]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
exec: Factor out core logic of check_watchpoint()
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "qemu/timer.h"
39 #include "qemu/config-file.h"
40 #include "qemu/error-report.h"
41 #include "qemu/qemu-print.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include "qemu.h"
44 #else /* !CONFIG_USER_ONLY */
45 #include "exec/memory.h"
46 #include "exec/ioport.h"
47 #include "sysemu/dma.h"
48 #include "sysemu/hostmem.h"
49 #include "sysemu/hw_accel.h"
50 #include "exec/address-spaces.h"
51 #include "sysemu/xen-mapcache.h"
52 #include "trace-root.h"
53
54 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
55 #include <linux/falloc.h>
56 #endif
57
58 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
63
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
67
68 #include "migration/vmstate.h"
69
70 #include "qemu/range.h"
71 #ifndef _WIN32
72 #include "qemu/mmap-alloc.h"
73 #endif
74
75 #include "monitor/monitor.h"
76
77 //#define DEBUG_SUBPAGE
78
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
83 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
84
85 static MemoryRegion *system_memory;
86 static MemoryRegion *system_io;
87
88 AddressSpace address_space_io;
89 AddressSpace address_space_memory;
90
91 MemoryRegion io_mem_rom, io_mem_notdirty;
92 static MemoryRegion io_mem_unassigned;
93 #endif
94
95 #ifdef TARGET_PAGE_BITS_VARY
96 int target_page_bits;
97 bool target_page_bits_decided;
98 #endif
99
100 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
101
102 /* current CPU in the current thread. It is only valid inside
103 cpu_exec() */
104 __thread CPUState *current_cpu;
105 /* 0 = Do not count executed instructions.
106 1 = Precise instruction counting.
107 2 = Adaptive rate instruction counting. */
108 int use_icount;
109
110 uintptr_t qemu_host_page_size;
111 intptr_t qemu_host_page_mask;
112
113 bool set_preferred_target_page_bits(int bits)
114 {
115 /* The target page size is the lowest common denominator for all
116 * the CPUs in the system, so we can only make it smaller, never
117 * larger. And we can't make it smaller once we've committed to
118 * a particular size.
119 */
120 #ifdef TARGET_PAGE_BITS_VARY
121 assert(bits >= TARGET_PAGE_BITS_MIN);
122 if (target_page_bits == 0 || target_page_bits > bits) {
123 if (target_page_bits_decided) {
124 return false;
125 }
126 target_page_bits = bits;
127 }
128 #endif
129 return true;
130 }
131
132 #if !defined(CONFIG_USER_ONLY)
133
134 static void finalize_target_page_bits(void)
135 {
136 #ifdef TARGET_PAGE_BITS_VARY
137 if (target_page_bits == 0) {
138 target_page_bits = TARGET_PAGE_BITS_MIN;
139 }
140 target_page_bits_decided = true;
141 #endif
142 }
143
144 typedef struct PhysPageEntry PhysPageEntry;
145
146 struct PhysPageEntry {
147 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
148 uint32_t skip : 6;
149 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
150 uint32_t ptr : 26;
151 };
152
153 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
154
155 /* Size of the L2 (and L3, etc) page tables. */
156 #define ADDR_SPACE_BITS 64
157
158 #define P_L2_BITS 9
159 #define P_L2_SIZE (1 << P_L2_BITS)
160
161 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
162
163 typedef PhysPageEntry Node[P_L2_SIZE];
164
165 typedef struct PhysPageMap {
166 struct rcu_head rcu;
167
168 unsigned sections_nb;
169 unsigned sections_nb_alloc;
170 unsigned nodes_nb;
171 unsigned nodes_nb_alloc;
172 Node *nodes;
173 MemoryRegionSection *sections;
174 } PhysPageMap;
175
176 struct AddressSpaceDispatch {
177 MemoryRegionSection *mru_section;
178 /* This is a multi-level map on the physical address space.
179 * The bottom level has pointers to MemoryRegionSections.
180 */
181 PhysPageEntry phys_map;
182 PhysPageMap map;
183 };
184
185 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
186 typedef struct subpage_t {
187 MemoryRegion iomem;
188 FlatView *fv;
189 hwaddr base;
190 uint16_t sub_section[];
191 } subpage_t;
192
193 #define PHYS_SECTION_UNASSIGNED 0
194 #define PHYS_SECTION_NOTDIRTY 1
195 #define PHYS_SECTION_ROM 2
196 #define PHYS_SECTION_WATCH 3
197
198 static void io_mem_init(void);
199 static void memory_map_init(void);
200 static void tcg_log_global_after_sync(MemoryListener *listener);
201 static void tcg_commit(MemoryListener *listener);
202
203 static MemoryRegion io_mem_watch;
204
205 /**
206 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
207 * @cpu: the CPU whose AddressSpace this is
208 * @as: the AddressSpace itself
209 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
210 * @tcg_as_listener: listener for tracking changes to the AddressSpace
211 */
212 struct CPUAddressSpace {
213 CPUState *cpu;
214 AddressSpace *as;
215 struct AddressSpaceDispatch *memory_dispatch;
216 MemoryListener tcg_as_listener;
217 };
218
219 struct DirtyBitmapSnapshot {
220 ram_addr_t start;
221 ram_addr_t end;
222 unsigned long dirty[];
223 };
224
225 #endif
226
227 #if !defined(CONFIG_USER_ONLY)
228
229 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
230 {
231 static unsigned alloc_hint = 16;
232 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
233 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
234 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
235 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
236 alloc_hint = map->nodes_nb_alloc;
237 }
238 }
239
240 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
241 {
242 unsigned i;
243 uint32_t ret;
244 PhysPageEntry e;
245 PhysPageEntry *p;
246
247 ret = map->nodes_nb++;
248 p = map->nodes[ret];
249 assert(ret != PHYS_MAP_NODE_NIL);
250 assert(ret != map->nodes_nb_alloc);
251
252 e.skip = leaf ? 0 : 1;
253 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
254 for (i = 0; i < P_L2_SIZE; ++i) {
255 memcpy(&p[i], &e, sizeof(e));
256 }
257 return ret;
258 }
259
260 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
261 hwaddr *index, hwaddr *nb, uint16_t leaf,
262 int level)
263 {
264 PhysPageEntry *p;
265 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
266
267 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
268 lp->ptr = phys_map_node_alloc(map, level == 0);
269 }
270 p = map->nodes[lp->ptr];
271 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
272
273 while (*nb && lp < &p[P_L2_SIZE]) {
274 if ((*index & (step - 1)) == 0 && *nb >= step) {
275 lp->skip = 0;
276 lp->ptr = leaf;
277 *index += step;
278 *nb -= step;
279 } else {
280 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
281 }
282 ++lp;
283 }
284 }
285
286 static void phys_page_set(AddressSpaceDispatch *d,
287 hwaddr index, hwaddr nb,
288 uint16_t leaf)
289 {
290 /* Wildly overreserve - it doesn't matter much. */
291 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
292
293 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
294 }
295
296 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
297 * and update our entry so we can skip it and go directly to the destination.
298 */
299 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
300 {
301 unsigned valid_ptr = P_L2_SIZE;
302 int valid = 0;
303 PhysPageEntry *p;
304 int i;
305
306 if (lp->ptr == PHYS_MAP_NODE_NIL) {
307 return;
308 }
309
310 p = nodes[lp->ptr];
311 for (i = 0; i < P_L2_SIZE; i++) {
312 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
313 continue;
314 }
315
316 valid_ptr = i;
317 valid++;
318 if (p[i].skip) {
319 phys_page_compact(&p[i], nodes);
320 }
321 }
322
323 /* We can only compress if there's only one child. */
324 if (valid != 1) {
325 return;
326 }
327
328 assert(valid_ptr < P_L2_SIZE);
329
330 /* Don't compress if it won't fit in the # of bits we have. */
331 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
332 return;
333 }
334
335 lp->ptr = p[valid_ptr].ptr;
336 if (!p[valid_ptr].skip) {
337 /* If our only child is a leaf, make this a leaf. */
338 /* By design, we should have made this node a leaf to begin with so we
339 * should never reach here.
340 * But since it's so simple to handle this, let's do it just in case we
341 * change this rule.
342 */
343 lp->skip = 0;
344 } else {
345 lp->skip += p[valid_ptr].skip;
346 }
347 }
348
349 void address_space_dispatch_compact(AddressSpaceDispatch *d)
350 {
351 if (d->phys_map.skip) {
352 phys_page_compact(&d->phys_map, d->map.nodes);
353 }
354 }
355
356 static inline bool section_covers_addr(const MemoryRegionSection *section,
357 hwaddr addr)
358 {
359 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
360 * the section must cover the entire address space.
361 */
362 return int128_gethi(section->size) ||
363 range_covers_byte(section->offset_within_address_space,
364 int128_getlo(section->size), addr);
365 }
366
367 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
368 {
369 PhysPageEntry lp = d->phys_map, *p;
370 Node *nodes = d->map.nodes;
371 MemoryRegionSection *sections = d->map.sections;
372 hwaddr index = addr >> TARGET_PAGE_BITS;
373 int i;
374
375 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
376 if (lp.ptr == PHYS_MAP_NODE_NIL) {
377 return &sections[PHYS_SECTION_UNASSIGNED];
378 }
379 p = nodes[lp.ptr];
380 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
381 }
382
383 if (section_covers_addr(&sections[lp.ptr], addr)) {
384 return &sections[lp.ptr];
385 } else {
386 return &sections[PHYS_SECTION_UNASSIGNED];
387 }
388 }
389
390 /* Called from RCU critical section */
391 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
392 hwaddr addr,
393 bool resolve_subpage)
394 {
395 MemoryRegionSection *section = atomic_read(&d->mru_section);
396 subpage_t *subpage;
397
398 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
399 !section_covers_addr(section, addr)) {
400 section = phys_page_find(d, addr);
401 atomic_set(&d->mru_section, section);
402 }
403 if (resolve_subpage && section->mr->subpage) {
404 subpage = container_of(section->mr, subpage_t, iomem);
405 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
406 }
407 return section;
408 }
409
410 /* Called from RCU critical section */
411 static MemoryRegionSection *
412 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
413 hwaddr *plen, bool resolve_subpage)
414 {
415 MemoryRegionSection *section;
416 MemoryRegion *mr;
417 Int128 diff;
418
419 section = address_space_lookup_region(d, addr, resolve_subpage);
420 /* Compute offset within MemoryRegionSection */
421 addr -= section->offset_within_address_space;
422
423 /* Compute offset within MemoryRegion */
424 *xlat = addr + section->offset_within_region;
425
426 mr = section->mr;
427
428 /* MMIO registers can be expected to perform full-width accesses based only
429 * on their address, without considering adjacent registers that could
430 * decode to completely different MemoryRegions. When such registers
431 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
432 * regions overlap wildly. For this reason we cannot clamp the accesses
433 * here.
434 *
435 * If the length is small (as is the case for address_space_ldl/stl),
436 * everything works fine. If the incoming length is large, however,
437 * the caller really has to do the clamping through memory_access_size.
438 */
439 if (memory_region_is_ram(mr)) {
440 diff = int128_sub(section->size, int128_make64(addr));
441 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
442 }
443 return section;
444 }
445
446 /**
447 * address_space_translate_iommu - translate an address through an IOMMU
448 * memory region and then through the target address space.
449 *
450 * @iommu_mr: the IOMMU memory region that we start the translation from
451 * @addr: the address to be translated through the MMU
452 * @xlat: the translated address offset within the destination memory region.
453 * It cannot be %NULL.
454 * @plen_out: valid read/write length of the translated address. It
455 * cannot be %NULL.
456 * @page_mask_out: page mask for the translated address. This
457 * should only be meaningful for IOMMU translated
458 * addresses, since there may be huge pages that this bit
459 * would tell. It can be %NULL if we don't care about it.
460 * @is_write: whether the translation operation is for write
461 * @is_mmio: whether this can be MMIO, set true if it can
462 * @target_as: the address space targeted by the IOMMU
463 * @attrs: transaction attributes
464 *
465 * This function is called from RCU critical section. It is the common
466 * part of flatview_do_translate and address_space_translate_cached.
467 */
468 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
469 hwaddr *xlat,
470 hwaddr *plen_out,
471 hwaddr *page_mask_out,
472 bool is_write,
473 bool is_mmio,
474 AddressSpace **target_as,
475 MemTxAttrs attrs)
476 {
477 MemoryRegionSection *section;
478 hwaddr page_mask = (hwaddr)-1;
479
480 do {
481 hwaddr addr = *xlat;
482 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
483 int iommu_idx = 0;
484 IOMMUTLBEntry iotlb;
485
486 if (imrc->attrs_to_index) {
487 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
488 }
489
490 iotlb = imrc->translate(iommu_mr, addr, is_write ?
491 IOMMU_WO : IOMMU_RO, iommu_idx);
492
493 if (!(iotlb.perm & (1 << is_write))) {
494 goto unassigned;
495 }
496
497 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
498 | (addr & iotlb.addr_mask));
499 page_mask &= iotlb.addr_mask;
500 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
501 *target_as = iotlb.target_as;
502
503 section = address_space_translate_internal(
504 address_space_to_dispatch(iotlb.target_as), addr, xlat,
505 plen_out, is_mmio);
506
507 iommu_mr = memory_region_get_iommu(section->mr);
508 } while (unlikely(iommu_mr));
509
510 if (page_mask_out) {
511 *page_mask_out = page_mask;
512 }
513 return *section;
514
515 unassigned:
516 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
517 }
518
519 /**
520 * flatview_do_translate - translate an address in FlatView
521 *
522 * @fv: the flat view that we want to translate on
523 * @addr: the address to be translated in above address space
524 * @xlat: the translated address offset within memory region. It
525 * cannot be @NULL.
526 * @plen_out: valid read/write length of the translated address. It
527 * can be @NULL when we don't care about it.
528 * @page_mask_out: page mask for the translated address. This
529 * should only be meaningful for IOMMU translated
530 * addresses, since there may be huge pages that this bit
531 * would tell. It can be @NULL if we don't care about it.
532 * @is_write: whether the translation operation is for write
533 * @is_mmio: whether this can be MMIO, set true if it can
534 * @target_as: the address space targeted by the IOMMU
535 * @attrs: memory transaction attributes
536 *
537 * This function is called from RCU critical section
538 */
539 static MemoryRegionSection flatview_do_translate(FlatView *fv,
540 hwaddr addr,
541 hwaddr *xlat,
542 hwaddr *plen_out,
543 hwaddr *page_mask_out,
544 bool is_write,
545 bool is_mmio,
546 AddressSpace **target_as,
547 MemTxAttrs attrs)
548 {
549 MemoryRegionSection *section;
550 IOMMUMemoryRegion *iommu_mr;
551 hwaddr plen = (hwaddr)(-1);
552
553 if (!plen_out) {
554 plen_out = &plen;
555 }
556
557 section = address_space_translate_internal(
558 flatview_to_dispatch(fv), addr, xlat,
559 plen_out, is_mmio);
560
561 iommu_mr = memory_region_get_iommu(section->mr);
562 if (unlikely(iommu_mr)) {
563 return address_space_translate_iommu(iommu_mr, xlat,
564 plen_out, page_mask_out,
565 is_write, is_mmio,
566 target_as, attrs);
567 }
568 if (page_mask_out) {
569 /* Not behind an IOMMU, use default page size. */
570 *page_mask_out = ~TARGET_PAGE_MASK;
571 }
572
573 return *section;
574 }
575
576 /* Called from RCU critical section */
577 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
578 bool is_write, MemTxAttrs attrs)
579 {
580 MemoryRegionSection section;
581 hwaddr xlat, page_mask;
582
583 /*
584 * This can never be MMIO, and we don't really care about plen,
585 * but page mask.
586 */
587 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
588 NULL, &page_mask, is_write, false, &as,
589 attrs);
590
591 /* Illegal translation */
592 if (section.mr == &io_mem_unassigned) {
593 goto iotlb_fail;
594 }
595
596 /* Convert memory region offset into address space offset */
597 xlat += section.offset_within_address_space -
598 section.offset_within_region;
599
600 return (IOMMUTLBEntry) {
601 .target_as = as,
602 .iova = addr & ~page_mask,
603 .translated_addr = xlat & ~page_mask,
604 .addr_mask = page_mask,
605 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
606 .perm = IOMMU_RW,
607 };
608
609 iotlb_fail:
610 return (IOMMUTLBEntry) {0};
611 }
612
613 /* Called from RCU critical section */
614 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
615 hwaddr *plen, bool is_write,
616 MemTxAttrs attrs)
617 {
618 MemoryRegion *mr;
619 MemoryRegionSection section;
620 AddressSpace *as = NULL;
621
622 /* This can be MMIO, so setup MMIO bit. */
623 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
624 is_write, true, &as, attrs);
625 mr = section.mr;
626
627 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
628 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
629 *plen = MIN(page, *plen);
630 }
631
632 return mr;
633 }
634
635 typedef struct TCGIOMMUNotifier {
636 IOMMUNotifier n;
637 MemoryRegion *mr;
638 CPUState *cpu;
639 int iommu_idx;
640 bool active;
641 } TCGIOMMUNotifier;
642
643 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
644 {
645 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
646
647 if (!notifier->active) {
648 return;
649 }
650 tlb_flush(notifier->cpu);
651 notifier->active = false;
652 /* We leave the notifier struct on the list to avoid reallocating it later.
653 * Generally the number of IOMMUs a CPU deals with will be small.
654 * In any case we can't unregister the iommu notifier from a notify
655 * callback.
656 */
657 }
658
659 static void tcg_register_iommu_notifier(CPUState *cpu,
660 IOMMUMemoryRegion *iommu_mr,
661 int iommu_idx)
662 {
663 /* Make sure this CPU has an IOMMU notifier registered for this
664 * IOMMU/IOMMU index combination, so that we can flush its TLB
665 * when the IOMMU tells us the mappings we've cached have changed.
666 */
667 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
668 TCGIOMMUNotifier *notifier;
669 int i;
670
671 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
672 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
673 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
674 break;
675 }
676 }
677 if (i == cpu->iommu_notifiers->len) {
678 /* Not found, add a new entry at the end of the array */
679 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
680 notifier = g_new0(TCGIOMMUNotifier, 1);
681 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
682
683 notifier->mr = mr;
684 notifier->iommu_idx = iommu_idx;
685 notifier->cpu = cpu;
686 /* Rather than trying to register interest in the specific part
687 * of the iommu's address space that we've accessed and then
688 * expand it later as subsequent accesses touch more of it, we
689 * just register interest in the whole thing, on the assumption
690 * that iommu reconfiguration will be rare.
691 */
692 iommu_notifier_init(&notifier->n,
693 tcg_iommu_unmap_notify,
694 IOMMU_NOTIFIER_UNMAP,
695 0,
696 HWADDR_MAX,
697 iommu_idx);
698 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
699 }
700
701 if (!notifier->active) {
702 notifier->active = true;
703 }
704 }
705
706 static void tcg_iommu_free_notifier_list(CPUState *cpu)
707 {
708 /* Destroy the CPU's notifier list */
709 int i;
710 TCGIOMMUNotifier *notifier;
711
712 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
713 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
714 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
715 g_free(notifier);
716 }
717 g_array_free(cpu->iommu_notifiers, true);
718 }
719
720 /* Called from RCU critical section */
721 MemoryRegionSection *
722 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
723 hwaddr *xlat, hwaddr *plen,
724 MemTxAttrs attrs, int *prot)
725 {
726 MemoryRegionSection *section;
727 IOMMUMemoryRegion *iommu_mr;
728 IOMMUMemoryRegionClass *imrc;
729 IOMMUTLBEntry iotlb;
730 int iommu_idx;
731 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
732
733 for (;;) {
734 section = address_space_translate_internal(d, addr, &addr, plen, false);
735
736 iommu_mr = memory_region_get_iommu(section->mr);
737 if (!iommu_mr) {
738 break;
739 }
740
741 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
742
743 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
744 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
745 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
746 * doesn't short-cut its translation table walk.
747 */
748 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
749 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
750 | (addr & iotlb.addr_mask));
751 /* Update the caller's prot bits to remove permissions the IOMMU
752 * is giving us a failure response for. If we get down to no
753 * permissions left at all we can give up now.
754 */
755 if (!(iotlb.perm & IOMMU_RO)) {
756 *prot &= ~(PAGE_READ | PAGE_EXEC);
757 }
758 if (!(iotlb.perm & IOMMU_WO)) {
759 *prot &= ~PAGE_WRITE;
760 }
761
762 if (!*prot) {
763 goto translate_fail;
764 }
765
766 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
767 }
768
769 assert(!memory_region_is_iommu(section->mr));
770 *xlat = addr;
771 return section;
772
773 translate_fail:
774 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
775 }
776 #endif
777
778 #if !defined(CONFIG_USER_ONLY)
779
780 static int cpu_common_post_load(void *opaque, int version_id)
781 {
782 CPUState *cpu = opaque;
783
784 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
785 version_id is increased. */
786 cpu->interrupt_request &= ~0x01;
787 tlb_flush(cpu);
788
789 /* loadvm has just updated the content of RAM, bypassing the
790 * usual mechanisms that ensure we flush TBs for writes to
791 * memory we've translated code from. So we must flush all TBs,
792 * which will now be stale.
793 */
794 tb_flush(cpu);
795
796 return 0;
797 }
798
799 static int cpu_common_pre_load(void *opaque)
800 {
801 CPUState *cpu = opaque;
802
803 cpu->exception_index = -1;
804
805 return 0;
806 }
807
808 static bool cpu_common_exception_index_needed(void *opaque)
809 {
810 CPUState *cpu = opaque;
811
812 return tcg_enabled() && cpu->exception_index != -1;
813 }
814
815 static const VMStateDescription vmstate_cpu_common_exception_index = {
816 .name = "cpu_common/exception_index",
817 .version_id = 1,
818 .minimum_version_id = 1,
819 .needed = cpu_common_exception_index_needed,
820 .fields = (VMStateField[]) {
821 VMSTATE_INT32(exception_index, CPUState),
822 VMSTATE_END_OF_LIST()
823 }
824 };
825
826 static bool cpu_common_crash_occurred_needed(void *opaque)
827 {
828 CPUState *cpu = opaque;
829
830 return cpu->crash_occurred;
831 }
832
833 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
834 .name = "cpu_common/crash_occurred",
835 .version_id = 1,
836 .minimum_version_id = 1,
837 .needed = cpu_common_crash_occurred_needed,
838 .fields = (VMStateField[]) {
839 VMSTATE_BOOL(crash_occurred, CPUState),
840 VMSTATE_END_OF_LIST()
841 }
842 };
843
844 const VMStateDescription vmstate_cpu_common = {
845 .name = "cpu_common",
846 .version_id = 1,
847 .minimum_version_id = 1,
848 .pre_load = cpu_common_pre_load,
849 .post_load = cpu_common_post_load,
850 .fields = (VMStateField[]) {
851 VMSTATE_UINT32(halted, CPUState),
852 VMSTATE_UINT32(interrupt_request, CPUState),
853 VMSTATE_END_OF_LIST()
854 },
855 .subsections = (const VMStateDescription*[]) {
856 &vmstate_cpu_common_exception_index,
857 &vmstate_cpu_common_crash_occurred,
858 NULL
859 }
860 };
861
862 #endif
863
864 CPUState *qemu_get_cpu(int index)
865 {
866 CPUState *cpu;
867
868 CPU_FOREACH(cpu) {
869 if (cpu->cpu_index == index) {
870 return cpu;
871 }
872 }
873
874 return NULL;
875 }
876
877 #if !defined(CONFIG_USER_ONLY)
878 void cpu_address_space_init(CPUState *cpu, int asidx,
879 const char *prefix, MemoryRegion *mr)
880 {
881 CPUAddressSpace *newas;
882 AddressSpace *as = g_new0(AddressSpace, 1);
883 char *as_name;
884
885 assert(mr);
886 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
887 address_space_init(as, mr, as_name);
888 g_free(as_name);
889
890 /* Target code should have set num_ases before calling us */
891 assert(asidx < cpu->num_ases);
892
893 if (asidx == 0) {
894 /* address space 0 gets the convenience alias */
895 cpu->as = as;
896 }
897
898 /* KVM cannot currently support multiple address spaces. */
899 assert(asidx == 0 || !kvm_enabled());
900
901 if (!cpu->cpu_ases) {
902 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
903 }
904
905 newas = &cpu->cpu_ases[asidx];
906 newas->cpu = cpu;
907 newas->as = as;
908 if (tcg_enabled()) {
909 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
910 newas->tcg_as_listener.commit = tcg_commit;
911 memory_listener_register(&newas->tcg_as_listener, as);
912 }
913 }
914
915 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
916 {
917 /* Return the AddressSpace corresponding to the specified index */
918 return cpu->cpu_ases[asidx].as;
919 }
920 #endif
921
922 void cpu_exec_unrealizefn(CPUState *cpu)
923 {
924 CPUClass *cc = CPU_GET_CLASS(cpu);
925
926 cpu_list_remove(cpu);
927
928 if (cc->vmsd != NULL) {
929 vmstate_unregister(NULL, cc->vmsd, cpu);
930 }
931 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
932 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
933 }
934 #ifndef CONFIG_USER_ONLY
935 tcg_iommu_free_notifier_list(cpu);
936 #endif
937 }
938
939 Property cpu_common_props[] = {
940 #ifndef CONFIG_USER_ONLY
941 /* Create a memory property for softmmu CPU object,
942 * so users can wire up its memory. (This can't go in hw/core/cpu.c
943 * because that file is compiled only once for both user-mode
944 * and system builds.) The default if no link is set up is to use
945 * the system address space.
946 */
947 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
948 MemoryRegion *),
949 #endif
950 DEFINE_PROP_END_OF_LIST(),
951 };
952
953 void cpu_exec_initfn(CPUState *cpu)
954 {
955 cpu->as = NULL;
956 cpu->num_ases = 0;
957
958 #ifndef CONFIG_USER_ONLY
959 cpu->thread_id = qemu_get_thread_id();
960 cpu->memory = system_memory;
961 object_ref(OBJECT(cpu->memory));
962 #endif
963 }
964
965 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
966 {
967 CPUClass *cc = CPU_GET_CLASS(cpu);
968 static bool tcg_target_initialized;
969
970 cpu_list_add(cpu);
971
972 if (tcg_enabled() && !tcg_target_initialized) {
973 tcg_target_initialized = true;
974 cc->tcg_initialize();
975 }
976 tlb_init(cpu);
977
978 #ifndef CONFIG_USER_ONLY
979 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
980 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
981 }
982 if (cc->vmsd != NULL) {
983 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
984 }
985
986 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
987 #endif
988 }
989
990 const char *parse_cpu_option(const char *cpu_option)
991 {
992 ObjectClass *oc;
993 CPUClass *cc;
994 gchar **model_pieces;
995 const char *cpu_type;
996
997 model_pieces = g_strsplit(cpu_option, ",", 2);
998 if (!model_pieces[0]) {
999 error_report("-cpu option cannot be empty");
1000 exit(1);
1001 }
1002
1003 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
1004 if (oc == NULL) {
1005 error_report("unable to find CPU model '%s'", model_pieces[0]);
1006 g_strfreev(model_pieces);
1007 exit(EXIT_FAILURE);
1008 }
1009
1010 cpu_type = object_class_get_name(oc);
1011 cc = CPU_CLASS(oc);
1012 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1013 g_strfreev(model_pieces);
1014 return cpu_type;
1015 }
1016
1017 #if defined(CONFIG_USER_ONLY)
1018 void tb_invalidate_phys_addr(target_ulong addr)
1019 {
1020 mmap_lock();
1021 tb_invalidate_phys_page_range(addr, addr + 1, 0);
1022 mmap_unlock();
1023 }
1024
1025 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1026 {
1027 tb_invalidate_phys_addr(pc);
1028 }
1029 #else
1030 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1031 {
1032 ram_addr_t ram_addr;
1033 MemoryRegion *mr;
1034 hwaddr l = 1;
1035
1036 if (!tcg_enabled()) {
1037 return;
1038 }
1039
1040 rcu_read_lock();
1041 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1042 if (!(memory_region_is_ram(mr)
1043 || memory_region_is_romd(mr))) {
1044 rcu_read_unlock();
1045 return;
1046 }
1047 ram_addr = memory_region_get_ram_addr(mr) + addr;
1048 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1049 rcu_read_unlock();
1050 }
1051
1052 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1053 {
1054 MemTxAttrs attrs;
1055 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1056 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1057 if (phys != -1) {
1058 /* Locks grabbed by tb_invalidate_phys_addr */
1059 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1060 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1061 }
1062 }
1063 #endif
1064
1065 #ifndef CONFIG_USER_ONLY
1066 /* Add a watchpoint. */
1067 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1068 int flags, CPUWatchpoint **watchpoint)
1069 {
1070 CPUWatchpoint *wp;
1071
1072 /* forbid ranges which are empty or run off the end of the address space */
1073 if (len == 0 || (addr + len - 1) < addr) {
1074 error_report("tried to set invalid watchpoint at %"
1075 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1076 return -EINVAL;
1077 }
1078 wp = g_malloc(sizeof(*wp));
1079
1080 wp->vaddr = addr;
1081 wp->len = len;
1082 wp->flags = flags;
1083
1084 /* keep all GDB-injected watchpoints in front */
1085 if (flags & BP_GDB) {
1086 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1087 } else {
1088 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1089 }
1090
1091 tlb_flush_page(cpu, addr);
1092
1093 if (watchpoint)
1094 *watchpoint = wp;
1095 return 0;
1096 }
1097
1098 /* Remove a specific watchpoint. */
1099 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1100 int flags)
1101 {
1102 CPUWatchpoint *wp;
1103
1104 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1105 if (addr == wp->vaddr && len == wp->len
1106 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1107 cpu_watchpoint_remove_by_ref(cpu, wp);
1108 return 0;
1109 }
1110 }
1111 return -ENOENT;
1112 }
1113
1114 /* Remove a specific watchpoint by reference. */
1115 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1116 {
1117 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1118
1119 tlb_flush_page(cpu, watchpoint->vaddr);
1120
1121 g_free(watchpoint);
1122 }
1123
1124 /* Remove all matching watchpoints. */
1125 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1126 {
1127 CPUWatchpoint *wp, *next;
1128
1129 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1130 if (wp->flags & mask) {
1131 cpu_watchpoint_remove_by_ref(cpu, wp);
1132 }
1133 }
1134 }
1135
1136 /* Return true if this watchpoint address matches the specified
1137 * access (ie the address range covered by the watchpoint overlaps
1138 * partially or completely with the address range covered by the
1139 * access).
1140 */
1141 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1142 vaddr addr,
1143 vaddr len)
1144 {
1145 /* We know the lengths are non-zero, but a little caution is
1146 * required to avoid errors in the case where the range ends
1147 * exactly at the top of the address space and so addr + len
1148 * wraps round to zero.
1149 */
1150 vaddr wpend = wp->vaddr + wp->len - 1;
1151 vaddr addrend = addr + len - 1;
1152
1153 return !(addr > wpend || wp->vaddr > addrend);
1154 }
1155 #endif /* !CONFIG_USER_ONLY */
1156
1157 /* Add a breakpoint. */
1158 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1159 CPUBreakpoint **breakpoint)
1160 {
1161 CPUBreakpoint *bp;
1162
1163 bp = g_malloc(sizeof(*bp));
1164
1165 bp->pc = pc;
1166 bp->flags = flags;
1167
1168 /* keep all GDB-injected breakpoints in front */
1169 if (flags & BP_GDB) {
1170 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1171 } else {
1172 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1173 }
1174
1175 breakpoint_invalidate(cpu, pc);
1176
1177 if (breakpoint) {
1178 *breakpoint = bp;
1179 }
1180 return 0;
1181 }
1182
1183 /* Remove a specific breakpoint. */
1184 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1185 {
1186 CPUBreakpoint *bp;
1187
1188 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1189 if (bp->pc == pc && bp->flags == flags) {
1190 cpu_breakpoint_remove_by_ref(cpu, bp);
1191 return 0;
1192 }
1193 }
1194 return -ENOENT;
1195 }
1196
1197 /* Remove a specific breakpoint by reference. */
1198 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1199 {
1200 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1201
1202 breakpoint_invalidate(cpu, breakpoint->pc);
1203
1204 g_free(breakpoint);
1205 }
1206
1207 /* Remove all matching breakpoints. */
1208 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1209 {
1210 CPUBreakpoint *bp, *next;
1211
1212 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1213 if (bp->flags & mask) {
1214 cpu_breakpoint_remove_by_ref(cpu, bp);
1215 }
1216 }
1217 }
1218
1219 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1220 CPU loop after each instruction */
1221 void cpu_single_step(CPUState *cpu, int enabled)
1222 {
1223 if (cpu->singlestep_enabled != enabled) {
1224 cpu->singlestep_enabled = enabled;
1225 if (kvm_enabled()) {
1226 kvm_update_guest_debug(cpu, 0);
1227 } else {
1228 /* must flush all the translated code to avoid inconsistencies */
1229 /* XXX: only flush what is necessary */
1230 tb_flush(cpu);
1231 }
1232 }
1233 }
1234
1235 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1236 {
1237 va_list ap;
1238 va_list ap2;
1239
1240 va_start(ap, fmt);
1241 va_copy(ap2, ap);
1242 fprintf(stderr, "qemu: fatal: ");
1243 vfprintf(stderr, fmt, ap);
1244 fprintf(stderr, "\n");
1245 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1246 if (qemu_log_separate()) {
1247 qemu_log_lock();
1248 qemu_log("qemu: fatal: ");
1249 qemu_log_vprintf(fmt, ap2);
1250 qemu_log("\n");
1251 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1252 qemu_log_flush();
1253 qemu_log_unlock();
1254 qemu_log_close();
1255 }
1256 va_end(ap2);
1257 va_end(ap);
1258 replay_finish();
1259 #if defined(CONFIG_USER_ONLY)
1260 {
1261 struct sigaction act;
1262 sigfillset(&act.sa_mask);
1263 act.sa_handler = SIG_DFL;
1264 act.sa_flags = 0;
1265 sigaction(SIGABRT, &act, NULL);
1266 }
1267 #endif
1268 abort();
1269 }
1270
1271 #if !defined(CONFIG_USER_ONLY)
1272 /* Called from RCU critical section */
1273 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1274 {
1275 RAMBlock *block;
1276
1277 block = atomic_rcu_read(&ram_list.mru_block);
1278 if (block && addr - block->offset < block->max_length) {
1279 return block;
1280 }
1281 RAMBLOCK_FOREACH(block) {
1282 if (addr - block->offset < block->max_length) {
1283 goto found;
1284 }
1285 }
1286
1287 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1288 abort();
1289
1290 found:
1291 /* It is safe to write mru_block outside the iothread lock. This
1292 * is what happens:
1293 *
1294 * mru_block = xxx
1295 * rcu_read_unlock()
1296 * xxx removed from list
1297 * rcu_read_lock()
1298 * read mru_block
1299 * mru_block = NULL;
1300 * call_rcu(reclaim_ramblock, xxx);
1301 * rcu_read_unlock()
1302 *
1303 * atomic_rcu_set is not needed here. The block was already published
1304 * when it was placed into the list. Here we're just making an extra
1305 * copy of the pointer.
1306 */
1307 ram_list.mru_block = block;
1308 return block;
1309 }
1310
1311 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1312 {
1313 CPUState *cpu;
1314 ram_addr_t start1;
1315 RAMBlock *block;
1316 ram_addr_t end;
1317
1318 assert(tcg_enabled());
1319 end = TARGET_PAGE_ALIGN(start + length);
1320 start &= TARGET_PAGE_MASK;
1321
1322 rcu_read_lock();
1323 block = qemu_get_ram_block(start);
1324 assert(block == qemu_get_ram_block(end - 1));
1325 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1326 CPU_FOREACH(cpu) {
1327 tlb_reset_dirty(cpu, start1, length);
1328 }
1329 rcu_read_unlock();
1330 }
1331
1332 /* Note: start and end must be within the same ram block. */
1333 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1334 ram_addr_t length,
1335 unsigned client)
1336 {
1337 DirtyMemoryBlocks *blocks;
1338 unsigned long end, page;
1339 bool dirty = false;
1340 RAMBlock *ramblock;
1341 uint64_t mr_offset, mr_size;
1342
1343 if (length == 0) {
1344 return false;
1345 }
1346
1347 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1348 page = start >> TARGET_PAGE_BITS;
1349
1350 rcu_read_lock();
1351
1352 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1353 ramblock = qemu_get_ram_block(start);
1354 /* Range sanity check on the ramblock */
1355 assert(start >= ramblock->offset &&
1356 start + length <= ramblock->offset + ramblock->used_length);
1357
1358 while (page < end) {
1359 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1360 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1361 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1362
1363 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1364 offset, num);
1365 page += num;
1366 }
1367
1368 mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
1369 mr_size = (end - page) << TARGET_PAGE_BITS;
1370 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1371
1372 rcu_read_unlock();
1373
1374 if (dirty && tcg_enabled()) {
1375 tlb_reset_dirty_range_all(start, length);
1376 }
1377
1378 return dirty;
1379 }
1380
1381 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1382 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1383 {
1384 DirtyMemoryBlocks *blocks;
1385 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1386 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1387 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1388 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1389 DirtyBitmapSnapshot *snap;
1390 unsigned long page, end, dest;
1391
1392 snap = g_malloc0(sizeof(*snap) +
1393 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1394 snap->start = first;
1395 snap->end = last;
1396
1397 page = first >> TARGET_PAGE_BITS;
1398 end = last >> TARGET_PAGE_BITS;
1399 dest = 0;
1400
1401 rcu_read_lock();
1402
1403 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1404
1405 while (page < end) {
1406 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1407 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1408 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1409
1410 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1411 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1412 offset >>= BITS_PER_LEVEL;
1413
1414 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1415 blocks->blocks[idx] + offset,
1416 num);
1417 page += num;
1418 dest += num >> BITS_PER_LEVEL;
1419 }
1420
1421 rcu_read_unlock();
1422
1423 if (tcg_enabled()) {
1424 tlb_reset_dirty_range_all(start, length);
1425 }
1426
1427 memory_region_clear_dirty_bitmap(mr, offset, length);
1428
1429 return snap;
1430 }
1431
1432 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1433 ram_addr_t start,
1434 ram_addr_t length)
1435 {
1436 unsigned long page, end;
1437
1438 assert(start >= snap->start);
1439 assert(start + length <= snap->end);
1440
1441 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1442 page = (start - snap->start) >> TARGET_PAGE_BITS;
1443
1444 while (page < end) {
1445 if (test_bit(page, snap->dirty)) {
1446 return true;
1447 }
1448 page++;
1449 }
1450 return false;
1451 }
1452
1453 /* Called from RCU critical section */
1454 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1455 MemoryRegionSection *section,
1456 target_ulong vaddr,
1457 hwaddr paddr, hwaddr xlat,
1458 int prot,
1459 target_ulong *address)
1460 {
1461 hwaddr iotlb;
1462 CPUWatchpoint *wp;
1463
1464 if (memory_region_is_ram(section->mr)) {
1465 /* Normal RAM. */
1466 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1467 if (!section->readonly) {
1468 iotlb |= PHYS_SECTION_NOTDIRTY;
1469 } else {
1470 iotlb |= PHYS_SECTION_ROM;
1471 }
1472 } else {
1473 AddressSpaceDispatch *d;
1474
1475 d = flatview_to_dispatch(section->fv);
1476 iotlb = section - d->map.sections;
1477 iotlb += xlat;
1478 }
1479
1480 /* Make accesses to pages with watchpoints go via the
1481 watchpoint trap routines. */
1482 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1483 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1484 /* Avoid trapping reads of pages with a write breakpoint. */
1485 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1486 iotlb = PHYS_SECTION_WATCH + paddr;
1487 *address |= TLB_MMIO;
1488 break;
1489 }
1490 }
1491 }
1492
1493 return iotlb;
1494 }
1495 #endif /* defined(CONFIG_USER_ONLY) */
1496
1497 #if !defined(CONFIG_USER_ONLY)
1498
1499 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1500 uint16_t section);
1501 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1502
1503 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1504 qemu_anon_ram_alloc;
1505
1506 /*
1507 * Set a custom physical guest memory alloator.
1508 * Accelerators with unusual needs may need this. Hopefully, we can
1509 * get rid of it eventually.
1510 */
1511 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1512 {
1513 phys_mem_alloc = alloc;
1514 }
1515
1516 static uint16_t phys_section_add(PhysPageMap *map,
1517 MemoryRegionSection *section)
1518 {
1519 /* The physical section number is ORed with a page-aligned
1520 * pointer to produce the iotlb entries. Thus it should
1521 * never overflow into the page-aligned value.
1522 */
1523 assert(map->sections_nb < TARGET_PAGE_SIZE);
1524
1525 if (map->sections_nb == map->sections_nb_alloc) {
1526 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1527 map->sections = g_renew(MemoryRegionSection, map->sections,
1528 map->sections_nb_alloc);
1529 }
1530 map->sections[map->sections_nb] = *section;
1531 memory_region_ref(section->mr);
1532 return map->sections_nb++;
1533 }
1534
1535 static void phys_section_destroy(MemoryRegion *mr)
1536 {
1537 bool have_sub_page = mr->subpage;
1538
1539 memory_region_unref(mr);
1540
1541 if (have_sub_page) {
1542 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1543 object_unref(OBJECT(&subpage->iomem));
1544 g_free(subpage);
1545 }
1546 }
1547
1548 static void phys_sections_free(PhysPageMap *map)
1549 {
1550 while (map->sections_nb > 0) {
1551 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1552 phys_section_destroy(section->mr);
1553 }
1554 g_free(map->sections);
1555 g_free(map->nodes);
1556 }
1557
1558 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1559 {
1560 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1561 subpage_t *subpage;
1562 hwaddr base = section->offset_within_address_space
1563 & TARGET_PAGE_MASK;
1564 MemoryRegionSection *existing = phys_page_find(d, base);
1565 MemoryRegionSection subsection = {
1566 .offset_within_address_space = base,
1567 .size = int128_make64(TARGET_PAGE_SIZE),
1568 };
1569 hwaddr start, end;
1570
1571 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1572
1573 if (!(existing->mr->subpage)) {
1574 subpage = subpage_init(fv, base);
1575 subsection.fv = fv;
1576 subsection.mr = &subpage->iomem;
1577 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1578 phys_section_add(&d->map, &subsection));
1579 } else {
1580 subpage = container_of(existing->mr, subpage_t, iomem);
1581 }
1582 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1583 end = start + int128_get64(section->size) - 1;
1584 subpage_register(subpage, start, end,
1585 phys_section_add(&d->map, section));
1586 }
1587
1588
1589 static void register_multipage(FlatView *fv,
1590 MemoryRegionSection *section)
1591 {
1592 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1593 hwaddr start_addr = section->offset_within_address_space;
1594 uint16_t section_index = phys_section_add(&d->map, section);
1595 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1596 TARGET_PAGE_BITS));
1597
1598 assert(num_pages);
1599 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1600 }
1601
1602 /*
1603 * The range in *section* may look like this:
1604 *
1605 * |s|PPPPPPP|s|
1606 *
1607 * where s stands for subpage and P for page.
1608 */
1609 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1610 {
1611 MemoryRegionSection remain = *section;
1612 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1613
1614 /* register first subpage */
1615 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1616 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1617 - remain.offset_within_address_space;
1618
1619 MemoryRegionSection now = remain;
1620 now.size = int128_min(int128_make64(left), now.size);
1621 register_subpage(fv, &now);
1622 if (int128_eq(remain.size, now.size)) {
1623 return;
1624 }
1625 remain.size = int128_sub(remain.size, now.size);
1626 remain.offset_within_address_space += int128_get64(now.size);
1627 remain.offset_within_region += int128_get64(now.size);
1628 }
1629
1630 /* register whole pages */
1631 if (int128_ge(remain.size, page_size)) {
1632 MemoryRegionSection now = remain;
1633 now.size = int128_and(now.size, int128_neg(page_size));
1634 register_multipage(fv, &now);
1635 if (int128_eq(remain.size, now.size)) {
1636 return;
1637 }
1638 remain.size = int128_sub(remain.size, now.size);
1639 remain.offset_within_address_space += int128_get64(now.size);
1640 remain.offset_within_region += int128_get64(now.size);
1641 }
1642
1643 /* register last subpage */
1644 register_subpage(fv, &remain);
1645 }
1646
1647 void qemu_flush_coalesced_mmio_buffer(void)
1648 {
1649 if (kvm_enabled())
1650 kvm_flush_coalesced_mmio_buffer();
1651 }
1652
1653 void qemu_mutex_lock_ramlist(void)
1654 {
1655 qemu_mutex_lock(&ram_list.mutex);
1656 }
1657
1658 void qemu_mutex_unlock_ramlist(void)
1659 {
1660 qemu_mutex_unlock(&ram_list.mutex);
1661 }
1662
1663 void ram_block_dump(Monitor *mon)
1664 {
1665 RAMBlock *block;
1666 char *psize;
1667
1668 rcu_read_lock();
1669 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1670 "Block Name", "PSize", "Offset", "Used", "Total");
1671 RAMBLOCK_FOREACH(block) {
1672 psize = size_to_str(block->page_size);
1673 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1674 " 0x%016" PRIx64 "\n", block->idstr, psize,
1675 (uint64_t)block->offset,
1676 (uint64_t)block->used_length,
1677 (uint64_t)block->max_length);
1678 g_free(psize);
1679 }
1680 rcu_read_unlock();
1681 }
1682
1683 #ifdef __linux__
1684 /*
1685 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1686 * may or may not name the same files / on the same filesystem now as
1687 * when we actually open and map them. Iterate over the file
1688 * descriptors instead, and use qemu_fd_getpagesize().
1689 */
1690 static int find_min_backend_pagesize(Object *obj, void *opaque)
1691 {
1692 long *hpsize_min = opaque;
1693
1694 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1695 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1696 long hpsize = host_memory_backend_pagesize(backend);
1697
1698 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1699 *hpsize_min = hpsize;
1700 }
1701 }
1702
1703 return 0;
1704 }
1705
1706 static int find_max_backend_pagesize(Object *obj, void *opaque)
1707 {
1708 long *hpsize_max = opaque;
1709
1710 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1711 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1712 long hpsize = host_memory_backend_pagesize(backend);
1713
1714 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1715 *hpsize_max = hpsize;
1716 }
1717 }
1718
1719 return 0;
1720 }
1721
1722 /*
1723 * TODO: We assume right now that all mapped host memory backends are
1724 * used as RAM, however some might be used for different purposes.
1725 */
1726 long qemu_minrampagesize(void)
1727 {
1728 long hpsize = LONG_MAX;
1729 long mainrampagesize;
1730 Object *memdev_root;
1731
1732 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1733
1734 /* it's possible we have memory-backend objects with
1735 * hugepage-backed RAM. these may get mapped into system
1736 * address space via -numa parameters or memory hotplug
1737 * hooks. we want to take these into account, but we
1738 * also want to make sure these supported hugepage
1739 * sizes are applicable across the entire range of memory
1740 * we may boot from, so we take the min across all
1741 * backends, and assume normal pages in cases where a
1742 * backend isn't backed by hugepages.
1743 */
1744 memdev_root = object_resolve_path("/objects", NULL);
1745 if (memdev_root) {
1746 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1747 }
1748 if (hpsize == LONG_MAX) {
1749 /* No additional memory regions found ==> Report main RAM page size */
1750 return mainrampagesize;
1751 }
1752
1753 /* If NUMA is disabled or the NUMA nodes are not backed with a
1754 * memory-backend, then there is at least one node using "normal" RAM,
1755 * so if its page size is smaller we have got to report that size instead.
1756 */
1757 if (hpsize > mainrampagesize &&
1758 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1759 static bool warned;
1760 if (!warned) {
1761 error_report("Huge page support disabled (n/a for main memory).");
1762 warned = true;
1763 }
1764 return mainrampagesize;
1765 }
1766
1767 return hpsize;
1768 }
1769
1770 long qemu_maxrampagesize(void)
1771 {
1772 long pagesize = qemu_mempath_getpagesize(mem_path);
1773 Object *memdev_root = object_resolve_path("/objects", NULL);
1774
1775 if (memdev_root) {
1776 object_child_foreach(memdev_root, find_max_backend_pagesize,
1777 &pagesize);
1778 }
1779 return pagesize;
1780 }
1781 #else
1782 long qemu_minrampagesize(void)
1783 {
1784 return getpagesize();
1785 }
1786 long qemu_maxrampagesize(void)
1787 {
1788 return getpagesize();
1789 }
1790 #endif
1791
1792 #ifdef CONFIG_POSIX
1793 static int64_t get_file_size(int fd)
1794 {
1795 int64_t size = lseek(fd, 0, SEEK_END);
1796 if (size < 0) {
1797 return -errno;
1798 }
1799 return size;
1800 }
1801
1802 static int file_ram_open(const char *path,
1803 const char *region_name,
1804 bool *created,
1805 Error **errp)
1806 {
1807 char *filename;
1808 char *sanitized_name;
1809 char *c;
1810 int fd = -1;
1811
1812 *created = false;
1813 for (;;) {
1814 fd = open(path, O_RDWR);
1815 if (fd >= 0) {
1816 /* @path names an existing file, use it */
1817 break;
1818 }
1819 if (errno == ENOENT) {
1820 /* @path names a file that doesn't exist, create it */
1821 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1822 if (fd >= 0) {
1823 *created = true;
1824 break;
1825 }
1826 } else if (errno == EISDIR) {
1827 /* @path names a directory, create a file there */
1828 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1829 sanitized_name = g_strdup(region_name);
1830 for (c = sanitized_name; *c != '\0'; c++) {
1831 if (*c == '/') {
1832 *c = '_';
1833 }
1834 }
1835
1836 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1837 sanitized_name);
1838 g_free(sanitized_name);
1839
1840 fd = mkstemp(filename);
1841 if (fd >= 0) {
1842 unlink(filename);
1843 g_free(filename);
1844 break;
1845 }
1846 g_free(filename);
1847 }
1848 if (errno != EEXIST && errno != EINTR) {
1849 error_setg_errno(errp, errno,
1850 "can't open backing store %s for guest RAM",
1851 path);
1852 return -1;
1853 }
1854 /*
1855 * Try again on EINTR and EEXIST. The latter happens when
1856 * something else creates the file between our two open().
1857 */
1858 }
1859
1860 return fd;
1861 }
1862
1863 static void *file_ram_alloc(RAMBlock *block,
1864 ram_addr_t memory,
1865 int fd,
1866 bool truncate,
1867 Error **errp)
1868 {
1869 MachineState *ms = MACHINE(qdev_get_machine());
1870 void *area;
1871
1872 block->page_size = qemu_fd_getpagesize(fd);
1873 if (block->mr->align % block->page_size) {
1874 error_setg(errp, "alignment 0x%" PRIx64
1875 " must be multiples of page size 0x%zx",
1876 block->mr->align, block->page_size);
1877 return NULL;
1878 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1879 error_setg(errp, "alignment 0x%" PRIx64
1880 " must be a power of two", block->mr->align);
1881 return NULL;
1882 }
1883 block->mr->align = MAX(block->page_size, block->mr->align);
1884 #if defined(__s390x__)
1885 if (kvm_enabled()) {
1886 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1887 }
1888 #endif
1889
1890 if (memory < block->page_size) {
1891 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1892 "or larger than page size 0x%zx",
1893 memory, block->page_size);
1894 return NULL;
1895 }
1896
1897 memory = ROUND_UP(memory, block->page_size);
1898
1899 /*
1900 * ftruncate is not supported by hugetlbfs in older
1901 * hosts, so don't bother bailing out on errors.
1902 * If anything goes wrong with it under other filesystems,
1903 * mmap will fail.
1904 *
1905 * Do not truncate the non-empty backend file to avoid corrupting
1906 * the existing data in the file. Disabling shrinking is not
1907 * enough. For example, the current vNVDIMM implementation stores
1908 * the guest NVDIMM labels at the end of the backend file. If the
1909 * backend file is later extended, QEMU will not be able to find
1910 * those labels. Therefore, extending the non-empty backend file
1911 * is disabled as well.
1912 */
1913 if (truncate && ftruncate(fd, memory)) {
1914 perror("ftruncate");
1915 }
1916
1917 area = qemu_ram_mmap(fd, memory, block->mr->align,
1918 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1919 if (area == MAP_FAILED) {
1920 error_setg_errno(errp, errno,
1921 "unable to map backing store for guest RAM");
1922 return NULL;
1923 }
1924
1925 if (mem_prealloc) {
1926 os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
1927 if (errp && *errp) {
1928 qemu_ram_munmap(fd, area, memory);
1929 return NULL;
1930 }
1931 }
1932
1933 block->fd = fd;
1934 return area;
1935 }
1936 #endif
1937
1938 /* Allocate space within the ram_addr_t space that governs the
1939 * dirty bitmaps.
1940 * Called with the ramlist lock held.
1941 */
1942 static ram_addr_t find_ram_offset(ram_addr_t size)
1943 {
1944 RAMBlock *block, *next_block;
1945 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1946
1947 assert(size != 0); /* it would hand out same offset multiple times */
1948
1949 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1950 return 0;
1951 }
1952
1953 RAMBLOCK_FOREACH(block) {
1954 ram_addr_t candidate, next = RAM_ADDR_MAX;
1955
1956 /* Align blocks to start on a 'long' in the bitmap
1957 * which makes the bitmap sync'ing take the fast path.
1958 */
1959 candidate = block->offset + block->max_length;
1960 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1961
1962 /* Search for the closest following block
1963 * and find the gap.
1964 */
1965 RAMBLOCK_FOREACH(next_block) {
1966 if (next_block->offset >= candidate) {
1967 next = MIN(next, next_block->offset);
1968 }
1969 }
1970
1971 /* If it fits remember our place and remember the size
1972 * of gap, but keep going so that we might find a smaller
1973 * gap to fill so avoiding fragmentation.
1974 */
1975 if (next - candidate >= size && next - candidate < mingap) {
1976 offset = candidate;
1977 mingap = next - candidate;
1978 }
1979
1980 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1981 }
1982
1983 if (offset == RAM_ADDR_MAX) {
1984 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1985 (uint64_t)size);
1986 abort();
1987 }
1988
1989 trace_find_ram_offset(size, offset);
1990
1991 return offset;
1992 }
1993
1994 static unsigned long last_ram_page(void)
1995 {
1996 RAMBlock *block;
1997 ram_addr_t last = 0;
1998
1999 rcu_read_lock();
2000 RAMBLOCK_FOREACH(block) {
2001 last = MAX(last, block->offset + block->max_length);
2002 }
2003 rcu_read_unlock();
2004 return last >> TARGET_PAGE_BITS;
2005 }
2006
2007 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2008 {
2009 int ret;
2010
2011 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2012 if (!machine_dump_guest_core(current_machine)) {
2013 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2014 if (ret) {
2015 perror("qemu_madvise");
2016 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2017 "but dump_guest_core=off specified\n");
2018 }
2019 }
2020 }
2021
2022 const char *qemu_ram_get_idstr(RAMBlock *rb)
2023 {
2024 return rb->idstr;
2025 }
2026
2027 void *qemu_ram_get_host_addr(RAMBlock *rb)
2028 {
2029 return rb->host;
2030 }
2031
2032 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2033 {
2034 return rb->offset;
2035 }
2036
2037 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2038 {
2039 return rb->used_length;
2040 }
2041
2042 bool qemu_ram_is_shared(RAMBlock *rb)
2043 {
2044 return rb->flags & RAM_SHARED;
2045 }
2046
2047 /* Note: Only set at the start of postcopy */
2048 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2049 {
2050 return rb->flags & RAM_UF_ZEROPAGE;
2051 }
2052
2053 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2054 {
2055 rb->flags |= RAM_UF_ZEROPAGE;
2056 }
2057
2058 bool qemu_ram_is_migratable(RAMBlock *rb)
2059 {
2060 return rb->flags & RAM_MIGRATABLE;
2061 }
2062
2063 void qemu_ram_set_migratable(RAMBlock *rb)
2064 {
2065 rb->flags |= RAM_MIGRATABLE;
2066 }
2067
2068 void qemu_ram_unset_migratable(RAMBlock *rb)
2069 {
2070 rb->flags &= ~RAM_MIGRATABLE;
2071 }
2072
2073 /* Called with iothread lock held. */
2074 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2075 {
2076 RAMBlock *block;
2077
2078 assert(new_block);
2079 assert(!new_block->idstr[0]);
2080
2081 if (dev) {
2082 char *id = qdev_get_dev_path(dev);
2083 if (id) {
2084 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2085 g_free(id);
2086 }
2087 }
2088 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2089
2090 rcu_read_lock();
2091 RAMBLOCK_FOREACH(block) {
2092 if (block != new_block &&
2093 !strcmp(block->idstr, new_block->idstr)) {
2094 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2095 new_block->idstr);
2096 abort();
2097 }
2098 }
2099 rcu_read_unlock();
2100 }
2101
2102 /* Called with iothread lock held. */
2103 void qemu_ram_unset_idstr(RAMBlock *block)
2104 {
2105 /* FIXME: arch_init.c assumes that this is not called throughout
2106 * migration. Ignore the problem since hot-unplug during migration
2107 * does not work anyway.
2108 */
2109 if (block) {
2110 memset(block->idstr, 0, sizeof(block->idstr));
2111 }
2112 }
2113
2114 size_t qemu_ram_pagesize(RAMBlock *rb)
2115 {
2116 return rb->page_size;
2117 }
2118
2119 /* Returns the largest size of page in use */
2120 size_t qemu_ram_pagesize_largest(void)
2121 {
2122 RAMBlock *block;
2123 size_t largest = 0;
2124
2125 RAMBLOCK_FOREACH(block) {
2126 largest = MAX(largest, qemu_ram_pagesize(block));
2127 }
2128
2129 return largest;
2130 }
2131
2132 static int memory_try_enable_merging(void *addr, size_t len)
2133 {
2134 if (!machine_mem_merge(current_machine)) {
2135 /* disabled by the user */
2136 return 0;
2137 }
2138
2139 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2140 }
2141
2142 /* Only legal before guest might have detected the memory size: e.g. on
2143 * incoming migration, or right after reset.
2144 *
2145 * As memory core doesn't know how is memory accessed, it is up to
2146 * resize callback to update device state and/or add assertions to detect
2147 * misuse, if necessary.
2148 */
2149 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2150 {
2151 assert(block);
2152
2153 newsize = HOST_PAGE_ALIGN(newsize);
2154
2155 if (block->used_length == newsize) {
2156 return 0;
2157 }
2158
2159 if (!(block->flags & RAM_RESIZEABLE)) {
2160 error_setg_errno(errp, EINVAL,
2161 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2162 " in != 0x" RAM_ADDR_FMT, block->idstr,
2163 newsize, block->used_length);
2164 return -EINVAL;
2165 }
2166
2167 if (block->max_length < newsize) {
2168 error_setg_errno(errp, EINVAL,
2169 "Length too large: %s: 0x" RAM_ADDR_FMT
2170 " > 0x" RAM_ADDR_FMT, block->idstr,
2171 newsize, block->max_length);
2172 return -EINVAL;
2173 }
2174
2175 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2176 block->used_length = newsize;
2177 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2178 DIRTY_CLIENTS_ALL);
2179 memory_region_set_size(block->mr, newsize);
2180 if (block->resized) {
2181 block->resized(block->idstr, newsize, block->host);
2182 }
2183 return 0;
2184 }
2185
2186 /* Called with ram_list.mutex held */
2187 static void dirty_memory_extend(ram_addr_t old_ram_size,
2188 ram_addr_t new_ram_size)
2189 {
2190 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2191 DIRTY_MEMORY_BLOCK_SIZE);
2192 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2193 DIRTY_MEMORY_BLOCK_SIZE);
2194 int i;
2195
2196 /* Only need to extend if block count increased */
2197 if (new_num_blocks <= old_num_blocks) {
2198 return;
2199 }
2200
2201 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2202 DirtyMemoryBlocks *old_blocks;
2203 DirtyMemoryBlocks *new_blocks;
2204 int j;
2205
2206 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2207 new_blocks = g_malloc(sizeof(*new_blocks) +
2208 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2209
2210 if (old_num_blocks) {
2211 memcpy(new_blocks->blocks, old_blocks->blocks,
2212 old_num_blocks * sizeof(old_blocks->blocks[0]));
2213 }
2214
2215 for (j = old_num_blocks; j < new_num_blocks; j++) {
2216 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2217 }
2218
2219 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2220
2221 if (old_blocks) {
2222 g_free_rcu(old_blocks, rcu);
2223 }
2224 }
2225 }
2226
2227 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2228 {
2229 RAMBlock *block;
2230 RAMBlock *last_block = NULL;
2231 ram_addr_t old_ram_size, new_ram_size;
2232 Error *err = NULL;
2233
2234 old_ram_size = last_ram_page();
2235
2236 qemu_mutex_lock_ramlist();
2237 new_block->offset = find_ram_offset(new_block->max_length);
2238
2239 if (!new_block->host) {
2240 if (xen_enabled()) {
2241 xen_ram_alloc(new_block->offset, new_block->max_length,
2242 new_block->mr, &err);
2243 if (err) {
2244 error_propagate(errp, err);
2245 qemu_mutex_unlock_ramlist();
2246 return;
2247 }
2248 } else {
2249 new_block->host = phys_mem_alloc(new_block->max_length,
2250 &new_block->mr->align, shared);
2251 if (!new_block->host) {
2252 error_setg_errno(errp, errno,
2253 "cannot set up guest memory '%s'",
2254 memory_region_name(new_block->mr));
2255 qemu_mutex_unlock_ramlist();
2256 return;
2257 }
2258 memory_try_enable_merging(new_block->host, new_block->max_length);
2259 }
2260 }
2261
2262 new_ram_size = MAX(old_ram_size,
2263 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2264 if (new_ram_size > old_ram_size) {
2265 dirty_memory_extend(old_ram_size, new_ram_size);
2266 }
2267 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2268 * QLIST (which has an RCU-friendly variant) does not have insertion at
2269 * tail, so save the last element in last_block.
2270 */
2271 RAMBLOCK_FOREACH(block) {
2272 last_block = block;
2273 if (block->max_length < new_block->max_length) {
2274 break;
2275 }
2276 }
2277 if (block) {
2278 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2279 } else if (last_block) {
2280 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2281 } else { /* list is empty */
2282 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2283 }
2284 ram_list.mru_block = NULL;
2285
2286 /* Write list before version */
2287 smp_wmb();
2288 ram_list.version++;
2289 qemu_mutex_unlock_ramlist();
2290
2291 cpu_physical_memory_set_dirty_range(new_block->offset,
2292 new_block->used_length,
2293 DIRTY_CLIENTS_ALL);
2294
2295 if (new_block->host) {
2296 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2297 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2298 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2299 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2300 ram_block_notify_add(new_block->host, new_block->max_length);
2301 }
2302 }
2303
2304 #ifdef CONFIG_POSIX
2305 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2306 uint32_t ram_flags, int fd,
2307 Error **errp)
2308 {
2309 RAMBlock *new_block;
2310 Error *local_err = NULL;
2311 int64_t file_size;
2312
2313 /* Just support these ram flags by now. */
2314 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2315
2316 if (xen_enabled()) {
2317 error_setg(errp, "-mem-path not supported with Xen");
2318 return NULL;
2319 }
2320
2321 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2322 error_setg(errp,
2323 "host lacks kvm mmu notifiers, -mem-path unsupported");
2324 return NULL;
2325 }
2326
2327 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2328 /*
2329 * file_ram_alloc() needs to allocate just like
2330 * phys_mem_alloc, but we haven't bothered to provide
2331 * a hook there.
2332 */
2333 error_setg(errp,
2334 "-mem-path not supported with this accelerator");
2335 return NULL;
2336 }
2337
2338 size = HOST_PAGE_ALIGN(size);
2339 file_size = get_file_size(fd);
2340 if (file_size > 0 && file_size < size) {
2341 error_setg(errp, "backing store %s size 0x%" PRIx64
2342 " does not match 'size' option 0x" RAM_ADDR_FMT,
2343 mem_path, file_size, size);
2344 return NULL;
2345 }
2346
2347 new_block = g_malloc0(sizeof(*new_block));
2348 new_block->mr = mr;
2349 new_block->used_length = size;
2350 new_block->max_length = size;
2351 new_block->flags = ram_flags;
2352 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2353 if (!new_block->host) {
2354 g_free(new_block);
2355 return NULL;
2356 }
2357
2358 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2359 if (local_err) {
2360 g_free(new_block);
2361 error_propagate(errp, local_err);
2362 return NULL;
2363 }
2364 return new_block;
2365
2366 }
2367
2368
2369 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2370 uint32_t ram_flags, const char *mem_path,
2371 Error **errp)
2372 {
2373 int fd;
2374 bool created;
2375 RAMBlock *block;
2376
2377 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2378 if (fd < 0) {
2379 return NULL;
2380 }
2381
2382 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2383 if (!block) {
2384 if (created) {
2385 unlink(mem_path);
2386 }
2387 close(fd);
2388 return NULL;
2389 }
2390
2391 return block;
2392 }
2393 #endif
2394
2395 static
2396 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2397 void (*resized)(const char*,
2398 uint64_t length,
2399 void *host),
2400 void *host, bool resizeable, bool share,
2401 MemoryRegion *mr, Error **errp)
2402 {
2403 RAMBlock *new_block;
2404 Error *local_err = NULL;
2405
2406 size = HOST_PAGE_ALIGN(size);
2407 max_size = HOST_PAGE_ALIGN(max_size);
2408 new_block = g_malloc0(sizeof(*new_block));
2409 new_block->mr = mr;
2410 new_block->resized = resized;
2411 new_block->used_length = size;
2412 new_block->max_length = max_size;
2413 assert(max_size >= size);
2414 new_block->fd = -1;
2415 new_block->page_size = getpagesize();
2416 new_block->host = host;
2417 if (host) {
2418 new_block->flags |= RAM_PREALLOC;
2419 }
2420 if (resizeable) {
2421 new_block->flags |= RAM_RESIZEABLE;
2422 }
2423 ram_block_add(new_block, &local_err, share);
2424 if (local_err) {
2425 g_free(new_block);
2426 error_propagate(errp, local_err);
2427 return NULL;
2428 }
2429 return new_block;
2430 }
2431
2432 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2433 MemoryRegion *mr, Error **errp)
2434 {
2435 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2436 false, mr, errp);
2437 }
2438
2439 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2440 MemoryRegion *mr, Error **errp)
2441 {
2442 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2443 share, mr, errp);
2444 }
2445
2446 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2447 void (*resized)(const char*,
2448 uint64_t length,
2449 void *host),
2450 MemoryRegion *mr, Error **errp)
2451 {
2452 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2453 false, mr, errp);
2454 }
2455
2456 static void reclaim_ramblock(RAMBlock *block)
2457 {
2458 if (block->flags & RAM_PREALLOC) {
2459 ;
2460 } else if (xen_enabled()) {
2461 xen_invalidate_map_cache_entry(block->host);
2462 #ifndef _WIN32
2463 } else if (block->fd >= 0) {
2464 qemu_ram_munmap(block->fd, block->host, block->max_length);
2465 close(block->fd);
2466 #endif
2467 } else {
2468 qemu_anon_ram_free(block->host, block->max_length);
2469 }
2470 g_free(block);
2471 }
2472
2473 void qemu_ram_free(RAMBlock *block)
2474 {
2475 if (!block) {
2476 return;
2477 }
2478
2479 if (block->host) {
2480 ram_block_notify_remove(block->host, block->max_length);
2481 }
2482
2483 qemu_mutex_lock_ramlist();
2484 QLIST_REMOVE_RCU(block, next);
2485 ram_list.mru_block = NULL;
2486 /* Write list before version */
2487 smp_wmb();
2488 ram_list.version++;
2489 call_rcu(block, reclaim_ramblock, rcu);
2490 qemu_mutex_unlock_ramlist();
2491 }
2492
2493 #ifndef _WIN32
2494 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2495 {
2496 RAMBlock *block;
2497 ram_addr_t offset;
2498 int flags;
2499 void *area, *vaddr;
2500
2501 RAMBLOCK_FOREACH(block) {
2502 offset = addr - block->offset;
2503 if (offset < block->max_length) {
2504 vaddr = ramblock_ptr(block, offset);
2505 if (block->flags & RAM_PREALLOC) {
2506 ;
2507 } else if (xen_enabled()) {
2508 abort();
2509 } else {
2510 flags = MAP_FIXED;
2511 if (block->fd >= 0) {
2512 flags |= (block->flags & RAM_SHARED ?
2513 MAP_SHARED : MAP_PRIVATE);
2514 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2515 flags, block->fd, offset);
2516 } else {
2517 /*
2518 * Remap needs to match alloc. Accelerators that
2519 * set phys_mem_alloc never remap. If they did,
2520 * we'd need a remap hook here.
2521 */
2522 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2523
2524 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2525 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2526 flags, -1, 0);
2527 }
2528 if (area != vaddr) {
2529 error_report("Could not remap addr: "
2530 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2531 length, addr);
2532 exit(1);
2533 }
2534 memory_try_enable_merging(vaddr, length);
2535 qemu_ram_setup_dump(vaddr, length);
2536 }
2537 }
2538 }
2539 }
2540 #endif /* !_WIN32 */
2541
2542 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2543 * This should not be used for general purpose DMA. Use address_space_map
2544 * or address_space_rw instead. For local memory (e.g. video ram) that the
2545 * device owns, use memory_region_get_ram_ptr.
2546 *
2547 * Called within RCU critical section.
2548 */
2549 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2550 {
2551 RAMBlock *block = ram_block;
2552
2553 if (block == NULL) {
2554 block = qemu_get_ram_block(addr);
2555 addr -= block->offset;
2556 }
2557
2558 if (xen_enabled() && block->host == NULL) {
2559 /* We need to check if the requested address is in the RAM
2560 * because we don't want to map the entire memory in QEMU.
2561 * In that case just map until the end of the page.
2562 */
2563 if (block->offset == 0) {
2564 return xen_map_cache(addr, 0, 0, false);
2565 }
2566
2567 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2568 }
2569 return ramblock_ptr(block, addr);
2570 }
2571
2572 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2573 * but takes a size argument.
2574 *
2575 * Called within RCU critical section.
2576 */
2577 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2578 hwaddr *size, bool lock)
2579 {
2580 RAMBlock *block = ram_block;
2581 if (*size == 0) {
2582 return NULL;
2583 }
2584
2585 if (block == NULL) {
2586 block = qemu_get_ram_block(addr);
2587 addr -= block->offset;
2588 }
2589 *size = MIN(*size, block->max_length - addr);
2590
2591 if (xen_enabled() && block->host == NULL) {
2592 /* We need to check if the requested address is in the RAM
2593 * because we don't want to map the entire memory in QEMU.
2594 * In that case just map the requested area.
2595 */
2596 if (block->offset == 0) {
2597 return xen_map_cache(addr, *size, lock, lock);
2598 }
2599
2600 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2601 }
2602
2603 return ramblock_ptr(block, addr);
2604 }
2605
2606 /* Return the offset of a hostpointer within a ramblock */
2607 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2608 {
2609 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2610 assert((uintptr_t)host >= (uintptr_t)rb->host);
2611 assert(res < rb->max_length);
2612
2613 return res;
2614 }
2615
2616 /*
2617 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2618 * in that RAMBlock.
2619 *
2620 * ptr: Host pointer to look up
2621 * round_offset: If true round the result offset down to a page boundary
2622 * *ram_addr: set to result ram_addr
2623 * *offset: set to result offset within the RAMBlock
2624 *
2625 * Returns: RAMBlock (or NULL if not found)
2626 *
2627 * By the time this function returns, the returned pointer is not protected
2628 * by RCU anymore. If the caller is not within an RCU critical section and
2629 * does not hold the iothread lock, it must have other means of protecting the
2630 * pointer, such as a reference to the region that includes the incoming
2631 * ram_addr_t.
2632 */
2633 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2634 ram_addr_t *offset)
2635 {
2636 RAMBlock *block;
2637 uint8_t *host = ptr;
2638
2639 if (xen_enabled()) {
2640 ram_addr_t ram_addr;
2641 rcu_read_lock();
2642 ram_addr = xen_ram_addr_from_mapcache(ptr);
2643 block = qemu_get_ram_block(ram_addr);
2644 if (block) {
2645 *offset = ram_addr - block->offset;
2646 }
2647 rcu_read_unlock();
2648 return block;
2649 }
2650
2651 rcu_read_lock();
2652 block = atomic_rcu_read(&ram_list.mru_block);
2653 if (block && block->host && host - block->host < block->max_length) {
2654 goto found;
2655 }
2656
2657 RAMBLOCK_FOREACH(block) {
2658 /* This case append when the block is not mapped. */
2659 if (block->host == NULL) {
2660 continue;
2661 }
2662 if (host - block->host < block->max_length) {
2663 goto found;
2664 }
2665 }
2666
2667 rcu_read_unlock();
2668 return NULL;
2669
2670 found:
2671 *offset = (host - block->host);
2672 if (round_offset) {
2673 *offset &= TARGET_PAGE_MASK;
2674 }
2675 rcu_read_unlock();
2676 return block;
2677 }
2678
2679 /*
2680 * Finds the named RAMBlock
2681 *
2682 * name: The name of RAMBlock to find
2683 *
2684 * Returns: RAMBlock (or NULL if not found)
2685 */
2686 RAMBlock *qemu_ram_block_by_name(const char *name)
2687 {
2688 RAMBlock *block;
2689
2690 RAMBLOCK_FOREACH(block) {
2691 if (!strcmp(name, block->idstr)) {
2692 return block;
2693 }
2694 }
2695
2696 return NULL;
2697 }
2698
2699 /* Some of the softmmu routines need to translate from a host pointer
2700 (typically a TLB entry) back to a ram offset. */
2701 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2702 {
2703 RAMBlock *block;
2704 ram_addr_t offset;
2705
2706 block = qemu_ram_block_from_host(ptr, false, &offset);
2707 if (!block) {
2708 return RAM_ADDR_INVALID;
2709 }
2710
2711 return block->offset + offset;
2712 }
2713
2714 /* Called within RCU critical section. */
2715 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2716 CPUState *cpu,
2717 vaddr mem_vaddr,
2718 ram_addr_t ram_addr,
2719 unsigned size)
2720 {
2721 ndi->cpu = cpu;
2722 ndi->ram_addr = ram_addr;
2723 ndi->mem_vaddr = mem_vaddr;
2724 ndi->size = size;
2725 ndi->pages = NULL;
2726
2727 assert(tcg_enabled());
2728 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2729 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2730 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2731 }
2732 }
2733
2734 /* Called within RCU critical section. */
2735 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2736 {
2737 if (ndi->pages) {
2738 assert(tcg_enabled());
2739 page_collection_unlock(ndi->pages);
2740 ndi->pages = NULL;
2741 }
2742
2743 /* Set both VGA and migration bits for simplicity and to remove
2744 * the notdirty callback faster.
2745 */
2746 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2747 DIRTY_CLIENTS_NOCODE);
2748 /* we remove the notdirty callback only if the code has been
2749 flushed */
2750 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2751 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2752 }
2753 }
2754
2755 /* Called within RCU critical section. */
2756 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2757 uint64_t val, unsigned size)
2758 {
2759 NotDirtyInfo ndi;
2760
2761 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2762 ram_addr, size);
2763
2764 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2765 memory_notdirty_write_complete(&ndi);
2766 }
2767
2768 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2769 unsigned size, bool is_write,
2770 MemTxAttrs attrs)
2771 {
2772 return is_write;
2773 }
2774
2775 static const MemoryRegionOps notdirty_mem_ops = {
2776 .write = notdirty_mem_write,
2777 .valid.accepts = notdirty_mem_accepts,
2778 .endianness = DEVICE_NATIVE_ENDIAN,
2779 .valid = {
2780 .min_access_size = 1,
2781 .max_access_size = 8,
2782 .unaligned = false,
2783 },
2784 .impl = {
2785 .min_access_size = 1,
2786 .max_access_size = 8,
2787 .unaligned = false,
2788 },
2789 };
2790
2791 /* Generate a debug exception if a watchpoint has been hit. */
2792 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2793 MemTxAttrs attrs, int flags, uintptr_t ra)
2794 {
2795 CPUClass *cc = CPU_GET_CLASS(cpu);
2796 CPUWatchpoint *wp;
2797
2798 assert(tcg_enabled());
2799 if (cpu->watchpoint_hit) {
2800 /* We re-entered the check after replacing the TB. Now raise
2801 * the debug interrupt so that is will trigger after the
2802 * current instruction. */
2803 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2804 return;
2805 }
2806
2807 addr = cc->adjust_watchpoint_address(cpu, addr, len);
2808 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2809 if (cpu_watchpoint_address_matches(wp, addr, len)
2810 && (wp->flags & flags)) {
2811 if (flags == BP_MEM_READ) {
2812 wp->flags |= BP_WATCHPOINT_HIT_READ;
2813 } else {
2814 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2815 }
2816 wp->hitaddr = MAX(addr, wp->vaddr);
2817 wp->hitattrs = attrs;
2818 if (!cpu->watchpoint_hit) {
2819 if (wp->flags & BP_CPU &&
2820 !cc->debug_check_watchpoint(cpu, wp)) {
2821 wp->flags &= ~BP_WATCHPOINT_HIT;
2822 continue;
2823 }
2824 cpu->watchpoint_hit = wp;
2825
2826 mmap_lock();
2827 tb_check_watchpoint(cpu);
2828 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2829 cpu->exception_index = EXCP_DEBUG;
2830 mmap_unlock();
2831 cpu_loop_exit_restore(cpu, ra);
2832 } else {
2833 /* Force execution of one insn next time. */
2834 cpu->cflags_next_tb = 1 | curr_cflags();
2835 mmap_unlock();
2836 if (ra) {
2837 cpu_restore_state(cpu, ra, true);
2838 }
2839 cpu_loop_exit_noexc(cpu);
2840 }
2841 }
2842 } else {
2843 wp->flags &= ~BP_WATCHPOINT_HIT;
2844 }
2845 }
2846 }
2847
2848 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2849 {
2850 CPUState *cpu = current_cpu;
2851 vaddr addr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2852
2853 cpu_check_watchpoint(cpu, addr, len, attrs, flags, 0);
2854 }
2855
2856 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2857 so these check for a hit then pass through to the normal out-of-line
2858 phys routines. */
2859 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2860 unsigned size, MemTxAttrs attrs)
2861 {
2862 MemTxResult res;
2863 uint64_t data;
2864 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2865 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2866
2867 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2868 switch (size) {
2869 case 1:
2870 data = address_space_ldub(as, addr, attrs, &res);
2871 break;
2872 case 2:
2873 data = address_space_lduw(as, addr, attrs, &res);
2874 break;
2875 case 4:
2876 data = address_space_ldl(as, addr, attrs, &res);
2877 break;
2878 case 8:
2879 data = address_space_ldq(as, addr, attrs, &res);
2880 break;
2881 default: abort();
2882 }
2883 *pdata = data;
2884 return res;
2885 }
2886
2887 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2888 uint64_t val, unsigned size,
2889 MemTxAttrs attrs)
2890 {
2891 MemTxResult res;
2892 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2893 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2894
2895 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2896 switch (size) {
2897 case 1:
2898 address_space_stb(as, addr, val, attrs, &res);
2899 break;
2900 case 2:
2901 address_space_stw(as, addr, val, attrs, &res);
2902 break;
2903 case 4:
2904 address_space_stl(as, addr, val, attrs, &res);
2905 break;
2906 case 8:
2907 address_space_stq(as, addr, val, attrs, &res);
2908 break;
2909 default: abort();
2910 }
2911 return res;
2912 }
2913
2914 static const MemoryRegionOps watch_mem_ops = {
2915 .read_with_attrs = watch_mem_read,
2916 .write_with_attrs = watch_mem_write,
2917 .endianness = DEVICE_NATIVE_ENDIAN,
2918 .valid = {
2919 .min_access_size = 1,
2920 .max_access_size = 8,
2921 .unaligned = false,
2922 },
2923 .impl = {
2924 .min_access_size = 1,
2925 .max_access_size = 8,
2926 .unaligned = false,
2927 },
2928 };
2929
2930 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2931 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2932 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2933 const uint8_t *buf, hwaddr len);
2934 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2935 bool is_write, MemTxAttrs attrs);
2936
2937 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2938 unsigned len, MemTxAttrs attrs)
2939 {
2940 subpage_t *subpage = opaque;
2941 uint8_t buf[8];
2942 MemTxResult res;
2943
2944 #if defined(DEBUG_SUBPAGE)
2945 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2946 subpage, len, addr);
2947 #endif
2948 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2949 if (res) {
2950 return res;
2951 }
2952 *data = ldn_p(buf, len);
2953 return MEMTX_OK;
2954 }
2955
2956 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2957 uint64_t value, unsigned len, MemTxAttrs attrs)
2958 {
2959 subpage_t *subpage = opaque;
2960 uint8_t buf[8];
2961
2962 #if defined(DEBUG_SUBPAGE)
2963 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2964 " value %"PRIx64"\n",
2965 __func__, subpage, len, addr, value);
2966 #endif
2967 stn_p(buf, len, value);
2968 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2969 }
2970
2971 static bool subpage_accepts(void *opaque, hwaddr addr,
2972 unsigned len, bool is_write,
2973 MemTxAttrs attrs)
2974 {
2975 subpage_t *subpage = opaque;
2976 #if defined(DEBUG_SUBPAGE)
2977 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2978 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2979 #endif
2980
2981 return flatview_access_valid(subpage->fv, addr + subpage->base,
2982 len, is_write, attrs);
2983 }
2984
2985 static const MemoryRegionOps subpage_ops = {
2986 .read_with_attrs = subpage_read,
2987 .write_with_attrs = subpage_write,
2988 .impl.min_access_size = 1,
2989 .impl.max_access_size = 8,
2990 .valid.min_access_size = 1,
2991 .valid.max_access_size = 8,
2992 .valid.accepts = subpage_accepts,
2993 .endianness = DEVICE_NATIVE_ENDIAN,
2994 };
2995
2996 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2997 uint16_t section)
2998 {
2999 int idx, eidx;
3000
3001 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3002 return -1;
3003 idx = SUBPAGE_IDX(start);
3004 eidx = SUBPAGE_IDX(end);
3005 #if defined(DEBUG_SUBPAGE)
3006 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
3007 __func__, mmio, start, end, idx, eidx, section);
3008 #endif
3009 for (; idx <= eidx; idx++) {
3010 mmio->sub_section[idx] = section;
3011 }
3012
3013 return 0;
3014 }
3015
3016 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
3017 {
3018 subpage_t *mmio;
3019
3020 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
3021 mmio->fv = fv;
3022 mmio->base = base;
3023 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
3024 NULL, TARGET_PAGE_SIZE);
3025 mmio->iomem.subpage = true;
3026 #if defined(DEBUG_SUBPAGE)
3027 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
3028 mmio, base, TARGET_PAGE_SIZE);
3029 #endif
3030 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
3031
3032 return mmio;
3033 }
3034
3035 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
3036 {
3037 assert(fv);
3038 MemoryRegionSection section = {
3039 .fv = fv,
3040 .mr = mr,
3041 .offset_within_address_space = 0,
3042 .offset_within_region = 0,
3043 .size = int128_2_64(),
3044 };
3045
3046 return phys_section_add(map, &section);
3047 }
3048
3049 static void readonly_mem_write(void *opaque, hwaddr addr,
3050 uint64_t val, unsigned size)
3051 {
3052 /* Ignore any write to ROM. */
3053 }
3054
3055 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
3056 unsigned size, bool is_write,
3057 MemTxAttrs attrs)
3058 {
3059 return is_write;
3060 }
3061
3062 /* This will only be used for writes, because reads are special cased
3063 * to directly access the underlying host ram.
3064 */
3065 static const MemoryRegionOps readonly_mem_ops = {
3066 .write = readonly_mem_write,
3067 .valid.accepts = readonly_mem_accepts,
3068 .endianness = DEVICE_NATIVE_ENDIAN,
3069 .valid = {
3070 .min_access_size = 1,
3071 .max_access_size = 8,
3072 .unaligned = false,
3073 },
3074 .impl = {
3075 .min_access_size = 1,
3076 .max_access_size = 8,
3077 .unaligned = false,
3078 },
3079 };
3080
3081 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3082 hwaddr index, MemTxAttrs attrs)
3083 {
3084 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3085 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3086 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3087 MemoryRegionSection *sections = d->map.sections;
3088
3089 return &sections[index & ~TARGET_PAGE_MASK];
3090 }
3091
3092 static void io_mem_init(void)
3093 {
3094 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3095 NULL, NULL, UINT64_MAX);
3096 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3097 NULL, UINT64_MAX);
3098
3099 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3100 * which can be called without the iothread mutex.
3101 */
3102 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3103 NULL, UINT64_MAX);
3104 memory_region_clear_global_locking(&io_mem_notdirty);
3105
3106 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3107 NULL, UINT64_MAX);
3108 }
3109
3110 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3111 {
3112 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3113 uint16_t n;
3114
3115 n = dummy_section(&d->map, fv, &io_mem_unassigned);
3116 assert(n == PHYS_SECTION_UNASSIGNED);
3117 n = dummy_section(&d->map, fv, &io_mem_notdirty);
3118 assert(n == PHYS_SECTION_NOTDIRTY);
3119 n = dummy_section(&d->map, fv, &io_mem_rom);
3120 assert(n == PHYS_SECTION_ROM);
3121 n = dummy_section(&d->map, fv, &io_mem_watch);
3122 assert(n == PHYS_SECTION_WATCH);
3123
3124 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3125
3126 return d;
3127 }
3128
3129 void address_space_dispatch_free(AddressSpaceDispatch *d)
3130 {
3131 phys_sections_free(&d->map);
3132 g_free(d);
3133 }
3134
3135 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
3136 {
3137 }
3138
3139 static void tcg_log_global_after_sync(MemoryListener *listener)
3140 {
3141 CPUAddressSpace *cpuas;
3142
3143 /* Wait for the CPU to end the current TB. This avoids the following
3144 * incorrect race:
3145 *
3146 * vCPU migration
3147 * ---------------------- -------------------------
3148 * TLB check -> slow path
3149 * notdirty_mem_write
3150 * write to RAM
3151 * mark dirty
3152 * clear dirty flag
3153 * TLB check -> fast path
3154 * read memory
3155 * write to RAM
3156 *
3157 * by pushing the migration thread's memory read after the vCPU thread has
3158 * written the memory.
3159 */
3160 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3161 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
3162 }
3163
3164 static void tcg_commit(MemoryListener *listener)
3165 {
3166 CPUAddressSpace *cpuas;
3167 AddressSpaceDispatch *d;
3168
3169 assert(tcg_enabled());
3170 /* since each CPU stores ram addresses in its TLB cache, we must
3171 reset the modified entries */
3172 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3173 cpu_reloading_memory_map();
3174 /* The CPU and TLB are protected by the iothread lock.
3175 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3176 * may have split the RCU critical section.
3177 */
3178 d = address_space_to_dispatch(cpuas->as);
3179 atomic_rcu_set(&cpuas->memory_dispatch, d);
3180 tlb_flush(cpuas->cpu);
3181 }
3182
3183 static void memory_map_init(void)
3184 {
3185 system_memory = g_malloc(sizeof(*system_memory));
3186
3187 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3188 address_space_init(&address_space_memory, system_memory, "memory");
3189
3190 system_io = g_malloc(sizeof(*system_io));
3191 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3192 65536);
3193 address_space_init(&address_space_io, system_io, "I/O");
3194 }
3195
3196 MemoryRegion *get_system_memory(void)
3197 {
3198 return system_memory;
3199 }
3200
3201 MemoryRegion *get_system_io(void)
3202 {
3203 return system_io;
3204 }
3205
3206 #endif /* !defined(CONFIG_USER_ONLY) */
3207
3208 /* physical memory access (slow version, mainly for debug) */
3209 #if defined(CONFIG_USER_ONLY)
3210 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3211 uint8_t *buf, target_ulong len, int is_write)
3212 {
3213 int flags;
3214 target_ulong l, page;
3215 void * p;
3216
3217 while (len > 0) {
3218 page = addr & TARGET_PAGE_MASK;
3219 l = (page + TARGET_PAGE_SIZE) - addr;
3220 if (l > len)
3221 l = len;
3222 flags = page_get_flags(page);
3223 if (!(flags & PAGE_VALID))
3224 return -1;
3225 if (is_write) {
3226 if (!(flags & PAGE_WRITE))
3227 return -1;
3228 /* XXX: this code should not depend on lock_user */
3229 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3230 return -1;
3231 memcpy(p, buf, l);
3232 unlock_user(p, addr, l);
3233 } else {
3234 if (!(flags & PAGE_READ))
3235 return -1;
3236 /* XXX: this code should not depend on lock_user */
3237 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3238 return -1;
3239 memcpy(buf, p, l);
3240 unlock_user(p, addr, 0);
3241 }
3242 len -= l;
3243 buf += l;
3244 addr += l;
3245 }
3246 return 0;
3247 }
3248
3249 #else
3250
3251 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3252 hwaddr length)
3253 {
3254 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3255 addr += memory_region_get_ram_addr(mr);
3256
3257 /* No early return if dirty_log_mask is or becomes 0, because
3258 * cpu_physical_memory_set_dirty_range will still call
3259 * xen_modified_memory.
3260 */
3261 if (dirty_log_mask) {
3262 dirty_log_mask =
3263 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3264 }
3265 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3266 assert(tcg_enabled());
3267 tb_invalidate_phys_range(addr, addr + length);
3268 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3269 }
3270 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3271 }
3272
3273 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3274 {
3275 /*
3276 * In principle this function would work on other memory region types too,
3277 * but the ROM device use case is the only one where this operation is
3278 * necessary. Other memory regions should use the
3279 * address_space_read/write() APIs.
3280 */
3281 assert(memory_region_is_romd(mr));
3282
3283 invalidate_and_set_dirty(mr, addr, size);
3284 }
3285
3286 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3287 {
3288 unsigned access_size_max = mr->ops->valid.max_access_size;
3289
3290 /* Regions are assumed to support 1-4 byte accesses unless
3291 otherwise specified. */
3292 if (access_size_max == 0) {
3293 access_size_max = 4;
3294 }
3295
3296 /* Bound the maximum access by the alignment of the address. */
3297 if (!mr->ops->impl.unaligned) {
3298 unsigned align_size_max = addr & -addr;
3299 if (align_size_max != 0 && align_size_max < access_size_max) {
3300 access_size_max = align_size_max;
3301 }
3302 }
3303
3304 /* Don't attempt accesses larger than the maximum. */
3305 if (l > access_size_max) {
3306 l = access_size_max;
3307 }
3308 l = pow2floor(l);
3309
3310 return l;
3311 }
3312
3313 static bool prepare_mmio_access(MemoryRegion *mr)
3314 {
3315 bool unlocked = !qemu_mutex_iothread_locked();
3316 bool release_lock = false;
3317
3318 if (unlocked && mr->global_locking) {
3319 qemu_mutex_lock_iothread();
3320 unlocked = false;
3321 release_lock = true;
3322 }
3323 if (mr->flush_coalesced_mmio) {
3324 if (unlocked) {
3325 qemu_mutex_lock_iothread();
3326 }
3327 qemu_flush_coalesced_mmio_buffer();
3328 if (unlocked) {
3329 qemu_mutex_unlock_iothread();
3330 }
3331 }
3332
3333 return release_lock;
3334 }
3335
3336 /* Called within RCU critical section. */
3337 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3338 MemTxAttrs attrs,
3339 const uint8_t *buf,
3340 hwaddr len, hwaddr addr1,
3341 hwaddr l, MemoryRegion *mr)
3342 {
3343 uint8_t *ptr;
3344 uint64_t val;
3345 MemTxResult result = MEMTX_OK;
3346 bool release_lock = false;
3347
3348 for (;;) {
3349 if (!memory_access_is_direct(mr, true)) {
3350 release_lock |= prepare_mmio_access(mr);
3351 l = memory_access_size(mr, l, addr1);
3352 /* XXX: could force current_cpu to NULL to avoid
3353 potential bugs */
3354 val = ldn_he_p(buf, l);
3355 result |= memory_region_dispatch_write(mr, addr1, val,
3356 size_memop(l), attrs);
3357 } else {
3358 /* RAM case */
3359 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3360 memcpy(ptr, buf, l);
3361 invalidate_and_set_dirty(mr, addr1, l);
3362 }
3363
3364 if (release_lock) {
3365 qemu_mutex_unlock_iothread();
3366 release_lock = false;
3367 }
3368
3369 len -= l;
3370 buf += l;
3371 addr += l;
3372
3373 if (!len) {
3374 break;
3375 }
3376
3377 l = len;
3378 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3379 }
3380
3381 return result;
3382 }
3383
3384 /* Called from RCU critical section. */
3385 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3386 const uint8_t *buf, hwaddr len)
3387 {
3388 hwaddr l;
3389 hwaddr addr1;
3390 MemoryRegion *mr;
3391 MemTxResult result = MEMTX_OK;
3392
3393 l = len;
3394 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3395 result = flatview_write_continue(fv, addr, attrs, buf, len,
3396 addr1, l, mr);
3397
3398 return result;
3399 }
3400
3401 /* Called within RCU critical section. */
3402 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3403 MemTxAttrs attrs, uint8_t *buf,
3404 hwaddr len, hwaddr addr1, hwaddr l,
3405 MemoryRegion *mr)
3406 {
3407 uint8_t *ptr;
3408 uint64_t val;
3409 MemTxResult result = MEMTX_OK;
3410 bool release_lock = false;
3411
3412 for (;;) {
3413 if (!memory_access_is_direct(mr, false)) {
3414 /* I/O case */
3415 release_lock |= prepare_mmio_access(mr);
3416 l = memory_access_size(mr, l, addr1);
3417 result |= memory_region_dispatch_read(mr, addr1, &val,
3418 size_memop(l), attrs);
3419 stn_he_p(buf, l, val);
3420 } else {
3421 /* RAM case */
3422 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3423 memcpy(buf, ptr, l);
3424 }
3425
3426 if (release_lock) {
3427 qemu_mutex_unlock_iothread();
3428 release_lock = false;
3429 }
3430
3431 len -= l;
3432 buf += l;
3433 addr += l;
3434
3435 if (!len) {
3436 break;
3437 }
3438
3439 l = len;
3440 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3441 }
3442
3443 return result;
3444 }
3445
3446 /* Called from RCU critical section. */
3447 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3448 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3449 {
3450 hwaddr l;
3451 hwaddr addr1;
3452 MemoryRegion *mr;
3453
3454 l = len;
3455 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3456 return flatview_read_continue(fv, addr, attrs, buf, len,
3457 addr1, l, mr);
3458 }
3459
3460 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3461 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3462 {
3463 MemTxResult result = MEMTX_OK;
3464 FlatView *fv;
3465
3466 if (len > 0) {
3467 rcu_read_lock();
3468 fv = address_space_to_flatview(as);
3469 result = flatview_read(fv, addr, attrs, buf, len);
3470 rcu_read_unlock();
3471 }
3472
3473 return result;
3474 }
3475
3476 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3477 MemTxAttrs attrs,
3478 const uint8_t *buf, hwaddr len)
3479 {
3480 MemTxResult result = MEMTX_OK;
3481 FlatView *fv;
3482
3483 if (len > 0) {
3484 rcu_read_lock();
3485 fv = address_space_to_flatview(as);
3486 result = flatview_write(fv, addr, attrs, buf, len);
3487 rcu_read_unlock();
3488 }
3489
3490 return result;
3491 }
3492
3493 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3494 uint8_t *buf, hwaddr len, bool is_write)
3495 {
3496 if (is_write) {
3497 return address_space_write(as, addr, attrs, buf, len);
3498 } else {
3499 return address_space_read_full(as, addr, attrs, buf, len);
3500 }
3501 }
3502
3503 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3504 hwaddr len, int is_write)
3505 {
3506 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3507 buf, len, is_write);
3508 }
3509
3510 enum write_rom_type {
3511 WRITE_DATA,
3512 FLUSH_CACHE,
3513 };
3514
3515 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3516 hwaddr addr,
3517 MemTxAttrs attrs,
3518 const uint8_t *buf,
3519 hwaddr len,
3520 enum write_rom_type type)
3521 {
3522 hwaddr l;
3523 uint8_t *ptr;
3524 hwaddr addr1;
3525 MemoryRegion *mr;
3526
3527 rcu_read_lock();
3528 while (len > 0) {
3529 l = len;
3530 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3531
3532 if (!(memory_region_is_ram(mr) ||
3533 memory_region_is_romd(mr))) {
3534 l = memory_access_size(mr, l, addr1);
3535 } else {
3536 /* ROM/RAM case */
3537 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3538 switch (type) {
3539 case WRITE_DATA:
3540 memcpy(ptr, buf, l);
3541 invalidate_and_set_dirty(mr, addr1, l);
3542 break;
3543 case FLUSH_CACHE:
3544 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3545 break;
3546 }
3547 }
3548 len -= l;
3549 buf += l;
3550 addr += l;
3551 }
3552 rcu_read_unlock();
3553 return MEMTX_OK;
3554 }
3555
3556 /* used for ROM loading : can write in RAM and ROM */
3557 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3558 MemTxAttrs attrs,
3559 const uint8_t *buf, hwaddr len)
3560 {
3561 return address_space_write_rom_internal(as, addr, attrs,
3562 buf, len, WRITE_DATA);
3563 }
3564
3565 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3566 {
3567 /*
3568 * This function should do the same thing as an icache flush that was
3569 * triggered from within the guest. For TCG we are always cache coherent,
3570 * so there is no need to flush anything. For KVM / Xen we need to flush
3571 * the host's instruction cache at least.
3572 */
3573 if (tcg_enabled()) {
3574 return;
3575 }
3576
3577 address_space_write_rom_internal(&address_space_memory,
3578 start, MEMTXATTRS_UNSPECIFIED,
3579 NULL, len, FLUSH_CACHE);
3580 }
3581
3582 typedef struct {
3583 MemoryRegion *mr;
3584 void *buffer;
3585 hwaddr addr;
3586 hwaddr len;
3587 bool in_use;
3588 } BounceBuffer;
3589
3590 static BounceBuffer bounce;
3591
3592 typedef struct MapClient {
3593 QEMUBH *bh;
3594 QLIST_ENTRY(MapClient) link;
3595 } MapClient;
3596
3597 QemuMutex map_client_list_lock;
3598 static QLIST_HEAD(, MapClient) map_client_list
3599 = QLIST_HEAD_INITIALIZER(map_client_list);
3600
3601 static void cpu_unregister_map_client_do(MapClient *client)
3602 {
3603 QLIST_REMOVE(client, link);
3604 g_free(client);
3605 }
3606
3607 static void cpu_notify_map_clients_locked(void)
3608 {
3609 MapClient *client;
3610
3611 while (!QLIST_EMPTY(&map_client_list)) {
3612 client = QLIST_FIRST(&map_client_list);
3613 qemu_bh_schedule(client->bh);
3614 cpu_unregister_map_client_do(client);
3615 }
3616 }
3617
3618 void cpu_register_map_client(QEMUBH *bh)
3619 {
3620 MapClient *client = g_malloc(sizeof(*client));
3621
3622 qemu_mutex_lock(&map_client_list_lock);
3623 client->bh = bh;
3624 QLIST_INSERT_HEAD(&map_client_list, client, link);
3625 if (!atomic_read(&bounce.in_use)) {
3626 cpu_notify_map_clients_locked();
3627 }
3628 qemu_mutex_unlock(&map_client_list_lock);
3629 }
3630
3631 void cpu_exec_init_all(void)
3632 {
3633 qemu_mutex_init(&ram_list.mutex);
3634 /* The data structures we set up here depend on knowing the page size,
3635 * so no more changes can be made after this point.
3636 * In an ideal world, nothing we did before we had finished the
3637 * machine setup would care about the target page size, and we could
3638 * do this much later, rather than requiring board models to state
3639 * up front what their requirements are.
3640 */
3641 finalize_target_page_bits();
3642 io_mem_init();
3643 memory_map_init();
3644 qemu_mutex_init(&map_client_list_lock);
3645 }
3646
3647 void cpu_unregister_map_client(QEMUBH *bh)
3648 {
3649 MapClient *client;
3650
3651 qemu_mutex_lock(&map_client_list_lock);
3652 QLIST_FOREACH(client, &map_client_list, link) {
3653 if (client->bh == bh) {
3654 cpu_unregister_map_client_do(client);
3655 break;
3656 }
3657 }
3658 qemu_mutex_unlock(&map_client_list_lock);
3659 }
3660
3661 static void cpu_notify_map_clients(void)
3662 {
3663 qemu_mutex_lock(&map_client_list_lock);
3664 cpu_notify_map_clients_locked();
3665 qemu_mutex_unlock(&map_client_list_lock);
3666 }
3667
3668 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3669 bool is_write, MemTxAttrs attrs)
3670 {
3671 MemoryRegion *mr;
3672 hwaddr l, xlat;
3673
3674 while (len > 0) {
3675 l = len;
3676 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3677 if (!memory_access_is_direct(mr, is_write)) {
3678 l = memory_access_size(mr, l, addr);
3679 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3680 return false;
3681 }
3682 }
3683
3684 len -= l;
3685 addr += l;
3686 }
3687 return true;
3688 }
3689
3690 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3691 hwaddr len, bool is_write,
3692 MemTxAttrs attrs)
3693 {
3694 FlatView *fv;
3695 bool result;
3696
3697 rcu_read_lock();
3698 fv = address_space_to_flatview(as);
3699 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3700 rcu_read_unlock();
3701 return result;
3702 }
3703
3704 static hwaddr
3705 flatview_extend_translation(FlatView *fv, hwaddr addr,
3706 hwaddr target_len,
3707 MemoryRegion *mr, hwaddr base, hwaddr len,
3708 bool is_write, MemTxAttrs attrs)
3709 {
3710 hwaddr done = 0;
3711 hwaddr xlat;
3712 MemoryRegion *this_mr;
3713
3714 for (;;) {
3715 target_len -= len;
3716 addr += len;
3717 done += len;
3718 if (target_len == 0) {
3719 return done;
3720 }
3721
3722 len = target_len;
3723 this_mr = flatview_translate(fv, addr, &xlat,
3724 &len, is_write, attrs);
3725 if (this_mr != mr || xlat != base + done) {
3726 return done;
3727 }
3728 }
3729 }
3730
3731 /* Map a physical memory region into a host virtual address.
3732 * May map a subset of the requested range, given by and returned in *plen.
3733 * May return NULL if resources needed to perform the mapping are exhausted.
3734 * Use only for reads OR writes - not for read-modify-write operations.
3735 * Use cpu_register_map_client() to know when retrying the map operation is
3736 * likely to succeed.
3737 */
3738 void *address_space_map(AddressSpace *as,
3739 hwaddr addr,
3740 hwaddr *plen,
3741 bool is_write,
3742 MemTxAttrs attrs)
3743 {
3744 hwaddr len = *plen;
3745 hwaddr l, xlat;
3746 MemoryRegion *mr;
3747 void *ptr;
3748 FlatView *fv;
3749
3750 if (len == 0) {
3751 return NULL;
3752 }
3753
3754 l = len;
3755 rcu_read_lock();
3756 fv = address_space_to_flatview(as);
3757 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3758
3759 if (!memory_access_is_direct(mr, is_write)) {
3760 if (atomic_xchg(&bounce.in_use, true)) {
3761 rcu_read_unlock();
3762 return NULL;
3763 }
3764 /* Avoid unbounded allocations */
3765 l = MIN(l, TARGET_PAGE_SIZE);
3766 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3767 bounce.addr = addr;
3768 bounce.len = l;
3769
3770 memory_region_ref(mr);
3771 bounce.mr = mr;
3772 if (!is_write) {
3773 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3774 bounce.buffer, l);
3775 }
3776
3777 rcu_read_unlock();
3778 *plen = l;
3779 return bounce.buffer;
3780 }
3781
3782
3783 memory_region_ref(mr);
3784 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3785 l, is_write, attrs);
3786 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3787 rcu_read_unlock();
3788
3789 return ptr;
3790 }
3791
3792 /* Unmaps a memory region previously mapped by address_space_map().
3793 * Will also mark the memory as dirty if is_write == 1. access_len gives
3794 * the amount of memory that was actually read or written by the caller.
3795 */
3796 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3797 int is_write, hwaddr access_len)
3798 {
3799 if (buffer != bounce.buffer) {
3800 MemoryRegion *mr;
3801 ram_addr_t addr1;
3802
3803 mr = memory_region_from_host(buffer, &addr1);
3804 assert(mr != NULL);
3805 if (is_write) {
3806 invalidate_and_set_dirty(mr, addr1, access_len);
3807 }
3808 if (xen_enabled()) {
3809 xen_invalidate_map_cache_entry(buffer);
3810 }
3811 memory_region_unref(mr);
3812 return;
3813 }
3814 if (is_write) {
3815 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3816 bounce.buffer, access_len);
3817 }
3818 qemu_vfree(bounce.buffer);
3819 bounce.buffer = NULL;
3820 memory_region_unref(bounce.mr);
3821 atomic_mb_set(&bounce.in_use, false);
3822 cpu_notify_map_clients();
3823 }
3824
3825 void *cpu_physical_memory_map(hwaddr addr,
3826 hwaddr *plen,
3827 int is_write)
3828 {
3829 return address_space_map(&address_space_memory, addr, plen, is_write,
3830 MEMTXATTRS_UNSPECIFIED);
3831 }
3832
3833 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3834 int is_write, hwaddr access_len)
3835 {
3836 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3837 }
3838
3839 #define ARG1_DECL AddressSpace *as
3840 #define ARG1 as
3841 #define SUFFIX
3842 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3843 #define RCU_READ_LOCK(...) rcu_read_lock()
3844 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3845 #include "memory_ldst.inc.c"
3846
3847 int64_t address_space_cache_init(MemoryRegionCache *cache,
3848 AddressSpace *as,
3849 hwaddr addr,
3850 hwaddr len,
3851 bool is_write)
3852 {
3853 AddressSpaceDispatch *d;
3854 hwaddr l;
3855 MemoryRegion *mr;
3856
3857 assert(len > 0);
3858
3859 l = len;
3860 cache->fv = address_space_get_flatview(as);
3861 d = flatview_to_dispatch(cache->fv);
3862 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3863
3864 mr = cache->mrs.mr;
3865 memory_region_ref(mr);
3866 if (memory_access_is_direct(mr, is_write)) {
3867 /* We don't care about the memory attributes here as we're only
3868 * doing this if we found actual RAM, which behaves the same
3869 * regardless of attributes; so UNSPECIFIED is fine.
3870 */
3871 l = flatview_extend_translation(cache->fv, addr, len, mr,
3872 cache->xlat, l, is_write,
3873 MEMTXATTRS_UNSPECIFIED);
3874 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3875 } else {
3876 cache->ptr = NULL;
3877 }
3878
3879 cache->len = l;
3880 cache->is_write = is_write;
3881 return l;
3882 }
3883
3884 void address_space_cache_invalidate(MemoryRegionCache *cache,
3885 hwaddr addr,
3886 hwaddr access_len)
3887 {
3888 assert(cache->is_write);
3889 if (likely(cache->ptr)) {
3890 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3891 }
3892 }
3893
3894 void address_space_cache_destroy(MemoryRegionCache *cache)
3895 {
3896 if (!cache->mrs.mr) {
3897 return;
3898 }
3899
3900 if (xen_enabled()) {
3901 xen_invalidate_map_cache_entry(cache->ptr);
3902 }
3903 memory_region_unref(cache->mrs.mr);
3904 flatview_unref(cache->fv);
3905 cache->mrs.mr = NULL;
3906 cache->fv = NULL;
3907 }
3908
3909 /* Called from RCU critical section. This function has the same
3910 * semantics as address_space_translate, but it only works on a
3911 * predefined range of a MemoryRegion that was mapped with
3912 * address_space_cache_init.
3913 */
3914 static inline MemoryRegion *address_space_translate_cached(
3915 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3916 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3917 {
3918 MemoryRegionSection section;
3919 MemoryRegion *mr;
3920 IOMMUMemoryRegion *iommu_mr;
3921 AddressSpace *target_as;
3922
3923 assert(!cache->ptr);
3924 *xlat = addr + cache->xlat;
3925
3926 mr = cache->mrs.mr;
3927 iommu_mr = memory_region_get_iommu(mr);
3928 if (!iommu_mr) {
3929 /* MMIO region. */
3930 return mr;
3931 }
3932
3933 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3934 NULL, is_write, true,
3935 &target_as, attrs);
3936 return section.mr;
3937 }
3938
3939 /* Called from RCU critical section. address_space_read_cached uses this
3940 * out of line function when the target is an MMIO or IOMMU region.
3941 */
3942 void
3943 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3944 void *buf, hwaddr len)
3945 {
3946 hwaddr addr1, l;
3947 MemoryRegion *mr;
3948
3949 l = len;
3950 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3951 MEMTXATTRS_UNSPECIFIED);
3952 flatview_read_continue(cache->fv,
3953 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3954 addr1, l, mr);
3955 }
3956
3957 /* Called from RCU critical section. address_space_write_cached uses this
3958 * out of line function when the target is an MMIO or IOMMU region.
3959 */
3960 void
3961 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3962 const void *buf, hwaddr len)
3963 {
3964 hwaddr addr1, l;
3965 MemoryRegion *mr;
3966
3967 l = len;
3968 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3969 MEMTXATTRS_UNSPECIFIED);
3970 flatview_write_continue(cache->fv,
3971 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3972 addr1, l, mr);
3973 }
3974
3975 #define ARG1_DECL MemoryRegionCache *cache
3976 #define ARG1 cache
3977 #define SUFFIX _cached_slow
3978 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3979 #define RCU_READ_LOCK() ((void)0)
3980 #define RCU_READ_UNLOCK() ((void)0)
3981 #include "memory_ldst.inc.c"
3982
3983 /* virtual memory access for debug (includes writing to ROM) */
3984 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3985 uint8_t *buf, target_ulong len, int is_write)
3986 {
3987 hwaddr phys_addr;
3988 target_ulong l, page;
3989
3990 cpu_synchronize_state(cpu);
3991 while (len > 0) {
3992 int asidx;
3993 MemTxAttrs attrs;
3994
3995 page = addr & TARGET_PAGE_MASK;
3996 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3997 asidx = cpu_asidx_from_attrs(cpu, attrs);
3998 /* if no physical page mapped, return an error */
3999 if (phys_addr == -1)
4000 return -1;
4001 l = (page + TARGET_PAGE_SIZE) - addr;
4002 if (l > len)
4003 l = len;
4004 phys_addr += (addr & ~TARGET_PAGE_MASK);
4005 if (is_write) {
4006 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
4007 attrs, buf, l);
4008 } else {
4009 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
4010 attrs, buf, l, 0);
4011 }
4012 len -= l;
4013 buf += l;
4014 addr += l;
4015 }
4016 return 0;
4017 }
4018
4019 /*
4020 * Allows code that needs to deal with migration bitmaps etc to still be built
4021 * target independent.
4022 */
4023 size_t qemu_target_page_size(void)
4024 {
4025 return TARGET_PAGE_SIZE;
4026 }
4027
4028 int qemu_target_page_bits(void)
4029 {
4030 return TARGET_PAGE_BITS;
4031 }
4032
4033 int qemu_target_page_bits_min(void)
4034 {
4035 return TARGET_PAGE_BITS_MIN;
4036 }
4037 #endif
4038
4039 bool target_words_bigendian(void)
4040 {
4041 #if defined(TARGET_WORDS_BIGENDIAN)
4042 return true;
4043 #else
4044 return false;
4045 #endif
4046 }
4047
4048 #ifndef CONFIG_USER_ONLY
4049 bool cpu_physical_memory_is_io(hwaddr phys_addr)
4050 {
4051 MemoryRegion*mr;
4052 hwaddr l = 1;
4053 bool res;
4054
4055 rcu_read_lock();
4056 mr = address_space_translate(&address_space_memory,
4057 phys_addr, &phys_addr, &l, false,
4058 MEMTXATTRS_UNSPECIFIED);
4059
4060 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
4061 rcu_read_unlock();
4062 return res;
4063 }
4064
4065 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
4066 {
4067 RAMBlock *block;
4068 int ret = 0;
4069
4070 rcu_read_lock();
4071 RAMBLOCK_FOREACH(block) {
4072 ret = func(block, opaque);
4073 if (ret) {
4074 break;
4075 }
4076 }
4077 rcu_read_unlock();
4078 return ret;
4079 }
4080
4081 /*
4082 * Unmap pages of memory from start to start+length such that
4083 * they a) read as 0, b) Trigger whatever fault mechanism
4084 * the OS provides for postcopy.
4085 * The pages must be unmapped by the end of the function.
4086 * Returns: 0 on success, none-0 on failure
4087 *
4088 */
4089 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4090 {
4091 int ret = -1;
4092
4093 uint8_t *host_startaddr = rb->host + start;
4094
4095 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4096 error_report("ram_block_discard_range: Unaligned start address: %p",
4097 host_startaddr);
4098 goto err;
4099 }
4100
4101 if ((start + length) <= rb->used_length) {
4102 bool need_madvise, need_fallocate;
4103 uint8_t *host_endaddr = host_startaddr + length;
4104 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4105 error_report("ram_block_discard_range: Unaligned end address: %p",
4106 host_endaddr);
4107 goto err;
4108 }
4109
4110 errno = ENOTSUP; /* If we are missing MADVISE etc */
4111
4112 /* The logic here is messy;
4113 * madvise DONTNEED fails for hugepages
4114 * fallocate works on hugepages and shmem
4115 */
4116 need_madvise = (rb->page_size == qemu_host_page_size);
4117 need_fallocate = rb->fd != -1;
4118 if (need_fallocate) {
4119 /* For a file, this causes the area of the file to be zero'd
4120 * if read, and for hugetlbfs also causes it to be unmapped
4121 * so a userfault will trigger.
4122 */
4123 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4124 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4125 start, length);
4126 if (ret) {
4127 ret = -errno;
4128 error_report("ram_block_discard_range: Failed to fallocate "
4129 "%s:%" PRIx64 " +%zx (%d)",
4130 rb->idstr, start, length, ret);
4131 goto err;
4132 }
4133 #else
4134 ret = -ENOSYS;
4135 error_report("ram_block_discard_range: fallocate not available/file"
4136 "%s:%" PRIx64 " +%zx (%d)",
4137 rb->idstr, start, length, ret);
4138 goto err;
4139 #endif
4140 }
4141 if (need_madvise) {
4142 /* For normal RAM this causes it to be unmapped,
4143 * for shared memory it causes the local mapping to disappear
4144 * and to fall back on the file contents (which we just
4145 * fallocate'd away).
4146 */
4147 #if defined(CONFIG_MADVISE)
4148 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4149 if (ret) {
4150 ret = -errno;
4151 error_report("ram_block_discard_range: Failed to discard range "
4152 "%s:%" PRIx64 " +%zx (%d)",
4153 rb->idstr, start, length, ret);
4154 goto err;
4155 }
4156 #else
4157 ret = -ENOSYS;
4158 error_report("ram_block_discard_range: MADVISE not available"
4159 "%s:%" PRIx64 " +%zx (%d)",
4160 rb->idstr, start, length, ret);
4161 goto err;
4162 #endif
4163 }
4164 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4165 need_madvise, need_fallocate, ret);
4166 } else {
4167 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4168 "/%zx/" RAM_ADDR_FMT")",
4169 rb->idstr, start, length, rb->used_length);
4170 }
4171
4172 err:
4173 return ret;
4174 }
4175
4176 bool ramblock_is_pmem(RAMBlock *rb)
4177 {
4178 return rb->flags & RAM_PMEM;
4179 }
4180
4181 #endif
4182
4183 void page_size_init(void)
4184 {
4185 /* NOTE: we can always suppose that qemu_host_page_size >=
4186 TARGET_PAGE_SIZE */
4187 if (qemu_host_page_size == 0) {
4188 qemu_host_page_size = qemu_real_host_page_size;
4189 }
4190 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4191 qemu_host_page_size = TARGET_PAGE_SIZE;
4192 }
4193 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4194 }
4195
4196 #if !defined(CONFIG_USER_ONLY)
4197
4198 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
4199 {
4200 if (start == end - 1) {
4201 qemu_printf("\t%3d ", start);
4202 } else {
4203 qemu_printf("\t%3d..%-3d ", start, end - 1);
4204 }
4205 qemu_printf(" skip=%d ", skip);
4206 if (ptr == PHYS_MAP_NODE_NIL) {
4207 qemu_printf(" ptr=NIL");
4208 } else if (!skip) {
4209 qemu_printf(" ptr=#%d", ptr);
4210 } else {
4211 qemu_printf(" ptr=[%d]", ptr);
4212 }
4213 qemu_printf("\n");
4214 }
4215
4216 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4217 int128_sub((size), int128_one())) : 0)
4218
4219 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4220 {
4221 int i;
4222
4223 qemu_printf(" Dispatch\n");
4224 qemu_printf(" Physical sections\n");
4225
4226 for (i = 0; i < d->map.sections_nb; ++i) {
4227 MemoryRegionSection *s = d->map.sections + i;
4228 const char *names[] = { " [unassigned]", " [not dirty]",
4229 " [ROM]", " [watch]" };
4230
4231 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4232 " %s%s%s%s%s",
4233 i,
4234 s->offset_within_address_space,
4235 s->offset_within_address_space + MR_SIZE(s->mr->size),
4236 s->mr->name ? s->mr->name : "(noname)",
4237 i < ARRAY_SIZE(names) ? names[i] : "",
4238 s->mr == root ? " [ROOT]" : "",
4239 s == d->mru_section ? " [MRU]" : "",
4240 s->mr->is_iommu ? " [iommu]" : "");
4241
4242 if (s->mr->alias) {
4243 qemu_printf(" alias=%s", s->mr->alias->name ?
4244 s->mr->alias->name : "noname");
4245 }
4246 qemu_printf("\n");
4247 }
4248
4249 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4250 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4251 for (i = 0; i < d->map.nodes_nb; ++i) {
4252 int j, jprev;
4253 PhysPageEntry prev;
4254 Node *n = d->map.nodes + i;
4255
4256 qemu_printf(" [%d]\n", i);
4257
4258 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4259 PhysPageEntry *pe = *n + j;
4260
4261 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4262 continue;
4263 }
4264
4265 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4266
4267 jprev = j;
4268 prev = *pe;
4269 }
4270
4271 if (jprev != ARRAY_SIZE(*n)) {
4272 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4273 }
4274 }
4275 }
4276
4277 #endif