]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
scripts: Remove fixed entries from the device-crash-test
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21
22 #include "qemu/cutils.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
26 #include "tcg.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
50
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
53 #endif
54
55 #endif
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
60
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
64
65 #include "migration/vmstate.h"
66
67 #include "qemu/range.h"
68 #ifndef _WIN32
69 #include "qemu/mmap-alloc.h"
70 #endif
71
72 #include "monitor/monitor.h"
73
74 //#define DEBUG_SUBPAGE
75
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
79 */
80 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
81
82 static MemoryRegion *system_memory;
83 static MemoryRegion *system_io;
84
85 AddressSpace address_space_io;
86 AddressSpace address_space_memory;
87
88 MemoryRegion io_mem_rom, io_mem_notdirty;
89 static MemoryRegion io_mem_unassigned;
90
91 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92 #define RAM_PREALLOC (1 << 0)
93
94 /* RAM is mmap-ed with MAP_SHARED */
95 #define RAM_SHARED (1 << 1)
96
97 /* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
99 */
100 #define RAM_RESIZEABLE (1 << 2)
101
102 #endif
103
104 #ifdef TARGET_PAGE_BITS_VARY
105 int target_page_bits;
106 bool target_page_bits_decided;
107 #endif
108
109 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
110 /* current CPU in the current thread. It is only valid inside
111 cpu_exec() */
112 __thread CPUState *current_cpu;
113 /* 0 = Do not count executed instructions.
114 1 = Precise instruction counting.
115 2 = Adaptive rate instruction counting. */
116 int use_icount;
117
118 uintptr_t qemu_host_page_size;
119 intptr_t qemu_host_page_mask;
120
121 bool set_preferred_target_page_bits(int bits)
122 {
123 /* The target page size is the lowest common denominator for all
124 * the CPUs in the system, so we can only make it smaller, never
125 * larger. And we can't make it smaller once we've committed to
126 * a particular size.
127 */
128 #ifdef TARGET_PAGE_BITS_VARY
129 assert(bits >= TARGET_PAGE_BITS_MIN);
130 if (target_page_bits == 0 || target_page_bits > bits) {
131 if (target_page_bits_decided) {
132 return false;
133 }
134 target_page_bits = bits;
135 }
136 #endif
137 return true;
138 }
139
140 #if !defined(CONFIG_USER_ONLY)
141
142 static void finalize_target_page_bits(void)
143 {
144 #ifdef TARGET_PAGE_BITS_VARY
145 if (target_page_bits == 0) {
146 target_page_bits = TARGET_PAGE_BITS_MIN;
147 }
148 target_page_bits_decided = true;
149 #endif
150 }
151
152 typedef struct PhysPageEntry PhysPageEntry;
153
154 struct PhysPageEntry {
155 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
156 uint32_t skip : 6;
157 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
158 uint32_t ptr : 26;
159 };
160
161 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
162
163 /* Size of the L2 (and L3, etc) page tables. */
164 #define ADDR_SPACE_BITS 64
165
166 #define P_L2_BITS 9
167 #define P_L2_SIZE (1 << P_L2_BITS)
168
169 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
170
171 typedef PhysPageEntry Node[P_L2_SIZE];
172
173 typedef struct PhysPageMap {
174 struct rcu_head rcu;
175
176 unsigned sections_nb;
177 unsigned sections_nb_alloc;
178 unsigned nodes_nb;
179 unsigned nodes_nb_alloc;
180 Node *nodes;
181 MemoryRegionSection *sections;
182 } PhysPageMap;
183
184 struct AddressSpaceDispatch {
185 MemoryRegionSection *mru_section;
186 /* This is a multi-level map on the physical address space.
187 * The bottom level has pointers to MemoryRegionSections.
188 */
189 PhysPageEntry phys_map;
190 PhysPageMap map;
191 };
192
193 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
194 typedef struct subpage_t {
195 MemoryRegion iomem;
196 FlatView *fv;
197 hwaddr base;
198 uint16_t sub_section[];
199 } subpage_t;
200
201 #define PHYS_SECTION_UNASSIGNED 0
202 #define PHYS_SECTION_NOTDIRTY 1
203 #define PHYS_SECTION_ROM 2
204 #define PHYS_SECTION_WATCH 3
205
206 static void io_mem_init(void);
207 static void memory_map_init(void);
208 static void tcg_commit(MemoryListener *listener);
209
210 static MemoryRegion io_mem_watch;
211
212 /**
213 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
214 * @cpu: the CPU whose AddressSpace this is
215 * @as: the AddressSpace itself
216 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
217 * @tcg_as_listener: listener for tracking changes to the AddressSpace
218 */
219 struct CPUAddressSpace {
220 CPUState *cpu;
221 AddressSpace *as;
222 struct AddressSpaceDispatch *memory_dispatch;
223 MemoryListener tcg_as_listener;
224 };
225
226 struct DirtyBitmapSnapshot {
227 ram_addr_t start;
228 ram_addr_t end;
229 unsigned long dirty[];
230 };
231
232 #endif
233
234 #if !defined(CONFIG_USER_ONLY)
235
236 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
237 {
238 static unsigned alloc_hint = 16;
239 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
240 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
241 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
242 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
243 alloc_hint = map->nodes_nb_alloc;
244 }
245 }
246
247 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
248 {
249 unsigned i;
250 uint32_t ret;
251 PhysPageEntry e;
252 PhysPageEntry *p;
253
254 ret = map->nodes_nb++;
255 p = map->nodes[ret];
256 assert(ret != PHYS_MAP_NODE_NIL);
257 assert(ret != map->nodes_nb_alloc);
258
259 e.skip = leaf ? 0 : 1;
260 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
261 for (i = 0; i < P_L2_SIZE; ++i) {
262 memcpy(&p[i], &e, sizeof(e));
263 }
264 return ret;
265 }
266
267 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
268 hwaddr *index, hwaddr *nb, uint16_t leaf,
269 int level)
270 {
271 PhysPageEntry *p;
272 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
273
274 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
275 lp->ptr = phys_map_node_alloc(map, level == 0);
276 }
277 p = map->nodes[lp->ptr];
278 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
279
280 while (*nb && lp < &p[P_L2_SIZE]) {
281 if ((*index & (step - 1)) == 0 && *nb >= step) {
282 lp->skip = 0;
283 lp->ptr = leaf;
284 *index += step;
285 *nb -= step;
286 } else {
287 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
288 }
289 ++lp;
290 }
291 }
292
293 static void phys_page_set(AddressSpaceDispatch *d,
294 hwaddr index, hwaddr nb,
295 uint16_t leaf)
296 {
297 /* Wildly overreserve - it doesn't matter much. */
298 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
299
300 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
301 }
302
303 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
304 * and update our entry so we can skip it and go directly to the destination.
305 */
306 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
307 {
308 unsigned valid_ptr = P_L2_SIZE;
309 int valid = 0;
310 PhysPageEntry *p;
311 int i;
312
313 if (lp->ptr == PHYS_MAP_NODE_NIL) {
314 return;
315 }
316
317 p = nodes[lp->ptr];
318 for (i = 0; i < P_L2_SIZE; i++) {
319 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
320 continue;
321 }
322
323 valid_ptr = i;
324 valid++;
325 if (p[i].skip) {
326 phys_page_compact(&p[i], nodes);
327 }
328 }
329
330 /* We can only compress if there's only one child. */
331 if (valid != 1) {
332 return;
333 }
334
335 assert(valid_ptr < P_L2_SIZE);
336
337 /* Don't compress if it won't fit in the # of bits we have. */
338 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
339 return;
340 }
341
342 lp->ptr = p[valid_ptr].ptr;
343 if (!p[valid_ptr].skip) {
344 /* If our only child is a leaf, make this a leaf. */
345 /* By design, we should have made this node a leaf to begin with so we
346 * should never reach here.
347 * But since it's so simple to handle this, let's do it just in case we
348 * change this rule.
349 */
350 lp->skip = 0;
351 } else {
352 lp->skip += p[valid_ptr].skip;
353 }
354 }
355
356 void address_space_dispatch_compact(AddressSpaceDispatch *d)
357 {
358 if (d->phys_map.skip) {
359 phys_page_compact(&d->phys_map, d->map.nodes);
360 }
361 }
362
363 static inline bool section_covers_addr(const MemoryRegionSection *section,
364 hwaddr addr)
365 {
366 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
367 * the section must cover the entire address space.
368 */
369 return int128_gethi(section->size) ||
370 range_covers_byte(section->offset_within_address_space,
371 int128_getlo(section->size), addr);
372 }
373
374 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
375 {
376 PhysPageEntry lp = d->phys_map, *p;
377 Node *nodes = d->map.nodes;
378 MemoryRegionSection *sections = d->map.sections;
379 hwaddr index = addr >> TARGET_PAGE_BITS;
380 int i;
381
382 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
383 if (lp.ptr == PHYS_MAP_NODE_NIL) {
384 return &sections[PHYS_SECTION_UNASSIGNED];
385 }
386 p = nodes[lp.ptr];
387 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
388 }
389
390 if (section_covers_addr(&sections[lp.ptr], addr)) {
391 return &sections[lp.ptr];
392 } else {
393 return &sections[PHYS_SECTION_UNASSIGNED];
394 }
395 }
396
397 bool memory_region_is_unassigned(MemoryRegion *mr)
398 {
399 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
400 && mr != &io_mem_watch;
401 }
402
403 /* Called from RCU critical section */
404 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
405 hwaddr addr,
406 bool resolve_subpage)
407 {
408 MemoryRegionSection *section = atomic_read(&d->mru_section);
409 subpage_t *subpage;
410
411 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
412 !section_covers_addr(section, addr)) {
413 section = phys_page_find(d, addr);
414 atomic_set(&d->mru_section, section);
415 }
416 if (resolve_subpage && section->mr->subpage) {
417 subpage = container_of(section->mr, subpage_t, iomem);
418 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
419 }
420 return section;
421 }
422
423 /* Called from RCU critical section */
424 static MemoryRegionSection *
425 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
426 hwaddr *plen, bool resolve_subpage)
427 {
428 MemoryRegionSection *section;
429 MemoryRegion *mr;
430 Int128 diff;
431
432 section = address_space_lookup_region(d, addr, resolve_subpage);
433 /* Compute offset within MemoryRegionSection */
434 addr -= section->offset_within_address_space;
435
436 /* Compute offset within MemoryRegion */
437 *xlat = addr + section->offset_within_region;
438
439 mr = section->mr;
440
441 /* MMIO registers can be expected to perform full-width accesses based only
442 * on their address, without considering adjacent registers that could
443 * decode to completely different MemoryRegions. When such registers
444 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
445 * regions overlap wildly. For this reason we cannot clamp the accesses
446 * here.
447 *
448 * If the length is small (as is the case for address_space_ldl/stl),
449 * everything works fine. If the incoming length is large, however,
450 * the caller really has to do the clamping through memory_access_size.
451 */
452 if (memory_region_is_ram(mr)) {
453 diff = int128_sub(section->size, int128_make64(addr));
454 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
455 }
456 return section;
457 }
458
459 /**
460 * flatview_do_translate - translate an address in FlatView
461 *
462 * @fv: the flat view that we want to translate on
463 * @addr: the address to be translated in above address space
464 * @xlat: the translated address offset within memory region. It
465 * cannot be @NULL.
466 * @plen_out: valid read/write length of the translated address. It
467 * can be @NULL when we don't care about it.
468 * @page_mask_out: page mask for the translated address. This
469 * should only be meaningful for IOMMU translated
470 * addresses, since there may be huge pages that this bit
471 * would tell. It can be @NULL if we don't care about it.
472 * @is_write: whether the translation operation is for write
473 * @is_mmio: whether this can be MMIO, set true if it can
474 *
475 * This function is called from RCU critical section
476 */
477 static MemoryRegionSection flatview_do_translate(FlatView *fv,
478 hwaddr addr,
479 hwaddr *xlat,
480 hwaddr *plen_out,
481 hwaddr *page_mask_out,
482 bool is_write,
483 bool is_mmio,
484 AddressSpace **target_as)
485 {
486 IOMMUTLBEntry iotlb;
487 MemoryRegionSection *section;
488 IOMMUMemoryRegion *iommu_mr;
489 IOMMUMemoryRegionClass *imrc;
490 hwaddr page_mask = (hwaddr)(-1);
491 hwaddr plen = (hwaddr)(-1);
492
493 if (plen_out) {
494 plen = *plen_out;
495 }
496
497 for (;;) {
498 section = address_space_translate_internal(
499 flatview_to_dispatch(fv), addr, &addr,
500 &plen, is_mmio);
501
502 iommu_mr = memory_region_get_iommu(section->mr);
503 if (!iommu_mr) {
504 break;
505 }
506 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
507
508 iotlb = imrc->translate(iommu_mr, addr, is_write ?
509 IOMMU_WO : IOMMU_RO);
510 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
511 | (addr & iotlb.addr_mask));
512 page_mask &= iotlb.addr_mask;
513 plen = MIN(plen, (addr | iotlb.addr_mask) - addr + 1);
514 if (!(iotlb.perm & (1 << is_write))) {
515 goto translate_fail;
516 }
517
518 fv = address_space_to_flatview(iotlb.target_as);
519 *target_as = iotlb.target_as;
520 }
521
522 *xlat = addr;
523
524 if (page_mask == (hwaddr)(-1)) {
525 /* Not behind an IOMMU, use default page size. */
526 page_mask = ~TARGET_PAGE_MASK;
527 }
528
529 if (page_mask_out) {
530 *page_mask_out = page_mask;
531 }
532
533 if (plen_out) {
534 *plen_out = plen;
535 }
536
537 return *section;
538
539 translate_fail:
540 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
541 }
542
543 /* Called from RCU critical section */
544 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
545 bool is_write)
546 {
547 MemoryRegionSection section;
548 hwaddr xlat, page_mask;
549
550 /*
551 * This can never be MMIO, and we don't really care about plen,
552 * but page mask.
553 */
554 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
555 NULL, &page_mask, is_write, false, &as);
556
557 /* Illegal translation */
558 if (section.mr == &io_mem_unassigned) {
559 goto iotlb_fail;
560 }
561
562 /* Convert memory region offset into address space offset */
563 xlat += section.offset_within_address_space -
564 section.offset_within_region;
565
566 return (IOMMUTLBEntry) {
567 .target_as = as,
568 .iova = addr & ~page_mask,
569 .translated_addr = xlat & ~page_mask,
570 .addr_mask = page_mask,
571 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
572 .perm = IOMMU_RW,
573 };
574
575 iotlb_fail:
576 return (IOMMUTLBEntry) {0};
577 }
578
579 /* Called from RCU critical section */
580 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
581 hwaddr *plen, bool is_write)
582 {
583 MemoryRegion *mr;
584 MemoryRegionSection section;
585 AddressSpace *as = NULL;
586
587 /* This can be MMIO, so setup MMIO bit. */
588 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
589 is_write, true, &as);
590 mr = section.mr;
591
592 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
593 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
594 *plen = MIN(page, *plen);
595 }
596
597 return mr;
598 }
599
600 /* Called from RCU critical section */
601 MemoryRegionSection *
602 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
603 hwaddr *xlat, hwaddr *plen)
604 {
605 MemoryRegionSection *section;
606 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
607
608 section = address_space_translate_internal(d, addr, xlat, plen, false);
609
610 assert(!memory_region_is_iommu(section->mr));
611 return section;
612 }
613 #endif
614
615 #if !defined(CONFIG_USER_ONLY)
616
617 static int cpu_common_post_load(void *opaque, int version_id)
618 {
619 CPUState *cpu = opaque;
620
621 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
622 version_id is increased. */
623 cpu->interrupt_request &= ~0x01;
624 tlb_flush(cpu);
625
626 /* loadvm has just updated the content of RAM, bypassing the
627 * usual mechanisms that ensure we flush TBs for writes to
628 * memory we've translated code from. So we must flush all TBs,
629 * which will now be stale.
630 */
631 tb_flush(cpu);
632
633 return 0;
634 }
635
636 static int cpu_common_pre_load(void *opaque)
637 {
638 CPUState *cpu = opaque;
639
640 cpu->exception_index = -1;
641
642 return 0;
643 }
644
645 static bool cpu_common_exception_index_needed(void *opaque)
646 {
647 CPUState *cpu = opaque;
648
649 return tcg_enabled() && cpu->exception_index != -1;
650 }
651
652 static const VMStateDescription vmstate_cpu_common_exception_index = {
653 .name = "cpu_common/exception_index",
654 .version_id = 1,
655 .minimum_version_id = 1,
656 .needed = cpu_common_exception_index_needed,
657 .fields = (VMStateField[]) {
658 VMSTATE_INT32(exception_index, CPUState),
659 VMSTATE_END_OF_LIST()
660 }
661 };
662
663 static bool cpu_common_crash_occurred_needed(void *opaque)
664 {
665 CPUState *cpu = opaque;
666
667 return cpu->crash_occurred;
668 }
669
670 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
671 .name = "cpu_common/crash_occurred",
672 .version_id = 1,
673 .minimum_version_id = 1,
674 .needed = cpu_common_crash_occurred_needed,
675 .fields = (VMStateField[]) {
676 VMSTATE_BOOL(crash_occurred, CPUState),
677 VMSTATE_END_OF_LIST()
678 }
679 };
680
681 const VMStateDescription vmstate_cpu_common = {
682 .name = "cpu_common",
683 .version_id = 1,
684 .minimum_version_id = 1,
685 .pre_load = cpu_common_pre_load,
686 .post_load = cpu_common_post_load,
687 .fields = (VMStateField[]) {
688 VMSTATE_UINT32(halted, CPUState),
689 VMSTATE_UINT32(interrupt_request, CPUState),
690 VMSTATE_END_OF_LIST()
691 },
692 .subsections = (const VMStateDescription*[]) {
693 &vmstate_cpu_common_exception_index,
694 &vmstate_cpu_common_crash_occurred,
695 NULL
696 }
697 };
698
699 #endif
700
701 CPUState *qemu_get_cpu(int index)
702 {
703 CPUState *cpu;
704
705 CPU_FOREACH(cpu) {
706 if (cpu->cpu_index == index) {
707 return cpu;
708 }
709 }
710
711 return NULL;
712 }
713
714 #if !defined(CONFIG_USER_ONLY)
715 void cpu_address_space_init(CPUState *cpu, int asidx,
716 const char *prefix, MemoryRegion *mr)
717 {
718 CPUAddressSpace *newas;
719 AddressSpace *as = g_new0(AddressSpace, 1);
720 char *as_name;
721
722 assert(mr);
723 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
724 address_space_init(as, mr, as_name);
725 g_free(as_name);
726
727 /* Target code should have set num_ases before calling us */
728 assert(asidx < cpu->num_ases);
729
730 if (asidx == 0) {
731 /* address space 0 gets the convenience alias */
732 cpu->as = as;
733 }
734
735 /* KVM cannot currently support multiple address spaces. */
736 assert(asidx == 0 || !kvm_enabled());
737
738 if (!cpu->cpu_ases) {
739 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
740 }
741
742 newas = &cpu->cpu_ases[asidx];
743 newas->cpu = cpu;
744 newas->as = as;
745 if (tcg_enabled()) {
746 newas->tcg_as_listener.commit = tcg_commit;
747 memory_listener_register(&newas->tcg_as_listener, as);
748 }
749 }
750
751 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
752 {
753 /* Return the AddressSpace corresponding to the specified index */
754 return cpu->cpu_ases[asidx].as;
755 }
756 #endif
757
758 void cpu_exec_unrealizefn(CPUState *cpu)
759 {
760 CPUClass *cc = CPU_GET_CLASS(cpu);
761
762 cpu_list_remove(cpu);
763
764 if (cc->vmsd != NULL) {
765 vmstate_unregister(NULL, cc->vmsd, cpu);
766 }
767 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
768 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
769 }
770 }
771
772 Property cpu_common_props[] = {
773 #ifndef CONFIG_USER_ONLY
774 /* Create a memory property for softmmu CPU object,
775 * so users can wire up its memory. (This can't go in qom/cpu.c
776 * because that file is compiled only once for both user-mode
777 * and system builds.) The default if no link is set up is to use
778 * the system address space.
779 */
780 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
781 MemoryRegion *),
782 #endif
783 DEFINE_PROP_END_OF_LIST(),
784 };
785
786 void cpu_exec_initfn(CPUState *cpu)
787 {
788 cpu->as = NULL;
789 cpu->num_ases = 0;
790
791 #ifndef CONFIG_USER_ONLY
792 cpu->thread_id = qemu_get_thread_id();
793 cpu->memory = system_memory;
794 object_ref(OBJECT(cpu->memory));
795 #endif
796 }
797
798 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
799 {
800 CPUClass *cc = CPU_GET_CLASS(cpu);
801 static bool tcg_target_initialized;
802
803 cpu_list_add(cpu);
804
805 if (tcg_enabled() && !tcg_target_initialized) {
806 tcg_target_initialized = true;
807 cc->tcg_initialize();
808 }
809
810 #ifndef CONFIG_USER_ONLY
811 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
812 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
813 }
814 if (cc->vmsd != NULL) {
815 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
816 }
817 #endif
818 }
819
820 #if defined(CONFIG_USER_ONLY)
821 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
822 {
823 mmap_lock();
824 tb_lock();
825 tb_invalidate_phys_page_range(pc, pc + 1, 0);
826 tb_unlock();
827 mmap_unlock();
828 }
829 #else
830 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
831 {
832 MemTxAttrs attrs;
833 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
834 int asidx = cpu_asidx_from_attrs(cpu, attrs);
835 if (phys != -1) {
836 /* Locks grabbed by tb_invalidate_phys_addr */
837 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
838 phys | (pc & ~TARGET_PAGE_MASK));
839 }
840 }
841 #endif
842
843 #if defined(CONFIG_USER_ONLY)
844 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
845
846 {
847 }
848
849 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
850 int flags)
851 {
852 return -ENOSYS;
853 }
854
855 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
856 {
857 }
858
859 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
860 int flags, CPUWatchpoint **watchpoint)
861 {
862 return -ENOSYS;
863 }
864 #else
865 /* Add a watchpoint. */
866 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
867 int flags, CPUWatchpoint **watchpoint)
868 {
869 CPUWatchpoint *wp;
870
871 /* forbid ranges which are empty or run off the end of the address space */
872 if (len == 0 || (addr + len - 1) < addr) {
873 error_report("tried to set invalid watchpoint at %"
874 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
875 return -EINVAL;
876 }
877 wp = g_malloc(sizeof(*wp));
878
879 wp->vaddr = addr;
880 wp->len = len;
881 wp->flags = flags;
882
883 /* keep all GDB-injected watchpoints in front */
884 if (flags & BP_GDB) {
885 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
886 } else {
887 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
888 }
889
890 tlb_flush_page(cpu, addr);
891
892 if (watchpoint)
893 *watchpoint = wp;
894 return 0;
895 }
896
897 /* Remove a specific watchpoint. */
898 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
899 int flags)
900 {
901 CPUWatchpoint *wp;
902
903 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
904 if (addr == wp->vaddr && len == wp->len
905 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
906 cpu_watchpoint_remove_by_ref(cpu, wp);
907 return 0;
908 }
909 }
910 return -ENOENT;
911 }
912
913 /* Remove a specific watchpoint by reference. */
914 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
915 {
916 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
917
918 tlb_flush_page(cpu, watchpoint->vaddr);
919
920 g_free(watchpoint);
921 }
922
923 /* Remove all matching watchpoints. */
924 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
925 {
926 CPUWatchpoint *wp, *next;
927
928 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
929 if (wp->flags & mask) {
930 cpu_watchpoint_remove_by_ref(cpu, wp);
931 }
932 }
933 }
934
935 /* Return true if this watchpoint address matches the specified
936 * access (ie the address range covered by the watchpoint overlaps
937 * partially or completely with the address range covered by the
938 * access).
939 */
940 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
941 vaddr addr,
942 vaddr len)
943 {
944 /* We know the lengths are non-zero, but a little caution is
945 * required to avoid errors in the case where the range ends
946 * exactly at the top of the address space and so addr + len
947 * wraps round to zero.
948 */
949 vaddr wpend = wp->vaddr + wp->len - 1;
950 vaddr addrend = addr + len - 1;
951
952 return !(addr > wpend || wp->vaddr > addrend);
953 }
954
955 #endif
956
957 /* Add a breakpoint. */
958 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
959 CPUBreakpoint **breakpoint)
960 {
961 CPUBreakpoint *bp;
962
963 bp = g_malloc(sizeof(*bp));
964
965 bp->pc = pc;
966 bp->flags = flags;
967
968 /* keep all GDB-injected breakpoints in front */
969 if (flags & BP_GDB) {
970 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
971 } else {
972 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
973 }
974
975 breakpoint_invalidate(cpu, pc);
976
977 if (breakpoint) {
978 *breakpoint = bp;
979 }
980 return 0;
981 }
982
983 /* Remove a specific breakpoint. */
984 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
985 {
986 CPUBreakpoint *bp;
987
988 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
989 if (bp->pc == pc && bp->flags == flags) {
990 cpu_breakpoint_remove_by_ref(cpu, bp);
991 return 0;
992 }
993 }
994 return -ENOENT;
995 }
996
997 /* Remove a specific breakpoint by reference. */
998 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
999 {
1000 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1001
1002 breakpoint_invalidate(cpu, breakpoint->pc);
1003
1004 g_free(breakpoint);
1005 }
1006
1007 /* Remove all matching breakpoints. */
1008 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1009 {
1010 CPUBreakpoint *bp, *next;
1011
1012 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1013 if (bp->flags & mask) {
1014 cpu_breakpoint_remove_by_ref(cpu, bp);
1015 }
1016 }
1017 }
1018
1019 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1020 CPU loop after each instruction */
1021 void cpu_single_step(CPUState *cpu, int enabled)
1022 {
1023 if (cpu->singlestep_enabled != enabled) {
1024 cpu->singlestep_enabled = enabled;
1025 if (kvm_enabled()) {
1026 kvm_update_guest_debug(cpu, 0);
1027 } else {
1028 /* must flush all the translated code to avoid inconsistencies */
1029 /* XXX: only flush what is necessary */
1030 tb_flush(cpu);
1031 }
1032 }
1033 }
1034
1035 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1036 {
1037 va_list ap;
1038 va_list ap2;
1039
1040 va_start(ap, fmt);
1041 va_copy(ap2, ap);
1042 fprintf(stderr, "qemu: fatal: ");
1043 vfprintf(stderr, fmt, ap);
1044 fprintf(stderr, "\n");
1045 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1046 if (qemu_log_separate()) {
1047 qemu_log_lock();
1048 qemu_log("qemu: fatal: ");
1049 qemu_log_vprintf(fmt, ap2);
1050 qemu_log("\n");
1051 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1052 qemu_log_flush();
1053 qemu_log_unlock();
1054 qemu_log_close();
1055 }
1056 va_end(ap2);
1057 va_end(ap);
1058 replay_finish();
1059 #if defined(CONFIG_USER_ONLY)
1060 {
1061 struct sigaction act;
1062 sigfillset(&act.sa_mask);
1063 act.sa_handler = SIG_DFL;
1064 sigaction(SIGABRT, &act, NULL);
1065 }
1066 #endif
1067 abort();
1068 }
1069
1070 #if !defined(CONFIG_USER_ONLY)
1071 /* Called from RCU critical section */
1072 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1073 {
1074 RAMBlock *block;
1075
1076 block = atomic_rcu_read(&ram_list.mru_block);
1077 if (block && addr - block->offset < block->max_length) {
1078 return block;
1079 }
1080 RAMBLOCK_FOREACH(block) {
1081 if (addr - block->offset < block->max_length) {
1082 goto found;
1083 }
1084 }
1085
1086 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1087 abort();
1088
1089 found:
1090 /* It is safe to write mru_block outside the iothread lock. This
1091 * is what happens:
1092 *
1093 * mru_block = xxx
1094 * rcu_read_unlock()
1095 * xxx removed from list
1096 * rcu_read_lock()
1097 * read mru_block
1098 * mru_block = NULL;
1099 * call_rcu(reclaim_ramblock, xxx);
1100 * rcu_read_unlock()
1101 *
1102 * atomic_rcu_set is not needed here. The block was already published
1103 * when it was placed into the list. Here we're just making an extra
1104 * copy of the pointer.
1105 */
1106 ram_list.mru_block = block;
1107 return block;
1108 }
1109
1110 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1111 {
1112 CPUState *cpu;
1113 ram_addr_t start1;
1114 RAMBlock *block;
1115 ram_addr_t end;
1116
1117 end = TARGET_PAGE_ALIGN(start + length);
1118 start &= TARGET_PAGE_MASK;
1119
1120 rcu_read_lock();
1121 block = qemu_get_ram_block(start);
1122 assert(block == qemu_get_ram_block(end - 1));
1123 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1124 CPU_FOREACH(cpu) {
1125 tlb_reset_dirty(cpu, start1, length);
1126 }
1127 rcu_read_unlock();
1128 }
1129
1130 /* Note: start and end must be within the same ram block. */
1131 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1132 ram_addr_t length,
1133 unsigned client)
1134 {
1135 DirtyMemoryBlocks *blocks;
1136 unsigned long end, page;
1137 bool dirty = false;
1138
1139 if (length == 0) {
1140 return false;
1141 }
1142
1143 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1144 page = start >> TARGET_PAGE_BITS;
1145
1146 rcu_read_lock();
1147
1148 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1149
1150 while (page < end) {
1151 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1152 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1153 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1154
1155 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1156 offset, num);
1157 page += num;
1158 }
1159
1160 rcu_read_unlock();
1161
1162 if (dirty && tcg_enabled()) {
1163 tlb_reset_dirty_range_all(start, length);
1164 }
1165
1166 return dirty;
1167 }
1168
1169 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1170 (ram_addr_t start, ram_addr_t length, unsigned client)
1171 {
1172 DirtyMemoryBlocks *blocks;
1173 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1174 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1175 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1176 DirtyBitmapSnapshot *snap;
1177 unsigned long page, end, dest;
1178
1179 snap = g_malloc0(sizeof(*snap) +
1180 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1181 snap->start = first;
1182 snap->end = last;
1183
1184 page = first >> TARGET_PAGE_BITS;
1185 end = last >> TARGET_PAGE_BITS;
1186 dest = 0;
1187
1188 rcu_read_lock();
1189
1190 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1191
1192 while (page < end) {
1193 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1194 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1195 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1196
1197 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1198 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1199 offset >>= BITS_PER_LEVEL;
1200
1201 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1202 blocks->blocks[idx] + offset,
1203 num);
1204 page += num;
1205 dest += num >> BITS_PER_LEVEL;
1206 }
1207
1208 rcu_read_unlock();
1209
1210 if (tcg_enabled()) {
1211 tlb_reset_dirty_range_all(start, length);
1212 }
1213
1214 return snap;
1215 }
1216
1217 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1218 ram_addr_t start,
1219 ram_addr_t length)
1220 {
1221 unsigned long page, end;
1222
1223 assert(start >= snap->start);
1224 assert(start + length <= snap->end);
1225
1226 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1227 page = (start - snap->start) >> TARGET_PAGE_BITS;
1228
1229 while (page < end) {
1230 if (test_bit(page, snap->dirty)) {
1231 return true;
1232 }
1233 page++;
1234 }
1235 return false;
1236 }
1237
1238 /* Called from RCU critical section */
1239 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1240 MemoryRegionSection *section,
1241 target_ulong vaddr,
1242 hwaddr paddr, hwaddr xlat,
1243 int prot,
1244 target_ulong *address)
1245 {
1246 hwaddr iotlb;
1247 CPUWatchpoint *wp;
1248
1249 if (memory_region_is_ram(section->mr)) {
1250 /* Normal RAM. */
1251 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1252 if (!section->readonly) {
1253 iotlb |= PHYS_SECTION_NOTDIRTY;
1254 } else {
1255 iotlb |= PHYS_SECTION_ROM;
1256 }
1257 } else {
1258 AddressSpaceDispatch *d;
1259
1260 d = flatview_to_dispatch(section->fv);
1261 iotlb = section - d->map.sections;
1262 iotlb += xlat;
1263 }
1264
1265 /* Make accesses to pages with watchpoints go via the
1266 watchpoint trap routines. */
1267 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1268 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1269 /* Avoid trapping reads of pages with a write breakpoint. */
1270 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1271 iotlb = PHYS_SECTION_WATCH + paddr;
1272 *address |= TLB_MMIO;
1273 break;
1274 }
1275 }
1276 }
1277
1278 return iotlb;
1279 }
1280 #endif /* defined(CONFIG_USER_ONLY) */
1281
1282 #if !defined(CONFIG_USER_ONLY)
1283
1284 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1285 uint16_t section);
1286 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1287
1288 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1289 qemu_anon_ram_alloc;
1290
1291 /*
1292 * Set a custom physical guest memory alloator.
1293 * Accelerators with unusual needs may need this. Hopefully, we can
1294 * get rid of it eventually.
1295 */
1296 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1297 {
1298 phys_mem_alloc = alloc;
1299 }
1300
1301 static uint16_t phys_section_add(PhysPageMap *map,
1302 MemoryRegionSection *section)
1303 {
1304 /* The physical section number is ORed with a page-aligned
1305 * pointer to produce the iotlb entries. Thus it should
1306 * never overflow into the page-aligned value.
1307 */
1308 assert(map->sections_nb < TARGET_PAGE_SIZE);
1309
1310 if (map->sections_nb == map->sections_nb_alloc) {
1311 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1312 map->sections = g_renew(MemoryRegionSection, map->sections,
1313 map->sections_nb_alloc);
1314 }
1315 map->sections[map->sections_nb] = *section;
1316 memory_region_ref(section->mr);
1317 return map->sections_nb++;
1318 }
1319
1320 static void phys_section_destroy(MemoryRegion *mr)
1321 {
1322 bool have_sub_page = mr->subpage;
1323
1324 memory_region_unref(mr);
1325
1326 if (have_sub_page) {
1327 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1328 object_unref(OBJECT(&subpage->iomem));
1329 g_free(subpage);
1330 }
1331 }
1332
1333 static void phys_sections_free(PhysPageMap *map)
1334 {
1335 while (map->sections_nb > 0) {
1336 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1337 phys_section_destroy(section->mr);
1338 }
1339 g_free(map->sections);
1340 g_free(map->nodes);
1341 }
1342
1343 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1344 {
1345 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1346 subpage_t *subpage;
1347 hwaddr base = section->offset_within_address_space
1348 & TARGET_PAGE_MASK;
1349 MemoryRegionSection *existing = phys_page_find(d, base);
1350 MemoryRegionSection subsection = {
1351 .offset_within_address_space = base,
1352 .size = int128_make64(TARGET_PAGE_SIZE),
1353 };
1354 hwaddr start, end;
1355
1356 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1357
1358 if (!(existing->mr->subpage)) {
1359 subpage = subpage_init(fv, base);
1360 subsection.fv = fv;
1361 subsection.mr = &subpage->iomem;
1362 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1363 phys_section_add(&d->map, &subsection));
1364 } else {
1365 subpage = container_of(existing->mr, subpage_t, iomem);
1366 }
1367 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1368 end = start + int128_get64(section->size) - 1;
1369 subpage_register(subpage, start, end,
1370 phys_section_add(&d->map, section));
1371 }
1372
1373
1374 static void register_multipage(FlatView *fv,
1375 MemoryRegionSection *section)
1376 {
1377 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1378 hwaddr start_addr = section->offset_within_address_space;
1379 uint16_t section_index = phys_section_add(&d->map, section);
1380 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1381 TARGET_PAGE_BITS));
1382
1383 assert(num_pages);
1384 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1385 }
1386
1387 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1388 {
1389 MemoryRegionSection now = *section, remain = *section;
1390 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1391
1392 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1393 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1394 - now.offset_within_address_space;
1395
1396 now.size = int128_min(int128_make64(left), now.size);
1397 register_subpage(fv, &now);
1398 } else {
1399 now.size = int128_zero();
1400 }
1401 while (int128_ne(remain.size, now.size)) {
1402 remain.size = int128_sub(remain.size, now.size);
1403 remain.offset_within_address_space += int128_get64(now.size);
1404 remain.offset_within_region += int128_get64(now.size);
1405 now = remain;
1406 if (int128_lt(remain.size, page_size)) {
1407 register_subpage(fv, &now);
1408 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1409 now.size = page_size;
1410 register_subpage(fv, &now);
1411 } else {
1412 now.size = int128_and(now.size, int128_neg(page_size));
1413 register_multipage(fv, &now);
1414 }
1415 }
1416 }
1417
1418 void qemu_flush_coalesced_mmio_buffer(void)
1419 {
1420 if (kvm_enabled())
1421 kvm_flush_coalesced_mmio_buffer();
1422 }
1423
1424 void qemu_mutex_lock_ramlist(void)
1425 {
1426 qemu_mutex_lock(&ram_list.mutex);
1427 }
1428
1429 void qemu_mutex_unlock_ramlist(void)
1430 {
1431 qemu_mutex_unlock(&ram_list.mutex);
1432 }
1433
1434 void ram_block_dump(Monitor *mon)
1435 {
1436 RAMBlock *block;
1437 char *psize;
1438
1439 rcu_read_lock();
1440 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1441 "Block Name", "PSize", "Offset", "Used", "Total");
1442 RAMBLOCK_FOREACH(block) {
1443 psize = size_to_str(block->page_size);
1444 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1445 " 0x%016" PRIx64 "\n", block->idstr, psize,
1446 (uint64_t)block->offset,
1447 (uint64_t)block->used_length,
1448 (uint64_t)block->max_length);
1449 g_free(psize);
1450 }
1451 rcu_read_unlock();
1452 }
1453
1454 #ifdef __linux__
1455 /*
1456 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1457 * may or may not name the same files / on the same filesystem now as
1458 * when we actually open and map them. Iterate over the file
1459 * descriptors instead, and use qemu_fd_getpagesize().
1460 */
1461 static int find_max_supported_pagesize(Object *obj, void *opaque)
1462 {
1463 char *mem_path;
1464 long *hpsize_min = opaque;
1465
1466 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1467 mem_path = object_property_get_str(obj, "mem-path", NULL);
1468 if (mem_path) {
1469 long hpsize = qemu_mempath_getpagesize(mem_path);
1470 if (hpsize < *hpsize_min) {
1471 *hpsize_min = hpsize;
1472 }
1473 } else {
1474 *hpsize_min = getpagesize();
1475 }
1476 }
1477
1478 return 0;
1479 }
1480
1481 long qemu_getrampagesize(void)
1482 {
1483 long hpsize = LONG_MAX;
1484 long mainrampagesize;
1485 Object *memdev_root;
1486
1487 if (mem_path) {
1488 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1489 } else {
1490 mainrampagesize = getpagesize();
1491 }
1492
1493 /* it's possible we have memory-backend objects with
1494 * hugepage-backed RAM. these may get mapped into system
1495 * address space via -numa parameters or memory hotplug
1496 * hooks. we want to take these into account, but we
1497 * also want to make sure these supported hugepage
1498 * sizes are applicable across the entire range of memory
1499 * we may boot from, so we take the min across all
1500 * backends, and assume normal pages in cases where a
1501 * backend isn't backed by hugepages.
1502 */
1503 memdev_root = object_resolve_path("/objects", NULL);
1504 if (memdev_root) {
1505 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1506 }
1507 if (hpsize == LONG_MAX) {
1508 /* No additional memory regions found ==> Report main RAM page size */
1509 return mainrampagesize;
1510 }
1511
1512 /* If NUMA is disabled or the NUMA nodes are not backed with a
1513 * memory-backend, then there is at least one node using "normal" RAM,
1514 * so if its page size is smaller we have got to report that size instead.
1515 */
1516 if (hpsize > mainrampagesize &&
1517 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1518 static bool warned;
1519 if (!warned) {
1520 error_report("Huge page support disabled (n/a for main memory).");
1521 warned = true;
1522 }
1523 return mainrampagesize;
1524 }
1525
1526 return hpsize;
1527 }
1528 #else
1529 long qemu_getrampagesize(void)
1530 {
1531 return getpagesize();
1532 }
1533 #endif
1534
1535 #ifdef __linux__
1536 static int64_t get_file_size(int fd)
1537 {
1538 int64_t size = lseek(fd, 0, SEEK_END);
1539 if (size < 0) {
1540 return -errno;
1541 }
1542 return size;
1543 }
1544
1545 static int file_ram_open(const char *path,
1546 const char *region_name,
1547 bool *created,
1548 Error **errp)
1549 {
1550 char *filename;
1551 char *sanitized_name;
1552 char *c;
1553 int fd = -1;
1554
1555 *created = false;
1556 for (;;) {
1557 fd = open(path, O_RDWR);
1558 if (fd >= 0) {
1559 /* @path names an existing file, use it */
1560 break;
1561 }
1562 if (errno == ENOENT) {
1563 /* @path names a file that doesn't exist, create it */
1564 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1565 if (fd >= 0) {
1566 *created = true;
1567 break;
1568 }
1569 } else if (errno == EISDIR) {
1570 /* @path names a directory, create a file there */
1571 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1572 sanitized_name = g_strdup(region_name);
1573 for (c = sanitized_name; *c != '\0'; c++) {
1574 if (*c == '/') {
1575 *c = '_';
1576 }
1577 }
1578
1579 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1580 sanitized_name);
1581 g_free(sanitized_name);
1582
1583 fd = mkstemp(filename);
1584 if (fd >= 0) {
1585 unlink(filename);
1586 g_free(filename);
1587 break;
1588 }
1589 g_free(filename);
1590 }
1591 if (errno != EEXIST && errno != EINTR) {
1592 error_setg_errno(errp, errno,
1593 "can't open backing store %s for guest RAM",
1594 path);
1595 return -1;
1596 }
1597 /*
1598 * Try again on EINTR and EEXIST. The latter happens when
1599 * something else creates the file between our two open().
1600 */
1601 }
1602
1603 return fd;
1604 }
1605
1606 static void *file_ram_alloc(RAMBlock *block,
1607 ram_addr_t memory,
1608 int fd,
1609 bool truncate,
1610 Error **errp)
1611 {
1612 void *area;
1613
1614 block->page_size = qemu_fd_getpagesize(fd);
1615 block->mr->align = block->page_size;
1616 #if defined(__s390x__)
1617 if (kvm_enabled()) {
1618 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1619 }
1620 #endif
1621
1622 if (memory < block->page_size) {
1623 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1624 "or larger than page size 0x%zx",
1625 memory, block->page_size);
1626 return NULL;
1627 }
1628
1629 memory = ROUND_UP(memory, block->page_size);
1630
1631 /*
1632 * ftruncate is not supported by hugetlbfs in older
1633 * hosts, so don't bother bailing out on errors.
1634 * If anything goes wrong with it under other filesystems,
1635 * mmap will fail.
1636 *
1637 * Do not truncate the non-empty backend file to avoid corrupting
1638 * the existing data in the file. Disabling shrinking is not
1639 * enough. For example, the current vNVDIMM implementation stores
1640 * the guest NVDIMM labels at the end of the backend file. If the
1641 * backend file is later extended, QEMU will not be able to find
1642 * those labels. Therefore, extending the non-empty backend file
1643 * is disabled as well.
1644 */
1645 if (truncate && ftruncate(fd, memory)) {
1646 perror("ftruncate");
1647 }
1648
1649 area = qemu_ram_mmap(fd, memory, block->mr->align,
1650 block->flags & RAM_SHARED);
1651 if (area == MAP_FAILED) {
1652 error_setg_errno(errp, errno,
1653 "unable to map backing store for guest RAM");
1654 return NULL;
1655 }
1656
1657 if (mem_prealloc) {
1658 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1659 if (errp && *errp) {
1660 qemu_ram_munmap(area, memory);
1661 return NULL;
1662 }
1663 }
1664
1665 block->fd = fd;
1666 return area;
1667 }
1668 #endif
1669
1670 /* Allocate space within the ram_addr_t space that governs the
1671 * dirty bitmaps.
1672 * Called with the ramlist lock held.
1673 */
1674 static ram_addr_t find_ram_offset(ram_addr_t size)
1675 {
1676 RAMBlock *block, *next_block;
1677 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1678
1679 assert(size != 0); /* it would hand out same offset multiple times */
1680
1681 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1682 return 0;
1683 }
1684
1685 RAMBLOCK_FOREACH(block) {
1686 ram_addr_t candidate, next = RAM_ADDR_MAX;
1687
1688 /* Align blocks to start on a 'long' in the bitmap
1689 * which makes the bitmap sync'ing take the fast path.
1690 */
1691 candidate = block->offset + block->max_length;
1692 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1693
1694 /* Search for the closest following block
1695 * and find the gap.
1696 */
1697 RAMBLOCK_FOREACH(next_block) {
1698 if (next_block->offset >= candidate) {
1699 next = MIN(next, next_block->offset);
1700 }
1701 }
1702
1703 /* If it fits remember our place and remember the size
1704 * of gap, but keep going so that we might find a smaller
1705 * gap to fill so avoiding fragmentation.
1706 */
1707 if (next - candidate >= size && next - candidate < mingap) {
1708 offset = candidate;
1709 mingap = next - candidate;
1710 }
1711
1712 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1713 }
1714
1715 if (offset == RAM_ADDR_MAX) {
1716 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1717 (uint64_t)size);
1718 abort();
1719 }
1720
1721 trace_find_ram_offset(size, offset);
1722
1723 return offset;
1724 }
1725
1726 unsigned long last_ram_page(void)
1727 {
1728 RAMBlock *block;
1729 ram_addr_t last = 0;
1730
1731 rcu_read_lock();
1732 RAMBLOCK_FOREACH(block) {
1733 last = MAX(last, block->offset + block->max_length);
1734 }
1735 rcu_read_unlock();
1736 return last >> TARGET_PAGE_BITS;
1737 }
1738
1739 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1740 {
1741 int ret;
1742
1743 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1744 if (!machine_dump_guest_core(current_machine)) {
1745 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1746 if (ret) {
1747 perror("qemu_madvise");
1748 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1749 "but dump_guest_core=off specified\n");
1750 }
1751 }
1752 }
1753
1754 const char *qemu_ram_get_idstr(RAMBlock *rb)
1755 {
1756 return rb->idstr;
1757 }
1758
1759 bool qemu_ram_is_shared(RAMBlock *rb)
1760 {
1761 return rb->flags & RAM_SHARED;
1762 }
1763
1764 /* Called with iothread lock held. */
1765 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1766 {
1767 RAMBlock *block;
1768
1769 assert(new_block);
1770 assert(!new_block->idstr[0]);
1771
1772 if (dev) {
1773 char *id = qdev_get_dev_path(dev);
1774 if (id) {
1775 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1776 g_free(id);
1777 }
1778 }
1779 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1780
1781 rcu_read_lock();
1782 RAMBLOCK_FOREACH(block) {
1783 if (block != new_block &&
1784 !strcmp(block->idstr, new_block->idstr)) {
1785 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1786 new_block->idstr);
1787 abort();
1788 }
1789 }
1790 rcu_read_unlock();
1791 }
1792
1793 /* Called with iothread lock held. */
1794 void qemu_ram_unset_idstr(RAMBlock *block)
1795 {
1796 /* FIXME: arch_init.c assumes that this is not called throughout
1797 * migration. Ignore the problem since hot-unplug during migration
1798 * does not work anyway.
1799 */
1800 if (block) {
1801 memset(block->idstr, 0, sizeof(block->idstr));
1802 }
1803 }
1804
1805 size_t qemu_ram_pagesize(RAMBlock *rb)
1806 {
1807 return rb->page_size;
1808 }
1809
1810 /* Returns the largest size of page in use */
1811 size_t qemu_ram_pagesize_largest(void)
1812 {
1813 RAMBlock *block;
1814 size_t largest = 0;
1815
1816 RAMBLOCK_FOREACH(block) {
1817 largest = MAX(largest, qemu_ram_pagesize(block));
1818 }
1819
1820 return largest;
1821 }
1822
1823 static int memory_try_enable_merging(void *addr, size_t len)
1824 {
1825 if (!machine_mem_merge(current_machine)) {
1826 /* disabled by the user */
1827 return 0;
1828 }
1829
1830 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1831 }
1832
1833 /* Only legal before guest might have detected the memory size: e.g. on
1834 * incoming migration, or right after reset.
1835 *
1836 * As memory core doesn't know how is memory accessed, it is up to
1837 * resize callback to update device state and/or add assertions to detect
1838 * misuse, if necessary.
1839 */
1840 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1841 {
1842 assert(block);
1843
1844 newsize = HOST_PAGE_ALIGN(newsize);
1845
1846 if (block->used_length == newsize) {
1847 return 0;
1848 }
1849
1850 if (!(block->flags & RAM_RESIZEABLE)) {
1851 error_setg_errno(errp, EINVAL,
1852 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1853 " in != 0x" RAM_ADDR_FMT, block->idstr,
1854 newsize, block->used_length);
1855 return -EINVAL;
1856 }
1857
1858 if (block->max_length < newsize) {
1859 error_setg_errno(errp, EINVAL,
1860 "Length too large: %s: 0x" RAM_ADDR_FMT
1861 " > 0x" RAM_ADDR_FMT, block->idstr,
1862 newsize, block->max_length);
1863 return -EINVAL;
1864 }
1865
1866 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1867 block->used_length = newsize;
1868 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1869 DIRTY_CLIENTS_ALL);
1870 memory_region_set_size(block->mr, newsize);
1871 if (block->resized) {
1872 block->resized(block->idstr, newsize, block->host);
1873 }
1874 return 0;
1875 }
1876
1877 /* Called with ram_list.mutex held */
1878 static void dirty_memory_extend(ram_addr_t old_ram_size,
1879 ram_addr_t new_ram_size)
1880 {
1881 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1882 DIRTY_MEMORY_BLOCK_SIZE);
1883 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1884 DIRTY_MEMORY_BLOCK_SIZE);
1885 int i;
1886
1887 /* Only need to extend if block count increased */
1888 if (new_num_blocks <= old_num_blocks) {
1889 return;
1890 }
1891
1892 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1893 DirtyMemoryBlocks *old_blocks;
1894 DirtyMemoryBlocks *new_blocks;
1895 int j;
1896
1897 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1898 new_blocks = g_malloc(sizeof(*new_blocks) +
1899 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1900
1901 if (old_num_blocks) {
1902 memcpy(new_blocks->blocks, old_blocks->blocks,
1903 old_num_blocks * sizeof(old_blocks->blocks[0]));
1904 }
1905
1906 for (j = old_num_blocks; j < new_num_blocks; j++) {
1907 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1908 }
1909
1910 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1911
1912 if (old_blocks) {
1913 g_free_rcu(old_blocks, rcu);
1914 }
1915 }
1916 }
1917
1918 static void ram_block_add(RAMBlock *new_block, Error **errp)
1919 {
1920 RAMBlock *block;
1921 RAMBlock *last_block = NULL;
1922 ram_addr_t old_ram_size, new_ram_size;
1923 Error *err = NULL;
1924
1925 old_ram_size = last_ram_page();
1926
1927 qemu_mutex_lock_ramlist();
1928 new_block->offset = find_ram_offset(new_block->max_length);
1929
1930 if (!new_block->host) {
1931 if (xen_enabled()) {
1932 xen_ram_alloc(new_block->offset, new_block->max_length,
1933 new_block->mr, &err);
1934 if (err) {
1935 error_propagate(errp, err);
1936 qemu_mutex_unlock_ramlist();
1937 return;
1938 }
1939 } else {
1940 new_block->host = phys_mem_alloc(new_block->max_length,
1941 &new_block->mr->align);
1942 if (!new_block->host) {
1943 error_setg_errno(errp, errno,
1944 "cannot set up guest memory '%s'",
1945 memory_region_name(new_block->mr));
1946 qemu_mutex_unlock_ramlist();
1947 return;
1948 }
1949 memory_try_enable_merging(new_block->host, new_block->max_length);
1950 }
1951 }
1952
1953 new_ram_size = MAX(old_ram_size,
1954 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1955 if (new_ram_size > old_ram_size) {
1956 dirty_memory_extend(old_ram_size, new_ram_size);
1957 }
1958 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1959 * QLIST (which has an RCU-friendly variant) does not have insertion at
1960 * tail, so save the last element in last_block.
1961 */
1962 RAMBLOCK_FOREACH(block) {
1963 last_block = block;
1964 if (block->max_length < new_block->max_length) {
1965 break;
1966 }
1967 }
1968 if (block) {
1969 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1970 } else if (last_block) {
1971 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1972 } else { /* list is empty */
1973 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1974 }
1975 ram_list.mru_block = NULL;
1976
1977 /* Write list before version */
1978 smp_wmb();
1979 ram_list.version++;
1980 qemu_mutex_unlock_ramlist();
1981
1982 cpu_physical_memory_set_dirty_range(new_block->offset,
1983 new_block->used_length,
1984 DIRTY_CLIENTS_ALL);
1985
1986 if (new_block->host) {
1987 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1988 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1989 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1990 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1991 ram_block_notify_add(new_block->host, new_block->max_length);
1992 }
1993 }
1994
1995 #ifdef __linux__
1996 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1997 bool share, int fd,
1998 Error **errp)
1999 {
2000 RAMBlock *new_block;
2001 Error *local_err = NULL;
2002 int64_t file_size;
2003
2004 if (xen_enabled()) {
2005 error_setg(errp, "-mem-path not supported with Xen");
2006 return NULL;
2007 }
2008
2009 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2010 error_setg(errp,
2011 "host lacks kvm mmu notifiers, -mem-path unsupported");
2012 return NULL;
2013 }
2014
2015 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2016 /*
2017 * file_ram_alloc() needs to allocate just like
2018 * phys_mem_alloc, but we haven't bothered to provide
2019 * a hook there.
2020 */
2021 error_setg(errp,
2022 "-mem-path not supported with this accelerator");
2023 return NULL;
2024 }
2025
2026 size = HOST_PAGE_ALIGN(size);
2027 file_size = get_file_size(fd);
2028 if (file_size > 0 && file_size < size) {
2029 error_setg(errp, "backing store %s size 0x%" PRIx64
2030 " does not match 'size' option 0x" RAM_ADDR_FMT,
2031 mem_path, file_size, size);
2032 return NULL;
2033 }
2034
2035 new_block = g_malloc0(sizeof(*new_block));
2036 new_block->mr = mr;
2037 new_block->used_length = size;
2038 new_block->max_length = size;
2039 new_block->flags = share ? RAM_SHARED : 0;
2040 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2041 if (!new_block->host) {
2042 g_free(new_block);
2043 return NULL;
2044 }
2045
2046 ram_block_add(new_block, &local_err);
2047 if (local_err) {
2048 g_free(new_block);
2049 error_propagate(errp, local_err);
2050 return NULL;
2051 }
2052 return new_block;
2053
2054 }
2055
2056
2057 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2058 bool share, const char *mem_path,
2059 Error **errp)
2060 {
2061 int fd;
2062 bool created;
2063 RAMBlock *block;
2064
2065 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2066 if (fd < 0) {
2067 return NULL;
2068 }
2069
2070 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2071 if (!block) {
2072 if (created) {
2073 unlink(mem_path);
2074 }
2075 close(fd);
2076 return NULL;
2077 }
2078
2079 return block;
2080 }
2081 #endif
2082
2083 static
2084 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2085 void (*resized)(const char*,
2086 uint64_t length,
2087 void *host),
2088 void *host, bool resizeable,
2089 MemoryRegion *mr, Error **errp)
2090 {
2091 RAMBlock *new_block;
2092 Error *local_err = NULL;
2093
2094 size = HOST_PAGE_ALIGN(size);
2095 max_size = HOST_PAGE_ALIGN(max_size);
2096 new_block = g_malloc0(sizeof(*new_block));
2097 new_block->mr = mr;
2098 new_block->resized = resized;
2099 new_block->used_length = size;
2100 new_block->max_length = max_size;
2101 assert(max_size >= size);
2102 new_block->fd = -1;
2103 new_block->page_size = getpagesize();
2104 new_block->host = host;
2105 if (host) {
2106 new_block->flags |= RAM_PREALLOC;
2107 }
2108 if (resizeable) {
2109 new_block->flags |= RAM_RESIZEABLE;
2110 }
2111 ram_block_add(new_block, &local_err);
2112 if (local_err) {
2113 g_free(new_block);
2114 error_propagate(errp, local_err);
2115 return NULL;
2116 }
2117 return new_block;
2118 }
2119
2120 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2121 MemoryRegion *mr, Error **errp)
2122 {
2123 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2124 }
2125
2126 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
2127 {
2128 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2129 }
2130
2131 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2132 void (*resized)(const char*,
2133 uint64_t length,
2134 void *host),
2135 MemoryRegion *mr, Error **errp)
2136 {
2137 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
2138 }
2139
2140 static void reclaim_ramblock(RAMBlock *block)
2141 {
2142 if (block->flags & RAM_PREALLOC) {
2143 ;
2144 } else if (xen_enabled()) {
2145 xen_invalidate_map_cache_entry(block->host);
2146 #ifndef _WIN32
2147 } else if (block->fd >= 0) {
2148 qemu_ram_munmap(block->host, block->max_length);
2149 close(block->fd);
2150 #endif
2151 } else {
2152 qemu_anon_ram_free(block->host, block->max_length);
2153 }
2154 g_free(block);
2155 }
2156
2157 void qemu_ram_free(RAMBlock *block)
2158 {
2159 if (!block) {
2160 return;
2161 }
2162
2163 if (block->host) {
2164 ram_block_notify_remove(block->host, block->max_length);
2165 }
2166
2167 qemu_mutex_lock_ramlist();
2168 QLIST_REMOVE_RCU(block, next);
2169 ram_list.mru_block = NULL;
2170 /* Write list before version */
2171 smp_wmb();
2172 ram_list.version++;
2173 call_rcu(block, reclaim_ramblock, rcu);
2174 qemu_mutex_unlock_ramlist();
2175 }
2176
2177 #ifndef _WIN32
2178 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2179 {
2180 RAMBlock *block;
2181 ram_addr_t offset;
2182 int flags;
2183 void *area, *vaddr;
2184
2185 RAMBLOCK_FOREACH(block) {
2186 offset = addr - block->offset;
2187 if (offset < block->max_length) {
2188 vaddr = ramblock_ptr(block, offset);
2189 if (block->flags & RAM_PREALLOC) {
2190 ;
2191 } else if (xen_enabled()) {
2192 abort();
2193 } else {
2194 flags = MAP_FIXED;
2195 if (block->fd >= 0) {
2196 flags |= (block->flags & RAM_SHARED ?
2197 MAP_SHARED : MAP_PRIVATE);
2198 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2199 flags, block->fd, offset);
2200 } else {
2201 /*
2202 * Remap needs to match alloc. Accelerators that
2203 * set phys_mem_alloc never remap. If they did,
2204 * we'd need a remap hook here.
2205 */
2206 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2207
2208 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2209 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2210 flags, -1, 0);
2211 }
2212 if (area != vaddr) {
2213 fprintf(stderr, "Could not remap addr: "
2214 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2215 length, addr);
2216 exit(1);
2217 }
2218 memory_try_enable_merging(vaddr, length);
2219 qemu_ram_setup_dump(vaddr, length);
2220 }
2221 }
2222 }
2223 }
2224 #endif /* !_WIN32 */
2225
2226 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2227 * This should not be used for general purpose DMA. Use address_space_map
2228 * or address_space_rw instead. For local memory (e.g. video ram) that the
2229 * device owns, use memory_region_get_ram_ptr.
2230 *
2231 * Called within RCU critical section.
2232 */
2233 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2234 {
2235 RAMBlock *block = ram_block;
2236
2237 if (block == NULL) {
2238 block = qemu_get_ram_block(addr);
2239 addr -= block->offset;
2240 }
2241
2242 if (xen_enabled() && block->host == NULL) {
2243 /* We need to check if the requested address is in the RAM
2244 * because we don't want to map the entire memory in QEMU.
2245 * In that case just map until the end of the page.
2246 */
2247 if (block->offset == 0) {
2248 return xen_map_cache(addr, 0, 0, false);
2249 }
2250
2251 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2252 }
2253 return ramblock_ptr(block, addr);
2254 }
2255
2256 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2257 * but takes a size argument.
2258 *
2259 * Called within RCU critical section.
2260 */
2261 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2262 hwaddr *size, bool lock)
2263 {
2264 RAMBlock *block = ram_block;
2265 if (*size == 0) {
2266 return NULL;
2267 }
2268
2269 if (block == NULL) {
2270 block = qemu_get_ram_block(addr);
2271 addr -= block->offset;
2272 }
2273 *size = MIN(*size, block->max_length - addr);
2274
2275 if (xen_enabled() && block->host == NULL) {
2276 /* We need to check if the requested address is in the RAM
2277 * because we don't want to map the entire memory in QEMU.
2278 * In that case just map the requested area.
2279 */
2280 if (block->offset == 0) {
2281 return xen_map_cache(addr, *size, lock, lock);
2282 }
2283
2284 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2285 }
2286
2287 return ramblock_ptr(block, addr);
2288 }
2289
2290 /*
2291 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2292 * in that RAMBlock.
2293 *
2294 * ptr: Host pointer to look up
2295 * round_offset: If true round the result offset down to a page boundary
2296 * *ram_addr: set to result ram_addr
2297 * *offset: set to result offset within the RAMBlock
2298 *
2299 * Returns: RAMBlock (or NULL if not found)
2300 *
2301 * By the time this function returns, the returned pointer is not protected
2302 * by RCU anymore. If the caller is not within an RCU critical section and
2303 * does not hold the iothread lock, it must have other means of protecting the
2304 * pointer, such as a reference to the region that includes the incoming
2305 * ram_addr_t.
2306 */
2307 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2308 ram_addr_t *offset)
2309 {
2310 RAMBlock *block;
2311 uint8_t *host = ptr;
2312
2313 if (xen_enabled()) {
2314 ram_addr_t ram_addr;
2315 rcu_read_lock();
2316 ram_addr = xen_ram_addr_from_mapcache(ptr);
2317 block = qemu_get_ram_block(ram_addr);
2318 if (block) {
2319 *offset = ram_addr - block->offset;
2320 }
2321 rcu_read_unlock();
2322 return block;
2323 }
2324
2325 rcu_read_lock();
2326 block = atomic_rcu_read(&ram_list.mru_block);
2327 if (block && block->host && host - block->host < block->max_length) {
2328 goto found;
2329 }
2330
2331 RAMBLOCK_FOREACH(block) {
2332 /* This case append when the block is not mapped. */
2333 if (block->host == NULL) {
2334 continue;
2335 }
2336 if (host - block->host < block->max_length) {
2337 goto found;
2338 }
2339 }
2340
2341 rcu_read_unlock();
2342 return NULL;
2343
2344 found:
2345 *offset = (host - block->host);
2346 if (round_offset) {
2347 *offset &= TARGET_PAGE_MASK;
2348 }
2349 rcu_read_unlock();
2350 return block;
2351 }
2352
2353 /*
2354 * Finds the named RAMBlock
2355 *
2356 * name: The name of RAMBlock to find
2357 *
2358 * Returns: RAMBlock (or NULL if not found)
2359 */
2360 RAMBlock *qemu_ram_block_by_name(const char *name)
2361 {
2362 RAMBlock *block;
2363
2364 RAMBLOCK_FOREACH(block) {
2365 if (!strcmp(name, block->idstr)) {
2366 return block;
2367 }
2368 }
2369
2370 return NULL;
2371 }
2372
2373 /* Some of the softmmu routines need to translate from a host pointer
2374 (typically a TLB entry) back to a ram offset. */
2375 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2376 {
2377 RAMBlock *block;
2378 ram_addr_t offset;
2379
2380 block = qemu_ram_block_from_host(ptr, false, &offset);
2381 if (!block) {
2382 return RAM_ADDR_INVALID;
2383 }
2384
2385 return block->offset + offset;
2386 }
2387
2388 /* Called within RCU critical section. */
2389 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2390 CPUState *cpu,
2391 vaddr mem_vaddr,
2392 ram_addr_t ram_addr,
2393 unsigned size)
2394 {
2395 ndi->cpu = cpu;
2396 ndi->ram_addr = ram_addr;
2397 ndi->mem_vaddr = mem_vaddr;
2398 ndi->size = size;
2399 ndi->locked = false;
2400
2401 assert(tcg_enabled());
2402 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2403 ndi->locked = true;
2404 tb_lock();
2405 tb_invalidate_phys_page_fast(ram_addr, size);
2406 }
2407 }
2408
2409 /* Called within RCU critical section. */
2410 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2411 {
2412 if (ndi->locked) {
2413 tb_unlock();
2414 }
2415
2416 /* Set both VGA and migration bits for simplicity and to remove
2417 * the notdirty callback faster.
2418 */
2419 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2420 DIRTY_CLIENTS_NOCODE);
2421 /* we remove the notdirty callback only if the code has been
2422 flushed */
2423 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2424 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2425 }
2426 }
2427
2428 /* Called within RCU critical section. */
2429 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2430 uint64_t val, unsigned size)
2431 {
2432 NotDirtyInfo ndi;
2433
2434 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2435 ram_addr, size);
2436
2437 switch (size) {
2438 case 1:
2439 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2440 break;
2441 case 2:
2442 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2443 break;
2444 case 4:
2445 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2446 break;
2447 case 8:
2448 stq_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2449 break;
2450 default:
2451 abort();
2452 }
2453 memory_notdirty_write_complete(&ndi);
2454 }
2455
2456 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2457 unsigned size, bool is_write)
2458 {
2459 return is_write;
2460 }
2461
2462 static const MemoryRegionOps notdirty_mem_ops = {
2463 .write = notdirty_mem_write,
2464 .valid.accepts = notdirty_mem_accepts,
2465 .endianness = DEVICE_NATIVE_ENDIAN,
2466 .valid = {
2467 .min_access_size = 1,
2468 .max_access_size = 8,
2469 .unaligned = false,
2470 },
2471 .impl = {
2472 .min_access_size = 1,
2473 .max_access_size = 8,
2474 .unaligned = false,
2475 },
2476 };
2477
2478 /* Generate a debug exception if a watchpoint has been hit. */
2479 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2480 {
2481 CPUState *cpu = current_cpu;
2482 CPUClass *cc = CPU_GET_CLASS(cpu);
2483 target_ulong vaddr;
2484 CPUWatchpoint *wp;
2485
2486 assert(tcg_enabled());
2487 if (cpu->watchpoint_hit) {
2488 /* We re-entered the check after replacing the TB. Now raise
2489 * the debug interrupt so that is will trigger after the
2490 * current instruction. */
2491 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2492 return;
2493 }
2494 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2495 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2496 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2497 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2498 && (wp->flags & flags)) {
2499 if (flags == BP_MEM_READ) {
2500 wp->flags |= BP_WATCHPOINT_HIT_READ;
2501 } else {
2502 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2503 }
2504 wp->hitaddr = vaddr;
2505 wp->hitattrs = attrs;
2506 if (!cpu->watchpoint_hit) {
2507 if (wp->flags & BP_CPU &&
2508 !cc->debug_check_watchpoint(cpu, wp)) {
2509 wp->flags &= ~BP_WATCHPOINT_HIT;
2510 continue;
2511 }
2512 cpu->watchpoint_hit = wp;
2513
2514 /* Both tb_lock and iothread_mutex will be reset when
2515 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2516 * back into the cpu_exec main loop.
2517 */
2518 tb_lock();
2519 tb_check_watchpoint(cpu);
2520 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2521 cpu->exception_index = EXCP_DEBUG;
2522 cpu_loop_exit(cpu);
2523 } else {
2524 /* Force execution of one insn next time. */
2525 cpu->cflags_next_tb = 1 | curr_cflags();
2526 cpu_loop_exit_noexc(cpu);
2527 }
2528 }
2529 } else {
2530 wp->flags &= ~BP_WATCHPOINT_HIT;
2531 }
2532 }
2533 }
2534
2535 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2536 so these check for a hit then pass through to the normal out-of-line
2537 phys routines. */
2538 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2539 unsigned size, MemTxAttrs attrs)
2540 {
2541 MemTxResult res;
2542 uint64_t data;
2543 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2544 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2545
2546 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2547 switch (size) {
2548 case 1:
2549 data = address_space_ldub(as, addr, attrs, &res);
2550 break;
2551 case 2:
2552 data = address_space_lduw(as, addr, attrs, &res);
2553 break;
2554 case 4:
2555 data = address_space_ldl(as, addr, attrs, &res);
2556 break;
2557 case 8:
2558 data = address_space_ldq(as, addr, attrs, &res);
2559 break;
2560 default: abort();
2561 }
2562 *pdata = data;
2563 return res;
2564 }
2565
2566 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2567 uint64_t val, unsigned size,
2568 MemTxAttrs attrs)
2569 {
2570 MemTxResult res;
2571 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2572 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2573
2574 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2575 switch (size) {
2576 case 1:
2577 address_space_stb(as, addr, val, attrs, &res);
2578 break;
2579 case 2:
2580 address_space_stw(as, addr, val, attrs, &res);
2581 break;
2582 case 4:
2583 address_space_stl(as, addr, val, attrs, &res);
2584 break;
2585 case 8:
2586 address_space_stq(as, addr, val, attrs, &res);
2587 break;
2588 default: abort();
2589 }
2590 return res;
2591 }
2592
2593 static const MemoryRegionOps watch_mem_ops = {
2594 .read_with_attrs = watch_mem_read,
2595 .write_with_attrs = watch_mem_write,
2596 .endianness = DEVICE_NATIVE_ENDIAN,
2597 .valid = {
2598 .min_access_size = 1,
2599 .max_access_size = 8,
2600 .unaligned = false,
2601 },
2602 .impl = {
2603 .min_access_size = 1,
2604 .max_access_size = 8,
2605 .unaligned = false,
2606 },
2607 };
2608
2609 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2610 const uint8_t *buf, int len);
2611 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2612 bool is_write);
2613
2614 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2615 unsigned len, MemTxAttrs attrs)
2616 {
2617 subpage_t *subpage = opaque;
2618 uint8_t buf[8];
2619 MemTxResult res;
2620
2621 #if defined(DEBUG_SUBPAGE)
2622 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2623 subpage, len, addr);
2624 #endif
2625 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2626 if (res) {
2627 return res;
2628 }
2629 switch (len) {
2630 case 1:
2631 *data = ldub_p(buf);
2632 return MEMTX_OK;
2633 case 2:
2634 *data = lduw_p(buf);
2635 return MEMTX_OK;
2636 case 4:
2637 *data = ldl_p(buf);
2638 return MEMTX_OK;
2639 case 8:
2640 *data = ldq_p(buf);
2641 return MEMTX_OK;
2642 default:
2643 abort();
2644 }
2645 }
2646
2647 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2648 uint64_t value, unsigned len, MemTxAttrs attrs)
2649 {
2650 subpage_t *subpage = opaque;
2651 uint8_t buf[8];
2652
2653 #if defined(DEBUG_SUBPAGE)
2654 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2655 " value %"PRIx64"\n",
2656 __func__, subpage, len, addr, value);
2657 #endif
2658 switch (len) {
2659 case 1:
2660 stb_p(buf, value);
2661 break;
2662 case 2:
2663 stw_p(buf, value);
2664 break;
2665 case 4:
2666 stl_p(buf, value);
2667 break;
2668 case 8:
2669 stq_p(buf, value);
2670 break;
2671 default:
2672 abort();
2673 }
2674 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2675 }
2676
2677 static bool subpage_accepts(void *opaque, hwaddr addr,
2678 unsigned len, bool is_write)
2679 {
2680 subpage_t *subpage = opaque;
2681 #if defined(DEBUG_SUBPAGE)
2682 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2683 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2684 #endif
2685
2686 return flatview_access_valid(subpage->fv, addr + subpage->base,
2687 len, is_write);
2688 }
2689
2690 static const MemoryRegionOps subpage_ops = {
2691 .read_with_attrs = subpage_read,
2692 .write_with_attrs = subpage_write,
2693 .impl.min_access_size = 1,
2694 .impl.max_access_size = 8,
2695 .valid.min_access_size = 1,
2696 .valid.max_access_size = 8,
2697 .valid.accepts = subpage_accepts,
2698 .endianness = DEVICE_NATIVE_ENDIAN,
2699 };
2700
2701 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2702 uint16_t section)
2703 {
2704 int idx, eidx;
2705
2706 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2707 return -1;
2708 idx = SUBPAGE_IDX(start);
2709 eidx = SUBPAGE_IDX(end);
2710 #if defined(DEBUG_SUBPAGE)
2711 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2712 __func__, mmio, start, end, idx, eidx, section);
2713 #endif
2714 for (; idx <= eidx; idx++) {
2715 mmio->sub_section[idx] = section;
2716 }
2717
2718 return 0;
2719 }
2720
2721 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2722 {
2723 subpage_t *mmio;
2724
2725 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2726 mmio->fv = fv;
2727 mmio->base = base;
2728 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2729 NULL, TARGET_PAGE_SIZE);
2730 mmio->iomem.subpage = true;
2731 #if defined(DEBUG_SUBPAGE)
2732 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2733 mmio, base, TARGET_PAGE_SIZE);
2734 #endif
2735 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2736
2737 return mmio;
2738 }
2739
2740 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2741 {
2742 assert(fv);
2743 MemoryRegionSection section = {
2744 .fv = fv,
2745 .mr = mr,
2746 .offset_within_address_space = 0,
2747 .offset_within_region = 0,
2748 .size = int128_2_64(),
2749 };
2750
2751 return phys_section_add(map, &section);
2752 }
2753
2754 static void readonly_mem_write(void *opaque, hwaddr addr,
2755 uint64_t val, unsigned size)
2756 {
2757 /* Ignore any write to ROM. */
2758 }
2759
2760 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2761 unsigned size, bool is_write)
2762 {
2763 return is_write;
2764 }
2765
2766 /* This will only be used for writes, because reads are special cased
2767 * to directly access the underlying host ram.
2768 */
2769 static const MemoryRegionOps readonly_mem_ops = {
2770 .write = readonly_mem_write,
2771 .valid.accepts = readonly_mem_accepts,
2772 .endianness = DEVICE_NATIVE_ENDIAN,
2773 .valid = {
2774 .min_access_size = 1,
2775 .max_access_size = 8,
2776 .unaligned = false,
2777 },
2778 .impl = {
2779 .min_access_size = 1,
2780 .max_access_size = 8,
2781 .unaligned = false,
2782 },
2783 };
2784
2785 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2786 {
2787 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2788 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2789 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2790 MemoryRegionSection *sections = d->map.sections;
2791
2792 return sections[index & ~TARGET_PAGE_MASK].mr;
2793 }
2794
2795 static void io_mem_init(void)
2796 {
2797 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
2798 NULL, NULL, UINT64_MAX);
2799 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2800 NULL, UINT64_MAX);
2801
2802 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2803 * which can be called without the iothread mutex.
2804 */
2805 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2806 NULL, UINT64_MAX);
2807 memory_region_clear_global_locking(&io_mem_notdirty);
2808
2809 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2810 NULL, UINT64_MAX);
2811 }
2812
2813 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2814 {
2815 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2816 uint16_t n;
2817
2818 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2819 assert(n == PHYS_SECTION_UNASSIGNED);
2820 n = dummy_section(&d->map, fv, &io_mem_notdirty);
2821 assert(n == PHYS_SECTION_NOTDIRTY);
2822 n = dummy_section(&d->map, fv, &io_mem_rom);
2823 assert(n == PHYS_SECTION_ROM);
2824 n = dummy_section(&d->map, fv, &io_mem_watch);
2825 assert(n == PHYS_SECTION_WATCH);
2826
2827 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2828
2829 return d;
2830 }
2831
2832 void address_space_dispatch_free(AddressSpaceDispatch *d)
2833 {
2834 phys_sections_free(&d->map);
2835 g_free(d);
2836 }
2837
2838 static void tcg_commit(MemoryListener *listener)
2839 {
2840 CPUAddressSpace *cpuas;
2841 AddressSpaceDispatch *d;
2842
2843 /* since each CPU stores ram addresses in its TLB cache, we must
2844 reset the modified entries */
2845 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2846 cpu_reloading_memory_map();
2847 /* The CPU and TLB are protected by the iothread lock.
2848 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2849 * may have split the RCU critical section.
2850 */
2851 d = address_space_to_dispatch(cpuas->as);
2852 atomic_rcu_set(&cpuas->memory_dispatch, d);
2853 tlb_flush(cpuas->cpu);
2854 }
2855
2856 static void memory_map_init(void)
2857 {
2858 system_memory = g_malloc(sizeof(*system_memory));
2859
2860 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2861 address_space_init(&address_space_memory, system_memory, "memory");
2862
2863 system_io = g_malloc(sizeof(*system_io));
2864 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2865 65536);
2866 address_space_init(&address_space_io, system_io, "I/O");
2867 }
2868
2869 MemoryRegion *get_system_memory(void)
2870 {
2871 return system_memory;
2872 }
2873
2874 MemoryRegion *get_system_io(void)
2875 {
2876 return system_io;
2877 }
2878
2879 #endif /* !defined(CONFIG_USER_ONLY) */
2880
2881 /* physical memory access (slow version, mainly for debug) */
2882 #if defined(CONFIG_USER_ONLY)
2883 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2884 uint8_t *buf, int len, int is_write)
2885 {
2886 int l, flags;
2887 target_ulong page;
2888 void * p;
2889
2890 while (len > 0) {
2891 page = addr & TARGET_PAGE_MASK;
2892 l = (page + TARGET_PAGE_SIZE) - addr;
2893 if (l > len)
2894 l = len;
2895 flags = page_get_flags(page);
2896 if (!(flags & PAGE_VALID))
2897 return -1;
2898 if (is_write) {
2899 if (!(flags & PAGE_WRITE))
2900 return -1;
2901 /* XXX: this code should not depend on lock_user */
2902 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2903 return -1;
2904 memcpy(p, buf, l);
2905 unlock_user(p, addr, l);
2906 } else {
2907 if (!(flags & PAGE_READ))
2908 return -1;
2909 /* XXX: this code should not depend on lock_user */
2910 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2911 return -1;
2912 memcpy(buf, p, l);
2913 unlock_user(p, addr, 0);
2914 }
2915 len -= l;
2916 buf += l;
2917 addr += l;
2918 }
2919 return 0;
2920 }
2921
2922 #else
2923
2924 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2925 hwaddr length)
2926 {
2927 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2928 addr += memory_region_get_ram_addr(mr);
2929
2930 /* No early return if dirty_log_mask is or becomes 0, because
2931 * cpu_physical_memory_set_dirty_range will still call
2932 * xen_modified_memory.
2933 */
2934 if (dirty_log_mask) {
2935 dirty_log_mask =
2936 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2937 }
2938 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2939 assert(tcg_enabled());
2940 tb_lock();
2941 tb_invalidate_phys_range(addr, addr + length);
2942 tb_unlock();
2943 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2944 }
2945 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2946 }
2947
2948 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2949 {
2950 unsigned access_size_max = mr->ops->valid.max_access_size;
2951
2952 /* Regions are assumed to support 1-4 byte accesses unless
2953 otherwise specified. */
2954 if (access_size_max == 0) {
2955 access_size_max = 4;
2956 }
2957
2958 /* Bound the maximum access by the alignment of the address. */
2959 if (!mr->ops->impl.unaligned) {
2960 unsigned align_size_max = addr & -addr;
2961 if (align_size_max != 0 && align_size_max < access_size_max) {
2962 access_size_max = align_size_max;
2963 }
2964 }
2965
2966 /* Don't attempt accesses larger than the maximum. */
2967 if (l > access_size_max) {
2968 l = access_size_max;
2969 }
2970 l = pow2floor(l);
2971
2972 return l;
2973 }
2974
2975 static bool prepare_mmio_access(MemoryRegion *mr)
2976 {
2977 bool unlocked = !qemu_mutex_iothread_locked();
2978 bool release_lock = false;
2979
2980 if (unlocked && mr->global_locking) {
2981 qemu_mutex_lock_iothread();
2982 unlocked = false;
2983 release_lock = true;
2984 }
2985 if (mr->flush_coalesced_mmio) {
2986 if (unlocked) {
2987 qemu_mutex_lock_iothread();
2988 }
2989 qemu_flush_coalesced_mmio_buffer();
2990 if (unlocked) {
2991 qemu_mutex_unlock_iothread();
2992 }
2993 }
2994
2995 return release_lock;
2996 }
2997
2998 /* Called within RCU critical section. */
2999 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3000 MemTxAttrs attrs,
3001 const uint8_t *buf,
3002 int len, hwaddr addr1,
3003 hwaddr l, MemoryRegion *mr)
3004 {
3005 uint8_t *ptr;
3006 uint64_t val;
3007 MemTxResult result = MEMTX_OK;
3008 bool release_lock = false;
3009
3010 for (;;) {
3011 if (!memory_access_is_direct(mr, true)) {
3012 release_lock |= prepare_mmio_access(mr);
3013 l = memory_access_size(mr, l, addr1);
3014 /* XXX: could force current_cpu to NULL to avoid
3015 potential bugs */
3016 switch (l) {
3017 case 8:
3018 /* 64 bit write access */
3019 val = ldq_p(buf);
3020 result |= memory_region_dispatch_write(mr, addr1, val, 8,
3021 attrs);
3022 break;
3023 case 4:
3024 /* 32 bit write access */
3025 val = (uint32_t)ldl_p(buf);
3026 result |= memory_region_dispatch_write(mr, addr1, val, 4,
3027 attrs);
3028 break;
3029 case 2:
3030 /* 16 bit write access */
3031 val = lduw_p(buf);
3032 result |= memory_region_dispatch_write(mr, addr1, val, 2,
3033 attrs);
3034 break;
3035 case 1:
3036 /* 8 bit write access */
3037 val = ldub_p(buf);
3038 result |= memory_region_dispatch_write(mr, addr1, val, 1,
3039 attrs);
3040 break;
3041 default:
3042 abort();
3043 }
3044 } else {
3045 /* RAM case */
3046 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3047 memcpy(ptr, buf, l);
3048 invalidate_and_set_dirty(mr, addr1, l);
3049 }
3050
3051 if (release_lock) {
3052 qemu_mutex_unlock_iothread();
3053 release_lock = false;
3054 }
3055
3056 len -= l;
3057 buf += l;
3058 addr += l;
3059
3060 if (!len) {
3061 break;
3062 }
3063
3064 l = len;
3065 mr = flatview_translate(fv, addr, &addr1, &l, true);
3066 }
3067
3068 return result;
3069 }
3070
3071 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3072 const uint8_t *buf, int len)
3073 {
3074 hwaddr l;
3075 hwaddr addr1;
3076 MemoryRegion *mr;
3077 MemTxResult result = MEMTX_OK;
3078
3079 if (len > 0) {
3080 rcu_read_lock();
3081 l = len;
3082 mr = flatview_translate(fv, addr, &addr1, &l, true);
3083 result = flatview_write_continue(fv, addr, attrs, buf, len,
3084 addr1, l, mr);
3085 rcu_read_unlock();
3086 }
3087
3088 return result;
3089 }
3090
3091 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3092 MemTxAttrs attrs,
3093 const uint8_t *buf, int len)
3094 {
3095 return flatview_write(address_space_to_flatview(as), addr, attrs, buf, len);
3096 }
3097
3098 /* Called within RCU critical section. */
3099 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3100 MemTxAttrs attrs, uint8_t *buf,
3101 int len, hwaddr addr1, hwaddr l,
3102 MemoryRegion *mr)
3103 {
3104 uint8_t *ptr;
3105 uint64_t val;
3106 MemTxResult result = MEMTX_OK;
3107 bool release_lock = false;
3108
3109 for (;;) {
3110 if (!memory_access_is_direct(mr, false)) {
3111 /* I/O case */
3112 release_lock |= prepare_mmio_access(mr);
3113 l = memory_access_size(mr, l, addr1);
3114 switch (l) {
3115 case 8:
3116 /* 64 bit read access */
3117 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3118 attrs);
3119 stq_p(buf, val);
3120 break;
3121 case 4:
3122 /* 32 bit read access */
3123 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3124 attrs);
3125 stl_p(buf, val);
3126 break;
3127 case 2:
3128 /* 16 bit read access */
3129 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3130 attrs);
3131 stw_p(buf, val);
3132 break;
3133 case 1:
3134 /* 8 bit read access */
3135 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3136 attrs);
3137 stb_p(buf, val);
3138 break;
3139 default:
3140 abort();
3141 }
3142 } else {
3143 /* RAM case */
3144 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3145 memcpy(buf, ptr, l);
3146 }
3147
3148 if (release_lock) {
3149 qemu_mutex_unlock_iothread();
3150 release_lock = false;
3151 }
3152
3153 len -= l;
3154 buf += l;
3155 addr += l;
3156
3157 if (!len) {
3158 break;
3159 }
3160
3161 l = len;
3162 mr = flatview_translate(fv, addr, &addr1, &l, false);
3163 }
3164
3165 return result;
3166 }
3167
3168 MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
3169 MemTxAttrs attrs, uint8_t *buf, int len)
3170 {
3171 hwaddr l;
3172 hwaddr addr1;
3173 MemoryRegion *mr;
3174 MemTxResult result = MEMTX_OK;
3175
3176 if (len > 0) {
3177 rcu_read_lock();
3178 l = len;
3179 mr = flatview_translate(fv, addr, &addr1, &l, false);
3180 result = flatview_read_continue(fv, addr, attrs, buf, len,
3181 addr1, l, mr);
3182 rcu_read_unlock();
3183 }
3184
3185 return result;
3186 }
3187
3188 static MemTxResult flatview_rw(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3189 uint8_t *buf, int len, bool is_write)
3190 {
3191 if (is_write) {
3192 return flatview_write(fv, addr, attrs, (uint8_t *)buf, len);
3193 } else {
3194 return flatview_read(fv, addr, attrs, (uint8_t *)buf, len);
3195 }
3196 }
3197
3198 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
3199 MemTxAttrs attrs, uint8_t *buf,
3200 int len, bool is_write)
3201 {
3202 return flatview_rw(address_space_to_flatview(as),
3203 addr, attrs, buf, len, is_write);
3204 }
3205
3206 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3207 int len, int is_write)
3208 {
3209 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3210 buf, len, is_write);
3211 }
3212
3213 enum write_rom_type {
3214 WRITE_DATA,
3215 FLUSH_CACHE,
3216 };
3217
3218 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3219 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3220 {
3221 hwaddr l;
3222 uint8_t *ptr;
3223 hwaddr addr1;
3224 MemoryRegion *mr;
3225
3226 rcu_read_lock();
3227 while (len > 0) {
3228 l = len;
3229 mr = address_space_translate(as, addr, &addr1, &l, true);
3230
3231 if (!(memory_region_is_ram(mr) ||
3232 memory_region_is_romd(mr))) {
3233 l = memory_access_size(mr, l, addr1);
3234 } else {
3235 /* ROM/RAM case */
3236 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3237 switch (type) {
3238 case WRITE_DATA:
3239 memcpy(ptr, buf, l);
3240 invalidate_and_set_dirty(mr, addr1, l);
3241 break;
3242 case FLUSH_CACHE:
3243 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3244 break;
3245 }
3246 }
3247 len -= l;
3248 buf += l;
3249 addr += l;
3250 }
3251 rcu_read_unlock();
3252 }
3253
3254 /* used for ROM loading : can write in RAM and ROM */
3255 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3256 const uint8_t *buf, int len)
3257 {
3258 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3259 }
3260
3261 void cpu_flush_icache_range(hwaddr start, int len)
3262 {
3263 /*
3264 * This function should do the same thing as an icache flush that was
3265 * triggered from within the guest. For TCG we are always cache coherent,
3266 * so there is no need to flush anything. For KVM / Xen we need to flush
3267 * the host's instruction cache at least.
3268 */
3269 if (tcg_enabled()) {
3270 return;
3271 }
3272
3273 cpu_physical_memory_write_rom_internal(&address_space_memory,
3274 start, NULL, len, FLUSH_CACHE);
3275 }
3276
3277 typedef struct {
3278 MemoryRegion *mr;
3279 void *buffer;
3280 hwaddr addr;
3281 hwaddr len;
3282 bool in_use;
3283 } BounceBuffer;
3284
3285 static BounceBuffer bounce;
3286
3287 typedef struct MapClient {
3288 QEMUBH *bh;
3289 QLIST_ENTRY(MapClient) link;
3290 } MapClient;
3291
3292 QemuMutex map_client_list_lock;
3293 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3294 = QLIST_HEAD_INITIALIZER(map_client_list);
3295
3296 static void cpu_unregister_map_client_do(MapClient *client)
3297 {
3298 QLIST_REMOVE(client, link);
3299 g_free(client);
3300 }
3301
3302 static void cpu_notify_map_clients_locked(void)
3303 {
3304 MapClient *client;
3305
3306 while (!QLIST_EMPTY(&map_client_list)) {
3307 client = QLIST_FIRST(&map_client_list);
3308 qemu_bh_schedule(client->bh);
3309 cpu_unregister_map_client_do(client);
3310 }
3311 }
3312
3313 void cpu_register_map_client(QEMUBH *bh)
3314 {
3315 MapClient *client = g_malloc(sizeof(*client));
3316
3317 qemu_mutex_lock(&map_client_list_lock);
3318 client->bh = bh;
3319 QLIST_INSERT_HEAD(&map_client_list, client, link);
3320 if (!atomic_read(&bounce.in_use)) {
3321 cpu_notify_map_clients_locked();
3322 }
3323 qemu_mutex_unlock(&map_client_list_lock);
3324 }
3325
3326 void cpu_exec_init_all(void)
3327 {
3328 qemu_mutex_init(&ram_list.mutex);
3329 /* The data structures we set up here depend on knowing the page size,
3330 * so no more changes can be made after this point.
3331 * In an ideal world, nothing we did before we had finished the
3332 * machine setup would care about the target page size, and we could
3333 * do this much later, rather than requiring board models to state
3334 * up front what their requirements are.
3335 */
3336 finalize_target_page_bits();
3337 io_mem_init();
3338 memory_map_init();
3339 qemu_mutex_init(&map_client_list_lock);
3340 }
3341
3342 void cpu_unregister_map_client(QEMUBH *bh)
3343 {
3344 MapClient *client;
3345
3346 qemu_mutex_lock(&map_client_list_lock);
3347 QLIST_FOREACH(client, &map_client_list, link) {
3348 if (client->bh == bh) {
3349 cpu_unregister_map_client_do(client);
3350 break;
3351 }
3352 }
3353 qemu_mutex_unlock(&map_client_list_lock);
3354 }
3355
3356 static void cpu_notify_map_clients(void)
3357 {
3358 qemu_mutex_lock(&map_client_list_lock);
3359 cpu_notify_map_clients_locked();
3360 qemu_mutex_unlock(&map_client_list_lock);
3361 }
3362
3363 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3364 bool is_write)
3365 {
3366 MemoryRegion *mr;
3367 hwaddr l, xlat;
3368
3369 rcu_read_lock();
3370 while (len > 0) {
3371 l = len;
3372 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3373 if (!memory_access_is_direct(mr, is_write)) {
3374 l = memory_access_size(mr, l, addr);
3375 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
3376 rcu_read_unlock();
3377 return false;
3378 }
3379 }
3380
3381 len -= l;
3382 addr += l;
3383 }
3384 rcu_read_unlock();
3385 return true;
3386 }
3387
3388 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3389 int len, bool is_write)
3390 {
3391 return flatview_access_valid(address_space_to_flatview(as),
3392 addr, len, is_write);
3393 }
3394
3395 static hwaddr
3396 flatview_extend_translation(FlatView *fv, hwaddr addr,
3397 hwaddr target_len,
3398 MemoryRegion *mr, hwaddr base, hwaddr len,
3399 bool is_write)
3400 {
3401 hwaddr done = 0;
3402 hwaddr xlat;
3403 MemoryRegion *this_mr;
3404
3405 for (;;) {
3406 target_len -= len;
3407 addr += len;
3408 done += len;
3409 if (target_len == 0) {
3410 return done;
3411 }
3412
3413 len = target_len;
3414 this_mr = flatview_translate(fv, addr, &xlat,
3415 &len, is_write);
3416 if (this_mr != mr || xlat != base + done) {
3417 return done;
3418 }
3419 }
3420 }
3421
3422 /* Map a physical memory region into a host virtual address.
3423 * May map a subset of the requested range, given by and returned in *plen.
3424 * May return NULL if resources needed to perform the mapping are exhausted.
3425 * Use only for reads OR writes - not for read-modify-write operations.
3426 * Use cpu_register_map_client() to know when retrying the map operation is
3427 * likely to succeed.
3428 */
3429 void *address_space_map(AddressSpace *as,
3430 hwaddr addr,
3431 hwaddr *plen,
3432 bool is_write)
3433 {
3434 hwaddr len = *plen;
3435 hwaddr l, xlat;
3436 MemoryRegion *mr;
3437 void *ptr;
3438 FlatView *fv = address_space_to_flatview(as);
3439
3440 if (len == 0) {
3441 return NULL;
3442 }
3443
3444 l = len;
3445 rcu_read_lock();
3446 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3447
3448 if (!memory_access_is_direct(mr, is_write)) {
3449 if (atomic_xchg(&bounce.in_use, true)) {
3450 rcu_read_unlock();
3451 return NULL;
3452 }
3453 /* Avoid unbounded allocations */
3454 l = MIN(l, TARGET_PAGE_SIZE);
3455 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3456 bounce.addr = addr;
3457 bounce.len = l;
3458
3459 memory_region_ref(mr);
3460 bounce.mr = mr;
3461 if (!is_write) {
3462 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3463 bounce.buffer, l);
3464 }
3465
3466 rcu_read_unlock();
3467 *plen = l;
3468 return bounce.buffer;
3469 }
3470
3471
3472 memory_region_ref(mr);
3473 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3474 l, is_write);
3475 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3476 rcu_read_unlock();
3477
3478 return ptr;
3479 }
3480
3481 /* Unmaps a memory region previously mapped by address_space_map().
3482 * Will also mark the memory as dirty if is_write == 1. access_len gives
3483 * the amount of memory that was actually read or written by the caller.
3484 */
3485 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3486 int is_write, hwaddr access_len)
3487 {
3488 if (buffer != bounce.buffer) {
3489 MemoryRegion *mr;
3490 ram_addr_t addr1;
3491
3492 mr = memory_region_from_host(buffer, &addr1);
3493 assert(mr != NULL);
3494 if (is_write) {
3495 invalidate_and_set_dirty(mr, addr1, access_len);
3496 }
3497 if (xen_enabled()) {
3498 xen_invalidate_map_cache_entry(buffer);
3499 }
3500 memory_region_unref(mr);
3501 return;
3502 }
3503 if (is_write) {
3504 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3505 bounce.buffer, access_len);
3506 }
3507 qemu_vfree(bounce.buffer);
3508 bounce.buffer = NULL;
3509 memory_region_unref(bounce.mr);
3510 atomic_mb_set(&bounce.in_use, false);
3511 cpu_notify_map_clients();
3512 }
3513
3514 void *cpu_physical_memory_map(hwaddr addr,
3515 hwaddr *plen,
3516 int is_write)
3517 {
3518 return address_space_map(&address_space_memory, addr, plen, is_write);
3519 }
3520
3521 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3522 int is_write, hwaddr access_len)
3523 {
3524 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3525 }
3526
3527 #define ARG1_DECL AddressSpace *as
3528 #define ARG1 as
3529 #define SUFFIX
3530 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3531 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3532 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3533 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3534 #define RCU_READ_LOCK(...) rcu_read_lock()
3535 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3536 #include "memory_ldst.inc.c"
3537
3538 int64_t address_space_cache_init(MemoryRegionCache *cache,
3539 AddressSpace *as,
3540 hwaddr addr,
3541 hwaddr len,
3542 bool is_write)
3543 {
3544 cache->len = len;
3545 cache->as = as;
3546 cache->xlat = addr;
3547 return len;
3548 }
3549
3550 void address_space_cache_invalidate(MemoryRegionCache *cache,
3551 hwaddr addr,
3552 hwaddr access_len)
3553 {
3554 }
3555
3556 void address_space_cache_destroy(MemoryRegionCache *cache)
3557 {
3558 cache->as = NULL;
3559 }
3560
3561 #define ARG1_DECL MemoryRegionCache *cache
3562 #define ARG1 cache
3563 #define SUFFIX _cached
3564 #define TRANSLATE(addr, ...) \
3565 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3566 #define IS_DIRECT(mr, is_write) true
3567 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3568 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3569 #define RCU_READ_LOCK() rcu_read_lock()
3570 #define RCU_READ_UNLOCK() rcu_read_unlock()
3571 #include "memory_ldst.inc.c"
3572
3573 /* virtual memory access for debug (includes writing to ROM) */
3574 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3575 uint8_t *buf, int len, int is_write)
3576 {
3577 int l;
3578 hwaddr phys_addr;
3579 target_ulong page;
3580
3581 cpu_synchronize_state(cpu);
3582 while (len > 0) {
3583 int asidx;
3584 MemTxAttrs attrs;
3585
3586 page = addr & TARGET_PAGE_MASK;
3587 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3588 asidx = cpu_asidx_from_attrs(cpu, attrs);
3589 /* if no physical page mapped, return an error */
3590 if (phys_addr == -1)
3591 return -1;
3592 l = (page + TARGET_PAGE_SIZE) - addr;
3593 if (l > len)
3594 l = len;
3595 phys_addr += (addr & ~TARGET_PAGE_MASK);
3596 if (is_write) {
3597 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3598 phys_addr, buf, l);
3599 } else {
3600 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3601 MEMTXATTRS_UNSPECIFIED,
3602 buf, l, 0);
3603 }
3604 len -= l;
3605 buf += l;
3606 addr += l;
3607 }
3608 return 0;
3609 }
3610
3611 /*
3612 * Allows code that needs to deal with migration bitmaps etc to still be built
3613 * target independent.
3614 */
3615 size_t qemu_target_page_size(void)
3616 {
3617 return TARGET_PAGE_SIZE;
3618 }
3619
3620 int qemu_target_page_bits(void)
3621 {
3622 return TARGET_PAGE_BITS;
3623 }
3624
3625 int qemu_target_page_bits_min(void)
3626 {
3627 return TARGET_PAGE_BITS_MIN;
3628 }
3629 #endif
3630
3631 /*
3632 * A helper function for the _utterly broken_ virtio device model to find out if
3633 * it's running on a big endian machine. Don't do this at home kids!
3634 */
3635 bool target_words_bigendian(void);
3636 bool target_words_bigendian(void)
3637 {
3638 #if defined(TARGET_WORDS_BIGENDIAN)
3639 return true;
3640 #else
3641 return false;
3642 #endif
3643 }
3644
3645 #ifndef CONFIG_USER_ONLY
3646 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3647 {
3648 MemoryRegion*mr;
3649 hwaddr l = 1;
3650 bool res;
3651
3652 rcu_read_lock();
3653 mr = address_space_translate(&address_space_memory,
3654 phys_addr, &phys_addr, &l, false);
3655
3656 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3657 rcu_read_unlock();
3658 return res;
3659 }
3660
3661 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3662 {
3663 RAMBlock *block;
3664 int ret = 0;
3665
3666 rcu_read_lock();
3667 RAMBLOCK_FOREACH(block) {
3668 ret = func(block->idstr, block->host, block->offset,
3669 block->used_length, opaque);
3670 if (ret) {
3671 break;
3672 }
3673 }
3674 rcu_read_unlock();
3675 return ret;
3676 }
3677
3678 /*
3679 * Unmap pages of memory from start to start+length such that
3680 * they a) read as 0, b) Trigger whatever fault mechanism
3681 * the OS provides for postcopy.
3682 * The pages must be unmapped by the end of the function.
3683 * Returns: 0 on success, none-0 on failure
3684 *
3685 */
3686 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3687 {
3688 int ret = -1;
3689
3690 uint8_t *host_startaddr = rb->host + start;
3691
3692 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3693 error_report("ram_block_discard_range: Unaligned start address: %p",
3694 host_startaddr);
3695 goto err;
3696 }
3697
3698 if ((start + length) <= rb->used_length) {
3699 uint8_t *host_endaddr = host_startaddr + length;
3700 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3701 error_report("ram_block_discard_range: Unaligned end address: %p",
3702 host_endaddr);
3703 goto err;
3704 }
3705
3706 errno = ENOTSUP; /* If we are missing MADVISE etc */
3707
3708 if (rb->page_size == qemu_host_page_size) {
3709 #if defined(CONFIG_MADVISE)
3710 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3711 * freeing the page.
3712 */
3713 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3714 #endif
3715 } else {
3716 /* Huge page case - unfortunately it can't do DONTNEED, but
3717 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3718 * huge page file.
3719 */
3720 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3721 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3722 start, length);
3723 #endif
3724 }
3725 if (ret) {
3726 ret = -errno;
3727 error_report("ram_block_discard_range: Failed to discard range "
3728 "%s:%" PRIx64 " +%zx (%d)",
3729 rb->idstr, start, length, ret);
3730 }
3731 } else {
3732 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3733 "/%zx/" RAM_ADDR_FMT")",
3734 rb->idstr, start, length, rb->used_length);
3735 }
3736
3737 err:
3738 return ret;
3739 }
3740
3741 #endif
3742
3743 void page_size_init(void)
3744 {
3745 /* NOTE: we can always suppose that qemu_host_page_size >=
3746 TARGET_PAGE_SIZE */
3747 if (qemu_host_page_size == 0) {
3748 qemu_host_page_size = qemu_real_host_page_size;
3749 }
3750 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3751 qemu_host_page_size = TARGET_PAGE_SIZE;
3752 }
3753 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3754 }
3755
3756 #if !defined(CONFIG_USER_ONLY)
3757
3758 static void mtree_print_phys_entries(fprintf_function mon, void *f,
3759 int start, int end, int skip, int ptr)
3760 {
3761 if (start == end - 1) {
3762 mon(f, "\t%3d ", start);
3763 } else {
3764 mon(f, "\t%3d..%-3d ", start, end - 1);
3765 }
3766 mon(f, " skip=%d ", skip);
3767 if (ptr == PHYS_MAP_NODE_NIL) {
3768 mon(f, " ptr=NIL");
3769 } else if (!skip) {
3770 mon(f, " ptr=#%d", ptr);
3771 } else {
3772 mon(f, " ptr=[%d]", ptr);
3773 }
3774 mon(f, "\n");
3775 }
3776
3777 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3778 int128_sub((size), int128_one())) : 0)
3779
3780 void mtree_print_dispatch(fprintf_function mon, void *f,
3781 AddressSpaceDispatch *d, MemoryRegion *root)
3782 {
3783 int i;
3784
3785 mon(f, " Dispatch\n");
3786 mon(f, " Physical sections\n");
3787
3788 for (i = 0; i < d->map.sections_nb; ++i) {
3789 MemoryRegionSection *s = d->map.sections + i;
3790 const char *names[] = { " [unassigned]", " [not dirty]",
3791 " [ROM]", " [watch]" };
3792
3793 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
3794 i,
3795 s->offset_within_address_space,
3796 s->offset_within_address_space + MR_SIZE(s->mr->size),
3797 s->mr->name ? s->mr->name : "(noname)",
3798 i < ARRAY_SIZE(names) ? names[i] : "",
3799 s->mr == root ? " [ROOT]" : "",
3800 s == d->mru_section ? " [MRU]" : "",
3801 s->mr->is_iommu ? " [iommu]" : "");
3802
3803 if (s->mr->alias) {
3804 mon(f, " alias=%s", s->mr->alias->name ?
3805 s->mr->alias->name : "noname");
3806 }
3807 mon(f, "\n");
3808 }
3809
3810 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3811 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3812 for (i = 0; i < d->map.nodes_nb; ++i) {
3813 int j, jprev;
3814 PhysPageEntry prev;
3815 Node *n = d->map.nodes + i;
3816
3817 mon(f, " [%d]\n", i);
3818
3819 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3820 PhysPageEntry *pe = *n + j;
3821
3822 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3823 continue;
3824 }
3825
3826 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3827
3828 jprev = j;
3829 prev = *pe;
3830 }
3831
3832 if (jprev != ARRAY_SIZE(*n)) {
3833 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3834 }
3835 }
3836 }
3837
3838 #endif