]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
cputlb: Move NOTDIRTY handling from I/O path to TLB path
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "qemu/timer.h"
39 #include "qemu/config-file.h"
40 #include "qemu/error-report.h"
41 #include "qemu/qemu-print.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include "qemu.h"
44 #else /* !CONFIG_USER_ONLY */
45 #include "exec/memory.h"
46 #include "exec/ioport.h"
47 #include "sysemu/dma.h"
48 #include "sysemu/hostmem.h"
49 #include "sysemu/hw_accel.h"
50 #include "exec/address-spaces.h"
51 #include "sysemu/xen-mapcache.h"
52 #include "trace-root.h"
53
54 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
55 #include <linux/falloc.h>
56 #endif
57
58 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
63
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
67
68 #include "migration/vmstate.h"
69
70 #include "qemu/range.h"
71 #ifndef _WIN32
72 #include "qemu/mmap-alloc.h"
73 #endif
74
75 #include "monitor/monitor.h"
76
77 //#define DEBUG_SUBPAGE
78
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
83 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
84
85 static MemoryRegion *system_memory;
86 static MemoryRegion *system_io;
87
88 AddressSpace address_space_io;
89 AddressSpace address_space_memory;
90
91 static MemoryRegion io_mem_unassigned;
92 #endif
93
94 #ifdef TARGET_PAGE_BITS_VARY
95 int target_page_bits;
96 bool target_page_bits_decided;
97 #endif
98
99 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
100
101 /* current CPU in the current thread. It is only valid inside
102 cpu_exec() */
103 __thread CPUState *current_cpu;
104 /* 0 = Do not count executed instructions.
105 1 = Precise instruction counting.
106 2 = Adaptive rate instruction counting. */
107 int use_icount;
108
109 uintptr_t qemu_host_page_size;
110 intptr_t qemu_host_page_mask;
111
112 bool set_preferred_target_page_bits(int bits)
113 {
114 /* The target page size is the lowest common denominator for all
115 * the CPUs in the system, so we can only make it smaller, never
116 * larger. And we can't make it smaller once we've committed to
117 * a particular size.
118 */
119 #ifdef TARGET_PAGE_BITS_VARY
120 assert(bits >= TARGET_PAGE_BITS_MIN);
121 if (target_page_bits == 0 || target_page_bits > bits) {
122 if (target_page_bits_decided) {
123 return false;
124 }
125 target_page_bits = bits;
126 }
127 #endif
128 return true;
129 }
130
131 #if !defined(CONFIG_USER_ONLY)
132
133 static void finalize_target_page_bits(void)
134 {
135 #ifdef TARGET_PAGE_BITS_VARY
136 if (target_page_bits == 0) {
137 target_page_bits = TARGET_PAGE_BITS_MIN;
138 }
139 target_page_bits_decided = true;
140 #endif
141 }
142
143 typedef struct PhysPageEntry PhysPageEntry;
144
145 struct PhysPageEntry {
146 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
147 uint32_t skip : 6;
148 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
149 uint32_t ptr : 26;
150 };
151
152 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
153
154 /* Size of the L2 (and L3, etc) page tables. */
155 #define ADDR_SPACE_BITS 64
156
157 #define P_L2_BITS 9
158 #define P_L2_SIZE (1 << P_L2_BITS)
159
160 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
161
162 typedef PhysPageEntry Node[P_L2_SIZE];
163
164 typedef struct PhysPageMap {
165 struct rcu_head rcu;
166
167 unsigned sections_nb;
168 unsigned sections_nb_alloc;
169 unsigned nodes_nb;
170 unsigned nodes_nb_alloc;
171 Node *nodes;
172 MemoryRegionSection *sections;
173 } PhysPageMap;
174
175 struct AddressSpaceDispatch {
176 MemoryRegionSection *mru_section;
177 /* This is a multi-level map on the physical address space.
178 * The bottom level has pointers to MemoryRegionSections.
179 */
180 PhysPageEntry phys_map;
181 PhysPageMap map;
182 };
183
184 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
185 typedef struct subpage_t {
186 MemoryRegion iomem;
187 FlatView *fv;
188 hwaddr base;
189 uint16_t sub_section[];
190 } subpage_t;
191
192 #define PHYS_SECTION_UNASSIGNED 0
193
194 static void io_mem_init(void);
195 static void memory_map_init(void);
196 static void tcg_log_global_after_sync(MemoryListener *listener);
197 static void tcg_commit(MemoryListener *listener);
198
199 /**
200 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
201 * @cpu: the CPU whose AddressSpace this is
202 * @as: the AddressSpace itself
203 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
204 * @tcg_as_listener: listener for tracking changes to the AddressSpace
205 */
206 struct CPUAddressSpace {
207 CPUState *cpu;
208 AddressSpace *as;
209 struct AddressSpaceDispatch *memory_dispatch;
210 MemoryListener tcg_as_listener;
211 };
212
213 struct DirtyBitmapSnapshot {
214 ram_addr_t start;
215 ram_addr_t end;
216 unsigned long dirty[];
217 };
218
219 #endif
220
221 #if !defined(CONFIG_USER_ONLY)
222
223 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
224 {
225 static unsigned alloc_hint = 16;
226 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
227 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
228 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
229 alloc_hint = map->nodes_nb_alloc;
230 }
231 }
232
233 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
234 {
235 unsigned i;
236 uint32_t ret;
237 PhysPageEntry e;
238 PhysPageEntry *p;
239
240 ret = map->nodes_nb++;
241 p = map->nodes[ret];
242 assert(ret != PHYS_MAP_NODE_NIL);
243 assert(ret != map->nodes_nb_alloc);
244
245 e.skip = leaf ? 0 : 1;
246 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
247 for (i = 0; i < P_L2_SIZE; ++i) {
248 memcpy(&p[i], &e, sizeof(e));
249 }
250 return ret;
251 }
252
253 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
254 hwaddr *index, uint64_t *nb, uint16_t leaf,
255 int level)
256 {
257 PhysPageEntry *p;
258 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
259
260 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
261 lp->ptr = phys_map_node_alloc(map, level == 0);
262 }
263 p = map->nodes[lp->ptr];
264 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
265
266 while (*nb && lp < &p[P_L2_SIZE]) {
267 if ((*index & (step - 1)) == 0 && *nb >= step) {
268 lp->skip = 0;
269 lp->ptr = leaf;
270 *index += step;
271 *nb -= step;
272 } else {
273 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
274 }
275 ++lp;
276 }
277 }
278
279 static void phys_page_set(AddressSpaceDispatch *d,
280 hwaddr index, uint64_t nb,
281 uint16_t leaf)
282 {
283 /* Wildly overreserve - it doesn't matter much. */
284 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
285
286 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
287 }
288
289 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
290 * and update our entry so we can skip it and go directly to the destination.
291 */
292 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
293 {
294 unsigned valid_ptr = P_L2_SIZE;
295 int valid = 0;
296 PhysPageEntry *p;
297 int i;
298
299 if (lp->ptr == PHYS_MAP_NODE_NIL) {
300 return;
301 }
302
303 p = nodes[lp->ptr];
304 for (i = 0; i < P_L2_SIZE; i++) {
305 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
306 continue;
307 }
308
309 valid_ptr = i;
310 valid++;
311 if (p[i].skip) {
312 phys_page_compact(&p[i], nodes);
313 }
314 }
315
316 /* We can only compress if there's only one child. */
317 if (valid != 1) {
318 return;
319 }
320
321 assert(valid_ptr < P_L2_SIZE);
322
323 /* Don't compress if it won't fit in the # of bits we have. */
324 if (P_L2_LEVELS >= (1 << 6) &&
325 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
326 return;
327 }
328
329 lp->ptr = p[valid_ptr].ptr;
330 if (!p[valid_ptr].skip) {
331 /* If our only child is a leaf, make this a leaf. */
332 /* By design, we should have made this node a leaf to begin with so we
333 * should never reach here.
334 * But since it's so simple to handle this, let's do it just in case we
335 * change this rule.
336 */
337 lp->skip = 0;
338 } else {
339 lp->skip += p[valid_ptr].skip;
340 }
341 }
342
343 void address_space_dispatch_compact(AddressSpaceDispatch *d)
344 {
345 if (d->phys_map.skip) {
346 phys_page_compact(&d->phys_map, d->map.nodes);
347 }
348 }
349
350 static inline bool section_covers_addr(const MemoryRegionSection *section,
351 hwaddr addr)
352 {
353 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
354 * the section must cover the entire address space.
355 */
356 return int128_gethi(section->size) ||
357 range_covers_byte(section->offset_within_address_space,
358 int128_getlo(section->size), addr);
359 }
360
361 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
362 {
363 PhysPageEntry lp = d->phys_map, *p;
364 Node *nodes = d->map.nodes;
365 MemoryRegionSection *sections = d->map.sections;
366 hwaddr index = addr >> TARGET_PAGE_BITS;
367 int i;
368
369 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
370 if (lp.ptr == PHYS_MAP_NODE_NIL) {
371 return &sections[PHYS_SECTION_UNASSIGNED];
372 }
373 p = nodes[lp.ptr];
374 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
375 }
376
377 if (section_covers_addr(&sections[lp.ptr], addr)) {
378 return &sections[lp.ptr];
379 } else {
380 return &sections[PHYS_SECTION_UNASSIGNED];
381 }
382 }
383
384 /* Called from RCU critical section */
385 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
386 hwaddr addr,
387 bool resolve_subpage)
388 {
389 MemoryRegionSection *section = atomic_read(&d->mru_section);
390 subpage_t *subpage;
391
392 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
393 !section_covers_addr(section, addr)) {
394 section = phys_page_find(d, addr);
395 atomic_set(&d->mru_section, section);
396 }
397 if (resolve_subpage && section->mr->subpage) {
398 subpage = container_of(section->mr, subpage_t, iomem);
399 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
400 }
401 return section;
402 }
403
404 /* Called from RCU critical section */
405 static MemoryRegionSection *
406 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
407 hwaddr *plen, bool resolve_subpage)
408 {
409 MemoryRegionSection *section;
410 MemoryRegion *mr;
411 Int128 diff;
412
413 section = address_space_lookup_region(d, addr, resolve_subpage);
414 /* Compute offset within MemoryRegionSection */
415 addr -= section->offset_within_address_space;
416
417 /* Compute offset within MemoryRegion */
418 *xlat = addr + section->offset_within_region;
419
420 mr = section->mr;
421
422 /* MMIO registers can be expected to perform full-width accesses based only
423 * on their address, without considering adjacent registers that could
424 * decode to completely different MemoryRegions. When such registers
425 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
426 * regions overlap wildly. For this reason we cannot clamp the accesses
427 * here.
428 *
429 * If the length is small (as is the case for address_space_ldl/stl),
430 * everything works fine. If the incoming length is large, however,
431 * the caller really has to do the clamping through memory_access_size.
432 */
433 if (memory_region_is_ram(mr)) {
434 diff = int128_sub(section->size, int128_make64(addr));
435 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
436 }
437 return section;
438 }
439
440 /**
441 * address_space_translate_iommu - translate an address through an IOMMU
442 * memory region and then through the target address space.
443 *
444 * @iommu_mr: the IOMMU memory region that we start the translation from
445 * @addr: the address to be translated through the MMU
446 * @xlat: the translated address offset within the destination memory region.
447 * It cannot be %NULL.
448 * @plen_out: valid read/write length of the translated address. It
449 * cannot be %NULL.
450 * @page_mask_out: page mask for the translated address. This
451 * should only be meaningful for IOMMU translated
452 * addresses, since there may be huge pages that this bit
453 * would tell. It can be %NULL if we don't care about it.
454 * @is_write: whether the translation operation is for write
455 * @is_mmio: whether this can be MMIO, set true if it can
456 * @target_as: the address space targeted by the IOMMU
457 * @attrs: transaction attributes
458 *
459 * This function is called from RCU critical section. It is the common
460 * part of flatview_do_translate and address_space_translate_cached.
461 */
462 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
463 hwaddr *xlat,
464 hwaddr *plen_out,
465 hwaddr *page_mask_out,
466 bool is_write,
467 bool is_mmio,
468 AddressSpace **target_as,
469 MemTxAttrs attrs)
470 {
471 MemoryRegionSection *section;
472 hwaddr page_mask = (hwaddr)-1;
473
474 do {
475 hwaddr addr = *xlat;
476 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
477 int iommu_idx = 0;
478 IOMMUTLBEntry iotlb;
479
480 if (imrc->attrs_to_index) {
481 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
482 }
483
484 iotlb = imrc->translate(iommu_mr, addr, is_write ?
485 IOMMU_WO : IOMMU_RO, iommu_idx);
486
487 if (!(iotlb.perm & (1 << is_write))) {
488 goto unassigned;
489 }
490
491 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
492 | (addr & iotlb.addr_mask));
493 page_mask &= iotlb.addr_mask;
494 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
495 *target_as = iotlb.target_as;
496
497 section = address_space_translate_internal(
498 address_space_to_dispatch(iotlb.target_as), addr, xlat,
499 plen_out, is_mmio);
500
501 iommu_mr = memory_region_get_iommu(section->mr);
502 } while (unlikely(iommu_mr));
503
504 if (page_mask_out) {
505 *page_mask_out = page_mask;
506 }
507 return *section;
508
509 unassigned:
510 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
511 }
512
513 /**
514 * flatview_do_translate - translate an address in FlatView
515 *
516 * @fv: the flat view that we want to translate on
517 * @addr: the address to be translated in above address space
518 * @xlat: the translated address offset within memory region. It
519 * cannot be @NULL.
520 * @plen_out: valid read/write length of the translated address. It
521 * can be @NULL when we don't care about it.
522 * @page_mask_out: page mask for the translated address. This
523 * should only be meaningful for IOMMU translated
524 * addresses, since there may be huge pages that this bit
525 * would tell. It can be @NULL if we don't care about it.
526 * @is_write: whether the translation operation is for write
527 * @is_mmio: whether this can be MMIO, set true if it can
528 * @target_as: the address space targeted by the IOMMU
529 * @attrs: memory transaction attributes
530 *
531 * This function is called from RCU critical section
532 */
533 static MemoryRegionSection flatview_do_translate(FlatView *fv,
534 hwaddr addr,
535 hwaddr *xlat,
536 hwaddr *plen_out,
537 hwaddr *page_mask_out,
538 bool is_write,
539 bool is_mmio,
540 AddressSpace **target_as,
541 MemTxAttrs attrs)
542 {
543 MemoryRegionSection *section;
544 IOMMUMemoryRegion *iommu_mr;
545 hwaddr plen = (hwaddr)(-1);
546
547 if (!plen_out) {
548 plen_out = &plen;
549 }
550
551 section = address_space_translate_internal(
552 flatview_to_dispatch(fv), addr, xlat,
553 plen_out, is_mmio);
554
555 iommu_mr = memory_region_get_iommu(section->mr);
556 if (unlikely(iommu_mr)) {
557 return address_space_translate_iommu(iommu_mr, xlat,
558 plen_out, page_mask_out,
559 is_write, is_mmio,
560 target_as, attrs);
561 }
562 if (page_mask_out) {
563 /* Not behind an IOMMU, use default page size. */
564 *page_mask_out = ~TARGET_PAGE_MASK;
565 }
566
567 return *section;
568 }
569
570 /* Called from RCU critical section */
571 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
572 bool is_write, MemTxAttrs attrs)
573 {
574 MemoryRegionSection section;
575 hwaddr xlat, page_mask;
576
577 /*
578 * This can never be MMIO, and we don't really care about plen,
579 * but page mask.
580 */
581 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
582 NULL, &page_mask, is_write, false, &as,
583 attrs);
584
585 /* Illegal translation */
586 if (section.mr == &io_mem_unassigned) {
587 goto iotlb_fail;
588 }
589
590 /* Convert memory region offset into address space offset */
591 xlat += section.offset_within_address_space -
592 section.offset_within_region;
593
594 return (IOMMUTLBEntry) {
595 .target_as = as,
596 .iova = addr & ~page_mask,
597 .translated_addr = xlat & ~page_mask,
598 .addr_mask = page_mask,
599 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
600 .perm = IOMMU_RW,
601 };
602
603 iotlb_fail:
604 return (IOMMUTLBEntry) {0};
605 }
606
607 /* Called from RCU critical section */
608 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
609 hwaddr *plen, bool is_write,
610 MemTxAttrs attrs)
611 {
612 MemoryRegion *mr;
613 MemoryRegionSection section;
614 AddressSpace *as = NULL;
615
616 /* This can be MMIO, so setup MMIO bit. */
617 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
618 is_write, true, &as, attrs);
619 mr = section.mr;
620
621 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
622 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
623 *plen = MIN(page, *plen);
624 }
625
626 return mr;
627 }
628
629 typedef struct TCGIOMMUNotifier {
630 IOMMUNotifier n;
631 MemoryRegion *mr;
632 CPUState *cpu;
633 int iommu_idx;
634 bool active;
635 } TCGIOMMUNotifier;
636
637 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
638 {
639 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
640
641 if (!notifier->active) {
642 return;
643 }
644 tlb_flush(notifier->cpu);
645 notifier->active = false;
646 /* We leave the notifier struct on the list to avoid reallocating it later.
647 * Generally the number of IOMMUs a CPU deals with will be small.
648 * In any case we can't unregister the iommu notifier from a notify
649 * callback.
650 */
651 }
652
653 static void tcg_register_iommu_notifier(CPUState *cpu,
654 IOMMUMemoryRegion *iommu_mr,
655 int iommu_idx)
656 {
657 /* Make sure this CPU has an IOMMU notifier registered for this
658 * IOMMU/IOMMU index combination, so that we can flush its TLB
659 * when the IOMMU tells us the mappings we've cached have changed.
660 */
661 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
662 TCGIOMMUNotifier *notifier;
663 int i;
664
665 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
666 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
667 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
668 break;
669 }
670 }
671 if (i == cpu->iommu_notifiers->len) {
672 /* Not found, add a new entry at the end of the array */
673 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
674 notifier = g_new0(TCGIOMMUNotifier, 1);
675 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
676
677 notifier->mr = mr;
678 notifier->iommu_idx = iommu_idx;
679 notifier->cpu = cpu;
680 /* Rather than trying to register interest in the specific part
681 * of the iommu's address space that we've accessed and then
682 * expand it later as subsequent accesses touch more of it, we
683 * just register interest in the whole thing, on the assumption
684 * that iommu reconfiguration will be rare.
685 */
686 iommu_notifier_init(&notifier->n,
687 tcg_iommu_unmap_notify,
688 IOMMU_NOTIFIER_UNMAP,
689 0,
690 HWADDR_MAX,
691 iommu_idx);
692 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
693 }
694
695 if (!notifier->active) {
696 notifier->active = true;
697 }
698 }
699
700 static void tcg_iommu_free_notifier_list(CPUState *cpu)
701 {
702 /* Destroy the CPU's notifier list */
703 int i;
704 TCGIOMMUNotifier *notifier;
705
706 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
707 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
708 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
709 g_free(notifier);
710 }
711 g_array_free(cpu->iommu_notifiers, true);
712 }
713
714 /* Called from RCU critical section */
715 MemoryRegionSection *
716 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
717 hwaddr *xlat, hwaddr *plen,
718 MemTxAttrs attrs, int *prot)
719 {
720 MemoryRegionSection *section;
721 IOMMUMemoryRegion *iommu_mr;
722 IOMMUMemoryRegionClass *imrc;
723 IOMMUTLBEntry iotlb;
724 int iommu_idx;
725 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
726
727 for (;;) {
728 section = address_space_translate_internal(d, addr, &addr, plen, false);
729
730 iommu_mr = memory_region_get_iommu(section->mr);
731 if (!iommu_mr) {
732 break;
733 }
734
735 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
736
737 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
738 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
739 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
740 * doesn't short-cut its translation table walk.
741 */
742 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
743 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
744 | (addr & iotlb.addr_mask));
745 /* Update the caller's prot bits to remove permissions the IOMMU
746 * is giving us a failure response for. If we get down to no
747 * permissions left at all we can give up now.
748 */
749 if (!(iotlb.perm & IOMMU_RO)) {
750 *prot &= ~(PAGE_READ | PAGE_EXEC);
751 }
752 if (!(iotlb.perm & IOMMU_WO)) {
753 *prot &= ~PAGE_WRITE;
754 }
755
756 if (!*prot) {
757 goto translate_fail;
758 }
759
760 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
761 }
762
763 assert(!memory_region_is_iommu(section->mr));
764 *xlat = addr;
765 return section;
766
767 translate_fail:
768 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
769 }
770 #endif
771
772 #if !defined(CONFIG_USER_ONLY)
773
774 static int cpu_common_post_load(void *opaque, int version_id)
775 {
776 CPUState *cpu = opaque;
777
778 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
779 version_id is increased. */
780 cpu->interrupt_request &= ~0x01;
781 tlb_flush(cpu);
782
783 /* loadvm has just updated the content of RAM, bypassing the
784 * usual mechanisms that ensure we flush TBs for writes to
785 * memory we've translated code from. So we must flush all TBs,
786 * which will now be stale.
787 */
788 tb_flush(cpu);
789
790 return 0;
791 }
792
793 static int cpu_common_pre_load(void *opaque)
794 {
795 CPUState *cpu = opaque;
796
797 cpu->exception_index = -1;
798
799 return 0;
800 }
801
802 static bool cpu_common_exception_index_needed(void *opaque)
803 {
804 CPUState *cpu = opaque;
805
806 return tcg_enabled() && cpu->exception_index != -1;
807 }
808
809 static const VMStateDescription vmstate_cpu_common_exception_index = {
810 .name = "cpu_common/exception_index",
811 .version_id = 1,
812 .minimum_version_id = 1,
813 .needed = cpu_common_exception_index_needed,
814 .fields = (VMStateField[]) {
815 VMSTATE_INT32(exception_index, CPUState),
816 VMSTATE_END_OF_LIST()
817 }
818 };
819
820 static bool cpu_common_crash_occurred_needed(void *opaque)
821 {
822 CPUState *cpu = opaque;
823
824 return cpu->crash_occurred;
825 }
826
827 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
828 .name = "cpu_common/crash_occurred",
829 .version_id = 1,
830 .minimum_version_id = 1,
831 .needed = cpu_common_crash_occurred_needed,
832 .fields = (VMStateField[]) {
833 VMSTATE_BOOL(crash_occurred, CPUState),
834 VMSTATE_END_OF_LIST()
835 }
836 };
837
838 const VMStateDescription vmstate_cpu_common = {
839 .name = "cpu_common",
840 .version_id = 1,
841 .minimum_version_id = 1,
842 .pre_load = cpu_common_pre_load,
843 .post_load = cpu_common_post_load,
844 .fields = (VMStateField[]) {
845 VMSTATE_UINT32(halted, CPUState),
846 VMSTATE_UINT32(interrupt_request, CPUState),
847 VMSTATE_END_OF_LIST()
848 },
849 .subsections = (const VMStateDescription*[]) {
850 &vmstate_cpu_common_exception_index,
851 &vmstate_cpu_common_crash_occurred,
852 NULL
853 }
854 };
855
856 #endif
857
858 CPUState *qemu_get_cpu(int index)
859 {
860 CPUState *cpu;
861
862 CPU_FOREACH(cpu) {
863 if (cpu->cpu_index == index) {
864 return cpu;
865 }
866 }
867
868 return NULL;
869 }
870
871 #if !defined(CONFIG_USER_ONLY)
872 void cpu_address_space_init(CPUState *cpu, int asidx,
873 const char *prefix, MemoryRegion *mr)
874 {
875 CPUAddressSpace *newas;
876 AddressSpace *as = g_new0(AddressSpace, 1);
877 char *as_name;
878
879 assert(mr);
880 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
881 address_space_init(as, mr, as_name);
882 g_free(as_name);
883
884 /* Target code should have set num_ases before calling us */
885 assert(asidx < cpu->num_ases);
886
887 if (asidx == 0) {
888 /* address space 0 gets the convenience alias */
889 cpu->as = as;
890 }
891
892 /* KVM cannot currently support multiple address spaces. */
893 assert(asidx == 0 || !kvm_enabled());
894
895 if (!cpu->cpu_ases) {
896 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
897 }
898
899 newas = &cpu->cpu_ases[asidx];
900 newas->cpu = cpu;
901 newas->as = as;
902 if (tcg_enabled()) {
903 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
904 newas->tcg_as_listener.commit = tcg_commit;
905 memory_listener_register(&newas->tcg_as_listener, as);
906 }
907 }
908
909 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
910 {
911 /* Return the AddressSpace corresponding to the specified index */
912 return cpu->cpu_ases[asidx].as;
913 }
914 #endif
915
916 void cpu_exec_unrealizefn(CPUState *cpu)
917 {
918 CPUClass *cc = CPU_GET_CLASS(cpu);
919
920 cpu_list_remove(cpu);
921
922 if (cc->vmsd != NULL) {
923 vmstate_unregister(NULL, cc->vmsd, cpu);
924 }
925 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
926 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
927 }
928 #ifndef CONFIG_USER_ONLY
929 tcg_iommu_free_notifier_list(cpu);
930 #endif
931 }
932
933 Property cpu_common_props[] = {
934 #ifndef CONFIG_USER_ONLY
935 /* Create a memory property for softmmu CPU object,
936 * so users can wire up its memory. (This can't go in hw/core/cpu.c
937 * because that file is compiled only once for both user-mode
938 * and system builds.) The default if no link is set up is to use
939 * the system address space.
940 */
941 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
942 MemoryRegion *),
943 #endif
944 DEFINE_PROP_END_OF_LIST(),
945 };
946
947 void cpu_exec_initfn(CPUState *cpu)
948 {
949 cpu->as = NULL;
950 cpu->num_ases = 0;
951
952 #ifndef CONFIG_USER_ONLY
953 cpu->thread_id = qemu_get_thread_id();
954 cpu->memory = system_memory;
955 object_ref(OBJECT(cpu->memory));
956 #endif
957 }
958
959 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
960 {
961 CPUClass *cc = CPU_GET_CLASS(cpu);
962 static bool tcg_target_initialized;
963
964 cpu_list_add(cpu);
965
966 if (tcg_enabled() && !tcg_target_initialized) {
967 tcg_target_initialized = true;
968 cc->tcg_initialize();
969 }
970 tlb_init(cpu);
971
972 #ifndef CONFIG_USER_ONLY
973 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
974 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
975 }
976 if (cc->vmsd != NULL) {
977 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
978 }
979
980 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
981 #endif
982 }
983
984 const char *parse_cpu_option(const char *cpu_option)
985 {
986 ObjectClass *oc;
987 CPUClass *cc;
988 gchar **model_pieces;
989 const char *cpu_type;
990
991 model_pieces = g_strsplit(cpu_option, ",", 2);
992 if (!model_pieces[0]) {
993 error_report("-cpu option cannot be empty");
994 exit(1);
995 }
996
997 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
998 if (oc == NULL) {
999 error_report("unable to find CPU model '%s'", model_pieces[0]);
1000 g_strfreev(model_pieces);
1001 exit(EXIT_FAILURE);
1002 }
1003
1004 cpu_type = object_class_get_name(oc);
1005 cc = CPU_CLASS(oc);
1006 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1007 g_strfreev(model_pieces);
1008 return cpu_type;
1009 }
1010
1011 #if defined(CONFIG_USER_ONLY)
1012 void tb_invalidate_phys_addr(target_ulong addr)
1013 {
1014 mmap_lock();
1015 tb_invalidate_phys_page_range(addr, addr + 1, 0);
1016 mmap_unlock();
1017 }
1018
1019 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1020 {
1021 tb_invalidate_phys_addr(pc);
1022 }
1023 #else
1024 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1025 {
1026 ram_addr_t ram_addr;
1027 MemoryRegion *mr;
1028 hwaddr l = 1;
1029
1030 if (!tcg_enabled()) {
1031 return;
1032 }
1033
1034 rcu_read_lock();
1035 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1036 if (!(memory_region_is_ram(mr)
1037 || memory_region_is_romd(mr))) {
1038 rcu_read_unlock();
1039 return;
1040 }
1041 ram_addr = memory_region_get_ram_addr(mr) + addr;
1042 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1043 rcu_read_unlock();
1044 }
1045
1046 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1047 {
1048 MemTxAttrs attrs;
1049 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1050 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1051 if (phys != -1) {
1052 /* Locks grabbed by tb_invalidate_phys_addr */
1053 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1054 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1055 }
1056 }
1057 #endif
1058
1059 #ifndef CONFIG_USER_ONLY
1060 /* Add a watchpoint. */
1061 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1062 int flags, CPUWatchpoint **watchpoint)
1063 {
1064 CPUWatchpoint *wp;
1065
1066 /* forbid ranges which are empty or run off the end of the address space */
1067 if (len == 0 || (addr + len - 1) < addr) {
1068 error_report("tried to set invalid watchpoint at %"
1069 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1070 return -EINVAL;
1071 }
1072 wp = g_malloc(sizeof(*wp));
1073
1074 wp->vaddr = addr;
1075 wp->len = len;
1076 wp->flags = flags;
1077
1078 /* keep all GDB-injected watchpoints in front */
1079 if (flags & BP_GDB) {
1080 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1081 } else {
1082 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1083 }
1084
1085 tlb_flush_page(cpu, addr);
1086
1087 if (watchpoint)
1088 *watchpoint = wp;
1089 return 0;
1090 }
1091
1092 /* Remove a specific watchpoint. */
1093 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1094 int flags)
1095 {
1096 CPUWatchpoint *wp;
1097
1098 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1099 if (addr == wp->vaddr && len == wp->len
1100 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1101 cpu_watchpoint_remove_by_ref(cpu, wp);
1102 return 0;
1103 }
1104 }
1105 return -ENOENT;
1106 }
1107
1108 /* Remove a specific watchpoint by reference. */
1109 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1110 {
1111 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1112
1113 tlb_flush_page(cpu, watchpoint->vaddr);
1114
1115 g_free(watchpoint);
1116 }
1117
1118 /* Remove all matching watchpoints. */
1119 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1120 {
1121 CPUWatchpoint *wp, *next;
1122
1123 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1124 if (wp->flags & mask) {
1125 cpu_watchpoint_remove_by_ref(cpu, wp);
1126 }
1127 }
1128 }
1129
1130 /* Return true if this watchpoint address matches the specified
1131 * access (ie the address range covered by the watchpoint overlaps
1132 * partially or completely with the address range covered by the
1133 * access).
1134 */
1135 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1136 vaddr addr, vaddr len)
1137 {
1138 /* We know the lengths are non-zero, but a little caution is
1139 * required to avoid errors in the case where the range ends
1140 * exactly at the top of the address space and so addr + len
1141 * wraps round to zero.
1142 */
1143 vaddr wpend = wp->vaddr + wp->len - 1;
1144 vaddr addrend = addr + len - 1;
1145
1146 return !(addr > wpend || wp->vaddr > addrend);
1147 }
1148
1149 /* Return flags for watchpoints that match addr + prot. */
1150 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1151 {
1152 CPUWatchpoint *wp;
1153 int ret = 0;
1154
1155 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1156 if (watchpoint_address_matches(wp, addr, TARGET_PAGE_SIZE)) {
1157 ret |= wp->flags;
1158 }
1159 }
1160 return ret;
1161 }
1162 #endif /* !CONFIG_USER_ONLY */
1163
1164 /* Add a breakpoint. */
1165 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1166 CPUBreakpoint **breakpoint)
1167 {
1168 CPUBreakpoint *bp;
1169
1170 bp = g_malloc(sizeof(*bp));
1171
1172 bp->pc = pc;
1173 bp->flags = flags;
1174
1175 /* keep all GDB-injected breakpoints in front */
1176 if (flags & BP_GDB) {
1177 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1178 } else {
1179 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1180 }
1181
1182 breakpoint_invalidate(cpu, pc);
1183
1184 if (breakpoint) {
1185 *breakpoint = bp;
1186 }
1187 return 0;
1188 }
1189
1190 /* Remove a specific breakpoint. */
1191 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1192 {
1193 CPUBreakpoint *bp;
1194
1195 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1196 if (bp->pc == pc && bp->flags == flags) {
1197 cpu_breakpoint_remove_by_ref(cpu, bp);
1198 return 0;
1199 }
1200 }
1201 return -ENOENT;
1202 }
1203
1204 /* Remove a specific breakpoint by reference. */
1205 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1206 {
1207 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1208
1209 breakpoint_invalidate(cpu, breakpoint->pc);
1210
1211 g_free(breakpoint);
1212 }
1213
1214 /* Remove all matching breakpoints. */
1215 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1216 {
1217 CPUBreakpoint *bp, *next;
1218
1219 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1220 if (bp->flags & mask) {
1221 cpu_breakpoint_remove_by_ref(cpu, bp);
1222 }
1223 }
1224 }
1225
1226 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1227 CPU loop after each instruction */
1228 void cpu_single_step(CPUState *cpu, int enabled)
1229 {
1230 if (cpu->singlestep_enabled != enabled) {
1231 cpu->singlestep_enabled = enabled;
1232 if (kvm_enabled()) {
1233 kvm_update_guest_debug(cpu, 0);
1234 } else {
1235 /* must flush all the translated code to avoid inconsistencies */
1236 /* XXX: only flush what is necessary */
1237 tb_flush(cpu);
1238 }
1239 }
1240 }
1241
1242 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1243 {
1244 va_list ap;
1245 va_list ap2;
1246
1247 va_start(ap, fmt);
1248 va_copy(ap2, ap);
1249 fprintf(stderr, "qemu: fatal: ");
1250 vfprintf(stderr, fmt, ap);
1251 fprintf(stderr, "\n");
1252 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1253 if (qemu_log_separate()) {
1254 qemu_log_lock();
1255 qemu_log("qemu: fatal: ");
1256 qemu_log_vprintf(fmt, ap2);
1257 qemu_log("\n");
1258 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1259 qemu_log_flush();
1260 qemu_log_unlock();
1261 qemu_log_close();
1262 }
1263 va_end(ap2);
1264 va_end(ap);
1265 replay_finish();
1266 #if defined(CONFIG_USER_ONLY)
1267 {
1268 struct sigaction act;
1269 sigfillset(&act.sa_mask);
1270 act.sa_handler = SIG_DFL;
1271 act.sa_flags = 0;
1272 sigaction(SIGABRT, &act, NULL);
1273 }
1274 #endif
1275 abort();
1276 }
1277
1278 #if !defined(CONFIG_USER_ONLY)
1279 /* Called from RCU critical section */
1280 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1281 {
1282 RAMBlock *block;
1283
1284 block = atomic_rcu_read(&ram_list.mru_block);
1285 if (block && addr - block->offset < block->max_length) {
1286 return block;
1287 }
1288 RAMBLOCK_FOREACH(block) {
1289 if (addr - block->offset < block->max_length) {
1290 goto found;
1291 }
1292 }
1293
1294 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1295 abort();
1296
1297 found:
1298 /* It is safe to write mru_block outside the iothread lock. This
1299 * is what happens:
1300 *
1301 * mru_block = xxx
1302 * rcu_read_unlock()
1303 * xxx removed from list
1304 * rcu_read_lock()
1305 * read mru_block
1306 * mru_block = NULL;
1307 * call_rcu(reclaim_ramblock, xxx);
1308 * rcu_read_unlock()
1309 *
1310 * atomic_rcu_set is not needed here. The block was already published
1311 * when it was placed into the list. Here we're just making an extra
1312 * copy of the pointer.
1313 */
1314 ram_list.mru_block = block;
1315 return block;
1316 }
1317
1318 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1319 {
1320 CPUState *cpu;
1321 ram_addr_t start1;
1322 RAMBlock *block;
1323 ram_addr_t end;
1324
1325 assert(tcg_enabled());
1326 end = TARGET_PAGE_ALIGN(start + length);
1327 start &= TARGET_PAGE_MASK;
1328
1329 rcu_read_lock();
1330 block = qemu_get_ram_block(start);
1331 assert(block == qemu_get_ram_block(end - 1));
1332 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1333 CPU_FOREACH(cpu) {
1334 tlb_reset_dirty(cpu, start1, length);
1335 }
1336 rcu_read_unlock();
1337 }
1338
1339 /* Note: start and end must be within the same ram block. */
1340 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1341 ram_addr_t length,
1342 unsigned client)
1343 {
1344 DirtyMemoryBlocks *blocks;
1345 unsigned long end, page;
1346 bool dirty = false;
1347 RAMBlock *ramblock;
1348 uint64_t mr_offset, mr_size;
1349
1350 if (length == 0) {
1351 return false;
1352 }
1353
1354 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1355 page = start >> TARGET_PAGE_BITS;
1356
1357 rcu_read_lock();
1358
1359 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1360 ramblock = qemu_get_ram_block(start);
1361 /* Range sanity check on the ramblock */
1362 assert(start >= ramblock->offset &&
1363 start + length <= ramblock->offset + ramblock->used_length);
1364
1365 while (page < end) {
1366 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1367 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1368 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1369
1370 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1371 offset, num);
1372 page += num;
1373 }
1374
1375 mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
1376 mr_size = (end - page) << TARGET_PAGE_BITS;
1377 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1378
1379 rcu_read_unlock();
1380
1381 if (dirty && tcg_enabled()) {
1382 tlb_reset_dirty_range_all(start, length);
1383 }
1384
1385 return dirty;
1386 }
1387
1388 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1389 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1390 {
1391 DirtyMemoryBlocks *blocks;
1392 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1393 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1394 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1395 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1396 DirtyBitmapSnapshot *snap;
1397 unsigned long page, end, dest;
1398
1399 snap = g_malloc0(sizeof(*snap) +
1400 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1401 snap->start = first;
1402 snap->end = last;
1403
1404 page = first >> TARGET_PAGE_BITS;
1405 end = last >> TARGET_PAGE_BITS;
1406 dest = 0;
1407
1408 rcu_read_lock();
1409
1410 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1411
1412 while (page < end) {
1413 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1414 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1415 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1416
1417 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1418 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1419 offset >>= BITS_PER_LEVEL;
1420
1421 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1422 blocks->blocks[idx] + offset,
1423 num);
1424 page += num;
1425 dest += num >> BITS_PER_LEVEL;
1426 }
1427
1428 rcu_read_unlock();
1429
1430 if (tcg_enabled()) {
1431 tlb_reset_dirty_range_all(start, length);
1432 }
1433
1434 memory_region_clear_dirty_bitmap(mr, offset, length);
1435
1436 return snap;
1437 }
1438
1439 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1440 ram_addr_t start,
1441 ram_addr_t length)
1442 {
1443 unsigned long page, end;
1444
1445 assert(start >= snap->start);
1446 assert(start + length <= snap->end);
1447
1448 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1449 page = (start - snap->start) >> TARGET_PAGE_BITS;
1450
1451 while (page < end) {
1452 if (test_bit(page, snap->dirty)) {
1453 return true;
1454 }
1455 page++;
1456 }
1457 return false;
1458 }
1459
1460 /* Called from RCU critical section */
1461 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1462 MemoryRegionSection *section,
1463 target_ulong vaddr,
1464 hwaddr paddr, hwaddr xlat,
1465 int prot,
1466 target_ulong *address)
1467 {
1468 hwaddr iotlb;
1469
1470 if (memory_region_is_ram(section->mr)) {
1471 /* Normal RAM. */
1472 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1473 } else {
1474 AddressSpaceDispatch *d;
1475
1476 d = flatview_to_dispatch(section->fv);
1477 iotlb = section - d->map.sections;
1478 iotlb += xlat;
1479 }
1480
1481 return iotlb;
1482 }
1483 #endif /* defined(CONFIG_USER_ONLY) */
1484
1485 #if !defined(CONFIG_USER_ONLY)
1486
1487 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1488 uint16_t section);
1489 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1490
1491 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1492 qemu_anon_ram_alloc;
1493
1494 /*
1495 * Set a custom physical guest memory alloator.
1496 * Accelerators with unusual needs may need this. Hopefully, we can
1497 * get rid of it eventually.
1498 */
1499 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1500 {
1501 phys_mem_alloc = alloc;
1502 }
1503
1504 static uint16_t phys_section_add(PhysPageMap *map,
1505 MemoryRegionSection *section)
1506 {
1507 /* The physical section number is ORed with a page-aligned
1508 * pointer to produce the iotlb entries. Thus it should
1509 * never overflow into the page-aligned value.
1510 */
1511 assert(map->sections_nb < TARGET_PAGE_SIZE);
1512
1513 if (map->sections_nb == map->sections_nb_alloc) {
1514 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1515 map->sections = g_renew(MemoryRegionSection, map->sections,
1516 map->sections_nb_alloc);
1517 }
1518 map->sections[map->sections_nb] = *section;
1519 memory_region_ref(section->mr);
1520 return map->sections_nb++;
1521 }
1522
1523 static void phys_section_destroy(MemoryRegion *mr)
1524 {
1525 bool have_sub_page = mr->subpage;
1526
1527 memory_region_unref(mr);
1528
1529 if (have_sub_page) {
1530 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1531 object_unref(OBJECT(&subpage->iomem));
1532 g_free(subpage);
1533 }
1534 }
1535
1536 static void phys_sections_free(PhysPageMap *map)
1537 {
1538 while (map->sections_nb > 0) {
1539 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1540 phys_section_destroy(section->mr);
1541 }
1542 g_free(map->sections);
1543 g_free(map->nodes);
1544 }
1545
1546 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1547 {
1548 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1549 subpage_t *subpage;
1550 hwaddr base = section->offset_within_address_space
1551 & TARGET_PAGE_MASK;
1552 MemoryRegionSection *existing = phys_page_find(d, base);
1553 MemoryRegionSection subsection = {
1554 .offset_within_address_space = base,
1555 .size = int128_make64(TARGET_PAGE_SIZE),
1556 };
1557 hwaddr start, end;
1558
1559 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1560
1561 if (!(existing->mr->subpage)) {
1562 subpage = subpage_init(fv, base);
1563 subsection.fv = fv;
1564 subsection.mr = &subpage->iomem;
1565 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1566 phys_section_add(&d->map, &subsection));
1567 } else {
1568 subpage = container_of(existing->mr, subpage_t, iomem);
1569 }
1570 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1571 end = start + int128_get64(section->size) - 1;
1572 subpage_register(subpage, start, end,
1573 phys_section_add(&d->map, section));
1574 }
1575
1576
1577 static void register_multipage(FlatView *fv,
1578 MemoryRegionSection *section)
1579 {
1580 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1581 hwaddr start_addr = section->offset_within_address_space;
1582 uint16_t section_index = phys_section_add(&d->map, section);
1583 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1584 TARGET_PAGE_BITS));
1585
1586 assert(num_pages);
1587 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1588 }
1589
1590 /*
1591 * The range in *section* may look like this:
1592 *
1593 * |s|PPPPPPP|s|
1594 *
1595 * where s stands for subpage and P for page.
1596 */
1597 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1598 {
1599 MemoryRegionSection remain = *section;
1600 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1601
1602 /* register first subpage */
1603 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1604 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1605 - remain.offset_within_address_space;
1606
1607 MemoryRegionSection now = remain;
1608 now.size = int128_min(int128_make64(left), now.size);
1609 register_subpage(fv, &now);
1610 if (int128_eq(remain.size, now.size)) {
1611 return;
1612 }
1613 remain.size = int128_sub(remain.size, now.size);
1614 remain.offset_within_address_space += int128_get64(now.size);
1615 remain.offset_within_region += int128_get64(now.size);
1616 }
1617
1618 /* register whole pages */
1619 if (int128_ge(remain.size, page_size)) {
1620 MemoryRegionSection now = remain;
1621 now.size = int128_and(now.size, int128_neg(page_size));
1622 register_multipage(fv, &now);
1623 if (int128_eq(remain.size, now.size)) {
1624 return;
1625 }
1626 remain.size = int128_sub(remain.size, now.size);
1627 remain.offset_within_address_space += int128_get64(now.size);
1628 remain.offset_within_region += int128_get64(now.size);
1629 }
1630
1631 /* register last subpage */
1632 register_subpage(fv, &remain);
1633 }
1634
1635 void qemu_flush_coalesced_mmio_buffer(void)
1636 {
1637 if (kvm_enabled())
1638 kvm_flush_coalesced_mmio_buffer();
1639 }
1640
1641 void qemu_mutex_lock_ramlist(void)
1642 {
1643 qemu_mutex_lock(&ram_list.mutex);
1644 }
1645
1646 void qemu_mutex_unlock_ramlist(void)
1647 {
1648 qemu_mutex_unlock(&ram_list.mutex);
1649 }
1650
1651 void ram_block_dump(Monitor *mon)
1652 {
1653 RAMBlock *block;
1654 char *psize;
1655
1656 rcu_read_lock();
1657 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1658 "Block Name", "PSize", "Offset", "Used", "Total");
1659 RAMBLOCK_FOREACH(block) {
1660 psize = size_to_str(block->page_size);
1661 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1662 " 0x%016" PRIx64 "\n", block->idstr, psize,
1663 (uint64_t)block->offset,
1664 (uint64_t)block->used_length,
1665 (uint64_t)block->max_length);
1666 g_free(psize);
1667 }
1668 rcu_read_unlock();
1669 }
1670
1671 #ifdef __linux__
1672 /*
1673 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1674 * may or may not name the same files / on the same filesystem now as
1675 * when we actually open and map them. Iterate over the file
1676 * descriptors instead, and use qemu_fd_getpagesize().
1677 */
1678 static int find_min_backend_pagesize(Object *obj, void *opaque)
1679 {
1680 long *hpsize_min = opaque;
1681
1682 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1683 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1684 long hpsize = host_memory_backend_pagesize(backend);
1685
1686 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1687 *hpsize_min = hpsize;
1688 }
1689 }
1690
1691 return 0;
1692 }
1693
1694 static int find_max_backend_pagesize(Object *obj, void *opaque)
1695 {
1696 long *hpsize_max = opaque;
1697
1698 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1699 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1700 long hpsize = host_memory_backend_pagesize(backend);
1701
1702 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1703 *hpsize_max = hpsize;
1704 }
1705 }
1706
1707 return 0;
1708 }
1709
1710 /*
1711 * TODO: We assume right now that all mapped host memory backends are
1712 * used as RAM, however some might be used for different purposes.
1713 */
1714 long qemu_minrampagesize(void)
1715 {
1716 long hpsize = LONG_MAX;
1717 long mainrampagesize;
1718 Object *memdev_root;
1719 MachineState *ms = MACHINE(qdev_get_machine());
1720
1721 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1722
1723 /* it's possible we have memory-backend objects with
1724 * hugepage-backed RAM. these may get mapped into system
1725 * address space via -numa parameters or memory hotplug
1726 * hooks. we want to take these into account, but we
1727 * also want to make sure these supported hugepage
1728 * sizes are applicable across the entire range of memory
1729 * we may boot from, so we take the min across all
1730 * backends, and assume normal pages in cases where a
1731 * backend isn't backed by hugepages.
1732 */
1733 memdev_root = object_resolve_path("/objects", NULL);
1734 if (memdev_root) {
1735 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1736 }
1737 if (hpsize == LONG_MAX) {
1738 /* No additional memory regions found ==> Report main RAM page size */
1739 return mainrampagesize;
1740 }
1741
1742 /* If NUMA is disabled or the NUMA nodes are not backed with a
1743 * memory-backend, then there is at least one node using "normal" RAM,
1744 * so if its page size is smaller we have got to report that size instead.
1745 */
1746 if (hpsize > mainrampagesize &&
1747 (ms->numa_state == NULL ||
1748 ms->numa_state->num_nodes == 0 ||
1749 ms->numa_state->nodes[0].node_memdev == NULL)) {
1750 static bool warned;
1751 if (!warned) {
1752 error_report("Huge page support disabled (n/a for main memory).");
1753 warned = true;
1754 }
1755 return mainrampagesize;
1756 }
1757
1758 return hpsize;
1759 }
1760
1761 long qemu_maxrampagesize(void)
1762 {
1763 long pagesize = qemu_mempath_getpagesize(mem_path);
1764 Object *memdev_root = object_resolve_path("/objects", NULL);
1765
1766 if (memdev_root) {
1767 object_child_foreach(memdev_root, find_max_backend_pagesize,
1768 &pagesize);
1769 }
1770 return pagesize;
1771 }
1772 #else
1773 long qemu_minrampagesize(void)
1774 {
1775 return getpagesize();
1776 }
1777 long qemu_maxrampagesize(void)
1778 {
1779 return getpagesize();
1780 }
1781 #endif
1782
1783 #ifdef CONFIG_POSIX
1784 static int64_t get_file_size(int fd)
1785 {
1786 int64_t size;
1787 #if defined(__linux__)
1788 struct stat st;
1789
1790 if (fstat(fd, &st) < 0) {
1791 return -errno;
1792 }
1793
1794 /* Special handling for devdax character devices */
1795 if (S_ISCHR(st.st_mode)) {
1796 g_autofree char *subsystem_path = NULL;
1797 g_autofree char *subsystem = NULL;
1798
1799 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1800 major(st.st_rdev), minor(st.st_rdev));
1801 subsystem = g_file_read_link(subsystem_path, NULL);
1802
1803 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1804 g_autofree char *size_path = NULL;
1805 g_autofree char *size_str = NULL;
1806
1807 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1808 major(st.st_rdev), minor(st.st_rdev));
1809
1810 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1811 return g_ascii_strtoll(size_str, NULL, 0);
1812 }
1813 }
1814 }
1815 #endif /* defined(__linux__) */
1816
1817 /* st.st_size may be zero for special files yet lseek(2) works */
1818 size = lseek(fd, 0, SEEK_END);
1819 if (size < 0) {
1820 return -errno;
1821 }
1822 return size;
1823 }
1824
1825 static int file_ram_open(const char *path,
1826 const char *region_name,
1827 bool *created,
1828 Error **errp)
1829 {
1830 char *filename;
1831 char *sanitized_name;
1832 char *c;
1833 int fd = -1;
1834
1835 *created = false;
1836 for (;;) {
1837 fd = open(path, O_RDWR);
1838 if (fd >= 0) {
1839 /* @path names an existing file, use it */
1840 break;
1841 }
1842 if (errno == ENOENT) {
1843 /* @path names a file that doesn't exist, create it */
1844 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1845 if (fd >= 0) {
1846 *created = true;
1847 break;
1848 }
1849 } else if (errno == EISDIR) {
1850 /* @path names a directory, create a file there */
1851 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1852 sanitized_name = g_strdup(region_name);
1853 for (c = sanitized_name; *c != '\0'; c++) {
1854 if (*c == '/') {
1855 *c = '_';
1856 }
1857 }
1858
1859 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1860 sanitized_name);
1861 g_free(sanitized_name);
1862
1863 fd = mkstemp(filename);
1864 if (fd >= 0) {
1865 unlink(filename);
1866 g_free(filename);
1867 break;
1868 }
1869 g_free(filename);
1870 }
1871 if (errno != EEXIST && errno != EINTR) {
1872 error_setg_errno(errp, errno,
1873 "can't open backing store %s for guest RAM",
1874 path);
1875 return -1;
1876 }
1877 /*
1878 * Try again on EINTR and EEXIST. The latter happens when
1879 * something else creates the file between our two open().
1880 */
1881 }
1882
1883 return fd;
1884 }
1885
1886 static void *file_ram_alloc(RAMBlock *block,
1887 ram_addr_t memory,
1888 int fd,
1889 bool truncate,
1890 Error **errp)
1891 {
1892 MachineState *ms = MACHINE(qdev_get_machine());
1893 void *area;
1894
1895 block->page_size = qemu_fd_getpagesize(fd);
1896 if (block->mr->align % block->page_size) {
1897 error_setg(errp, "alignment 0x%" PRIx64
1898 " must be multiples of page size 0x%zx",
1899 block->mr->align, block->page_size);
1900 return NULL;
1901 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1902 error_setg(errp, "alignment 0x%" PRIx64
1903 " must be a power of two", block->mr->align);
1904 return NULL;
1905 }
1906 block->mr->align = MAX(block->page_size, block->mr->align);
1907 #if defined(__s390x__)
1908 if (kvm_enabled()) {
1909 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1910 }
1911 #endif
1912
1913 if (memory < block->page_size) {
1914 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1915 "or larger than page size 0x%zx",
1916 memory, block->page_size);
1917 return NULL;
1918 }
1919
1920 memory = ROUND_UP(memory, block->page_size);
1921
1922 /*
1923 * ftruncate is not supported by hugetlbfs in older
1924 * hosts, so don't bother bailing out on errors.
1925 * If anything goes wrong with it under other filesystems,
1926 * mmap will fail.
1927 *
1928 * Do not truncate the non-empty backend file to avoid corrupting
1929 * the existing data in the file. Disabling shrinking is not
1930 * enough. For example, the current vNVDIMM implementation stores
1931 * the guest NVDIMM labels at the end of the backend file. If the
1932 * backend file is later extended, QEMU will not be able to find
1933 * those labels. Therefore, extending the non-empty backend file
1934 * is disabled as well.
1935 */
1936 if (truncate && ftruncate(fd, memory)) {
1937 perror("ftruncate");
1938 }
1939
1940 area = qemu_ram_mmap(fd, memory, block->mr->align,
1941 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1942 if (area == MAP_FAILED) {
1943 error_setg_errno(errp, errno,
1944 "unable to map backing store for guest RAM");
1945 return NULL;
1946 }
1947
1948 if (mem_prealloc) {
1949 os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
1950 if (errp && *errp) {
1951 qemu_ram_munmap(fd, area, memory);
1952 return NULL;
1953 }
1954 }
1955
1956 block->fd = fd;
1957 return area;
1958 }
1959 #endif
1960
1961 /* Allocate space within the ram_addr_t space that governs the
1962 * dirty bitmaps.
1963 * Called with the ramlist lock held.
1964 */
1965 static ram_addr_t find_ram_offset(ram_addr_t size)
1966 {
1967 RAMBlock *block, *next_block;
1968 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1969
1970 assert(size != 0); /* it would hand out same offset multiple times */
1971
1972 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1973 return 0;
1974 }
1975
1976 RAMBLOCK_FOREACH(block) {
1977 ram_addr_t candidate, next = RAM_ADDR_MAX;
1978
1979 /* Align blocks to start on a 'long' in the bitmap
1980 * which makes the bitmap sync'ing take the fast path.
1981 */
1982 candidate = block->offset + block->max_length;
1983 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1984
1985 /* Search for the closest following block
1986 * and find the gap.
1987 */
1988 RAMBLOCK_FOREACH(next_block) {
1989 if (next_block->offset >= candidate) {
1990 next = MIN(next, next_block->offset);
1991 }
1992 }
1993
1994 /* If it fits remember our place and remember the size
1995 * of gap, but keep going so that we might find a smaller
1996 * gap to fill so avoiding fragmentation.
1997 */
1998 if (next - candidate >= size && next - candidate < mingap) {
1999 offset = candidate;
2000 mingap = next - candidate;
2001 }
2002
2003 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
2004 }
2005
2006 if (offset == RAM_ADDR_MAX) {
2007 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2008 (uint64_t)size);
2009 abort();
2010 }
2011
2012 trace_find_ram_offset(size, offset);
2013
2014 return offset;
2015 }
2016
2017 static unsigned long last_ram_page(void)
2018 {
2019 RAMBlock *block;
2020 ram_addr_t last = 0;
2021
2022 rcu_read_lock();
2023 RAMBLOCK_FOREACH(block) {
2024 last = MAX(last, block->offset + block->max_length);
2025 }
2026 rcu_read_unlock();
2027 return last >> TARGET_PAGE_BITS;
2028 }
2029
2030 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2031 {
2032 int ret;
2033
2034 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2035 if (!machine_dump_guest_core(current_machine)) {
2036 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2037 if (ret) {
2038 perror("qemu_madvise");
2039 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2040 "but dump_guest_core=off specified\n");
2041 }
2042 }
2043 }
2044
2045 const char *qemu_ram_get_idstr(RAMBlock *rb)
2046 {
2047 return rb->idstr;
2048 }
2049
2050 void *qemu_ram_get_host_addr(RAMBlock *rb)
2051 {
2052 return rb->host;
2053 }
2054
2055 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2056 {
2057 return rb->offset;
2058 }
2059
2060 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2061 {
2062 return rb->used_length;
2063 }
2064
2065 bool qemu_ram_is_shared(RAMBlock *rb)
2066 {
2067 return rb->flags & RAM_SHARED;
2068 }
2069
2070 /* Note: Only set at the start of postcopy */
2071 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2072 {
2073 return rb->flags & RAM_UF_ZEROPAGE;
2074 }
2075
2076 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2077 {
2078 rb->flags |= RAM_UF_ZEROPAGE;
2079 }
2080
2081 bool qemu_ram_is_migratable(RAMBlock *rb)
2082 {
2083 return rb->flags & RAM_MIGRATABLE;
2084 }
2085
2086 void qemu_ram_set_migratable(RAMBlock *rb)
2087 {
2088 rb->flags |= RAM_MIGRATABLE;
2089 }
2090
2091 void qemu_ram_unset_migratable(RAMBlock *rb)
2092 {
2093 rb->flags &= ~RAM_MIGRATABLE;
2094 }
2095
2096 /* Called with iothread lock held. */
2097 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2098 {
2099 RAMBlock *block;
2100
2101 assert(new_block);
2102 assert(!new_block->idstr[0]);
2103
2104 if (dev) {
2105 char *id = qdev_get_dev_path(dev);
2106 if (id) {
2107 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2108 g_free(id);
2109 }
2110 }
2111 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2112
2113 rcu_read_lock();
2114 RAMBLOCK_FOREACH(block) {
2115 if (block != new_block &&
2116 !strcmp(block->idstr, new_block->idstr)) {
2117 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2118 new_block->idstr);
2119 abort();
2120 }
2121 }
2122 rcu_read_unlock();
2123 }
2124
2125 /* Called with iothread lock held. */
2126 void qemu_ram_unset_idstr(RAMBlock *block)
2127 {
2128 /* FIXME: arch_init.c assumes that this is not called throughout
2129 * migration. Ignore the problem since hot-unplug during migration
2130 * does not work anyway.
2131 */
2132 if (block) {
2133 memset(block->idstr, 0, sizeof(block->idstr));
2134 }
2135 }
2136
2137 size_t qemu_ram_pagesize(RAMBlock *rb)
2138 {
2139 return rb->page_size;
2140 }
2141
2142 /* Returns the largest size of page in use */
2143 size_t qemu_ram_pagesize_largest(void)
2144 {
2145 RAMBlock *block;
2146 size_t largest = 0;
2147
2148 RAMBLOCK_FOREACH(block) {
2149 largest = MAX(largest, qemu_ram_pagesize(block));
2150 }
2151
2152 return largest;
2153 }
2154
2155 static int memory_try_enable_merging(void *addr, size_t len)
2156 {
2157 if (!machine_mem_merge(current_machine)) {
2158 /* disabled by the user */
2159 return 0;
2160 }
2161
2162 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2163 }
2164
2165 /* Only legal before guest might have detected the memory size: e.g. on
2166 * incoming migration, or right after reset.
2167 *
2168 * As memory core doesn't know how is memory accessed, it is up to
2169 * resize callback to update device state and/or add assertions to detect
2170 * misuse, if necessary.
2171 */
2172 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2173 {
2174 assert(block);
2175
2176 newsize = HOST_PAGE_ALIGN(newsize);
2177
2178 if (block->used_length == newsize) {
2179 return 0;
2180 }
2181
2182 if (!(block->flags & RAM_RESIZEABLE)) {
2183 error_setg_errno(errp, EINVAL,
2184 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2185 " in != 0x" RAM_ADDR_FMT, block->idstr,
2186 newsize, block->used_length);
2187 return -EINVAL;
2188 }
2189
2190 if (block->max_length < newsize) {
2191 error_setg_errno(errp, EINVAL,
2192 "Length too large: %s: 0x" RAM_ADDR_FMT
2193 " > 0x" RAM_ADDR_FMT, block->idstr,
2194 newsize, block->max_length);
2195 return -EINVAL;
2196 }
2197
2198 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2199 block->used_length = newsize;
2200 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2201 DIRTY_CLIENTS_ALL);
2202 memory_region_set_size(block->mr, newsize);
2203 if (block->resized) {
2204 block->resized(block->idstr, newsize, block->host);
2205 }
2206 return 0;
2207 }
2208
2209 /* Called with ram_list.mutex held */
2210 static void dirty_memory_extend(ram_addr_t old_ram_size,
2211 ram_addr_t new_ram_size)
2212 {
2213 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2214 DIRTY_MEMORY_BLOCK_SIZE);
2215 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2216 DIRTY_MEMORY_BLOCK_SIZE);
2217 int i;
2218
2219 /* Only need to extend if block count increased */
2220 if (new_num_blocks <= old_num_blocks) {
2221 return;
2222 }
2223
2224 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2225 DirtyMemoryBlocks *old_blocks;
2226 DirtyMemoryBlocks *new_blocks;
2227 int j;
2228
2229 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2230 new_blocks = g_malloc(sizeof(*new_blocks) +
2231 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2232
2233 if (old_num_blocks) {
2234 memcpy(new_blocks->blocks, old_blocks->blocks,
2235 old_num_blocks * sizeof(old_blocks->blocks[0]));
2236 }
2237
2238 for (j = old_num_blocks; j < new_num_blocks; j++) {
2239 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2240 }
2241
2242 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2243
2244 if (old_blocks) {
2245 g_free_rcu(old_blocks, rcu);
2246 }
2247 }
2248 }
2249
2250 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2251 {
2252 RAMBlock *block;
2253 RAMBlock *last_block = NULL;
2254 ram_addr_t old_ram_size, new_ram_size;
2255 Error *err = NULL;
2256
2257 old_ram_size = last_ram_page();
2258
2259 qemu_mutex_lock_ramlist();
2260 new_block->offset = find_ram_offset(new_block->max_length);
2261
2262 if (!new_block->host) {
2263 if (xen_enabled()) {
2264 xen_ram_alloc(new_block->offset, new_block->max_length,
2265 new_block->mr, &err);
2266 if (err) {
2267 error_propagate(errp, err);
2268 qemu_mutex_unlock_ramlist();
2269 return;
2270 }
2271 } else {
2272 new_block->host = phys_mem_alloc(new_block->max_length,
2273 &new_block->mr->align, shared);
2274 if (!new_block->host) {
2275 error_setg_errno(errp, errno,
2276 "cannot set up guest memory '%s'",
2277 memory_region_name(new_block->mr));
2278 qemu_mutex_unlock_ramlist();
2279 return;
2280 }
2281 memory_try_enable_merging(new_block->host, new_block->max_length);
2282 }
2283 }
2284
2285 new_ram_size = MAX(old_ram_size,
2286 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2287 if (new_ram_size > old_ram_size) {
2288 dirty_memory_extend(old_ram_size, new_ram_size);
2289 }
2290 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2291 * QLIST (which has an RCU-friendly variant) does not have insertion at
2292 * tail, so save the last element in last_block.
2293 */
2294 RAMBLOCK_FOREACH(block) {
2295 last_block = block;
2296 if (block->max_length < new_block->max_length) {
2297 break;
2298 }
2299 }
2300 if (block) {
2301 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2302 } else if (last_block) {
2303 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2304 } else { /* list is empty */
2305 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2306 }
2307 ram_list.mru_block = NULL;
2308
2309 /* Write list before version */
2310 smp_wmb();
2311 ram_list.version++;
2312 qemu_mutex_unlock_ramlist();
2313
2314 cpu_physical_memory_set_dirty_range(new_block->offset,
2315 new_block->used_length,
2316 DIRTY_CLIENTS_ALL);
2317
2318 if (new_block->host) {
2319 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2320 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2321 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2322 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2323 ram_block_notify_add(new_block->host, new_block->max_length);
2324 }
2325 }
2326
2327 #ifdef CONFIG_POSIX
2328 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2329 uint32_t ram_flags, int fd,
2330 Error **errp)
2331 {
2332 RAMBlock *new_block;
2333 Error *local_err = NULL;
2334 int64_t file_size;
2335
2336 /* Just support these ram flags by now. */
2337 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2338
2339 if (xen_enabled()) {
2340 error_setg(errp, "-mem-path not supported with Xen");
2341 return NULL;
2342 }
2343
2344 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2345 error_setg(errp,
2346 "host lacks kvm mmu notifiers, -mem-path unsupported");
2347 return NULL;
2348 }
2349
2350 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2351 /*
2352 * file_ram_alloc() needs to allocate just like
2353 * phys_mem_alloc, but we haven't bothered to provide
2354 * a hook there.
2355 */
2356 error_setg(errp,
2357 "-mem-path not supported with this accelerator");
2358 return NULL;
2359 }
2360
2361 size = HOST_PAGE_ALIGN(size);
2362 file_size = get_file_size(fd);
2363 if (file_size > 0 && file_size < size) {
2364 error_setg(errp, "backing store %s size 0x%" PRIx64
2365 " does not match 'size' option 0x" RAM_ADDR_FMT,
2366 mem_path, file_size, size);
2367 return NULL;
2368 }
2369
2370 new_block = g_malloc0(sizeof(*new_block));
2371 new_block->mr = mr;
2372 new_block->used_length = size;
2373 new_block->max_length = size;
2374 new_block->flags = ram_flags;
2375 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2376 if (!new_block->host) {
2377 g_free(new_block);
2378 return NULL;
2379 }
2380
2381 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2382 if (local_err) {
2383 g_free(new_block);
2384 error_propagate(errp, local_err);
2385 return NULL;
2386 }
2387 return new_block;
2388
2389 }
2390
2391
2392 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2393 uint32_t ram_flags, const char *mem_path,
2394 Error **errp)
2395 {
2396 int fd;
2397 bool created;
2398 RAMBlock *block;
2399
2400 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2401 if (fd < 0) {
2402 return NULL;
2403 }
2404
2405 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2406 if (!block) {
2407 if (created) {
2408 unlink(mem_path);
2409 }
2410 close(fd);
2411 return NULL;
2412 }
2413
2414 return block;
2415 }
2416 #endif
2417
2418 static
2419 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2420 void (*resized)(const char*,
2421 uint64_t length,
2422 void *host),
2423 void *host, bool resizeable, bool share,
2424 MemoryRegion *mr, Error **errp)
2425 {
2426 RAMBlock *new_block;
2427 Error *local_err = NULL;
2428
2429 size = HOST_PAGE_ALIGN(size);
2430 max_size = HOST_PAGE_ALIGN(max_size);
2431 new_block = g_malloc0(sizeof(*new_block));
2432 new_block->mr = mr;
2433 new_block->resized = resized;
2434 new_block->used_length = size;
2435 new_block->max_length = max_size;
2436 assert(max_size >= size);
2437 new_block->fd = -1;
2438 new_block->page_size = getpagesize();
2439 new_block->host = host;
2440 if (host) {
2441 new_block->flags |= RAM_PREALLOC;
2442 }
2443 if (resizeable) {
2444 new_block->flags |= RAM_RESIZEABLE;
2445 }
2446 ram_block_add(new_block, &local_err, share);
2447 if (local_err) {
2448 g_free(new_block);
2449 error_propagate(errp, local_err);
2450 return NULL;
2451 }
2452 return new_block;
2453 }
2454
2455 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2456 MemoryRegion *mr, Error **errp)
2457 {
2458 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2459 false, mr, errp);
2460 }
2461
2462 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2463 MemoryRegion *mr, Error **errp)
2464 {
2465 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2466 share, mr, errp);
2467 }
2468
2469 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2470 void (*resized)(const char*,
2471 uint64_t length,
2472 void *host),
2473 MemoryRegion *mr, Error **errp)
2474 {
2475 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2476 false, mr, errp);
2477 }
2478
2479 static void reclaim_ramblock(RAMBlock *block)
2480 {
2481 if (block->flags & RAM_PREALLOC) {
2482 ;
2483 } else if (xen_enabled()) {
2484 xen_invalidate_map_cache_entry(block->host);
2485 #ifndef _WIN32
2486 } else if (block->fd >= 0) {
2487 qemu_ram_munmap(block->fd, block->host, block->max_length);
2488 close(block->fd);
2489 #endif
2490 } else {
2491 qemu_anon_ram_free(block->host, block->max_length);
2492 }
2493 g_free(block);
2494 }
2495
2496 void qemu_ram_free(RAMBlock *block)
2497 {
2498 if (!block) {
2499 return;
2500 }
2501
2502 if (block->host) {
2503 ram_block_notify_remove(block->host, block->max_length);
2504 }
2505
2506 qemu_mutex_lock_ramlist();
2507 QLIST_REMOVE_RCU(block, next);
2508 ram_list.mru_block = NULL;
2509 /* Write list before version */
2510 smp_wmb();
2511 ram_list.version++;
2512 call_rcu(block, reclaim_ramblock, rcu);
2513 qemu_mutex_unlock_ramlist();
2514 }
2515
2516 #ifndef _WIN32
2517 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2518 {
2519 RAMBlock *block;
2520 ram_addr_t offset;
2521 int flags;
2522 void *area, *vaddr;
2523
2524 RAMBLOCK_FOREACH(block) {
2525 offset = addr - block->offset;
2526 if (offset < block->max_length) {
2527 vaddr = ramblock_ptr(block, offset);
2528 if (block->flags & RAM_PREALLOC) {
2529 ;
2530 } else if (xen_enabled()) {
2531 abort();
2532 } else {
2533 flags = MAP_FIXED;
2534 if (block->fd >= 0) {
2535 flags |= (block->flags & RAM_SHARED ?
2536 MAP_SHARED : MAP_PRIVATE);
2537 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2538 flags, block->fd, offset);
2539 } else {
2540 /*
2541 * Remap needs to match alloc. Accelerators that
2542 * set phys_mem_alloc never remap. If they did,
2543 * we'd need a remap hook here.
2544 */
2545 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2546
2547 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2548 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2549 flags, -1, 0);
2550 }
2551 if (area != vaddr) {
2552 error_report("Could not remap addr: "
2553 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2554 length, addr);
2555 exit(1);
2556 }
2557 memory_try_enable_merging(vaddr, length);
2558 qemu_ram_setup_dump(vaddr, length);
2559 }
2560 }
2561 }
2562 }
2563 #endif /* !_WIN32 */
2564
2565 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2566 * This should not be used for general purpose DMA. Use address_space_map
2567 * or address_space_rw instead. For local memory (e.g. video ram) that the
2568 * device owns, use memory_region_get_ram_ptr.
2569 *
2570 * Called within RCU critical section.
2571 */
2572 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2573 {
2574 RAMBlock *block = ram_block;
2575
2576 if (block == NULL) {
2577 block = qemu_get_ram_block(addr);
2578 addr -= block->offset;
2579 }
2580
2581 if (xen_enabled() && block->host == NULL) {
2582 /* We need to check if the requested address is in the RAM
2583 * because we don't want to map the entire memory in QEMU.
2584 * In that case just map until the end of the page.
2585 */
2586 if (block->offset == 0) {
2587 return xen_map_cache(addr, 0, 0, false);
2588 }
2589
2590 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2591 }
2592 return ramblock_ptr(block, addr);
2593 }
2594
2595 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2596 * but takes a size argument.
2597 *
2598 * Called within RCU critical section.
2599 */
2600 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2601 hwaddr *size, bool lock)
2602 {
2603 RAMBlock *block = ram_block;
2604 if (*size == 0) {
2605 return NULL;
2606 }
2607
2608 if (block == NULL) {
2609 block = qemu_get_ram_block(addr);
2610 addr -= block->offset;
2611 }
2612 *size = MIN(*size, block->max_length - addr);
2613
2614 if (xen_enabled() && block->host == NULL) {
2615 /* We need to check if the requested address is in the RAM
2616 * because we don't want to map the entire memory in QEMU.
2617 * In that case just map the requested area.
2618 */
2619 if (block->offset == 0) {
2620 return xen_map_cache(addr, *size, lock, lock);
2621 }
2622
2623 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2624 }
2625
2626 return ramblock_ptr(block, addr);
2627 }
2628
2629 /* Return the offset of a hostpointer within a ramblock */
2630 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2631 {
2632 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2633 assert((uintptr_t)host >= (uintptr_t)rb->host);
2634 assert(res < rb->max_length);
2635
2636 return res;
2637 }
2638
2639 /*
2640 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2641 * in that RAMBlock.
2642 *
2643 * ptr: Host pointer to look up
2644 * round_offset: If true round the result offset down to a page boundary
2645 * *ram_addr: set to result ram_addr
2646 * *offset: set to result offset within the RAMBlock
2647 *
2648 * Returns: RAMBlock (or NULL if not found)
2649 *
2650 * By the time this function returns, the returned pointer is not protected
2651 * by RCU anymore. If the caller is not within an RCU critical section and
2652 * does not hold the iothread lock, it must have other means of protecting the
2653 * pointer, such as a reference to the region that includes the incoming
2654 * ram_addr_t.
2655 */
2656 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2657 ram_addr_t *offset)
2658 {
2659 RAMBlock *block;
2660 uint8_t *host = ptr;
2661
2662 if (xen_enabled()) {
2663 ram_addr_t ram_addr;
2664 rcu_read_lock();
2665 ram_addr = xen_ram_addr_from_mapcache(ptr);
2666 block = qemu_get_ram_block(ram_addr);
2667 if (block) {
2668 *offset = ram_addr - block->offset;
2669 }
2670 rcu_read_unlock();
2671 return block;
2672 }
2673
2674 rcu_read_lock();
2675 block = atomic_rcu_read(&ram_list.mru_block);
2676 if (block && block->host && host - block->host < block->max_length) {
2677 goto found;
2678 }
2679
2680 RAMBLOCK_FOREACH(block) {
2681 /* This case append when the block is not mapped. */
2682 if (block->host == NULL) {
2683 continue;
2684 }
2685 if (host - block->host < block->max_length) {
2686 goto found;
2687 }
2688 }
2689
2690 rcu_read_unlock();
2691 return NULL;
2692
2693 found:
2694 *offset = (host - block->host);
2695 if (round_offset) {
2696 *offset &= TARGET_PAGE_MASK;
2697 }
2698 rcu_read_unlock();
2699 return block;
2700 }
2701
2702 /*
2703 * Finds the named RAMBlock
2704 *
2705 * name: The name of RAMBlock to find
2706 *
2707 * Returns: RAMBlock (or NULL if not found)
2708 */
2709 RAMBlock *qemu_ram_block_by_name(const char *name)
2710 {
2711 RAMBlock *block;
2712
2713 RAMBLOCK_FOREACH(block) {
2714 if (!strcmp(name, block->idstr)) {
2715 return block;
2716 }
2717 }
2718
2719 return NULL;
2720 }
2721
2722 /* Some of the softmmu routines need to translate from a host pointer
2723 (typically a TLB entry) back to a ram offset. */
2724 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2725 {
2726 RAMBlock *block;
2727 ram_addr_t offset;
2728
2729 block = qemu_ram_block_from_host(ptr, false, &offset);
2730 if (!block) {
2731 return RAM_ADDR_INVALID;
2732 }
2733
2734 return block->offset + offset;
2735 }
2736
2737 /* Called within RCU critical section. */
2738 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2739 CPUState *cpu,
2740 vaddr mem_vaddr,
2741 ram_addr_t ram_addr,
2742 unsigned size)
2743 {
2744 ndi->cpu = cpu;
2745 ndi->ram_addr = ram_addr;
2746 ndi->mem_vaddr = mem_vaddr;
2747 ndi->size = size;
2748 ndi->pages = NULL;
2749
2750 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
2751
2752 assert(tcg_enabled());
2753 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2754 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2755 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2756 }
2757 }
2758
2759 /* Called within RCU critical section. */
2760 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2761 {
2762 if (ndi->pages) {
2763 assert(tcg_enabled());
2764 page_collection_unlock(ndi->pages);
2765 ndi->pages = NULL;
2766 }
2767
2768 /* Set both VGA and migration bits for simplicity and to remove
2769 * the notdirty callback faster.
2770 */
2771 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2772 DIRTY_CLIENTS_NOCODE);
2773 /* we remove the notdirty callback only if the code has been
2774 flushed */
2775 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2776 trace_memory_notdirty_set_dirty(ndi->mem_vaddr);
2777 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2778 }
2779 }
2780
2781 /* Generate a debug exception if a watchpoint has been hit. */
2782 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2783 MemTxAttrs attrs, int flags, uintptr_t ra)
2784 {
2785 CPUClass *cc = CPU_GET_CLASS(cpu);
2786 CPUWatchpoint *wp;
2787
2788 assert(tcg_enabled());
2789 if (cpu->watchpoint_hit) {
2790 /*
2791 * We re-entered the check after replacing the TB.
2792 * Now raise the debug interrupt so that it will
2793 * trigger after the current instruction.
2794 */
2795 qemu_mutex_lock_iothread();
2796 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2797 qemu_mutex_unlock_iothread();
2798 return;
2799 }
2800
2801 addr = cc->adjust_watchpoint_address(cpu, addr, len);
2802 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2803 if (watchpoint_address_matches(wp, addr, len)
2804 && (wp->flags & flags)) {
2805 if (flags == BP_MEM_READ) {
2806 wp->flags |= BP_WATCHPOINT_HIT_READ;
2807 } else {
2808 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2809 }
2810 wp->hitaddr = MAX(addr, wp->vaddr);
2811 wp->hitattrs = attrs;
2812 if (!cpu->watchpoint_hit) {
2813 if (wp->flags & BP_CPU &&
2814 !cc->debug_check_watchpoint(cpu, wp)) {
2815 wp->flags &= ~BP_WATCHPOINT_HIT;
2816 continue;
2817 }
2818 cpu->watchpoint_hit = wp;
2819
2820 mmap_lock();
2821 tb_check_watchpoint(cpu);
2822 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2823 cpu->exception_index = EXCP_DEBUG;
2824 mmap_unlock();
2825 cpu_loop_exit_restore(cpu, ra);
2826 } else {
2827 /* Force execution of one insn next time. */
2828 cpu->cflags_next_tb = 1 | curr_cflags();
2829 mmap_unlock();
2830 if (ra) {
2831 cpu_restore_state(cpu, ra, true);
2832 }
2833 cpu_loop_exit_noexc(cpu);
2834 }
2835 }
2836 } else {
2837 wp->flags &= ~BP_WATCHPOINT_HIT;
2838 }
2839 }
2840 }
2841
2842 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2843 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2844 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2845 const uint8_t *buf, hwaddr len);
2846 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2847 bool is_write, MemTxAttrs attrs);
2848
2849 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2850 unsigned len, MemTxAttrs attrs)
2851 {
2852 subpage_t *subpage = opaque;
2853 uint8_t buf[8];
2854 MemTxResult res;
2855
2856 #if defined(DEBUG_SUBPAGE)
2857 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2858 subpage, len, addr);
2859 #endif
2860 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2861 if (res) {
2862 return res;
2863 }
2864 *data = ldn_p(buf, len);
2865 return MEMTX_OK;
2866 }
2867
2868 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2869 uint64_t value, unsigned len, MemTxAttrs attrs)
2870 {
2871 subpage_t *subpage = opaque;
2872 uint8_t buf[8];
2873
2874 #if defined(DEBUG_SUBPAGE)
2875 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2876 " value %"PRIx64"\n",
2877 __func__, subpage, len, addr, value);
2878 #endif
2879 stn_p(buf, len, value);
2880 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2881 }
2882
2883 static bool subpage_accepts(void *opaque, hwaddr addr,
2884 unsigned len, bool is_write,
2885 MemTxAttrs attrs)
2886 {
2887 subpage_t *subpage = opaque;
2888 #if defined(DEBUG_SUBPAGE)
2889 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2890 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2891 #endif
2892
2893 return flatview_access_valid(subpage->fv, addr + subpage->base,
2894 len, is_write, attrs);
2895 }
2896
2897 static const MemoryRegionOps subpage_ops = {
2898 .read_with_attrs = subpage_read,
2899 .write_with_attrs = subpage_write,
2900 .impl.min_access_size = 1,
2901 .impl.max_access_size = 8,
2902 .valid.min_access_size = 1,
2903 .valid.max_access_size = 8,
2904 .valid.accepts = subpage_accepts,
2905 .endianness = DEVICE_NATIVE_ENDIAN,
2906 };
2907
2908 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2909 uint16_t section)
2910 {
2911 int idx, eidx;
2912
2913 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2914 return -1;
2915 idx = SUBPAGE_IDX(start);
2916 eidx = SUBPAGE_IDX(end);
2917 #if defined(DEBUG_SUBPAGE)
2918 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2919 __func__, mmio, start, end, idx, eidx, section);
2920 #endif
2921 for (; idx <= eidx; idx++) {
2922 mmio->sub_section[idx] = section;
2923 }
2924
2925 return 0;
2926 }
2927
2928 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2929 {
2930 subpage_t *mmio;
2931
2932 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2933 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2934 mmio->fv = fv;
2935 mmio->base = base;
2936 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2937 NULL, TARGET_PAGE_SIZE);
2938 mmio->iomem.subpage = true;
2939 #if defined(DEBUG_SUBPAGE)
2940 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2941 mmio, base, TARGET_PAGE_SIZE);
2942 #endif
2943
2944 return mmio;
2945 }
2946
2947 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2948 {
2949 assert(fv);
2950 MemoryRegionSection section = {
2951 .fv = fv,
2952 .mr = mr,
2953 .offset_within_address_space = 0,
2954 .offset_within_region = 0,
2955 .size = int128_2_64(),
2956 };
2957
2958 return phys_section_add(map, &section);
2959 }
2960
2961 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2962 hwaddr index, MemTxAttrs attrs)
2963 {
2964 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2965 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2966 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2967 MemoryRegionSection *sections = d->map.sections;
2968
2969 return &sections[index & ~TARGET_PAGE_MASK];
2970 }
2971
2972 static void io_mem_init(void)
2973 {
2974 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2975 NULL, UINT64_MAX);
2976 }
2977
2978 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2979 {
2980 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2981 uint16_t n;
2982
2983 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2984 assert(n == PHYS_SECTION_UNASSIGNED);
2985
2986 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2987
2988 return d;
2989 }
2990
2991 void address_space_dispatch_free(AddressSpaceDispatch *d)
2992 {
2993 phys_sections_free(&d->map);
2994 g_free(d);
2995 }
2996
2997 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2998 {
2999 }
3000
3001 static void tcg_log_global_after_sync(MemoryListener *listener)
3002 {
3003 CPUAddressSpace *cpuas;
3004
3005 /* Wait for the CPU to end the current TB. This avoids the following
3006 * incorrect race:
3007 *
3008 * vCPU migration
3009 * ---------------------- -------------------------
3010 * TLB check -> slow path
3011 * notdirty_mem_write
3012 * write to RAM
3013 * mark dirty
3014 * clear dirty flag
3015 * TLB check -> fast path
3016 * read memory
3017 * write to RAM
3018 *
3019 * by pushing the migration thread's memory read after the vCPU thread has
3020 * written the memory.
3021 */
3022 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3023 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
3024 }
3025
3026 static void tcg_commit(MemoryListener *listener)
3027 {
3028 CPUAddressSpace *cpuas;
3029 AddressSpaceDispatch *d;
3030
3031 assert(tcg_enabled());
3032 /* since each CPU stores ram addresses in its TLB cache, we must
3033 reset the modified entries */
3034 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3035 cpu_reloading_memory_map();
3036 /* The CPU and TLB are protected by the iothread lock.
3037 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3038 * may have split the RCU critical section.
3039 */
3040 d = address_space_to_dispatch(cpuas->as);
3041 atomic_rcu_set(&cpuas->memory_dispatch, d);
3042 tlb_flush(cpuas->cpu);
3043 }
3044
3045 static void memory_map_init(void)
3046 {
3047 system_memory = g_malloc(sizeof(*system_memory));
3048
3049 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3050 address_space_init(&address_space_memory, system_memory, "memory");
3051
3052 system_io = g_malloc(sizeof(*system_io));
3053 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3054 65536);
3055 address_space_init(&address_space_io, system_io, "I/O");
3056 }
3057
3058 MemoryRegion *get_system_memory(void)
3059 {
3060 return system_memory;
3061 }
3062
3063 MemoryRegion *get_system_io(void)
3064 {
3065 return system_io;
3066 }
3067
3068 #endif /* !defined(CONFIG_USER_ONLY) */
3069
3070 /* physical memory access (slow version, mainly for debug) */
3071 #if defined(CONFIG_USER_ONLY)
3072 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3073 uint8_t *buf, target_ulong len, int is_write)
3074 {
3075 int flags;
3076 target_ulong l, page;
3077 void * p;
3078
3079 while (len > 0) {
3080 page = addr & TARGET_PAGE_MASK;
3081 l = (page + TARGET_PAGE_SIZE) - addr;
3082 if (l > len)
3083 l = len;
3084 flags = page_get_flags(page);
3085 if (!(flags & PAGE_VALID))
3086 return -1;
3087 if (is_write) {
3088 if (!(flags & PAGE_WRITE))
3089 return -1;
3090 /* XXX: this code should not depend on lock_user */
3091 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3092 return -1;
3093 memcpy(p, buf, l);
3094 unlock_user(p, addr, l);
3095 } else {
3096 if (!(flags & PAGE_READ))
3097 return -1;
3098 /* XXX: this code should not depend on lock_user */
3099 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3100 return -1;
3101 memcpy(buf, p, l);
3102 unlock_user(p, addr, 0);
3103 }
3104 len -= l;
3105 buf += l;
3106 addr += l;
3107 }
3108 return 0;
3109 }
3110
3111 #else
3112
3113 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3114 hwaddr length)
3115 {
3116 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3117 addr += memory_region_get_ram_addr(mr);
3118
3119 /* No early return if dirty_log_mask is or becomes 0, because
3120 * cpu_physical_memory_set_dirty_range will still call
3121 * xen_modified_memory.
3122 */
3123 if (dirty_log_mask) {
3124 dirty_log_mask =
3125 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3126 }
3127 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3128 assert(tcg_enabled());
3129 tb_invalidate_phys_range(addr, addr + length);
3130 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3131 }
3132 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3133 }
3134
3135 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3136 {
3137 /*
3138 * In principle this function would work on other memory region types too,
3139 * but the ROM device use case is the only one where this operation is
3140 * necessary. Other memory regions should use the
3141 * address_space_read/write() APIs.
3142 */
3143 assert(memory_region_is_romd(mr));
3144
3145 invalidate_and_set_dirty(mr, addr, size);
3146 }
3147
3148 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3149 {
3150 unsigned access_size_max = mr->ops->valid.max_access_size;
3151
3152 /* Regions are assumed to support 1-4 byte accesses unless
3153 otherwise specified. */
3154 if (access_size_max == 0) {
3155 access_size_max = 4;
3156 }
3157
3158 /* Bound the maximum access by the alignment of the address. */
3159 if (!mr->ops->impl.unaligned) {
3160 unsigned align_size_max = addr & -addr;
3161 if (align_size_max != 0 && align_size_max < access_size_max) {
3162 access_size_max = align_size_max;
3163 }
3164 }
3165
3166 /* Don't attempt accesses larger than the maximum. */
3167 if (l > access_size_max) {
3168 l = access_size_max;
3169 }
3170 l = pow2floor(l);
3171
3172 return l;
3173 }
3174
3175 static bool prepare_mmio_access(MemoryRegion *mr)
3176 {
3177 bool unlocked = !qemu_mutex_iothread_locked();
3178 bool release_lock = false;
3179
3180 if (unlocked && mr->global_locking) {
3181 qemu_mutex_lock_iothread();
3182 unlocked = false;
3183 release_lock = true;
3184 }
3185 if (mr->flush_coalesced_mmio) {
3186 if (unlocked) {
3187 qemu_mutex_lock_iothread();
3188 }
3189 qemu_flush_coalesced_mmio_buffer();
3190 if (unlocked) {
3191 qemu_mutex_unlock_iothread();
3192 }
3193 }
3194
3195 return release_lock;
3196 }
3197
3198 /* Called within RCU critical section. */
3199 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3200 MemTxAttrs attrs,
3201 const uint8_t *buf,
3202 hwaddr len, hwaddr addr1,
3203 hwaddr l, MemoryRegion *mr)
3204 {
3205 uint8_t *ptr;
3206 uint64_t val;
3207 MemTxResult result = MEMTX_OK;
3208 bool release_lock = false;
3209
3210 for (;;) {
3211 if (!memory_access_is_direct(mr, true)) {
3212 release_lock |= prepare_mmio_access(mr);
3213 l = memory_access_size(mr, l, addr1);
3214 /* XXX: could force current_cpu to NULL to avoid
3215 potential bugs */
3216 val = ldn_he_p(buf, l);
3217 result |= memory_region_dispatch_write(mr, addr1, val,
3218 size_memop(l), attrs);
3219 } else {
3220 /* RAM case */
3221 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3222 memcpy(ptr, buf, l);
3223 invalidate_and_set_dirty(mr, addr1, l);
3224 }
3225
3226 if (release_lock) {
3227 qemu_mutex_unlock_iothread();
3228 release_lock = false;
3229 }
3230
3231 len -= l;
3232 buf += l;
3233 addr += l;
3234
3235 if (!len) {
3236 break;
3237 }
3238
3239 l = len;
3240 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3241 }
3242
3243 return result;
3244 }
3245
3246 /* Called from RCU critical section. */
3247 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3248 const uint8_t *buf, hwaddr len)
3249 {
3250 hwaddr l;
3251 hwaddr addr1;
3252 MemoryRegion *mr;
3253 MemTxResult result = MEMTX_OK;
3254
3255 l = len;
3256 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3257 result = flatview_write_continue(fv, addr, attrs, buf, len,
3258 addr1, l, mr);
3259
3260 return result;
3261 }
3262
3263 /* Called within RCU critical section. */
3264 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3265 MemTxAttrs attrs, uint8_t *buf,
3266 hwaddr len, hwaddr addr1, hwaddr l,
3267 MemoryRegion *mr)
3268 {
3269 uint8_t *ptr;
3270 uint64_t val;
3271 MemTxResult result = MEMTX_OK;
3272 bool release_lock = false;
3273
3274 for (;;) {
3275 if (!memory_access_is_direct(mr, false)) {
3276 /* I/O case */
3277 release_lock |= prepare_mmio_access(mr);
3278 l = memory_access_size(mr, l, addr1);
3279 result |= memory_region_dispatch_read(mr, addr1, &val,
3280 size_memop(l), attrs);
3281 stn_he_p(buf, l, val);
3282 } else {
3283 /* RAM case */
3284 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3285 memcpy(buf, ptr, l);
3286 }
3287
3288 if (release_lock) {
3289 qemu_mutex_unlock_iothread();
3290 release_lock = false;
3291 }
3292
3293 len -= l;
3294 buf += l;
3295 addr += l;
3296
3297 if (!len) {
3298 break;
3299 }
3300
3301 l = len;
3302 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3303 }
3304
3305 return result;
3306 }
3307
3308 /* Called from RCU critical section. */
3309 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3310 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3311 {
3312 hwaddr l;
3313 hwaddr addr1;
3314 MemoryRegion *mr;
3315
3316 l = len;
3317 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3318 return flatview_read_continue(fv, addr, attrs, buf, len,
3319 addr1, l, mr);
3320 }
3321
3322 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3323 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3324 {
3325 MemTxResult result = MEMTX_OK;
3326 FlatView *fv;
3327
3328 if (len > 0) {
3329 rcu_read_lock();
3330 fv = address_space_to_flatview(as);
3331 result = flatview_read(fv, addr, attrs, buf, len);
3332 rcu_read_unlock();
3333 }
3334
3335 return result;
3336 }
3337
3338 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3339 MemTxAttrs attrs,
3340 const uint8_t *buf, hwaddr len)
3341 {
3342 MemTxResult result = MEMTX_OK;
3343 FlatView *fv;
3344
3345 if (len > 0) {
3346 rcu_read_lock();
3347 fv = address_space_to_flatview(as);
3348 result = flatview_write(fv, addr, attrs, buf, len);
3349 rcu_read_unlock();
3350 }
3351
3352 return result;
3353 }
3354
3355 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3356 uint8_t *buf, hwaddr len, bool is_write)
3357 {
3358 if (is_write) {
3359 return address_space_write(as, addr, attrs, buf, len);
3360 } else {
3361 return address_space_read_full(as, addr, attrs, buf, len);
3362 }
3363 }
3364
3365 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3366 hwaddr len, int is_write)
3367 {
3368 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3369 buf, len, is_write);
3370 }
3371
3372 enum write_rom_type {
3373 WRITE_DATA,
3374 FLUSH_CACHE,
3375 };
3376
3377 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3378 hwaddr addr,
3379 MemTxAttrs attrs,
3380 const uint8_t *buf,
3381 hwaddr len,
3382 enum write_rom_type type)
3383 {
3384 hwaddr l;
3385 uint8_t *ptr;
3386 hwaddr addr1;
3387 MemoryRegion *mr;
3388
3389 rcu_read_lock();
3390 while (len > 0) {
3391 l = len;
3392 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3393
3394 if (!(memory_region_is_ram(mr) ||
3395 memory_region_is_romd(mr))) {
3396 l = memory_access_size(mr, l, addr1);
3397 } else {
3398 /* ROM/RAM case */
3399 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3400 switch (type) {
3401 case WRITE_DATA:
3402 memcpy(ptr, buf, l);
3403 invalidate_and_set_dirty(mr, addr1, l);
3404 break;
3405 case FLUSH_CACHE:
3406 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3407 break;
3408 }
3409 }
3410 len -= l;
3411 buf += l;
3412 addr += l;
3413 }
3414 rcu_read_unlock();
3415 return MEMTX_OK;
3416 }
3417
3418 /* used for ROM loading : can write in RAM and ROM */
3419 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3420 MemTxAttrs attrs,
3421 const uint8_t *buf, hwaddr len)
3422 {
3423 return address_space_write_rom_internal(as, addr, attrs,
3424 buf, len, WRITE_DATA);
3425 }
3426
3427 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3428 {
3429 /*
3430 * This function should do the same thing as an icache flush that was
3431 * triggered from within the guest. For TCG we are always cache coherent,
3432 * so there is no need to flush anything. For KVM / Xen we need to flush
3433 * the host's instruction cache at least.
3434 */
3435 if (tcg_enabled()) {
3436 return;
3437 }
3438
3439 address_space_write_rom_internal(&address_space_memory,
3440 start, MEMTXATTRS_UNSPECIFIED,
3441 NULL, len, FLUSH_CACHE);
3442 }
3443
3444 typedef struct {
3445 MemoryRegion *mr;
3446 void *buffer;
3447 hwaddr addr;
3448 hwaddr len;
3449 bool in_use;
3450 } BounceBuffer;
3451
3452 static BounceBuffer bounce;
3453
3454 typedef struct MapClient {
3455 QEMUBH *bh;
3456 QLIST_ENTRY(MapClient) link;
3457 } MapClient;
3458
3459 QemuMutex map_client_list_lock;
3460 static QLIST_HEAD(, MapClient) map_client_list
3461 = QLIST_HEAD_INITIALIZER(map_client_list);
3462
3463 static void cpu_unregister_map_client_do(MapClient *client)
3464 {
3465 QLIST_REMOVE(client, link);
3466 g_free(client);
3467 }
3468
3469 static void cpu_notify_map_clients_locked(void)
3470 {
3471 MapClient *client;
3472
3473 while (!QLIST_EMPTY(&map_client_list)) {
3474 client = QLIST_FIRST(&map_client_list);
3475 qemu_bh_schedule(client->bh);
3476 cpu_unregister_map_client_do(client);
3477 }
3478 }
3479
3480 void cpu_register_map_client(QEMUBH *bh)
3481 {
3482 MapClient *client = g_malloc(sizeof(*client));
3483
3484 qemu_mutex_lock(&map_client_list_lock);
3485 client->bh = bh;
3486 QLIST_INSERT_HEAD(&map_client_list, client, link);
3487 if (!atomic_read(&bounce.in_use)) {
3488 cpu_notify_map_clients_locked();
3489 }
3490 qemu_mutex_unlock(&map_client_list_lock);
3491 }
3492
3493 void cpu_exec_init_all(void)
3494 {
3495 qemu_mutex_init(&ram_list.mutex);
3496 /* The data structures we set up here depend on knowing the page size,
3497 * so no more changes can be made after this point.
3498 * In an ideal world, nothing we did before we had finished the
3499 * machine setup would care about the target page size, and we could
3500 * do this much later, rather than requiring board models to state
3501 * up front what their requirements are.
3502 */
3503 finalize_target_page_bits();
3504 io_mem_init();
3505 memory_map_init();
3506 qemu_mutex_init(&map_client_list_lock);
3507 }
3508
3509 void cpu_unregister_map_client(QEMUBH *bh)
3510 {
3511 MapClient *client;
3512
3513 qemu_mutex_lock(&map_client_list_lock);
3514 QLIST_FOREACH(client, &map_client_list, link) {
3515 if (client->bh == bh) {
3516 cpu_unregister_map_client_do(client);
3517 break;
3518 }
3519 }
3520 qemu_mutex_unlock(&map_client_list_lock);
3521 }
3522
3523 static void cpu_notify_map_clients(void)
3524 {
3525 qemu_mutex_lock(&map_client_list_lock);
3526 cpu_notify_map_clients_locked();
3527 qemu_mutex_unlock(&map_client_list_lock);
3528 }
3529
3530 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3531 bool is_write, MemTxAttrs attrs)
3532 {
3533 MemoryRegion *mr;
3534 hwaddr l, xlat;
3535
3536 while (len > 0) {
3537 l = len;
3538 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3539 if (!memory_access_is_direct(mr, is_write)) {
3540 l = memory_access_size(mr, l, addr);
3541 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3542 return false;
3543 }
3544 }
3545
3546 len -= l;
3547 addr += l;
3548 }
3549 return true;
3550 }
3551
3552 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3553 hwaddr len, bool is_write,
3554 MemTxAttrs attrs)
3555 {
3556 FlatView *fv;
3557 bool result;
3558
3559 rcu_read_lock();
3560 fv = address_space_to_flatview(as);
3561 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3562 rcu_read_unlock();
3563 return result;
3564 }
3565
3566 static hwaddr
3567 flatview_extend_translation(FlatView *fv, hwaddr addr,
3568 hwaddr target_len,
3569 MemoryRegion *mr, hwaddr base, hwaddr len,
3570 bool is_write, MemTxAttrs attrs)
3571 {
3572 hwaddr done = 0;
3573 hwaddr xlat;
3574 MemoryRegion *this_mr;
3575
3576 for (;;) {
3577 target_len -= len;
3578 addr += len;
3579 done += len;
3580 if (target_len == 0) {
3581 return done;
3582 }
3583
3584 len = target_len;
3585 this_mr = flatview_translate(fv, addr, &xlat,
3586 &len, is_write, attrs);
3587 if (this_mr != mr || xlat != base + done) {
3588 return done;
3589 }
3590 }
3591 }
3592
3593 /* Map a physical memory region into a host virtual address.
3594 * May map a subset of the requested range, given by and returned in *plen.
3595 * May return NULL if resources needed to perform the mapping are exhausted.
3596 * Use only for reads OR writes - not for read-modify-write operations.
3597 * Use cpu_register_map_client() to know when retrying the map operation is
3598 * likely to succeed.
3599 */
3600 void *address_space_map(AddressSpace *as,
3601 hwaddr addr,
3602 hwaddr *plen,
3603 bool is_write,
3604 MemTxAttrs attrs)
3605 {
3606 hwaddr len = *plen;
3607 hwaddr l, xlat;
3608 MemoryRegion *mr;
3609 void *ptr;
3610 FlatView *fv;
3611
3612 if (len == 0) {
3613 return NULL;
3614 }
3615
3616 l = len;
3617 rcu_read_lock();
3618 fv = address_space_to_flatview(as);
3619 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3620
3621 if (!memory_access_is_direct(mr, is_write)) {
3622 if (atomic_xchg(&bounce.in_use, true)) {
3623 rcu_read_unlock();
3624 return NULL;
3625 }
3626 /* Avoid unbounded allocations */
3627 l = MIN(l, TARGET_PAGE_SIZE);
3628 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3629 bounce.addr = addr;
3630 bounce.len = l;
3631
3632 memory_region_ref(mr);
3633 bounce.mr = mr;
3634 if (!is_write) {
3635 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3636 bounce.buffer, l);
3637 }
3638
3639 rcu_read_unlock();
3640 *plen = l;
3641 return bounce.buffer;
3642 }
3643
3644
3645 memory_region_ref(mr);
3646 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3647 l, is_write, attrs);
3648 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3649 rcu_read_unlock();
3650
3651 return ptr;
3652 }
3653
3654 /* Unmaps a memory region previously mapped by address_space_map().
3655 * Will also mark the memory as dirty if is_write == 1. access_len gives
3656 * the amount of memory that was actually read or written by the caller.
3657 */
3658 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3659 int is_write, hwaddr access_len)
3660 {
3661 if (buffer != bounce.buffer) {
3662 MemoryRegion *mr;
3663 ram_addr_t addr1;
3664
3665 mr = memory_region_from_host(buffer, &addr1);
3666 assert(mr != NULL);
3667 if (is_write) {
3668 invalidate_and_set_dirty(mr, addr1, access_len);
3669 }
3670 if (xen_enabled()) {
3671 xen_invalidate_map_cache_entry(buffer);
3672 }
3673 memory_region_unref(mr);
3674 return;
3675 }
3676 if (is_write) {
3677 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3678 bounce.buffer, access_len);
3679 }
3680 qemu_vfree(bounce.buffer);
3681 bounce.buffer = NULL;
3682 memory_region_unref(bounce.mr);
3683 atomic_mb_set(&bounce.in_use, false);
3684 cpu_notify_map_clients();
3685 }
3686
3687 void *cpu_physical_memory_map(hwaddr addr,
3688 hwaddr *plen,
3689 int is_write)
3690 {
3691 return address_space_map(&address_space_memory, addr, plen, is_write,
3692 MEMTXATTRS_UNSPECIFIED);
3693 }
3694
3695 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3696 int is_write, hwaddr access_len)
3697 {
3698 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3699 }
3700
3701 #define ARG1_DECL AddressSpace *as
3702 #define ARG1 as
3703 #define SUFFIX
3704 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3705 #define RCU_READ_LOCK(...) rcu_read_lock()
3706 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3707 #include "memory_ldst.inc.c"
3708
3709 int64_t address_space_cache_init(MemoryRegionCache *cache,
3710 AddressSpace *as,
3711 hwaddr addr,
3712 hwaddr len,
3713 bool is_write)
3714 {
3715 AddressSpaceDispatch *d;
3716 hwaddr l;
3717 MemoryRegion *mr;
3718
3719 assert(len > 0);
3720
3721 l = len;
3722 cache->fv = address_space_get_flatview(as);
3723 d = flatview_to_dispatch(cache->fv);
3724 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3725
3726 mr = cache->mrs.mr;
3727 memory_region_ref(mr);
3728 if (memory_access_is_direct(mr, is_write)) {
3729 /* We don't care about the memory attributes here as we're only
3730 * doing this if we found actual RAM, which behaves the same
3731 * regardless of attributes; so UNSPECIFIED is fine.
3732 */
3733 l = flatview_extend_translation(cache->fv, addr, len, mr,
3734 cache->xlat, l, is_write,
3735 MEMTXATTRS_UNSPECIFIED);
3736 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3737 } else {
3738 cache->ptr = NULL;
3739 }
3740
3741 cache->len = l;
3742 cache->is_write = is_write;
3743 return l;
3744 }
3745
3746 void address_space_cache_invalidate(MemoryRegionCache *cache,
3747 hwaddr addr,
3748 hwaddr access_len)
3749 {
3750 assert(cache->is_write);
3751 if (likely(cache->ptr)) {
3752 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3753 }
3754 }
3755
3756 void address_space_cache_destroy(MemoryRegionCache *cache)
3757 {
3758 if (!cache->mrs.mr) {
3759 return;
3760 }
3761
3762 if (xen_enabled()) {
3763 xen_invalidate_map_cache_entry(cache->ptr);
3764 }
3765 memory_region_unref(cache->mrs.mr);
3766 flatview_unref(cache->fv);
3767 cache->mrs.mr = NULL;
3768 cache->fv = NULL;
3769 }
3770
3771 /* Called from RCU critical section. This function has the same
3772 * semantics as address_space_translate, but it only works on a
3773 * predefined range of a MemoryRegion that was mapped with
3774 * address_space_cache_init.
3775 */
3776 static inline MemoryRegion *address_space_translate_cached(
3777 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3778 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3779 {
3780 MemoryRegionSection section;
3781 MemoryRegion *mr;
3782 IOMMUMemoryRegion *iommu_mr;
3783 AddressSpace *target_as;
3784
3785 assert(!cache->ptr);
3786 *xlat = addr + cache->xlat;
3787
3788 mr = cache->mrs.mr;
3789 iommu_mr = memory_region_get_iommu(mr);
3790 if (!iommu_mr) {
3791 /* MMIO region. */
3792 return mr;
3793 }
3794
3795 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3796 NULL, is_write, true,
3797 &target_as, attrs);
3798 return section.mr;
3799 }
3800
3801 /* Called from RCU critical section. address_space_read_cached uses this
3802 * out of line function when the target is an MMIO or IOMMU region.
3803 */
3804 void
3805 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3806 void *buf, hwaddr len)
3807 {
3808 hwaddr addr1, l;
3809 MemoryRegion *mr;
3810
3811 l = len;
3812 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3813 MEMTXATTRS_UNSPECIFIED);
3814 flatview_read_continue(cache->fv,
3815 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3816 addr1, l, mr);
3817 }
3818
3819 /* Called from RCU critical section. address_space_write_cached uses this
3820 * out of line function when the target is an MMIO or IOMMU region.
3821 */
3822 void
3823 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3824 const void *buf, hwaddr len)
3825 {
3826 hwaddr addr1, l;
3827 MemoryRegion *mr;
3828
3829 l = len;
3830 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3831 MEMTXATTRS_UNSPECIFIED);
3832 flatview_write_continue(cache->fv,
3833 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3834 addr1, l, mr);
3835 }
3836
3837 #define ARG1_DECL MemoryRegionCache *cache
3838 #define ARG1 cache
3839 #define SUFFIX _cached_slow
3840 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3841 #define RCU_READ_LOCK() ((void)0)
3842 #define RCU_READ_UNLOCK() ((void)0)
3843 #include "memory_ldst.inc.c"
3844
3845 /* virtual memory access for debug (includes writing to ROM) */
3846 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3847 uint8_t *buf, target_ulong len, int is_write)
3848 {
3849 hwaddr phys_addr;
3850 target_ulong l, page;
3851
3852 cpu_synchronize_state(cpu);
3853 while (len > 0) {
3854 int asidx;
3855 MemTxAttrs attrs;
3856
3857 page = addr & TARGET_PAGE_MASK;
3858 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3859 asidx = cpu_asidx_from_attrs(cpu, attrs);
3860 /* if no physical page mapped, return an error */
3861 if (phys_addr == -1)
3862 return -1;
3863 l = (page + TARGET_PAGE_SIZE) - addr;
3864 if (l > len)
3865 l = len;
3866 phys_addr += (addr & ~TARGET_PAGE_MASK);
3867 if (is_write) {
3868 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3869 attrs, buf, l);
3870 } else {
3871 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3872 attrs, buf, l, 0);
3873 }
3874 len -= l;
3875 buf += l;
3876 addr += l;
3877 }
3878 return 0;
3879 }
3880
3881 /*
3882 * Allows code that needs to deal with migration bitmaps etc to still be built
3883 * target independent.
3884 */
3885 size_t qemu_target_page_size(void)
3886 {
3887 return TARGET_PAGE_SIZE;
3888 }
3889
3890 int qemu_target_page_bits(void)
3891 {
3892 return TARGET_PAGE_BITS;
3893 }
3894
3895 int qemu_target_page_bits_min(void)
3896 {
3897 return TARGET_PAGE_BITS_MIN;
3898 }
3899 #endif
3900
3901 bool target_words_bigendian(void)
3902 {
3903 #if defined(TARGET_WORDS_BIGENDIAN)
3904 return true;
3905 #else
3906 return false;
3907 #endif
3908 }
3909
3910 #ifndef CONFIG_USER_ONLY
3911 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3912 {
3913 MemoryRegion*mr;
3914 hwaddr l = 1;
3915 bool res;
3916
3917 rcu_read_lock();
3918 mr = address_space_translate(&address_space_memory,
3919 phys_addr, &phys_addr, &l, false,
3920 MEMTXATTRS_UNSPECIFIED);
3921
3922 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3923 rcu_read_unlock();
3924 return res;
3925 }
3926
3927 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3928 {
3929 RAMBlock *block;
3930 int ret = 0;
3931
3932 rcu_read_lock();
3933 RAMBLOCK_FOREACH(block) {
3934 ret = func(block, opaque);
3935 if (ret) {
3936 break;
3937 }
3938 }
3939 rcu_read_unlock();
3940 return ret;
3941 }
3942
3943 /*
3944 * Unmap pages of memory from start to start+length such that
3945 * they a) read as 0, b) Trigger whatever fault mechanism
3946 * the OS provides for postcopy.
3947 * The pages must be unmapped by the end of the function.
3948 * Returns: 0 on success, none-0 on failure
3949 *
3950 */
3951 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3952 {
3953 int ret = -1;
3954
3955 uint8_t *host_startaddr = rb->host + start;
3956
3957 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3958 error_report("ram_block_discard_range: Unaligned start address: %p",
3959 host_startaddr);
3960 goto err;
3961 }
3962
3963 if ((start + length) <= rb->used_length) {
3964 bool need_madvise, need_fallocate;
3965 uint8_t *host_endaddr = host_startaddr + length;
3966 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3967 error_report("ram_block_discard_range: Unaligned end address: %p",
3968 host_endaddr);
3969 goto err;
3970 }
3971
3972 errno = ENOTSUP; /* If we are missing MADVISE etc */
3973
3974 /* The logic here is messy;
3975 * madvise DONTNEED fails for hugepages
3976 * fallocate works on hugepages and shmem
3977 */
3978 need_madvise = (rb->page_size == qemu_host_page_size);
3979 need_fallocate = rb->fd != -1;
3980 if (need_fallocate) {
3981 /* For a file, this causes the area of the file to be zero'd
3982 * if read, and for hugetlbfs also causes it to be unmapped
3983 * so a userfault will trigger.
3984 */
3985 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3986 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3987 start, length);
3988 if (ret) {
3989 ret = -errno;
3990 error_report("ram_block_discard_range: Failed to fallocate "
3991 "%s:%" PRIx64 " +%zx (%d)",
3992 rb->idstr, start, length, ret);
3993 goto err;
3994 }
3995 #else
3996 ret = -ENOSYS;
3997 error_report("ram_block_discard_range: fallocate not available/file"
3998 "%s:%" PRIx64 " +%zx (%d)",
3999 rb->idstr, start, length, ret);
4000 goto err;
4001 #endif
4002 }
4003 if (need_madvise) {
4004 /* For normal RAM this causes it to be unmapped,
4005 * for shared memory it causes the local mapping to disappear
4006 * and to fall back on the file contents (which we just
4007 * fallocate'd away).
4008 */
4009 #if defined(CONFIG_MADVISE)
4010 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4011 if (ret) {
4012 ret = -errno;
4013 error_report("ram_block_discard_range: Failed to discard range "
4014 "%s:%" PRIx64 " +%zx (%d)",
4015 rb->idstr, start, length, ret);
4016 goto err;
4017 }
4018 #else
4019 ret = -ENOSYS;
4020 error_report("ram_block_discard_range: MADVISE not available"
4021 "%s:%" PRIx64 " +%zx (%d)",
4022 rb->idstr, start, length, ret);
4023 goto err;
4024 #endif
4025 }
4026 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4027 need_madvise, need_fallocate, ret);
4028 } else {
4029 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4030 "/%zx/" RAM_ADDR_FMT")",
4031 rb->idstr, start, length, rb->used_length);
4032 }
4033
4034 err:
4035 return ret;
4036 }
4037
4038 bool ramblock_is_pmem(RAMBlock *rb)
4039 {
4040 return rb->flags & RAM_PMEM;
4041 }
4042
4043 #endif
4044
4045 void page_size_init(void)
4046 {
4047 /* NOTE: we can always suppose that qemu_host_page_size >=
4048 TARGET_PAGE_SIZE */
4049 if (qemu_host_page_size == 0) {
4050 qemu_host_page_size = qemu_real_host_page_size;
4051 }
4052 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4053 qemu_host_page_size = TARGET_PAGE_SIZE;
4054 }
4055 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4056 }
4057
4058 #if !defined(CONFIG_USER_ONLY)
4059
4060 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
4061 {
4062 if (start == end - 1) {
4063 qemu_printf("\t%3d ", start);
4064 } else {
4065 qemu_printf("\t%3d..%-3d ", start, end - 1);
4066 }
4067 qemu_printf(" skip=%d ", skip);
4068 if (ptr == PHYS_MAP_NODE_NIL) {
4069 qemu_printf(" ptr=NIL");
4070 } else if (!skip) {
4071 qemu_printf(" ptr=#%d", ptr);
4072 } else {
4073 qemu_printf(" ptr=[%d]", ptr);
4074 }
4075 qemu_printf("\n");
4076 }
4077
4078 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4079 int128_sub((size), int128_one())) : 0)
4080
4081 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4082 {
4083 int i;
4084
4085 qemu_printf(" Dispatch\n");
4086 qemu_printf(" Physical sections\n");
4087
4088 for (i = 0; i < d->map.sections_nb; ++i) {
4089 MemoryRegionSection *s = d->map.sections + i;
4090 const char *names[] = { " [unassigned]", " [not dirty]",
4091 " [ROM]", " [watch]" };
4092
4093 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4094 " %s%s%s%s%s",
4095 i,
4096 s->offset_within_address_space,
4097 s->offset_within_address_space + MR_SIZE(s->mr->size),
4098 s->mr->name ? s->mr->name : "(noname)",
4099 i < ARRAY_SIZE(names) ? names[i] : "",
4100 s->mr == root ? " [ROOT]" : "",
4101 s == d->mru_section ? " [MRU]" : "",
4102 s->mr->is_iommu ? " [iommu]" : "");
4103
4104 if (s->mr->alias) {
4105 qemu_printf(" alias=%s", s->mr->alias->name ?
4106 s->mr->alias->name : "noname");
4107 }
4108 qemu_printf("\n");
4109 }
4110
4111 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4112 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4113 for (i = 0; i < d->map.nodes_nb; ++i) {
4114 int j, jprev;
4115 PhysPageEntry prev;
4116 Node *n = d->map.nodes + i;
4117
4118 qemu_printf(" [%d]\n", i);
4119
4120 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4121 PhysPageEntry *pe = *n + j;
4122
4123 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4124 continue;
4125 }
4126
4127 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4128
4129 jprev = j;
4130 prev = *pe;
4131 }
4132
4133 if (jprev != ARRAY_SIZE(*n)) {
4134 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4135 }
4136 }
4137 }
4138
4139 #endif