_occurred",
804 .version_id = 1,
805 .minimum_version_id = 1,
806 .needed = cpu_common_crash_occurred_needed,
807 .fields = (VMStateField[]) {
808 VMSTATE_BOOL(crash_occurred, CPUState),
809 VMSTATE_END_OF_LIST()
810 }
811 };
812
813 const VMStateDescription vmstate_cpu_common = {
814 .name = "cpu_common",
815 .version_id = 1,
816 .minimum_version_id = 1,
817 .pre_load = cpu_common_pre_load,
818 .post_load = cpu_common_post_load,
819 .fields = (VMStateField[]) {
820 VMSTATE_UINT32(halted, CPUState),
821 VMSTATE_UINT32(interrupt_request, CPUState),
822 VMSTATE_END_OF_LIST()
823 },
824 .subsections = (const VMStateDescription*[]) {
825 &vmstate_cpu_common_exception_index,
826 &vmstate_cpu_common_crash_occurred,
827 NULL
828 }
829 };
830
831 #endif
832
833 CPUState *qemu_get_cpu(int index)
834 {
835 CPUState *cpu;
836
837 CPU_FOREACH(cpu) {
838 if (cpu->cpu_index == index) {
839 return cpu;
840 }
841 }
842
843 return NULL;
844 }
845
846 #if !defined(CONFIG_USER_ONLY)
847 void cpu_address_space_init(CPUState *cpu, int asidx,
848 const char *prefix, MemoryRegion *mr)
849 {
850 CPUAddressSpace *newas;
851 AddressSpace *as = g_new0(AddressSpace, 1);
852 char *as_name;
853
854 assert(mr);
855 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
856 address_space_init(as, mr, as_name);
857 g_free(as_name);
858
859 /* Target code should have set num_ases before calling us */
860 assert(asidx < cpu->num_ases);
861
862 if (asidx == 0) {
863 /* address space 0 gets the convenience alias */
864 cpu->as = as;
865 }
866
867 /* KVM cannot currently support multiple address spaces. */
868 assert(asidx == 0 || !kvm_enabled());
869
870 if (!cpu->cpu_ases) {
871 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
872 }
873
874 newas = &cpu->cpu_ases[asidx];
875 newas->cpu = cpu;
876 newas->as = as;
877 if (tcg_enabled()) {
878 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
879 newas->tcg_as_listener.commit = tcg_commit;
880 memory_listener_register(&newas->tcg_as_listener, as);
881 }
882 }
883
884 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
885 {
886 /* Return the AddressSpace corresponding to the specified index */
887 return cpu->cpu_ases[asidx].as;
888 }
889 #endif
890
891 void cpu_exec_unrealizefn(CPUState *cpu)
892 {
893 CPUClass *cc = CPU_GET_CLASS(cpu);
894
895 cpu_list_remove(cpu);
896
897 if (cc->vmsd != NULL) {
898 vmstate_unregister(NULL, cc->vmsd, cpu);
899 }
900 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
901 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
902 }
903 #ifndef CONFIG_USER_ONLY
904 tcg_iommu_free_notifier_list(cpu);
905 #endif
906 }
907
908 Property cpu_common_props[] = {
909 #ifndef CONFIG_USER_ONLY
910 /* Create a memory property for softmmu CPU object,
911 * so users can wire up its memory. (This can't go in hw/core/cpu.c
912 * because that file is compiled only once for both user-mode
913 * and system builds.) The default if no link is set up is to use
914 * the system address space.
915 */
916 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
917 MemoryRegion *),
918 #endif
919 DEFINE_PROP_END_OF_LIST(),
920 };
921
922 void cpu_exec_initfn(CPUState *cpu)
923 {
924 cpu->as = NULL;
925 cpu->num_ases = 0;
926
927 #ifndef CONFIG_USER_ONLY
928 cpu->thread_id = qemu_get_thread_id();
929 cpu->memory = system_memory;
930 object_ref(OBJECT(cpu->memory));
931 #endif
932 }
933
934 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
935 {
936 CPUClass *cc = CPU_GET_CLASS(cpu);
937 static bool tcg_target_initialized;
938
939 cpu_list_add(cpu);
940
941 if (tcg_enabled() && !tcg_target_initialized) {
942 tcg_target_initialized = true;
943 cc->tcg_initialize();
944 }
945 tlb_init(cpu);
946
947 qemu_plugin_vcpu_init_hook(cpu);
948
949 #ifdef CONFIG_USER_ONLY
950 assert(cc->vmsd == NULL);
951 #else /* !CONFIG_USER_ONLY */
952 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
953 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
954 }
955 if (cc->vmsd != NULL) {
956 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
957 }
958
959 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
960 #endif
961 }
962
963 const char *parse_cpu_option(const char *cpu_option)
964 {
965 ObjectClass *oc;
966 CPUClass *cc;
967 gchar **model_pieces;
968 const char *cpu_type;
969
970 model_pieces = g_strsplit(cpu_option, ",", 2);
971 if (!model_pieces[0]) {
972 error_report("-cpu option cannot be empty");
973 exit(1);
974 }
975
976 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
977 if (oc == NULL) {
978 error_report("unable to find CPU model '%s'", model_pieces[0]);
979 g_strfreev(model_pieces);
980 exit(EXIT_FAILURE);
981 }
982
983 cpu_type = object_class_get_name(oc);
984 cc = CPU_CLASS(oc);
985 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
986 g_strfreev(model_pieces);
987 return cpu_type;
988 }
989
990 #if defined(CONFIG_USER_ONLY)
991 void tb_invalidate_phys_addr(target_ulong addr)
992 {
993 mmap_lock();
994 tb_invalidate_phys_page_range(addr, addr + 1);
995 mmap_unlock();
996 }
997
998 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
999 {
1000 tb_invalidate_phys_addr(pc);
1001 }
1002 #else
1003 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1004 {
1005 ram_addr_t ram_addr;
1006 MemoryRegion *mr;
1007 hwaddr l = 1;
1008
1009 if (!tcg_enabled()) {
1010 return;
1011 }
1012
1013 RCU_READ_LOCK_GUARD();
1014 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1015 if (!(memory_region_is_ram(mr)
1016 || memory_region_is_romd(mr))) {
1017 return;
1018 }
1019 ram_addr = memory_region_get_ram_addr(mr) + addr;
1020 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
1021 }
1022
1023 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1024 {
1025 /*
1026 * There may not be a virtual to physical translation for the pc
1027 * right now, but there may exist cached TB for this pc.
1028 * Flush the whole TB cache to force re-translation of such TBs.
1029 * This is heavyweight, but we're debugging anyway.
1030 */
1031 tb_flush(cpu);
1032 }
1033 #endif
1034
1035 #ifndef CONFIG_USER_ONLY
1036 /* Add a watchpoint. */
1037 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1038 int flags, CPUWatchpoint **watchpoint)
1039 {
1040 CPUWatchpoint *wp;
1041
1042 /* forbid ranges which are empty or run off the end of the address space */
1043 if (len == 0 || (addr + len - 1) < addr) {
1044 error_report("tried to set invalid watchpoint at %"
1045 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1046 return -EINVAL;
1047 }
1048 wp = g_malloc(sizeof(*wp));
1049
1050 wp->vaddr = addr;
1051 wp->len = len;
1052 wp->flags = flags;
1053
1054 /* keep all GDB-injected watchpoints in front */
1055 if (flags & BP_GDB) {
1056 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1057 } else {
1058 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1059 }
1060
1061 tlb_flush_page(cpu, addr);
1062
1063 if (watchpoint)
1064 *watchpoint = wp;
1065 return 0;
1066 }
1067
1068 /* Remove a specific watchpoint. */
1069 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1070 int flags)
1071 {
1072 CPUWatchpoint *wp;
1073
1074 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1075 if (addr == wp->vaddr && len == wp->len
1076 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1077 cpu_watchpoint_remove_by_ref(cpu, wp);
1078 return 0;
1079 }
1080 }
1081 return -ENOENT;
1082 }
1083
1084 /* Remove a specific watchpoint by reference. */
1085 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1086 {
1087 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1088
1089 tlb_flush_page(cpu, watchpoint->vaddr);
1090
1091 g_free(watchpoint);
1092 }
1093
1094 /* Remove all matching watchpoints. */
1095 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1096 {
1097 CPUWatchpoint *wp, *next;
1098
1099 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1100 if (wp->flags & mask) {
1101 cpu_watchpoint_remove_by_ref(cpu, wp);
1102 }
1103 }
1104 }
1105
1106 /* Return true if this watchpoint address matches the specified
1107 * access (ie the address range covered by the watchpoint overlaps
1108 * partially or completely with the address range covered by the
1109 * access).
1110 */
1111 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1112 vaddr addr, vaddr len)
1113 {
1114 /* We know the lengths are non-zero, but a little caution is
1115 * required to avoid errors in the case where the range ends
1116 * exactly at the top of the address space and so addr + len
1117 * wraps round to zero.
1118 */
1119 vaddr wpend = wp->vaddr + wp->len - 1;
1120 vaddr addrend = addr + len - 1;
1121
1122 return !(addr > wpend || wp->vaddr > addrend);
1123 }
1124
1125 /* Return flags for watchpoints that match addr + prot. */
1126 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1127 {
1128 CPUWatchpoint *wp;
1129 int ret = 0;
1130
1131 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1132 if (watchpoint_address_matches(wp, addr, len)) {
1133 ret |= wp->flags;
1134 }
1135 }
1136 return ret;
1137 }
1138 #endif /* !CONFIG_USER_ONLY */
1139
1140 /* Add a breakpoint. */
1141 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1142 CPUBreakpoint **breakpoint)
1143 {
1144 CPUBreakpoint *bp;
1145
1146 bp = g_malloc(sizeof(*bp));
1147
1148 bp->pc = pc;
1149 bp->flags = flags;
1150
1151 /* keep all GDB-injected breakpoints in front */
1152 if (flags & BP_GDB) {
1153 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1154 } else {
1155 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1156 }
1157
1158 breakpoint_invalidate(cpu, pc);
1159
1160 if (breakpoint) {
1161 *breakpoint = bp;
1162 }
1163 return 0;
1164 }
1165
1166 /* Remove a specific breakpoint. */
1167 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1168 {
1169 CPUBreakpoint *bp;
1170
1171 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1172 if (bp->pc == pc && bp->flags == flags) {
1173 cpu_breakpoint_remove_by_ref(cpu, bp);
1174 return 0;
1175 }
1176 }
1177 return -ENOENT;
1178 }
1179
1180 /* Remove a specific breakpoint by reference. */
1181 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1182 {
1183 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1184
1185 breakpoint_invalidate(cpu, breakpoint->pc);
1186
1187 g_free(breakpoint);
1188 }
1189
1190 /* Remove all matching breakpoints. */
1191 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1192 {
1193 CPUBreakpoint *bp, *next;
1194
1195 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1196 if (bp->flags & mask) {
1197 cpu_breakpoint_remove_by_ref(cpu, bp);
1198 }
1199 }
1200 }
1201
1202 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1203 CPU loop after each instruction */
1204 void cpu_single_step(CPUState *cpu, int enabled)
1205 {
1206 if (cpu->singlestep_enabled != enabled) {
1207 cpu->singlestep_enabled = enabled;
1208 if (kvm_enabled()) {
1209 kvm_update_guest_debug(cpu, 0);
1210 } else {
1211 /* must flush all the translated code to avoid inconsistencies */
1212 /* XXX: only flush what is necessary */
1213 tb_flush(cpu);
1214 }
1215 }
1216 }
1217
1218 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1219 {
1220 va_list ap;
1221 va_list ap2;
1222
1223 va_start(ap, fmt);
1224 va_copy(ap2, ap);
1225 fprintf(stderr, "qemu: fatal: ");
1226 vfprintf(stderr, fmt, ap);
1227 fprintf(stderr, "\n");
1228 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1229 if (qemu_log_separate()) {
1230 FILE *logfile = qemu_log_lock();
1231 qemu_log("qemu: fatal: ");
1232 qemu_log_vprintf(fmt, ap2);
1233 qemu_log("\n");
1234 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1235 qemu_log_flush();
1236 qemu_log_unlock(logfile);
1237 qemu_log_close();
1238 }
1239 va_end(ap2);
1240 va_end(ap);
1241 replay_finish();
1242 #if defined(CONFIG_USER_ONLY)
1243 {
1244 struct sigaction act;
1245 sigfillset(&act.sa_mask);
1246 act.sa_handler = SIG_DFL;
1247 act.sa_flags = 0;
1248 sigaction(SIGABRT, &act, NULL);
1249 }
1250 #endif
1251 abort();
1252 }
1253
1254 #if !defined(CONFIG_USER_ONLY)
1255 /* Called from RCU critical section */
1256 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1257 {
1258 RAMBlock *block;
1259
1260 block = atomic_rcu_read(&ram_list.mru_block);
1261 if (block && addr - block->offset < block->max_length) {
1262 return block;
1263 }
1264 RAMBLOCK_FOREACH(block) {
1265 if (addr - block->offset < block->max_length) {
1266 goto found;
1267 }
1268 }
1269
1270 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1271 abort();
1272
1273 found:
1274 /* It is safe to write mru_block outside the iothread lock. This
1275 * is what happens:
1276 *
1277 * mru_block = xxx
1278 * rcu_read_unlock()
1279 * xxx removed from list
1280 * rcu_read_lock()
1281 * read mru_block
1282 * mru_block = NULL;
1283 * call_rcu(reclaim_ramblock, xxx);
1284 * rcu_read_unlock()
1285 *
1286 * atomic_rcu_set is not needed here. The block was already published
1287 * when it was placed into the list. Here we're just making an extra
1288 * copy of the pointer.
1289 */
1290 ram_list.mru_block = block;
1291 return block;
1292 }
1293
1294 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1295 {
1296 CPUState *cpu;
1297 ram_addr_t start1;
1298 RAMBlock *block;
1299 ram_addr_t end;
1300
1301 assert(tcg_enabled());
1302 end = TARGET_PAGE_ALIGN(start + length);
1303 start &= TARGET_PAGE_MASK;
1304
1305 RCU_READ_LOCK_GUARD();
1306 block = qemu_get_ram_block(start);
1307 assert(block == qemu_get_ram_block(end - 1));
1308 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1309 CPU_FOREACH(cpu) {
1310 tlb_reset_dirty(cpu, start1, length);
1311 }
1312 }
1313
1314 /* Note: start and end must be within the same ram block. */
1315 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1316 ram_addr_t length,
1317 unsigned client)
1318 {
1319 DirtyMemoryBlocks *blocks;
1320 unsigned long end, page, start_page;
1321 bool dirty = false;
1322 RAMBlock *ramblock;
1323 uint64_t mr_offset, mr_size;
1324
1325 if (length == 0) {
1326 return false;
1327 }
1328
1329 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1330 start_page = start >> TARGET_PAGE_BITS;
1331 page = start_page;
1332
1333 WITH_RCU_READ_LOCK_GUARD() {
1334 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1335 ramblock = qemu_get_ram_block(start);
1336 /* Range sanity check on the ramblock */
1337 assert(start >= ramblock->offset &&
1338 start + length <= ramblock->offset + ramblock->used_length);
1339
1340 while (page < end) {
1341 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1342 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1343 unsigned long num = MIN(end - page,
1344 DIRTY_MEMORY_BLOCK_SIZE - offset);
1345
1346 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1347 offset, num);
1348 page += num;
1349 }
1350
1351 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1352 mr_size = (end - start_page) << TARGET_PAGE_BITS;
1353 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1354 }
1355
1356 if (dirty && tcg_enabled()) {
1357 tlb_reset_dirty_range_all(start, length);
1358 }
1359
1360 return dirty;
1361 }
1362
1363 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1364 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1365 {
1366 DirtyMemoryBlocks *blocks;
1367 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1368 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1369 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1370 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1371 DirtyBitmapSnapshot *snap;
1372 unsigned long page, end, dest;
1373
1374 snap = g_malloc0(sizeof(*snap) +
1375 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1376 snap->start = first;
1377 snap->end = last;
1378
1379 page = first >> TARGET_PAGE_BITS;
1380 end = last >> TARGET_PAGE_BITS;
1381 dest = 0;
1382
1383 WITH_RCU_READ_LOCK_GUARD() {
1384 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1385
1386 while (page < end) {
1387 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1388 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1389 unsigned long num = MIN(end - page,
1390 DIRTY_MEMORY_BLOCK_SIZE - offset);
1391
1392 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1393 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1394 offset >>= BITS_PER_LEVEL;
1395
1396 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1397 blocks->blocks[idx] + offset,
1398 num);
1399 page += num;
1400 dest += num >> BITS_PER_LEVEL;
1401 }
1402 }
1403
1404 if (tcg_enabled()) {
1405 tlb_reset_dirty_range_all(start, length);
1406 }
1407
1408 memory_region_clear_dirty_bitmap(mr, offset, length);
1409
1410 return snap;
1411 }
1412
1413 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1414 ram_addr_t start,
1415 ram_addr_t length)
1416 {
1417 unsigned long page, end;
1418
1419 assert(start >= snap->start);
1420 assert(start + length <= snap->end);
1421
1422 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1423 page = (start - snap->start) >> TARGET_PAGE_BITS;
1424
1425 while (page < end) {
1426 if (test_bit(page, snap->dirty)) {
1427 return true;
1428 }
1429 page++;
1430 }
1431 return false;
1432 }
1433
1434 /* Called from RCU critical section */
1435 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1436 MemoryRegionSection *section)
1437 {
1438 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1439 return section - d->map.sections;
1440 }
1441 #endif /* defined(CONFIG_USER_ONLY) */
1442
1443 #if !defined(CONFIG_USER_ONLY)
1444
1445 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1446 uint16_t section);
1447 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1448
1449 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1450 qemu_anon_ram_alloc;
1451
1452 /*
1453 * Set a custom physical guest memory alloator.
1454 * Accelerators with unusual needs may need this. Hopefully, we can
1455 * get rid of it eventually.
1456 */
1457 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1458 {
1459 phys_mem_alloc = alloc;
1460 }
1461
1462 static uint16_t phys_section_add(PhysPageMap *map,
1463 MemoryRegionSection *section)
1464 {
1465 /* The physical section number is ORed with a page-aligned
1466 * pointer to produce the iotlb entries. Thus it should
1467 * never overflow into the page-aligned value.
1468 */
1469 assert(map->sections_nb < TARGET_PAGE_SIZE);
1470
1471 if (map->sections_nb == map->sections_nb_alloc) {
1472 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1473 map->sections = g_renew(MemoryRegionSection, map->sections,
1474 map->sections_nb_alloc);
1475 }
1476 map->sections[map->sections_nb] = *section;
1477 memory_region_ref(section->mr);
1478 return map->sections_nb++;
1479 }
1480
1481 static void phys_section_destroy(MemoryRegion *mr)
1482 {
1483 bool have_sub_page = mr->subpage;
1484
1485 memory_region_unref(mr);
1486
1487 if (have_sub_page) {
1488 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1489 object_unref(OBJECT(&subpage->iomem));
1490 g_free(subpage);
1491 }
1492 }
1493
1494 static void phys_sections_free(PhysPageMap *map)
1495 {
1496 while (map->sections_nb > 0) {
1497 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1498 phys_section_destroy(section->mr);
1499 }
1500 g_free(map->sections);
1501 g_free(map->nodes);
1502 }
1503
1504 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1505 {
1506 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1507 subpage_t *subpage;
1508 hwaddr base = section->offset_within_address_space
1509 & TARGET_PAGE_MASK;
1510 MemoryRegionSection *existing = phys_page_find(d, base);
1511 MemoryRegionSection subsection = {
1512 .offset_within_address_space = base,
1513 .size = int128_make64(TARGET_PAGE_SIZE),
1514 };
1515 hwaddr start, end;
1516
1517 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1518
1519 if (!(existing->mr->subpage)) {
1520 subpage = subpage_init(fv, base);
1521 subsection.fv = fv;
1522 subsection.mr = &subpage->iomem;
1523 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1524 phys_section_add(&d->map, &subsection));
1525 } else {
1526 subpage = container_of(existing->mr, subpage_t, iomem);
1527 }
1528 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1529 end = start + int128_get64(section->size) - 1;
1530 subpage_register(subpage, start, end,
1531 phys_section_add(&d->map, section));
1532 }
1533
1534
1535 static void register_multipage(FlatView *fv,
1536 MemoryRegionSection *section)
1537 {
1538 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1539 hwaddr start_addr = section->offset_within_address_space;
1540 uint16_t section_index = phys_section_add(&d->map, section);
1541 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1542 TARGET_PAGE_BITS));
1543
1544 assert(num_pages);
1545 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1546 }
1547
1548 /*
1549 * The range in *section* may look like this:
1550 *
1551 * |s|PPPPPPP|s|
1552 *
1553 * where s stands for subpage and P for page.
1554 */
1555 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1556 {
1557 MemoryRegionSection remain = *section;
1558 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1559
1560 /* register first subpage */
1561 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1562 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1563 - remain.offset_within_address_space;
1564
1565 MemoryRegionSection now = remain;
1566 now.size = int128_min(int128_make64(left), now.size);
1567 register_subpage(fv, &now);
1568 if (int128_eq(remain.size, now.size)) {
1569 return;
1570 }
1571 remain.size = int128_sub(remain.size, now.size);
1572 remain.offset_within_address_space += int128_get64(now.size);
1573 remain.offset_within_region += int128_get64(now.size);
1574 }
1575
1576 /* register whole pages */
1577 if (int128_ge(remain.size, page_size)) {
1578 MemoryRegionSection now = remain;
1579 now.size = int128_and(now.size, int128_neg(page_size));
1580 register_multipage(fv, &now);
1581 if (int128_eq(remain.size, now.size)) {
1582 return;
1583 }
1584 remain.size = int128_sub(remain.size, now.size);
1585 remain.offset_within_address_space += int128_get64(now.size);
1586 remain.offset_within_region += int128_get64(now.size);
1587 }
1588
1589 /* register last subpage */
1590 register_subpage(fv, &remain);
1591 }
1592
1593 void qemu_flush_coalesced_mmio_buffer(void)
1594 {
1595 if (kvm_enabled())
1596 kvm_flush_coalesced_mmio_buffer();
1597 }
1598
1599 void qemu_mutex_lock_ramlist(void)
1600 {
1601 qemu_mutex_lock(&ram_list.mutex);
1602 }
1603
1604 void qemu_mutex_unlock_ramlist(void)
1605 {
1606 qemu_mutex_unlock(&ram_list.mutex);
1607 }
1608
1609 void ram_block_dump(Monitor *mon)
1610 {
1611 RAMBlock *block;
1612 char *psize;
1613
1614 RCU_READ_LOCK_GUARD();
1615 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1616 "Block Name", "PSize", "Offset", "Used", "Total");
1617 RAMBLOCK_FOREACH(block) {
1618 psize = size_to_str(block->page_size);
1619 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1620 " 0x%016" PRIx64 "\n", block->idstr, psize,
1621 (uint64_t)block->offset,
1622 (uint64_t)block->used_length,
1623 (uint64_t)block->max_length);
1624 g_free(psize);
1625 }
1626 }
1627
1628 #ifdef __linux__
1629 /*
1630 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1631 * may or may not name the same files / on the same filesystem now as
1632 * when we actually open and map them. Iterate over the file
1633 * descriptors instead, and use qemu_fd_getpagesize().
1634 */
1635 static int find_min_backend_pagesize(Object *obj, void *opaque)
1636 {
1637 long *hpsize_min = opaque;
1638
1639 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1640 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1641 long hpsize = host_memory_backend_pagesize(backend);
1642
1643 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1644 *hpsize_min = hpsize;
1645 }
1646 }
1647
1648 return 0;
1649 }
1650
1651 static int find_max_backend_pagesize(Object *obj, void *opaque)
1652 {
1653 long *hpsize_max = opaque;
1654
1655 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1656 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1657 long hpsize = host_memory_backend_pagesize(backend);
1658
1659 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1660 *hpsize_max = hpsize;
1661 }
1662 }
1663
1664 return 0;
1665 }
1666
1667 /*
1668 * TODO: We assume right now that all mapped host memory backends are
1669 * used as RAM, however some might be used for different purposes.
1670 */
1671 long qemu_minrampagesize(void)
1672 {
1673 long hpsize = LONG_MAX;
1674 Object *memdev_root = object_resolve_path("/objects", NULL);
1675
1676 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1677 return hpsize;
1678 }
1679
1680 long qemu_maxrampagesize(void)
1681 {
1682 long pagesize = 0;
1683 Object *memdev_root = object_resolve_path("/objects", NULL);
1684
1685 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1686 return pagesize;
1687 }
1688 #else
1689 long qemu_minrampagesize(void)
1690 {
1691 return qemu_real_host_page_size;
1692 }
1693 long qemu_maxrampagesize(void)
1694 {
1695 return qemu_real_host_page_size;
1696 }
1697 #endif
1698
1699 #ifdef CONFIG_POSIX
1700 static int64_t get_file_size(int fd)
1701 {
1702 int64_t size;
1703 #if defined(__linux__)
1704 struct stat st;
1705
1706 if (fstat(fd, &st) < 0) {
1707 return -errno;
1708 }
1709
1710 /* Special handling for devdax character devices */
1711 if (S_ISCHR(st.st_mode)) {
1712 g_autofree char *subsystem_path = NULL;
1713 g_autofree char *subsystem = NULL;
1714
1715 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1716 major(st.st_rdev), minor(st.st_rdev));
1717 subsystem = g_file_read_link(subsystem_path, NULL);
1718
1719 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1720 g_autofree char *size_path = NULL;
1721 g_autofree char *size_str = NULL;
1722
1723 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1724 major(st.st_rdev), minor(st.st_rdev));
1725
1726 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1727 return g_ascii_strtoll(size_str, NULL, 0);
1728 }
1729 }
1730 }
1731 #endif /* defined(__linux__) */
1732
1733 /* st.st_size may be zero for special files yet lseek(2) works */
1734 size = lseek(fd, 0, SEEK_END);
1735 if (size < 0) {
1736 return -errno;
1737 }
1738 return size;
1739 }
1740
1741 static int file_ram_open(const char *path,
1742 const char *region_name,
1743 bool *created,
1744 Error **errp)
1745 {
1746 char *filename;
1747 char *sanitized_name;
1748 char *c;
1749 int fd = -1;
1750
1751 *created = false;
1752 for (;;) {
1753 fd = open(path, O_RDWR);
1754 if (fd >= 0) {
1755 /* @path names an existing file, use it */
1756 break;
1757 }
1758 if (errno == ENOENT) {
1759 /* @path names a file that doesn't exist, create it */
1760 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1761 if (fd >= 0) {
1762 *created = true;
1763 break;
1764 }
1765 } else if (errno == EISDIR) {
1766 /* @path names a directory, create a file there */
1767 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1768 sanitized_name = g_strdup(region_name);
1769 for (c = sanitized_name; *c != '\0'; c++) {
1770 if (*c == '/') {
1771 *c = '_';
1772 }
1773 }
1774
1775 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1776 sanitized_name);
1777 g_free(sanitized_name);
1778
1779 fd = mkstemp(filename);
1780 if (fd >= 0) {
1781 unlink(filename);
1782 g_free(filename);
1783 break;
1784 }
1785 g_free(filename);
1786 }
1787 if (errno != EEXIST && errno != EINTR) {
1788 error_setg_errno(errp, errno,
1789 "can't open backing store %s for guest RAM",
1790 path);
1791 return -1;
1792 }
1793 /*
1794 * Try again on EINTR and EEXIST. The latter happens when
1795 * something else creates the file between our two open().
1796 */
1797 }
1798
1799 return fd;
1800 }
1801
1802 static void *file_ram_alloc(RAMBlock *block,
1803 ram_addr_t memory,
1804 int fd,
1805 bool truncate,
1806 Error **errp)
1807 {
1808 void *area;
1809
1810 block->page_size = qemu_fd_getpagesize(fd);
1811 if (block->mr->align % block->page_size) {
1812 error_setg(errp, "alignment 0x%" PRIx64
1813 " must be multiples of page size 0x%zx",
1814 block->mr->align, block->page_size);
1815 return NULL;
1816 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1817 error_setg(errp, "alignment 0x%" PRIx64
1818 " must be a power of two", block->mr->align);
1819 return NULL;
1820 }
1821 block->mr->align = MAX(block->page_size, block->mr->align);
1822 #if defined(__s390x__)
1823 if (kvm_enabled()) {
1824 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1825 }
1826 #endif
1827
1828 if (memory < block->page_size) {
1829 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1830 "or larger than page size 0x%zx",
1831 memory, block->page_size);
1832 return NULL;
1833 }
1834
1835 memory = ROUND_UP(memory, block->page_size);
1836
1837 /*
1838 * ftruncate is not supported by hugetlbfs in older
1839 * hosts, so don't bother bailing out on errors.
1840 * If anything goes wrong with it under other filesystems,
1841 * mmap will fail.
1842 *
1843 * Do not truncate the non-empty backend file to avoid corrupting
1844 * the existing data in the file. Disabling shrinking is not
1845 * enough. For example, the current vNVDIMM implementation stores
1846 * the guest NVDIMM labels at the end of the backend file. If the
1847 * backend file is later extended, QEMU will not be able to find
1848 * those labels. Therefore, extending the non-empty backend file
1849 * is disabled as well.
1850 */
1851 if (truncate && ftruncate(fd, memory)) {
1852 perror("ftruncate");
1853 }
1854
1855 area = qemu_ram_mmap(fd, memory, block->mr->align,
1856 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1857 if (area == MAP_FAILED) {
1858 error_setg_errno(errp, errno,
1859 "unable to map backing store for guest RAM");
1860 return NULL;
1861 }
1862
1863 block->fd = fd;
1864 return area;
1865 }
1866 #endif
1867
1868 /* Allocate space within the ram_addr_t space that governs the
1869 * dirty bitmaps.
1870 * Called with the ramlist lock held.
1871 */
1872 static ram_addr_t find_ram_offset(ram_addr_t size)
1873 {
1874 RAMBlock *block, *next_block;
1875 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1876
1877 assert(size != 0); /* it would hand out same offset multiple times */
1878
1879 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1880 return 0;
1881 }
1882
1883 RAMBLOCK_FOREACH(block) {
1884 ram_addr_t candidate, next = RAM_ADDR_MAX;
1885
1886 /* Align blocks to start on a 'long' in the bitmap
1887 * which makes the bitmap sync'ing take the fast path.
1888 */
1889 candidate = block->offset + block->max_length;
1890 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1891
1892 /* Search for the closest following block
1893 * and find the gap.
1894 */
1895 RAMBLOCK_FOREACH(next_block) {
1896 if (next_block->offset >= candidate) {
1897 next = MIN(next, next_block->offset);
1898 }
1899 }
1900
1901 /* If it fits remember our place and remember the size
1902 * of gap, but keep going so that we might find a smaller
1903 * gap to fill so avoiding fragmentation.
1904 */
1905 if (next - candidate >= size && next - candidate < mingap) {
1906 offset = candidate;
1907 mingap = next - candidate;
1908 }
1909
1910 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1911 }
1912
1913 if (offset == RAM_ADDR_MAX) {
1914 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1915 (uint64_t)size);
1916 abort();
1917 }
1918
1919 trace_find_ram_offset(size, offset);
1920
1921 return offset;
1922 }
1923
1924 static unsigned long last_ram_page(void)
1925 {
1926 RAMBlock *block;
1927 ram_addr_t last = 0;
1928
1929 RCU_READ_LOCK_GUARD();
1930 RAMBLOCK_FOREACH(block) {
1931 last = MAX(last, block->offset + block->max_length);
1932 }
1933 return last >> TARGET_PAGE_BITS;
1934 }
1935
1936 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1937 {
1938 int ret;
1939
1940 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1941 if (!machine_dump_guest_core(current_machine)) {
1942 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1943 if (ret) {
1944 perror("qemu_madvise");
1945 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1946 "but dump_guest_core=off specified\n");
1947 }
1948 }
1949 }
1950
1951 const char *qemu_ram_get_idstr(RAMBlock *rb)
1952 {
1953 return rb->idstr;
1954 }
1955
1956 void *qemu_ram_get_host_addr(RAMBlock *rb)
1957 {
1958 return rb->host;
1959 }
1960
1961 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1962 {
1963 return rb->offset;
1964 }
1965
1966 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1967 {
1968 return rb->used_length;
1969 }
1970
1971 bool qemu_ram_is_shared(RAMBlock *rb)
1972 {
1973 return rb->flags & RAM_SHARED;
1974 }
1975
1976 /* Note: Only set at the start of postcopy */
1977 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1978 {
1979 return rb->flags & RAM_UF_ZEROPAGE;
1980 }
1981
1982 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1983 {
1984 rb->flags |= RAM_UF_ZEROPAGE;
1985 }
1986
1987 bool qemu_ram_is_migratable(RAMBlock *rb)
1988 {
1989 return rb->flags & RAM_MIGRATABLE;
1990 }
1991
1992 void qemu_ram_set_migratable(RAMBlock *rb)
1993 {
1994 rb->flags |= RAM_MIGRATABLE;
1995 }
1996
1997 void qemu_ram_unset_migratable(RAMBlock *rb)
1998 {
1999 rb->flags &= ~RAM_MIGRATABLE;
2000 }
2001
2002 /* Called with iothread lock held. */
2003 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2004 {
2005 RAMBlock *block;
2006
2007 assert(new_block);
2008 assert(!new_block->idstr[0]);
2009
2010 if (dev) {
2011 char *id = qdev_get_dev_path(dev);
2012 if (id) {
2013 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2014 g_free(id);
2015 }
2016 }
2017 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2018
2019 RCU_READ_LOCK_GUARD();
2020 RAMBLOCK_FOREACH(block) {
2021 if (block != new_block &&
2022 !strcmp(block->idstr, new_block->idstr)) {
2023 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2024 new_block->idstr);
2025 abort();
2026 }
2027 }
2028 }
2029
2030 /* Called with iothread lock held. */
2031 void qemu_ram_unset_idstr(RAMBlock *block)
2032 {
2033 /* FIXME: arch_init.c assumes that this is not called throughout
2034 * migration. Ignore the problem since hot-unplug during migration
2035 * does not work anyway.
2036 */
2037 if (block) {
2038 memset(block->idstr, 0, sizeof(block->idstr));
2039 }
2040 }
2041
2042 size_t qemu_ram_pagesize(RAMBlock *rb)
2043 {
2044 return rb->page_size;
2045 }
2046
2047 /* Returns the largest size of page in use */
2048 size_t qemu_ram_pagesize_largest(void)
2049 {
2050 RAMBlock *block;
2051 size_t largest = 0;
2052
2053 RAMBLOCK_FOREACH(block) {
2054 largest = MAX(largest, qemu_ram_pagesize(block));
2055 }
2056
2057 return largest;
2058 }
2059
2060 static int memory_try_enable_merging(void *addr, size_t len)
2061 {
2062 if (!machine_mem_merge(current_machine)) {
2063 /* disabled by the user */
2064 return 0;
2065 }
2066
2067 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2068 }
2069
2070 /* Only legal before guest might have detected the memory size: e.g. on
2071 * incoming migration, or right after reset.
2072 *
2073 * As memory core doesn't know how is memory accessed, it is up to
2074 * resize callback to update device state and/or add assertions to detect
2075 * misuse, if necessary.
2076 */
2077 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2078 {
2079 const ram_addr_t unaligned_size = newsize;
2080
2081 assert(block);
2082
2083 newsize = HOST_PAGE_ALIGN(newsize);
2084
2085 if (block->used_length == newsize) {
2086 /*
2087 * We don't have to resize the ram block (which only knows aligned
2088 * sizes), however, we have to notify if the unaligned size changed.
2089 */
2090 if (unaligned_size != memory_region_size(block->mr)) {
2091 memory_region_set_size(block->mr, unaligned_size);
2092 if (block->resized) {
2093 block->resized(block->idstr, unaligned_size, block->host);
2094 }
2095 }
2096 return 0;
2097 }
2098
2099 if (!(block->flags & RAM_RESIZEABLE)) {
2100 error_setg_errno(errp, EINVAL,
2101 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2102 " in != 0x" RAM_ADDR_FMT, block->idstr,
2103 newsize, block->used_length);
2104 return -EINVAL;
2105 }
2106
2107 if (block->max_length < newsize) {
2108 error_setg_errno(errp, EINVAL,
2109 "Length too large: %s: 0x" RAM_ADDR_FMT
2110 " > 0x" RAM_ADDR_FMT, block->idstr,
2111 newsize, block->max_length);
2112 return -EINVAL;
2113 }
2114
2115 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2116 block->used_length = newsize;
2117 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2118 DIRTY_CLIENTS_ALL);
2119 memory_region_set_size(block->mr, unaligned_size);
2120 if (block->resized) {
2121 block->resized(block->idstr, unaligned_size, block->host);
2122 }
2123 return 0;
2124 }
2125
2126 /*
2127 * Trigger sync on the given ram block for range [start, start + length]
2128 * with the backing store if one is available.
2129 * Otherwise no-op.
2130 * @Note: this is supposed to be a synchronous op.
2131 */
2132 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
2133 {
2134 /* The requested range should fit in within the block range */
2135 g_assert((start + length) <= block->used_length);
2136
2137 #ifdef CONFIG_LIBPMEM
2138 /* The lack of support for pmem should not block the sync */
2139 if (ramblock_is_pmem(block)) {
2140 void *addr = ramblock_ptr(block, start);
2141 pmem_persist(addr, length);
2142 return;
2143 }
2144 #endif
2145 if (block->fd >= 0) {
2146 /**
2147 * Case there is no support for PMEM or the memory has not been
2148 * specified as persistent (or is not one) - use the msync.
2149 * Less optimal but still achieves the same goal
2150 */
2151 void *addr = ramblock_ptr(block, start);
2152 if (qemu_msync(addr, length, block->fd)) {
2153 warn_report("%s: failed to sync memory range: start: "
2154 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
2155 __func__, start, length);
2156 }
2157 }
2158 }
2159
2160 /* Called with ram_list.mutex held */
2161 static void dirty_memory_extend(ram_addr_t old_ram_size,
2162 ram_addr_t new_ram_size)
2163 {
2164 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2165 DIRTY_MEMORY_BLOCK_SIZE);
2166 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2167 DIRTY_MEMORY_BLOCK_SIZE);
2168 int i;
2169
2170 /* Only need to extend if block count increased */
2171 if (new_num_blocks <= old_num_blocks) {
2172 return;
2173 }
2174
2175 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2176 DirtyMemoryBlocks *old_blocks;
2177 DirtyMemoryBlocks *new_blocks;
2178 int j;
2179
2180 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2181 new_blocks = g_malloc(sizeof(*new_blocks) +
2182 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2183
2184 if (old_num_blocks) {
2185 memcpy(new_blocks->blocks, old_blocks->blocks,
2186 old_num_blocks * sizeof(old_blocks->blocks[0]));
2187 }
2188
2189 for (j = old_num_blocks; j < new_num_blocks; j++) {
2190 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2191 }
2192
2193 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2194
2195 if (old_blocks) {
2196 g_free_rcu(old_blocks, rcu);
2197 }
2198 }
2199 }
2200
2201 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2202 {
2203 RAMBlock *block;
2204 RAMBlock *last_block = NULL;
2205 ram_addr_t old_ram_size, new_ram_size;
2206 Error *err = NULL;
2207
2208 old_ram_size = last_ram_page();
2209
2210 qemu_mutex_lock_ramlist();
2211 new_block->offset = find_ram_offset(new_block->max_length);
2212
2213 if (!new_block->host) {
2214 if (xen_enabled()) {
2215 xen_ram_alloc(new_block->offset, new_block->max_length,
2216 new_block->mr, &err);
2217 if (err) {
2218 error_propagate(errp, err);
2219 qemu_mutex_unlock_ramlist();
2220 return;
2221 }
2222 } else {
2223 new_block->host = phys_mem_alloc(new_block->max_length,
2224 &new_block->mr->align, shared);
2225 if (!new_block->host) {
2226 error_setg_errno(errp, errno,
2227 "cannot set up guest memory '%s'",
2228 memory_region_name(new_block->mr));
2229 qemu_mutex_unlock_ramlist();
2230 return;
2231 }
2232 memory_try_enable_merging(new_block->host, new_block->max_length);
2233 }
2234 }
2235
2236 new_ram_size = MAX(old_ram_size,
2237 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2238 if (new_ram_size > old_ram_size) {
2239 dirty_memory_extend(old_ram_size, new_ram_size);
2240 }
2241 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2242 * QLIST (which has an RCU-friendly variant) does not have insertion at
2243 * tail, so save the last element in last_block.
2244 */
2245 RAMBLOCK_FOREACH(block) {
2246 last_block = block;
2247 if (block->max_length < new_block->max_length) {
2248 break;
2249 }
2250 }
2251 if (block) {
2252 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2253 } else if (last_block) {
2254 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2255 } else { /* list is empty */
2256 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2257 }
2258 ram_list.mru_block = NULL;
2259
2260 /* Write list before version */
2261 smp_wmb();
2262 ram_list.version++;
2263 qemu_mutex_unlock_ramlist();
2264
2265 cpu_physical_memory_set_dirty_range(new_block->offset,
2266 new_block->used_length,
2267 DIRTY_CLIENTS_ALL);
2268
2269 if (new_block->host) {
2270 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2271 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2272 /*
2273 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2274 * Configure it unless the machine is a qtest server, in which case
2275 * KVM is not used and it may be forked (eg for fuzzing purposes).
2276 */
2277 if (!qtest_enabled()) {
2278 qemu_madvise(new_block->host, new_block->max_length,
2279 QEMU_MADV_DONTFORK);
2280 }
2281 ram_block_notify_add(new_block->host, new_block->max_length);
2282 }
2283 }
2284
2285 #ifdef CONFIG_POSIX
2286 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2287 uint32_t ram_flags, int fd,
2288 Error **errp)
2289 {
2290 RAMBlock *new_block;
2291 Error *local_err = NULL;
2292 int64_t file_size;
2293
2294 /* Just support these ram flags by now. */
2295 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2296
2297 if (xen_enabled()) {
2298 error_setg(errp, "-mem-path not supported with Xen");
2299 return NULL;
2300 }
2301
2302 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2303 error_setg(errp,
2304 "host lacks kvm mmu notifiers, -mem-path unsupported");
2305 return NULL;
2306 }
2307
2308 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2309 /*
2310 * file_ram_alloc() needs to allocate just like
2311 * phys_mem_alloc, but we haven't bothered to provide
2312 * a hook there.
2313 */
2314 error_setg(errp,
2315 "-mem-path not supported with this accelerator");
2316 return NULL;
2317 }
2318
2319 size = HOST_PAGE_ALIGN(size);
2320 file_size = get_file_size(fd);
2321 if (file_size > 0 && file_size < size) {
2322 error_setg(errp, "backing store size 0x%" PRIx64
2323 " does not match 'size' option 0x" RAM_ADDR_FMT,
2324 file_size, size);
2325 return NULL;
2326 }
2327
2328 new_block = g_malloc0(sizeof(*new_block));
2329 new_block->mr = mr;
2330 new_block->used_length = size;
2331 new_block->max_length = size;
2332 new_block->flags = ram_flags;
2333 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2334 if (!new_block->host) {
2335 g_free(new_block);
2336 return NULL;
2337 }
2338
2339 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2340 if (local_err) {
2341 g_free(new_block);
2342 error_propagate(errp, local_err);
2343 return NULL;
2344 }
2345 return new_block;
2346
2347 }
2348
2349
2350 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2351 uint32_t ram_flags, const char *mem_path,
2352 Error **errp)
2353 {
2354 int fd;
2355 bool created;
2356 RAMBlock *block;
2357
2358 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2359 if (fd < 0) {
2360 return NULL;
2361 }
2362
2363 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2364 if (!block) {
2365 if (created) {
2366 unlink(mem_path);
2367 }
2368 close(fd);
2369 return NULL;
2370 }
2371
2372 return block;
2373 }
2374 #endif
2375
2376 static
2377 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2378 void (*resized)(const char*,
2379 uint64_t length,
2380 void *host),
2381 void *host, bool resizeable, bool share,
2382 MemoryRegion *mr, Error **errp)
2383 {
2384 RAMBlock *new_block;
2385 Error *local_err = NULL;
2386
2387 size = HOST_PAGE_ALIGN(size);
2388 max_size = HOST_PAGE_ALIGN(max_size);
2389 new_block = g_malloc0(sizeof(*new_block));
2390 new_block->mr = mr;
2391 new_block->resized = resized;
2392 new_block->used_length = size;
2393 new_block->max_length = max_size;
2394 assert(max_size >= size);
2395 new_block->fd = -1;
2396 new_block->page_size = qemu_real_host_page_size;
2397 new_block->host = host;
2398 if (host) {
2399 new_block->flags |= RAM_PREALLOC;
2400 }
2401 if (resizeable) {
2402 new_block->flags |= RAM_RESIZEABLE;
2403 }
2404 ram_block_add(new_block, &local_err, share);
2405 if (local_err) {
2406 g_free(new_block);
2407 error_propagate(errp, local_err);
2408 return NULL;
2409 }
2410 return new_block;
2411 }
2412
2413 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2414 MemoryRegion *mr, Error **errp)
2415 {
2416 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2417 false, mr, errp);
2418 }
2419
2420 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2421 MemoryRegion *mr, Error **errp)
2422 {
2423 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2424 share, mr, errp);
2425 }
2426
2427 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2428 void (*resized)(const char*,
2429 uint64_t length,
2430 void *host),
2431 MemoryRegion *mr, Error **errp)
2432 {
2433 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2434 false, mr, errp);
2435 }
2436
2437 static void reclaim_ramblock(RAMBlock *block)
2438 {
2439 if (block->flags & RAM_PREALLOC) {
2440 ;
2441 } else if (xen_enabled()) {
2442 xen_invalidate_map_cache_entry(block->host);
2443 #ifndef _WIN32
2444 } else if (block->fd >= 0) {
2445 qemu_ram_munmap(block->fd, block->host, block->max_length);
2446 close(block->fd);
2447 #endif
2448 } else {
2449 qemu_anon_ram_free(block->host, block->max_length);
2450 }
2451 g_free(block);
2452 }
2453
2454 void qemu_ram_free(RAMBlock *block)
2455 {
2456 if (!block) {
2457 return;
2458 }
2459
2460 if (block->host) {
2461 ram_block_notify_remove(block->host, block->max_length);
2462 }
2463
2464 qemu_mutex_lock_ramlist();
2465 QLIST_REMOVE_RCU(block, next);
2466 ram_list.mru_block = NULL;
2467 /* Write list before version */
2468 smp_wmb();
2469 ram_list.version++;
2470 call_rcu(block, reclaim_ramblock, rcu);
2471 qemu_mutex_unlock_ramlist();
2472 }
2473
2474 #ifndef _WIN32
2475 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2476 {
2477 RAMBlock *block;
2478 ram_addr_t offset;
2479 int flags;
2480 void *area, *vaddr;
2481
2482 RAMBLOCK_FOREACH(block) {
2483 offset = addr - block->offset;
2484 if (offset < block->max_length) {
2485 vaddr = ramblock_ptr(block, offset);
2486 if (block->flags & RAM_PREALLOC) {
2487 ;
2488 } else if (xen_enabled()) {
2489 abort();
2490 } else {
2491 flags = MAP_FIXED;
2492 if (block->fd >= 0) {
2493 flags |= (block->flags & RAM_SHARED ?
2494 MAP_SHARED : MAP_PRIVATE);
2495 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2496 flags, block->fd, offset);
2497 } else {
2498 /*
2499 * Remap needs to match alloc. Accelerators that
2500 * set phys_mem_alloc never remap. If they did,
2501 * we'd need a remap hook here.
2502 */
2503 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2504
2505 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2506 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2507 flags, -1, 0);
2508 }
2509 if (area != vaddr) {
2510 error_report("Could not remap addr: "
2511 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2512 length, addr);
2513 exit(1);
2514 }
2515 memory_try_enable_merging(vaddr, length);
2516 qemu_ram_setup_dump(vaddr, length);
2517 }
2518 }
2519 }
2520 }
2521 #endif /* !_WIN32 */
2522
2523 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2524 * This should not be used for general purpose DMA. Use address_space_map
2525 * or address_space_rw instead. For local memory (e.g. video ram) that the
2526 * device owns, use memory_region_get_ram_ptr.
2527 *
2528 * Called within RCU critical section.
2529 */
2530 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2531 {
2532 RAMBlock *block = ram_block;
2533
2534 if (block == NULL) {
2535 block = qemu_get_ram_block(addr);
2536 addr -= block->offset;
2537 }
2538
2539 if (xen_enabled() && block->host == NULL) {
2540 /* We need to check if the requested address is in the RAM
2541 * because we don't want to map the entire memory in QEMU.
2542 * In that case just map until the end of the page.
2543 */
2544 if (block->offset == 0) {
2545 return xen_map_cache(addr, 0, 0, false);
2546 }
2547
2548 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2549 }
2550 return ramblock_ptr(block, addr);
2551 }
2552
2553 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2554 * but takes a size argument.
2555 *
2556 * Called within RCU critical section.
2557 */
2558 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2559 hwaddr *size, bool lock)
2560 {
2561 RAMBlock *block = ram_block;
2562 if (*size == 0) {
2563 return NULL;
2564 }
2565
2566 if (block == NULL) {
2567 block = qemu_get_ram_block(addr);
2568 addr -= block->offset;
2569 }
2570 *size = MIN(*size, block->max_length - addr);
2571
2572 if (xen_enabled() && block->host == NULL) {
2573 /* We need to check if the requested address is in the RAM
2574 * because we don't want to map the entire memory in QEMU.
2575 * In that case just map the requested area.
2576 */
2577 if (block->offset == 0) {
2578 return xen_map_cache(addr, *size, lock, lock);
2579 }
2580
2581 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2582 }
2583
2584 return ramblock_ptr(block, addr);
2585 }
2586
2587 /* Return the offset of a hostpointer within a ramblock */
2588 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2589 {
2590 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2591 assert((uintptr_t)host >= (uintptr_t)rb->host);
2592 assert(res < rb->max_length);
2593
2594 return res;
2595 }
2596
2597 /*
2598 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2599 * in that RAMBlock.
2600 *
2601 * ptr: Host pointer to look up
2602 * round_offset: If true round the result offset down to a page boundary
2603 * *ram_addr: set to result ram_addr
2604 * *offset: set to result offset within the RAMBlock
2605 *
2606 * Returns: RAMBlock (or NULL if not found)
2607 *
2608 * By the time this function returns, the returned pointer is not protected
2609 * by RCU anymore. If the caller is not within an RCU critical section and
2610 * does not hold the iothread lock, it must have other means of protecting the
2611 * pointer, such as a reference to the region that includes the incoming
2612 * ram_addr_t.
2613 */
2614 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2615 ram_addr_t *offset)
2616 {
2617 RAMBlock *block;
2618 uint8_t *host = ptr;
2619
2620 if (xen_enabled()) {
2621 ram_addr_t ram_addr;
2622 RCU_READ_LOCK_GUARD();
2623 ram_addr = xen_ram_addr_from_mapcache(ptr);
2624 block = qemu_get_ram_block(ram_addr);
2625 if (block) {
2626 *offset = ram_addr - block->offset;
2627 }
2628 return block;
2629 }
2630
2631 RCU_READ_LOCK_GUARD();
2632 block = atomic_rcu_read(&ram_list.mru_block);
2633 if (block && block->host && host - block->host < block->max_length) {
2634 goto found;
2635 }
2636
2637 RAMBLOCK_FOREACH(block) {
2638 /* This case append when the block is not mapped. */
2639 if (block->host == NULL) {
2640 continue;
2641 }
2642 if (host - block->host < block->max_length) {
2643 goto found;
2644 }
2645 }
2646
2647 return NULL;
2648
2649 found:
2650 *offset = (host - block->host);
2651 if (round_offset) {
2652 *offset &= TARGET_PAGE_MASK;
2653 }
2654 return block;
2655 }
2656
2657 /*
2658 * Finds the named RAMBlock
2659 *
2660 * name: The name of RAMBlock to find
2661 *
2662 * Returns: RAMBlock (or NULL if not found)
2663 */
2664 RAMBlock *qemu_ram_block_by_name(const char *name)
2665 {
2666 RAMBlock *block;
2667
2668 RAMBLOCK_FOREACH(block) {
2669 if (!strcmp(name, block->idstr)) {
2670 return block;
2671 }
2672 }
2673
2674 return NULL;
2675 }
2676
2677 /* Some of the softmmu routines need to translate from a host pointer
2678 (typically a TLB entry) back to a ram offset. */
2679 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2680 {
2681 RAMBlock *block;
2682 ram_addr_t offset;
2683
2684 block = qemu_ram_block_from_host(ptr, false, &offset);
2685 if (!block) {
2686 return RAM_ADDR_INVALID;
2687 }
2688
2689 return block->offset + offset;
2690 }
2691
2692 /* Generate a debug exception if a watchpoint has been hit. */
2693 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2694 MemTxAttrs attrs, int flags, uintptr_t ra)
2695 {
2696 CPUClass *cc = CPU_GET_CLASS(cpu);
2697 CPUWatchpoint *wp;
2698
2699 assert(tcg_enabled());
2700 if (cpu->watchpoint_hit) {
2701 /*
2702 * We re-entered the check after replacing the TB.
2703 * Now raise the debug interrupt so that it will
2704 * trigger after the current instruction.
2705 */
2706 qemu_mutex_lock_iothread();
2707 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2708 qemu_mutex_unlock_iothread();
2709 return;
2710 }
2711
2712 addr = cc->adjust_watchpoint_address(cpu, addr, len);
2713 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2714 if (watchpoint_address_matches(wp, addr, len)
2715 && (wp->flags & flags)) {
2716 if (flags == BP_MEM_READ) {
2717 wp->flags |= BP_WATCHPOINT_HIT_READ;
2718 } else {
2719 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2720 }
2721 wp->hitaddr = MAX(addr, wp->vaddr);
2722 wp->hitattrs = attrs;
2723 if (!cpu->watchpoint_hit) {
2724 if (wp->flags & BP_CPU &&
2725 !cc->debug_check_watchpoint(cpu, wp)) {
2726 wp->flags &= ~BP_WATCHPOINT_HIT;
2727 continue;
2728 }
2729 cpu->watchpoint_hit = wp;
2730
2731 mmap_lock();
2732 tb_check_watchpoint(cpu, ra);
2733 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2734 cpu->exception_index = EXCP_DEBUG;
2735 mmap_unlock();
2736 cpu_loop_exit_restore(cpu, ra);
2737 } else {
2738 /* Force execution of one insn next time. */
2739 cpu->cflags_next_tb = 1 | curr_cflags();
2740 mmap_unlock();
2741 if (ra) {
2742 cpu_restore_state(cpu, ra, true);
2743 }
2744 cpu_loop_exit_noexc(cpu);
2745 }
2746 }
2747 } else {
2748 wp->flags &= ~BP_WATCHPOINT_HIT;
2749 }
2750 }
2751 }
2752
2753 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2754 MemTxAttrs attrs, void *buf, hwaddr len);
2755 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2756 const void *buf, hwaddr len);
2757 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2758 bool is_write, MemTxAttrs attrs);
2759
2760 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2761 unsigned len, MemTxAttrs attrs)
2762 {
2763 subpage_t *subpage = opaque;
2764 uint8_t buf[8];
2765 MemTxResult res;
2766
2767 #if defined(DEBUG_SUBPAGE)
2768 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2769 subpage, len, addr);
2770 #endif
2771 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2772 if (res) {
2773 return res;
2774 }
2775 *data = ldn_p(buf, len);
2776 return MEMTX_OK;
2777 }
2778
2779 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2780 uint64_t value, unsigned len, MemTxAttrs attrs)
2781 {
2782 subpage_t *subpage = opaque;
2783 uint8_t buf[8];
2784
2785 #if defined(DEBUG_SUBPAGE)
2786 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2787 " value %"PRIx64"\n",
2788 __func__, subpage, len, addr, value);
2789 #endif
2790 stn_p(buf, len, value);
2791 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2792 }
2793
2794 static bool subpage_accepts(void *opaque, hwaddr addr,
2795 unsigned len, bool is_write,
2796 MemTxAttrs attrs)
2797 {
2798 subpage_t *subpage = opaque;
2799 #if defined(DEBUG_SUBPAGE)
2800 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2801 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2802 #endif
2803
2804 return flatview_access_valid(subpage->fv, addr + subpage->base,
2805 len, is_write, attrs);
2806 }
2807
2808 static const MemoryRegionOps subpage_ops = {
2809 .read_with_attrs = subpage_read,
2810 .write_with_attrs = subpage_write,
2811 .impl.min_access_size = 1,
2812 .impl.max_access_size = 8,
2813 .valid.min_access_size = 1,
2814 .valid.max_access_size = 8,
2815 .valid.accepts = subpage_accepts,
2816 .endianness = DEVICE_NATIVE_ENDIAN,
2817 };
2818
2819 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2820 uint16_t section)
2821 {
2822 int idx, eidx;
2823
2824 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2825 return -1;
2826 idx = SUBPAGE_IDX(start);
2827 eidx = SUBPAGE_IDX(end);
2828 #if defined(DEBUG_SUBPAGE)
2829 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2830 __func__, mmio, start, end, idx, eidx, section);
2831 #endif
2832 for (; idx <= eidx; idx++) {
2833 mmio->sub_section[idx] = section;
2834 }
2835
2836 return 0;
2837 }
2838
2839 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2840 {
2841 subpage_t *mmio;
2842
2843 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2844 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2845 mmio->fv = fv;
2846 mmio->base = base;
2847 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2848 NULL, TARGET_PAGE_SIZE);
2849 mmio->iomem.subpage = true;
2850 #if defined(DEBUG_SUBPAGE)
2851 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2852 mmio, base, TARGET_PAGE_SIZE);
2853 #endif
2854
2855 return mmio;
2856 }
2857
2858 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2859 {
2860 assert(fv);
2861 MemoryRegionSection section = {
2862 .fv = fv,
2863 .mr = mr,
2864 .offset_within_address_space = 0,
2865 .offset_within_region = 0,
2866 .size = int128_2_64(),
2867 };
2868
2869 return phys_section_add(map, &section);
2870 }
2871
2872 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2873 hwaddr index, MemTxAttrs attrs)
2874 {
2875 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2876 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2877 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2878 MemoryRegionSection *sections = d->map.sections;
2879
2880 return &sections[index & ~TARGET_PAGE_MASK];
2881 }
2882
2883 static void io_mem_init(void)
2884 {
2885 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2886 NULL, UINT64_MAX);
2887 }
2888
2889 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2890 {
2891 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2892 uint16_t n;
2893
2894 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2895 assert(n == PHYS_SECTION_UNASSIGNED);
2896
2897 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2898
2899 return d;
2900 }
2901
2902 void address_space_dispatch_free(AddressSpaceDispatch *d)
2903 {
2904 phys_sections_free(&d->map);
2905 g_free(d);
2906 }
2907
2908 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2909 {
2910 }
2911
2912 static void tcg_log_global_after_sync(MemoryListener *listener)
2913 {
2914 CPUAddressSpace *cpuas;
2915
2916 /* Wait for the CPU to end the current TB. This avoids the following
2917 * incorrect race:
2918 *
2919 * vCPU migration
2920 * ---------------------- -------------------------
2921 * TLB check -> slow path
2922 * notdirty_mem_write
2923 * write to RAM
2924 * mark dirty
2925 * clear dirty flag
2926 * TLB check -> fast path
2927 * read memory
2928 * write to RAM
2929 *
2930 * by pushing the migration thread's memory read after the vCPU thread has
2931 * written the memory.
2932 */
2933 if (replay_mode == REPLAY_MODE_NONE) {
2934 /*
2935 * VGA can make calls to this function while updating the screen.
2936 * In record/replay mode this causes a deadlock, because
2937 * run_on_cpu waits for rr mutex. Therefore no races are possible
2938 * in this case and no need for making run_on_cpu when
2939 * record/replay is not enabled.
2940 */
2941 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2942 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2943 }
2944 }
2945
2946 static void tcg_commit(MemoryListener *listener)
2947 {
2948 CPUAddressSpace *cpuas;
2949 AddressSpaceDispatch *d;
2950
2951 assert(tcg_enabled());
2952 /* since each CPU stores ram addresses in its TLB cache, we must
2953 reset the modified entries */
2954 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2955 cpu_reloading_memory_map();
2956 /* The CPU and TLB are protected by the iothread lock.
2957 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2958 * may have split the RCU critical section.
2959 */
2960 d = address_space_to_dispatch(cpuas->as);
2961 atomic_rcu_set(&cpuas->memory_dispatch, d);
2962 tlb_flush(cpuas->cpu);
2963 }
2964
2965 static void memory_map_init(void)
2966 {
2967 system_memory = g_malloc(sizeof(*system_memory));
2968
2969 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2970 address_space_init(&address_space_memory, system_memory, "memory");
2971
2972 system_io = g_malloc(sizeof(*system_io));
2973 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2974 65536);
2975 address_space_init(&address_space_io, system_io, "I/O");
2976 }
2977
2978 MemoryRegion *get_system_memory(void)
2979 {
2980 return system_memory;
2981 }
2982
2983 MemoryRegion *get_system_io(void)
2984 {
2985 return system_io;
2986 }
2987
2988 #endif /* !defined(CONFIG_USER_ONLY) */
2989
2990 /* physical memory access (slow version, mainly for debug) */
2991 #if defined(CONFIG_USER_ONLY)
2992 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2993 void *ptr, target_ulong len, bool is_write)
2994 {
2995 int flags;
2996 target_ulong l, page;
2997 void * p;
2998 uint8_t *buf = ptr;
2999
3000 while (len > 0) {
3001 page = addr & TARGET_PAGE_MASK;
3002 l = (page + TARGET_PAGE_SIZE) - addr;
3003 if (l > len)
3004 l = len;
3005 flags = page_get_flags(page);
3006 if (!(flags & PAGE_VALID))
3007 return -1;
3008 if (is_write) {
3009 if (!(flags & PAGE_WRITE))
3010 return -1;
3011 /* XXX: this code should not depend on lock_user */
3012 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3013 return -1;
3014 memcpy(p, buf, l);
3015 unlock_user(p, addr, l);
3016 } else {
3017 if (!(flags & PAGE_READ))
3018 return -1;
3019 /* XXX: this code should not depend on lock_user */
3020 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3021 return -1;
3022 memcpy(buf, p, l);
3023 unlock_user(p, addr, 0);
3024 }
3025 len -= l;
3026 buf += l;
3027 addr += l;
3028 }
3029 return 0;
3030 }
3031
3032 #else
3033
3034 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3035 hwaddr length)
3036 {
3037 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3038 addr += memory_region_get_ram_addr(mr);
3039
3040 /* No early return if dirty_log_mask is or becomes 0, because
3041 * cpu_physical_memory_set_dirty_range will still call
3042 * xen_modified_memory.
3043 */
3044 if (dirty_log_mask) {
3045 dirty_log_mask =
3046 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3047 }
3048 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3049 assert(tcg_enabled());
3050 tb_invalidate_phys_range(addr, addr + length);
3051 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3052 }
3053 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3054 }
3055
3056 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3057 {
3058 /*
3059 * In principle this function would work on other memory region types too,
3060 * but the ROM device use case is the only one where this operation is
3061 * necessary. Other memory regions should use the
3062 * address_space_read/write() APIs.
3063 */
3064 assert(memory_region_is_romd(mr));
3065
3066 invalidate_and_set_dirty(mr, addr, size);
3067 }
3068
3069 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3070 {
3071 unsigned access_size_max = mr->ops->valid.max_access_size;
3072
3073 /* Regions are assumed to support 1-4 byte accesses unless
3074 otherwise specified. */
3075 if (access_size_max == 0) {
3076 access_size_max = 4;
3077 }
3078
3079 /* Bound the maximum access by the alignment of the address. */
3080 if (!mr->ops->impl.unaligned) {
3081 unsigned align_size_max = addr & -addr;
3082 if (align_size_max != 0 && align_size_max < access_size_max) {
3083 access_size_max = align_size_max;
3084 }
3085 }
3086
3087 /* Don't attempt accesses larger than the maximum. */
3088 if (l > access_size_max) {
3089 l = access_size_max;
3090 }
3091 l = pow2floor(l);
3092
3093 return l;
3094 }
3095
3096 static bool prepare_mmio_access(MemoryRegion *mr)
3097 {
3098 bool unlocked = !qemu_mutex_iothread_locked();
3099 bool release_lock = false;
3100
3101 if (unlocked && mr->global_locking) {
3102 qemu_mutex_lock_iothread();
3103 unlocked = false;
3104 release_lock = true;
3105 }
3106 if (mr->flush_coalesced_mmio) {
3107 if (unlocked) {
3108 qemu_mutex_lock_iothread();
3109 }
3110 qemu_flush_coalesced_mmio_buffer();
3111 if (unlocked) {
3112 qemu_mutex_unlock_iothread();
3113 }
3114 }
3115
3116 return release_lock;
3117 }
3118
3119 /* Called within RCU critical section. */
3120 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3121 MemTxAttrs attrs,
3122 const void *ptr,
3123 hwaddr len, hwaddr addr1,
3124 hwaddr l, MemoryRegion *mr)
3125 {
3126 uint8_t *ram_ptr;
3127 uint64_t val;
3128 MemTxResult result = MEMTX_OK;
3129 bool release_lock = false;
3130 const uint8_t *buf = ptr;
3131
3132 for (;;) {
3133 if (!memory_access_is_direct(mr, true)) {
3134 release_lock |= prepare_mmio_access(mr);
3135 l = memory_access_size(mr, l, addr1);
3136 /* XXX: could force current_cpu to NULL to avoid
3137 potential bugs */
3138 val = ldn_he_p(buf, l);
3139 result |= memory_region_dispatch_write(mr, addr1, val,
3140 size_memop(l), attrs);
3141 } else {
3142 /* RAM case */
3143 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3144 memcpy(ram_ptr, buf, l);
3145 invalidate_and_set_dirty(mr, addr1, l);
3146 }
3147
3148 if (release_lock) {
3149 qemu_mutex_unlock_iothread();
3150 release_lock = false;
3151 }
3152
3153 len -= l;
3154 buf += l;
3155 addr += l;
3156
3157 if (!len) {
3158 break;
3159 }
3160
3161 l = len;
3162 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3163 }
3164
3165 return result;
3166 }
3167
3168 /* Called from RCU critical section. */
3169 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3170 const void *buf, hwaddr len)
3171 {
3172 hwaddr l;
3173 hwaddr addr1;
3174 MemoryRegion *mr;
3175 MemTxResult result = MEMTX_OK;
3176
3177 l = len;
3178 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3179 result = flatview_write_continue(fv, addr, attrs, buf, len,
3180 addr1, l, mr);
3181
3182 return result;
3183 }
3184
3185 /* Called within RCU critical section. */
3186 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3187 MemTxAttrs attrs, void *ptr,
3188 hwaddr len, hwaddr addr1, hwaddr l,
3189 MemoryRegion *mr)
3190 {
3191 uint8_t *ram_ptr;
3192 uint64_t val;
3193 MemTxResult result = MEMTX_OK;
3194 bool release_lock = false;
3195 uint8_t *buf = ptr;
3196
3197 for (;;) {
3198 if (!memory_access_is_direct(mr, false)) {
3199 /* I/O case */
3200 release_lock |= prepare_mmio_access(mr);
3201 l = memory_access_size(mr, l, addr1);
3202 result |= memory_region_dispatch_read(mr, addr1, &val,
3203 size_memop(l), attrs);
3204 stn_he_p(buf, l, val);
3205 } else {
3206 /* RAM case */
3207 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3208 memcpy(buf, ram_ptr, l);
3209 }
3210
3211 if (release_lock) {
3212 qemu_mutex_unlock_iothread();
3213 release_lock = false;
3214 }
3215
3216 len -= l;
3217 buf += l;
3218 addr += l;
3219
3220 if (!len) {
3221 break;
3222 }
3223
3224 l = len;
3225 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3226 }
3227
3228 return result;
3229 }
3230
3231 /* Called from RCU critical section. */
3232 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3233 MemTxAttrs attrs, void *buf, hwaddr len)
3234 {
3235 hwaddr l;
3236 hwaddr addr1;
3237 MemoryRegion *mr;
3238
3239 l = len;
3240 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3241 return flatview_read_continue(fv, addr, attrs, buf, len,
3242 addr1, l, mr);
3243 }
3244
3245 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3246 MemTxAttrs attrs, void *buf, hwaddr len)
3247 {
3248 MemTxResult result = MEMTX_OK;
3249 FlatView *fv;
3250
3251 if (len > 0) {
3252 RCU_READ_LOCK_GUARD();
3253 fv = address_space_to_flatview(as);
3254 result = flatview_read(fv, addr, attrs, buf, len);
3255 }
3256
3257 return result;
3258 }
3259
3260 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3261 MemTxAttrs attrs,
3262 const void *buf, hwaddr len)
3263 {
3264 MemTxResult result = MEMTX_OK;
3265 FlatView *fv;
3266
3267 if (len > 0) {
3268 RCU_READ_LOCK_GUARD();
3269 fv = address_space_to_flatview(as);
3270 result = flatview_write(fv, addr, attrs, buf, len);
3271 }
3272
3273 return result;
3274 }
3275
3276 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3277 void *buf, hwaddr len, bool is_write)
3278 {
3279 if (is_write) {
3280 return address_space_write(as, addr, attrs, buf, len);
3281 } else {
3282 return address_space_read_full(as, addr, attrs, buf, len);
3283 }
3284 }
3285
3286 void cpu_physical_memory_rw(hwaddr addr, void *buf,
3287 hwaddr len, bool is_write)
3288 {
3289 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3290 buf, len, is_write);
3291 }
3292
3293 enum write_rom_type {
3294 WRITE_DATA,
3295 FLUSH_CACHE,
3296 };
3297
3298 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3299 hwaddr addr,
3300 MemTxAttrs attrs,
3301 const void *ptr,
3302 hwaddr len,
3303 enum write_rom_type type)
3304 {
3305 hwaddr l;
3306 uint8_t *ram_ptr;
3307 hwaddr addr1;
3308 MemoryRegion *mr;
3309 const uint8_t *buf = ptr;
3310
3311 RCU_READ_LOCK_GUARD();
3312 while (len > 0) {
3313 l = len;
3314 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3315
3316 if (!(memory_region_is_ram(mr) ||
3317 memory_region_is_romd(mr))) {
3318 l = memory_access_size(mr, l, addr1);
3319 } else {
3320 /* ROM/RAM case */
3321 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3322 switch (type) {
3323 case WRITE_DATA:
3324 memcpy(ram_ptr, buf, l);
3325 invalidate_and_set_dirty(mr, addr1, l);
3326 break;
3327 case FLUSH_CACHE:
3328 flush_icache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr + l);
3329 break;
3330 }
3331 }
3332 len -= l;
3333 buf += l;
3334 addr += l;
3335 }
3336 return MEMTX_OK;
3337 }
3338
3339 /* used for ROM loading : can write in RAM and ROM */
3340 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3341 MemTxAttrs attrs,
3342 const void *buf, hwaddr len)
3343 {
3344 return address_space_write_rom_internal(as, addr, attrs,
3345 buf, len, WRITE_DATA);
3346 }
3347
3348 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3349 {
3350 /*
3351 * This function should do the same thing as an icache flush that was
3352 * triggered from within the guest. For TCG we are always cache coherent,
3353 * so there is no need to flush anything. For KVM / Xen we need to flush
3354 * the host's instruction cache at least.
3355 */
3356 if (tcg_enabled()) {
3357 return;
3358 }
3359
3360 address_space_write_rom_internal(&address_space_memory,
3361 start, MEMTXATTRS_UNSPECIFIED,
3362 NULL, len, FLUSH_CACHE);
3363 }
3364
3365 typedef struct {
3366 MemoryRegion *mr;
3367 void *buffer;
3368 hwaddr addr;
3369 hwaddr len;
3370 bool in_use;
3371 } BounceBuffer;
3372
3373 static BounceBuffer bounce;
3374
3375 typedef struct MapClient {
3376 QEMUBH *bh;
3377 QLIST_ENTRY(MapClient) link;
3378 } MapClient;
3379
3380 QemuMutex map_client_list_lock;
3381 static QLIST_HEAD(, MapClient) map_client_list
3382 = QLIST_HEAD_INITIALIZER(map_client_list);
3383
3384 static void cpu_unregister_map_client_do(MapClient *client)
3385 {
3386 QLIST_REMOVE(client, link);
3387 g_free(client);
3388 }
3389
3390 static void cpu_notify_map_clients_locked(void)
3391 {
3392 MapClient *client;
3393
3394 while (!QLIST_EMPTY(&map_client_list)) {
3395 client = QLIST_FIRST(&map_client_list);
3396 qemu_bh_schedule(client->bh);
3397 cpu_unregister_map_client_do(client);
3398 }
3399 }
3400
3401 void cpu_register_map_client(QEMUBH *bh)
3402 {
3403 MapClient *client = g_malloc(sizeof(*client));
3404
3405 qemu_mutex_lock(&map_client_list_lock);
3406 client->bh = bh;
3407 QLIST_INSERT_HEAD(&map_client_list, client, link);
3408 if (!atomic_read(&bounce.in_use)) {
3409 cpu_notify_map_clients_locked();
3410 }
3411 qemu_mutex_unlock(&map_client_list_lock);
3412 }
3413
3414 void cpu_exec_init_all(void)
3415 {
3416 qemu_mutex_init(&ram_list.mutex);
3417 /* The data structures we set up here depend on knowing the page size,
3418 * so no more changes can be made after this point.
3419 * In an ideal world, nothing we did before we had finished the
3420 * machine setup would care about the target page size, and we could
3421 * do this much later, rather than requiring board models to state
3422 * up front what their requirements are.
3423 */
3424 finalize_target_page_bits();
3425 io_mem_init();
3426 memory_map_init();
3427 qemu_mutex_init(&map_client_list_lock);
3428 }
3429
3430 void cpu_unregister_map_client(QEMUBH *bh)
3431 {
3432 MapClient *client;
3433
3434 qemu_mutex_lock(&map_client_list_lock);
3435 QLIST_FOREACH(client, &map_client_list, link) {
3436 if (client->bh == bh) {
3437 cpu_unregister_map_client_do(client);
3438 break;
3439 }
3440 }
3441 qemu_mutex_unlock(&map_client_list_lock);
3442 }
3443
3444 static void cpu_notify_map_clients(void)
3445 {
3446 qemu_mutex_lock(&map_client_list_lock);
3447 cpu_notify_map_clients_locked();
3448 qemu_mutex_unlock(&map_client_list_lock);
3449 }
3450
3451 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3452 bool is_write, MemTxAttrs attrs)
3453 {
3454 MemoryRegion *mr;
3455 hwaddr l, xlat;
3456
3457 while (len > 0) {
3458 l = len;
3459 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3460 if (!memory_access_is_direct(mr, is_write)) {
3461 l = memory_access_size(mr, l, addr);
3462 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3463 return false;
3464 }
3465 }
3466
3467 len -= l;
3468 addr += l;
3469 }
3470 return true;
3471 }
3472
3473 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3474 hwaddr len, bool is_write,
3475 MemTxAttrs attrs)
3476 {
3477 FlatView *fv;
3478 bool result;
3479
3480 RCU_READ_LOCK_GUARD();
3481 fv = address_space_to_flatview(as);
3482 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3483 return result;
3484 }
3485
3486 static hwaddr
3487 flatview_extend_translation(FlatView *fv, hwaddr addr,
3488 hwaddr target_len,
3489 MemoryRegion *mr, hwaddr base, hwaddr len,
3490 bool is_write, MemTxAttrs attrs)
3491 {
3492 hwaddr done = 0;
3493 hwaddr xlat;
3494 MemoryRegion *this_mr;
3495
3496 for (;;) {
3497 target_len -= len;
3498 addr += len;
3499 done += len;
3500 if (target_len == 0) {
3501 return done;
3502 }
3503
3504 len = target_len;
3505 this_mr = flatview_translate(fv, addr, &xlat,
3506 &len, is_write, attrs);
3507 if (this_mr != mr || xlat != base + done) {
3508 return done;
3509 }
3510 }
3511 }
3512
3513 /* Map a physical memory region into a host virtual address.
3514 * May map a subset of the requested range, given by and returned in *plen.
3515 * May return NULL if resources needed to perform the mapping are exhausted.
3516 * Use only for reads OR writes - not for read-modify-write operations.
3517 * Use cpu_register_map_client() to know when retrying the map operation is
3518 * likely to succeed.
3519 */
3520 void *address_space_map(AddressSpace *as,
3521 hwaddr addr,
3522 hwaddr *plen,
3523 bool is_write,
3524 MemTxAttrs attrs)
3525 {
3526 hwaddr len = *plen;
3527 hwaddr l, xlat;
3528 MemoryRegion *mr;
3529 void *ptr;
3530 FlatView *fv;
3531
3532 if (len == 0) {
3533 return NULL;
3534 }
3535
3536 l = len;
3537 RCU_READ_LOCK_GUARD();
3538 fv = address_space_to_flatview(as);
3539 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3540
3541 if (!memory_access_is_direct(mr, is_write)) {
3542 if (atomic_xchg(&bounce.in_use, true)) {
3543 return NULL;
3544 }
3545 /* Avoid unbounded allocations */
3546 l = MIN(l, TARGET_PAGE_SIZE);
3547 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3548 bounce.addr = addr;
3549 bounce.len = l;
3550
3551 memory_region_ref(mr);
3552 bounce.mr = mr;
3553 if (!is_write) {
3554 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3555 bounce.buffer, l);
3556 }
3557
3558 *plen = l;
3559 return bounce.buffer;
3560 }
3561
3562
3563 memory_region_ref(mr);
3564 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3565 l, is_write, attrs);
3566 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3567
3568 return ptr;
3569 }
3570
3571 /* Unmaps a memory region previously mapped by address_space_map().
3572 * Will also mark the memory as dirty if is_write is true. access_len gives
3573 * the amount of memory that was actually read or written by the caller.
3574 */
3575 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3576 bool is_write, hwaddr access_len)
3577 {
3578 if (buffer != bounce.buffer) {
3579 MemoryRegion *mr;
3580 ram_addr_t addr1;
3581
3582 mr = memory_region_from_host(buffer, &addr1);
3583 assert(mr != NULL);
3584 if (is_write) {
3585 invalidate_and_set_dirty(mr, addr1, access_len);
3586 }
3587 if (xen_enabled()) {
3588 xen_invalidate_map_cache_entry(buffer);
3589 }
3590 memory_region_unref(mr);
3591 return;
3592 }
3593 if (is_write) {
3594 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3595 bounce.buffer, access_len);
3596 }
3597 qemu_vfree(bounce.buffer);
3598 bounce.buffer = NULL;
3599 memory_region_unref(bounce.mr);
3600 atomic_mb_set(&bounce.in_use, false);
3601 cpu_notify_map_clients();
3602 }
3603
3604 void *cpu_physical_memory_map(hwaddr addr,
3605 hwaddr *plen,
3606 bool is_write)
3607 {
3608 return address_space_map(&address_space_memory, addr, plen, is_write,
3609 MEMTXATTRS_UNSPECIFIED);
3610 }
3611
3612 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3613 bool is_write, hwaddr access_len)
3614 {
3615 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3616 }
3617
3618 #define ARG1_DECL AddressSpace *as
3619 #define ARG1 as
3620 #define SUFFIX
3621 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3622 #define RCU_READ_LOCK(...) rcu_read_lock()
3623 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3624 #include "memory_ldst.inc.c"
3625
3626 int64_t address_space_cache_init(MemoryRegionCache *cache,
3627 AddressSpace *as,
3628 hwaddr addr,
3629 hwaddr len,
3630 bool is_write)
3631 {
3632 AddressSpaceDispatch *d;
3633 hwaddr l;
3634 MemoryRegion *mr;
3635
3636 assert(len > 0);
3637
3638 l = len;
3639 cache->fv = address_space_get_flatview(as);
3640 d = flatview_to_dispatch(cache->fv);
3641 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3642
3643 mr = cache->mrs.mr;
3644 memory_region_ref(mr);
3645 if (memory_access_is_direct(mr, is_write)) {
3646 /* We don't care about the memory attributes here as we're only
3647 * doing this if we found actual RAM, which behaves the same
3648 * regardless of attributes; so UNSPECIFIED is fine.
3649 */
3650 l = flatview_extend_translation(cache->fv, addr, len, mr,
3651 cache->xlat, l, is_write,
3652 MEMTXATTRS_UNSPECIFIED);
3653 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3654 } else {
3655 cache->ptr = NULL;
3656 }
3657
3658 cache->len = l;
3659 cache->is_write = is_write;
3660 return l;
3661 }
3662
3663 void address_space_cache_invalidate(MemoryRegionCache *cache,
3664 hwaddr addr,
3665 hwaddr access_len)
3666 {
3667 assert(cache->is_write);
3668 if (likely(cache->ptr)) {
3669 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3670 }
3671 }
3672
3673 void address_space_cache_destroy(MemoryRegionCache *cache)
3674 {
3675 if (!cache->mrs.mr) {
3676 return;
3677 }
3678
3679 if (xen_enabled()) {
3680 xen_invalidate_map_cache_entry(cache->ptr);
3681 }
3682 memory_region_unref(cache->mrs.mr);
3683 flatview_unref(cache->fv);
3684 cache->mrs.mr = NULL;
3685 cache->fv = NULL;
3686 }
3687
3688 /* Called from RCU critical section. This function has the same
3689 * semantics as address_space_translate, but it only works on a
3690 * predefined range of a MemoryRegion that was mapped with
3691 * address_space_cache_init.
3692 */
3693 static inline MemoryRegion *address_space_translate_cached(
3694 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3695 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3696 {
3697 MemoryRegionSection section;
3698 MemoryRegion *mr;
3699 IOMMUMemoryRegion *iommu_mr;
3700 AddressSpace *target_as;
3701
3702 assert(!cache->ptr);
3703 *xlat = addr + cache->xlat;
3704
3705 mr = cache->mrs.mr;
3706 iommu_mr = memory_region_get_iommu(mr);
3707 if (!iommu_mr) {
3708 /* MMIO region. */
3709 return mr;
3710 }
3711
3712 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3713 NULL, is_write, true,
3714 &target_as, attrs);
3715 return section.mr;
3716 }
3717
3718 /* Called from RCU critical section. address_space_read_cached uses this
3719 * out of line function when the target is an MMIO or IOMMU region.
3720 */
3721 void
3722 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3723 void *buf, hwaddr len)
3724 {
3725 hwaddr addr1, l;
3726 MemoryRegion *mr;
3727
3728 l = len;
3729 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3730 MEMTXATTRS_UNSPECIFIED);
3731 flatview_read_continue(cache->fv,
3732 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3733 addr1, l, mr);
3734 }
3735
3736 /* Called from RCU critical section. address_space_write_cached uses this
3737 * out of line function when the target is an MMIO or IOMMU region.
3738 */
3739 void
3740 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3741 const void *buf, hwaddr len)
3742 {
3743 hwaddr addr1, l;
3744 MemoryRegion *mr;
3745
3746 l = len;
3747 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3748 MEMTXATTRS_UNSPECIFIED);
3749 flatview_write_continue(cache->fv,
3750 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3751 addr1, l, mr);
3752 }
3753
3754 #define ARG1_DECL MemoryRegionCache *cache
3755 #define ARG1 cache
3756 #define SUFFIX _cached_slow
3757 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3758 #define RCU_READ_LOCK() ((void)0)
3759 #define RCU_READ_UNLOCK() ((void)0)
3760 #include "memory_ldst.inc.c"
3761
3762 /* virtual memory access for debug (includes writing to ROM) */
3763 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3764 void *ptr, target_ulong len, bool is_write)
3765 {
3766 hwaddr phys_addr;
3767 target_ulong l, page;
3768 uint8_t *buf = ptr;
3769
3770 cpu_synchronize_state(cpu);
3771 while (len > 0) {
3772 int asidx;
3773 MemTxAttrs attrs;
3774
3775 page = addr & TARGET_PAGE_MASK;
3776 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3777 asidx = cpu_asidx_from_attrs(cpu, attrs);
3778 /* if no physical page mapped, return an error */
3779 if (phys_addr == -1)
3780 return -1;
3781 l = (page + TARGET_PAGE_SIZE) - addr;
3782 if (l > len)
3783 l = len;
3784 phys_addr += (addr & ~TARGET_PAGE_MASK);
3785 if (is_write) {
3786 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3787 attrs, buf, l);
3788 } else {
3789 address_space_read(cpu->cpu_ases[asidx].as, phys_addr, attrs, buf,
3790 l);
3791 }
3792 len -= l;
3793 buf += l;
3794 addr += l;
3795 }
3796 return 0;
3797 }
3798
3799 /*
3800 * Allows code that needs to deal with migration bitmaps etc to still be built
3801 * target independent.
3802 */
3803 size_t qemu_target_page_size(void)
3804 {
3805 return TARGET_PAGE_SIZE;
3806 }
3807
3808 int qemu_target_page_bits(void)
3809 {
3810 return TARGET_PAGE_BITS;
3811 }
3812
3813 int qemu_target_page_bits_min(void)
3814 {
3815 return TARGET_PAGE_BITS_MIN;
3816 }
3817 #endif
3818
3819 bool target_words_bigendian(void)
3820 {
3821 #if defined(TARGET_WORDS_BIGENDIAN)
3822 return true;
3823 #else
3824 return false;
3825 #endif
3826 }
3827
3828 #ifndef CONFIG_USER_ONLY
3829 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3830 {
3831 MemoryRegion*mr;
3832 hwaddr l = 1;
3833 bool res;
3834
3835 RCU_READ_LOCK_GUARD();
3836 mr = address_space_translate(&address_space_memory,
3837 phys_addr, &phys_addr, &l, false,
3838 MEMTXATTRS_UNSPECIFIED);
3839
3840 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3841 return res;
3842 }
3843
3844 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3845 {
3846 RAMBlock *block;
3847 int ret = 0;
3848
3849 RCU_READ_LOCK_GUARD();
3850 RAMBLOCK_FOREACH(block) {
3851 ret = func(block, opaque);
3852 if (ret) {
3853 break;
3854 }
3855 }
3856 return ret;
3857 }
3858
3859 /*
3860 * Unmap pages of memory from start to start+length such that
3861 * they a) read as 0, b) Trigger whatever fault mechanism
3862 * the OS provides for postcopy.
3863 * The pages must be unmapped by the end of the function.
3864 * Returns: 0 on success, none-0 on failure
3865 *
3866 */
3867 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3868 {
3869 int ret = -1;
3870
3871 uint8_t *host_startaddr = rb->host + start;
3872
3873 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3874 error_report("ram_block_discard_range: Unaligned start address: %p",
3875 host_startaddr);
3876 goto err;
3877 }
3878
3879 if ((start + length) <= rb->used_length) {
3880 bool need_madvise, need_fallocate;
3881 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3882 error_report("ram_block_discard_range: Unaligned length: %zx",
3883 length);
3884 goto err;
3885 }
3886
3887 errno = ENOTSUP; /* If we are missing MADVISE etc */
3888
3889 /* The logic here is messy;
3890 * madvise DONTNEED fails for hugepages
3891 * fallocate works on hugepages and shmem
3892 */
3893 need_madvise = (rb->page_size == qemu_host_page_size);
3894 need_fallocate = rb->fd != -1;
3895 if (need_fallocate) {
3896 /* For a file, this causes the area of the file to be zero'd
3897 * if read, and for hugetlbfs also causes it to be unmapped
3898 * so a userfault will trigger.
3899 */
3900 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3901 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3902 start, length);
3903 if (ret) {
3904 ret = -errno;
3905 error_report("ram_block_discard_range: Failed to fallocate "
3906 "%s:%" PRIx64 " +%zx (%d)",
3907 rb->idstr, start, length, ret);
3908 goto err;
3909 }
3910 #else
3911 ret = -ENOSYS;
3912 error_report("ram_block_discard_range: fallocate not available/file"
3913 "%s:%" PRIx64 " +%zx (%d)",
3914 rb->idstr, start, length, ret);
3915 goto err;
3916 #endif
3917 }
3918 if (need_madvise) {
3919 /* For normal RAM this causes it to be unmapped,
3920 * for shared memory it causes the local mapping to disappear
3921 * and to fall back on the file contents (which we just
3922 * fallocate'd away).
3923 */
3924 #if defined(CONFIG_MADVISE)
3925 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3926 if (ret) {
3927 ret = -errno;
3928 error_report("ram_block_discard_range: Failed to discard range "
3929 "%s:%" PRIx64 " +%zx (%d)",
3930 rb->idstr, start, length, ret);
3931 goto err;
3932 }
3933 #else
3934 ret = -ENOSYS;
3935 error_report("ram_block_discard_range: MADVISE not available"
3936 "%s:%" PRIx64 " +%zx (%d)",
3937 rb->idstr, start, length, ret);
3938 goto err;
3939 #endif
3940 }
3941 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3942 need_madvise, need_fallocate, ret);
3943 } else {
3944 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3945 "/%zx/" RAM_ADDR_FMT")",
3946 rb->idstr, start, length, rb->used_length);
3947 }
3948
3949 err:
3950 return ret;
3951 }
3952
3953 bool ramblock_is_pmem(RAMBlock *rb)
3954 {
3955 return rb->flags & RAM_PMEM;
3956 }
3957
3958 #endif
3959
3960 void page_size_init(void)
3961 {
3962 /* NOTE: we can always suppose that qemu_host_page_size >=
3963 TARGET_PAGE_SIZE */
3964 if (qemu_host_page_size == 0) {
3965 qemu_host_page_size = qemu_real_host_page_size;
3966 }
3967 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3968 qemu_host_page_size = TARGET_PAGE_SIZE;
3969 }
3970 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3971 }
3972
3973 #if !defined(CONFIG_USER_ONLY)
3974
3975 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3976 {
3977 if (start == end - 1) {
3978 qemu_printf("\t%3d ", start);
3979 } else {
3980 qemu_printf("\t%3d..%-3d ", start, end - 1);
3981 }
3982 qemu_printf(" skip=%d ", skip);
3983 if (ptr == PHYS_MAP_NODE_NIL) {
3984 qemu_printf(" ptr=NIL");
3985 } else if (!skip) {
3986 qemu_printf(" ptr=#%d", ptr);
3987 } else {
3988 qemu_printf(" ptr=[%d]", ptr);
3989 }
3990 qemu_printf("\n");
3991 }
3992
3993 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3994 int128_sub((size), int128_one())) : 0)
3995
3996 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3997 {
3998 int i;
3999
4000 qemu_printf(" Dispatch\n");
4001 qemu_printf(" Physical sections\n");
4002
4003 for (i = 0; i < d->map.sections_nb; ++i) {
4004 MemoryRegionSection *s = d->map.sections + i;
4005 const char *names[] = { " [unassigned]", " [not dirty]",
4006 " [ROM]", " [watch]" };
4007
4008 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4009 " %s%s%s%s%s",
4010 i,
4011 s->offset_within_address_space,
4012 s->offset_within_address_space + MR_SIZE(s->mr->size),
4013 s->mr->name ? s->mr->name : "(noname)",
4014 i < ARRAY_SIZE(names) ? names[i] : "",
4015 s->mr == root ? " [ROOT]" : "",
4016 s == d->mru_section ? " [MRU]" : "",
4017 s->mr->is_iommu ? " [iommu]" : "");
4018
4019 if (s->mr->alias) {
4020 qemu_printf(" alias=%s", s->mr->alias->name ?
4021 s->mr->alias->name : "noname");
4022 }
4023 qemu_printf("\n");
4024 }
4025
4026 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4027 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4028 for (i = 0; i < d->map.nodes_nb; ++i) {
4029 int j, jprev;
4030 PhysPageEntry prev;
4031 Node *n = d->map.nodes + i;
4032
4033 qemu_printf(" [%d]\n", i);
4034
4035 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4036 PhysPageEntry *pe = *n + j;
4037
4038 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4039 continue;
4040 }
4041
4042 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4043
4044 jprev = j;
4045 prev = *pe;
4046 }
4047
4048 if (jprev != ARRAY_SIZE(*n)) {
4049 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4050 }
4051 }
4052 }
4053
4054 #endif