]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21
22 #include "qemu/cutils.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
26 #include "tcg.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
50
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
53 #endif
54
55 #endif
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
60
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
64
65 #include "migration/vmstate.h"
66
67 #include "qemu/range.h"
68 #ifndef _WIN32
69 #include "qemu/mmap-alloc.h"
70 #endif
71
72 #include "monitor/monitor.h"
73
74 //#define DEBUG_SUBPAGE
75
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
79 */
80 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
81
82 static MemoryRegion *system_memory;
83 static MemoryRegion *system_io;
84
85 AddressSpace address_space_io;
86 AddressSpace address_space_memory;
87
88 MemoryRegion io_mem_rom, io_mem_notdirty;
89 static MemoryRegion io_mem_unassigned;
90
91 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92 #define RAM_PREALLOC (1 << 0)
93
94 /* RAM is mmap-ed with MAP_SHARED */
95 #define RAM_SHARED (1 << 1)
96
97 /* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
99 */
100 #define RAM_RESIZEABLE (1 << 2)
101
102 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
103 * zero the page and wake waiting processes.
104 * (Set during postcopy)
105 */
106 #define RAM_UF_ZEROPAGE (1 << 3)
107
108 /* RAM can be migrated */
109 #define RAM_MIGRATABLE (1 << 4)
110 #endif
111
112 #ifdef TARGET_PAGE_BITS_VARY
113 int target_page_bits;
114 bool target_page_bits_decided;
115 #endif
116
117 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
118 /* current CPU in the current thread. It is only valid inside
119 cpu_exec() */
120 __thread CPUState *current_cpu;
121 /* 0 = Do not count executed instructions.
122 1 = Precise instruction counting.
123 2 = Adaptive rate instruction counting. */
124 int use_icount;
125
126 uintptr_t qemu_host_page_size;
127 intptr_t qemu_host_page_mask;
128
129 bool set_preferred_target_page_bits(int bits)
130 {
131 /* The target page size is the lowest common denominator for all
132 * the CPUs in the system, so we can only make it smaller, never
133 * larger. And we can't make it smaller once we've committed to
134 * a particular size.
135 */
136 #ifdef TARGET_PAGE_BITS_VARY
137 assert(bits >= TARGET_PAGE_BITS_MIN);
138 if (target_page_bits == 0 || target_page_bits > bits) {
139 if (target_page_bits_decided) {
140 return false;
141 }
142 target_page_bits = bits;
143 }
144 #endif
145 return true;
146 }
147
148 #if !defined(CONFIG_USER_ONLY)
149
150 static void finalize_target_page_bits(void)
151 {
152 #ifdef TARGET_PAGE_BITS_VARY
153 if (target_page_bits == 0) {
154 target_page_bits = TARGET_PAGE_BITS_MIN;
155 }
156 target_page_bits_decided = true;
157 #endif
158 }
159
160 typedef struct PhysPageEntry PhysPageEntry;
161
162 struct PhysPageEntry {
163 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
164 uint32_t skip : 6;
165 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
166 uint32_t ptr : 26;
167 };
168
169 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
170
171 /* Size of the L2 (and L3, etc) page tables. */
172 #define ADDR_SPACE_BITS 64
173
174 #define P_L2_BITS 9
175 #define P_L2_SIZE (1 << P_L2_BITS)
176
177 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
178
179 typedef PhysPageEntry Node[P_L2_SIZE];
180
181 typedef struct PhysPageMap {
182 struct rcu_head rcu;
183
184 unsigned sections_nb;
185 unsigned sections_nb_alloc;
186 unsigned nodes_nb;
187 unsigned nodes_nb_alloc;
188 Node *nodes;
189 MemoryRegionSection *sections;
190 } PhysPageMap;
191
192 struct AddressSpaceDispatch {
193 MemoryRegionSection *mru_section;
194 /* This is a multi-level map on the physical address space.
195 * The bottom level has pointers to MemoryRegionSections.
196 */
197 PhysPageEntry phys_map;
198 PhysPageMap map;
199 };
200
201 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
202 typedef struct subpage_t {
203 MemoryRegion iomem;
204 FlatView *fv;
205 hwaddr base;
206 uint16_t sub_section[];
207 } subpage_t;
208
209 #define PHYS_SECTION_UNASSIGNED 0
210 #define PHYS_SECTION_NOTDIRTY 1
211 #define PHYS_SECTION_ROM 2
212 #define PHYS_SECTION_WATCH 3
213
214 static void io_mem_init(void);
215 static void memory_map_init(void);
216 static void tcg_commit(MemoryListener *listener);
217
218 static MemoryRegion io_mem_watch;
219
220 /**
221 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
222 * @cpu: the CPU whose AddressSpace this is
223 * @as: the AddressSpace itself
224 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
225 * @tcg_as_listener: listener for tracking changes to the AddressSpace
226 */
227 struct CPUAddressSpace {
228 CPUState *cpu;
229 AddressSpace *as;
230 struct AddressSpaceDispatch *memory_dispatch;
231 MemoryListener tcg_as_listener;
232 };
233
234 struct DirtyBitmapSnapshot {
235 ram_addr_t start;
236 ram_addr_t end;
237 unsigned long dirty[];
238 };
239
240 #endif
241
242 #if !defined(CONFIG_USER_ONLY)
243
244 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
245 {
246 static unsigned alloc_hint = 16;
247 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
248 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
249 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
250 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
251 alloc_hint = map->nodes_nb_alloc;
252 }
253 }
254
255 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
256 {
257 unsigned i;
258 uint32_t ret;
259 PhysPageEntry e;
260 PhysPageEntry *p;
261
262 ret = map->nodes_nb++;
263 p = map->nodes[ret];
264 assert(ret != PHYS_MAP_NODE_NIL);
265 assert(ret != map->nodes_nb_alloc);
266
267 e.skip = leaf ? 0 : 1;
268 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
269 for (i = 0; i < P_L2_SIZE; ++i) {
270 memcpy(&p[i], &e, sizeof(e));
271 }
272 return ret;
273 }
274
275 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
276 hwaddr *index, hwaddr *nb, uint16_t leaf,
277 int level)
278 {
279 PhysPageEntry *p;
280 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
281
282 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
283 lp->ptr = phys_map_node_alloc(map, level == 0);
284 }
285 p = map->nodes[lp->ptr];
286 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
287
288 while (*nb && lp < &p[P_L2_SIZE]) {
289 if ((*index & (step - 1)) == 0 && *nb >= step) {
290 lp->skip = 0;
291 lp->ptr = leaf;
292 *index += step;
293 *nb -= step;
294 } else {
295 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
296 }
297 ++lp;
298 }
299 }
300
301 static void phys_page_set(AddressSpaceDispatch *d,
302 hwaddr index, hwaddr nb,
303 uint16_t leaf)
304 {
305 /* Wildly overreserve - it doesn't matter much. */
306 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
307
308 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
309 }
310
311 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
312 * and update our entry so we can skip it and go directly to the destination.
313 */
314 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
315 {
316 unsigned valid_ptr = P_L2_SIZE;
317 int valid = 0;
318 PhysPageEntry *p;
319 int i;
320
321 if (lp->ptr == PHYS_MAP_NODE_NIL) {
322 return;
323 }
324
325 p = nodes[lp->ptr];
326 for (i = 0; i < P_L2_SIZE; i++) {
327 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
328 continue;
329 }
330
331 valid_ptr = i;
332 valid++;
333 if (p[i].skip) {
334 phys_page_compact(&p[i], nodes);
335 }
336 }
337
338 /* We can only compress if there's only one child. */
339 if (valid != 1) {
340 return;
341 }
342
343 assert(valid_ptr < P_L2_SIZE);
344
345 /* Don't compress if it won't fit in the # of bits we have. */
346 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
347 return;
348 }
349
350 lp->ptr = p[valid_ptr].ptr;
351 if (!p[valid_ptr].skip) {
352 /* If our only child is a leaf, make this a leaf. */
353 /* By design, we should have made this node a leaf to begin with so we
354 * should never reach here.
355 * But since it's so simple to handle this, let's do it just in case we
356 * change this rule.
357 */
358 lp->skip = 0;
359 } else {
360 lp->skip += p[valid_ptr].skip;
361 }
362 }
363
364 void address_space_dispatch_compact(AddressSpaceDispatch *d)
365 {
366 if (d->phys_map.skip) {
367 phys_page_compact(&d->phys_map, d->map.nodes);
368 }
369 }
370
371 static inline bool section_covers_addr(const MemoryRegionSection *section,
372 hwaddr addr)
373 {
374 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
375 * the section must cover the entire address space.
376 */
377 return int128_gethi(section->size) ||
378 range_covers_byte(section->offset_within_address_space,
379 int128_getlo(section->size), addr);
380 }
381
382 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
383 {
384 PhysPageEntry lp = d->phys_map, *p;
385 Node *nodes = d->map.nodes;
386 MemoryRegionSection *sections = d->map.sections;
387 hwaddr index = addr >> TARGET_PAGE_BITS;
388 int i;
389
390 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
391 if (lp.ptr == PHYS_MAP_NODE_NIL) {
392 return &sections[PHYS_SECTION_UNASSIGNED];
393 }
394 p = nodes[lp.ptr];
395 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
396 }
397
398 if (section_covers_addr(&sections[lp.ptr], addr)) {
399 return &sections[lp.ptr];
400 } else {
401 return &sections[PHYS_SECTION_UNASSIGNED];
402 }
403 }
404
405 bool memory_region_is_unassigned(MemoryRegion *mr)
406 {
407 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
408 && mr != &io_mem_watch;
409 }
410
411 /* Called from RCU critical section */
412 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
413 hwaddr addr,
414 bool resolve_subpage)
415 {
416 MemoryRegionSection *section = atomic_read(&d->mru_section);
417 subpage_t *subpage;
418
419 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
420 !section_covers_addr(section, addr)) {
421 section = phys_page_find(d, addr);
422 atomic_set(&d->mru_section, section);
423 }
424 if (resolve_subpage && section->mr->subpage) {
425 subpage = container_of(section->mr, subpage_t, iomem);
426 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
427 }
428 return section;
429 }
430
431 /* Called from RCU critical section */
432 static MemoryRegionSection *
433 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
434 hwaddr *plen, bool resolve_subpage)
435 {
436 MemoryRegionSection *section;
437 MemoryRegion *mr;
438 Int128 diff;
439
440 section = address_space_lookup_region(d, addr, resolve_subpage);
441 /* Compute offset within MemoryRegionSection */
442 addr -= section->offset_within_address_space;
443
444 /* Compute offset within MemoryRegion */
445 *xlat = addr + section->offset_within_region;
446
447 mr = section->mr;
448
449 /* MMIO registers can be expected to perform full-width accesses based only
450 * on their address, without considering adjacent registers that could
451 * decode to completely different MemoryRegions. When such registers
452 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
453 * regions overlap wildly. For this reason we cannot clamp the accesses
454 * here.
455 *
456 * If the length is small (as is the case for address_space_ldl/stl),
457 * everything works fine. If the incoming length is large, however,
458 * the caller really has to do the clamping through memory_access_size.
459 */
460 if (memory_region_is_ram(mr)) {
461 diff = int128_sub(section->size, int128_make64(addr));
462 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
463 }
464 return section;
465 }
466
467 /**
468 * address_space_translate_iommu - translate an address through an IOMMU
469 * memory region and then through the target address space.
470 *
471 * @iommu_mr: the IOMMU memory region that we start the translation from
472 * @addr: the address to be translated through the MMU
473 * @xlat: the translated address offset within the destination memory region.
474 * It cannot be %NULL.
475 * @plen_out: valid read/write length of the translated address. It
476 * cannot be %NULL.
477 * @page_mask_out: page mask for the translated address. This
478 * should only be meaningful for IOMMU translated
479 * addresses, since there may be huge pages that this bit
480 * would tell. It can be %NULL if we don't care about it.
481 * @is_write: whether the translation operation is for write
482 * @is_mmio: whether this can be MMIO, set true if it can
483 * @target_as: the address space targeted by the IOMMU
484 * @attrs: transaction attributes
485 *
486 * This function is called from RCU critical section. It is the common
487 * part of flatview_do_translate and address_space_translate_cached.
488 */
489 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
490 hwaddr *xlat,
491 hwaddr *plen_out,
492 hwaddr *page_mask_out,
493 bool is_write,
494 bool is_mmio,
495 AddressSpace **target_as,
496 MemTxAttrs attrs)
497 {
498 MemoryRegionSection *section;
499 hwaddr page_mask = (hwaddr)-1;
500
501 do {
502 hwaddr addr = *xlat;
503 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
504 int iommu_idx = 0;
505 IOMMUTLBEntry iotlb;
506
507 if (imrc->attrs_to_index) {
508 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
509 }
510
511 iotlb = imrc->translate(iommu_mr, addr, is_write ?
512 IOMMU_WO : IOMMU_RO, iommu_idx);
513
514 if (!(iotlb.perm & (1 << is_write))) {
515 goto unassigned;
516 }
517
518 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
519 | (addr & iotlb.addr_mask));
520 page_mask &= iotlb.addr_mask;
521 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
522 *target_as = iotlb.target_as;
523
524 section = address_space_translate_internal(
525 address_space_to_dispatch(iotlb.target_as), addr, xlat,
526 plen_out, is_mmio);
527
528 iommu_mr = memory_region_get_iommu(section->mr);
529 } while (unlikely(iommu_mr));
530
531 if (page_mask_out) {
532 *page_mask_out = page_mask;
533 }
534 return *section;
535
536 unassigned:
537 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
538 }
539
540 /**
541 * flatview_do_translate - translate an address in FlatView
542 *
543 * @fv: the flat view that we want to translate on
544 * @addr: the address to be translated in above address space
545 * @xlat: the translated address offset within memory region. It
546 * cannot be @NULL.
547 * @plen_out: valid read/write length of the translated address. It
548 * can be @NULL when we don't care about it.
549 * @page_mask_out: page mask for the translated address. This
550 * should only be meaningful for IOMMU translated
551 * addresses, since there may be huge pages that this bit
552 * would tell. It can be @NULL if we don't care about it.
553 * @is_write: whether the translation operation is for write
554 * @is_mmio: whether this can be MMIO, set true if it can
555 * @target_as: the address space targeted by the IOMMU
556 * @attrs: memory transaction attributes
557 *
558 * This function is called from RCU critical section
559 */
560 static MemoryRegionSection flatview_do_translate(FlatView *fv,
561 hwaddr addr,
562 hwaddr *xlat,
563 hwaddr *plen_out,
564 hwaddr *page_mask_out,
565 bool is_write,
566 bool is_mmio,
567 AddressSpace **target_as,
568 MemTxAttrs attrs)
569 {
570 MemoryRegionSection *section;
571 IOMMUMemoryRegion *iommu_mr;
572 hwaddr plen = (hwaddr)(-1);
573
574 if (!plen_out) {
575 plen_out = &plen;
576 }
577
578 section = address_space_translate_internal(
579 flatview_to_dispatch(fv), addr, xlat,
580 plen_out, is_mmio);
581
582 iommu_mr = memory_region_get_iommu(section->mr);
583 if (unlikely(iommu_mr)) {
584 return address_space_translate_iommu(iommu_mr, xlat,
585 plen_out, page_mask_out,
586 is_write, is_mmio,
587 target_as, attrs);
588 }
589 if (page_mask_out) {
590 /* Not behind an IOMMU, use default page size. */
591 *page_mask_out = ~TARGET_PAGE_MASK;
592 }
593
594 return *section;
595 }
596
597 /* Called from RCU critical section */
598 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
599 bool is_write, MemTxAttrs attrs)
600 {
601 MemoryRegionSection section;
602 hwaddr xlat, page_mask;
603
604 /*
605 * This can never be MMIO, and we don't really care about plen,
606 * but page mask.
607 */
608 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
609 NULL, &page_mask, is_write, false, &as,
610 attrs);
611
612 /* Illegal translation */
613 if (section.mr == &io_mem_unassigned) {
614 goto iotlb_fail;
615 }
616
617 /* Convert memory region offset into address space offset */
618 xlat += section.offset_within_address_space -
619 section.offset_within_region;
620
621 return (IOMMUTLBEntry) {
622 .target_as = as,
623 .iova = addr & ~page_mask,
624 .translated_addr = xlat & ~page_mask,
625 .addr_mask = page_mask,
626 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
627 .perm = IOMMU_RW,
628 };
629
630 iotlb_fail:
631 return (IOMMUTLBEntry) {0};
632 }
633
634 /* Called from RCU critical section */
635 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
636 hwaddr *plen, bool is_write,
637 MemTxAttrs attrs)
638 {
639 MemoryRegion *mr;
640 MemoryRegionSection section;
641 AddressSpace *as = NULL;
642
643 /* This can be MMIO, so setup MMIO bit. */
644 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
645 is_write, true, &as, attrs);
646 mr = section.mr;
647
648 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
649 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
650 *plen = MIN(page, *plen);
651 }
652
653 return mr;
654 }
655
656 typedef struct TCGIOMMUNotifier {
657 IOMMUNotifier n;
658 MemoryRegion *mr;
659 CPUState *cpu;
660 int iommu_idx;
661 bool active;
662 } TCGIOMMUNotifier;
663
664 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
665 {
666 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
667
668 if (!notifier->active) {
669 return;
670 }
671 tlb_flush(notifier->cpu);
672 notifier->active = false;
673 /* We leave the notifier struct on the list to avoid reallocating it later.
674 * Generally the number of IOMMUs a CPU deals with will be small.
675 * In any case we can't unregister the iommu notifier from a notify
676 * callback.
677 */
678 }
679
680 static void tcg_register_iommu_notifier(CPUState *cpu,
681 IOMMUMemoryRegion *iommu_mr,
682 int iommu_idx)
683 {
684 /* Make sure this CPU has an IOMMU notifier registered for this
685 * IOMMU/IOMMU index combination, so that we can flush its TLB
686 * when the IOMMU tells us the mappings we've cached have changed.
687 */
688 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
689 TCGIOMMUNotifier *notifier;
690 int i;
691
692 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
693 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
694 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
695 break;
696 }
697 }
698 if (i == cpu->iommu_notifiers->len) {
699 /* Not found, add a new entry at the end of the array */
700 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
701 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
702
703 notifier->mr = mr;
704 notifier->iommu_idx = iommu_idx;
705 notifier->cpu = cpu;
706 /* Rather than trying to register interest in the specific part
707 * of the iommu's address space that we've accessed and then
708 * expand it later as subsequent accesses touch more of it, we
709 * just register interest in the whole thing, on the assumption
710 * that iommu reconfiguration will be rare.
711 */
712 iommu_notifier_init(&notifier->n,
713 tcg_iommu_unmap_notify,
714 IOMMU_NOTIFIER_UNMAP,
715 0,
716 HWADDR_MAX,
717 iommu_idx);
718 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
719 }
720
721 if (!notifier->active) {
722 notifier->active = true;
723 }
724 }
725
726 static void tcg_iommu_free_notifier_list(CPUState *cpu)
727 {
728 /* Destroy the CPU's notifier list */
729 int i;
730 TCGIOMMUNotifier *notifier;
731
732 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
733 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
734 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
735 }
736 g_array_free(cpu->iommu_notifiers, true);
737 }
738
739 /* Called from RCU critical section */
740 MemoryRegionSection *
741 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
742 hwaddr *xlat, hwaddr *plen,
743 MemTxAttrs attrs, int *prot)
744 {
745 MemoryRegionSection *section;
746 IOMMUMemoryRegion *iommu_mr;
747 IOMMUMemoryRegionClass *imrc;
748 IOMMUTLBEntry iotlb;
749 int iommu_idx;
750 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
751
752 for (;;) {
753 section = address_space_translate_internal(d, addr, &addr, plen, false);
754
755 iommu_mr = memory_region_get_iommu(section->mr);
756 if (!iommu_mr) {
757 break;
758 }
759
760 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
761
762 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
763 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
764 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
765 * doesn't short-cut its translation table walk.
766 */
767 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
768 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
769 | (addr & iotlb.addr_mask));
770 /* Update the caller's prot bits to remove permissions the IOMMU
771 * is giving us a failure response for. If we get down to no
772 * permissions left at all we can give up now.
773 */
774 if (!(iotlb.perm & IOMMU_RO)) {
775 *prot &= ~(PAGE_READ | PAGE_EXEC);
776 }
777 if (!(iotlb.perm & IOMMU_WO)) {
778 *prot &= ~PAGE_WRITE;
779 }
780
781 if (!*prot) {
782 goto translate_fail;
783 }
784
785 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
786 }
787
788 assert(!memory_region_is_iommu(section->mr));
789 *xlat = addr;
790 return section;
791
792 translate_fail:
793 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
794 }
795 #endif
796
797 #if !defined(CONFIG_USER_ONLY)
798
799 static int cpu_common_post_load(void *opaque, int version_id)
800 {
801 CPUState *cpu = opaque;
802
803 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
804 version_id is increased. */
805 cpu->interrupt_request &= ~0x01;
806 tlb_flush(cpu);
807
808 /* loadvm has just updated the content of RAM, bypassing the
809 * usual mechanisms that ensure we flush TBs for writes to
810 * memory we've translated code from. So we must flush all TBs,
811 * which will now be stale.
812 */
813 tb_flush(cpu);
814
815 return 0;
816 }
817
818 static int cpu_common_pre_load(void *opaque)
819 {
820 CPUState *cpu = opaque;
821
822 cpu->exception_index = -1;
823
824 return 0;
825 }
826
827 static bool cpu_common_exception_index_needed(void *opaque)
828 {
829 CPUState *cpu = opaque;
830
831 return tcg_enabled() && cpu->exception_index != -1;
832 }
833
834 static const VMStateDescription vmstate_cpu_common_exception_index = {
835 .name = "cpu_common/exception_index",
836 .version_id = 1,
837 .minimum_version_id = 1,
838 .needed = cpu_common_exception_index_needed,
839 .fields = (VMStateField[]) {
840 VMSTATE_INT32(exception_index, CPUState),
841 VMSTATE_END_OF_LIST()
842 }
843 };
844
845 static bool cpu_common_crash_occurred_needed(void *opaque)
846 {
847 CPUState *cpu = opaque;
848
849 return cpu->crash_occurred;
850 }
851
852 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
853 .name = "cpu_common/crash_occurred",
854 .version_id = 1,
855 .minimum_version_id = 1,
856 .needed = cpu_common_crash_occurred_needed,
857 .fields = (VMStateField[]) {
858 VMSTATE_BOOL(crash_occurred, CPUState),
859 VMSTATE_END_OF_LIST()
860 }
861 };
862
863 const VMStateDescription vmstate_cpu_common = {
864 .name = "cpu_common",
865 .version_id = 1,
866 .minimum_version_id = 1,
867 .pre_load = cpu_common_pre_load,
868 .post_load = cpu_common_post_load,
869 .fields = (VMStateField[]) {
870 VMSTATE_UINT32(halted, CPUState),
871 VMSTATE_UINT32(interrupt_request, CPUState),
872 VMSTATE_END_OF_LIST()
873 },
874 .subsections = (const VMStateDescription*[]) {
875 &vmstate_cpu_common_exception_index,
876 &vmstate_cpu_common_crash_occurred,
877 NULL
878 }
879 };
880
881 #endif
882
883 CPUState *qemu_get_cpu(int index)
884 {
885 CPUState *cpu;
886
887 CPU_FOREACH(cpu) {
888 if (cpu->cpu_index == index) {
889 return cpu;
890 }
891 }
892
893 return NULL;
894 }
895
896 #if !defined(CONFIG_USER_ONLY)
897 void cpu_address_space_init(CPUState *cpu, int asidx,
898 const char *prefix, MemoryRegion *mr)
899 {
900 CPUAddressSpace *newas;
901 AddressSpace *as = g_new0(AddressSpace, 1);
902 char *as_name;
903
904 assert(mr);
905 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
906 address_space_init(as, mr, as_name);
907 g_free(as_name);
908
909 /* Target code should have set num_ases before calling us */
910 assert(asidx < cpu->num_ases);
911
912 if (asidx == 0) {
913 /* address space 0 gets the convenience alias */
914 cpu->as = as;
915 }
916
917 /* KVM cannot currently support multiple address spaces. */
918 assert(asidx == 0 || !kvm_enabled());
919
920 if (!cpu->cpu_ases) {
921 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
922 }
923
924 newas = &cpu->cpu_ases[asidx];
925 newas->cpu = cpu;
926 newas->as = as;
927 if (tcg_enabled()) {
928 newas->tcg_as_listener.commit = tcg_commit;
929 memory_listener_register(&newas->tcg_as_listener, as);
930 }
931 }
932
933 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
934 {
935 /* Return the AddressSpace corresponding to the specified index */
936 return cpu->cpu_ases[asidx].as;
937 }
938 #endif
939
940 void cpu_exec_unrealizefn(CPUState *cpu)
941 {
942 CPUClass *cc = CPU_GET_CLASS(cpu);
943
944 cpu_list_remove(cpu);
945
946 if (cc->vmsd != NULL) {
947 vmstate_unregister(NULL, cc->vmsd, cpu);
948 }
949 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
950 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
951 }
952 #ifndef CONFIG_USER_ONLY
953 tcg_iommu_free_notifier_list(cpu);
954 #endif
955 }
956
957 Property cpu_common_props[] = {
958 #ifndef CONFIG_USER_ONLY
959 /* Create a memory property for softmmu CPU object,
960 * so users can wire up its memory. (This can't go in qom/cpu.c
961 * because that file is compiled only once for both user-mode
962 * and system builds.) The default if no link is set up is to use
963 * the system address space.
964 */
965 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
966 MemoryRegion *),
967 #endif
968 DEFINE_PROP_END_OF_LIST(),
969 };
970
971 void cpu_exec_initfn(CPUState *cpu)
972 {
973 cpu->as = NULL;
974 cpu->num_ases = 0;
975
976 #ifndef CONFIG_USER_ONLY
977 cpu->thread_id = qemu_get_thread_id();
978 cpu->memory = system_memory;
979 object_ref(OBJECT(cpu->memory));
980 #endif
981 }
982
983 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
984 {
985 CPUClass *cc = CPU_GET_CLASS(cpu);
986 static bool tcg_target_initialized;
987
988 cpu_list_add(cpu);
989
990 if (tcg_enabled() && !tcg_target_initialized) {
991 tcg_target_initialized = true;
992 cc->tcg_initialize();
993 }
994
995 #ifndef CONFIG_USER_ONLY
996 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
997 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
998 }
999 if (cc->vmsd != NULL) {
1000 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
1001 }
1002
1003 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier));
1004 #endif
1005 }
1006
1007 const char *parse_cpu_model(const char *cpu_model)
1008 {
1009 ObjectClass *oc;
1010 CPUClass *cc;
1011 gchar **model_pieces;
1012 const char *cpu_type;
1013
1014 model_pieces = g_strsplit(cpu_model, ",", 2);
1015
1016 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
1017 if (oc == NULL) {
1018 error_report("unable to find CPU model '%s'", model_pieces[0]);
1019 g_strfreev(model_pieces);
1020 exit(EXIT_FAILURE);
1021 }
1022
1023 cpu_type = object_class_get_name(oc);
1024 cc = CPU_CLASS(oc);
1025 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1026 g_strfreev(model_pieces);
1027 return cpu_type;
1028 }
1029
1030 #if defined(CONFIG_USER_ONLY)
1031 void tb_invalidate_phys_addr(target_ulong addr)
1032 {
1033 mmap_lock();
1034 tb_invalidate_phys_page_range(addr, addr + 1, 0);
1035 mmap_unlock();
1036 }
1037
1038 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1039 {
1040 tb_invalidate_phys_addr(pc);
1041 }
1042 #else
1043 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1044 {
1045 ram_addr_t ram_addr;
1046 MemoryRegion *mr;
1047 hwaddr l = 1;
1048
1049 rcu_read_lock();
1050 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1051 if (!(memory_region_is_ram(mr)
1052 || memory_region_is_romd(mr))) {
1053 rcu_read_unlock();
1054 return;
1055 }
1056 ram_addr = memory_region_get_ram_addr(mr) + addr;
1057 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1058 rcu_read_unlock();
1059 }
1060
1061 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1062 {
1063 MemTxAttrs attrs;
1064 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1065 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1066 if (phys != -1) {
1067 /* Locks grabbed by tb_invalidate_phys_addr */
1068 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1069 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1070 }
1071 }
1072 #endif
1073
1074 #if defined(CONFIG_USER_ONLY)
1075 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1076
1077 {
1078 }
1079
1080 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1081 int flags)
1082 {
1083 return -ENOSYS;
1084 }
1085
1086 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1087 {
1088 }
1089
1090 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1091 int flags, CPUWatchpoint **watchpoint)
1092 {
1093 return -ENOSYS;
1094 }
1095 #else
1096 /* Add a watchpoint. */
1097 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1098 int flags, CPUWatchpoint **watchpoint)
1099 {
1100 CPUWatchpoint *wp;
1101
1102 /* forbid ranges which are empty or run off the end of the address space */
1103 if (len == 0 || (addr + len - 1) < addr) {
1104 error_report("tried to set invalid watchpoint at %"
1105 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1106 return -EINVAL;
1107 }
1108 wp = g_malloc(sizeof(*wp));
1109
1110 wp->vaddr = addr;
1111 wp->len = len;
1112 wp->flags = flags;
1113
1114 /* keep all GDB-injected watchpoints in front */
1115 if (flags & BP_GDB) {
1116 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1117 } else {
1118 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1119 }
1120
1121 tlb_flush_page(cpu, addr);
1122
1123 if (watchpoint)
1124 *watchpoint = wp;
1125 return 0;
1126 }
1127
1128 /* Remove a specific watchpoint. */
1129 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1130 int flags)
1131 {
1132 CPUWatchpoint *wp;
1133
1134 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1135 if (addr == wp->vaddr && len == wp->len
1136 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1137 cpu_watchpoint_remove_by_ref(cpu, wp);
1138 return 0;
1139 }
1140 }
1141 return -ENOENT;
1142 }
1143
1144 /* Remove a specific watchpoint by reference. */
1145 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1146 {
1147 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1148
1149 tlb_flush_page(cpu, watchpoint->vaddr);
1150
1151 g_free(watchpoint);
1152 }
1153
1154 /* Remove all matching watchpoints. */
1155 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1156 {
1157 CPUWatchpoint *wp, *next;
1158
1159 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1160 if (wp->flags & mask) {
1161 cpu_watchpoint_remove_by_ref(cpu, wp);
1162 }
1163 }
1164 }
1165
1166 /* Return true if this watchpoint address matches the specified
1167 * access (ie the address range covered by the watchpoint overlaps
1168 * partially or completely with the address range covered by the
1169 * access).
1170 */
1171 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1172 vaddr addr,
1173 vaddr len)
1174 {
1175 /* We know the lengths are non-zero, but a little caution is
1176 * required to avoid errors in the case where the range ends
1177 * exactly at the top of the address space and so addr + len
1178 * wraps round to zero.
1179 */
1180 vaddr wpend = wp->vaddr + wp->len - 1;
1181 vaddr addrend = addr + len - 1;
1182
1183 return !(addr > wpend || wp->vaddr > addrend);
1184 }
1185
1186 #endif
1187
1188 /* Add a breakpoint. */
1189 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1190 CPUBreakpoint **breakpoint)
1191 {
1192 CPUBreakpoint *bp;
1193
1194 bp = g_malloc(sizeof(*bp));
1195
1196 bp->pc = pc;
1197 bp->flags = flags;
1198
1199 /* keep all GDB-injected breakpoints in front */
1200 if (flags & BP_GDB) {
1201 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1202 } else {
1203 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1204 }
1205
1206 breakpoint_invalidate(cpu, pc);
1207
1208 if (breakpoint) {
1209 *breakpoint = bp;
1210 }
1211 return 0;
1212 }
1213
1214 /* Remove a specific breakpoint. */
1215 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1216 {
1217 CPUBreakpoint *bp;
1218
1219 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1220 if (bp->pc == pc && bp->flags == flags) {
1221 cpu_breakpoint_remove_by_ref(cpu, bp);
1222 return 0;
1223 }
1224 }
1225 return -ENOENT;
1226 }
1227
1228 /* Remove a specific breakpoint by reference. */
1229 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1230 {
1231 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1232
1233 breakpoint_invalidate(cpu, breakpoint->pc);
1234
1235 g_free(breakpoint);
1236 }
1237
1238 /* Remove all matching breakpoints. */
1239 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1240 {
1241 CPUBreakpoint *bp, *next;
1242
1243 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1244 if (bp->flags & mask) {
1245 cpu_breakpoint_remove_by_ref(cpu, bp);
1246 }
1247 }
1248 }
1249
1250 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1251 CPU loop after each instruction */
1252 void cpu_single_step(CPUState *cpu, int enabled)
1253 {
1254 if (cpu->singlestep_enabled != enabled) {
1255 cpu->singlestep_enabled = enabled;
1256 if (kvm_enabled()) {
1257 kvm_update_guest_debug(cpu, 0);
1258 } else {
1259 /* must flush all the translated code to avoid inconsistencies */
1260 /* XXX: only flush what is necessary */
1261 tb_flush(cpu);
1262 }
1263 }
1264 }
1265
1266 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1267 {
1268 va_list ap;
1269 va_list ap2;
1270
1271 va_start(ap, fmt);
1272 va_copy(ap2, ap);
1273 fprintf(stderr, "qemu: fatal: ");
1274 vfprintf(stderr, fmt, ap);
1275 fprintf(stderr, "\n");
1276 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1277 if (qemu_log_separate()) {
1278 qemu_log_lock();
1279 qemu_log("qemu: fatal: ");
1280 qemu_log_vprintf(fmt, ap2);
1281 qemu_log("\n");
1282 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1283 qemu_log_flush();
1284 qemu_log_unlock();
1285 qemu_log_close();
1286 }
1287 va_end(ap2);
1288 va_end(ap);
1289 replay_finish();
1290 #if defined(CONFIG_USER_ONLY)
1291 {
1292 struct sigaction act;
1293 sigfillset(&act.sa_mask);
1294 act.sa_handler = SIG_DFL;
1295 act.sa_flags = 0;
1296 sigaction(SIGABRT, &act, NULL);
1297 }
1298 #endif
1299 abort();
1300 }
1301
1302 #if !defined(CONFIG_USER_ONLY)
1303 /* Called from RCU critical section */
1304 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1305 {
1306 RAMBlock *block;
1307
1308 block = atomic_rcu_read(&ram_list.mru_block);
1309 if (block && addr - block->offset < block->max_length) {
1310 return block;
1311 }
1312 RAMBLOCK_FOREACH(block) {
1313 if (addr - block->offset < block->max_length) {
1314 goto found;
1315 }
1316 }
1317
1318 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1319 abort();
1320
1321 found:
1322 /* It is safe to write mru_block outside the iothread lock. This
1323 * is what happens:
1324 *
1325 * mru_block = xxx
1326 * rcu_read_unlock()
1327 * xxx removed from list
1328 * rcu_read_lock()
1329 * read mru_block
1330 * mru_block = NULL;
1331 * call_rcu(reclaim_ramblock, xxx);
1332 * rcu_read_unlock()
1333 *
1334 * atomic_rcu_set is not needed here. The block was already published
1335 * when it was placed into the list. Here we're just making an extra
1336 * copy of the pointer.
1337 */
1338 ram_list.mru_block = block;
1339 return block;
1340 }
1341
1342 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1343 {
1344 CPUState *cpu;
1345 ram_addr_t start1;
1346 RAMBlock *block;
1347 ram_addr_t end;
1348
1349 assert(tcg_enabled());
1350 end = TARGET_PAGE_ALIGN(start + length);
1351 start &= TARGET_PAGE_MASK;
1352
1353 rcu_read_lock();
1354 block = qemu_get_ram_block(start);
1355 assert(block == qemu_get_ram_block(end - 1));
1356 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1357 CPU_FOREACH(cpu) {
1358 tlb_reset_dirty(cpu, start1, length);
1359 }
1360 rcu_read_unlock();
1361 }
1362
1363 /* Note: start and end must be within the same ram block. */
1364 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1365 ram_addr_t length,
1366 unsigned client)
1367 {
1368 DirtyMemoryBlocks *blocks;
1369 unsigned long end, page;
1370 bool dirty = false;
1371
1372 if (length == 0) {
1373 return false;
1374 }
1375
1376 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1377 page = start >> TARGET_PAGE_BITS;
1378
1379 rcu_read_lock();
1380
1381 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1382
1383 while (page < end) {
1384 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1385 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1386 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1387
1388 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1389 offset, num);
1390 page += num;
1391 }
1392
1393 rcu_read_unlock();
1394
1395 if (dirty && tcg_enabled()) {
1396 tlb_reset_dirty_range_all(start, length);
1397 }
1398
1399 return dirty;
1400 }
1401
1402 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1403 (ram_addr_t start, ram_addr_t length, unsigned client)
1404 {
1405 DirtyMemoryBlocks *blocks;
1406 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1407 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1408 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1409 DirtyBitmapSnapshot *snap;
1410 unsigned long page, end, dest;
1411
1412 snap = g_malloc0(sizeof(*snap) +
1413 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1414 snap->start = first;
1415 snap->end = last;
1416
1417 page = first >> TARGET_PAGE_BITS;
1418 end = last >> TARGET_PAGE_BITS;
1419 dest = 0;
1420
1421 rcu_read_lock();
1422
1423 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1424
1425 while (page < end) {
1426 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1427 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1428 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1429
1430 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1431 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1432 offset >>= BITS_PER_LEVEL;
1433
1434 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1435 blocks->blocks[idx] + offset,
1436 num);
1437 page += num;
1438 dest += num >> BITS_PER_LEVEL;
1439 }
1440
1441 rcu_read_unlock();
1442
1443 if (tcg_enabled()) {
1444 tlb_reset_dirty_range_all(start, length);
1445 }
1446
1447 return snap;
1448 }
1449
1450 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1451 ram_addr_t start,
1452 ram_addr_t length)
1453 {
1454 unsigned long page, end;
1455
1456 assert(start >= snap->start);
1457 assert(start + length <= snap->end);
1458
1459 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1460 page = (start - snap->start) >> TARGET_PAGE_BITS;
1461
1462 while (page < end) {
1463 if (test_bit(page, snap->dirty)) {
1464 return true;
1465 }
1466 page++;
1467 }
1468 return false;
1469 }
1470
1471 /* Called from RCU critical section */
1472 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1473 MemoryRegionSection *section,
1474 target_ulong vaddr,
1475 hwaddr paddr, hwaddr xlat,
1476 int prot,
1477 target_ulong *address)
1478 {
1479 hwaddr iotlb;
1480 CPUWatchpoint *wp;
1481
1482 if (memory_region_is_ram(section->mr)) {
1483 /* Normal RAM. */
1484 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1485 if (!section->readonly) {
1486 iotlb |= PHYS_SECTION_NOTDIRTY;
1487 } else {
1488 iotlb |= PHYS_SECTION_ROM;
1489 }
1490 } else {
1491 AddressSpaceDispatch *d;
1492
1493 d = flatview_to_dispatch(section->fv);
1494 iotlb = section - d->map.sections;
1495 iotlb += xlat;
1496 }
1497
1498 /* Make accesses to pages with watchpoints go via the
1499 watchpoint trap routines. */
1500 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1501 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1502 /* Avoid trapping reads of pages with a write breakpoint. */
1503 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1504 iotlb = PHYS_SECTION_WATCH + paddr;
1505 *address |= TLB_MMIO;
1506 break;
1507 }
1508 }
1509 }
1510
1511 return iotlb;
1512 }
1513 #endif /* defined(CONFIG_USER_ONLY) */
1514
1515 #if !defined(CONFIG_USER_ONLY)
1516
1517 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1518 uint16_t section);
1519 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1520
1521 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1522 qemu_anon_ram_alloc;
1523
1524 /*
1525 * Set a custom physical guest memory alloator.
1526 * Accelerators with unusual needs may need this. Hopefully, we can
1527 * get rid of it eventually.
1528 */
1529 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1530 {
1531 phys_mem_alloc = alloc;
1532 }
1533
1534 static uint16_t phys_section_add(PhysPageMap *map,
1535 MemoryRegionSection *section)
1536 {
1537 /* The physical section number is ORed with a page-aligned
1538 * pointer to produce the iotlb entries. Thus it should
1539 * never overflow into the page-aligned value.
1540 */
1541 assert(map->sections_nb < TARGET_PAGE_SIZE);
1542
1543 if (map->sections_nb == map->sections_nb_alloc) {
1544 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1545 map->sections = g_renew(MemoryRegionSection, map->sections,
1546 map->sections_nb_alloc);
1547 }
1548 map->sections[map->sections_nb] = *section;
1549 memory_region_ref(section->mr);
1550 return map->sections_nb++;
1551 }
1552
1553 static void phys_section_destroy(MemoryRegion *mr)
1554 {
1555 bool have_sub_page = mr->subpage;
1556
1557 memory_region_unref(mr);
1558
1559 if (have_sub_page) {
1560 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1561 object_unref(OBJECT(&subpage->iomem));
1562 g_free(subpage);
1563 }
1564 }
1565
1566 static void phys_sections_free(PhysPageMap *map)
1567 {
1568 while (map->sections_nb > 0) {
1569 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1570 phys_section_destroy(section->mr);
1571 }
1572 g_free(map->sections);
1573 g_free(map->nodes);
1574 }
1575
1576 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1577 {
1578 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1579 subpage_t *subpage;
1580 hwaddr base = section->offset_within_address_space
1581 & TARGET_PAGE_MASK;
1582 MemoryRegionSection *existing = phys_page_find(d, base);
1583 MemoryRegionSection subsection = {
1584 .offset_within_address_space = base,
1585 .size = int128_make64(TARGET_PAGE_SIZE),
1586 };
1587 hwaddr start, end;
1588
1589 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1590
1591 if (!(existing->mr->subpage)) {
1592 subpage = subpage_init(fv, base);
1593 subsection.fv = fv;
1594 subsection.mr = &subpage->iomem;
1595 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1596 phys_section_add(&d->map, &subsection));
1597 } else {
1598 subpage = container_of(existing->mr, subpage_t, iomem);
1599 }
1600 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1601 end = start + int128_get64(section->size) - 1;
1602 subpage_register(subpage, start, end,
1603 phys_section_add(&d->map, section));
1604 }
1605
1606
1607 static void register_multipage(FlatView *fv,
1608 MemoryRegionSection *section)
1609 {
1610 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1611 hwaddr start_addr = section->offset_within_address_space;
1612 uint16_t section_index = phys_section_add(&d->map, section);
1613 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1614 TARGET_PAGE_BITS));
1615
1616 assert(num_pages);
1617 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1618 }
1619
1620 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1621 {
1622 MemoryRegionSection now = *section, remain = *section;
1623 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1624
1625 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1626 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1627 - now.offset_within_address_space;
1628
1629 now.size = int128_min(int128_make64(left), now.size);
1630 register_subpage(fv, &now);
1631 } else {
1632 now.size = int128_zero();
1633 }
1634 while (int128_ne(remain.size, now.size)) {
1635 remain.size = int128_sub(remain.size, now.size);
1636 remain.offset_within_address_space += int128_get64(now.size);
1637 remain.offset_within_region += int128_get64(now.size);
1638 now = remain;
1639 if (int128_lt(remain.size, page_size)) {
1640 register_subpage(fv, &now);
1641 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1642 now.size = page_size;
1643 register_subpage(fv, &now);
1644 } else {
1645 now.size = int128_and(now.size, int128_neg(page_size));
1646 register_multipage(fv, &now);
1647 }
1648 }
1649 }
1650
1651 void qemu_flush_coalesced_mmio_buffer(void)
1652 {
1653 if (kvm_enabled())
1654 kvm_flush_coalesced_mmio_buffer();
1655 }
1656
1657 void qemu_mutex_lock_ramlist(void)
1658 {
1659 qemu_mutex_lock(&ram_list.mutex);
1660 }
1661
1662 void qemu_mutex_unlock_ramlist(void)
1663 {
1664 qemu_mutex_unlock(&ram_list.mutex);
1665 }
1666
1667 void ram_block_dump(Monitor *mon)
1668 {
1669 RAMBlock *block;
1670 char *psize;
1671
1672 rcu_read_lock();
1673 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1674 "Block Name", "PSize", "Offset", "Used", "Total");
1675 RAMBLOCK_FOREACH(block) {
1676 psize = size_to_str(block->page_size);
1677 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1678 " 0x%016" PRIx64 "\n", block->idstr, psize,
1679 (uint64_t)block->offset,
1680 (uint64_t)block->used_length,
1681 (uint64_t)block->max_length);
1682 g_free(psize);
1683 }
1684 rcu_read_unlock();
1685 }
1686
1687 #ifdef __linux__
1688 /*
1689 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1690 * may or may not name the same files / on the same filesystem now as
1691 * when we actually open and map them. Iterate over the file
1692 * descriptors instead, and use qemu_fd_getpagesize().
1693 */
1694 static int find_max_supported_pagesize(Object *obj, void *opaque)
1695 {
1696 long *hpsize_min = opaque;
1697
1698 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1699 long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));
1700
1701 if (hpsize < *hpsize_min) {
1702 *hpsize_min = hpsize;
1703 }
1704 }
1705
1706 return 0;
1707 }
1708
1709 long qemu_getrampagesize(void)
1710 {
1711 long hpsize = LONG_MAX;
1712 long mainrampagesize;
1713 Object *memdev_root;
1714
1715 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1716
1717 /* it's possible we have memory-backend objects with
1718 * hugepage-backed RAM. these may get mapped into system
1719 * address space via -numa parameters or memory hotplug
1720 * hooks. we want to take these into account, but we
1721 * also want to make sure these supported hugepage
1722 * sizes are applicable across the entire range of memory
1723 * we may boot from, so we take the min across all
1724 * backends, and assume normal pages in cases where a
1725 * backend isn't backed by hugepages.
1726 */
1727 memdev_root = object_resolve_path("/objects", NULL);
1728 if (memdev_root) {
1729 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1730 }
1731 if (hpsize == LONG_MAX) {
1732 /* No additional memory regions found ==> Report main RAM page size */
1733 return mainrampagesize;
1734 }
1735
1736 /* If NUMA is disabled or the NUMA nodes are not backed with a
1737 * memory-backend, then there is at least one node using "normal" RAM,
1738 * so if its page size is smaller we have got to report that size instead.
1739 */
1740 if (hpsize > mainrampagesize &&
1741 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1742 static bool warned;
1743 if (!warned) {
1744 error_report("Huge page support disabled (n/a for main memory).");
1745 warned = true;
1746 }
1747 return mainrampagesize;
1748 }
1749
1750 return hpsize;
1751 }
1752 #else
1753 long qemu_getrampagesize(void)
1754 {
1755 return getpagesize();
1756 }
1757 #endif
1758
1759 #ifdef __linux__
1760 static int64_t get_file_size(int fd)
1761 {
1762 int64_t size = lseek(fd, 0, SEEK_END);
1763 if (size < 0) {
1764 return -errno;
1765 }
1766 return size;
1767 }
1768
1769 static int file_ram_open(const char *path,
1770 const char *region_name,
1771 bool *created,
1772 Error **errp)
1773 {
1774 char *filename;
1775 char *sanitized_name;
1776 char *c;
1777 int fd = -1;
1778
1779 *created = false;
1780 for (;;) {
1781 fd = open(path, O_RDWR);
1782 if (fd >= 0) {
1783 /* @path names an existing file, use it */
1784 break;
1785 }
1786 if (errno == ENOENT) {
1787 /* @path names a file that doesn't exist, create it */
1788 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1789 if (fd >= 0) {
1790 *created = true;
1791 break;
1792 }
1793 } else if (errno == EISDIR) {
1794 /* @path names a directory, create a file there */
1795 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1796 sanitized_name = g_strdup(region_name);
1797 for (c = sanitized_name; *c != '\0'; c++) {
1798 if (*c == '/') {
1799 *c = '_';
1800 }
1801 }
1802
1803 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1804 sanitized_name);
1805 g_free(sanitized_name);
1806
1807 fd = mkstemp(filename);
1808 if (fd >= 0) {
1809 unlink(filename);
1810 g_free(filename);
1811 break;
1812 }
1813 g_free(filename);
1814 }
1815 if (errno != EEXIST && errno != EINTR) {
1816 error_setg_errno(errp, errno,
1817 "can't open backing store %s for guest RAM",
1818 path);
1819 return -1;
1820 }
1821 /*
1822 * Try again on EINTR and EEXIST. The latter happens when
1823 * something else creates the file between our two open().
1824 */
1825 }
1826
1827 return fd;
1828 }
1829
1830 static void *file_ram_alloc(RAMBlock *block,
1831 ram_addr_t memory,
1832 int fd,
1833 bool truncate,
1834 Error **errp)
1835 {
1836 void *area;
1837
1838 block->page_size = qemu_fd_getpagesize(fd);
1839 if (block->mr->align % block->page_size) {
1840 error_setg(errp, "alignment 0x%" PRIx64
1841 " must be multiples of page size 0x%zx",
1842 block->mr->align, block->page_size);
1843 return NULL;
1844 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1845 error_setg(errp, "alignment 0x%" PRIx64
1846 " must be a power of two", block->mr->align);
1847 return NULL;
1848 }
1849 block->mr->align = MAX(block->page_size, block->mr->align);
1850 #if defined(__s390x__)
1851 if (kvm_enabled()) {
1852 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1853 }
1854 #endif
1855
1856 if (memory < block->page_size) {
1857 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1858 "or larger than page size 0x%zx",
1859 memory, block->page_size);
1860 return NULL;
1861 }
1862
1863 memory = ROUND_UP(memory, block->page_size);
1864
1865 /*
1866 * ftruncate is not supported by hugetlbfs in older
1867 * hosts, so don't bother bailing out on errors.
1868 * If anything goes wrong with it under other filesystems,
1869 * mmap will fail.
1870 *
1871 * Do not truncate the non-empty backend file to avoid corrupting
1872 * the existing data in the file. Disabling shrinking is not
1873 * enough. For example, the current vNVDIMM implementation stores
1874 * the guest NVDIMM labels at the end of the backend file. If the
1875 * backend file is later extended, QEMU will not be able to find
1876 * those labels. Therefore, extending the non-empty backend file
1877 * is disabled as well.
1878 */
1879 if (truncate && ftruncate(fd, memory)) {
1880 perror("ftruncate");
1881 }
1882
1883 area = qemu_ram_mmap(fd, memory, block->mr->align,
1884 block->flags & RAM_SHARED);
1885 if (area == MAP_FAILED) {
1886 error_setg_errno(errp, errno,
1887 "unable to map backing store for guest RAM");
1888 return NULL;
1889 }
1890
1891 if (mem_prealloc) {
1892 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1893 if (errp && *errp) {
1894 qemu_ram_munmap(area, memory);
1895 return NULL;
1896 }
1897 }
1898
1899 block->fd = fd;
1900 return area;
1901 }
1902 #endif
1903
1904 /* Allocate space within the ram_addr_t space that governs the
1905 * dirty bitmaps.
1906 * Called with the ramlist lock held.
1907 */
1908 static ram_addr_t find_ram_offset(ram_addr_t size)
1909 {
1910 RAMBlock *block, *next_block;
1911 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1912
1913 assert(size != 0); /* it would hand out same offset multiple times */
1914
1915 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1916 return 0;
1917 }
1918
1919 RAMBLOCK_FOREACH(block) {
1920 ram_addr_t candidate, next = RAM_ADDR_MAX;
1921
1922 /* Align blocks to start on a 'long' in the bitmap
1923 * which makes the bitmap sync'ing take the fast path.
1924 */
1925 candidate = block->offset + block->max_length;
1926 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1927
1928 /* Search for the closest following block
1929 * and find the gap.
1930 */
1931 RAMBLOCK_FOREACH(next_block) {
1932 if (next_block->offset >= candidate) {
1933 next = MIN(next, next_block->offset);
1934 }
1935 }
1936
1937 /* If it fits remember our place and remember the size
1938 * of gap, but keep going so that we might find a smaller
1939 * gap to fill so avoiding fragmentation.
1940 */
1941 if (next - candidate >= size && next - candidate < mingap) {
1942 offset = candidate;
1943 mingap = next - candidate;
1944 }
1945
1946 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1947 }
1948
1949 if (offset == RAM_ADDR_MAX) {
1950 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1951 (uint64_t)size);
1952 abort();
1953 }
1954
1955 trace_find_ram_offset(size, offset);
1956
1957 return offset;
1958 }
1959
1960 static unsigned long last_ram_page(void)
1961 {
1962 RAMBlock *block;
1963 ram_addr_t last = 0;
1964
1965 rcu_read_lock();
1966 RAMBLOCK_FOREACH(block) {
1967 last = MAX(last, block->offset + block->max_length);
1968 }
1969 rcu_read_unlock();
1970 return last >> TARGET_PAGE_BITS;
1971 }
1972
1973 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1974 {
1975 int ret;
1976
1977 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1978 if (!machine_dump_guest_core(current_machine)) {
1979 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1980 if (ret) {
1981 perror("qemu_madvise");
1982 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1983 "but dump_guest_core=off specified\n");
1984 }
1985 }
1986 }
1987
1988 const char *qemu_ram_get_idstr(RAMBlock *rb)
1989 {
1990 return rb->idstr;
1991 }
1992
1993 bool qemu_ram_is_shared(RAMBlock *rb)
1994 {
1995 return rb->flags & RAM_SHARED;
1996 }
1997
1998 /* Note: Only set at the start of postcopy */
1999 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2000 {
2001 return rb->flags & RAM_UF_ZEROPAGE;
2002 }
2003
2004 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2005 {
2006 rb->flags |= RAM_UF_ZEROPAGE;
2007 }
2008
2009 bool qemu_ram_is_migratable(RAMBlock *rb)
2010 {
2011 return rb->flags & RAM_MIGRATABLE;
2012 }
2013
2014 void qemu_ram_set_migratable(RAMBlock *rb)
2015 {
2016 rb->flags |= RAM_MIGRATABLE;
2017 }
2018
2019 void qemu_ram_unset_migratable(RAMBlock *rb)
2020 {
2021 rb->flags &= ~RAM_MIGRATABLE;
2022 }
2023
2024 /* Called with iothread lock held. */
2025 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2026 {
2027 RAMBlock *block;
2028
2029 assert(new_block);
2030 assert(!new_block->idstr[0]);
2031
2032 if (dev) {
2033 char *id = qdev_get_dev_path(dev);
2034 if (id) {
2035 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2036 g_free(id);
2037 }
2038 }
2039 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2040
2041 rcu_read_lock();
2042 RAMBLOCK_FOREACH(block) {
2043 if (block != new_block &&
2044 !strcmp(block->idstr, new_block->idstr)) {
2045 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2046 new_block->idstr);
2047 abort();
2048 }
2049 }
2050 rcu_read_unlock();
2051 }
2052
2053 /* Called with iothread lock held. */
2054 void qemu_ram_unset_idstr(RAMBlock *block)
2055 {
2056 /* FIXME: arch_init.c assumes that this is not called throughout
2057 * migration. Ignore the problem since hot-unplug during migration
2058 * does not work anyway.
2059 */
2060 if (block) {
2061 memset(block->idstr, 0, sizeof(block->idstr));
2062 }
2063 }
2064
2065 size_t qemu_ram_pagesize(RAMBlock *rb)
2066 {
2067 return rb->page_size;
2068 }
2069
2070 /* Returns the largest size of page in use */
2071 size_t qemu_ram_pagesize_largest(void)
2072 {
2073 RAMBlock *block;
2074 size_t largest = 0;
2075
2076 RAMBLOCK_FOREACH(block) {
2077 largest = MAX(largest, qemu_ram_pagesize(block));
2078 }
2079
2080 return largest;
2081 }
2082
2083 static int memory_try_enable_merging(void *addr, size_t len)
2084 {
2085 if (!machine_mem_merge(current_machine)) {
2086 /* disabled by the user */
2087 return 0;
2088 }
2089
2090 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2091 }
2092
2093 /* Only legal before guest might have detected the memory size: e.g. on
2094 * incoming migration, or right after reset.
2095 *
2096 * As memory core doesn't know how is memory accessed, it is up to
2097 * resize callback to update device state and/or add assertions to detect
2098 * misuse, if necessary.
2099 */
2100 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2101 {
2102 assert(block);
2103
2104 newsize = HOST_PAGE_ALIGN(newsize);
2105
2106 if (block->used_length == newsize) {
2107 return 0;
2108 }
2109
2110 if (!(block->flags & RAM_RESIZEABLE)) {
2111 error_setg_errno(errp, EINVAL,
2112 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2113 " in != 0x" RAM_ADDR_FMT, block->idstr,
2114 newsize, block->used_length);
2115 return -EINVAL;
2116 }
2117
2118 if (block->max_length < newsize) {
2119 error_setg_errno(errp, EINVAL,
2120 "Length too large: %s: 0x" RAM_ADDR_FMT
2121 " > 0x" RAM_ADDR_FMT, block->idstr,
2122 newsize, block->max_length);
2123 return -EINVAL;
2124 }
2125
2126 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2127 block->used_length = newsize;
2128 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2129 DIRTY_CLIENTS_ALL);
2130 memory_region_set_size(block->mr, newsize);
2131 if (block->resized) {
2132 block->resized(block->idstr, newsize, block->host);
2133 }
2134 return 0;
2135 }
2136
2137 /* Called with ram_list.mutex held */
2138 static void dirty_memory_extend(ram_addr_t old_ram_size,
2139 ram_addr_t new_ram_size)
2140 {
2141 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2142 DIRTY_MEMORY_BLOCK_SIZE);
2143 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2144 DIRTY_MEMORY_BLOCK_SIZE);
2145 int i;
2146
2147 /* Only need to extend if block count increased */
2148 if (new_num_blocks <= old_num_blocks) {
2149 return;
2150 }
2151
2152 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2153 DirtyMemoryBlocks *old_blocks;
2154 DirtyMemoryBlocks *new_blocks;
2155 int j;
2156
2157 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2158 new_blocks = g_malloc(sizeof(*new_blocks) +
2159 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2160
2161 if (old_num_blocks) {
2162 memcpy(new_blocks->blocks, old_blocks->blocks,
2163 old_num_blocks * sizeof(old_blocks->blocks[0]));
2164 }
2165
2166 for (j = old_num_blocks; j < new_num_blocks; j++) {
2167 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2168 }
2169
2170 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2171
2172 if (old_blocks) {
2173 g_free_rcu(old_blocks, rcu);
2174 }
2175 }
2176 }
2177
2178 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2179 {
2180 RAMBlock *block;
2181 RAMBlock *last_block = NULL;
2182 ram_addr_t old_ram_size, new_ram_size;
2183 Error *err = NULL;
2184
2185 old_ram_size = last_ram_page();
2186
2187 qemu_mutex_lock_ramlist();
2188 new_block->offset = find_ram_offset(new_block->max_length);
2189
2190 if (!new_block->host) {
2191 if (xen_enabled()) {
2192 xen_ram_alloc(new_block->offset, new_block->max_length,
2193 new_block->mr, &err);
2194 if (err) {
2195 error_propagate(errp, err);
2196 qemu_mutex_unlock_ramlist();
2197 return;
2198 }
2199 } else {
2200 new_block->host = phys_mem_alloc(new_block->max_length,
2201 &new_block->mr->align, shared);
2202 if (!new_block->host) {
2203 error_setg_errno(errp, errno,
2204 "cannot set up guest memory '%s'",
2205 memory_region_name(new_block->mr));
2206 qemu_mutex_unlock_ramlist();
2207 return;
2208 }
2209 memory_try_enable_merging(new_block->host, new_block->max_length);
2210 }
2211 }
2212
2213 new_ram_size = MAX(old_ram_size,
2214 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2215 if (new_ram_size > old_ram_size) {
2216 dirty_memory_extend(old_ram_size, new_ram_size);
2217 }
2218 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2219 * QLIST (which has an RCU-friendly variant) does not have insertion at
2220 * tail, so save the last element in last_block.
2221 */
2222 RAMBLOCK_FOREACH(block) {
2223 last_block = block;
2224 if (block->max_length < new_block->max_length) {
2225 break;
2226 }
2227 }
2228 if (block) {
2229 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2230 } else if (last_block) {
2231 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2232 } else { /* list is empty */
2233 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2234 }
2235 ram_list.mru_block = NULL;
2236
2237 /* Write list before version */
2238 smp_wmb();
2239 ram_list.version++;
2240 qemu_mutex_unlock_ramlist();
2241
2242 cpu_physical_memory_set_dirty_range(new_block->offset,
2243 new_block->used_length,
2244 DIRTY_CLIENTS_ALL);
2245
2246 if (new_block->host) {
2247 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2248 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2249 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2250 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2251 ram_block_notify_add(new_block->host, new_block->max_length);
2252 }
2253 }
2254
2255 #ifdef __linux__
2256 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2257 bool share, int fd,
2258 Error **errp)
2259 {
2260 RAMBlock *new_block;
2261 Error *local_err = NULL;
2262 int64_t file_size;
2263
2264 if (xen_enabled()) {
2265 error_setg(errp, "-mem-path not supported with Xen");
2266 return NULL;
2267 }
2268
2269 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2270 error_setg(errp,
2271 "host lacks kvm mmu notifiers, -mem-path unsupported");
2272 return NULL;
2273 }
2274
2275 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2276 /*
2277 * file_ram_alloc() needs to allocate just like
2278 * phys_mem_alloc, but we haven't bothered to provide
2279 * a hook there.
2280 */
2281 error_setg(errp,
2282 "-mem-path not supported with this accelerator");
2283 return NULL;
2284 }
2285
2286 size = HOST_PAGE_ALIGN(size);
2287 file_size = get_file_size(fd);
2288 if (file_size > 0 && file_size < size) {
2289 error_setg(errp, "backing store %s size 0x%" PRIx64
2290 " does not match 'size' option 0x" RAM_ADDR_FMT,
2291 mem_path, file_size, size);
2292 return NULL;
2293 }
2294
2295 new_block = g_malloc0(sizeof(*new_block));
2296 new_block->mr = mr;
2297 new_block->used_length = size;
2298 new_block->max_length = size;
2299 new_block->flags = share ? RAM_SHARED : 0;
2300 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2301 if (!new_block->host) {
2302 g_free(new_block);
2303 return NULL;
2304 }
2305
2306 ram_block_add(new_block, &local_err, share);
2307 if (local_err) {
2308 g_free(new_block);
2309 error_propagate(errp, local_err);
2310 return NULL;
2311 }
2312 return new_block;
2313
2314 }
2315
2316
2317 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2318 bool share, const char *mem_path,
2319 Error **errp)
2320 {
2321 int fd;
2322 bool created;
2323 RAMBlock *block;
2324
2325 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2326 if (fd < 0) {
2327 return NULL;
2328 }
2329
2330 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2331 if (!block) {
2332 if (created) {
2333 unlink(mem_path);
2334 }
2335 close(fd);
2336 return NULL;
2337 }
2338
2339 return block;
2340 }
2341 #endif
2342
2343 static
2344 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2345 void (*resized)(const char*,
2346 uint64_t length,
2347 void *host),
2348 void *host, bool resizeable, bool share,
2349 MemoryRegion *mr, Error **errp)
2350 {
2351 RAMBlock *new_block;
2352 Error *local_err = NULL;
2353
2354 size = HOST_PAGE_ALIGN(size);
2355 max_size = HOST_PAGE_ALIGN(max_size);
2356 new_block = g_malloc0(sizeof(*new_block));
2357 new_block->mr = mr;
2358 new_block->resized = resized;
2359 new_block->used_length = size;
2360 new_block->max_length = max_size;
2361 assert(max_size >= size);
2362 new_block->fd = -1;
2363 new_block->page_size = getpagesize();
2364 new_block->host = host;
2365 if (host) {
2366 new_block->flags |= RAM_PREALLOC;
2367 }
2368 if (resizeable) {
2369 new_block->flags |= RAM_RESIZEABLE;
2370 }
2371 ram_block_add(new_block, &local_err, share);
2372 if (local_err) {
2373 g_free(new_block);
2374 error_propagate(errp, local_err);
2375 return NULL;
2376 }
2377 return new_block;
2378 }
2379
2380 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2381 MemoryRegion *mr, Error **errp)
2382 {
2383 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2384 false, mr, errp);
2385 }
2386
2387 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2388 MemoryRegion *mr, Error **errp)
2389 {
2390 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2391 share, mr, errp);
2392 }
2393
2394 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2395 void (*resized)(const char*,
2396 uint64_t length,
2397 void *host),
2398 MemoryRegion *mr, Error **errp)
2399 {
2400 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2401 false, mr, errp);
2402 }
2403
2404 static void reclaim_ramblock(RAMBlock *block)
2405 {
2406 if (block->flags & RAM_PREALLOC) {
2407 ;
2408 } else if (xen_enabled()) {
2409 xen_invalidate_map_cache_entry(block->host);
2410 #ifndef _WIN32
2411 } else if (block->fd >= 0) {
2412 qemu_ram_munmap(block->host, block->max_length);
2413 close(block->fd);
2414 #endif
2415 } else {
2416 qemu_anon_ram_free(block->host, block->max_length);
2417 }
2418 g_free(block);
2419 }
2420
2421 void qemu_ram_free(RAMBlock *block)
2422 {
2423 if (!block) {
2424 return;
2425 }
2426
2427 if (block->host) {
2428 ram_block_notify_remove(block->host, block->max_length);
2429 }
2430
2431 qemu_mutex_lock_ramlist();
2432 QLIST_REMOVE_RCU(block, next);
2433 ram_list.mru_block = NULL;
2434 /* Write list before version */
2435 smp_wmb();
2436 ram_list.version++;
2437 call_rcu(block, reclaim_ramblock, rcu);
2438 qemu_mutex_unlock_ramlist();
2439 }
2440
2441 #ifndef _WIN32
2442 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2443 {
2444 RAMBlock *block;
2445 ram_addr_t offset;
2446 int flags;
2447 void *area, *vaddr;
2448
2449 RAMBLOCK_FOREACH(block) {
2450 offset = addr - block->offset;
2451 if (offset < block->max_length) {
2452 vaddr = ramblock_ptr(block, offset);
2453 if (block->flags & RAM_PREALLOC) {
2454 ;
2455 } else if (xen_enabled()) {
2456 abort();
2457 } else {
2458 flags = MAP_FIXED;
2459 if (block->fd >= 0) {
2460 flags |= (block->flags & RAM_SHARED ?
2461 MAP_SHARED : MAP_PRIVATE);
2462 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2463 flags, block->fd, offset);
2464 } else {
2465 /*
2466 * Remap needs to match alloc. Accelerators that
2467 * set phys_mem_alloc never remap. If they did,
2468 * we'd need a remap hook here.
2469 */
2470 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2471
2472 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2473 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2474 flags, -1, 0);
2475 }
2476 if (area != vaddr) {
2477 error_report("Could not remap addr: "
2478 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2479 length, addr);
2480 exit(1);
2481 }
2482 memory_try_enable_merging(vaddr, length);
2483 qemu_ram_setup_dump(vaddr, length);
2484 }
2485 }
2486 }
2487 }
2488 #endif /* !_WIN32 */
2489
2490 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2491 * This should not be used for general purpose DMA. Use address_space_map
2492 * or address_space_rw instead. For local memory (e.g. video ram) that the
2493 * device owns, use memory_region_get_ram_ptr.
2494 *
2495 * Called within RCU critical section.
2496 */
2497 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2498 {
2499 RAMBlock *block = ram_block;
2500
2501 if (block == NULL) {
2502 block = qemu_get_ram_block(addr);
2503 addr -= block->offset;
2504 }
2505
2506 if (xen_enabled() && block->host == NULL) {
2507 /* We need to check if the requested address is in the RAM
2508 * because we don't want to map the entire memory in QEMU.
2509 * In that case just map until the end of the page.
2510 */
2511 if (block->offset == 0) {
2512 return xen_map_cache(addr, 0, 0, false);
2513 }
2514
2515 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2516 }
2517 return ramblock_ptr(block, addr);
2518 }
2519
2520 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2521 * but takes a size argument.
2522 *
2523 * Called within RCU critical section.
2524 */
2525 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2526 hwaddr *size, bool lock)
2527 {
2528 RAMBlock *block = ram_block;
2529 if (*size == 0) {
2530 return NULL;
2531 }
2532
2533 if (block == NULL) {
2534 block = qemu_get_ram_block(addr);
2535 addr -= block->offset;
2536 }
2537 *size = MIN(*size, block->max_length - addr);
2538
2539 if (xen_enabled() && block->host == NULL) {
2540 /* We need to check if the requested address is in the RAM
2541 * because we don't want to map the entire memory in QEMU.
2542 * In that case just map the requested area.
2543 */
2544 if (block->offset == 0) {
2545 return xen_map_cache(addr, *size, lock, lock);
2546 }
2547
2548 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2549 }
2550
2551 return ramblock_ptr(block, addr);
2552 }
2553
2554 /* Return the offset of a hostpointer within a ramblock */
2555 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2556 {
2557 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2558 assert((uintptr_t)host >= (uintptr_t)rb->host);
2559 assert(res < rb->max_length);
2560
2561 return res;
2562 }
2563
2564 /*
2565 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2566 * in that RAMBlock.
2567 *
2568 * ptr: Host pointer to look up
2569 * round_offset: If true round the result offset down to a page boundary
2570 * *ram_addr: set to result ram_addr
2571 * *offset: set to result offset within the RAMBlock
2572 *
2573 * Returns: RAMBlock (or NULL if not found)
2574 *
2575 * By the time this function returns, the returned pointer is not protected
2576 * by RCU anymore. If the caller is not within an RCU critical section and
2577 * does not hold the iothread lock, it must have other means of protecting the
2578 * pointer, such as a reference to the region that includes the incoming
2579 * ram_addr_t.
2580 */
2581 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2582 ram_addr_t *offset)
2583 {
2584 RAMBlock *block;
2585 uint8_t *host = ptr;
2586
2587 if (xen_enabled()) {
2588 ram_addr_t ram_addr;
2589 rcu_read_lock();
2590 ram_addr = xen_ram_addr_from_mapcache(ptr);
2591 block = qemu_get_ram_block(ram_addr);
2592 if (block) {
2593 *offset = ram_addr - block->offset;
2594 }
2595 rcu_read_unlock();
2596 return block;
2597 }
2598
2599 rcu_read_lock();
2600 block = atomic_rcu_read(&ram_list.mru_block);
2601 if (block && block->host && host - block->host < block->max_length) {
2602 goto found;
2603 }
2604
2605 RAMBLOCK_FOREACH(block) {
2606 /* This case append when the block is not mapped. */
2607 if (block->host == NULL) {
2608 continue;
2609 }
2610 if (host - block->host < block->max_length) {
2611 goto found;
2612 }
2613 }
2614
2615 rcu_read_unlock();
2616 return NULL;
2617
2618 found:
2619 *offset = (host - block->host);
2620 if (round_offset) {
2621 *offset &= TARGET_PAGE_MASK;
2622 }
2623 rcu_read_unlock();
2624 return block;
2625 }
2626
2627 /*
2628 * Finds the named RAMBlock
2629 *
2630 * name: The name of RAMBlock to find
2631 *
2632 * Returns: RAMBlock (or NULL if not found)
2633 */
2634 RAMBlock *qemu_ram_block_by_name(const char *name)
2635 {
2636 RAMBlock *block;
2637
2638 RAMBLOCK_FOREACH(block) {
2639 if (!strcmp(name, block->idstr)) {
2640 return block;
2641 }
2642 }
2643
2644 return NULL;
2645 }
2646
2647 /* Some of the softmmu routines need to translate from a host pointer
2648 (typically a TLB entry) back to a ram offset. */
2649 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2650 {
2651 RAMBlock *block;
2652 ram_addr_t offset;
2653
2654 block = qemu_ram_block_from_host(ptr, false, &offset);
2655 if (!block) {
2656 return RAM_ADDR_INVALID;
2657 }
2658
2659 return block->offset + offset;
2660 }
2661
2662 /* Called within RCU critical section. */
2663 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2664 CPUState *cpu,
2665 vaddr mem_vaddr,
2666 ram_addr_t ram_addr,
2667 unsigned size)
2668 {
2669 ndi->cpu = cpu;
2670 ndi->ram_addr = ram_addr;
2671 ndi->mem_vaddr = mem_vaddr;
2672 ndi->size = size;
2673 ndi->pages = NULL;
2674
2675 assert(tcg_enabled());
2676 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2677 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2678 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2679 }
2680 }
2681
2682 /* Called within RCU critical section. */
2683 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2684 {
2685 if (ndi->pages) {
2686 assert(tcg_enabled());
2687 page_collection_unlock(ndi->pages);
2688 ndi->pages = NULL;
2689 }
2690
2691 /* Set both VGA and migration bits for simplicity and to remove
2692 * the notdirty callback faster.
2693 */
2694 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2695 DIRTY_CLIENTS_NOCODE);
2696 /* we remove the notdirty callback only if the code has been
2697 flushed */
2698 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2699 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2700 }
2701 }
2702
2703 /* Called within RCU critical section. */
2704 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2705 uint64_t val, unsigned size)
2706 {
2707 NotDirtyInfo ndi;
2708
2709 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2710 ram_addr, size);
2711
2712 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2713 memory_notdirty_write_complete(&ndi);
2714 }
2715
2716 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2717 unsigned size, bool is_write,
2718 MemTxAttrs attrs)
2719 {
2720 return is_write;
2721 }
2722
2723 static const MemoryRegionOps notdirty_mem_ops = {
2724 .write = notdirty_mem_write,
2725 .valid.accepts = notdirty_mem_accepts,
2726 .endianness = DEVICE_NATIVE_ENDIAN,
2727 .valid = {
2728 .min_access_size = 1,
2729 .max_access_size = 8,
2730 .unaligned = false,
2731 },
2732 .impl = {
2733 .min_access_size = 1,
2734 .max_access_size = 8,
2735 .unaligned = false,
2736 },
2737 };
2738
2739 /* Generate a debug exception if a watchpoint has been hit. */
2740 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2741 {
2742 CPUState *cpu = current_cpu;
2743 CPUClass *cc = CPU_GET_CLASS(cpu);
2744 target_ulong vaddr;
2745 CPUWatchpoint *wp;
2746
2747 assert(tcg_enabled());
2748 if (cpu->watchpoint_hit) {
2749 /* We re-entered the check after replacing the TB. Now raise
2750 * the debug interrupt so that is will trigger after the
2751 * current instruction. */
2752 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2753 return;
2754 }
2755 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2756 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2757 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2758 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2759 && (wp->flags & flags)) {
2760 if (flags == BP_MEM_READ) {
2761 wp->flags |= BP_WATCHPOINT_HIT_READ;
2762 } else {
2763 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2764 }
2765 wp->hitaddr = vaddr;
2766 wp->hitattrs = attrs;
2767 if (!cpu->watchpoint_hit) {
2768 if (wp->flags & BP_CPU &&
2769 !cc->debug_check_watchpoint(cpu, wp)) {
2770 wp->flags &= ~BP_WATCHPOINT_HIT;
2771 continue;
2772 }
2773 cpu->watchpoint_hit = wp;
2774
2775 mmap_lock();
2776 tb_check_watchpoint(cpu);
2777 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2778 cpu->exception_index = EXCP_DEBUG;
2779 mmap_unlock();
2780 cpu_loop_exit(cpu);
2781 } else {
2782 /* Force execution of one insn next time. */
2783 cpu->cflags_next_tb = 1 | curr_cflags();
2784 mmap_unlock();
2785 cpu_loop_exit_noexc(cpu);
2786 }
2787 }
2788 } else {
2789 wp->flags &= ~BP_WATCHPOINT_HIT;
2790 }
2791 }
2792 }
2793
2794 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2795 so these check for a hit then pass through to the normal out-of-line
2796 phys routines. */
2797 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2798 unsigned size, MemTxAttrs attrs)
2799 {
2800 MemTxResult res;
2801 uint64_t data;
2802 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2803 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2804
2805 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2806 switch (size) {
2807 case 1:
2808 data = address_space_ldub(as, addr, attrs, &res);
2809 break;
2810 case 2:
2811 data = address_space_lduw(as, addr, attrs, &res);
2812 break;
2813 case 4:
2814 data = address_space_ldl(as, addr, attrs, &res);
2815 break;
2816 case 8:
2817 data = address_space_ldq(as, addr, attrs, &res);
2818 break;
2819 default: abort();
2820 }
2821 *pdata = data;
2822 return res;
2823 }
2824
2825 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2826 uint64_t val, unsigned size,
2827 MemTxAttrs attrs)
2828 {
2829 MemTxResult res;
2830 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2831 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2832
2833 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2834 switch (size) {
2835 case 1:
2836 address_space_stb(as, addr, val, attrs, &res);
2837 break;
2838 case 2:
2839 address_space_stw(as, addr, val, attrs, &res);
2840 break;
2841 case 4:
2842 address_space_stl(as, addr, val, attrs, &res);
2843 break;
2844 case 8:
2845 address_space_stq(as, addr, val, attrs, &res);
2846 break;
2847 default: abort();
2848 }
2849 return res;
2850 }
2851
2852 static const MemoryRegionOps watch_mem_ops = {
2853 .read_with_attrs = watch_mem_read,
2854 .write_with_attrs = watch_mem_write,
2855 .endianness = DEVICE_NATIVE_ENDIAN,
2856 .valid = {
2857 .min_access_size = 1,
2858 .max_access_size = 8,
2859 .unaligned = false,
2860 },
2861 .impl = {
2862 .min_access_size = 1,
2863 .max_access_size = 8,
2864 .unaligned = false,
2865 },
2866 };
2867
2868 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2869 MemTxAttrs attrs, uint8_t *buf, int len);
2870 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2871 const uint8_t *buf, int len);
2872 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2873 bool is_write, MemTxAttrs attrs);
2874
2875 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2876 unsigned len, MemTxAttrs attrs)
2877 {
2878 subpage_t *subpage = opaque;
2879 uint8_t buf[8];
2880 MemTxResult res;
2881
2882 #if defined(DEBUG_SUBPAGE)
2883 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2884 subpage, len, addr);
2885 #endif
2886 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2887 if (res) {
2888 return res;
2889 }
2890 *data = ldn_p(buf, len);
2891 return MEMTX_OK;
2892 }
2893
2894 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2895 uint64_t value, unsigned len, MemTxAttrs attrs)
2896 {
2897 subpage_t *subpage = opaque;
2898 uint8_t buf[8];
2899
2900 #if defined(DEBUG_SUBPAGE)
2901 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2902 " value %"PRIx64"\n",
2903 __func__, subpage, len, addr, value);
2904 #endif
2905 stn_p(buf, len, value);
2906 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2907 }
2908
2909 static bool subpage_accepts(void *opaque, hwaddr addr,
2910 unsigned len, bool is_write,
2911 MemTxAttrs attrs)
2912 {
2913 subpage_t *subpage = opaque;
2914 #if defined(DEBUG_SUBPAGE)
2915 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2916 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2917 #endif
2918
2919 return flatview_access_valid(subpage->fv, addr + subpage->base,
2920 len, is_write, attrs);
2921 }
2922
2923 static const MemoryRegionOps subpage_ops = {
2924 .read_with_attrs = subpage_read,
2925 .write_with_attrs = subpage_write,
2926 .impl.min_access_size = 1,
2927 .impl.max_access_size = 8,
2928 .valid.min_access_size = 1,
2929 .valid.max_access_size = 8,
2930 .valid.accepts = subpage_accepts,
2931 .endianness = DEVICE_NATIVE_ENDIAN,
2932 };
2933
2934 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2935 uint16_t section)
2936 {
2937 int idx, eidx;
2938
2939 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2940 return -1;
2941 idx = SUBPAGE_IDX(start);
2942 eidx = SUBPAGE_IDX(end);
2943 #if defined(DEBUG_SUBPAGE)
2944 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2945 __func__, mmio, start, end, idx, eidx, section);
2946 #endif
2947 for (; idx <= eidx; idx++) {
2948 mmio->sub_section[idx] = section;
2949 }
2950
2951 return 0;
2952 }
2953
2954 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2955 {
2956 subpage_t *mmio;
2957
2958 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2959 mmio->fv = fv;
2960 mmio->base = base;
2961 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2962 NULL, TARGET_PAGE_SIZE);
2963 mmio->iomem.subpage = true;
2964 #if defined(DEBUG_SUBPAGE)
2965 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2966 mmio, base, TARGET_PAGE_SIZE);
2967 #endif
2968 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2969
2970 return mmio;
2971 }
2972
2973 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2974 {
2975 assert(fv);
2976 MemoryRegionSection section = {
2977 .fv = fv,
2978 .mr = mr,
2979 .offset_within_address_space = 0,
2980 .offset_within_region = 0,
2981 .size = int128_2_64(),
2982 };
2983
2984 return phys_section_add(map, &section);
2985 }
2986
2987 static void readonly_mem_write(void *opaque, hwaddr addr,
2988 uint64_t val, unsigned size)
2989 {
2990 /* Ignore any write to ROM. */
2991 }
2992
2993 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2994 unsigned size, bool is_write,
2995 MemTxAttrs attrs)
2996 {
2997 return is_write;
2998 }
2999
3000 /* This will only be used for writes, because reads are special cased
3001 * to directly access the underlying host ram.
3002 */
3003 static const MemoryRegionOps readonly_mem_ops = {
3004 .write = readonly_mem_write,
3005 .valid.accepts = readonly_mem_accepts,
3006 .endianness = DEVICE_NATIVE_ENDIAN,
3007 .valid = {
3008 .min_access_size = 1,
3009 .max_access_size = 8,
3010 .unaligned = false,
3011 },
3012 .impl = {
3013 .min_access_size = 1,
3014 .max_access_size = 8,
3015 .unaligned = false,
3016 },
3017 };
3018
3019 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3020 hwaddr index, MemTxAttrs attrs)
3021 {
3022 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3023 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3024 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3025 MemoryRegionSection *sections = d->map.sections;
3026
3027 return &sections[index & ~TARGET_PAGE_MASK];
3028 }
3029
3030 static void io_mem_init(void)
3031 {
3032 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3033 NULL, NULL, UINT64_MAX);
3034 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3035 NULL, UINT64_MAX);
3036
3037 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3038 * which can be called without the iothread mutex.
3039 */
3040 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3041 NULL, UINT64_MAX);
3042 memory_region_clear_global_locking(&io_mem_notdirty);
3043
3044 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3045 NULL, UINT64_MAX);
3046 }
3047
3048 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3049 {
3050 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3051 uint16_t n;
3052
3053 n = dummy_section(&d->map, fv, &io_mem_unassigned);
3054 assert(n == PHYS_SECTION_UNASSIGNED);
3055 n = dummy_section(&d->map, fv, &io_mem_notdirty);
3056 assert(n == PHYS_SECTION_NOTDIRTY);
3057 n = dummy_section(&d->map, fv, &io_mem_rom);
3058 assert(n == PHYS_SECTION_ROM);
3059 n = dummy_section(&d->map, fv, &io_mem_watch);
3060 assert(n == PHYS_SECTION_WATCH);
3061
3062 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3063
3064 return d;
3065 }
3066
3067 void address_space_dispatch_free(AddressSpaceDispatch *d)
3068 {
3069 phys_sections_free(&d->map);
3070 g_free(d);
3071 }
3072
3073 static void tcg_commit(MemoryListener *listener)
3074 {
3075 CPUAddressSpace *cpuas;
3076 AddressSpaceDispatch *d;
3077
3078 assert(tcg_enabled());
3079 /* since each CPU stores ram addresses in its TLB cache, we must
3080 reset the modified entries */
3081 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3082 cpu_reloading_memory_map();
3083 /* The CPU and TLB are protected by the iothread lock.
3084 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3085 * may have split the RCU critical section.
3086 */
3087 d = address_space_to_dispatch(cpuas->as);
3088 atomic_rcu_set(&cpuas->memory_dispatch, d);
3089 tlb_flush(cpuas->cpu);
3090 }
3091
3092 static void memory_map_init(void)
3093 {
3094 system_memory = g_malloc(sizeof(*system_memory));
3095
3096 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3097 address_space_init(&address_space_memory, system_memory, "memory");
3098
3099 system_io = g_malloc(sizeof(*system_io));
3100 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3101 65536);
3102 address_space_init(&address_space_io, system_io, "I/O");
3103 }
3104
3105 MemoryRegion *get_system_memory(void)
3106 {
3107 return system_memory;
3108 }
3109
3110 MemoryRegion *get_system_io(void)
3111 {
3112 return system_io;
3113 }
3114
3115 #endif /* !defined(CONFIG_USER_ONLY) */
3116
3117 /* physical memory access (slow version, mainly for debug) */
3118 #if defined(CONFIG_USER_ONLY)
3119 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3120 uint8_t *buf, int len, int is_write)
3121 {
3122 int l, flags;
3123 target_ulong page;
3124 void * p;
3125
3126 while (len > 0) {
3127 page = addr & TARGET_PAGE_MASK;
3128 l = (page + TARGET_PAGE_SIZE) - addr;
3129 if (l > len)
3130 l = len;
3131 flags = page_get_flags(page);
3132 if (!(flags & PAGE_VALID))
3133 return -1;
3134 if (is_write) {
3135 if (!(flags & PAGE_WRITE))
3136 return -1;
3137 /* XXX: this code should not depend on lock_user */
3138 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3139 return -1;
3140 memcpy(p, buf, l);
3141 unlock_user(p, addr, l);
3142 } else {
3143 if (!(flags & PAGE_READ))
3144 return -1;
3145 /* XXX: this code should not depend on lock_user */
3146 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3147 return -1;
3148 memcpy(buf, p, l);
3149 unlock_user(p, addr, 0);
3150 }
3151 len -= l;
3152 buf += l;
3153 addr += l;
3154 }
3155 return 0;
3156 }
3157
3158 #else
3159
3160 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3161 hwaddr length)
3162 {
3163 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3164 addr += memory_region_get_ram_addr(mr);
3165
3166 /* No early return if dirty_log_mask is or becomes 0, because
3167 * cpu_physical_memory_set_dirty_range will still call
3168 * xen_modified_memory.
3169 */
3170 if (dirty_log_mask) {
3171 dirty_log_mask =
3172 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3173 }
3174 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3175 assert(tcg_enabled());
3176 tb_invalidate_phys_range(addr, addr + length);
3177 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3178 }
3179 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3180 }
3181
3182 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3183 {
3184 unsigned access_size_max = mr->ops->valid.max_access_size;
3185
3186 /* Regions are assumed to support 1-4 byte accesses unless
3187 otherwise specified. */
3188 if (access_size_max == 0) {
3189 access_size_max = 4;
3190 }
3191
3192 /* Bound the maximum access by the alignment of the address. */
3193 if (!mr->ops->impl.unaligned) {
3194 unsigned align_size_max = addr & -addr;
3195 if (align_size_max != 0 && align_size_max < access_size_max) {
3196 access_size_max = align_size_max;
3197 }
3198 }
3199
3200 /* Don't attempt accesses larger than the maximum. */
3201 if (l > access_size_max) {
3202 l = access_size_max;
3203 }
3204 l = pow2floor(l);
3205
3206 return l;
3207 }
3208
3209 static bool prepare_mmio_access(MemoryRegion *mr)
3210 {
3211 bool unlocked = !qemu_mutex_iothread_locked();
3212 bool release_lock = false;
3213
3214 if (unlocked && mr->global_locking) {
3215 qemu_mutex_lock_iothread();
3216 unlocked = false;
3217 release_lock = true;
3218 }
3219 if (mr->flush_coalesced_mmio) {
3220 if (unlocked) {
3221 qemu_mutex_lock_iothread();
3222 }
3223 qemu_flush_coalesced_mmio_buffer();
3224 if (unlocked) {
3225 qemu_mutex_unlock_iothread();
3226 }
3227 }
3228
3229 return release_lock;
3230 }
3231
3232 /* Called within RCU critical section. */
3233 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3234 MemTxAttrs attrs,
3235 const uint8_t *buf,
3236 int len, hwaddr addr1,
3237 hwaddr l, MemoryRegion *mr)
3238 {
3239 uint8_t *ptr;
3240 uint64_t val;
3241 MemTxResult result = MEMTX_OK;
3242 bool release_lock = false;
3243
3244 for (;;) {
3245 if (!memory_access_is_direct(mr, true)) {
3246 release_lock |= prepare_mmio_access(mr);
3247 l = memory_access_size(mr, l, addr1);
3248 /* XXX: could force current_cpu to NULL to avoid
3249 potential bugs */
3250 val = ldn_p(buf, l);
3251 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
3252 } else {
3253 /* RAM case */
3254 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3255 memcpy(ptr, buf, l);
3256 invalidate_and_set_dirty(mr, addr1, l);
3257 }
3258
3259 if (release_lock) {
3260 qemu_mutex_unlock_iothread();
3261 release_lock = false;
3262 }
3263
3264 len -= l;
3265 buf += l;
3266 addr += l;
3267
3268 if (!len) {
3269 break;
3270 }
3271
3272 l = len;
3273 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3274 }
3275
3276 return result;
3277 }
3278
3279 /* Called from RCU critical section. */
3280 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3281 const uint8_t *buf, int len)
3282 {
3283 hwaddr l;
3284 hwaddr addr1;
3285 MemoryRegion *mr;
3286 MemTxResult result = MEMTX_OK;
3287
3288 l = len;
3289 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3290 result = flatview_write_continue(fv, addr, attrs, buf, len,
3291 addr1, l, mr);
3292
3293 return result;
3294 }
3295
3296 /* Called within RCU critical section. */
3297 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3298 MemTxAttrs attrs, uint8_t *buf,
3299 int len, hwaddr addr1, hwaddr l,
3300 MemoryRegion *mr)
3301 {
3302 uint8_t *ptr;
3303 uint64_t val;
3304 MemTxResult result = MEMTX_OK;
3305 bool release_lock = false;
3306
3307 for (;;) {
3308 if (!memory_access_is_direct(mr, false)) {
3309 /* I/O case */
3310 release_lock |= prepare_mmio_access(mr);
3311 l = memory_access_size(mr, l, addr1);
3312 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3313 stn_p(buf, l, val);
3314 } else {
3315 /* RAM case */
3316 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3317 memcpy(buf, ptr, l);
3318 }
3319
3320 if (release_lock) {
3321 qemu_mutex_unlock_iothread();
3322 release_lock = false;
3323 }
3324
3325 len -= l;
3326 buf += l;
3327 addr += l;
3328
3329 if (!len) {
3330 break;
3331 }
3332
3333 l = len;
3334 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3335 }
3336
3337 return result;
3338 }
3339
3340 /* Called from RCU critical section. */
3341 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3342 MemTxAttrs attrs, uint8_t *buf, int len)
3343 {
3344 hwaddr l;
3345 hwaddr addr1;
3346 MemoryRegion *mr;
3347
3348 l = len;
3349 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3350 return flatview_read_continue(fv, addr, attrs, buf, len,
3351 addr1, l, mr);
3352 }
3353
3354 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3355 MemTxAttrs attrs, uint8_t *buf, int len)
3356 {
3357 MemTxResult result = MEMTX_OK;
3358 FlatView *fv;
3359
3360 if (len > 0) {
3361 rcu_read_lock();
3362 fv = address_space_to_flatview(as);
3363 result = flatview_read(fv, addr, attrs, buf, len);
3364 rcu_read_unlock();
3365 }
3366
3367 return result;
3368 }
3369
3370 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3371 MemTxAttrs attrs,
3372 const uint8_t *buf, int len)
3373 {
3374 MemTxResult result = MEMTX_OK;
3375 FlatView *fv;
3376
3377 if (len > 0) {
3378 rcu_read_lock();
3379 fv = address_space_to_flatview(as);
3380 result = flatview_write(fv, addr, attrs, buf, len);
3381 rcu_read_unlock();
3382 }
3383
3384 return result;
3385 }
3386
3387 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3388 uint8_t *buf, int len, bool is_write)
3389 {
3390 if (is_write) {
3391 return address_space_write(as, addr, attrs, buf, len);
3392 } else {
3393 return address_space_read_full(as, addr, attrs, buf, len);
3394 }
3395 }
3396
3397 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3398 int len, int is_write)
3399 {
3400 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3401 buf, len, is_write);
3402 }
3403
3404 enum write_rom_type {
3405 WRITE_DATA,
3406 FLUSH_CACHE,
3407 };
3408
3409 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3410 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3411 {
3412 hwaddr l;
3413 uint8_t *ptr;
3414 hwaddr addr1;
3415 MemoryRegion *mr;
3416
3417 rcu_read_lock();
3418 while (len > 0) {
3419 l = len;
3420 mr = address_space_translate(as, addr, &addr1, &l, true,
3421 MEMTXATTRS_UNSPECIFIED);
3422
3423 if (!(memory_region_is_ram(mr) ||
3424 memory_region_is_romd(mr))) {
3425 l = memory_access_size(mr, l, addr1);
3426 } else {
3427 /* ROM/RAM case */
3428 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3429 switch (type) {
3430 case WRITE_DATA:
3431 memcpy(ptr, buf, l);
3432 invalidate_and_set_dirty(mr, addr1, l);
3433 break;
3434 case FLUSH_CACHE:
3435 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3436 break;
3437 }
3438 }
3439 len -= l;
3440 buf += l;
3441 addr += l;
3442 }
3443 rcu_read_unlock();
3444 }
3445
3446 /* used for ROM loading : can write in RAM and ROM */
3447 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3448 const uint8_t *buf, int len)
3449 {
3450 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3451 }
3452
3453 void cpu_flush_icache_range(hwaddr start, int len)
3454 {
3455 /*
3456 * This function should do the same thing as an icache flush that was
3457 * triggered from within the guest. For TCG we are always cache coherent,
3458 * so there is no need to flush anything. For KVM / Xen we need to flush
3459 * the host's instruction cache at least.
3460 */
3461 if (tcg_enabled()) {
3462 return;
3463 }
3464
3465 cpu_physical_memory_write_rom_internal(&address_space_memory,
3466 start, NULL, len, FLUSH_CACHE);
3467 }
3468
3469 typedef struct {
3470 MemoryRegion *mr;
3471 void *buffer;
3472 hwaddr addr;
3473 hwaddr len;
3474 bool in_use;
3475 } BounceBuffer;
3476
3477 static BounceBuffer bounce;
3478
3479 typedef struct MapClient {
3480 QEMUBH *bh;
3481 QLIST_ENTRY(MapClient) link;
3482 } MapClient;
3483
3484 QemuMutex map_client_list_lock;
3485 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3486 = QLIST_HEAD_INITIALIZER(map_client_list);
3487
3488 static void cpu_unregister_map_client_do(MapClient *client)
3489 {
3490 QLIST_REMOVE(client, link);
3491 g_free(client);
3492 }
3493
3494 static void cpu_notify_map_clients_locked(void)
3495 {
3496 MapClient *client;
3497
3498 while (!QLIST_EMPTY(&map_client_list)) {
3499 client = QLIST_FIRST(&map_client_list);
3500 qemu_bh_schedule(client->bh);
3501 cpu_unregister_map_client_do(client);
3502 }
3503 }
3504
3505 void cpu_register_map_client(QEMUBH *bh)
3506 {
3507 MapClient *client = g_malloc(sizeof(*client));
3508
3509 qemu_mutex_lock(&map_client_list_lock);
3510 client->bh = bh;
3511 QLIST_INSERT_HEAD(&map_client_list, client, link);
3512 if (!atomic_read(&bounce.in_use)) {
3513 cpu_notify_map_clients_locked();
3514 }
3515 qemu_mutex_unlock(&map_client_list_lock);
3516 }
3517
3518 void cpu_exec_init_all(void)
3519 {
3520 qemu_mutex_init(&ram_list.mutex);
3521 /* The data structures we set up here depend on knowing the page size,
3522 * so no more changes can be made after this point.
3523 * In an ideal world, nothing we did before we had finished the
3524 * machine setup would care about the target page size, and we could
3525 * do this much later, rather than requiring board models to state
3526 * up front what their requirements are.
3527 */
3528 finalize_target_page_bits();
3529 io_mem_init();
3530 memory_map_init();
3531 qemu_mutex_init(&map_client_list_lock);
3532 }
3533
3534 void cpu_unregister_map_client(QEMUBH *bh)
3535 {
3536 MapClient *client;
3537
3538 qemu_mutex_lock(&map_client_list_lock);
3539 QLIST_FOREACH(client, &map_client_list, link) {
3540 if (client->bh == bh) {
3541 cpu_unregister_map_client_do(client);
3542 break;
3543 }
3544 }
3545 qemu_mutex_unlock(&map_client_list_lock);
3546 }
3547
3548 static void cpu_notify_map_clients(void)
3549 {
3550 qemu_mutex_lock(&map_client_list_lock);
3551 cpu_notify_map_clients_locked();
3552 qemu_mutex_unlock(&map_client_list_lock);
3553 }
3554
3555 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3556 bool is_write, MemTxAttrs attrs)
3557 {
3558 MemoryRegion *mr;
3559 hwaddr l, xlat;
3560
3561 while (len > 0) {
3562 l = len;
3563 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3564 if (!memory_access_is_direct(mr, is_write)) {
3565 l = memory_access_size(mr, l, addr);
3566 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3567 return false;
3568 }
3569 }
3570
3571 len -= l;
3572 addr += l;
3573 }
3574 return true;
3575 }
3576
3577 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3578 int len, bool is_write,
3579 MemTxAttrs attrs)
3580 {
3581 FlatView *fv;
3582 bool result;
3583
3584 rcu_read_lock();
3585 fv = address_space_to_flatview(as);
3586 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3587 rcu_read_unlock();
3588 return result;
3589 }
3590
3591 static hwaddr
3592 flatview_extend_translation(FlatView *fv, hwaddr addr,
3593 hwaddr target_len,
3594 MemoryRegion *mr, hwaddr base, hwaddr len,
3595 bool is_write, MemTxAttrs attrs)
3596 {
3597 hwaddr done = 0;
3598 hwaddr xlat;
3599 MemoryRegion *this_mr;
3600
3601 for (;;) {
3602 target_len -= len;
3603 addr += len;
3604 done += len;
3605 if (target_len == 0) {
3606 return done;
3607 }
3608
3609 len = target_len;
3610 this_mr = flatview_translate(fv, addr, &xlat,
3611 &len, is_write, attrs);
3612 if (this_mr != mr || xlat != base + done) {
3613 return done;
3614 }
3615 }
3616 }
3617
3618 /* Map a physical memory region into a host virtual address.
3619 * May map a subset of the requested range, given by and returned in *plen.
3620 * May return NULL if resources needed to perform the mapping are exhausted.
3621 * Use only for reads OR writes - not for read-modify-write operations.
3622 * Use cpu_register_map_client() to know when retrying the map operation is
3623 * likely to succeed.
3624 */
3625 void *address_space_map(AddressSpace *as,
3626 hwaddr addr,
3627 hwaddr *plen,
3628 bool is_write,
3629 MemTxAttrs attrs)
3630 {
3631 hwaddr len = *plen;
3632 hwaddr l, xlat;
3633 MemoryRegion *mr;
3634 void *ptr;
3635 FlatView *fv;
3636
3637 if (len == 0) {
3638 return NULL;
3639 }
3640
3641 l = len;
3642 rcu_read_lock();
3643 fv = address_space_to_flatview(as);
3644 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3645
3646 if (!memory_access_is_direct(mr, is_write)) {
3647 if (atomic_xchg(&bounce.in_use, true)) {
3648 rcu_read_unlock();
3649 return NULL;
3650 }
3651 /* Avoid unbounded allocations */
3652 l = MIN(l, TARGET_PAGE_SIZE);
3653 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3654 bounce.addr = addr;
3655 bounce.len = l;
3656
3657 memory_region_ref(mr);
3658 bounce.mr = mr;
3659 if (!is_write) {
3660 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3661 bounce.buffer, l);
3662 }
3663
3664 rcu_read_unlock();
3665 *plen = l;
3666 return bounce.buffer;
3667 }
3668
3669
3670 memory_region_ref(mr);
3671 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3672 l, is_write, attrs);
3673 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3674 rcu_read_unlock();
3675
3676 return ptr;
3677 }
3678
3679 /* Unmaps a memory region previously mapped by address_space_map().
3680 * Will also mark the memory as dirty if is_write == 1. access_len gives
3681 * the amount of memory that was actually read or written by the caller.
3682 */
3683 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3684 int is_write, hwaddr access_len)
3685 {
3686 if (buffer != bounce.buffer) {
3687 MemoryRegion *mr;
3688 ram_addr_t addr1;
3689
3690 mr = memory_region_from_host(buffer, &addr1);
3691 assert(mr != NULL);
3692 if (is_write) {
3693 invalidate_and_set_dirty(mr, addr1, access_len);
3694 }
3695 if (xen_enabled()) {
3696 xen_invalidate_map_cache_entry(buffer);
3697 }
3698 memory_region_unref(mr);
3699 return;
3700 }
3701 if (is_write) {
3702 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3703 bounce.buffer, access_len);
3704 }
3705 qemu_vfree(bounce.buffer);
3706 bounce.buffer = NULL;
3707 memory_region_unref(bounce.mr);
3708 atomic_mb_set(&bounce.in_use, false);
3709 cpu_notify_map_clients();
3710 }
3711
3712 void *cpu_physical_memory_map(hwaddr addr,
3713 hwaddr *plen,
3714 int is_write)
3715 {
3716 return address_space_map(&address_space_memory, addr, plen, is_write,
3717 MEMTXATTRS_UNSPECIFIED);
3718 }
3719
3720 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3721 int is_write, hwaddr access_len)
3722 {
3723 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3724 }
3725
3726 #define ARG1_DECL AddressSpace *as
3727 #define ARG1 as
3728 #define SUFFIX
3729 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3730 #define RCU_READ_LOCK(...) rcu_read_lock()
3731 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3732 #include "memory_ldst.inc.c"
3733
3734 int64_t address_space_cache_init(MemoryRegionCache *cache,
3735 AddressSpace *as,
3736 hwaddr addr,
3737 hwaddr len,
3738 bool is_write)
3739 {
3740 AddressSpaceDispatch *d;
3741 hwaddr l;
3742 MemoryRegion *mr;
3743
3744 assert(len > 0);
3745
3746 l = len;
3747 cache->fv = address_space_get_flatview(as);
3748 d = flatview_to_dispatch(cache->fv);
3749 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3750
3751 mr = cache->mrs.mr;
3752 memory_region_ref(mr);
3753 if (memory_access_is_direct(mr, is_write)) {
3754 /* We don't care about the memory attributes here as we're only
3755 * doing this if we found actual RAM, which behaves the same
3756 * regardless of attributes; so UNSPECIFIED is fine.
3757 */
3758 l = flatview_extend_translation(cache->fv, addr, len, mr,
3759 cache->xlat, l, is_write,
3760 MEMTXATTRS_UNSPECIFIED);
3761 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3762 } else {
3763 cache->ptr = NULL;
3764 }
3765
3766 cache->len = l;
3767 cache->is_write = is_write;
3768 return l;
3769 }
3770
3771 void address_space_cache_invalidate(MemoryRegionCache *cache,
3772 hwaddr addr,
3773 hwaddr access_len)
3774 {
3775 assert(cache->is_write);
3776 if (likely(cache->ptr)) {
3777 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3778 }
3779 }
3780
3781 void address_space_cache_destroy(MemoryRegionCache *cache)
3782 {
3783 if (!cache->mrs.mr) {
3784 return;
3785 }
3786
3787 if (xen_enabled()) {
3788 xen_invalidate_map_cache_entry(cache->ptr);
3789 }
3790 memory_region_unref(cache->mrs.mr);
3791 flatview_unref(cache->fv);
3792 cache->mrs.mr = NULL;
3793 cache->fv = NULL;
3794 }
3795
3796 /* Called from RCU critical section. This function has the same
3797 * semantics as address_space_translate, but it only works on a
3798 * predefined range of a MemoryRegion that was mapped with
3799 * address_space_cache_init.
3800 */
3801 static inline MemoryRegion *address_space_translate_cached(
3802 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3803 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3804 {
3805 MemoryRegionSection section;
3806 MemoryRegion *mr;
3807 IOMMUMemoryRegion *iommu_mr;
3808 AddressSpace *target_as;
3809
3810 assert(!cache->ptr);
3811 *xlat = addr + cache->xlat;
3812
3813 mr = cache->mrs.mr;
3814 iommu_mr = memory_region_get_iommu(mr);
3815 if (!iommu_mr) {
3816 /* MMIO region. */
3817 return mr;
3818 }
3819
3820 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3821 NULL, is_write, true,
3822 &target_as, attrs);
3823 return section.mr;
3824 }
3825
3826 /* Called from RCU critical section. address_space_read_cached uses this
3827 * out of line function when the target is an MMIO or IOMMU region.
3828 */
3829 void
3830 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3831 void *buf, int len)
3832 {
3833 hwaddr addr1, l;
3834 MemoryRegion *mr;
3835
3836 l = len;
3837 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3838 MEMTXATTRS_UNSPECIFIED);
3839 flatview_read_continue(cache->fv,
3840 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3841 addr1, l, mr);
3842 }
3843
3844 /* Called from RCU critical section. address_space_write_cached uses this
3845 * out of line function when the target is an MMIO or IOMMU region.
3846 */
3847 void
3848 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3849 const void *buf, int len)
3850 {
3851 hwaddr addr1, l;
3852 MemoryRegion *mr;
3853
3854 l = len;
3855 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3856 MEMTXATTRS_UNSPECIFIED);
3857 flatview_write_continue(cache->fv,
3858 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3859 addr1, l, mr);
3860 }
3861
3862 #define ARG1_DECL MemoryRegionCache *cache
3863 #define ARG1 cache
3864 #define SUFFIX _cached_slow
3865 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3866 #define RCU_READ_LOCK() ((void)0)
3867 #define RCU_READ_UNLOCK() ((void)0)
3868 #include "memory_ldst.inc.c"
3869
3870 /* virtual memory access for debug (includes writing to ROM) */
3871 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3872 uint8_t *buf, int len, int is_write)
3873 {
3874 int l;
3875 hwaddr phys_addr;
3876 target_ulong page;
3877
3878 cpu_synchronize_state(cpu);
3879 while (len > 0) {
3880 int asidx;
3881 MemTxAttrs attrs;
3882
3883 page = addr & TARGET_PAGE_MASK;
3884 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3885 asidx = cpu_asidx_from_attrs(cpu, attrs);
3886 /* if no physical page mapped, return an error */
3887 if (phys_addr == -1)
3888 return -1;
3889 l = (page + TARGET_PAGE_SIZE) - addr;
3890 if (l > len)
3891 l = len;
3892 phys_addr += (addr & ~TARGET_PAGE_MASK);
3893 if (is_write) {
3894 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3895 phys_addr, buf, l);
3896 } else {
3897 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3898 MEMTXATTRS_UNSPECIFIED,
3899 buf, l, 0);
3900 }
3901 len -= l;
3902 buf += l;
3903 addr += l;
3904 }
3905 return 0;
3906 }
3907
3908 /*
3909 * Allows code that needs to deal with migration bitmaps etc to still be built
3910 * target independent.
3911 */
3912 size_t qemu_target_page_size(void)
3913 {
3914 return TARGET_PAGE_SIZE;
3915 }
3916
3917 int qemu_target_page_bits(void)
3918 {
3919 return TARGET_PAGE_BITS;
3920 }
3921
3922 int qemu_target_page_bits_min(void)
3923 {
3924 return TARGET_PAGE_BITS_MIN;
3925 }
3926 #endif
3927
3928 /*
3929 * A helper function for the _utterly broken_ virtio device model to find out if
3930 * it's running on a big endian machine. Don't do this at home kids!
3931 */
3932 bool target_words_bigendian(void);
3933 bool target_words_bigendian(void)
3934 {
3935 #if defined(TARGET_WORDS_BIGENDIAN)
3936 return true;
3937 #else
3938 return false;
3939 #endif
3940 }
3941
3942 #ifndef CONFIG_USER_ONLY
3943 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3944 {
3945 MemoryRegion*mr;
3946 hwaddr l = 1;
3947 bool res;
3948
3949 rcu_read_lock();
3950 mr = address_space_translate(&address_space_memory,
3951 phys_addr, &phys_addr, &l, false,
3952 MEMTXATTRS_UNSPECIFIED);
3953
3954 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3955 rcu_read_unlock();
3956 return res;
3957 }
3958
3959 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3960 {
3961 RAMBlock *block;
3962 int ret = 0;
3963
3964 rcu_read_lock();
3965 RAMBLOCK_FOREACH(block) {
3966 ret = func(block->idstr, block->host, block->offset,
3967 block->used_length, opaque);
3968 if (ret) {
3969 break;
3970 }
3971 }
3972 rcu_read_unlock();
3973 return ret;
3974 }
3975
3976 int qemu_ram_foreach_migratable_block(RAMBlockIterFunc func, void *opaque)
3977 {
3978 RAMBlock *block;
3979 int ret = 0;
3980
3981 rcu_read_lock();
3982 RAMBLOCK_FOREACH(block) {
3983 if (!qemu_ram_is_migratable(block)) {
3984 continue;
3985 }
3986 ret = func(block->idstr, block->host, block->offset,
3987 block->used_length, opaque);
3988 if (ret) {
3989 break;
3990 }
3991 }
3992 rcu_read_unlock();
3993 return ret;
3994 }
3995
3996 /*
3997 * Unmap pages of memory from start to start+length such that
3998 * they a) read as 0, b) Trigger whatever fault mechanism
3999 * the OS provides for postcopy.
4000 * The pages must be unmapped by the end of the function.
4001 * Returns: 0 on success, none-0 on failure
4002 *
4003 */
4004 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4005 {
4006 int ret = -1;
4007
4008 uint8_t *host_startaddr = rb->host + start;
4009
4010 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4011 error_report("ram_block_discard_range: Unaligned start address: %p",
4012 host_startaddr);
4013 goto err;
4014 }
4015
4016 if ((start + length) <= rb->used_length) {
4017 bool need_madvise, need_fallocate;
4018 uint8_t *host_endaddr = host_startaddr + length;
4019 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4020 error_report("ram_block_discard_range: Unaligned end address: %p",
4021 host_endaddr);
4022 goto err;
4023 }
4024
4025 errno = ENOTSUP; /* If we are missing MADVISE etc */
4026
4027 /* The logic here is messy;
4028 * madvise DONTNEED fails for hugepages
4029 * fallocate works on hugepages and shmem
4030 */
4031 need_madvise = (rb->page_size == qemu_host_page_size);
4032 need_fallocate = rb->fd != -1;
4033 if (need_fallocate) {
4034 /* For a file, this causes the area of the file to be zero'd
4035 * if read, and for hugetlbfs also causes it to be unmapped
4036 * so a userfault will trigger.
4037 */
4038 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4039 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4040 start, length);
4041 if (ret) {
4042 ret = -errno;
4043 error_report("ram_block_discard_range: Failed to fallocate "
4044 "%s:%" PRIx64 " +%zx (%d)",
4045 rb->idstr, start, length, ret);
4046 goto err;
4047 }
4048 #else
4049 ret = -ENOSYS;
4050 error_report("ram_block_discard_range: fallocate not available/file"
4051 "%s:%" PRIx64 " +%zx (%d)",
4052 rb->idstr, start, length, ret);
4053 goto err;
4054 #endif
4055 }
4056 if (need_madvise) {
4057 /* For normal RAM this causes it to be unmapped,
4058 * for shared memory it causes the local mapping to disappear
4059 * and to fall back on the file contents (which we just
4060 * fallocate'd away).
4061 */
4062 #if defined(CONFIG_MADVISE)
4063 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4064 if (ret) {
4065 ret = -errno;
4066 error_report("ram_block_discard_range: Failed to discard range "
4067 "%s:%" PRIx64 " +%zx (%d)",
4068 rb->idstr, start, length, ret);
4069 goto err;
4070 }
4071 #else
4072 ret = -ENOSYS;
4073 error_report("ram_block_discard_range: MADVISE not available"
4074 "%s:%" PRIx64 " +%zx (%d)",
4075 rb->idstr, start, length, ret);
4076 goto err;
4077 #endif
4078 }
4079 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4080 need_madvise, need_fallocate, ret);
4081 } else {
4082 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4083 "/%zx/" RAM_ADDR_FMT")",
4084 rb->idstr, start, length, rb->used_length);
4085 }
4086
4087 err:
4088 return ret;
4089 }
4090
4091 #endif
4092
4093 void page_size_init(void)
4094 {
4095 /* NOTE: we can always suppose that qemu_host_page_size >=
4096 TARGET_PAGE_SIZE */
4097 if (qemu_host_page_size == 0) {
4098 qemu_host_page_size = qemu_real_host_page_size;
4099 }
4100 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4101 qemu_host_page_size = TARGET_PAGE_SIZE;
4102 }
4103 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4104 }
4105
4106 #if !defined(CONFIG_USER_ONLY)
4107
4108 static void mtree_print_phys_entries(fprintf_function mon, void *f,
4109 int start, int end, int skip, int ptr)
4110 {
4111 if (start == end - 1) {
4112 mon(f, "\t%3d ", start);
4113 } else {
4114 mon(f, "\t%3d..%-3d ", start, end - 1);
4115 }
4116 mon(f, " skip=%d ", skip);
4117 if (ptr == PHYS_MAP_NODE_NIL) {
4118 mon(f, " ptr=NIL");
4119 } else if (!skip) {
4120 mon(f, " ptr=#%d", ptr);
4121 } else {
4122 mon(f, " ptr=[%d]", ptr);
4123 }
4124 mon(f, "\n");
4125 }
4126
4127 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4128 int128_sub((size), int128_one())) : 0)
4129
4130 void mtree_print_dispatch(fprintf_function mon, void *f,
4131 AddressSpaceDispatch *d, MemoryRegion *root)
4132 {
4133 int i;
4134
4135 mon(f, " Dispatch\n");
4136 mon(f, " Physical sections\n");
4137
4138 for (i = 0; i < d->map.sections_nb; ++i) {
4139 MemoryRegionSection *s = d->map.sections + i;
4140 const char *names[] = { " [unassigned]", " [not dirty]",
4141 " [ROM]", " [watch]" };
4142
4143 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
4144 i,
4145 s->offset_within_address_space,
4146 s->offset_within_address_space + MR_SIZE(s->mr->size),
4147 s->mr->name ? s->mr->name : "(noname)",
4148 i < ARRAY_SIZE(names) ? names[i] : "",
4149 s->mr == root ? " [ROOT]" : "",
4150 s == d->mru_section ? " [MRU]" : "",
4151 s->mr->is_iommu ? " [iommu]" : "");
4152
4153 if (s->mr->alias) {
4154 mon(f, " alias=%s", s->mr->alias->name ?
4155 s->mr->alias->name : "noname");
4156 }
4157 mon(f, "\n");
4158 }
4159
4160 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4161 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4162 for (i = 0; i < d->map.nodes_nb; ++i) {
4163 int j, jprev;
4164 PhysPageEntry prev;
4165 Node *n = d->map.nodes + i;
4166
4167 mon(f, " [%d]\n", i);
4168
4169 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4170 PhysPageEntry *pe = *n + j;
4171
4172 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4173 continue;
4174 }
4175
4176 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4177
4178 jprev = j;
4179 prev = *pe;
4180 }
4181
4182 if (jprev != ARRAY_SIZE(*n)) {
4183 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4184 }
4185 }
4186 }
4187
4188 #endif