]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
memory: simplify multipage/subpage registration
[mirror_qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "osdep.h"
33 #include "kvm.h"
34 #include "hw/xen.h"
35 #include "qemu-timer.h"
36 #include "memory.h"
37 #include "exec-memory.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include <qemu.h>
40 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41 #include <sys/param.h>
42 #if __FreeBSD_version >= 700104
43 #define HAVE_KINFO_GETVMMAP
44 #define sigqueue sigqueue_freebsd /* avoid redefinition */
45 #include <sys/time.h>
46 #include <sys/proc.h>
47 #include <machine/profile.h>
48 #define _KERNEL
49 #include <sys/user.h>
50 #undef _KERNEL
51 #undef sigqueue
52 #include <libutil.h>
53 #endif
54 #endif
55 #else /* !CONFIG_USER_ONLY */
56 #include "xen-mapcache.h"
57 #include "trace.h"
58 #endif
59
60 #define WANT_EXEC_OBSOLETE
61 #include "exec-obsolete.h"
62
63 //#define DEBUG_TB_INVALIDATE
64 //#define DEBUG_FLUSH
65 //#define DEBUG_TLB
66 //#define DEBUG_UNASSIGNED
67
68 /* make various TB consistency checks */
69 //#define DEBUG_TB_CHECK
70 //#define DEBUG_TLB_CHECK
71
72 //#define DEBUG_IOPORT
73 //#define DEBUG_SUBPAGE
74
75 #if !defined(CONFIG_USER_ONLY)
76 /* TB consistency checks only implemented for usermode emulation. */
77 #undef DEBUG_TB_CHECK
78 #endif
79
80 #define SMC_BITMAP_USE_THRESHOLD 10
81
82 static TranslationBlock *tbs;
83 static int code_gen_max_blocks;
84 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85 static int nb_tbs;
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
88
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32)
97 /* Maximum alignment for Win32 is 16. */
98 #define code_gen_section \
99 __attribute__((aligned (16)))
100 #else
101 #define code_gen_section \
102 __attribute__((aligned (32)))
103 #endif
104
105 uint8_t code_gen_prologue[1024] code_gen_section;
106 static uint8_t *code_gen_buffer;
107 static unsigned long code_gen_buffer_size;
108 /* threshold to flush the translated code buffer */
109 static unsigned long code_gen_buffer_max_size;
110 static uint8_t *code_gen_ptr;
111
112 #if !defined(CONFIG_USER_ONLY)
113 int phys_ram_fd;
114 static int in_migration;
115
116 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
117
118 static MemoryRegion *system_memory;
119 static MemoryRegion *system_io;
120
121 MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
122 static MemoryRegion io_mem_subpage_ram;
123
124 #endif
125
126 CPUState *first_cpu;
127 /* current CPU in the current thread. It is only valid inside
128 cpu_exec() */
129 DEFINE_TLS(CPUState *,cpu_single_env);
130 /* 0 = Do not count executed instructions.
131 1 = Precise instruction counting.
132 2 = Adaptive rate instruction counting. */
133 int use_icount = 0;
134
135 typedef struct PageDesc {
136 /* list of TBs intersecting this ram page */
137 TranslationBlock *first_tb;
138 /* in order to optimize self modifying code, we count the number
139 of lookups we do to a given page to use a bitmap */
140 unsigned int code_write_count;
141 uint8_t *code_bitmap;
142 #if defined(CONFIG_USER_ONLY)
143 unsigned long flags;
144 #endif
145 } PageDesc;
146
147 /* In system mode we want L1_MAP to be based on ram offsets,
148 while in user mode we want it to be based on virtual addresses. */
149 #if !defined(CONFIG_USER_ONLY)
150 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
151 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
152 #else
153 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
154 #endif
155 #else
156 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
157 #endif
158
159 /* Size of the L2 (and L3, etc) page tables. */
160 #define L2_BITS 10
161 #define L2_SIZE (1 << L2_BITS)
162
163 #define P_L2_LEVELS \
164 (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
165
166 /* The bits remaining after N lower levels of page tables. */
167 #define V_L1_BITS_REM \
168 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
169
170 #if V_L1_BITS_REM < 4
171 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
172 #else
173 #define V_L1_BITS V_L1_BITS_REM
174 #endif
175
176 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
177
178 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
179
180 unsigned long qemu_real_host_page_size;
181 unsigned long qemu_host_page_size;
182 unsigned long qemu_host_page_mask;
183
184 /* This is a multi-level map on the virtual address space.
185 The bottom level has pointers to PageDesc. */
186 static void *l1_map[V_L1_SIZE];
187
188 #if !defined(CONFIG_USER_ONLY)
189 typedef struct PhysPageEntry PhysPageEntry;
190
191 static MemoryRegionSection *phys_sections;
192 static unsigned phys_sections_nb, phys_sections_nb_alloc;
193 static uint16_t phys_section_unassigned;
194
195 struct PhysPageEntry {
196 union {
197 uint16_t leaf; /* index into phys_sections */
198 uint16_t node; /* index into phys_map_nodes */
199 } u;
200 };
201
202 /* Simple allocator for PhysPageEntry nodes */
203 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
204 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
205
206 #define PHYS_MAP_NODE_NIL ((uint16_t)~0)
207
208 /* This is a multi-level map on the physical address space.
209 The bottom level has pointers to MemoryRegionSections. */
210 static PhysPageEntry phys_map = { .u.node = PHYS_MAP_NODE_NIL };
211
212 static void io_mem_init(void);
213 static void memory_map_init(void);
214
215 /* io memory support */
216 MemoryRegion *io_mem_region[IO_MEM_NB_ENTRIES];
217 static char io_mem_used[IO_MEM_NB_ENTRIES];
218 static MemoryRegion io_mem_watch;
219 #endif
220
221 /* log support */
222 #ifdef WIN32
223 static const char *logfilename = "qemu.log";
224 #else
225 static const char *logfilename = "/tmp/qemu.log";
226 #endif
227 FILE *logfile;
228 int loglevel;
229 static int log_append = 0;
230
231 /* statistics */
232 #if !defined(CONFIG_USER_ONLY)
233 static int tlb_flush_count;
234 #endif
235 static int tb_flush_count;
236 static int tb_phys_invalidate_count;
237
238 #ifdef _WIN32
239 static void map_exec(void *addr, long size)
240 {
241 DWORD old_protect;
242 VirtualProtect(addr, size,
243 PAGE_EXECUTE_READWRITE, &old_protect);
244
245 }
246 #else
247 static void map_exec(void *addr, long size)
248 {
249 unsigned long start, end, page_size;
250
251 page_size = getpagesize();
252 start = (unsigned long)addr;
253 start &= ~(page_size - 1);
254
255 end = (unsigned long)addr + size;
256 end += page_size - 1;
257 end &= ~(page_size - 1);
258
259 mprotect((void *)start, end - start,
260 PROT_READ | PROT_WRITE | PROT_EXEC);
261 }
262 #endif
263
264 static void page_init(void)
265 {
266 /* NOTE: we can always suppose that qemu_host_page_size >=
267 TARGET_PAGE_SIZE */
268 #ifdef _WIN32
269 {
270 SYSTEM_INFO system_info;
271
272 GetSystemInfo(&system_info);
273 qemu_real_host_page_size = system_info.dwPageSize;
274 }
275 #else
276 qemu_real_host_page_size = getpagesize();
277 #endif
278 if (qemu_host_page_size == 0)
279 qemu_host_page_size = qemu_real_host_page_size;
280 if (qemu_host_page_size < TARGET_PAGE_SIZE)
281 qemu_host_page_size = TARGET_PAGE_SIZE;
282 qemu_host_page_mask = ~(qemu_host_page_size - 1);
283
284 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
285 {
286 #ifdef HAVE_KINFO_GETVMMAP
287 struct kinfo_vmentry *freep;
288 int i, cnt;
289
290 freep = kinfo_getvmmap(getpid(), &cnt);
291 if (freep) {
292 mmap_lock();
293 for (i = 0; i < cnt; i++) {
294 unsigned long startaddr, endaddr;
295
296 startaddr = freep[i].kve_start;
297 endaddr = freep[i].kve_end;
298 if (h2g_valid(startaddr)) {
299 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
300
301 if (h2g_valid(endaddr)) {
302 endaddr = h2g(endaddr);
303 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
304 } else {
305 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
306 endaddr = ~0ul;
307 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
308 #endif
309 }
310 }
311 }
312 free(freep);
313 mmap_unlock();
314 }
315 #else
316 FILE *f;
317
318 last_brk = (unsigned long)sbrk(0);
319
320 f = fopen("/compat/linux/proc/self/maps", "r");
321 if (f) {
322 mmap_lock();
323
324 do {
325 unsigned long startaddr, endaddr;
326 int n;
327
328 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
329
330 if (n == 2 && h2g_valid(startaddr)) {
331 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
332
333 if (h2g_valid(endaddr)) {
334 endaddr = h2g(endaddr);
335 } else {
336 endaddr = ~0ul;
337 }
338 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
339 }
340 } while (!feof(f));
341
342 fclose(f);
343 mmap_unlock();
344 }
345 #endif
346 }
347 #endif
348 }
349
350 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
351 {
352 PageDesc *pd;
353 void **lp;
354 int i;
355
356 #if defined(CONFIG_USER_ONLY)
357 /* We can't use g_malloc because it may recurse into a locked mutex. */
358 # define ALLOC(P, SIZE) \
359 do { \
360 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
361 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
362 } while (0)
363 #else
364 # define ALLOC(P, SIZE) \
365 do { P = g_malloc0(SIZE); } while (0)
366 #endif
367
368 /* Level 1. Always allocated. */
369 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
370
371 /* Level 2..N-1. */
372 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
373 void **p = *lp;
374
375 if (p == NULL) {
376 if (!alloc) {
377 return NULL;
378 }
379 ALLOC(p, sizeof(void *) * L2_SIZE);
380 *lp = p;
381 }
382
383 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
384 }
385
386 pd = *lp;
387 if (pd == NULL) {
388 if (!alloc) {
389 return NULL;
390 }
391 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
392 *lp = pd;
393 }
394
395 #undef ALLOC
396
397 return pd + (index & (L2_SIZE - 1));
398 }
399
400 static inline PageDesc *page_find(tb_page_addr_t index)
401 {
402 return page_find_alloc(index, 0);
403 }
404
405 #if !defined(CONFIG_USER_ONLY)
406
407 static PhysPageEntry *phys_map_node_alloc(uint16_t *ptr)
408 {
409 unsigned i;
410 uint16_t ret;
411
412 /* Assign early to avoid the pointer being invalidated by g_renew() */
413 *ptr = ret = phys_map_nodes_nb++;
414 assert(ret != PHYS_MAP_NODE_NIL);
415 if (ret == phys_map_nodes_nb_alloc) {
416 typedef PhysPageEntry Node[L2_SIZE];
417 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
418 phys_map_nodes = g_renew(Node, phys_map_nodes,
419 phys_map_nodes_nb_alloc);
420 }
421 for (i = 0; i < L2_SIZE; ++i) {
422 phys_map_nodes[ret][i].u.node = PHYS_MAP_NODE_NIL;
423 }
424 return phys_map_nodes[ret];
425 }
426
427 static void phys_map_nodes_reset(void)
428 {
429 phys_map_nodes_nb = 0;
430 }
431
432 static uint16_t *phys_page_find_alloc(target_phys_addr_t index, int alloc)
433 {
434 PhysPageEntry *lp, *p;
435 int i, j;
436
437 lp = &phys_map;
438
439 /* Level 1..N. */
440 for (i = P_L2_LEVELS - 1; i >= 0; i--) {
441 if (lp->u.node == PHYS_MAP_NODE_NIL) {
442 if (!alloc) {
443 return NULL;
444 }
445 p = phys_map_node_alloc(&lp->u.node);
446 if (i == 0) {
447 for (j = 0; j < L2_SIZE; j++) {
448 p[j].u.leaf = phys_section_unassigned;
449 }
450 }
451 } else {
452 p = phys_map_nodes[lp->u.node];
453 }
454 lp = &p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
455 }
456
457 return &lp->u.leaf;
458 }
459
460 static MemoryRegionSection phys_page_find(target_phys_addr_t index)
461 {
462 PhysPageEntry lp = phys_map;
463 PhysPageEntry *p;
464 int i;
465 MemoryRegionSection section;
466 target_phys_addr_t delta;
467 uint16_t s_index = phys_section_unassigned;
468
469 for (i = P_L2_LEVELS - 1; i >= 0; i--) {
470 if (lp.u.node == PHYS_MAP_NODE_NIL) {
471 goto not_found;
472 }
473 p = phys_map_nodes[lp.u.node];
474 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
475 }
476
477 s_index = lp.u.leaf;
478 not_found:
479 section = phys_sections[s_index];
480 index <<= TARGET_PAGE_BITS;
481 assert(section.offset_within_address_space <= index
482 && index <= section.offset_within_address_space + section.size-1);
483 delta = index - section.offset_within_address_space;
484 section.offset_within_address_space += delta;
485 section.offset_within_region += delta;
486 section.size -= delta;
487 return section;
488 }
489
490 static void tlb_protect_code(ram_addr_t ram_addr);
491 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
492 target_ulong vaddr);
493 #define mmap_lock() do { } while(0)
494 #define mmap_unlock() do { } while(0)
495 #endif
496
497 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
498
499 #if defined(CONFIG_USER_ONLY)
500 /* Currently it is not recommended to allocate big chunks of data in
501 user mode. It will change when a dedicated libc will be used */
502 #define USE_STATIC_CODE_GEN_BUFFER
503 #endif
504
505 #ifdef USE_STATIC_CODE_GEN_BUFFER
506 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
507 __attribute__((aligned (CODE_GEN_ALIGN)));
508 #endif
509
510 static void code_gen_alloc(unsigned long tb_size)
511 {
512 #ifdef USE_STATIC_CODE_GEN_BUFFER
513 code_gen_buffer = static_code_gen_buffer;
514 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
515 map_exec(code_gen_buffer, code_gen_buffer_size);
516 #else
517 code_gen_buffer_size = tb_size;
518 if (code_gen_buffer_size == 0) {
519 #if defined(CONFIG_USER_ONLY)
520 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
521 #else
522 /* XXX: needs adjustments */
523 code_gen_buffer_size = (unsigned long)(ram_size / 4);
524 #endif
525 }
526 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
527 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
528 /* The code gen buffer location may have constraints depending on
529 the host cpu and OS */
530 #if defined(__linux__)
531 {
532 int flags;
533 void *start = NULL;
534
535 flags = MAP_PRIVATE | MAP_ANONYMOUS;
536 #if defined(__x86_64__)
537 flags |= MAP_32BIT;
538 /* Cannot map more than that */
539 if (code_gen_buffer_size > (800 * 1024 * 1024))
540 code_gen_buffer_size = (800 * 1024 * 1024);
541 #elif defined(__sparc_v9__)
542 // Map the buffer below 2G, so we can use direct calls and branches
543 flags |= MAP_FIXED;
544 start = (void *) 0x60000000UL;
545 if (code_gen_buffer_size > (512 * 1024 * 1024))
546 code_gen_buffer_size = (512 * 1024 * 1024);
547 #elif defined(__arm__)
548 /* Keep the buffer no bigger than 16MB to branch between blocks */
549 if (code_gen_buffer_size > 16 * 1024 * 1024)
550 code_gen_buffer_size = 16 * 1024 * 1024;
551 #elif defined(__s390x__)
552 /* Map the buffer so that we can use direct calls and branches. */
553 /* We have a +- 4GB range on the branches; leave some slop. */
554 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
555 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
556 }
557 start = (void *)0x90000000UL;
558 #endif
559 code_gen_buffer = mmap(start, code_gen_buffer_size,
560 PROT_WRITE | PROT_READ | PROT_EXEC,
561 flags, -1, 0);
562 if (code_gen_buffer == MAP_FAILED) {
563 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
564 exit(1);
565 }
566 }
567 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
568 || defined(__DragonFly__) || defined(__OpenBSD__) \
569 || defined(__NetBSD__)
570 {
571 int flags;
572 void *addr = NULL;
573 flags = MAP_PRIVATE | MAP_ANONYMOUS;
574 #if defined(__x86_64__)
575 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
576 * 0x40000000 is free */
577 flags |= MAP_FIXED;
578 addr = (void *)0x40000000;
579 /* Cannot map more than that */
580 if (code_gen_buffer_size > (800 * 1024 * 1024))
581 code_gen_buffer_size = (800 * 1024 * 1024);
582 #elif defined(__sparc_v9__)
583 // Map the buffer below 2G, so we can use direct calls and branches
584 flags |= MAP_FIXED;
585 addr = (void *) 0x60000000UL;
586 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
587 code_gen_buffer_size = (512 * 1024 * 1024);
588 }
589 #endif
590 code_gen_buffer = mmap(addr, code_gen_buffer_size,
591 PROT_WRITE | PROT_READ | PROT_EXEC,
592 flags, -1, 0);
593 if (code_gen_buffer == MAP_FAILED) {
594 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
595 exit(1);
596 }
597 }
598 #else
599 code_gen_buffer = g_malloc(code_gen_buffer_size);
600 map_exec(code_gen_buffer, code_gen_buffer_size);
601 #endif
602 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
603 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
604 code_gen_buffer_max_size = code_gen_buffer_size -
605 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
606 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
607 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
608 }
609
610 /* Must be called before using the QEMU cpus. 'tb_size' is the size
611 (in bytes) allocated to the translation buffer. Zero means default
612 size. */
613 void tcg_exec_init(unsigned long tb_size)
614 {
615 cpu_gen_init();
616 code_gen_alloc(tb_size);
617 code_gen_ptr = code_gen_buffer;
618 page_init();
619 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
620 /* There's no guest base to take into account, so go ahead and
621 initialize the prologue now. */
622 tcg_prologue_init(&tcg_ctx);
623 #endif
624 }
625
626 bool tcg_enabled(void)
627 {
628 return code_gen_buffer != NULL;
629 }
630
631 void cpu_exec_init_all(void)
632 {
633 #if !defined(CONFIG_USER_ONLY)
634 memory_map_init();
635 io_mem_init();
636 #endif
637 }
638
639 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
640
641 static int cpu_common_post_load(void *opaque, int version_id)
642 {
643 CPUState *env = opaque;
644
645 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
646 version_id is increased. */
647 env->interrupt_request &= ~0x01;
648 tlb_flush(env, 1);
649
650 return 0;
651 }
652
653 static const VMStateDescription vmstate_cpu_common = {
654 .name = "cpu_common",
655 .version_id = 1,
656 .minimum_version_id = 1,
657 .minimum_version_id_old = 1,
658 .post_load = cpu_common_post_load,
659 .fields = (VMStateField []) {
660 VMSTATE_UINT32(halted, CPUState),
661 VMSTATE_UINT32(interrupt_request, CPUState),
662 VMSTATE_END_OF_LIST()
663 }
664 };
665 #endif
666
667 CPUState *qemu_get_cpu(int cpu)
668 {
669 CPUState *env = first_cpu;
670
671 while (env) {
672 if (env->cpu_index == cpu)
673 break;
674 env = env->next_cpu;
675 }
676
677 return env;
678 }
679
680 void cpu_exec_init(CPUState *env)
681 {
682 CPUState **penv;
683 int cpu_index;
684
685 #if defined(CONFIG_USER_ONLY)
686 cpu_list_lock();
687 #endif
688 env->next_cpu = NULL;
689 penv = &first_cpu;
690 cpu_index = 0;
691 while (*penv != NULL) {
692 penv = &(*penv)->next_cpu;
693 cpu_index++;
694 }
695 env->cpu_index = cpu_index;
696 env->numa_node = 0;
697 QTAILQ_INIT(&env->breakpoints);
698 QTAILQ_INIT(&env->watchpoints);
699 #ifndef CONFIG_USER_ONLY
700 env->thread_id = qemu_get_thread_id();
701 #endif
702 *penv = env;
703 #if defined(CONFIG_USER_ONLY)
704 cpu_list_unlock();
705 #endif
706 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
707 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
708 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
709 cpu_save, cpu_load, env);
710 #endif
711 }
712
713 /* Allocate a new translation block. Flush the translation buffer if
714 too many translation blocks or too much generated code. */
715 static TranslationBlock *tb_alloc(target_ulong pc)
716 {
717 TranslationBlock *tb;
718
719 if (nb_tbs >= code_gen_max_blocks ||
720 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
721 return NULL;
722 tb = &tbs[nb_tbs++];
723 tb->pc = pc;
724 tb->cflags = 0;
725 return tb;
726 }
727
728 void tb_free(TranslationBlock *tb)
729 {
730 /* In practice this is mostly used for single use temporary TB
731 Ignore the hard cases and just back up if this TB happens to
732 be the last one generated. */
733 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
734 code_gen_ptr = tb->tc_ptr;
735 nb_tbs--;
736 }
737 }
738
739 static inline void invalidate_page_bitmap(PageDesc *p)
740 {
741 if (p->code_bitmap) {
742 g_free(p->code_bitmap);
743 p->code_bitmap = NULL;
744 }
745 p->code_write_count = 0;
746 }
747
748 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
749
750 static void page_flush_tb_1 (int level, void **lp)
751 {
752 int i;
753
754 if (*lp == NULL) {
755 return;
756 }
757 if (level == 0) {
758 PageDesc *pd = *lp;
759 for (i = 0; i < L2_SIZE; ++i) {
760 pd[i].first_tb = NULL;
761 invalidate_page_bitmap(pd + i);
762 }
763 } else {
764 void **pp = *lp;
765 for (i = 0; i < L2_SIZE; ++i) {
766 page_flush_tb_1 (level - 1, pp + i);
767 }
768 }
769 }
770
771 static void page_flush_tb(void)
772 {
773 int i;
774 for (i = 0; i < V_L1_SIZE; i++) {
775 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
776 }
777 }
778
779 /* flush all the translation blocks */
780 /* XXX: tb_flush is currently not thread safe */
781 void tb_flush(CPUState *env1)
782 {
783 CPUState *env;
784 #if defined(DEBUG_FLUSH)
785 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
786 (unsigned long)(code_gen_ptr - code_gen_buffer),
787 nb_tbs, nb_tbs > 0 ?
788 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
789 #endif
790 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
791 cpu_abort(env1, "Internal error: code buffer overflow\n");
792
793 nb_tbs = 0;
794
795 for(env = first_cpu; env != NULL; env = env->next_cpu) {
796 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
797 }
798
799 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
800 page_flush_tb();
801
802 code_gen_ptr = code_gen_buffer;
803 /* XXX: flush processor icache at this point if cache flush is
804 expensive */
805 tb_flush_count++;
806 }
807
808 #ifdef DEBUG_TB_CHECK
809
810 static void tb_invalidate_check(target_ulong address)
811 {
812 TranslationBlock *tb;
813 int i;
814 address &= TARGET_PAGE_MASK;
815 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
816 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
817 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
818 address >= tb->pc + tb->size)) {
819 printf("ERROR invalidate: address=" TARGET_FMT_lx
820 " PC=%08lx size=%04x\n",
821 address, (long)tb->pc, tb->size);
822 }
823 }
824 }
825 }
826
827 /* verify that all the pages have correct rights for code */
828 static void tb_page_check(void)
829 {
830 TranslationBlock *tb;
831 int i, flags1, flags2;
832
833 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
834 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
835 flags1 = page_get_flags(tb->pc);
836 flags2 = page_get_flags(tb->pc + tb->size - 1);
837 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
838 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
839 (long)tb->pc, tb->size, flags1, flags2);
840 }
841 }
842 }
843 }
844
845 #endif
846
847 /* invalidate one TB */
848 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
849 int next_offset)
850 {
851 TranslationBlock *tb1;
852 for(;;) {
853 tb1 = *ptb;
854 if (tb1 == tb) {
855 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
856 break;
857 }
858 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
859 }
860 }
861
862 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
863 {
864 TranslationBlock *tb1;
865 unsigned int n1;
866
867 for(;;) {
868 tb1 = *ptb;
869 n1 = (long)tb1 & 3;
870 tb1 = (TranslationBlock *)((long)tb1 & ~3);
871 if (tb1 == tb) {
872 *ptb = tb1->page_next[n1];
873 break;
874 }
875 ptb = &tb1->page_next[n1];
876 }
877 }
878
879 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
880 {
881 TranslationBlock *tb1, **ptb;
882 unsigned int n1;
883
884 ptb = &tb->jmp_next[n];
885 tb1 = *ptb;
886 if (tb1) {
887 /* find tb(n) in circular list */
888 for(;;) {
889 tb1 = *ptb;
890 n1 = (long)tb1 & 3;
891 tb1 = (TranslationBlock *)((long)tb1 & ~3);
892 if (n1 == n && tb1 == tb)
893 break;
894 if (n1 == 2) {
895 ptb = &tb1->jmp_first;
896 } else {
897 ptb = &tb1->jmp_next[n1];
898 }
899 }
900 /* now we can suppress tb(n) from the list */
901 *ptb = tb->jmp_next[n];
902
903 tb->jmp_next[n] = NULL;
904 }
905 }
906
907 /* reset the jump entry 'n' of a TB so that it is not chained to
908 another TB */
909 static inline void tb_reset_jump(TranslationBlock *tb, int n)
910 {
911 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
912 }
913
914 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
915 {
916 CPUState *env;
917 PageDesc *p;
918 unsigned int h, n1;
919 tb_page_addr_t phys_pc;
920 TranslationBlock *tb1, *tb2;
921
922 /* remove the TB from the hash list */
923 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
924 h = tb_phys_hash_func(phys_pc);
925 tb_remove(&tb_phys_hash[h], tb,
926 offsetof(TranslationBlock, phys_hash_next));
927
928 /* remove the TB from the page list */
929 if (tb->page_addr[0] != page_addr) {
930 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
931 tb_page_remove(&p->first_tb, tb);
932 invalidate_page_bitmap(p);
933 }
934 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
935 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
936 tb_page_remove(&p->first_tb, tb);
937 invalidate_page_bitmap(p);
938 }
939
940 tb_invalidated_flag = 1;
941
942 /* remove the TB from the hash list */
943 h = tb_jmp_cache_hash_func(tb->pc);
944 for(env = first_cpu; env != NULL; env = env->next_cpu) {
945 if (env->tb_jmp_cache[h] == tb)
946 env->tb_jmp_cache[h] = NULL;
947 }
948
949 /* suppress this TB from the two jump lists */
950 tb_jmp_remove(tb, 0);
951 tb_jmp_remove(tb, 1);
952
953 /* suppress any remaining jumps to this TB */
954 tb1 = tb->jmp_first;
955 for(;;) {
956 n1 = (long)tb1 & 3;
957 if (n1 == 2)
958 break;
959 tb1 = (TranslationBlock *)((long)tb1 & ~3);
960 tb2 = tb1->jmp_next[n1];
961 tb_reset_jump(tb1, n1);
962 tb1->jmp_next[n1] = NULL;
963 tb1 = tb2;
964 }
965 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
966
967 tb_phys_invalidate_count++;
968 }
969
970 static inline void set_bits(uint8_t *tab, int start, int len)
971 {
972 int end, mask, end1;
973
974 end = start + len;
975 tab += start >> 3;
976 mask = 0xff << (start & 7);
977 if ((start & ~7) == (end & ~7)) {
978 if (start < end) {
979 mask &= ~(0xff << (end & 7));
980 *tab |= mask;
981 }
982 } else {
983 *tab++ |= mask;
984 start = (start + 8) & ~7;
985 end1 = end & ~7;
986 while (start < end1) {
987 *tab++ = 0xff;
988 start += 8;
989 }
990 if (start < end) {
991 mask = ~(0xff << (end & 7));
992 *tab |= mask;
993 }
994 }
995 }
996
997 static void build_page_bitmap(PageDesc *p)
998 {
999 int n, tb_start, tb_end;
1000 TranslationBlock *tb;
1001
1002 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
1003
1004 tb = p->first_tb;
1005 while (tb != NULL) {
1006 n = (long)tb & 3;
1007 tb = (TranslationBlock *)((long)tb & ~3);
1008 /* NOTE: this is subtle as a TB may span two physical pages */
1009 if (n == 0) {
1010 /* NOTE: tb_end may be after the end of the page, but
1011 it is not a problem */
1012 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1013 tb_end = tb_start + tb->size;
1014 if (tb_end > TARGET_PAGE_SIZE)
1015 tb_end = TARGET_PAGE_SIZE;
1016 } else {
1017 tb_start = 0;
1018 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1019 }
1020 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1021 tb = tb->page_next[n];
1022 }
1023 }
1024
1025 TranslationBlock *tb_gen_code(CPUState *env,
1026 target_ulong pc, target_ulong cs_base,
1027 int flags, int cflags)
1028 {
1029 TranslationBlock *tb;
1030 uint8_t *tc_ptr;
1031 tb_page_addr_t phys_pc, phys_page2;
1032 target_ulong virt_page2;
1033 int code_gen_size;
1034
1035 phys_pc = get_page_addr_code(env, pc);
1036 tb = tb_alloc(pc);
1037 if (!tb) {
1038 /* flush must be done */
1039 tb_flush(env);
1040 /* cannot fail at this point */
1041 tb = tb_alloc(pc);
1042 /* Don't forget to invalidate previous TB info. */
1043 tb_invalidated_flag = 1;
1044 }
1045 tc_ptr = code_gen_ptr;
1046 tb->tc_ptr = tc_ptr;
1047 tb->cs_base = cs_base;
1048 tb->flags = flags;
1049 tb->cflags = cflags;
1050 cpu_gen_code(env, tb, &code_gen_size);
1051 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1052
1053 /* check next page if needed */
1054 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1055 phys_page2 = -1;
1056 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1057 phys_page2 = get_page_addr_code(env, virt_page2);
1058 }
1059 tb_link_page(tb, phys_pc, phys_page2);
1060 return tb;
1061 }
1062
1063 /* invalidate all TBs which intersect with the target physical page
1064 starting in range [start;end[. NOTE: start and end must refer to
1065 the same physical page. 'is_cpu_write_access' should be true if called
1066 from a real cpu write access: the virtual CPU will exit the current
1067 TB if code is modified inside this TB. */
1068 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1069 int is_cpu_write_access)
1070 {
1071 TranslationBlock *tb, *tb_next, *saved_tb;
1072 CPUState *env = cpu_single_env;
1073 tb_page_addr_t tb_start, tb_end;
1074 PageDesc *p;
1075 int n;
1076 #ifdef TARGET_HAS_PRECISE_SMC
1077 int current_tb_not_found = is_cpu_write_access;
1078 TranslationBlock *current_tb = NULL;
1079 int current_tb_modified = 0;
1080 target_ulong current_pc = 0;
1081 target_ulong current_cs_base = 0;
1082 int current_flags = 0;
1083 #endif /* TARGET_HAS_PRECISE_SMC */
1084
1085 p = page_find(start >> TARGET_PAGE_BITS);
1086 if (!p)
1087 return;
1088 if (!p->code_bitmap &&
1089 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1090 is_cpu_write_access) {
1091 /* build code bitmap */
1092 build_page_bitmap(p);
1093 }
1094
1095 /* we remove all the TBs in the range [start, end[ */
1096 /* XXX: see if in some cases it could be faster to invalidate all the code */
1097 tb = p->first_tb;
1098 while (tb != NULL) {
1099 n = (long)tb & 3;
1100 tb = (TranslationBlock *)((long)tb & ~3);
1101 tb_next = tb->page_next[n];
1102 /* NOTE: this is subtle as a TB may span two physical pages */
1103 if (n == 0) {
1104 /* NOTE: tb_end may be after the end of the page, but
1105 it is not a problem */
1106 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1107 tb_end = tb_start + tb->size;
1108 } else {
1109 tb_start = tb->page_addr[1];
1110 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1111 }
1112 if (!(tb_end <= start || tb_start >= end)) {
1113 #ifdef TARGET_HAS_PRECISE_SMC
1114 if (current_tb_not_found) {
1115 current_tb_not_found = 0;
1116 current_tb = NULL;
1117 if (env->mem_io_pc) {
1118 /* now we have a real cpu fault */
1119 current_tb = tb_find_pc(env->mem_io_pc);
1120 }
1121 }
1122 if (current_tb == tb &&
1123 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1124 /* If we are modifying the current TB, we must stop
1125 its execution. We could be more precise by checking
1126 that the modification is after the current PC, but it
1127 would require a specialized function to partially
1128 restore the CPU state */
1129
1130 current_tb_modified = 1;
1131 cpu_restore_state(current_tb, env, env->mem_io_pc);
1132 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1133 &current_flags);
1134 }
1135 #endif /* TARGET_HAS_PRECISE_SMC */
1136 /* we need to do that to handle the case where a signal
1137 occurs while doing tb_phys_invalidate() */
1138 saved_tb = NULL;
1139 if (env) {
1140 saved_tb = env->current_tb;
1141 env->current_tb = NULL;
1142 }
1143 tb_phys_invalidate(tb, -1);
1144 if (env) {
1145 env->current_tb = saved_tb;
1146 if (env->interrupt_request && env->current_tb)
1147 cpu_interrupt(env, env->interrupt_request);
1148 }
1149 }
1150 tb = tb_next;
1151 }
1152 #if !defined(CONFIG_USER_ONLY)
1153 /* if no code remaining, no need to continue to use slow writes */
1154 if (!p->first_tb) {
1155 invalidate_page_bitmap(p);
1156 if (is_cpu_write_access) {
1157 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1158 }
1159 }
1160 #endif
1161 #ifdef TARGET_HAS_PRECISE_SMC
1162 if (current_tb_modified) {
1163 /* we generate a block containing just the instruction
1164 modifying the memory. It will ensure that it cannot modify
1165 itself */
1166 env->current_tb = NULL;
1167 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1168 cpu_resume_from_signal(env, NULL);
1169 }
1170 #endif
1171 }
1172
1173 /* len must be <= 8 and start must be a multiple of len */
1174 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1175 {
1176 PageDesc *p;
1177 int offset, b;
1178 #if 0
1179 if (1) {
1180 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1181 cpu_single_env->mem_io_vaddr, len,
1182 cpu_single_env->eip,
1183 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1184 }
1185 #endif
1186 p = page_find(start >> TARGET_PAGE_BITS);
1187 if (!p)
1188 return;
1189 if (p->code_bitmap) {
1190 offset = start & ~TARGET_PAGE_MASK;
1191 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1192 if (b & ((1 << len) - 1))
1193 goto do_invalidate;
1194 } else {
1195 do_invalidate:
1196 tb_invalidate_phys_page_range(start, start + len, 1);
1197 }
1198 }
1199
1200 #if !defined(CONFIG_SOFTMMU)
1201 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1202 unsigned long pc, void *puc)
1203 {
1204 TranslationBlock *tb;
1205 PageDesc *p;
1206 int n;
1207 #ifdef TARGET_HAS_PRECISE_SMC
1208 TranslationBlock *current_tb = NULL;
1209 CPUState *env = cpu_single_env;
1210 int current_tb_modified = 0;
1211 target_ulong current_pc = 0;
1212 target_ulong current_cs_base = 0;
1213 int current_flags = 0;
1214 #endif
1215
1216 addr &= TARGET_PAGE_MASK;
1217 p = page_find(addr >> TARGET_PAGE_BITS);
1218 if (!p)
1219 return;
1220 tb = p->first_tb;
1221 #ifdef TARGET_HAS_PRECISE_SMC
1222 if (tb && pc != 0) {
1223 current_tb = tb_find_pc(pc);
1224 }
1225 #endif
1226 while (tb != NULL) {
1227 n = (long)tb & 3;
1228 tb = (TranslationBlock *)((long)tb & ~3);
1229 #ifdef TARGET_HAS_PRECISE_SMC
1230 if (current_tb == tb &&
1231 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1232 /* If we are modifying the current TB, we must stop
1233 its execution. We could be more precise by checking
1234 that the modification is after the current PC, but it
1235 would require a specialized function to partially
1236 restore the CPU state */
1237
1238 current_tb_modified = 1;
1239 cpu_restore_state(current_tb, env, pc);
1240 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1241 &current_flags);
1242 }
1243 #endif /* TARGET_HAS_PRECISE_SMC */
1244 tb_phys_invalidate(tb, addr);
1245 tb = tb->page_next[n];
1246 }
1247 p->first_tb = NULL;
1248 #ifdef TARGET_HAS_PRECISE_SMC
1249 if (current_tb_modified) {
1250 /* we generate a block containing just the instruction
1251 modifying the memory. It will ensure that it cannot modify
1252 itself */
1253 env->current_tb = NULL;
1254 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1255 cpu_resume_from_signal(env, puc);
1256 }
1257 #endif
1258 }
1259 #endif
1260
1261 /* add the tb in the target page and protect it if necessary */
1262 static inline void tb_alloc_page(TranslationBlock *tb,
1263 unsigned int n, tb_page_addr_t page_addr)
1264 {
1265 PageDesc *p;
1266 #ifndef CONFIG_USER_ONLY
1267 bool page_already_protected;
1268 #endif
1269
1270 tb->page_addr[n] = page_addr;
1271 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1272 tb->page_next[n] = p->first_tb;
1273 #ifndef CONFIG_USER_ONLY
1274 page_already_protected = p->first_tb != NULL;
1275 #endif
1276 p->first_tb = (TranslationBlock *)((long)tb | n);
1277 invalidate_page_bitmap(p);
1278
1279 #if defined(TARGET_HAS_SMC) || 1
1280
1281 #if defined(CONFIG_USER_ONLY)
1282 if (p->flags & PAGE_WRITE) {
1283 target_ulong addr;
1284 PageDesc *p2;
1285 int prot;
1286
1287 /* force the host page as non writable (writes will have a
1288 page fault + mprotect overhead) */
1289 page_addr &= qemu_host_page_mask;
1290 prot = 0;
1291 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1292 addr += TARGET_PAGE_SIZE) {
1293
1294 p2 = page_find (addr >> TARGET_PAGE_BITS);
1295 if (!p2)
1296 continue;
1297 prot |= p2->flags;
1298 p2->flags &= ~PAGE_WRITE;
1299 }
1300 mprotect(g2h(page_addr), qemu_host_page_size,
1301 (prot & PAGE_BITS) & ~PAGE_WRITE);
1302 #ifdef DEBUG_TB_INVALIDATE
1303 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1304 page_addr);
1305 #endif
1306 }
1307 #else
1308 /* if some code is already present, then the pages are already
1309 protected. So we handle the case where only the first TB is
1310 allocated in a physical page */
1311 if (!page_already_protected) {
1312 tlb_protect_code(page_addr);
1313 }
1314 #endif
1315
1316 #endif /* TARGET_HAS_SMC */
1317 }
1318
1319 /* add a new TB and link it to the physical page tables. phys_page2 is
1320 (-1) to indicate that only one page contains the TB. */
1321 void tb_link_page(TranslationBlock *tb,
1322 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1323 {
1324 unsigned int h;
1325 TranslationBlock **ptb;
1326
1327 /* Grab the mmap lock to stop another thread invalidating this TB
1328 before we are done. */
1329 mmap_lock();
1330 /* add in the physical hash table */
1331 h = tb_phys_hash_func(phys_pc);
1332 ptb = &tb_phys_hash[h];
1333 tb->phys_hash_next = *ptb;
1334 *ptb = tb;
1335
1336 /* add in the page list */
1337 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1338 if (phys_page2 != -1)
1339 tb_alloc_page(tb, 1, phys_page2);
1340 else
1341 tb->page_addr[1] = -1;
1342
1343 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1344 tb->jmp_next[0] = NULL;
1345 tb->jmp_next[1] = NULL;
1346
1347 /* init original jump addresses */
1348 if (tb->tb_next_offset[0] != 0xffff)
1349 tb_reset_jump(tb, 0);
1350 if (tb->tb_next_offset[1] != 0xffff)
1351 tb_reset_jump(tb, 1);
1352
1353 #ifdef DEBUG_TB_CHECK
1354 tb_page_check();
1355 #endif
1356 mmap_unlock();
1357 }
1358
1359 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1360 tb[1].tc_ptr. Return NULL if not found */
1361 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1362 {
1363 int m_min, m_max, m;
1364 unsigned long v;
1365 TranslationBlock *tb;
1366
1367 if (nb_tbs <= 0)
1368 return NULL;
1369 if (tc_ptr < (unsigned long)code_gen_buffer ||
1370 tc_ptr >= (unsigned long)code_gen_ptr)
1371 return NULL;
1372 /* binary search (cf Knuth) */
1373 m_min = 0;
1374 m_max = nb_tbs - 1;
1375 while (m_min <= m_max) {
1376 m = (m_min + m_max) >> 1;
1377 tb = &tbs[m];
1378 v = (unsigned long)tb->tc_ptr;
1379 if (v == tc_ptr)
1380 return tb;
1381 else if (tc_ptr < v) {
1382 m_max = m - 1;
1383 } else {
1384 m_min = m + 1;
1385 }
1386 }
1387 return &tbs[m_max];
1388 }
1389
1390 static void tb_reset_jump_recursive(TranslationBlock *tb);
1391
1392 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1393 {
1394 TranslationBlock *tb1, *tb_next, **ptb;
1395 unsigned int n1;
1396
1397 tb1 = tb->jmp_next[n];
1398 if (tb1 != NULL) {
1399 /* find head of list */
1400 for(;;) {
1401 n1 = (long)tb1 & 3;
1402 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1403 if (n1 == 2)
1404 break;
1405 tb1 = tb1->jmp_next[n1];
1406 }
1407 /* we are now sure now that tb jumps to tb1 */
1408 tb_next = tb1;
1409
1410 /* remove tb from the jmp_first list */
1411 ptb = &tb_next->jmp_first;
1412 for(;;) {
1413 tb1 = *ptb;
1414 n1 = (long)tb1 & 3;
1415 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1416 if (n1 == n && tb1 == tb)
1417 break;
1418 ptb = &tb1->jmp_next[n1];
1419 }
1420 *ptb = tb->jmp_next[n];
1421 tb->jmp_next[n] = NULL;
1422
1423 /* suppress the jump to next tb in generated code */
1424 tb_reset_jump(tb, n);
1425
1426 /* suppress jumps in the tb on which we could have jumped */
1427 tb_reset_jump_recursive(tb_next);
1428 }
1429 }
1430
1431 static void tb_reset_jump_recursive(TranslationBlock *tb)
1432 {
1433 tb_reset_jump_recursive2(tb, 0);
1434 tb_reset_jump_recursive2(tb, 1);
1435 }
1436
1437 #if defined(TARGET_HAS_ICE)
1438 #if defined(CONFIG_USER_ONLY)
1439 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1440 {
1441 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1442 }
1443 #else
1444 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1445 {
1446 target_phys_addr_t addr;
1447 ram_addr_t ram_addr;
1448 MemoryRegionSection section;
1449
1450 addr = cpu_get_phys_page_debug(env, pc);
1451 section = phys_page_find(addr >> TARGET_PAGE_BITS);
1452 if (!(memory_region_is_ram(section.mr)
1453 || (section.mr->rom_device && section.mr->readable))) {
1454 return;
1455 }
1456 ram_addr = (memory_region_get_ram_addr(section.mr)
1457 + section.offset_within_region) & TARGET_PAGE_MASK;
1458 ram_addr |= (pc & ~TARGET_PAGE_MASK);
1459 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1460 }
1461 #endif
1462 #endif /* TARGET_HAS_ICE */
1463
1464 #if defined(CONFIG_USER_ONLY)
1465 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1466
1467 {
1468 }
1469
1470 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1471 int flags, CPUWatchpoint **watchpoint)
1472 {
1473 return -ENOSYS;
1474 }
1475 #else
1476 /* Add a watchpoint. */
1477 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1478 int flags, CPUWatchpoint **watchpoint)
1479 {
1480 target_ulong len_mask = ~(len - 1);
1481 CPUWatchpoint *wp;
1482
1483 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1484 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1485 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1486 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1487 return -EINVAL;
1488 }
1489 wp = g_malloc(sizeof(*wp));
1490
1491 wp->vaddr = addr;
1492 wp->len_mask = len_mask;
1493 wp->flags = flags;
1494
1495 /* keep all GDB-injected watchpoints in front */
1496 if (flags & BP_GDB)
1497 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1498 else
1499 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1500
1501 tlb_flush_page(env, addr);
1502
1503 if (watchpoint)
1504 *watchpoint = wp;
1505 return 0;
1506 }
1507
1508 /* Remove a specific watchpoint. */
1509 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1510 int flags)
1511 {
1512 target_ulong len_mask = ~(len - 1);
1513 CPUWatchpoint *wp;
1514
1515 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1516 if (addr == wp->vaddr && len_mask == wp->len_mask
1517 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1518 cpu_watchpoint_remove_by_ref(env, wp);
1519 return 0;
1520 }
1521 }
1522 return -ENOENT;
1523 }
1524
1525 /* Remove a specific watchpoint by reference. */
1526 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1527 {
1528 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1529
1530 tlb_flush_page(env, watchpoint->vaddr);
1531
1532 g_free(watchpoint);
1533 }
1534
1535 /* Remove all matching watchpoints. */
1536 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1537 {
1538 CPUWatchpoint *wp, *next;
1539
1540 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1541 if (wp->flags & mask)
1542 cpu_watchpoint_remove_by_ref(env, wp);
1543 }
1544 }
1545 #endif
1546
1547 /* Add a breakpoint. */
1548 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1549 CPUBreakpoint **breakpoint)
1550 {
1551 #if defined(TARGET_HAS_ICE)
1552 CPUBreakpoint *bp;
1553
1554 bp = g_malloc(sizeof(*bp));
1555
1556 bp->pc = pc;
1557 bp->flags = flags;
1558
1559 /* keep all GDB-injected breakpoints in front */
1560 if (flags & BP_GDB)
1561 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1562 else
1563 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1564
1565 breakpoint_invalidate(env, pc);
1566
1567 if (breakpoint)
1568 *breakpoint = bp;
1569 return 0;
1570 #else
1571 return -ENOSYS;
1572 #endif
1573 }
1574
1575 /* Remove a specific breakpoint. */
1576 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1577 {
1578 #if defined(TARGET_HAS_ICE)
1579 CPUBreakpoint *bp;
1580
1581 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1582 if (bp->pc == pc && bp->flags == flags) {
1583 cpu_breakpoint_remove_by_ref(env, bp);
1584 return 0;
1585 }
1586 }
1587 return -ENOENT;
1588 #else
1589 return -ENOSYS;
1590 #endif
1591 }
1592
1593 /* Remove a specific breakpoint by reference. */
1594 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1595 {
1596 #if defined(TARGET_HAS_ICE)
1597 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1598
1599 breakpoint_invalidate(env, breakpoint->pc);
1600
1601 g_free(breakpoint);
1602 #endif
1603 }
1604
1605 /* Remove all matching breakpoints. */
1606 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1607 {
1608 #if defined(TARGET_HAS_ICE)
1609 CPUBreakpoint *bp, *next;
1610
1611 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1612 if (bp->flags & mask)
1613 cpu_breakpoint_remove_by_ref(env, bp);
1614 }
1615 #endif
1616 }
1617
1618 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1619 CPU loop after each instruction */
1620 void cpu_single_step(CPUState *env, int enabled)
1621 {
1622 #if defined(TARGET_HAS_ICE)
1623 if (env->singlestep_enabled != enabled) {
1624 env->singlestep_enabled = enabled;
1625 if (kvm_enabled())
1626 kvm_update_guest_debug(env, 0);
1627 else {
1628 /* must flush all the translated code to avoid inconsistencies */
1629 /* XXX: only flush what is necessary */
1630 tb_flush(env);
1631 }
1632 }
1633 #endif
1634 }
1635
1636 /* enable or disable low levels log */
1637 void cpu_set_log(int log_flags)
1638 {
1639 loglevel = log_flags;
1640 if (loglevel && !logfile) {
1641 logfile = fopen(logfilename, log_append ? "a" : "w");
1642 if (!logfile) {
1643 perror(logfilename);
1644 _exit(1);
1645 }
1646 #if !defined(CONFIG_SOFTMMU)
1647 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1648 {
1649 static char logfile_buf[4096];
1650 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1651 }
1652 #elif defined(_WIN32)
1653 /* Win32 doesn't support line-buffering, so use unbuffered output. */
1654 setvbuf(logfile, NULL, _IONBF, 0);
1655 #else
1656 setvbuf(logfile, NULL, _IOLBF, 0);
1657 #endif
1658 log_append = 1;
1659 }
1660 if (!loglevel && logfile) {
1661 fclose(logfile);
1662 logfile = NULL;
1663 }
1664 }
1665
1666 void cpu_set_log_filename(const char *filename)
1667 {
1668 logfilename = strdup(filename);
1669 if (logfile) {
1670 fclose(logfile);
1671 logfile = NULL;
1672 }
1673 cpu_set_log(loglevel);
1674 }
1675
1676 static void cpu_unlink_tb(CPUState *env)
1677 {
1678 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1679 problem and hope the cpu will stop of its own accord. For userspace
1680 emulation this often isn't actually as bad as it sounds. Often
1681 signals are used primarily to interrupt blocking syscalls. */
1682 TranslationBlock *tb;
1683 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1684
1685 spin_lock(&interrupt_lock);
1686 tb = env->current_tb;
1687 /* if the cpu is currently executing code, we must unlink it and
1688 all the potentially executing TB */
1689 if (tb) {
1690 env->current_tb = NULL;
1691 tb_reset_jump_recursive(tb);
1692 }
1693 spin_unlock(&interrupt_lock);
1694 }
1695
1696 #ifndef CONFIG_USER_ONLY
1697 /* mask must never be zero, except for A20 change call */
1698 static void tcg_handle_interrupt(CPUState *env, int mask)
1699 {
1700 int old_mask;
1701
1702 old_mask = env->interrupt_request;
1703 env->interrupt_request |= mask;
1704
1705 /*
1706 * If called from iothread context, wake the target cpu in
1707 * case its halted.
1708 */
1709 if (!qemu_cpu_is_self(env)) {
1710 qemu_cpu_kick(env);
1711 return;
1712 }
1713
1714 if (use_icount) {
1715 env->icount_decr.u16.high = 0xffff;
1716 if (!can_do_io(env)
1717 && (mask & ~old_mask) != 0) {
1718 cpu_abort(env, "Raised interrupt while not in I/O function");
1719 }
1720 } else {
1721 cpu_unlink_tb(env);
1722 }
1723 }
1724
1725 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1726
1727 #else /* CONFIG_USER_ONLY */
1728
1729 void cpu_interrupt(CPUState *env, int mask)
1730 {
1731 env->interrupt_request |= mask;
1732 cpu_unlink_tb(env);
1733 }
1734 #endif /* CONFIG_USER_ONLY */
1735
1736 void cpu_reset_interrupt(CPUState *env, int mask)
1737 {
1738 env->interrupt_request &= ~mask;
1739 }
1740
1741 void cpu_exit(CPUState *env)
1742 {
1743 env->exit_request = 1;
1744 cpu_unlink_tb(env);
1745 }
1746
1747 const CPULogItem cpu_log_items[] = {
1748 { CPU_LOG_TB_OUT_ASM, "out_asm",
1749 "show generated host assembly code for each compiled TB" },
1750 { CPU_LOG_TB_IN_ASM, "in_asm",
1751 "show target assembly code for each compiled TB" },
1752 { CPU_LOG_TB_OP, "op",
1753 "show micro ops for each compiled TB" },
1754 { CPU_LOG_TB_OP_OPT, "op_opt",
1755 "show micro ops "
1756 #ifdef TARGET_I386
1757 "before eflags optimization and "
1758 #endif
1759 "after liveness analysis" },
1760 { CPU_LOG_INT, "int",
1761 "show interrupts/exceptions in short format" },
1762 { CPU_LOG_EXEC, "exec",
1763 "show trace before each executed TB (lots of logs)" },
1764 { CPU_LOG_TB_CPU, "cpu",
1765 "show CPU state before block translation" },
1766 #ifdef TARGET_I386
1767 { CPU_LOG_PCALL, "pcall",
1768 "show protected mode far calls/returns/exceptions" },
1769 { CPU_LOG_RESET, "cpu_reset",
1770 "show CPU state before CPU resets" },
1771 #endif
1772 #ifdef DEBUG_IOPORT
1773 { CPU_LOG_IOPORT, "ioport",
1774 "show all i/o ports accesses" },
1775 #endif
1776 { 0, NULL, NULL },
1777 };
1778
1779 static int cmp1(const char *s1, int n, const char *s2)
1780 {
1781 if (strlen(s2) != n)
1782 return 0;
1783 return memcmp(s1, s2, n) == 0;
1784 }
1785
1786 /* takes a comma separated list of log masks. Return 0 if error. */
1787 int cpu_str_to_log_mask(const char *str)
1788 {
1789 const CPULogItem *item;
1790 int mask;
1791 const char *p, *p1;
1792
1793 p = str;
1794 mask = 0;
1795 for(;;) {
1796 p1 = strchr(p, ',');
1797 if (!p1)
1798 p1 = p + strlen(p);
1799 if(cmp1(p,p1-p,"all")) {
1800 for(item = cpu_log_items; item->mask != 0; item++) {
1801 mask |= item->mask;
1802 }
1803 } else {
1804 for(item = cpu_log_items; item->mask != 0; item++) {
1805 if (cmp1(p, p1 - p, item->name))
1806 goto found;
1807 }
1808 return 0;
1809 }
1810 found:
1811 mask |= item->mask;
1812 if (*p1 != ',')
1813 break;
1814 p = p1 + 1;
1815 }
1816 return mask;
1817 }
1818
1819 void cpu_abort(CPUState *env, const char *fmt, ...)
1820 {
1821 va_list ap;
1822 va_list ap2;
1823
1824 va_start(ap, fmt);
1825 va_copy(ap2, ap);
1826 fprintf(stderr, "qemu: fatal: ");
1827 vfprintf(stderr, fmt, ap);
1828 fprintf(stderr, "\n");
1829 #ifdef TARGET_I386
1830 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1831 #else
1832 cpu_dump_state(env, stderr, fprintf, 0);
1833 #endif
1834 if (qemu_log_enabled()) {
1835 qemu_log("qemu: fatal: ");
1836 qemu_log_vprintf(fmt, ap2);
1837 qemu_log("\n");
1838 #ifdef TARGET_I386
1839 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1840 #else
1841 log_cpu_state(env, 0);
1842 #endif
1843 qemu_log_flush();
1844 qemu_log_close();
1845 }
1846 va_end(ap2);
1847 va_end(ap);
1848 #if defined(CONFIG_USER_ONLY)
1849 {
1850 struct sigaction act;
1851 sigfillset(&act.sa_mask);
1852 act.sa_handler = SIG_DFL;
1853 sigaction(SIGABRT, &act, NULL);
1854 }
1855 #endif
1856 abort();
1857 }
1858
1859 CPUState *cpu_copy(CPUState *env)
1860 {
1861 CPUState *new_env = cpu_init(env->cpu_model_str);
1862 CPUState *next_cpu = new_env->next_cpu;
1863 int cpu_index = new_env->cpu_index;
1864 #if defined(TARGET_HAS_ICE)
1865 CPUBreakpoint *bp;
1866 CPUWatchpoint *wp;
1867 #endif
1868
1869 memcpy(new_env, env, sizeof(CPUState));
1870
1871 /* Preserve chaining and index. */
1872 new_env->next_cpu = next_cpu;
1873 new_env->cpu_index = cpu_index;
1874
1875 /* Clone all break/watchpoints.
1876 Note: Once we support ptrace with hw-debug register access, make sure
1877 BP_CPU break/watchpoints are handled correctly on clone. */
1878 QTAILQ_INIT(&env->breakpoints);
1879 QTAILQ_INIT(&env->watchpoints);
1880 #if defined(TARGET_HAS_ICE)
1881 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1882 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1883 }
1884 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1885 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1886 wp->flags, NULL);
1887 }
1888 #endif
1889
1890 return new_env;
1891 }
1892
1893 #if !defined(CONFIG_USER_ONLY)
1894
1895 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1896 {
1897 unsigned int i;
1898
1899 /* Discard jump cache entries for any tb which might potentially
1900 overlap the flushed page. */
1901 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1902 memset (&env->tb_jmp_cache[i], 0,
1903 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1904
1905 i = tb_jmp_cache_hash_page(addr);
1906 memset (&env->tb_jmp_cache[i], 0,
1907 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1908 }
1909
1910 static CPUTLBEntry s_cputlb_empty_entry = {
1911 .addr_read = -1,
1912 .addr_write = -1,
1913 .addr_code = -1,
1914 .addend = -1,
1915 };
1916
1917 /* NOTE:
1918 * If flush_global is true (the usual case), flush all tlb entries.
1919 * If flush_global is false, flush (at least) all tlb entries not
1920 * marked global.
1921 *
1922 * Since QEMU doesn't currently implement a global/not-global flag
1923 * for tlb entries, at the moment tlb_flush() will also flush all
1924 * tlb entries in the flush_global == false case. This is OK because
1925 * CPU architectures generally permit an implementation to drop
1926 * entries from the TLB at any time, so flushing more entries than
1927 * required is only an efficiency issue, not a correctness issue.
1928 */
1929 void tlb_flush(CPUState *env, int flush_global)
1930 {
1931 int i;
1932
1933 #if defined(DEBUG_TLB)
1934 printf("tlb_flush:\n");
1935 #endif
1936 /* must reset current TB so that interrupts cannot modify the
1937 links while we are modifying them */
1938 env->current_tb = NULL;
1939
1940 for(i = 0; i < CPU_TLB_SIZE; i++) {
1941 int mmu_idx;
1942 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1943 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1944 }
1945 }
1946
1947 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1948
1949 env->tlb_flush_addr = -1;
1950 env->tlb_flush_mask = 0;
1951 tlb_flush_count++;
1952 }
1953
1954 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1955 {
1956 if (addr == (tlb_entry->addr_read &
1957 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1958 addr == (tlb_entry->addr_write &
1959 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1960 addr == (tlb_entry->addr_code &
1961 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1962 *tlb_entry = s_cputlb_empty_entry;
1963 }
1964 }
1965
1966 void tlb_flush_page(CPUState *env, target_ulong addr)
1967 {
1968 int i;
1969 int mmu_idx;
1970
1971 #if defined(DEBUG_TLB)
1972 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1973 #endif
1974 /* Check if we need to flush due to large pages. */
1975 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1976 #if defined(DEBUG_TLB)
1977 printf("tlb_flush_page: forced full flush ("
1978 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1979 env->tlb_flush_addr, env->tlb_flush_mask);
1980 #endif
1981 tlb_flush(env, 1);
1982 return;
1983 }
1984 /* must reset current TB so that interrupts cannot modify the
1985 links while we are modifying them */
1986 env->current_tb = NULL;
1987
1988 addr &= TARGET_PAGE_MASK;
1989 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1990 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1991 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1992
1993 tlb_flush_jmp_cache(env, addr);
1994 }
1995
1996 /* update the TLBs so that writes to code in the virtual page 'addr'
1997 can be detected */
1998 static void tlb_protect_code(ram_addr_t ram_addr)
1999 {
2000 cpu_physical_memory_reset_dirty(ram_addr,
2001 ram_addr + TARGET_PAGE_SIZE,
2002 CODE_DIRTY_FLAG);
2003 }
2004
2005 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2006 tested for self modifying code */
2007 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
2008 target_ulong vaddr)
2009 {
2010 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
2011 }
2012
2013 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2014 unsigned long start, unsigned long length)
2015 {
2016 unsigned long addr;
2017 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr) {
2018 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2019 if ((addr - start) < length) {
2020 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2021 }
2022 }
2023 }
2024
2025 /* Note: start and end must be within the same ram block. */
2026 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2027 int dirty_flags)
2028 {
2029 CPUState *env;
2030 unsigned long length, start1;
2031 int i;
2032
2033 start &= TARGET_PAGE_MASK;
2034 end = TARGET_PAGE_ALIGN(end);
2035
2036 length = end - start;
2037 if (length == 0)
2038 return;
2039 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2040
2041 /* we modify the TLB cache so that the dirty bit will be set again
2042 when accessing the range */
2043 start1 = (unsigned long)qemu_safe_ram_ptr(start);
2044 /* Check that we don't span multiple blocks - this breaks the
2045 address comparisons below. */
2046 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
2047 != (end - 1) - start) {
2048 abort();
2049 }
2050
2051 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2052 int mmu_idx;
2053 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2054 for(i = 0; i < CPU_TLB_SIZE; i++)
2055 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2056 start1, length);
2057 }
2058 }
2059 }
2060
2061 int cpu_physical_memory_set_dirty_tracking(int enable)
2062 {
2063 int ret = 0;
2064 in_migration = enable;
2065 return ret;
2066 }
2067
2068 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2069 {
2070 ram_addr_t ram_addr;
2071 void *p;
2072
2073 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr) {
2074 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2075 + tlb_entry->addend);
2076 ram_addr = qemu_ram_addr_from_host_nofail(p);
2077 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2078 tlb_entry->addr_write |= TLB_NOTDIRTY;
2079 }
2080 }
2081 }
2082
2083 /* update the TLB according to the current state of the dirty bits */
2084 void cpu_tlb_update_dirty(CPUState *env)
2085 {
2086 int i;
2087 int mmu_idx;
2088 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2089 for(i = 0; i < CPU_TLB_SIZE; i++)
2090 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2091 }
2092 }
2093
2094 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2095 {
2096 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2097 tlb_entry->addr_write = vaddr;
2098 }
2099
2100 /* update the TLB corresponding to virtual page vaddr
2101 so that it is no longer dirty */
2102 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2103 {
2104 int i;
2105 int mmu_idx;
2106
2107 vaddr &= TARGET_PAGE_MASK;
2108 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2109 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2110 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2111 }
2112
2113 /* Our TLB does not support large pages, so remember the area covered by
2114 large pages and trigger a full TLB flush if these are invalidated. */
2115 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2116 target_ulong size)
2117 {
2118 target_ulong mask = ~(size - 1);
2119
2120 if (env->tlb_flush_addr == (target_ulong)-1) {
2121 env->tlb_flush_addr = vaddr & mask;
2122 env->tlb_flush_mask = mask;
2123 return;
2124 }
2125 /* Extend the existing region to include the new page.
2126 This is a compromise between unnecessary flushes and the cost
2127 of maintaining a full variable size TLB. */
2128 mask &= env->tlb_flush_mask;
2129 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2130 mask <<= 1;
2131 }
2132 env->tlb_flush_addr &= mask;
2133 env->tlb_flush_mask = mask;
2134 }
2135
2136 static bool is_ram_rom(MemoryRegionSection *s)
2137 {
2138 return memory_region_is_ram(s->mr);
2139 }
2140
2141 static bool is_romd(MemoryRegionSection *s)
2142 {
2143 MemoryRegion *mr = s->mr;
2144
2145 return mr->rom_device && mr->readable;
2146 }
2147
2148 static bool is_ram_rom_romd(MemoryRegionSection *s)
2149 {
2150 return is_ram_rom(s) || is_romd(s);
2151 }
2152
2153 /* Add a new TLB entry. At most one entry for a given virtual address
2154 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2155 supplied size is only used by tlb_flush_page. */
2156 void tlb_set_page(CPUState *env, target_ulong vaddr,
2157 target_phys_addr_t paddr, int prot,
2158 int mmu_idx, target_ulong size)
2159 {
2160 MemoryRegionSection section;
2161 unsigned int index;
2162 target_ulong address;
2163 target_ulong code_address;
2164 unsigned long addend;
2165 CPUTLBEntry *te;
2166 CPUWatchpoint *wp;
2167 target_phys_addr_t iotlb;
2168
2169 assert(size >= TARGET_PAGE_SIZE);
2170 if (size != TARGET_PAGE_SIZE) {
2171 tlb_add_large_page(env, vaddr, size);
2172 }
2173 section = phys_page_find(paddr >> TARGET_PAGE_BITS);
2174 #if defined(DEBUG_TLB)
2175 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2176 " prot=%x idx=%d pd=0x%08lx\n",
2177 vaddr, paddr, prot, mmu_idx, pd);
2178 #endif
2179
2180 address = vaddr;
2181 if (!is_ram_rom_romd(&section)) {
2182 /* IO memory case (romd handled later) */
2183 address |= TLB_MMIO;
2184 }
2185 if (is_ram_rom_romd(&section)) {
2186 addend = (unsigned long)(memory_region_get_ram_ptr(section.mr)
2187 + section.offset_within_region);
2188 } else {
2189 addend = 0;
2190 }
2191 if (is_ram_rom(&section)) {
2192 /* Normal RAM. */
2193 iotlb = (memory_region_get_ram_addr(section.mr)
2194 + section.offset_within_region) & TARGET_PAGE_MASK;
2195 if (!section.readonly)
2196 iotlb |= io_mem_notdirty.ram_addr;
2197 else
2198 iotlb |= io_mem_rom.ram_addr;
2199 } else {
2200 /* IO handlers are currently passed a physical address.
2201 It would be nice to pass an offset from the base address
2202 of that region. This would avoid having to special case RAM,
2203 and avoid full address decoding in every device.
2204 We can't use the high bits of pd for this because
2205 IO_MEM_ROMD uses these as a ram address. */
2206 iotlb = memory_region_get_ram_addr(section.mr) & ~TARGET_PAGE_MASK;
2207 iotlb += section.offset_within_region;
2208 }
2209
2210 code_address = address;
2211 /* Make accesses to pages with watchpoints go via the
2212 watchpoint trap routines. */
2213 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2214 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2215 /* Avoid trapping reads of pages with a write breakpoint. */
2216 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2217 iotlb = io_mem_watch.ram_addr + paddr;
2218 address |= TLB_MMIO;
2219 break;
2220 }
2221 }
2222 }
2223
2224 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2225 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2226 te = &env->tlb_table[mmu_idx][index];
2227 te->addend = addend - vaddr;
2228 if (prot & PAGE_READ) {
2229 te->addr_read = address;
2230 } else {
2231 te->addr_read = -1;
2232 }
2233
2234 if (prot & PAGE_EXEC) {
2235 te->addr_code = code_address;
2236 } else {
2237 te->addr_code = -1;
2238 }
2239 if (prot & PAGE_WRITE) {
2240 if ((memory_region_is_ram(section.mr) && section.readonly)
2241 || is_romd(&section)) {
2242 /* Write access calls the I/O callback. */
2243 te->addr_write = address | TLB_MMIO;
2244 } else if (memory_region_is_ram(section.mr)
2245 && !cpu_physical_memory_is_dirty(
2246 section.mr->ram_addr
2247 + section.offset_within_region)) {
2248 te->addr_write = address | TLB_NOTDIRTY;
2249 } else {
2250 te->addr_write = address;
2251 }
2252 } else {
2253 te->addr_write = -1;
2254 }
2255 }
2256
2257 #else
2258
2259 void tlb_flush(CPUState *env, int flush_global)
2260 {
2261 }
2262
2263 void tlb_flush_page(CPUState *env, target_ulong addr)
2264 {
2265 }
2266
2267 /*
2268 * Walks guest process memory "regions" one by one
2269 * and calls callback function 'fn' for each region.
2270 */
2271
2272 struct walk_memory_regions_data
2273 {
2274 walk_memory_regions_fn fn;
2275 void *priv;
2276 unsigned long start;
2277 int prot;
2278 };
2279
2280 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2281 abi_ulong end, int new_prot)
2282 {
2283 if (data->start != -1ul) {
2284 int rc = data->fn(data->priv, data->start, end, data->prot);
2285 if (rc != 0) {
2286 return rc;
2287 }
2288 }
2289
2290 data->start = (new_prot ? end : -1ul);
2291 data->prot = new_prot;
2292
2293 return 0;
2294 }
2295
2296 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2297 abi_ulong base, int level, void **lp)
2298 {
2299 abi_ulong pa;
2300 int i, rc;
2301
2302 if (*lp == NULL) {
2303 return walk_memory_regions_end(data, base, 0);
2304 }
2305
2306 if (level == 0) {
2307 PageDesc *pd = *lp;
2308 for (i = 0; i < L2_SIZE; ++i) {
2309 int prot = pd[i].flags;
2310
2311 pa = base | (i << TARGET_PAGE_BITS);
2312 if (prot != data->prot) {
2313 rc = walk_memory_regions_end(data, pa, prot);
2314 if (rc != 0) {
2315 return rc;
2316 }
2317 }
2318 }
2319 } else {
2320 void **pp = *lp;
2321 for (i = 0; i < L2_SIZE; ++i) {
2322 pa = base | ((abi_ulong)i <<
2323 (TARGET_PAGE_BITS + L2_BITS * level));
2324 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2325 if (rc != 0) {
2326 return rc;
2327 }
2328 }
2329 }
2330
2331 return 0;
2332 }
2333
2334 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2335 {
2336 struct walk_memory_regions_data data;
2337 unsigned long i;
2338
2339 data.fn = fn;
2340 data.priv = priv;
2341 data.start = -1ul;
2342 data.prot = 0;
2343
2344 for (i = 0; i < V_L1_SIZE; i++) {
2345 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2346 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2347 if (rc != 0) {
2348 return rc;
2349 }
2350 }
2351
2352 return walk_memory_regions_end(&data, 0, 0);
2353 }
2354
2355 static int dump_region(void *priv, abi_ulong start,
2356 abi_ulong end, unsigned long prot)
2357 {
2358 FILE *f = (FILE *)priv;
2359
2360 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2361 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2362 start, end, end - start,
2363 ((prot & PAGE_READ) ? 'r' : '-'),
2364 ((prot & PAGE_WRITE) ? 'w' : '-'),
2365 ((prot & PAGE_EXEC) ? 'x' : '-'));
2366
2367 return (0);
2368 }
2369
2370 /* dump memory mappings */
2371 void page_dump(FILE *f)
2372 {
2373 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2374 "start", "end", "size", "prot");
2375 walk_memory_regions(f, dump_region);
2376 }
2377
2378 int page_get_flags(target_ulong address)
2379 {
2380 PageDesc *p;
2381
2382 p = page_find(address >> TARGET_PAGE_BITS);
2383 if (!p)
2384 return 0;
2385 return p->flags;
2386 }
2387
2388 /* Modify the flags of a page and invalidate the code if necessary.
2389 The flag PAGE_WRITE_ORG is positioned automatically depending
2390 on PAGE_WRITE. The mmap_lock should already be held. */
2391 void page_set_flags(target_ulong start, target_ulong end, int flags)
2392 {
2393 target_ulong addr, len;
2394
2395 /* This function should never be called with addresses outside the
2396 guest address space. If this assert fires, it probably indicates
2397 a missing call to h2g_valid. */
2398 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2399 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2400 #endif
2401 assert(start < end);
2402
2403 start = start & TARGET_PAGE_MASK;
2404 end = TARGET_PAGE_ALIGN(end);
2405
2406 if (flags & PAGE_WRITE) {
2407 flags |= PAGE_WRITE_ORG;
2408 }
2409
2410 for (addr = start, len = end - start;
2411 len != 0;
2412 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2413 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2414
2415 /* If the write protection bit is set, then we invalidate
2416 the code inside. */
2417 if (!(p->flags & PAGE_WRITE) &&
2418 (flags & PAGE_WRITE) &&
2419 p->first_tb) {
2420 tb_invalidate_phys_page(addr, 0, NULL);
2421 }
2422 p->flags = flags;
2423 }
2424 }
2425
2426 int page_check_range(target_ulong start, target_ulong len, int flags)
2427 {
2428 PageDesc *p;
2429 target_ulong end;
2430 target_ulong addr;
2431
2432 /* This function should never be called with addresses outside the
2433 guest address space. If this assert fires, it probably indicates
2434 a missing call to h2g_valid. */
2435 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2436 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2437 #endif
2438
2439 if (len == 0) {
2440 return 0;
2441 }
2442 if (start + len - 1 < start) {
2443 /* We've wrapped around. */
2444 return -1;
2445 }
2446
2447 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2448 start = start & TARGET_PAGE_MASK;
2449
2450 for (addr = start, len = end - start;
2451 len != 0;
2452 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2453 p = page_find(addr >> TARGET_PAGE_BITS);
2454 if( !p )
2455 return -1;
2456 if( !(p->flags & PAGE_VALID) )
2457 return -1;
2458
2459 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2460 return -1;
2461 if (flags & PAGE_WRITE) {
2462 if (!(p->flags & PAGE_WRITE_ORG))
2463 return -1;
2464 /* unprotect the page if it was put read-only because it
2465 contains translated code */
2466 if (!(p->flags & PAGE_WRITE)) {
2467 if (!page_unprotect(addr, 0, NULL))
2468 return -1;
2469 }
2470 return 0;
2471 }
2472 }
2473 return 0;
2474 }
2475
2476 /* called from signal handler: invalidate the code and unprotect the
2477 page. Return TRUE if the fault was successfully handled. */
2478 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2479 {
2480 unsigned int prot;
2481 PageDesc *p;
2482 target_ulong host_start, host_end, addr;
2483
2484 /* Technically this isn't safe inside a signal handler. However we
2485 know this only ever happens in a synchronous SEGV handler, so in
2486 practice it seems to be ok. */
2487 mmap_lock();
2488
2489 p = page_find(address >> TARGET_PAGE_BITS);
2490 if (!p) {
2491 mmap_unlock();
2492 return 0;
2493 }
2494
2495 /* if the page was really writable, then we change its
2496 protection back to writable */
2497 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2498 host_start = address & qemu_host_page_mask;
2499 host_end = host_start + qemu_host_page_size;
2500
2501 prot = 0;
2502 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2503 p = page_find(addr >> TARGET_PAGE_BITS);
2504 p->flags |= PAGE_WRITE;
2505 prot |= p->flags;
2506
2507 /* and since the content will be modified, we must invalidate
2508 the corresponding translated code. */
2509 tb_invalidate_phys_page(addr, pc, puc);
2510 #ifdef DEBUG_TB_CHECK
2511 tb_invalidate_check(addr);
2512 #endif
2513 }
2514 mprotect((void *)g2h(host_start), qemu_host_page_size,
2515 prot & PAGE_BITS);
2516
2517 mmap_unlock();
2518 return 1;
2519 }
2520 mmap_unlock();
2521 return 0;
2522 }
2523
2524 static inline void tlb_set_dirty(CPUState *env,
2525 unsigned long addr, target_ulong vaddr)
2526 {
2527 }
2528 #endif /* defined(CONFIG_USER_ONLY) */
2529
2530 #if !defined(CONFIG_USER_ONLY)
2531
2532 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2533 typedef struct subpage_t {
2534 MemoryRegion iomem;
2535 target_phys_addr_t base;
2536 uint16_t sub_section[TARGET_PAGE_SIZE];
2537 } subpage_t;
2538
2539 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2540 uint16_t section);
2541 static subpage_t *subpage_init(target_phys_addr_t base);
2542 static void destroy_page_desc(uint16_t section_index)
2543 {
2544 MemoryRegionSection *section = &phys_sections[section_index];
2545 MemoryRegion *mr = section->mr;
2546
2547 if (mr->subpage) {
2548 subpage_t *subpage = container_of(mr, subpage_t, iomem);
2549 memory_region_destroy(&subpage->iomem);
2550 g_free(subpage);
2551 }
2552 }
2553
2554 static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
2555 {
2556 unsigned i;
2557 PhysPageEntry *p;
2558
2559 if (lp->u.node == PHYS_MAP_NODE_NIL) {
2560 return;
2561 }
2562
2563 p = phys_map_nodes[lp->u.node];
2564 for (i = 0; i < L2_SIZE; ++i) {
2565 if (level > 0) {
2566 destroy_l2_mapping(&p[i], level - 1);
2567 } else {
2568 destroy_page_desc(p[i].u.leaf);
2569 }
2570 }
2571 lp->u.node = PHYS_MAP_NODE_NIL;
2572 }
2573
2574 static void destroy_all_mappings(void)
2575 {
2576 destroy_l2_mapping(&phys_map, P_L2_LEVELS - 1);
2577 phys_map_nodes_reset();
2578 }
2579
2580 static uint16_t phys_section_add(MemoryRegionSection *section)
2581 {
2582 if (phys_sections_nb == phys_sections_nb_alloc) {
2583 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
2584 phys_sections = g_renew(MemoryRegionSection, phys_sections,
2585 phys_sections_nb_alloc);
2586 }
2587 phys_sections[phys_sections_nb] = *section;
2588 return phys_sections_nb++;
2589 }
2590
2591 static void phys_sections_clear(void)
2592 {
2593 phys_sections_nb = 0;
2594 }
2595
2596 /* register physical memory.
2597 For RAM, 'size' must be a multiple of the target page size.
2598 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2599 io memory page. The address used when calling the IO function is
2600 the offset from the start of the region, plus region_offset. Both
2601 start_addr and region_offset are rounded down to a page boundary
2602 before calculating this offset. This should not be a problem unless
2603 the low bits of start_addr and region_offset differ. */
2604 static void register_subpage(MemoryRegionSection *section)
2605 {
2606 subpage_t *subpage;
2607 target_phys_addr_t base = section->offset_within_address_space
2608 & TARGET_PAGE_MASK;
2609 MemoryRegionSection existing = phys_page_find(base >> TARGET_PAGE_BITS);
2610 MemoryRegionSection subsection = {
2611 .offset_within_address_space = base,
2612 .size = TARGET_PAGE_SIZE,
2613 };
2614 uint16_t *ptr;
2615 target_phys_addr_t start, end;
2616
2617 assert(existing.mr->subpage || existing.mr == &io_mem_unassigned);
2618
2619 if (!(existing.mr->subpage)) {
2620 subpage = subpage_init(base);
2621 subsection.mr = &subpage->iomem;
2622 ptr = phys_page_find_alloc(base >> TARGET_PAGE_BITS, 1);
2623 *ptr = phys_section_add(&subsection);
2624 } else {
2625 subpage = container_of(existing.mr, subpage_t, iomem);
2626 }
2627 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
2628 end = start + section->size;
2629 subpage_register(subpage, start, end, phys_section_add(section));
2630 }
2631
2632
2633 static void register_multipage(MemoryRegionSection *section)
2634 {
2635 target_phys_addr_t start_addr = section->offset_within_address_space;
2636 ram_addr_t size = section->size;
2637 target_phys_addr_t addr, end_addr;
2638 uint16_t section_index = phys_section_add(section);
2639
2640 assert(size);
2641
2642 end_addr = start_addr + (target_phys_addr_t)size;
2643
2644 addr = start_addr;
2645 do {
2646 uint16_t *p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2647 assert(*p == phys_section_unassigned);
2648 *p = section_index;
2649 addr += TARGET_PAGE_SIZE;
2650 } while (addr != end_addr);
2651 }
2652
2653 void cpu_register_physical_memory_log(MemoryRegionSection *section,
2654 bool readonly)
2655 {
2656 MemoryRegionSection now = *section, remain = *section;
2657
2658 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
2659 || (now.size < TARGET_PAGE_SIZE)) {
2660 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
2661 - now.offset_within_address_space,
2662 now.size);
2663 register_subpage(&now);
2664 remain.size -= now.size;
2665 remain.offset_within_address_space += now.size;
2666 remain.offset_within_region += now.size;
2667 }
2668 now = remain;
2669 now.size &= TARGET_PAGE_MASK;
2670 if (now.size) {
2671 register_multipage(&now);
2672 remain.size -= now.size;
2673 remain.offset_within_address_space += now.size;
2674 remain.offset_within_region += now.size;
2675 }
2676 now = remain;
2677 if (now.size) {
2678 register_subpage(&now);
2679 }
2680 }
2681
2682
2683 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2684 {
2685 if (kvm_enabled())
2686 kvm_coalesce_mmio_region(addr, size);
2687 }
2688
2689 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2690 {
2691 if (kvm_enabled())
2692 kvm_uncoalesce_mmio_region(addr, size);
2693 }
2694
2695 void qemu_flush_coalesced_mmio_buffer(void)
2696 {
2697 if (kvm_enabled())
2698 kvm_flush_coalesced_mmio_buffer();
2699 }
2700
2701 #if defined(__linux__) && !defined(TARGET_S390X)
2702
2703 #include <sys/vfs.h>
2704
2705 #define HUGETLBFS_MAGIC 0x958458f6
2706
2707 static long gethugepagesize(const char *path)
2708 {
2709 struct statfs fs;
2710 int ret;
2711
2712 do {
2713 ret = statfs(path, &fs);
2714 } while (ret != 0 && errno == EINTR);
2715
2716 if (ret != 0) {
2717 perror(path);
2718 return 0;
2719 }
2720
2721 if (fs.f_type != HUGETLBFS_MAGIC)
2722 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2723
2724 return fs.f_bsize;
2725 }
2726
2727 static void *file_ram_alloc(RAMBlock *block,
2728 ram_addr_t memory,
2729 const char *path)
2730 {
2731 char *filename;
2732 void *area;
2733 int fd;
2734 #ifdef MAP_POPULATE
2735 int flags;
2736 #endif
2737 unsigned long hpagesize;
2738
2739 hpagesize = gethugepagesize(path);
2740 if (!hpagesize) {
2741 return NULL;
2742 }
2743
2744 if (memory < hpagesize) {
2745 return NULL;
2746 }
2747
2748 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2749 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2750 return NULL;
2751 }
2752
2753 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2754 return NULL;
2755 }
2756
2757 fd = mkstemp(filename);
2758 if (fd < 0) {
2759 perror("unable to create backing store for hugepages");
2760 free(filename);
2761 return NULL;
2762 }
2763 unlink(filename);
2764 free(filename);
2765
2766 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2767
2768 /*
2769 * ftruncate is not supported by hugetlbfs in older
2770 * hosts, so don't bother bailing out on errors.
2771 * If anything goes wrong with it under other filesystems,
2772 * mmap will fail.
2773 */
2774 if (ftruncate(fd, memory))
2775 perror("ftruncate");
2776
2777 #ifdef MAP_POPULATE
2778 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2779 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2780 * to sidestep this quirk.
2781 */
2782 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2783 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2784 #else
2785 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2786 #endif
2787 if (area == MAP_FAILED) {
2788 perror("file_ram_alloc: can't mmap RAM pages");
2789 close(fd);
2790 return (NULL);
2791 }
2792 block->fd = fd;
2793 return area;
2794 }
2795 #endif
2796
2797 static ram_addr_t find_ram_offset(ram_addr_t size)
2798 {
2799 RAMBlock *block, *next_block;
2800 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
2801
2802 if (QLIST_EMPTY(&ram_list.blocks))
2803 return 0;
2804
2805 QLIST_FOREACH(block, &ram_list.blocks, next) {
2806 ram_addr_t end, next = RAM_ADDR_MAX;
2807
2808 end = block->offset + block->length;
2809
2810 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2811 if (next_block->offset >= end) {
2812 next = MIN(next, next_block->offset);
2813 }
2814 }
2815 if (next - end >= size && next - end < mingap) {
2816 offset = end;
2817 mingap = next - end;
2818 }
2819 }
2820
2821 if (offset == RAM_ADDR_MAX) {
2822 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2823 (uint64_t)size);
2824 abort();
2825 }
2826
2827 return offset;
2828 }
2829
2830 static ram_addr_t last_ram_offset(void)
2831 {
2832 RAMBlock *block;
2833 ram_addr_t last = 0;
2834
2835 QLIST_FOREACH(block, &ram_list.blocks, next)
2836 last = MAX(last, block->offset + block->length);
2837
2838 return last;
2839 }
2840
2841 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
2842 {
2843 RAMBlock *new_block, *block;
2844
2845 new_block = NULL;
2846 QLIST_FOREACH(block, &ram_list.blocks, next) {
2847 if (block->offset == addr) {
2848 new_block = block;
2849 break;
2850 }
2851 }
2852 assert(new_block);
2853 assert(!new_block->idstr[0]);
2854
2855 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2856 char *id = dev->parent_bus->info->get_dev_path(dev);
2857 if (id) {
2858 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2859 g_free(id);
2860 }
2861 }
2862 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2863
2864 QLIST_FOREACH(block, &ram_list.blocks, next) {
2865 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
2866 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2867 new_block->idstr);
2868 abort();
2869 }
2870 }
2871 }
2872
2873 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2874 MemoryRegion *mr)
2875 {
2876 RAMBlock *new_block;
2877
2878 size = TARGET_PAGE_ALIGN(size);
2879 new_block = g_malloc0(sizeof(*new_block));
2880
2881 new_block->mr = mr;
2882 new_block->offset = find_ram_offset(size);
2883 if (host) {
2884 new_block->host = host;
2885 new_block->flags |= RAM_PREALLOC_MASK;
2886 } else {
2887 if (mem_path) {
2888 #if defined (__linux__) && !defined(TARGET_S390X)
2889 new_block->host = file_ram_alloc(new_block, size, mem_path);
2890 if (!new_block->host) {
2891 new_block->host = qemu_vmalloc(size);
2892 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2893 }
2894 #else
2895 fprintf(stderr, "-mem-path option unsupported\n");
2896 exit(1);
2897 #endif
2898 } else {
2899 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2900 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2901 an system defined value, which is at least 256GB. Larger systems
2902 have larger values. We put the guest between the end of data
2903 segment (system break) and this value. We use 32GB as a base to
2904 have enough room for the system break to grow. */
2905 new_block->host = mmap((void*)0x800000000, size,
2906 PROT_EXEC|PROT_READ|PROT_WRITE,
2907 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
2908 if (new_block->host == MAP_FAILED) {
2909 fprintf(stderr, "Allocating RAM failed\n");
2910 abort();
2911 }
2912 #else
2913 if (xen_enabled()) {
2914 xen_ram_alloc(new_block->offset, size, mr);
2915 } else {
2916 new_block->host = qemu_vmalloc(size);
2917 }
2918 #endif
2919 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2920 }
2921 }
2922 new_block->length = size;
2923
2924 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2925
2926 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
2927 last_ram_offset() >> TARGET_PAGE_BITS);
2928 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2929 0xff, size >> TARGET_PAGE_BITS);
2930
2931 if (kvm_enabled())
2932 kvm_setup_guest_memory(new_block->host, size);
2933
2934 return new_block->offset;
2935 }
2936
2937 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
2938 {
2939 return qemu_ram_alloc_from_ptr(size, NULL, mr);
2940 }
2941
2942 void qemu_ram_free_from_ptr(ram_addr_t addr)
2943 {
2944 RAMBlock *block;
2945
2946 QLIST_FOREACH(block, &ram_list.blocks, next) {
2947 if (addr == block->offset) {
2948 QLIST_REMOVE(block, next);
2949 g_free(block);
2950 return;
2951 }
2952 }
2953 }
2954
2955 void qemu_ram_free(ram_addr_t addr)
2956 {
2957 RAMBlock *block;
2958
2959 QLIST_FOREACH(block, &ram_list.blocks, next) {
2960 if (addr == block->offset) {
2961 QLIST_REMOVE(block, next);
2962 if (block->flags & RAM_PREALLOC_MASK) {
2963 ;
2964 } else if (mem_path) {
2965 #if defined (__linux__) && !defined(TARGET_S390X)
2966 if (block->fd) {
2967 munmap(block->host, block->length);
2968 close(block->fd);
2969 } else {
2970 qemu_vfree(block->host);
2971 }
2972 #else
2973 abort();
2974 #endif
2975 } else {
2976 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2977 munmap(block->host, block->length);
2978 #else
2979 if (xen_enabled()) {
2980 xen_invalidate_map_cache_entry(block->host);
2981 } else {
2982 qemu_vfree(block->host);
2983 }
2984 #endif
2985 }
2986 g_free(block);
2987 return;
2988 }
2989 }
2990
2991 }
2992
2993 #ifndef _WIN32
2994 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2995 {
2996 RAMBlock *block;
2997 ram_addr_t offset;
2998 int flags;
2999 void *area, *vaddr;
3000
3001 QLIST_FOREACH(block, &ram_list.blocks, next) {
3002 offset = addr - block->offset;
3003 if (offset < block->length) {
3004 vaddr = block->host + offset;
3005 if (block->flags & RAM_PREALLOC_MASK) {
3006 ;
3007 } else {
3008 flags = MAP_FIXED;
3009 munmap(vaddr, length);
3010 if (mem_path) {
3011 #if defined(__linux__) && !defined(TARGET_S390X)
3012 if (block->fd) {
3013 #ifdef MAP_POPULATE
3014 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
3015 MAP_PRIVATE;
3016 #else
3017 flags |= MAP_PRIVATE;
3018 #endif
3019 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3020 flags, block->fd, offset);
3021 } else {
3022 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3023 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3024 flags, -1, 0);
3025 }
3026 #else
3027 abort();
3028 #endif
3029 } else {
3030 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
3031 flags |= MAP_SHARED | MAP_ANONYMOUS;
3032 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
3033 flags, -1, 0);
3034 #else
3035 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3036 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3037 flags, -1, 0);
3038 #endif
3039 }
3040 if (area != vaddr) {
3041 fprintf(stderr, "Could not remap addr: "
3042 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
3043 length, addr);
3044 exit(1);
3045 }
3046 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3047 }
3048 return;
3049 }
3050 }
3051 }
3052 #endif /* !_WIN32 */
3053
3054 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3055 With the exception of the softmmu code in this file, this should
3056 only be used for local memory (e.g. video ram) that the device owns,
3057 and knows it isn't going to access beyond the end of the block.
3058
3059 It should not be used for general purpose DMA.
3060 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3061 */
3062 void *qemu_get_ram_ptr(ram_addr_t addr)
3063 {
3064 RAMBlock *block;
3065
3066 QLIST_FOREACH(block, &ram_list.blocks, next) {
3067 if (addr - block->offset < block->length) {
3068 /* Move this entry to to start of the list. */
3069 if (block != QLIST_FIRST(&ram_list.blocks)) {
3070 QLIST_REMOVE(block, next);
3071 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3072 }
3073 if (xen_enabled()) {
3074 /* We need to check if the requested address is in the RAM
3075 * because we don't want to map the entire memory in QEMU.
3076 * In that case just map until the end of the page.
3077 */
3078 if (block->offset == 0) {
3079 return xen_map_cache(addr, 0, 0);
3080 } else if (block->host == NULL) {
3081 block->host =
3082 xen_map_cache(block->offset, block->length, 1);
3083 }
3084 }
3085 return block->host + (addr - block->offset);
3086 }
3087 }
3088
3089 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3090 abort();
3091
3092 return NULL;
3093 }
3094
3095 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3096 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3097 */
3098 void *qemu_safe_ram_ptr(ram_addr_t addr)
3099 {
3100 RAMBlock *block;
3101
3102 QLIST_FOREACH(block, &ram_list.blocks, next) {
3103 if (addr - block->offset < block->length) {
3104 if (xen_enabled()) {
3105 /* We need to check if the requested address is in the RAM
3106 * because we don't want to map the entire memory in QEMU.
3107 * In that case just map until the end of the page.
3108 */
3109 if (block->offset == 0) {
3110 return xen_map_cache(addr, 0, 0);
3111 } else if (block->host == NULL) {
3112 block->host =
3113 xen_map_cache(block->offset, block->length, 1);
3114 }
3115 }
3116 return block->host + (addr - block->offset);
3117 }
3118 }
3119
3120 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3121 abort();
3122
3123 return NULL;
3124 }
3125
3126 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
3127 * but takes a size argument */
3128 void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
3129 {
3130 if (*size == 0) {
3131 return NULL;
3132 }
3133 if (xen_enabled()) {
3134 return xen_map_cache(addr, *size, 1);
3135 } else {
3136 RAMBlock *block;
3137
3138 QLIST_FOREACH(block, &ram_list.blocks, next) {
3139 if (addr - block->offset < block->length) {
3140 if (addr - block->offset + *size > block->length)
3141 *size = block->length - addr + block->offset;
3142 return block->host + (addr - block->offset);
3143 }
3144 }
3145
3146 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3147 abort();
3148 }
3149 }
3150
3151 void qemu_put_ram_ptr(void *addr)
3152 {
3153 trace_qemu_put_ram_ptr(addr);
3154 }
3155
3156 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
3157 {
3158 RAMBlock *block;
3159 uint8_t *host = ptr;
3160
3161 if (xen_enabled()) {
3162 *ram_addr = xen_ram_addr_from_mapcache(ptr);
3163 return 0;
3164 }
3165
3166 QLIST_FOREACH(block, &ram_list.blocks, next) {
3167 /* This case append when the block is not mapped. */
3168 if (block->host == NULL) {
3169 continue;
3170 }
3171 if (host - block->host < block->length) {
3172 *ram_addr = block->offset + (host - block->host);
3173 return 0;
3174 }
3175 }
3176
3177 return -1;
3178 }
3179
3180 /* Some of the softmmu routines need to translate from a host pointer
3181 (typically a TLB entry) back to a ram offset. */
3182 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3183 {
3184 ram_addr_t ram_addr;
3185
3186 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3187 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3188 abort();
3189 }
3190 return ram_addr;
3191 }
3192
3193 static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
3194 unsigned size)
3195 {
3196 #ifdef DEBUG_UNASSIGNED
3197 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3198 #endif
3199 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3200 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
3201 #endif
3202 return 0;
3203 }
3204
3205 static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
3206 uint64_t val, unsigned size)
3207 {
3208 #ifdef DEBUG_UNASSIGNED
3209 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
3210 #endif
3211 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3212 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
3213 #endif
3214 }
3215
3216 static const MemoryRegionOps unassigned_mem_ops = {
3217 .read = unassigned_mem_read,
3218 .write = unassigned_mem_write,
3219 .endianness = DEVICE_NATIVE_ENDIAN,
3220 };
3221
3222 static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
3223 unsigned size)
3224 {
3225 abort();
3226 }
3227
3228 static void error_mem_write(void *opaque, target_phys_addr_t addr,
3229 uint64_t value, unsigned size)
3230 {
3231 abort();
3232 }
3233
3234 static const MemoryRegionOps error_mem_ops = {
3235 .read = error_mem_read,
3236 .write = error_mem_write,
3237 .endianness = DEVICE_NATIVE_ENDIAN,
3238 };
3239
3240 static const MemoryRegionOps rom_mem_ops = {
3241 .read = error_mem_read,
3242 .write = unassigned_mem_write,
3243 .endianness = DEVICE_NATIVE_ENDIAN,
3244 };
3245
3246 static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
3247 uint64_t val, unsigned size)
3248 {
3249 int dirty_flags;
3250 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3251 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3252 #if !defined(CONFIG_USER_ONLY)
3253 tb_invalidate_phys_page_fast(ram_addr, size);
3254 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3255 #endif
3256 }
3257 switch (size) {
3258 case 1:
3259 stb_p(qemu_get_ram_ptr(ram_addr), val);
3260 break;
3261 case 2:
3262 stw_p(qemu_get_ram_ptr(ram_addr), val);
3263 break;
3264 case 4:
3265 stl_p(qemu_get_ram_ptr(ram_addr), val);
3266 break;
3267 default:
3268 abort();
3269 }
3270 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3271 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3272 /* we remove the notdirty callback only if the code has been
3273 flushed */
3274 if (dirty_flags == 0xff)
3275 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3276 }
3277
3278 static const MemoryRegionOps notdirty_mem_ops = {
3279 .read = error_mem_read,
3280 .write = notdirty_mem_write,
3281 .endianness = DEVICE_NATIVE_ENDIAN,
3282 };
3283
3284 /* Generate a debug exception if a watchpoint has been hit. */
3285 static void check_watchpoint(int offset, int len_mask, int flags)
3286 {
3287 CPUState *env = cpu_single_env;
3288 target_ulong pc, cs_base;
3289 TranslationBlock *tb;
3290 target_ulong vaddr;
3291 CPUWatchpoint *wp;
3292 int cpu_flags;
3293
3294 if (env->watchpoint_hit) {
3295 /* We re-entered the check after replacing the TB. Now raise
3296 * the debug interrupt so that is will trigger after the
3297 * current instruction. */
3298 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3299 return;
3300 }
3301 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3302 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3303 if ((vaddr == (wp->vaddr & len_mask) ||
3304 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3305 wp->flags |= BP_WATCHPOINT_HIT;
3306 if (!env->watchpoint_hit) {
3307 env->watchpoint_hit = wp;
3308 tb = tb_find_pc(env->mem_io_pc);
3309 if (!tb) {
3310 cpu_abort(env, "check_watchpoint: could not find TB for "
3311 "pc=%p", (void *)env->mem_io_pc);
3312 }
3313 cpu_restore_state(tb, env, env->mem_io_pc);
3314 tb_phys_invalidate(tb, -1);
3315 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3316 env->exception_index = EXCP_DEBUG;
3317 } else {
3318 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3319 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3320 }
3321 cpu_resume_from_signal(env, NULL);
3322 }
3323 } else {
3324 wp->flags &= ~BP_WATCHPOINT_HIT;
3325 }
3326 }
3327 }
3328
3329 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3330 so these check for a hit then pass through to the normal out-of-line
3331 phys routines. */
3332 static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
3333 unsigned size)
3334 {
3335 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
3336 switch (size) {
3337 case 1: return ldub_phys(addr);
3338 case 2: return lduw_phys(addr);
3339 case 4: return ldl_phys(addr);
3340 default: abort();
3341 }
3342 }
3343
3344 static void watch_mem_write(void *opaque, target_phys_addr_t addr,
3345 uint64_t val, unsigned size)
3346 {
3347 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
3348 switch (size) {
3349 case 1: stb_phys(addr, val);
3350 case 2: stw_phys(addr, val);
3351 case 4: stl_phys(addr, val);
3352 default: abort();
3353 }
3354 }
3355
3356 static const MemoryRegionOps watch_mem_ops = {
3357 .read = watch_mem_read,
3358 .write = watch_mem_write,
3359 .endianness = DEVICE_NATIVE_ENDIAN,
3360 };
3361
3362 static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
3363 unsigned len)
3364 {
3365 subpage_t *mmio = opaque;
3366 unsigned int idx = SUBPAGE_IDX(addr);
3367 MemoryRegionSection *section;
3368 #if defined(DEBUG_SUBPAGE)
3369 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3370 mmio, len, addr, idx);
3371 #endif
3372
3373 section = &phys_sections[mmio->sub_section[idx]];
3374 addr += mmio->base;
3375 addr -= section->offset_within_address_space;
3376 addr += section->offset_within_region;
3377 return io_mem_read(section->mr->ram_addr, addr, len);
3378 }
3379
3380 static void subpage_write(void *opaque, target_phys_addr_t addr,
3381 uint64_t value, unsigned len)
3382 {
3383 subpage_t *mmio = opaque;
3384 unsigned int idx = SUBPAGE_IDX(addr);
3385 MemoryRegionSection *section;
3386 #if defined(DEBUG_SUBPAGE)
3387 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
3388 " idx %d value %"PRIx64"\n",
3389 __func__, mmio, len, addr, idx, value);
3390 #endif
3391
3392 section = &phys_sections[mmio->sub_section[idx]];
3393 addr += mmio->base;
3394 addr -= section->offset_within_address_space;
3395 addr += section->offset_within_region;
3396 io_mem_write(section->mr->ram_addr, addr, value, len);
3397 }
3398
3399 static const MemoryRegionOps subpage_ops = {
3400 .read = subpage_read,
3401 .write = subpage_write,
3402 .endianness = DEVICE_NATIVE_ENDIAN,
3403 };
3404
3405 static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
3406 unsigned size)
3407 {
3408 ram_addr_t raddr = addr;
3409 void *ptr = qemu_get_ram_ptr(raddr);
3410 switch (size) {
3411 case 1: return ldub_p(ptr);
3412 case 2: return lduw_p(ptr);
3413 case 4: return ldl_p(ptr);
3414 default: abort();
3415 }
3416 }
3417
3418 static void subpage_ram_write(void *opaque, target_phys_addr_t addr,
3419 uint64_t value, unsigned size)
3420 {
3421 ram_addr_t raddr = addr;
3422 void *ptr = qemu_get_ram_ptr(raddr);
3423 switch (size) {
3424 case 1: return stb_p(ptr, value);
3425 case 2: return stw_p(ptr, value);
3426 case 4: return stl_p(ptr, value);
3427 default: abort();
3428 }
3429 }
3430
3431 static const MemoryRegionOps subpage_ram_ops = {
3432 .read = subpage_ram_read,
3433 .write = subpage_ram_write,
3434 .endianness = DEVICE_NATIVE_ENDIAN,
3435 };
3436
3437 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3438 uint16_t section)
3439 {
3440 int idx, eidx;
3441
3442 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3443 return -1;
3444 idx = SUBPAGE_IDX(start);
3445 eidx = SUBPAGE_IDX(end);
3446 #if defined(DEBUG_SUBPAGE)
3447 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3448 mmio, start, end, idx, eidx, memory);
3449 #endif
3450 if (memory_region_is_ram(phys_sections[section].mr)) {
3451 MemoryRegionSection new_section = phys_sections[section];
3452 new_section.mr = &io_mem_subpage_ram;
3453 section = phys_section_add(&new_section);
3454 }
3455 for (; idx <= eidx; idx++) {
3456 mmio->sub_section[idx] = section;
3457 }
3458
3459 return 0;
3460 }
3461
3462 static subpage_t *subpage_init(target_phys_addr_t base)
3463 {
3464 subpage_t *mmio;
3465
3466 mmio = g_malloc0(sizeof(subpage_t));
3467
3468 mmio->base = base;
3469 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
3470 "subpage", TARGET_PAGE_SIZE);
3471 mmio->iomem.subpage = true;
3472 #if defined(DEBUG_SUBPAGE)
3473 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3474 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3475 #endif
3476 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
3477
3478 return mmio;
3479 }
3480
3481 static int get_free_io_mem_idx(void)
3482 {
3483 int i;
3484
3485 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3486 if (!io_mem_used[i]) {
3487 io_mem_used[i] = 1;
3488 return i;
3489 }
3490 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3491 return -1;
3492 }
3493
3494 /* mem_read and mem_write are arrays of functions containing the
3495 function to access byte (index 0), word (index 1) and dword (index
3496 2). Functions can be omitted with a NULL function pointer.
3497 If io_index is non zero, the corresponding io zone is
3498 modified. If it is zero, a new io zone is allocated. The return
3499 value can be used with cpu_register_physical_memory(). (-1) is
3500 returned if error. */
3501 static int cpu_register_io_memory_fixed(int io_index, MemoryRegion *mr)
3502 {
3503 if (io_index <= 0) {
3504 io_index = get_free_io_mem_idx();
3505 if (io_index == -1)
3506 return io_index;
3507 } else {
3508 if (io_index >= IO_MEM_NB_ENTRIES)
3509 return -1;
3510 }
3511
3512 io_mem_region[io_index] = mr;
3513
3514 return io_index;
3515 }
3516
3517 int cpu_register_io_memory(MemoryRegion *mr)
3518 {
3519 return cpu_register_io_memory_fixed(0, mr);
3520 }
3521
3522 void cpu_unregister_io_memory(int io_index)
3523 {
3524 io_mem_region[io_index] = NULL;
3525 io_mem_used[io_index] = 0;
3526 }
3527
3528 static uint16_t dummy_section(MemoryRegion *mr)
3529 {
3530 MemoryRegionSection section = {
3531 .mr = mr,
3532 .offset_within_address_space = 0,
3533 .offset_within_region = 0,
3534 .size = UINT64_MAX,
3535 };
3536
3537 return phys_section_add(&section);
3538 }
3539
3540 static void io_mem_init(void)
3541 {
3542 int i;
3543
3544 /* Must be first: */
3545 memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
3546 assert(io_mem_ram.ram_addr == 0);
3547 memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
3548 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
3549 "unassigned", UINT64_MAX);
3550 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
3551 "notdirty", UINT64_MAX);
3552 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
3553 "subpage-ram", UINT64_MAX);
3554 for (i=0; i<5; i++)
3555 io_mem_used[i] = 1;
3556
3557 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
3558 "watch", UINT64_MAX);
3559 }
3560
3561 static void core_begin(MemoryListener *listener)
3562 {
3563 destroy_all_mappings();
3564 phys_sections_clear();
3565 phys_map.u.node = PHYS_MAP_NODE_NIL;
3566 phys_section_unassigned = dummy_section(&io_mem_unassigned);
3567 }
3568
3569 static void core_commit(MemoryListener *listener)
3570 {
3571 CPUState *env;
3572
3573 /* since each CPU stores ram addresses in its TLB cache, we must
3574 reset the modified entries */
3575 /* XXX: slow ! */
3576 for(env = first_cpu; env != NULL; env = env->next_cpu) {
3577 tlb_flush(env, 1);
3578 }
3579 }
3580
3581 static void core_region_add(MemoryListener *listener,
3582 MemoryRegionSection *section)
3583 {
3584 cpu_register_physical_memory_log(section, section->readonly);
3585 }
3586
3587 static void core_region_del(MemoryListener *listener,
3588 MemoryRegionSection *section)
3589 {
3590 }
3591
3592 static void core_region_nop(MemoryListener *listener,
3593 MemoryRegionSection *section)
3594 {
3595 cpu_register_physical_memory_log(section, section->readonly);
3596 }
3597
3598 static void core_log_start(MemoryListener *listener,
3599 MemoryRegionSection *section)
3600 {
3601 }
3602
3603 static void core_log_stop(MemoryListener *listener,
3604 MemoryRegionSection *section)
3605 {
3606 }
3607
3608 static void core_log_sync(MemoryListener *listener,
3609 MemoryRegionSection *section)
3610 {
3611 }
3612
3613 static void core_log_global_start(MemoryListener *listener)
3614 {
3615 cpu_physical_memory_set_dirty_tracking(1);
3616 }
3617
3618 static void core_log_global_stop(MemoryListener *listener)
3619 {
3620 cpu_physical_memory_set_dirty_tracking(0);
3621 }
3622
3623 static void core_eventfd_add(MemoryListener *listener,
3624 MemoryRegionSection *section,
3625 bool match_data, uint64_t data, int fd)
3626 {
3627 }
3628
3629 static void core_eventfd_del(MemoryListener *listener,
3630 MemoryRegionSection *section,
3631 bool match_data, uint64_t data, int fd)
3632 {
3633 }
3634
3635 static void io_begin(MemoryListener *listener)
3636 {
3637 }
3638
3639 static void io_commit(MemoryListener *listener)
3640 {
3641 }
3642
3643 static void io_region_add(MemoryListener *listener,
3644 MemoryRegionSection *section)
3645 {
3646 iorange_init(&section->mr->iorange, &memory_region_iorange_ops,
3647 section->offset_within_address_space, section->size);
3648 ioport_register(&section->mr->iorange);
3649 }
3650
3651 static void io_region_del(MemoryListener *listener,
3652 MemoryRegionSection *section)
3653 {
3654 isa_unassign_ioport(section->offset_within_address_space, section->size);
3655 }
3656
3657 static void io_region_nop(MemoryListener *listener,
3658 MemoryRegionSection *section)
3659 {
3660 }
3661
3662 static void io_log_start(MemoryListener *listener,
3663 MemoryRegionSection *section)
3664 {
3665 }
3666
3667 static void io_log_stop(MemoryListener *listener,
3668 MemoryRegionSection *section)
3669 {
3670 }
3671
3672 static void io_log_sync(MemoryListener *listener,
3673 MemoryRegionSection *section)
3674 {
3675 }
3676
3677 static void io_log_global_start(MemoryListener *listener)
3678 {
3679 }
3680
3681 static void io_log_global_stop(MemoryListener *listener)
3682 {
3683 }
3684
3685 static void io_eventfd_add(MemoryListener *listener,
3686 MemoryRegionSection *section,
3687 bool match_data, uint64_t data, int fd)
3688 {
3689 }
3690
3691 static void io_eventfd_del(MemoryListener *listener,
3692 MemoryRegionSection *section,
3693 bool match_data, uint64_t data, int fd)
3694 {
3695 }
3696
3697 static MemoryListener core_memory_listener = {
3698 .begin = core_begin,
3699 .commit = core_commit,
3700 .region_add = core_region_add,
3701 .region_del = core_region_del,
3702 .region_nop = core_region_nop,
3703 .log_start = core_log_start,
3704 .log_stop = core_log_stop,
3705 .log_sync = core_log_sync,
3706 .log_global_start = core_log_global_start,
3707 .log_global_stop = core_log_global_stop,
3708 .eventfd_add = core_eventfd_add,
3709 .eventfd_del = core_eventfd_del,
3710 .priority = 0,
3711 };
3712
3713 static MemoryListener io_memory_listener = {
3714 .begin = io_begin,
3715 .commit = io_commit,
3716 .region_add = io_region_add,
3717 .region_del = io_region_del,
3718 .region_nop = io_region_nop,
3719 .log_start = io_log_start,
3720 .log_stop = io_log_stop,
3721 .log_sync = io_log_sync,
3722 .log_global_start = io_log_global_start,
3723 .log_global_stop = io_log_global_stop,
3724 .eventfd_add = io_eventfd_add,
3725 .eventfd_del = io_eventfd_del,
3726 .priority = 0,
3727 };
3728
3729 static void memory_map_init(void)
3730 {
3731 system_memory = g_malloc(sizeof(*system_memory));
3732 memory_region_init(system_memory, "system", INT64_MAX);
3733 set_system_memory_map(system_memory);
3734
3735 system_io = g_malloc(sizeof(*system_io));
3736 memory_region_init(system_io, "io", 65536);
3737 set_system_io_map(system_io);
3738
3739 memory_listener_register(&core_memory_listener, system_memory);
3740 memory_listener_register(&io_memory_listener, system_io);
3741 }
3742
3743 MemoryRegion *get_system_memory(void)
3744 {
3745 return system_memory;
3746 }
3747
3748 MemoryRegion *get_system_io(void)
3749 {
3750 return system_io;
3751 }
3752
3753 #endif /* !defined(CONFIG_USER_ONLY) */
3754
3755 /* physical memory access (slow version, mainly for debug) */
3756 #if defined(CONFIG_USER_ONLY)
3757 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3758 uint8_t *buf, int len, int is_write)
3759 {
3760 int l, flags;
3761 target_ulong page;
3762 void * p;
3763
3764 while (len > 0) {
3765 page = addr & TARGET_PAGE_MASK;
3766 l = (page + TARGET_PAGE_SIZE) - addr;
3767 if (l > len)
3768 l = len;
3769 flags = page_get_flags(page);
3770 if (!(flags & PAGE_VALID))
3771 return -1;
3772 if (is_write) {
3773 if (!(flags & PAGE_WRITE))
3774 return -1;
3775 /* XXX: this code should not depend on lock_user */
3776 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3777 return -1;
3778 memcpy(p, buf, l);
3779 unlock_user(p, addr, l);
3780 } else {
3781 if (!(flags & PAGE_READ))
3782 return -1;
3783 /* XXX: this code should not depend on lock_user */
3784 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3785 return -1;
3786 memcpy(buf, p, l);
3787 unlock_user(p, addr, 0);
3788 }
3789 len -= l;
3790 buf += l;
3791 addr += l;
3792 }
3793 return 0;
3794 }
3795
3796 #else
3797 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3798 int len, int is_write)
3799 {
3800 int l, io_index;
3801 uint8_t *ptr;
3802 uint32_t val;
3803 target_phys_addr_t page;
3804 MemoryRegionSection section;
3805
3806 while (len > 0) {
3807 page = addr & TARGET_PAGE_MASK;
3808 l = (page + TARGET_PAGE_SIZE) - addr;
3809 if (l > len)
3810 l = len;
3811 section = phys_page_find(page >> TARGET_PAGE_BITS);
3812
3813 if (is_write) {
3814 if (!memory_region_is_ram(section.mr)) {
3815 target_phys_addr_t addr1;
3816 io_index = memory_region_get_ram_addr(section.mr)
3817 & (IO_MEM_NB_ENTRIES - 1);
3818 addr1 = (addr & ~TARGET_PAGE_MASK)
3819 + section.offset_within_region;
3820 /* XXX: could force cpu_single_env to NULL to avoid
3821 potential bugs */
3822 if (l >= 4 && ((addr1 & 3) == 0)) {
3823 /* 32 bit write access */
3824 val = ldl_p(buf);
3825 io_mem_write(io_index, addr1, val, 4);
3826 l = 4;
3827 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3828 /* 16 bit write access */
3829 val = lduw_p(buf);
3830 io_mem_write(io_index, addr1, val, 2);
3831 l = 2;
3832 } else {
3833 /* 8 bit write access */
3834 val = ldub_p(buf);
3835 io_mem_write(io_index, addr1, val, 1);
3836 l = 1;
3837 }
3838 } else if (!section.readonly) {
3839 ram_addr_t addr1;
3840 addr1 = (memory_region_get_ram_addr(section.mr)
3841 + section.offset_within_region)
3842 | (addr & ~TARGET_PAGE_MASK);
3843 /* RAM case */
3844 ptr = qemu_get_ram_ptr(addr1);
3845 memcpy(ptr, buf, l);
3846 if (!cpu_physical_memory_is_dirty(addr1)) {
3847 /* invalidate code */
3848 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3849 /* set dirty bit */
3850 cpu_physical_memory_set_dirty_flags(
3851 addr1, (0xff & ~CODE_DIRTY_FLAG));
3852 }
3853 qemu_put_ram_ptr(ptr);
3854 }
3855 } else {
3856 if (!is_ram_rom_romd(&section)) {
3857 target_phys_addr_t addr1;
3858 /* I/O case */
3859 io_index = memory_region_get_ram_addr(section.mr)
3860 & (IO_MEM_NB_ENTRIES - 1);
3861 addr1 = (addr & ~TARGET_PAGE_MASK)
3862 + section.offset_within_region;
3863 if (l >= 4 && ((addr1 & 3) == 0)) {
3864 /* 32 bit read access */
3865 val = io_mem_read(io_index, addr1, 4);
3866 stl_p(buf, val);
3867 l = 4;
3868 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3869 /* 16 bit read access */
3870 val = io_mem_read(io_index, addr1, 2);
3871 stw_p(buf, val);
3872 l = 2;
3873 } else {
3874 /* 8 bit read access */
3875 val = io_mem_read(io_index, addr1, 1);
3876 stb_p(buf, val);
3877 l = 1;
3878 }
3879 } else {
3880 /* RAM case */
3881 ptr = qemu_get_ram_ptr(section.mr->ram_addr
3882 + section.offset_within_region);
3883 memcpy(buf, ptr + (addr & ~TARGET_PAGE_MASK), l);
3884 qemu_put_ram_ptr(ptr);
3885 }
3886 }
3887 len -= l;
3888 buf += l;
3889 addr += l;
3890 }
3891 }
3892
3893 /* used for ROM loading : can write in RAM and ROM */
3894 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3895 const uint8_t *buf, int len)
3896 {
3897 int l;
3898 uint8_t *ptr;
3899 target_phys_addr_t page;
3900 MemoryRegionSection section;
3901
3902 while (len > 0) {
3903 page = addr & TARGET_PAGE_MASK;
3904 l = (page + TARGET_PAGE_SIZE) - addr;
3905 if (l > len)
3906 l = len;
3907 section = phys_page_find(page >> TARGET_PAGE_BITS);
3908
3909 if (!is_ram_rom_romd(&section)) {
3910 /* do nothing */
3911 } else {
3912 unsigned long addr1;
3913 addr1 = (memory_region_get_ram_addr(section.mr)
3914 + section.offset_within_region)
3915 + (addr & ~TARGET_PAGE_MASK);
3916 /* ROM/RAM case */
3917 ptr = qemu_get_ram_ptr(addr1);
3918 memcpy(ptr, buf, l);
3919 qemu_put_ram_ptr(ptr);
3920 }
3921 len -= l;
3922 buf += l;
3923 addr += l;
3924 }
3925 }
3926
3927 typedef struct {
3928 void *buffer;
3929 target_phys_addr_t addr;
3930 target_phys_addr_t len;
3931 } BounceBuffer;
3932
3933 static BounceBuffer bounce;
3934
3935 typedef struct MapClient {
3936 void *opaque;
3937 void (*callback)(void *opaque);
3938 QLIST_ENTRY(MapClient) link;
3939 } MapClient;
3940
3941 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3942 = QLIST_HEAD_INITIALIZER(map_client_list);
3943
3944 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3945 {
3946 MapClient *client = g_malloc(sizeof(*client));
3947
3948 client->opaque = opaque;
3949 client->callback = callback;
3950 QLIST_INSERT_HEAD(&map_client_list, client, link);
3951 return client;
3952 }
3953
3954 void cpu_unregister_map_client(void *_client)
3955 {
3956 MapClient *client = (MapClient *)_client;
3957
3958 QLIST_REMOVE(client, link);
3959 g_free(client);
3960 }
3961
3962 static void cpu_notify_map_clients(void)
3963 {
3964 MapClient *client;
3965
3966 while (!QLIST_EMPTY(&map_client_list)) {
3967 client = QLIST_FIRST(&map_client_list);
3968 client->callback(client->opaque);
3969 cpu_unregister_map_client(client);
3970 }
3971 }
3972
3973 /* Map a physical memory region into a host virtual address.
3974 * May map a subset of the requested range, given by and returned in *plen.
3975 * May return NULL if resources needed to perform the mapping are exhausted.
3976 * Use only for reads OR writes - not for read-modify-write operations.
3977 * Use cpu_register_map_client() to know when retrying the map operation is
3978 * likely to succeed.
3979 */
3980 void *cpu_physical_memory_map(target_phys_addr_t addr,
3981 target_phys_addr_t *plen,
3982 int is_write)
3983 {
3984 target_phys_addr_t len = *plen;
3985 target_phys_addr_t todo = 0;
3986 int l;
3987 target_phys_addr_t page;
3988 MemoryRegionSection section;
3989 ram_addr_t raddr = RAM_ADDR_MAX;
3990 ram_addr_t rlen;
3991 void *ret;
3992
3993 while (len > 0) {
3994 page = addr & TARGET_PAGE_MASK;
3995 l = (page + TARGET_PAGE_SIZE) - addr;
3996 if (l > len)
3997 l = len;
3998 section = phys_page_find(page >> TARGET_PAGE_BITS);
3999
4000 if (!(memory_region_is_ram(section.mr) && !section.readonly)) {
4001 if (todo || bounce.buffer) {
4002 break;
4003 }
4004 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
4005 bounce.addr = addr;
4006 bounce.len = l;
4007 if (!is_write) {
4008 cpu_physical_memory_read(addr, bounce.buffer, l);
4009 }
4010
4011 *plen = l;
4012 return bounce.buffer;
4013 }
4014 if (!todo) {
4015 raddr = memory_region_get_ram_addr(section.mr)
4016 + section.offset_within_region
4017 + (addr & ~TARGET_PAGE_MASK);
4018 }
4019
4020 len -= l;
4021 addr += l;
4022 todo += l;
4023 }
4024 rlen = todo;
4025 ret = qemu_ram_ptr_length(raddr, &rlen);
4026 *plen = rlen;
4027 return ret;
4028 }
4029
4030 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
4031 * Will also mark the memory as dirty if is_write == 1. access_len gives
4032 * the amount of memory that was actually read or written by the caller.
4033 */
4034 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
4035 int is_write, target_phys_addr_t access_len)
4036 {
4037 if (buffer != bounce.buffer) {
4038 if (is_write) {
4039 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
4040 while (access_len) {
4041 unsigned l;
4042 l = TARGET_PAGE_SIZE;
4043 if (l > access_len)
4044 l = access_len;
4045 if (!cpu_physical_memory_is_dirty(addr1)) {
4046 /* invalidate code */
4047 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4048 /* set dirty bit */
4049 cpu_physical_memory_set_dirty_flags(
4050 addr1, (0xff & ~CODE_DIRTY_FLAG));
4051 }
4052 addr1 += l;
4053 access_len -= l;
4054 }
4055 }
4056 if (xen_enabled()) {
4057 xen_invalidate_map_cache_entry(buffer);
4058 }
4059 return;
4060 }
4061 if (is_write) {
4062 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
4063 }
4064 qemu_vfree(bounce.buffer);
4065 bounce.buffer = NULL;
4066 cpu_notify_map_clients();
4067 }
4068
4069 /* warning: addr must be aligned */
4070 static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
4071 enum device_endian endian)
4072 {
4073 int io_index;
4074 uint8_t *ptr;
4075 uint32_t val;
4076 MemoryRegionSection section;
4077
4078 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4079
4080 if (!is_ram_rom_romd(&section)) {
4081 /* I/O case */
4082 io_index = memory_region_get_ram_addr(section.mr)
4083 & (IO_MEM_NB_ENTRIES - 1);
4084 addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
4085 val = io_mem_read(io_index, addr, 4);
4086 #if defined(TARGET_WORDS_BIGENDIAN)
4087 if (endian == DEVICE_LITTLE_ENDIAN) {
4088 val = bswap32(val);
4089 }
4090 #else
4091 if (endian == DEVICE_BIG_ENDIAN) {
4092 val = bswap32(val);
4093 }
4094 #endif
4095 } else {
4096 /* RAM case */
4097 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section.mr)
4098 & TARGET_PAGE_MASK)
4099 + section.offset_within_region) +
4100 (addr & ~TARGET_PAGE_MASK);
4101 switch (endian) {
4102 case DEVICE_LITTLE_ENDIAN:
4103 val = ldl_le_p(ptr);
4104 break;
4105 case DEVICE_BIG_ENDIAN:
4106 val = ldl_be_p(ptr);
4107 break;
4108 default:
4109 val = ldl_p(ptr);
4110 break;
4111 }
4112 }
4113 return val;
4114 }
4115
4116 uint32_t ldl_phys(target_phys_addr_t addr)
4117 {
4118 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4119 }
4120
4121 uint32_t ldl_le_phys(target_phys_addr_t addr)
4122 {
4123 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4124 }
4125
4126 uint32_t ldl_be_phys(target_phys_addr_t addr)
4127 {
4128 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
4129 }
4130
4131 /* warning: addr must be aligned */
4132 static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
4133 enum device_endian endian)
4134 {
4135 int io_index;
4136 uint8_t *ptr;
4137 uint64_t val;
4138 MemoryRegionSection section;
4139
4140 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4141
4142 if (!is_ram_rom_romd(&section)) {
4143 /* I/O case */
4144 io_index = memory_region_get_ram_addr(section.mr)
4145 & (IO_MEM_NB_ENTRIES - 1);
4146 addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
4147
4148 /* XXX This is broken when device endian != cpu endian.
4149 Fix and add "endian" variable check */
4150 #ifdef TARGET_WORDS_BIGENDIAN
4151 val = io_mem_read(io_index, addr, 4) << 32;
4152 val |= io_mem_read(io_index, addr + 4, 4);
4153 #else
4154 val = io_mem_read(io_index, addr, 4);
4155 val |= io_mem_read(io_index, addr + 4, 4) << 32;
4156 #endif
4157 } else {
4158 /* RAM case */
4159 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section.mr)
4160 & TARGET_PAGE_MASK)
4161 + section.offset_within_region)
4162 + (addr & ~TARGET_PAGE_MASK);
4163 switch (endian) {
4164 case DEVICE_LITTLE_ENDIAN:
4165 val = ldq_le_p(ptr);
4166 break;
4167 case DEVICE_BIG_ENDIAN:
4168 val = ldq_be_p(ptr);
4169 break;
4170 default:
4171 val = ldq_p(ptr);
4172 break;
4173 }
4174 }
4175 return val;
4176 }
4177
4178 uint64_t ldq_phys(target_phys_addr_t addr)
4179 {
4180 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4181 }
4182
4183 uint64_t ldq_le_phys(target_phys_addr_t addr)
4184 {
4185 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4186 }
4187
4188 uint64_t ldq_be_phys(target_phys_addr_t addr)
4189 {
4190 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
4191 }
4192
4193 /* XXX: optimize */
4194 uint32_t ldub_phys(target_phys_addr_t addr)
4195 {
4196 uint8_t val;
4197 cpu_physical_memory_read(addr, &val, 1);
4198 return val;
4199 }
4200
4201 /* warning: addr must be aligned */
4202 static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
4203 enum device_endian endian)
4204 {
4205 int io_index;
4206 uint8_t *ptr;
4207 uint64_t val;
4208 MemoryRegionSection section;
4209
4210 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4211
4212 if (!is_ram_rom_romd(&section)) {
4213 /* I/O case */
4214 io_index = memory_region_get_ram_addr(section.mr)
4215 & (IO_MEM_NB_ENTRIES - 1);
4216 addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
4217 val = io_mem_read(io_index, addr, 2);
4218 #if defined(TARGET_WORDS_BIGENDIAN)
4219 if (endian == DEVICE_LITTLE_ENDIAN) {
4220 val = bswap16(val);
4221 }
4222 #else
4223 if (endian == DEVICE_BIG_ENDIAN) {
4224 val = bswap16(val);
4225 }
4226 #endif
4227 } else {
4228 /* RAM case */
4229 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section.mr)
4230 & TARGET_PAGE_MASK)
4231 + section.offset_within_region)
4232 + (addr & ~TARGET_PAGE_MASK);
4233 switch (endian) {
4234 case DEVICE_LITTLE_ENDIAN:
4235 val = lduw_le_p(ptr);
4236 break;
4237 case DEVICE_BIG_ENDIAN:
4238 val = lduw_be_p(ptr);
4239 break;
4240 default:
4241 val = lduw_p(ptr);
4242 break;
4243 }
4244 }
4245 return val;
4246 }
4247
4248 uint32_t lduw_phys(target_phys_addr_t addr)
4249 {
4250 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4251 }
4252
4253 uint32_t lduw_le_phys(target_phys_addr_t addr)
4254 {
4255 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4256 }
4257
4258 uint32_t lduw_be_phys(target_phys_addr_t addr)
4259 {
4260 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
4261 }
4262
4263 /* warning: addr must be aligned. The ram page is not masked as dirty
4264 and the code inside is not invalidated. It is useful if the dirty
4265 bits are used to track modified PTEs */
4266 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
4267 {
4268 int io_index;
4269 uint8_t *ptr;
4270 MemoryRegionSection section;
4271
4272 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4273
4274 if (!memory_region_is_ram(section.mr) || section.readonly) {
4275 if (memory_region_is_ram(section.mr)) {
4276 io_index = io_mem_rom.ram_addr;
4277 } else {
4278 io_index = memory_region_get_ram_addr(section.mr);
4279 }
4280 addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
4281 io_mem_write(io_index, addr, val, 4);
4282 } else {
4283 unsigned long addr1 = (memory_region_get_ram_addr(section.mr)
4284 & TARGET_PAGE_MASK)
4285 + section.offset_within_region
4286 + (addr & ~TARGET_PAGE_MASK);
4287 ptr = qemu_get_ram_ptr(addr1);
4288 stl_p(ptr, val);
4289
4290 if (unlikely(in_migration)) {
4291 if (!cpu_physical_memory_is_dirty(addr1)) {
4292 /* invalidate code */
4293 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4294 /* set dirty bit */
4295 cpu_physical_memory_set_dirty_flags(
4296 addr1, (0xff & ~CODE_DIRTY_FLAG));
4297 }
4298 }
4299 }
4300 }
4301
4302 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
4303 {
4304 int io_index;
4305 uint8_t *ptr;
4306 MemoryRegionSection section;
4307
4308 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4309
4310 if (!memory_region_is_ram(section.mr) || section.readonly) {
4311 if (memory_region_is_ram(section.mr)) {
4312 io_index = io_mem_rom.ram_addr;
4313 } else {
4314 io_index = memory_region_get_ram_addr(section.mr)
4315 & (IO_MEM_NB_ENTRIES - 1);
4316 }
4317 addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
4318 #ifdef TARGET_WORDS_BIGENDIAN
4319 io_mem_write(io_index, addr, val >> 32, 4);
4320 io_mem_write(io_index, addr + 4, (uint32_t)val, 4);
4321 #else
4322 io_mem_write(io_index, addr, (uint32_t)val, 4);
4323 io_mem_write(io_index, addr + 4, val >> 32, 4);
4324 #endif
4325 } else {
4326 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section.mr)
4327 & TARGET_PAGE_MASK)
4328 + section.offset_within_region)
4329 + (addr & ~TARGET_PAGE_MASK);
4330 stq_p(ptr, val);
4331 }
4332 }
4333
4334 /* warning: addr must be aligned */
4335 static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
4336 enum device_endian endian)
4337 {
4338 int io_index;
4339 uint8_t *ptr;
4340 MemoryRegionSection section;
4341
4342 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4343
4344 if (!memory_region_is_ram(section.mr) || section.readonly) {
4345 if (memory_region_is_ram(section.mr)) {
4346 io_index = io_mem_rom.ram_addr;
4347 } else {
4348 io_index = memory_region_get_ram_addr(section.mr)
4349 & (IO_MEM_NB_ENTRIES - 1);
4350 }
4351 addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
4352 #if defined(TARGET_WORDS_BIGENDIAN)
4353 if (endian == DEVICE_LITTLE_ENDIAN) {
4354 val = bswap32(val);
4355 }
4356 #else
4357 if (endian == DEVICE_BIG_ENDIAN) {
4358 val = bswap32(val);
4359 }
4360 #endif
4361 io_mem_write(io_index, addr, val, 4);
4362 } else {
4363 unsigned long addr1;
4364 addr1 = (memory_region_get_ram_addr(section.mr) & TARGET_PAGE_MASK)
4365 + section.offset_within_region
4366 + (addr & ~TARGET_PAGE_MASK);
4367 /* RAM case */
4368 ptr = qemu_get_ram_ptr(addr1);
4369 switch (endian) {
4370 case DEVICE_LITTLE_ENDIAN:
4371 stl_le_p(ptr, val);
4372 break;
4373 case DEVICE_BIG_ENDIAN:
4374 stl_be_p(ptr, val);
4375 break;
4376 default:
4377 stl_p(ptr, val);
4378 break;
4379 }
4380 if (!cpu_physical_memory_is_dirty(addr1)) {
4381 /* invalidate code */
4382 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4383 /* set dirty bit */
4384 cpu_physical_memory_set_dirty_flags(addr1,
4385 (0xff & ~CODE_DIRTY_FLAG));
4386 }
4387 }
4388 }
4389
4390 void stl_phys(target_phys_addr_t addr, uint32_t val)
4391 {
4392 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4393 }
4394
4395 void stl_le_phys(target_phys_addr_t addr, uint32_t val)
4396 {
4397 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4398 }
4399
4400 void stl_be_phys(target_phys_addr_t addr, uint32_t val)
4401 {
4402 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4403 }
4404
4405 /* XXX: optimize */
4406 void stb_phys(target_phys_addr_t addr, uint32_t val)
4407 {
4408 uint8_t v = val;
4409 cpu_physical_memory_write(addr, &v, 1);
4410 }
4411
4412 /* warning: addr must be aligned */
4413 static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
4414 enum device_endian endian)
4415 {
4416 int io_index;
4417 uint8_t *ptr;
4418 MemoryRegionSection section;
4419
4420 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4421
4422 if (!memory_region_is_ram(section.mr) || section.readonly) {
4423 if (memory_region_is_ram(section.mr)) {
4424 io_index = io_mem_rom.ram_addr;
4425 } else {
4426 io_index = memory_region_get_ram_addr(section.mr)
4427 & (IO_MEM_NB_ENTRIES - 1);
4428 }
4429 addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
4430 #if defined(TARGET_WORDS_BIGENDIAN)
4431 if (endian == DEVICE_LITTLE_ENDIAN) {
4432 val = bswap16(val);
4433 }
4434 #else
4435 if (endian == DEVICE_BIG_ENDIAN) {
4436 val = bswap16(val);
4437 }
4438 #endif
4439 io_mem_write(io_index, addr, val, 2);
4440 } else {
4441 unsigned long addr1;
4442 addr1 = (memory_region_get_ram_addr(section.mr) & TARGET_PAGE_MASK)
4443 + section.offset_within_region + (addr & ~TARGET_PAGE_MASK);
4444 /* RAM case */
4445 ptr = qemu_get_ram_ptr(addr1);
4446 switch (endian) {
4447 case DEVICE_LITTLE_ENDIAN:
4448 stw_le_p(ptr, val);
4449 break;
4450 case DEVICE_BIG_ENDIAN:
4451 stw_be_p(ptr, val);
4452 break;
4453 default:
4454 stw_p(ptr, val);
4455 break;
4456 }
4457 if (!cpu_physical_memory_is_dirty(addr1)) {
4458 /* invalidate code */
4459 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4460 /* set dirty bit */
4461 cpu_physical_memory_set_dirty_flags(addr1,
4462 (0xff & ~CODE_DIRTY_FLAG));
4463 }
4464 }
4465 }
4466
4467 void stw_phys(target_phys_addr_t addr, uint32_t val)
4468 {
4469 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4470 }
4471
4472 void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4473 {
4474 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4475 }
4476
4477 void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4478 {
4479 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4480 }
4481
4482 /* XXX: optimize */
4483 void stq_phys(target_phys_addr_t addr, uint64_t val)
4484 {
4485 val = tswap64(val);
4486 cpu_physical_memory_write(addr, &val, 8);
4487 }
4488
4489 void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4490 {
4491 val = cpu_to_le64(val);
4492 cpu_physical_memory_write(addr, &val, 8);
4493 }
4494
4495 void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4496 {
4497 val = cpu_to_be64(val);
4498 cpu_physical_memory_write(addr, &val, 8);
4499 }
4500
4501 /* virtual memory access for debug (includes writing to ROM) */
4502 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
4503 uint8_t *buf, int len, int is_write)
4504 {
4505 int l;
4506 target_phys_addr_t phys_addr;
4507 target_ulong page;
4508
4509 while (len > 0) {
4510 page = addr & TARGET_PAGE_MASK;
4511 phys_addr = cpu_get_phys_page_debug(env, page);
4512 /* if no physical page mapped, return an error */
4513 if (phys_addr == -1)
4514 return -1;
4515 l = (page + TARGET_PAGE_SIZE) - addr;
4516 if (l > len)
4517 l = len;
4518 phys_addr += (addr & ~TARGET_PAGE_MASK);
4519 if (is_write)
4520 cpu_physical_memory_write_rom(phys_addr, buf, l);
4521 else
4522 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4523 len -= l;
4524 buf += l;
4525 addr += l;
4526 }
4527 return 0;
4528 }
4529 #endif
4530
4531 /* in deterministic execution mode, instructions doing device I/Os
4532 must be at the end of the TB */
4533 void cpu_io_recompile(CPUState *env, void *retaddr)
4534 {
4535 TranslationBlock *tb;
4536 uint32_t n, cflags;
4537 target_ulong pc, cs_base;
4538 uint64_t flags;
4539
4540 tb = tb_find_pc((unsigned long)retaddr);
4541 if (!tb) {
4542 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4543 retaddr);
4544 }
4545 n = env->icount_decr.u16.low + tb->icount;
4546 cpu_restore_state(tb, env, (unsigned long)retaddr);
4547 /* Calculate how many instructions had been executed before the fault
4548 occurred. */
4549 n = n - env->icount_decr.u16.low;
4550 /* Generate a new TB ending on the I/O insn. */
4551 n++;
4552 /* On MIPS and SH, delay slot instructions can only be restarted if
4553 they were already the first instruction in the TB. If this is not
4554 the first instruction in a TB then re-execute the preceding
4555 branch. */
4556 #if defined(TARGET_MIPS)
4557 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4558 env->active_tc.PC -= 4;
4559 env->icount_decr.u16.low++;
4560 env->hflags &= ~MIPS_HFLAG_BMASK;
4561 }
4562 #elif defined(TARGET_SH4)
4563 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4564 && n > 1) {
4565 env->pc -= 2;
4566 env->icount_decr.u16.low++;
4567 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4568 }
4569 #endif
4570 /* This should never happen. */
4571 if (n > CF_COUNT_MASK)
4572 cpu_abort(env, "TB too big during recompile");
4573
4574 cflags = n | CF_LAST_IO;
4575 pc = tb->pc;
4576 cs_base = tb->cs_base;
4577 flags = tb->flags;
4578 tb_phys_invalidate(tb, -1);
4579 /* FIXME: In theory this could raise an exception. In practice
4580 we have already translated the block once so it's probably ok. */
4581 tb_gen_code(env, pc, cs_base, flags, cflags);
4582 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4583 the first in the TB) then we end up generating a whole new TB and
4584 repeating the fault, which is horribly inefficient.
4585 Better would be to execute just this insn uncached, or generate a
4586 second new TB. */
4587 cpu_resume_from_signal(env, NULL);
4588 }
4589
4590 #if !defined(CONFIG_USER_ONLY)
4591
4592 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4593 {
4594 int i, target_code_size, max_target_code_size;
4595 int direct_jmp_count, direct_jmp2_count, cross_page;
4596 TranslationBlock *tb;
4597
4598 target_code_size = 0;
4599 max_target_code_size = 0;
4600 cross_page = 0;
4601 direct_jmp_count = 0;
4602 direct_jmp2_count = 0;
4603 for(i = 0; i < nb_tbs; i++) {
4604 tb = &tbs[i];
4605 target_code_size += tb->size;
4606 if (tb->size > max_target_code_size)
4607 max_target_code_size = tb->size;
4608 if (tb->page_addr[1] != -1)
4609 cross_page++;
4610 if (tb->tb_next_offset[0] != 0xffff) {
4611 direct_jmp_count++;
4612 if (tb->tb_next_offset[1] != 0xffff) {
4613 direct_jmp2_count++;
4614 }
4615 }
4616 }
4617 /* XXX: avoid using doubles ? */
4618 cpu_fprintf(f, "Translation buffer state:\n");
4619 cpu_fprintf(f, "gen code size %td/%ld\n",
4620 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4621 cpu_fprintf(f, "TB count %d/%d\n",
4622 nb_tbs, code_gen_max_blocks);
4623 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4624 nb_tbs ? target_code_size / nb_tbs : 0,
4625 max_target_code_size);
4626 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4627 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4628 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4629 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4630 cross_page,
4631 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4632 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4633 direct_jmp_count,
4634 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4635 direct_jmp2_count,
4636 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4637 cpu_fprintf(f, "\nStatistics:\n");
4638 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4639 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4640 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4641 tcg_dump_info(f, cpu_fprintf);
4642 }
4643
4644 /* NOTE: this function can trigger an exception */
4645 /* NOTE2: the returned address is not exactly the physical address: it
4646 is the offset relative to phys_ram_base */
4647 tb_page_addr_t get_page_addr_code(CPUState *env1, target_ulong addr)
4648 {
4649 int mmu_idx, page_index, pd;
4650 void *p;
4651
4652 page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
4653 mmu_idx = cpu_mmu_index(env1);
4654 if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
4655 (addr & TARGET_PAGE_MASK))) {
4656 ldub_code(addr);
4657 }
4658 pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK;
4659 if (pd != io_mem_ram.ram_addr && pd != io_mem_rom.ram_addr
4660 && !io_mem_region[pd]->rom_device) {
4661 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC)
4662 cpu_unassigned_access(env1, addr, 0, 1, 0, 4);
4663 #else
4664 cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
4665 #endif
4666 }
4667 p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
4668 return qemu_ram_addr_from_host_nofail(p);
4669 }
4670
4671 /*
4672 * A helper function for the _utterly broken_ virtio device model to find out if
4673 * it's running on a big endian machine. Don't do this at home kids!
4674 */
4675 bool virtio_is_big_endian(void);
4676 bool virtio_is_big_endian(void)
4677 {
4678 #if defined(TARGET_WORDS_BIGENDIAN)
4679 return true;
4680 #else
4681 return false;
4682 #endif
4683 }
4684
4685 #define MMUSUFFIX _cmmu
4686 #undef GETPC
4687 #define GETPC() NULL
4688 #define env cpu_single_env
4689 #define SOFTMMU_CODE_ACCESS
4690
4691 #define SHIFT 0
4692 #include "softmmu_template.h"
4693
4694 #define SHIFT 1
4695 #include "softmmu_template.h"
4696
4697 #define SHIFT 2
4698 #include "softmmu_template.h"
4699
4700 #define SHIFT 3
4701 #include "softmmu_template.h"
4702
4703 #undef env
4704
4705 #endif