]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
cputlb: Handle watchpoints via TLB_WATCHPOINT
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "qemu/timer.h"
39 #include "qemu/config-file.h"
40 #include "qemu/error-report.h"
41 #include "qemu/qemu-print.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include "qemu.h"
44 #else /* !CONFIG_USER_ONLY */
45 #include "exec/memory.h"
46 #include "exec/ioport.h"
47 #include "sysemu/dma.h"
48 #include "sysemu/hostmem.h"
49 #include "sysemu/hw_accel.h"
50 #include "exec/address-spaces.h"
51 #include "sysemu/xen-mapcache.h"
52 #include "trace-root.h"
53
54 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
55 #include <linux/falloc.h>
56 #endif
57
58 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
63
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
67
68 #include "migration/vmstate.h"
69
70 #include "qemu/range.h"
71 #ifndef _WIN32
72 #include "qemu/mmap-alloc.h"
73 #endif
74
75 #include "monitor/monitor.h"
76
77 //#define DEBUG_SUBPAGE
78
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
83 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
84
85 static MemoryRegion *system_memory;
86 static MemoryRegion *system_io;
87
88 AddressSpace address_space_io;
89 AddressSpace address_space_memory;
90
91 MemoryRegion io_mem_rom, io_mem_notdirty;
92 static MemoryRegion io_mem_unassigned;
93 #endif
94
95 #ifdef TARGET_PAGE_BITS_VARY
96 int target_page_bits;
97 bool target_page_bits_decided;
98 #endif
99
100 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
101
102 /* current CPU in the current thread. It is only valid inside
103 cpu_exec() */
104 __thread CPUState *current_cpu;
105 /* 0 = Do not count executed instructions.
106 1 = Precise instruction counting.
107 2 = Adaptive rate instruction counting. */
108 int use_icount;
109
110 uintptr_t qemu_host_page_size;
111 intptr_t qemu_host_page_mask;
112
113 bool set_preferred_target_page_bits(int bits)
114 {
115 /* The target page size is the lowest common denominator for all
116 * the CPUs in the system, so we can only make it smaller, never
117 * larger. And we can't make it smaller once we've committed to
118 * a particular size.
119 */
120 #ifdef TARGET_PAGE_BITS_VARY
121 assert(bits >= TARGET_PAGE_BITS_MIN);
122 if (target_page_bits == 0 || target_page_bits > bits) {
123 if (target_page_bits_decided) {
124 return false;
125 }
126 target_page_bits = bits;
127 }
128 #endif
129 return true;
130 }
131
132 #if !defined(CONFIG_USER_ONLY)
133
134 static void finalize_target_page_bits(void)
135 {
136 #ifdef TARGET_PAGE_BITS_VARY
137 if (target_page_bits == 0) {
138 target_page_bits = TARGET_PAGE_BITS_MIN;
139 }
140 target_page_bits_decided = true;
141 #endif
142 }
143
144 typedef struct PhysPageEntry PhysPageEntry;
145
146 struct PhysPageEntry {
147 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
148 uint32_t skip : 6;
149 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
150 uint32_t ptr : 26;
151 };
152
153 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
154
155 /* Size of the L2 (and L3, etc) page tables. */
156 #define ADDR_SPACE_BITS 64
157
158 #define P_L2_BITS 9
159 #define P_L2_SIZE (1 << P_L2_BITS)
160
161 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
162
163 typedef PhysPageEntry Node[P_L2_SIZE];
164
165 typedef struct PhysPageMap {
166 struct rcu_head rcu;
167
168 unsigned sections_nb;
169 unsigned sections_nb_alloc;
170 unsigned nodes_nb;
171 unsigned nodes_nb_alloc;
172 Node *nodes;
173 MemoryRegionSection *sections;
174 } PhysPageMap;
175
176 struct AddressSpaceDispatch {
177 MemoryRegionSection *mru_section;
178 /* This is a multi-level map on the physical address space.
179 * The bottom level has pointers to MemoryRegionSections.
180 */
181 PhysPageEntry phys_map;
182 PhysPageMap map;
183 };
184
185 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
186 typedef struct subpage_t {
187 MemoryRegion iomem;
188 FlatView *fv;
189 hwaddr base;
190 uint16_t sub_section[];
191 } subpage_t;
192
193 #define PHYS_SECTION_UNASSIGNED 0
194 #define PHYS_SECTION_NOTDIRTY 1
195 #define PHYS_SECTION_ROM 2
196
197 static void io_mem_init(void);
198 static void memory_map_init(void);
199 static void tcg_log_global_after_sync(MemoryListener *listener);
200 static void tcg_commit(MemoryListener *listener);
201
202 /**
203 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
204 * @cpu: the CPU whose AddressSpace this is
205 * @as: the AddressSpace itself
206 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
207 * @tcg_as_listener: listener for tracking changes to the AddressSpace
208 */
209 struct CPUAddressSpace {
210 CPUState *cpu;
211 AddressSpace *as;
212 struct AddressSpaceDispatch *memory_dispatch;
213 MemoryListener tcg_as_listener;
214 };
215
216 struct DirtyBitmapSnapshot {
217 ram_addr_t start;
218 ram_addr_t end;
219 unsigned long dirty[];
220 };
221
222 #endif
223
224 #if !defined(CONFIG_USER_ONLY)
225
226 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
227 {
228 static unsigned alloc_hint = 16;
229 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
230 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
231 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
232 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
233 alloc_hint = map->nodes_nb_alloc;
234 }
235 }
236
237 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
238 {
239 unsigned i;
240 uint32_t ret;
241 PhysPageEntry e;
242 PhysPageEntry *p;
243
244 ret = map->nodes_nb++;
245 p = map->nodes[ret];
246 assert(ret != PHYS_MAP_NODE_NIL);
247 assert(ret != map->nodes_nb_alloc);
248
249 e.skip = leaf ? 0 : 1;
250 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
251 for (i = 0; i < P_L2_SIZE; ++i) {
252 memcpy(&p[i], &e, sizeof(e));
253 }
254 return ret;
255 }
256
257 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
258 hwaddr *index, hwaddr *nb, uint16_t leaf,
259 int level)
260 {
261 PhysPageEntry *p;
262 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
263
264 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
265 lp->ptr = phys_map_node_alloc(map, level == 0);
266 }
267 p = map->nodes[lp->ptr];
268 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
269
270 while (*nb && lp < &p[P_L2_SIZE]) {
271 if ((*index & (step - 1)) == 0 && *nb >= step) {
272 lp->skip = 0;
273 lp->ptr = leaf;
274 *index += step;
275 *nb -= step;
276 } else {
277 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
278 }
279 ++lp;
280 }
281 }
282
283 static void phys_page_set(AddressSpaceDispatch *d,
284 hwaddr index, hwaddr nb,
285 uint16_t leaf)
286 {
287 /* Wildly overreserve - it doesn't matter much. */
288 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
289
290 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
291 }
292
293 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
294 * and update our entry so we can skip it and go directly to the destination.
295 */
296 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
297 {
298 unsigned valid_ptr = P_L2_SIZE;
299 int valid = 0;
300 PhysPageEntry *p;
301 int i;
302
303 if (lp->ptr == PHYS_MAP_NODE_NIL) {
304 return;
305 }
306
307 p = nodes[lp->ptr];
308 for (i = 0; i < P_L2_SIZE; i++) {
309 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
310 continue;
311 }
312
313 valid_ptr = i;
314 valid++;
315 if (p[i].skip) {
316 phys_page_compact(&p[i], nodes);
317 }
318 }
319
320 /* We can only compress if there's only one child. */
321 if (valid != 1) {
322 return;
323 }
324
325 assert(valid_ptr < P_L2_SIZE);
326
327 /* Don't compress if it won't fit in the # of bits we have. */
328 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
329 return;
330 }
331
332 lp->ptr = p[valid_ptr].ptr;
333 if (!p[valid_ptr].skip) {
334 /* If our only child is a leaf, make this a leaf. */
335 /* By design, we should have made this node a leaf to begin with so we
336 * should never reach here.
337 * But since it's so simple to handle this, let's do it just in case we
338 * change this rule.
339 */
340 lp->skip = 0;
341 } else {
342 lp->skip += p[valid_ptr].skip;
343 }
344 }
345
346 void address_space_dispatch_compact(AddressSpaceDispatch *d)
347 {
348 if (d->phys_map.skip) {
349 phys_page_compact(&d->phys_map, d->map.nodes);
350 }
351 }
352
353 static inline bool section_covers_addr(const MemoryRegionSection *section,
354 hwaddr addr)
355 {
356 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
357 * the section must cover the entire address space.
358 */
359 return int128_gethi(section->size) ||
360 range_covers_byte(section->offset_within_address_space,
361 int128_getlo(section->size), addr);
362 }
363
364 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
365 {
366 PhysPageEntry lp = d->phys_map, *p;
367 Node *nodes = d->map.nodes;
368 MemoryRegionSection *sections = d->map.sections;
369 hwaddr index = addr >> TARGET_PAGE_BITS;
370 int i;
371
372 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
373 if (lp.ptr == PHYS_MAP_NODE_NIL) {
374 return &sections[PHYS_SECTION_UNASSIGNED];
375 }
376 p = nodes[lp.ptr];
377 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
378 }
379
380 if (section_covers_addr(&sections[lp.ptr], addr)) {
381 return &sections[lp.ptr];
382 } else {
383 return &sections[PHYS_SECTION_UNASSIGNED];
384 }
385 }
386
387 /* Called from RCU critical section */
388 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
389 hwaddr addr,
390 bool resolve_subpage)
391 {
392 MemoryRegionSection *section = atomic_read(&d->mru_section);
393 subpage_t *subpage;
394
395 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
396 !section_covers_addr(section, addr)) {
397 section = phys_page_find(d, addr);
398 atomic_set(&d->mru_section, section);
399 }
400 if (resolve_subpage && section->mr->subpage) {
401 subpage = container_of(section->mr, subpage_t, iomem);
402 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
403 }
404 return section;
405 }
406
407 /* Called from RCU critical section */
408 static MemoryRegionSection *
409 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
410 hwaddr *plen, bool resolve_subpage)
411 {
412 MemoryRegionSection *section;
413 MemoryRegion *mr;
414 Int128 diff;
415
416 section = address_space_lookup_region(d, addr, resolve_subpage);
417 /* Compute offset within MemoryRegionSection */
418 addr -= section->offset_within_address_space;
419
420 /* Compute offset within MemoryRegion */
421 *xlat = addr + section->offset_within_region;
422
423 mr = section->mr;
424
425 /* MMIO registers can be expected to perform full-width accesses based only
426 * on their address, without considering adjacent registers that could
427 * decode to completely different MemoryRegions. When such registers
428 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
429 * regions overlap wildly. For this reason we cannot clamp the accesses
430 * here.
431 *
432 * If the length is small (as is the case for address_space_ldl/stl),
433 * everything works fine. If the incoming length is large, however,
434 * the caller really has to do the clamping through memory_access_size.
435 */
436 if (memory_region_is_ram(mr)) {
437 diff = int128_sub(section->size, int128_make64(addr));
438 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
439 }
440 return section;
441 }
442
443 /**
444 * address_space_translate_iommu - translate an address through an IOMMU
445 * memory region and then through the target address space.
446 *
447 * @iommu_mr: the IOMMU memory region that we start the translation from
448 * @addr: the address to be translated through the MMU
449 * @xlat: the translated address offset within the destination memory region.
450 * It cannot be %NULL.
451 * @plen_out: valid read/write length of the translated address. It
452 * cannot be %NULL.
453 * @page_mask_out: page mask for the translated address. This
454 * should only be meaningful for IOMMU translated
455 * addresses, since there may be huge pages that this bit
456 * would tell. It can be %NULL if we don't care about it.
457 * @is_write: whether the translation operation is for write
458 * @is_mmio: whether this can be MMIO, set true if it can
459 * @target_as: the address space targeted by the IOMMU
460 * @attrs: transaction attributes
461 *
462 * This function is called from RCU critical section. It is the common
463 * part of flatview_do_translate and address_space_translate_cached.
464 */
465 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
466 hwaddr *xlat,
467 hwaddr *plen_out,
468 hwaddr *page_mask_out,
469 bool is_write,
470 bool is_mmio,
471 AddressSpace **target_as,
472 MemTxAttrs attrs)
473 {
474 MemoryRegionSection *section;
475 hwaddr page_mask = (hwaddr)-1;
476
477 do {
478 hwaddr addr = *xlat;
479 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
480 int iommu_idx = 0;
481 IOMMUTLBEntry iotlb;
482
483 if (imrc->attrs_to_index) {
484 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
485 }
486
487 iotlb = imrc->translate(iommu_mr, addr, is_write ?
488 IOMMU_WO : IOMMU_RO, iommu_idx);
489
490 if (!(iotlb.perm & (1 << is_write))) {
491 goto unassigned;
492 }
493
494 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
495 | (addr & iotlb.addr_mask));
496 page_mask &= iotlb.addr_mask;
497 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
498 *target_as = iotlb.target_as;
499
500 section = address_space_translate_internal(
501 address_space_to_dispatch(iotlb.target_as), addr, xlat,
502 plen_out, is_mmio);
503
504 iommu_mr = memory_region_get_iommu(section->mr);
505 } while (unlikely(iommu_mr));
506
507 if (page_mask_out) {
508 *page_mask_out = page_mask;
509 }
510 return *section;
511
512 unassigned:
513 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
514 }
515
516 /**
517 * flatview_do_translate - translate an address in FlatView
518 *
519 * @fv: the flat view that we want to translate on
520 * @addr: the address to be translated in above address space
521 * @xlat: the translated address offset within memory region. It
522 * cannot be @NULL.
523 * @plen_out: valid read/write length of the translated address. It
524 * can be @NULL when we don't care about it.
525 * @page_mask_out: page mask for the translated address. This
526 * should only be meaningful for IOMMU translated
527 * addresses, since there may be huge pages that this bit
528 * would tell. It can be @NULL if we don't care about it.
529 * @is_write: whether the translation operation is for write
530 * @is_mmio: whether this can be MMIO, set true if it can
531 * @target_as: the address space targeted by the IOMMU
532 * @attrs: memory transaction attributes
533 *
534 * This function is called from RCU critical section
535 */
536 static MemoryRegionSection flatview_do_translate(FlatView *fv,
537 hwaddr addr,
538 hwaddr *xlat,
539 hwaddr *plen_out,
540 hwaddr *page_mask_out,
541 bool is_write,
542 bool is_mmio,
543 AddressSpace **target_as,
544 MemTxAttrs attrs)
545 {
546 MemoryRegionSection *section;
547 IOMMUMemoryRegion *iommu_mr;
548 hwaddr plen = (hwaddr)(-1);
549
550 if (!plen_out) {
551 plen_out = &plen;
552 }
553
554 section = address_space_translate_internal(
555 flatview_to_dispatch(fv), addr, xlat,
556 plen_out, is_mmio);
557
558 iommu_mr = memory_region_get_iommu(section->mr);
559 if (unlikely(iommu_mr)) {
560 return address_space_translate_iommu(iommu_mr, xlat,
561 plen_out, page_mask_out,
562 is_write, is_mmio,
563 target_as, attrs);
564 }
565 if (page_mask_out) {
566 /* Not behind an IOMMU, use default page size. */
567 *page_mask_out = ~TARGET_PAGE_MASK;
568 }
569
570 return *section;
571 }
572
573 /* Called from RCU critical section */
574 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
575 bool is_write, MemTxAttrs attrs)
576 {
577 MemoryRegionSection section;
578 hwaddr xlat, page_mask;
579
580 /*
581 * This can never be MMIO, and we don't really care about plen,
582 * but page mask.
583 */
584 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
585 NULL, &page_mask, is_write, false, &as,
586 attrs);
587
588 /* Illegal translation */
589 if (section.mr == &io_mem_unassigned) {
590 goto iotlb_fail;
591 }
592
593 /* Convert memory region offset into address space offset */
594 xlat += section.offset_within_address_space -
595 section.offset_within_region;
596
597 return (IOMMUTLBEntry) {
598 .target_as = as,
599 .iova = addr & ~page_mask,
600 .translated_addr = xlat & ~page_mask,
601 .addr_mask = page_mask,
602 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
603 .perm = IOMMU_RW,
604 };
605
606 iotlb_fail:
607 return (IOMMUTLBEntry) {0};
608 }
609
610 /* Called from RCU critical section */
611 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
612 hwaddr *plen, bool is_write,
613 MemTxAttrs attrs)
614 {
615 MemoryRegion *mr;
616 MemoryRegionSection section;
617 AddressSpace *as = NULL;
618
619 /* This can be MMIO, so setup MMIO bit. */
620 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
621 is_write, true, &as, attrs);
622 mr = section.mr;
623
624 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
625 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
626 *plen = MIN(page, *plen);
627 }
628
629 return mr;
630 }
631
632 typedef struct TCGIOMMUNotifier {
633 IOMMUNotifier n;
634 MemoryRegion *mr;
635 CPUState *cpu;
636 int iommu_idx;
637 bool active;
638 } TCGIOMMUNotifier;
639
640 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
641 {
642 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
643
644 if (!notifier->active) {
645 return;
646 }
647 tlb_flush(notifier->cpu);
648 notifier->active = false;
649 /* We leave the notifier struct on the list to avoid reallocating it later.
650 * Generally the number of IOMMUs a CPU deals with will be small.
651 * In any case we can't unregister the iommu notifier from a notify
652 * callback.
653 */
654 }
655
656 static void tcg_register_iommu_notifier(CPUState *cpu,
657 IOMMUMemoryRegion *iommu_mr,
658 int iommu_idx)
659 {
660 /* Make sure this CPU has an IOMMU notifier registered for this
661 * IOMMU/IOMMU index combination, so that we can flush its TLB
662 * when the IOMMU tells us the mappings we've cached have changed.
663 */
664 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
665 TCGIOMMUNotifier *notifier;
666 int i;
667
668 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
669 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
670 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
671 break;
672 }
673 }
674 if (i == cpu->iommu_notifiers->len) {
675 /* Not found, add a new entry at the end of the array */
676 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
677 notifier = g_new0(TCGIOMMUNotifier, 1);
678 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
679
680 notifier->mr = mr;
681 notifier->iommu_idx = iommu_idx;
682 notifier->cpu = cpu;
683 /* Rather than trying to register interest in the specific part
684 * of the iommu's address space that we've accessed and then
685 * expand it later as subsequent accesses touch more of it, we
686 * just register interest in the whole thing, on the assumption
687 * that iommu reconfiguration will be rare.
688 */
689 iommu_notifier_init(&notifier->n,
690 tcg_iommu_unmap_notify,
691 IOMMU_NOTIFIER_UNMAP,
692 0,
693 HWADDR_MAX,
694 iommu_idx);
695 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
696 }
697
698 if (!notifier->active) {
699 notifier->active = true;
700 }
701 }
702
703 static void tcg_iommu_free_notifier_list(CPUState *cpu)
704 {
705 /* Destroy the CPU's notifier list */
706 int i;
707 TCGIOMMUNotifier *notifier;
708
709 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
710 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
711 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
712 g_free(notifier);
713 }
714 g_array_free(cpu->iommu_notifiers, true);
715 }
716
717 /* Called from RCU critical section */
718 MemoryRegionSection *
719 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
720 hwaddr *xlat, hwaddr *plen,
721 MemTxAttrs attrs, int *prot)
722 {
723 MemoryRegionSection *section;
724 IOMMUMemoryRegion *iommu_mr;
725 IOMMUMemoryRegionClass *imrc;
726 IOMMUTLBEntry iotlb;
727 int iommu_idx;
728 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
729
730 for (;;) {
731 section = address_space_translate_internal(d, addr, &addr, plen, false);
732
733 iommu_mr = memory_region_get_iommu(section->mr);
734 if (!iommu_mr) {
735 break;
736 }
737
738 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
739
740 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
741 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
742 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
743 * doesn't short-cut its translation table walk.
744 */
745 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
746 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
747 | (addr & iotlb.addr_mask));
748 /* Update the caller's prot bits to remove permissions the IOMMU
749 * is giving us a failure response for. If we get down to no
750 * permissions left at all we can give up now.
751 */
752 if (!(iotlb.perm & IOMMU_RO)) {
753 *prot &= ~(PAGE_READ | PAGE_EXEC);
754 }
755 if (!(iotlb.perm & IOMMU_WO)) {
756 *prot &= ~PAGE_WRITE;
757 }
758
759 if (!*prot) {
760 goto translate_fail;
761 }
762
763 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
764 }
765
766 assert(!memory_region_is_iommu(section->mr));
767 *xlat = addr;
768 return section;
769
770 translate_fail:
771 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
772 }
773 #endif
774
775 #if !defined(CONFIG_USER_ONLY)
776
777 static int cpu_common_post_load(void *opaque, int version_id)
778 {
779 CPUState *cpu = opaque;
780
781 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
782 version_id is increased. */
783 cpu->interrupt_request &= ~0x01;
784 tlb_flush(cpu);
785
786 /* loadvm has just updated the content of RAM, bypassing the
787 * usual mechanisms that ensure we flush TBs for writes to
788 * memory we've translated code from. So we must flush all TBs,
789 * which will now be stale.
790 */
791 tb_flush(cpu);
792
793 return 0;
794 }
795
796 static int cpu_common_pre_load(void *opaque)
797 {
798 CPUState *cpu = opaque;
799
800 cpu->exception_index = -1;
801
802 return 0;
803 }
804
805 static bool cpu_common_exception_index_needed(void *opaque)
806 {
807 CPUState *cpu = opaque;
808
809 return tcg_enabled() && cpu->exception_index != -1;
810 }
811
812 static const VMStateDescription vmstate_cpu_common_exception_index = {
813 .name = "cpu_common/exception_index",
814 .version_id = 1,
815 .minimum_version_id = 1,
816 .needed = cpu_common_exception_index_needed,
817 .fields = (VMStateField[]) {
818 VMSTATE_INT32(exception_index, CPUState),
819 VMSTATE_END_OF_LIST()
820 }
821 };
822
823 static bool cpu_common_crash_occurred_needed(void *opaque)
824 {
825 CPUState *cpu = opaque;
826
827 return cpu->crash_occurred;
828 }
829
830 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
831 .name = "cpu_common/crash_occurred",
832 .version_id = 1,
833 .minimum_version_id = 1,
834 .needed = cpu_common_crash_occurred_needed,
835 .fields = (VMStateField[]) {
836 VMSTATE_BOOL(crash_occurred, CPUState),
837 VMSTATE_END_OF_LIST()
838 }
839 };
840
841 const VMStateDescription vmstate_cpu_common = {
842 .name = "cpu_common",
843 .version_id = 1,
844 .minimum_version_id = 1,
845 .pre_load = cpu_common_pre_load,
846 .post_load = cpu_common_post_load,
847 .fields = (VMStateField[]) {
848 VMSTATE_UINT32(halted, CPUState),
849 VMSTATE_UINT32(interrupt_request, CPUState),
850 VMSTATE_END_OF_LIST()
851 },
852 .subsections = (const VMStateDescription*[]) {
853 &vmstate_cpu_common_exception_index,
854 &vmstate_cpu_common_crash_occurred,
855 NULL
856 }
857 };
858
859 #endif
860
861 CPUState *qemu_get_cpu(int index)
862 {
863 CPUState *cpu;
864
865 CPU_FOREACH(cpu) {
866 if (cpu->cpu_index == index) {
867 return cpu;
868 }
869 }
870
871 return NULL;
872 }
873
874 #if !defined(CONFIG_USER_ONLY)
875 void cpu_address_space_init(CPUState *cpu, int asidx,
876 const char *prefix, MemoryRegion *mr)
877 {
878 CPUAddressSpace *newas;
879 AddressSpace *as = g_new0(AddressSpace, 1);
880 char *as_name;
881
882 assert(mr);
883 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
884 address_space_init(as, mr, as_name);
885 g_free(as_name);
886
887 /* Target code should have set num_ases before calling us */
888 assert(asidx < cpu->num_ases);
889
890 if (asidx == 0) {
891 /* address space 0 gets the convenience alias */
892 cpu->as = as;
893 }
894
895 /* KVM cannot currently support multiple address spaces. */
896 assert(asidx == 0 || !kvm_enabled());
897
898 if (!cpu->cpu_ases) {
899 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
900 }
901
902 newas = &cpu->cpu_ases[asidx];
903 newas->cpu = cpu;
904 newas->as = as;
905 if (tcg_enabled()) {
906 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
907 newas->tcg_as_listener.commit = tcg_commit;
908 memory_listener_register(&newas->tcg_as_listener, as);
909 }
910 }
911
912 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
913 {
914 /* Return the AddressSpace corresponding to the specified index */
915 return cpu->cpu_ases[asidx].as;
916 }
917 #endif
918
919 void cpu_exec_unrealizefn(CPUState *cpu)
920 {
921 CPUClass *cc = CPU_GET_CLASS(cpu);
922
923 cpu_list_remove(cpu);
924
925 if (cc->vmsd != NULL) {
926 vmstate_unregister(NULL, cc->vmsd, cpu);
927 }
928 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
929 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
930 }
931 #ifndef CONFIG_USER_ONLY
932 tcg_iommu_free_notifier_list(cpu);
933 #endif
934 }
935
936 Property cpu_common_props[] = {
937 #ifndef CONFIG_USER_ONLY
938 /* Create a memory property for softmmu CPU object,
939 * so users can wire up its memory. (This can't go in hw/core/cpu.c
940 * because that file is compiled only once for both user-mode
941 * and system builds.) The default if no link is set up is to use
942 * the system address space.
943 */
944 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
945 MemoryRegion *),
946 #endif
947 DEFINE_PROP_END_OF_LIST(),
948 };
949
950 void cpu_exec_initfn(CPUState *cpu)
951 {
952 cpu->as = NULL;
953 cpu->num_ases = 0;
954
955 #ifndef CONFIG_USER_ONLY
956 cpu->thread_id = qemu_get_thread_id();
957 cpu->memory = system_memory;
958 object_ref(OBJECT(cpu->memory));
959 #endif
960 }
961
962 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
963 {
964 CPUClass *cc = CPU_GET_CLASS(cpu);
965 static bool tcg_target_initialized;
966
967 cpu_list_add(cpu);
968
969 if (tcg_enabled() && !tcg_target_initialized) {
970 tcg_target_initialized = true;
971 cc->tcg_initialize();
972 }
973 tlb_init(cpu);
974
975 #ifndef CONFIG_USER_ONLY
976 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
977 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
978 }
979 if (cc->vmsd != NULL) {
980 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
981 }
982
983 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
984 #endif
985 }
986
987 const char *parse_cpu_option(const char *cpu_option)
988 {
989 ObjectClass *oc;
990 CPUClass *cc;
991 gchar **model_pieces;
992 const char *cpu_type;
993
994 model_pieces = g_strsplit(cpu_option, ",", 2);
995 if (!model_pieces[0]) {
996 error_report("-cpu option cannot be empty");
997 exit(1);
998 }
999
1000 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
1001 if (oc == NULL) {
1002 error_report("unable to find CPU model '%s'", model_pieces[0]);
1003 g_strfreev(model_pieces);
1004 exit(EXIT_FAILURE);
1005 }
1006
1007 cpu_type = object_class_get_name(oc);
1008 cc = CPU_CLASS(oc);
1009 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1010 g_strfreev(model_pieces);
1011 return cpu_type;
1012 }
1013
1014 #if defined(CONFIG_USER_ONLY)
1015 void tb_invalidate_phys_addr(target_ulong addr)
1016 {
1017 mmap_lock();
1018 tb_invalidate_phys_page_range(addr, addr + 1, 0);
1019 mmap_unlock();
1020 }
1021
1022 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1023 {
1024 tb_invalidate_phys_addr(pc);
1025 }
1026 #else
1027 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1028 {
1029 ram_addr_t ram_addr;
1030 MemoryRegion *mr;
1031 hwaddr l = 1;
1032
1033 if (!tcg_enabled()) {
1034 return;
1035 }
1036
1037 rcu_read_lock();
1038 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1039 if (!(memory_region_is_ram(mr)
1040 || memory_region_is_romd(mr))) {
1041 rcu_read_unlock();
1042 return;
1043 }
1044 ram_addr = memory_region_get_ram_addr(mr) + addr;
1045 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1046 rcu_read_unlock();
1047 }
1048
1049 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1050 {
1051 MemTxAttrs attrs;
1052 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1053 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1054 if (phys != -1) {
1055 /* Locks grabbed by tb_invalidate_phys_addr */
1056 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1057 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1058 }
1059 }
1060 #endif
1061
1062 #ifndef CONFIG_USER_ONLY
1063 /* Add a watchpoint. */
1064 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1065 int flags, CPUWatchpoint **watchpoint)
1066 {
1067 CPUWatchpoint *wp;
1068
1069 /* forbid ranges which are empty or run off the end of the address space */
1070 if (len == 0 || (addr + len - 1) < addr) {
1071 error_report("tried to set invalid watchpoint at %"
1072 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1073 return -EINVAL;
1074 }
1075 wp = g_malloc(sizeof(*wp));
1076
1077 wp->vaddr = addr;
1078 wp->len = len;
1079 wp->flags = flags;
1080
1081 /* keep all GDB-injected watchpoints in front */
1082 if (flags & BP_GDB) {
1083 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1084 } else {
1085 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1086 }
1087
1088 tlb_flush_page(cpu, addr);
1089
1090 if (watchpoint)
1091 *watchpoint = wp;
1092 return 0;
1093 }
1094
1095 /* Remove a specific watchpoint. */
1096 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1097 int flags)
1098 {
1099 CPUWatchpoint *wp;
1100
1101 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1102 if (addr == wp->vaddr && len == wp->len
1103 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1104 cpu_watchpoint_remove_by_ref(cpu, wp);
1105 return 0;
1106 }
1107 }
1108 return -ENOENT;
1109 }
1110
1111 /* Remove a specific watchpoint by reference. */
1112 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1113 {
1114 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1115
1116 tlb_flush_page(cpu, watchpoint->vaddr);
1117
1118 g_free(watchpoint);
1119 }
1120
1121 /* Remove all matching watchpoints. */
1122 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1123 {
1124 CPUWatchpoint *wp, *next;
1125
1126 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1127 if (wp->flags & mask) {
1128 cpu_watchpoint_remove_by_ref(cpu, wp);
1129 }
1130 }
1131 }
1132
1133 /* Return true if this watchpoint address matches the specified
1134 * access (ie the address range covered by the watchpoint overlaps
1135 * partially or completely with the address range covered by the
1136 * access).
1137 */
1138 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1139 vaddr addr, vaddr len)
1140 {
1141 /* We know the lengths are non-zero, but a little caution is
1142 * required to avoid errors in the case where the range ends
1143 * exactly at the top of the address space and so addr + len
1144 * wraps round to zero.
1145 */
1146 vaddr wpend = wp->vaddr + wp->len - 1;
1147 vaddr addrend = addr + len - 1;
1148
1149 return !(addr > wpend || wp->vaddr > addrend);
1150 }
1151
1152 /* Return flags for watchpoints that match addr + prot. */
1153 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1154 {
1155 CPUWatchpoint *wp;
1156 int ret = 0;
1157
1158 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1159 if (watchpoint_address_matches(wp, addr, TARGET_PAGE_SIZE)) {
1160 ret |= wp->flags;
1161 }
1162 }
1163 return ret;
1164 }
1165 #endif /* !CONFIG_USER_ONLY */
1166
1167 /* Add a breakpoint. */
1168 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1169 CPUBreakpoint **breakpoint)
1170 {
1171 CPUBreakpoint *bp;
1172
1173 bp = g_malloc(sizeof(*bp));
1174
1175 bp->pc = pc;
1176 bp->flags = flags;
1177
1178 /* keep all GDB-injected breakpoints in front */
1179 if (flags & BP_GDB) {
1180 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1181 } else {
1182 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1183 }
1184
1185 breakpoint_invalidate(cpu, pc);
1186
1187 if (breakpoint) {
1188 *breakpoint = bp;
1189 }
1190 return 0;
1191 }
1192
1193 /* Remove a specific breakpoint. */
1194 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1195 {
1196 CPUBreakpoint *bp;
1197
1198 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1199 if (bp->pc == pc && bp->flags == flags) {
1200 cpu_breakpoint_remove_by_ref(cpu, bp);
1201 return 0;
1202 }
1203 }
1204 return -ENOENT;
1205 }
1206
1207 /* Remove a specific breakpoint by reference. */
1208 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1209 {
1210 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1211
1212 breakpoint_invalidate(cpu, breakpoint->pc);
1213
1214 g_free(breakpoint);
1215 }
1216
1217 /* Remove all matching breakpoints. */
1218 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1219 {
1220 CPUBreakpoint *bp, *next;
1221
1222 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1223 if (bp->flags & mask) {
1224 cpu_breakpoint_remove_by_ref(cpu, bp);
1225 }
1226 }
1227 }
1228
1229 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1230 CPU loop after each instruction */
1231 void cpu_single_step(CPUState *cpu, int enabled)
1232 {
1233 if (cpu->singlestep_enabled != enabled) {
1234 cpu->singlestep_enabled = enabled;
1235 if (kvm_enabled()) {
1236 kvm_update_guest_debug(cpu, 0);
1237 } else {
1238 /* must flush all the translated code to avoid inconsistencies */
1239 /* XXX: only flush what is necessary */
1240 tb_flush(cpu);
1241 }
1242 }
1243 }
1244
1245 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1246 {
1247 va_list ap;
1248 va_list ap2;
1249
1250 va_start(ap, fmt);
1251 va_copy(ap2, ap);
1252 fprintf(stderr, "qemu: fatal: ");
1253 vfprintf(stderr, fmt, ap);
1254 fprintf(stderr, "\n");
1255 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1256 if (qemu_log_separate()) {
1257 qemu_log_lock();
1258 qemu_log("qemu: fatal: ");
1259 qemu_log_vprintf(fmt, ap2);
1260 qemu_log("\n");
1261 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1262 qemu_log_flush();
1263 qemu_log_unlock();
1264 qemu_log_close();
1265 }
1266 va_end(ap2);
1267 va_end(ap);
1268 replay_finish();
1269 #if defined(CONFIG_USER_ONLY)
1270 {
1271 struct sigaction act;
1272 sigfillset(&act.sa_mask);
1273 act.sa_handler = SIG_DFL;
1274 act.sa_flags = 0;
1275 sigaction(SIGABRT, &act, NULL);
1276 }
1277 #endif
1278 abort();
1279 }
1280
1281 #if !defined(CONFIG_USER_ONLY)
1282 /* Called from RCU critical section */
1283 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1284 {
1285 RAMBlock *block;
1286
1287 block = atomic_rcu_read(&ram_list.mru_block);
1288 if (block && addr - block->offset < block->max_length) {
1289 return block;
1290 }
1291 RAMBLOCK_FOREACH(block) {
1292 if (addr - block->offset < block->max_length) {
1293 goto found;
1294 }
1295 }
1296
1297 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1298 abort();
1299
1300 found:
1301 /* It is safe to write mru_block outside the iothread lock. This
1302 * is what happens:
1303 *
1304 * mru_block = xxx
1305 * rcu_read_unlock()
1306 * xxx removed from list
1307 * rcu_read_lock()
1308 * read mru_block
1309 * mru_block = NULL;
1310 * call_rcu(reclaim_ramblock, xxx);
1311 * rcu_read_unlock()
1312 *
1313 * atomic_rcu_set is not needed here. The block was already published
1314 * when it was placed into the list. Here we're just making an extra
1315 * copy of the pointer.
1316 */
1317 ram_list.mru_block = block;
1318 return block;
1319 }
1320
1321 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1322 {
1323 CPUState *cpu;
1324 ram_addr_t start1;
1325 RAMBlock *block;
1326 ram_addr_t end;
1327
1328 assert(tcg_enabled());
1329 end = TARGET_PAGE_ALIGN(start + length);
1330 start &= TARGET_PAGE_MASK;
1331
1332 rcu_read_lock();
1333 block = qemu_get_ram_block(start);
1334 assert(block == qemu_get_ram_block(end - 1));
1335 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1336 CPU_FOREACH(cpu) {
1337 tlb_reset_dirty(cpu, start1, length);
1338 }
1339 rcu_read_unlock();
1340 }
1341
1342 /* Note: start and end must be within the same ram block. */
1343 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1344 ram_addr_t length,
1345 unsigned client)
1346 {
1347 DirtyMemoryBlocks *blocks;
1348 unsigned long end, page;
1349 bool dirty = false;
1350 RAMBlock *ramblock;
1351 uint64_t mr_offset, mr_size;
1352
1353 if (length == 0) {
1354 return false;
1355 }
1356
1357 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1358 page = start >> TARGET_PAGE_BITS;
1359
1360 rcu_read_lock();
1361
1362 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1363 ramblock = qemu_get_ram_block(start);
1364 /* Range sanity check on the ramblock */
1365 assert(start >= ramblock->offset &&
1366 start + length <= ramblock->offset + ramblock->used_length);
1367
1368 while (page < end) {
1369 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1370 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1371 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1372
1373 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1374 offset, num);
1375 page += num;
1376 }
1377
1378 mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
1379 mr_size = (end - page) << TARGET_PAGE_BITS;
1380 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1381
1382 rcu_read_unlock();
1383
1384 if (dirty && tcg_enabled()) {
1385 tlb_reset_dirty_range_all(start, length);
1386 }
1387
1388 return dirty;
1389 }
1390
1391 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1392 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1393 {
1394 DirtyMemoryBlocks *blocks;
1395 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1396 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1397 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1398 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1399 DirtyBitmapSnapshot *snap;
1400 unsigned long page, end, dest;
1401
1402 snap = g_malloc0(sizeof(*snap) +
1403 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1404 snap->start = first;
1405 snap->end = last;
1406
1407 page = first >> TARGET_PAGE_BITS;
1408 end = last >> TARGET_PAGE_BITS;
1409 dest = 0;
1410
1411 rcu_read_lock();
1412
1413 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1414
1415 while (page < end) {
1416 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1417 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1418 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1419
1420 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1421 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1422 offset >>= BITS_PER_LEVEL;
1423
1424 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1425 blocks->blocks[idx] + offset,
1426 num);
1427 page += num;
1428 dest += num >> BITS_PER_LEVEL;
1429 }
1430
1431 rcu_read_unlock();
1432
1433 if (tcg_enabled()) {
1434 tlb_reset_dirty_range_all(start, length);
1435 }
1436
1437 memory_region_clear_dirty_bitmap(mr, offset, length);
1438
1439 return snap;
1440 }
1441
1442 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1443 ram_addr_t start,
1444 ram_addr_t length)
1445 {
1446 unsigned long page, end;
1447
1448 assert(start >= snap->start);
1449 assert(start + length <= snap->end);
1450
1451 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1452 page = (start - snap->start) >> TARGET_PAGE_BITS;
1453
1454 while (page < end) {
1455 if (test_bit(page, snap->dirty)) {
1456 return true;
1457 }
1458 page++;
1459 }
1460 return false;
1461 }
1462
1463 /* Called from RCU critical section */
1464 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1465 MemoryRegionSection *section,
1466 target_ulong vaddr,
1467 hwaddr paddr, hwaddr xlat,
1468 int prot,
1469 target_ulong *address)
1470 {
1471 hwaddr iotlb;
1472
1473 if (memory_region_is_ram(section->mr)) {
1474 /* Normal RAM. */
1475 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1476 if (!section->readonly) {
1477 iotlb |= PHYS_SECTION_NOTDIRTY;
1478 } else {
1479 iotlb |= PHYS_SECTION_ROM;
1480 }
1481 } else {
1482 AddressSpaceDispatch *d;
1483
1484 d = flatview_to_dispatch(section->fv);
1485 iotlb = section - d->map.sections;
1486 iotlb += xlat;
1487 }
1488
1489 return iotlb;
1490 }
1491 #endif /* defined(CONFIG_USER_ONLY) */
1492
1493 #if !defined(CONFIG_USER_ONLY)
1494
1495 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1496 uint16_t section);
1497 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1498
1499 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1500 qemu_anon_ram_alloc;
1501
1502 /*
1503 * Set a custom physical guest memory alloator.
1504 * Accelerators with unusual needs may need this. Hopefully, we can
1505 * get rid of it eventually.
1506 */
1507 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1508 {
1509 phys_mem_alloc = alloc;
1510 }
1511
1512 static uint16_t phys_section_add(PhysPageMap *map,
1513 MemoryRegionSection *section)
1514 {
1515 /* The physical section number is ORed with a page-aligned
1516 * pointer to produce the iotlb entries. Thus it should
1517 * never overflow into the page-aligned value.
1518 */
1519 assert(map->sections_nb < TARGET_PAGE_SIZE);
1520
1521 if (map->sections_nb == map->sections_nb_alloc) {
1522 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1523 map->sections = g_renew(MemoryRegionSection, map->sections,
1524 map->sections_nb_alloc);
1525 }
1526 map->sections[map->sections_nb] = *section;
1527 memory_region_ref(section->mr);
1528 return map->sections_nb++;
1529 }
1530
1531 static void phys_section_destroy(MemoryRegion *mr)
1532 {
1533 bool have_sub_page = mr->subpage;
1534
1535 memory_region_unref(mr);
1536
1537 if (have_sub_page) {
1538 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1539 object_unref(OBJECT(&subpage->iomem));
1540 g_free(subpage);
1541 }
1542 }
1543
1544 static void phys_sections_free(PhysPageMap *map)
1545 {
1546 while (map->sections_nb > 0) {
1547 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1548 phys_section_destroy(section->mr);
1549 }
1550 g_free(map->sections);
1551 g_free(map->nodes);
1552 }
1553
1554 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1555 {
1556 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1557 subpage_t *subpage;
1558 hwaddr base = section->offset_within_address_space
1559 & TARGET_PAGE_MASK;
1560 MemoryRegionSection *existing = phys_page_find(d, base);
1561 MemoryRegionSection subsection = {
1562 .offset_within_address_space = base,
1563 .size = int128_make64(TARGET_PAGE_SIZE),
1564 };
1565 hwaddr start, end;
1566
1567 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1568
1569 if (!(existing->mr->subpage)) {
1570 subpage = subpage_init(fv, base);
1571 subsection.fv = fv;
1572 subsection.mr = &subpage->iomem;
1573 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1574 phys_section_add(&d->map, &subsection));
1575 } else {
1576 subpage = container_of(existing->mr, subpage_t, iomem);
1577 }
1578 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1579 end = start + int128_get64(section->size) - 1;
1580 subpage_register(subpage, start, end,
1581 phys_section_add(&d->map, section));
1582 }
1583
1584
1585 static void register_multipage(FlatView *fv,
1586 MemoryRegionSection *section)
1587 {
1588 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1589 hwaddr start_addr = section->offset_within_address_space;
1590 uint16_t section_index = phys_section_add(&d->map, section);
1591 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1592 TARGET_PAGE_BITS));
1593
1594 assert(num_pages);
1595 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1596 }
1597
1598 /*
1599 * The range in *section* may look like this:
1600 *
1601 * |s|PPPPPPP|s|
1602 *
1603 * where s stands for subpage and P for page.
1604 */
1605 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1606 {
1607 MemoryRegionSection remain = *section;
1608 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1609
1610 /* register first subpage */
1611 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1612 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1613 - remain.offset_within_address_space;
1614
1615 MemoryRegionSection now = remain;
1616 now.size = int128_min(int128_make64(left), now.size);
1617 register_subpage(fv, &now);
1618 if (int128_eq(remain.size, now.size)) {
1619 return;
1620 }
1621 remain.size = int128_sub(remain.size, now.size);
1622 remain.offset_within_address_space += int128_get64(now.size);
1623 remain.offset_within_region += int128_get64(now.size);
1624 }
1625
1626 /* register whole pages */
1627 if (int128_ge(remain.size, page_size)) {
1628 MemoryRegionSection now = remain;
1629 now.size = int128_and(now.size, int128_neg(page_size));
1630 register_multipage(fv, &now);
1631 if (int128_eq(remain.size, now.size)) {
1632 return;
1633 }
1634 remain.size = int128_sub(remain.size, now.size);
1635 remain.offset_within_address_space += int128_get64(now.size);
1636 remain.offset_within_region += int128_get64(now.size);
1637 }
1638
1639 /* register last subpage */
1640 register_subpage(fv, &remain);
1641 }
1642
1643 void qemu_flush_coalesced_mmio_buffer(void)
1644 {
1645 if (kvm_enabled())
1646 kvm_flush_coalesced_mmio_buffer();
1647 }
1648
1649 void qemu_mutex_lock_ramlist(void)
1650 {
1651 qemu_mutex_lock(&ram_list.mutex);
1652 }
1653
1654 void qemu_mutex_unlock_ramlist(void)
1655 {
1656 qemu_mutex_unlock(&ram_list.mutex);
1657 }
1658
1659 void ram_block_dump(Monitor *mon)
1660 {
1661 RAMBlock *block;
1662 char *psize;
1663
1664 rcu_read_lock();
1665 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1666 "Block Name", "PSize", "Offset", "Used", "Total");
1667 RAMBLOCK_FOREACH(block) {
1668 psize = size_to_str(block->page_size);
1669 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1670 " 0x%016" PRIx64 "\n", block->idstr, psize,
1671 (uint64_t)block->offset,
1672 (uint64_t)block->used_length,
1673 (uint64_t)block->max_length);
1674 g_free(psize);
1675 }
1676 rcu_read_unlock();
1677 }
1678
1679 #ifdef __linux__
1680 /*
1681 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1682 * may or may not name the same files / on the same filesystem now as
1683 * when we actually open and map them. Iterate over the file
1684 * descriptors instead, and use qemu_fd_getpagesize().
1685 */
1686 static int find_min_backend_pagesize(Object *obj, void *opaque)
1687 {
1688 long *hpsize_min = opaque;
1689
1690 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1691 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1692 long hpsize = host_memory_backend_pagesize(backend);
1693
1694 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1695 *hpsize_min = hpsize;
1696 }
1697 }
1698
1699 return 0;
1700 }
1701
1702 static int find_max_backend_pagesize(Object *obj, void *opaque)
1703 {
1704 long *hpsize_max = opaque;
1705
1706 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1707 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1708 long hpsize = host_memory_backend_pagesize(backend);
1709
1710 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1711 *hpsize_max = hpsize;
1712 }
1713 }
1714
1715 return 0;
1716 }
1717
1718 /*
1719 * TODO: We assume right now that all mapped host memory backends are
1720 * used as RAM, however some might be used for different purposes.
1721 */
1722 long qemu_minrampagesize(void)
1723 {
1724 long hpsize = LONG_MAX;
1725 long mainrampagesize;
1726 Object *memdev_root;
1727
1728 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1729
1730 /* it's possible we have memory-backend objects with
1731 * hugepage-backed RAM. these may get mapped into system
1732 * address space via -numa parameters or memory hotplug
1733 * hooks. we want to take these into account, but we
1734 * also want to make sure these supported hugepage
1735 * sizes are applicable across the entire range of memory
1736 * we may boot from, so we take the min across all
1737 * backends, and assume normal pages in cases where a
1738 * backend isn't backed by hugepages.
1739 */
1740 memdev_root = object_resolve_path("/objects", NULL);
1741 if (memdev_root) {
1742 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1743 }
1744 if (hpsize == LONG_MAX) {
1745 /* No additional memory regions found ==> Report main RAM page size */
1746 return mainrampagesize;
1747 }
1748
1749 /* If NUMA is disabled or the NUMA nodes are not backed with a
1750 * memory-backend, then there is at least one node using "normal" RAM,
1751 * so if its page size is smaller we have got to report that size instead.
1752 */
1753 if (hpsize > mainrampagesize &&
1754 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1755 static bool warned;
1756 if (!warned) {
1757 error_report("Huge page support disabled (n/a for main memory).");
1758 warned = true;
1759 }
1760 return mainrampagesize;
1761 }
1762
1763 return hpsize;
1764 }
1765
1766 long qemu_maxrampagesize(void)
1767 {
1768 long pagesize = qemu_mempath_getpagesize(mem_path);
1769 Object *memdev_root = object_resolve_path("/objects", NULL);
1770
1771 if (memdev_root) {
1772 object_child_foreach(memdev_root, find_max_backend_pagesize,
1773 &pagesize);
1774 }
1775 return pagesize;
1776 }
1777 #else
1778 long qemu_minrampagesize(void)
1779 {
1780 return getpagesize();
1781 }
1782 long qemu_maxrampagesize(void)
1783 {
1784 return getpagesize();
1785 }
1786 #endif
1787
1788 #ifdef CONFIG_POSIX
1789 static int64_t get_file_size(int fd)
1790 {
1791 int64_t size = lseek(fd, 0, SEEK_END);
1792 if (size < 0) {
1793 return -errno;
1794 }
1795 return size;
1796 }
1797
1798 static int file_ram_open(const char *path,
1799 const char *region_name,
1800 bool *created,
1801 Error **errp)
1802 {
1803 char *filename;
1804 char *sanitized_name;
1805 char *c;
1806 int fd = -1;
1807
1808 *created = false;
1809 for (;;) {
1810 fd = open(path, O_RDWR);
1811 if (fd >= 0) {
1812 /* @path names an existing file, use it */
1813 break;
1814 }
1815 if (errno == ENOENT) {
1816 /* @path names a file that doesn't exist, create it */
1817 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1818 if (fd >= 0) {
1819 *created = true;
1820 break;
1821 }
1822 } else if (errno == EISDIR) {
1823 /* @path names a directory, create a file there */
1824 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1825 sanitized_name = g_strdup(region_name);
1826 for (c = sanitized_name; *c != '\0'; c++) {
1827 if (*c == '/') {
1828 *c = '_';
1829 }
1830 }
1831
1832 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1833 sanitized_name);
1834 g_free(sanitized_name);
1835
1836 fd = mkstemp(filename);
1837 if (fd >= 0) {
1838 unlink(filename);
1839 g_free(filename);
1840 break;
1841 }
1842 g_free(filename);
1843 }
1844 if (errno != EEXIST && errno != EINTR) {
1845 error_setg_errno(errp, errno,
1846 "can't open backing store %s for guest RAM",
1847 path);
1848 return -1;
1849 }
1850 /*
1851 * Try again on EINTR and EEXIST. The latter happens when
1852 * something else creates the file between our two open().
1853 */
1854 }
1855
1856 return fd;
1857 }
1858
1859 static void *file_ram_alloc(RAMBlock *block,
1860 ram_addr_t memory,
1861 int fd,
1862 bool truncate,
1863 Error **errp)
1864 {
1865 MachineState *ms = MACHINE(qdev_get_machine());
1866 void *area;
1867
1868 block->page_size = qemu_fd_getpagesize(fd);
1869 if (block->mr->align % block->page_size) {
1870 error_setg(errp, "alignment 0x%" PRIx64
1871 " must be multiples of page size 0x%zx",
1872 block->mr->align, block->page_size);
1873 return NULL;
1874 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1875 error_setg(errp, "alignment 0x%" PRIx64
1876 " must be a power of two", block->mr->align);
1877 return NULL;
1878 }
1879 block->mr->align = MAX(block->page_size, block->mr->align);
1880 #if defined(__s390x__)
1881 if (kvm_enabled()) {
1882 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1883 }
1884 #endif
1885
1886 if (memory < block->page_size) {
1887 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1888 "or larger than page size 0x%zx",
1889 memory, block->page_size);
1890 return NULL;
1891 }
1892
1893 memory = ROUND_UP(memory, block->page_size);
1894
1895 /*
1896 * ftruncate is not supported by hugetlbfs in older
1897 * hosts, so don't bother bailing out on errors.
1898 * If anything goes wrong with it under other filesystems,
1899 * mmap will fail.
1900 *
1901 * Do not truncate the non-empty backend file to avoid corrupting
1902 * the existing data in the file. Disabling shrinking is not
1903 * enough. For example, the current vNVDIMM implementation stores
1904 * the guest NVDIMM labels at the end of the backend file. If the
1905 * backend file is later extended, QEMU will not be able to find
1906 * those labels. Therefore, extending the non-empty backend file
1907 * is disabled as well.
1908 */
1909 if (truncate && ftruncate(fd, memory)) {
1910 perror("ftruncate");
1911 }
1912
1913 area = qemu_ram_mmap(fd, memory, block->mr->align,
1914 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1915 if (area == MAP_FAILED) {
1916 error_setg_errno(errp, errno,
1917 "unable to map backing store for guest RAM");
1918 return NULL;
1919 }
1920
1921 if (mem_prealloc) {
1922 os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
1923 if (errp && *errp) {
1924 qemu_ram_munmap(fd, area, memory);
1925 return NULL;
1926 }
1927 }
1928
1929 block->fd = fd;
1930 return area;
1931 }
1932 #endif
1933
1934 /* Allocate space within the ram_addr_t space that governs the
1935 * dirty bitmaps.
1936 * Called with the ramlist lock held.
1937 */
1938 static ram_addr_t find_ram_offset(ram_addr_t size)
1939 {
1940 RAMBlock *block, *next_block;
1941 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1942
1943 assert(size != 0); /* it would hand out same offset multiple times */
1944
1945 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1946 return 0;
1947 }
1948
1949 RAMBLOCK_FOREACH(block) {
1950 ram_addr_t candidate, next = RAM_ADDR_MAX;
1951
1952 /* Align blocks to start on a 'long' in the bitmap
1953 * which makes the bitmap sync'ing take the fast path.
1954 */
1955 candidate = block->offset + block->max_length;
1956 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1957
1958 /* Search for the closest following block
1959 * and find the gap.
1960 */
1961 RAMBLOCK_FOREACH(next_block) {
1962 if (next_block->offset >= candidate) {
1963 next = MIN(next, next_block->offset);
1964 }
1965 }
1966
1967 /* If it fits remember our place and remember the size
1968 * of gap, but keep going so that we might find a smaller
1969 * gap to fill so avoiding fragmentation.
1970 */
1971 if (next - candidate >= size && next - candidate < mingap) {
1972 offset = candidate;
1973 mingap = next - candidate;
1974 }
1975
1976 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1977 }
1978
1979 if (offset == RAM_ADDR_MAX) {
1980 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1981 (uint64_t)size);
1982 abort();
1983 }
1984
1985 trace_find_ram_offset(size, offset);
1986
1987 return offset;
1988 }
1989
1990 static unsigned long last_ram_page(void)
1991 {
1992 RAMBlock *block;
1993 ram_addr_t last = 0;
1994
1995 rcu_read_lock();
1996 RAMBLOCK_FOREACH(block) {
1997 last = MAX(last, block->offset + block->max_length);
1998 }
1999 rcu_read_unlock();
2000 return last >> TARGET_PAGE_BITS;
2001 }
2002
2003 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2004 {
2005 int ret;
2006
2007 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2008 if (!machine_dump_guest_core(current_machine)) {
2009 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2010 if (ret) {
2011 perror("qemu_madvise");
2012 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2013 "but dump_guest_core=off specified\n");
2014 }
2015 }
2016 }
2017
2018 const char *qemu_ram_get_idstr(RAMBlock *rb)
2019 {
2020 return rb->idstr;
2021 }
2022
2023 void *qemu_ram_get_host_addr(RAMBlock *rb)
2024 {
2025 return rb->host;
2026 }
2027
2028 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2029 {
2030 return rb->offset;
2031 }
2032
2033 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2034 {
2035 return rb->used_length;
2036 }
2037
2038 bool qemu_ram_is_shared(RAMBlock *rb)
2039 {
2040 return rb->flags & RAM_SHARED;
2041 }
2042
2043 /* Note: Only set at the start of postcopy */
2044 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2045 {
2046 return rb->flags & RAM_UF_ZEROPAGE;
2047 }
2048
2049 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2050 {
2051 rb->flags |= RAM_UF_ZEROPAGE;
2052 }
2053
2054 bool qemu_ram_is_migratable(RAMBlock *rb)
2055 {
2056 return rb->flags & RAM_MIGRATABLE;
2057 }
2058
2059 void qemu_ram_set_migratable(RAMBlock *rb)
2060 {
2061 rb->flags |= RAM_MIGRATABLE;
2062 }
2063
2064 void qemu_ram_unset_migratable(RAMBlock *rb)
2065 {
2066 rb->flags &= ~RAM_MIGRATABLE;
2067 }
2068
2069 /* Called with iothread lock held. */
2070 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2071 {
2072 RAMBlock *block;
2073
2074 assert(new_block);
2075 assert(!new_block->idstr[0]);
2076
2077 if (dev) {
2078 char *id = qdev_get_dev_path(dev);
2079 if (id) {
2080 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2081 g_free(id);
2082 }
2083 }
2084 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2085
2086 rcu_read_lock();
2087 RAMBLOCK_FOREACH(block) {
2088 if (block != new_block &&
2089 !strcmp(block->idstr, new_block->idstr)) {
2090 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2091 new_block->idstr);
2092 abort();
2093 }
2094 }
2095 rcu_read_unlock();
2096 }
2097
2098 /* Called with iothread lock held. */
2099 void qemu_ram_unset_idstr(RAMBlock *block)
2100 {
2101 /* FIXME: arch_init.c assumes that this is not called throughout
2102 * migration. Ignore the problem since hot-unplug during migration
2103 * does not work anyway.
2104 */
2105 if (block) {
2106 memset(block->idstr, 0, sizeof(block->idstr));
2107 }
2108 }
2109
2110 size_t qemu_ram_pagesize(RAMBlock *rb)
2111 {
2112 return rb->page_size;
2113 }
2114
2115 /* Returns the largest size of page in use */
2116 size_t qemu_ram_pagesize_largest(void)
2117 {
2118 RAMBlock *block;
2119 size_t largest = 0;
2120
2121 RAMBLOCK_FOREACH(block) {
2122 largest = MAX(largest, qemu_ram_pagesize(block));
2123 }
2124
2125 return largest;
2126 }
2127
2128 static int memory_try_enable_merging(void *addr, size_t len)
2129 {
2130 if (!machine_mem_merge(current_machine)) {
2131 /* disabled by the user */
2132 return 0;
2133 }
2134
2135 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2136 }
2137
2138 /* Only legal before guest might have detected the memory size: e.g. on
2139 * incoming migration, or right after reset.
2140 *
2141 * As memory core doesn't know how is memory accessed, it is up to
2142 * resize callback to update device state and/or add assertions to detect
2143 * misuse, if necessary.
2144 */
2145 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2146 {
2147 assert(block);
2148
2149 newsize = HOST_PAGE_ALIGN(newsize);
2150
2151 if (block->used_length == newsize) {
2152 return 0;
2153 }
2154
2155 if (!(block->flags & RAM_RESIZEABLE)) {
2156 error_setg_errno(errp, EINVAL,
2157 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2158 " in != 0x" RAM_ADDR_FMT, block->idstr,
2159 newsize, block->used_length);
2160 return -EINVAL;
2161 }
2162
2163 if (block->max_length < newsize) {
2164 error_setg_errno(errp, EINVAL,
2165 "Length too large: %s: 0x" RAM_ADDR_FMT
2166 " > 0x" RAM_ADDR_FMT, block->idstr,
2167 newsize, block->max_length);
2168 return -EINVAL;
2169 }
2170
2171 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2172 block->used_length = newsize;
2173 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2174 DIRTY_CLIENTS_ALL);
2175 memory_region_set_size(block->mr, newsize);
2176 if (block->resized) {
2177 block->resized(block->idstr, newsize, block->host);
2178 }
2179 return 0;
2180 }
2181
2182 /* Called with ram_list.mutex held */
2183 static void dirty_memory_extend(ram_addr_t old_ram_size,
2184 ram_addr_t new_ram_size)
2185 {
2186 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2187 DIRTY_MEMORY_BLOCK_SIZE);
2188 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2189 DIRTY_MEMORY_BLOCK_SIZE);
2190 int i;
2191
2192 /* Only need to extend if block count increased */
2193 if (new_num_blocks <= old_num_blocks) {
2194 return;
2195 }
2196
2197 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2198 DirtyMemoryBlocks *old_blocks;
2199 DirtyMemoryBlocks *new_blocks;
2200 int j;
2201
2202 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2203 new_blocks = g_malloc(sizeof(*new_blocks) +
2204 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2205
2206 if (old_num_blocks) {
2207 memcpy(new_blocks->blocks, old_blocks->blocks,
2208 old_num_blocks * sizeof(old_blocks->blocks[0]));
2209 }
2210
2211 for (j = old_num_blocks; j < new_num_blocks; j++) {
2212 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2213 }
2214
2215 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2216
2217 if (old_blocks) {
2218 g_free_rcu(old_blocks, rcu);
2219 }
2220 }
2221 }
2222
2223 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2224 {
2225 RAMBlock *block;
2226 RAMBlock *last_block = NULL;
2227 ram_addr_t old_ram_size, new_ram_size;
2228 Error *err = NULL;
2229
2230 old_ram_size = last_ram_page();
2231
2232 qemu_mutex_lock_ramlist();
2233 new_block->offset = find_ram_offset(new_block->max_length);
2234
2235 if (!new_block->host) {
2236 if (xen_enabled()) {
2237 xen_ram_alloc(new_block->offset, new_block->max_length,
2238 new_block->mr, &err);
2239 if (err) {
2240 error_propagate(errp, err);
2241 qemu_mutex_unlock_ramlist();
2242 return;
2243 }
2244 } else {
2245 new_block->host = phys_mem_alloc(new_block->max_length,
2246 &new_block->mr->align, shared);
2247 if (!new_block->host) {
2248 error_setg_errno(errp, errno,
2249 "cannot set up guest memory '%s'",
2250 memory_region_name(new_block->mr));
2251 qemu_mutex_unlock_ramlist();
2252 return;
2253 }
2254 memory_try_enable_merging(new_block->host, new_block->max_length);
2255 }
2256 }
2257
2258 new_ram_size = MAX(old_ram_size,
2259 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2260 if (new_ram_size > old_ram_size) {
2261 dirty_memory_extend(old_ram_size, new_ram_size);
2262 }
2263 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2264 * QLIST (which has an RCU-friendly variant) does not have insertion at
2265 * tail, so save the last element in last_block.
2266 */
2267 RAMBLOCK_FOREACH(block) {
2268 last_block = block;
2269 if (block->max_length < new_block->max_length) {
2270 break;
2271 }
2272 }
2273 if (block) {
2274 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2275 } else if (last_block) {
2276 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2277 } else { /* list is empty */
2278 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2279 }
2280 ram_list.mru_block = NULL;
2281
2282 /* Write list before version */
2283 smp_wmb();
2284 ram_list.version++;
2285 qemu_mutex_unlock_ramlist();
2286
2287 cpu_physical_memory_set_dirty_range(new_block->offset,
2288 new_block->used_length,
2289 DIRTY_CLIENTS_ALL);
2290
2291 if (new_block->host) {
2292 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2293 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2294 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2295 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2296 ram_block_notify_add(new_block->host, new_block->max_length);
2297 }
2298 }
2299
2300 #ifdef CONFIG_POSIX
2301 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2302 uint32_t ram_flags, int fd,
2303 Error **errp)
2304 {
2305 RAMBlock *new_block;
2306 Error *local_err = NULL;
2307 int64_t file_size;
2308
2309 /* Just support these ram flags by now. */
2310 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2311
2312 if (xen_enabled()) {
2313 error_setg(errp, "-mem-path not supported with Xen");
2314 return NULL;
2315 }
2316
2317 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2318 error_setg(errp,
2319 "host lacks kvm mmu notifiers, -mem-path unsupported");
2320 return NULL;
2321 }
2322
2323 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2324 /*
2325 * file_ram_alloc() needs to allocate just like
2326 * phys_mem_alloc, but we haven't bothered to provide
2327 * a hook there.
2328 */
2329 error_setg(errp,
2330 "-mem-path not supported with this accelerator");
2331 return NULL;
2332 }
2333
2334 size = HOST_PAGE_ALIGN(size);
2335 file_size = get_file_size(fd);
2336 if (file_size > 0 && file_size < size) {
2337 error_setg(errp, "backing store %s size 0x%" PRIx64
2338 " does not match 'size' option 0x" RAM_ADDR_FMT,
2339 mem_path, file_size, size);
2340 return NULL;
2341 }
2342
2343 new_block = g_malloc0(sizeof(*new_block));
2344 new_block->mr = mr;
2345 new_block->used_length = size;
2346 new_block->max_length = size;
2347 new_block->flags = ram_flags;
2348 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2349 if (!new_block->host) {
2350 g_free(new_block);
2351 return NULL;
2352 }
2353
2354 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2355 if (local_err) {
2356 g_free(new_block);
2357 error_propagate(errp, local_err);
2358 return NULL;
2359 }
2360 return new_block;
2361
2362 }
2363
2364
2365 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2366 uint32_t ram_flags, const char *mem_path,
2367 Error **errp)
2368 {
2369 int fd;
2370 bool created;
2371 RAMBlock *block;
2372
2373 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2374 if (fd < 0) {
2375 return NULL;
2376 }
2377
2378 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2379 if (!block) {
2380 if (created) {
2381 unlink(mem_path);
2382 }
2383 close(fd);
2384 return NULL;
2385 }
2386
2387 return block;
2388 }
2389 #endif
2390
2391 static
2392 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2393 void (*resized)(const char*,
2394 uint64_t length,
2395 void *host),
2396 void *host, bool resizeable, bool share,
2397 MemoryRegion *mr, Error **errp)
2398 {
2399 RAMBlock *new_block;
2400 Error *local_err = NULL;
2401
2402 size = HOST_PAGE_ALIGN(size);
2403 max_size = HOST_PAGE_ALIGN(max_size);
2404 new_block = g_malloc0(sizeof(*new_block));
2405 new_block->mr = mr;
2406 new_block->resized = resized;
2407 new_block->used_length = size;
2408 new_block->max_length = max_size;
2409 assert(max_size >= size);
2410 new_block->fd = -1;
2411 new_block->page_size = getpagesize();
2412 new_block->host = host;
2413 if (host) {
2414 new_block->flags |= RAM_PREALLOC;
2415 }
2416 if (resizeable) {
2417 new_block->flags |= RAM_RESIZEABLE;
2418 }
2419 ram_block_add(new_block, &local_err, share);
2420 if (local_err) {
2421 g_free(new_block);
2422 error_propagate(errp, local_err);
2423 return NULL;
2424 }
2425 return new_block;
2426 }
2427
2428 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2429 MemoryRegion *mr, Error **errp)
2430 {
2431 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2432 false, mr, errp);
2433 }
2434
2435 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2436 MemoryRegion *mr, Error **errp)
2437 {
2438 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2439 share, mr, errp);
2440 }
2441
2442 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2443 void (*resized)(const char*,
2444 uint64_t length,
2445 void *host),
2446 MemoryRegion *mr, Error **errp)
2447 {
2448 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2449 false, mr, errp);
2450 }
2451
2452 static void reclaim_ramblock(RAMBlock *block)
2453 {
2454 if (block->flags & RAM_PREALLOC) {
2455 ;
2456 } else if (xen_enabled()) {
2457 xen_invalidate_map_cache_entry(block->host);
2458 #ifndef _WIN32
2459 } else if (block->fd >= 0) {
2460 qemu_ram_munmap(block->fd, block->host, block->max_length);
2461 close(block->fd);
2462 #endif
2463 } else {
2464 qemu_anon_ram_free(block->host, block->max_length);
2465 }
2466 g_free(block);
2467 }
2468
2469 void qemu_ram_free(RAMBlock *block)
2470 {
2471 if (!block) {
2472 return;
2473 }
2474
2475 if (block->host) {
2476 ram_block_notify_remove(block->host, block->max_length);
2477 }
2478
2479 qemu_mutex_lock_ramlist();
2480 QLIST_REMOVE_RCU(block, next);
2481 ram_list.mru_block = NULL;
2482 /* Write list before version */
2483 smp_wmb();
2484 ram_list.version++;
2485 call_rcu(block, reclaim_ramblock, rcu);
2486 qemu_mutex_unlock_ramlist();
2487 }
2488
2489 #ifndef _WIN32
2490 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2491 {
2492 RAMBlock *block;
2493 ram_addr_t offset;
2494 int flags;
2495 void *area, *vaddr;
2496
2497 RAMBLOCK_FOREACH(block) {
2498 offset = addr - block->offset;
2499 if (offset < block->max_length) {
2500 vaddr = ramblock_ptr(block, offset);
2501 if (block->flags & RAM_PREALLOC) {
2502 ;
2503 } else if (xen_enabled()) {
2504 abort();
2505 } else {
2506 flags = MAP_FIXED;
2507 if (block->fd >= 0) {
2508 flags |= (block->flags & RAM_SHARED ?
2509 MAP_SHARED : MAP_PRIVATE);
2510 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2511 flags, block->fd, offset);
2512 } else {
2513 /*
2514 * Remap needs to match alloc. Accelerators that
2515 * set phys_mem_alloc never remap. If they did,
2516 * we'd need a remap hook here.
2517 */
2518 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2519
2520 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2521 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2522 flags, -1, 0);
2523 }
2524 if (area != vaddr) {
2525 error_report("Could not remap addr: "
2526 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2527 length, addr);
2528 exit(1);
2529 }
2530 memory_try_enable_merging(vaddr, length);
2531 qemu_ram_setup_dump(vaddr, length);
2532 }
2533 }
2534 }
2535 }
2536 #endif /* !_WIN32 */
2537
2538 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2539 * This should not be used for general purpose DMA. Use address_space_map
2540 * or address_space_rw instead. For local memory (e.g. video ram) that the
2541 * device owns, use memory_region_get_ram_ptr.
2542 *
2543 * Called within RCU critical section.
2544 */
2545 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2546 {
2547 RAMBlock *block = ram_block;
2548
2549 if (block == NULL) {
2550 block = qemu_get_ram_block(addr);
2551 addr -= block->offset;
2552 }
2553
2554 if (xen_enabled() && block->host == NULL) {
2555 /* We need to check if the requested address is in the RAM
2556 * because we don't want to map the entire memory in QEMU.
2557 * In that case just map until the end of the page.
2558 */
2559 if (block->offset == 0) {
2560 return xen_map_cache(addr, 0, 0, false);
2561 }
2562
2563 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2564 }
2565 return ramblock_ptr(block, addr);
2566 }
2567
2568 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2569 * but takes a size argument.
2570 *
2571 * Called within RCU critical section.
2572 */
2573 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2574 hwaddr *size, bool lock)
2575 {
2576 RAMBlock *block = ram_block;
2577 if (*size == 0) {
2578 return NULL;
2579 }
2580
2581 if (block == NULL) {
2582 block = qemu_get_ram_block(addr);
2583 addr -= block->offset;
2584 }
2585 *size = MIN(*size, block->max_length - addr);
2586
2587 if (xen_enabled() && block->host == NULL) {
2588 /* We need to check if the requested address is in the RAM
2589 * because we don't want to map the entire memory in QEMU.
2590 * In that case just map the requested area.
2591 */
2592 if (block->offset == 0) {
2593 return xen_map_cache(addr, *size, lock, lock);
2594 }
2595
2596 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2597 }
2598
2599 return ramblock_ptr(block, addr);
2600 }
2601
2602 /* Return the offset of a hostpointer within a ramblock */
2603 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2604 {
2605 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2606 assert((uintptr_t)host >= (uintptr_t)rb->host);
2607 assert(res < rb->max_length);
2608
2609 return res;
2610 }
2611
2612 /*
2613 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2614 * in that RAMBlock.
2615 *
2616 * ptr: Host pointer to look up
2617 * round_offset: If true round the result offset down to a page boundary
2618 * *ram_addr: set to result ram_addr
2619 * *offset: set to result offset within the RAMBlock
2620 *
2621 * Returns: RAMBlock (or NULL if not found)
2622 *
2623 * By the time this function returns, the returned pointer is not protected
2624 * by RCU anymore. If the caller is not within an RCU critical section and
2625 * does not hold the iothread lock, it must have other means of protecting the
2626 * pointer, such as a reference to the region that includes the incoming
2627 * ram_addr_t.
2628 */
2629 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2630 ram_addr_t *offset)
2631 {
2632 RAMBlock *block;
2633 uint8_t *host = ptr;
2634
2635 if (xen_enabled()) {
2636 ram_addr_t ram_addr;
2637 rcu_read_lock();
2638 ram_addr = xen_ram_addr_from_mapcache(ptr);
2639 block = qemu_get_ram_block(ram_addr);
2640 if (block) {
2641 *offset = ram_addr - block->offset;
2642 }
2643 rcu_read_unlock();
2644 return block;
2645 }
2646
2647 rcu_read_lock();
2648 block = atomic_rcu_read(&ram_list.mru_block);
2649 if (block && block->host && host - block->host < block->max_length) {
2650 goto found;
2651 }
2652
2653 RAMBLOCK_FOREACH(block) {
2654 /* This case append when the block is not mapped. */
2655 if (block->host == NULL) {
2656 continue;
2657 }
2658 if (host - block->host < block->max_length) {
2659 goto found;
2660 }
2661 }
2662
2663 rcu_read_unlock();
2664 return NULL;
2665
2666 found:
2667 *offset = (host - block->host);
2668 if (round_offset) {
2669 *offset &= TARGET_PAGE_MASK;
2670 }
2671 rcu_read_unlock();
2672 return block;
2673 }
2674
2675 /*
2676 * Finds the named RAMBlock
2677 *
2678 * name: The name of RAMBlock to find
2679 *
2680 * Returns: RAMBlock (or NULL if not found)
2681 */
2682 RAMBlock *qemu_ram_block_by_name(const char *name)
2683 {
2684 RAMBlock *block;
2685
2686 RAMBLOCK_FOREACH(block) {
2687 if (!strcmp(name, block->idstr)) {
2688 return block;
2689 }
2690 }
2691
2692 return NULL;
2693 }
2694
2695 /* Some of the softmmu routines need to translate from a host pointer
2696 (typically a TLB entry) back to a ram offset. */
2697 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2698 {
2699 RAMBlock *block;
2700 ram_addr_t offset;
2701
2702 block = qemu_ram_block_from_host(ptr, false, &offset);
2703 if (!block) {
2704 return RAM_ADDR_INVALID;
2705 }
2706
2707 return block->offset + offset;
2708 }
2709
2710 /* Called within RCU critical section. */
2711 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2712 CPUState *cpu,
2713 vaddr mem_vaddr,
2714 ram_addr_t ram_addr,
2715 unsigned size)
2716 {
2717 ndi->cpu = cpu;
2718 ndi->ram_addr = ram_addr;
2719 ndi->mem_vaddr = mem_vaddr;
2720 ndi->size = size;
2721 ndi->pages = NULL;
2722
2723 assert(tcg_enabled());
2724 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2725 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2726 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2727 }
2728 }
2729
2730 /* Called within RCU critical section. */
2731 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2732 {
2733 if (ndi->pages) {
2734 assert(tcg_enabled());
2735 page_collection_unlock(ndi->pages);
2736 ndi->pages = NULL;
2737 }
2738
2739 /* Set both VGA and migration bits for simplicity and to remove
2740 * the notdirty callback faster.
2741 */
2742 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2743 DIRTY_CLIENTS_NOCODE);
2744 /* we remove the notdirty callback only if the code has been
2745 flushed */
2746 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2747 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2748 }
2749 }
2750
2751 /* Called within RCU critical section. */
2752 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2753 uint64_t val, unsigned size)
2754 {
2755 NotDirtyInfo ndi;
2756
2757 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2758 ram_addr, size);
2759
2760 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2761 memory_notdirty_write_complete(&ndi);
2762 }
2763
2764 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2765 unsigned size, bool is_write,
2766 MemTxAttrs attrs)
2767 {
2768 return is_write;
2769 }
2770
2771 static const MemoryRegionOps notdirty_mem_ops = {
2772 .write = notdirty_mem_write,
2773 .valid.accepts = notdirty_mem_accepts,
2774 .endianness = DEVICE_NATIVE_ENDIAN,
2775 .valid = {
2776 .min_access_size = 1,
2777 .max_access_size = 8,
2778 .unaligned = false,
2779 },
2780 .impl = {
2781 .min_access_size = 1,
2782 .max_access_size = 8,
2783 .unaligned = false,
2784 },
2785 };
2786
2787 /* Generate a debug exception if a watchpoint has been hit. */
2788 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2789 MemTxAttrs attrs, int flags, uintptr_t ra)
2790 {
2791 CPUClass *cc = CPU_GET_CLASS(cpu);
2792 CPUWatchpoint *wp;
2793
2794 assert(tcg_enabled());
2795 if (cpu->watchpoint_hit) {
2796 /*
2797 * We re-entered the check after replacing the TB.
2798 * Now raise the debug interrupt so that it will
2799 * trigger after the current instruction.
2800 */
2801 qemu_mutex_lock_iothread();
2802 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2803 qemu_mutex_unlock_iothread();
2804 return;
2805 }
2806
2807 addr = cc->adjust_watchpoint_address(cpu, addr, len);
2808 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2809 if (watchpoint_address_matches(wp, addr, len)
2810 && (wp->flags & flags)) {
2811 if (flags == BP_MEM_READ) {
2812 wp->flags |= BP_WATCHPOINT_HIT_READ;
2813 } else {
2814 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2815 }
2816 wp->hitaddr = MAX(addr, wp->vaddr);
2817 wp->hitattrs = attrs;
2818 if (!cpu->watchpoint_hit) {
2819 if (wp->flags & BP_CPU &&
2820 !cc->debug_check_watchpoint(cpu, wp)) {
2821 wp->flags &= ~BP_WATCHPOINT_HIT;
2822 continue;
2823 }
2824 cpu->watchpoint_hit = wp;
2825
2826 mmap_lock();
2827 tb_check_watchpoint(cpu);
2828 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2829 cpu->exception_index = EXCP_DEBUG;
2830 mmap_unlock();
2831 cpu_loop_exit_restore(cpu, ra);
2832 } else {
2833 /* Force execution of one insn next time. */
2834 cpu->cflags_next_tb = 1 | curr_cflags();
2835 mmap_unlock();
2836 if (ra) {
2837 cpu_restore_state(cpu, ra, true);
2838 }
2839 cpu_loop_exit_noexc(cpu);
2840 }
2841 }
2842 } else {
2843 wp->flags &= ~BP_WATCHPOINT_HIT;
2844 }
2845 }
2846 }
2847
2848 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2849 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2850 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2851 const uint8_t *buf, hwaddr len);
2852 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2853 bool is_write, MemTxAttrs attrs);
2854
2855 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2856 unsigned len, MemTxAttrs attrs)
2857 {
2858 subpage_t *subpage = opaque;
2859 uint8_t buf[8];
2860 MemTxResult res;
2861
2862 #if defined(DEBUG_SUBPAGE)
2863 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2864 subpage, len, addr);
2865 #endif
2866 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2867 if (res) {
2868 return res;
2869 }
2870 *data = ldn_p(buf, len);
2871 return MEMTX_OK;
2872 }
2873
2874 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2875 uint64_t value, unsigned len, MemTxAttrs attrs)
2876 {
2877 subpage_t *subpage = opaque;
2878 uint8_t buf[8];
2879
2880 #if defined(DEBUG_SUBPAGE)
2881 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2882 " value %"PRIx64"\n",
2883 __func__, subpage, len, addr, value);
2884 #endif
2885 stn_p(buf, len, value);
2886 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2887 }
2888
2889 static bool subpage_accepts(void *opaque, hwaddr addr,
2890 unsigned len, bool is_write,
2891 MemTxAttrs attrs)
2892 {
2893 subpage_t *subpage = opaque;
2894 #if defined(DEBUG_SUBPAGE)
2895 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2896 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2897 #endif
2898
2899 return flatview_access_valid(subpage->fv, addr + subpage->base,
2900 len, is_write, attrs);
2901 }
2902
2903 static const MemoryRegionOps subpage_ops = {
2904 .read_with_attrs = subpage_read,
2905 .write_with_attrs = subpage_write,
2906 .impl.min_access_size = 1,
2907 .impl.max_access_size = 8,
2908 .valid.min_access_size = 1,
2909 .valid.max_access_size = 8,
2910 .valid.accepts = subpage_accepts,
2911 .endianness = DEVICE_NATIVE_ENDIAN,
2912 };
2913
2914 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2915 uint16_t section)
2916 {
2917 int idx, eidx;
2918
2919 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2920 return -1;
2921 idx = SUBPAGE_IDX(start);
2922 eidx = SUBPAGE_IDX(end);
2923 #if defined(DEBUG_SUBPAGE)
2924 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2925 __func__, mmio, start, end, idx, eidx, section);
2926 #endif
2927 for (; idx <= eidx; idx++) {
2928 mmio->sub_section[idx] = section;
2929 }
2930
2931 return 0;
2932 }
2933
2934 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2935 {
2936 subpage_t *mmio;
2937
2938 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2939 mmio->fv = fv;
2940 mmio->base = base;
2941 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2942 NULL, TARGET_PAGE_SIZE);
2943 mmio->iomem.subpage = true;
2944 #if defined(DEBUG_SUBPAGE)
2945 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2946 mmio, base, TARGET_PAGE_SIZE);
2947 #endif
2948 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2949
2950 return mmio;
2951 }
2952
2953 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2954 {
2955 assert(fv);
2956 MemoryRegionSection section = {
2957 .fv = fv,
2958 .mr = mr,
2959 .offset_within_address_space = 0,
2960 .offset_within_region = 0,
2961 .size = int128_2_64(),
2962 };
2963
2964 return phys_section_add(map, &section);
2965 }
2966
2967 static void readonly_mem_write(void *opaque, hwaddr addr,
2968 uint64_t val, unsigned size)
2969 {
2970 /* Ignore any write to ROM. */
2971 }
2972
2973 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2974 unsigned size, bool is_write,
2975 MemTxAttrs attrs)
2976 {
2977 return is_write;
2978 }
2979
2980 /* This will only be used for writes, because reads are special cased
2981 * to directly access the underlying host ram.
2982 */
2983 static const MemoryRegionOps readonly_mem_ops = {
2984 .write = readonly_mem_write,
2985 .valid.accepts = readonly_mem_accepts,
2986 .endianness = DEVICE_NATIVE_ENDIAN,
2987 .valid = {
2988 .min_access_size = 1,
2989 .max_access_size = 8,
2990 .unaligned = false,
2991 },
2992 .impl = {
2993 .min_access_size = 1,
2994 .max_access_size = 8,
2995 .unaligned = false,
2996 },
2997 };
2998
2999 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3000 hwaddr index, MemTxAttrs attrs)
3001 {
3002 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3003 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3004 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3005 MemoryRegionSection *sections = d->map.sections;
3006
3007 return &sections[index & ~TARGET_PAGE_MASK];
3008 }
3009
3010 static void io_mem_init(void)
3011 {
3012 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3013 NULL, NULL, UINT64_MAX);
3014 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3015 NULL, UINT64_MAX);
3016
3017 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3018 * which can be called without the iothread mutex.
3019 */
3020 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3021 NULL, UINT64_MAX);
3022 memory_region_clear_global_locking(&io_mem_notdirty);
3023 }
3024
3025 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3026 {
3027 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3028 uint16_t n;
3029
3030 n = dummy_section(&d->map, fv, &io_mem_unassigned);
3031 assert(n == PHYS_SECTION_UNASSIGNED);
3032 n = dummy_section(&d->map, fv, &io_mem_notdirty);
3033 assert(n == PHYS_SECTION_NOTDIRTY);
3034 n = dummy_section(&d->map, fv, &io_mem_rom);
3035 assert(n == PHYS_SECTION_ROM);
3036
3037 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3038
3039 return d;
3040 }
3041
3042 void address_space_dispatch_free(AddressSpaceDispatch *d)
3043 {
3044 phys_sections_free(&d->map);
3045 g_free(d);
3046 }
3047
3048 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
3049 {
3050 }
3051
3052 static void tcg_log_global_after_sync(MemoryListener *listener)
3053 {
3054 CPUAddressSpace *cpuas;
3055
3056 /* Wait for the CPU to end the current TB. This avoids the following
3057 * incorrect race:
3058 *
3059 * vCPU migration
3060 * ---------------------- -------------------------
3061 * TLB check -> slow path
3062 * notdirty_mem_write
3063 * write to RAM
3064 * mark dirty
3065 * clear dirty flag
3066 * TLB check -> fast path
3067 * read memory
3068 * write to RAM
3069 *
3070 * by pushing the migration thread's memory read after the vCPU thread has
3071 * written the memory.
3072 */
3073 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3074 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
3075 }
3076
3077 static void tcg_commit(MemoryListener *listener)
3078 {
3079 CPUAddressSpace *cpuas;
3080 AddressSpaceDispatch *d;
3081
3082 assert(tcg_enabled());
3083 /* since each CPU stores ram addresses in its TLB cache, we must
3084 reset the modified entries */
3085 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3086 cpu_reloading_memory_map();
3087 /* The CPU and TLB are protected by the iothread lock.
3088 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3089 * may have split the RCU critical section.
3090 */
3091 d = address_space_to_dispatch(cpuas->as);
3092 atomic_rcu_set(&cpuas->memory_dispatch, d);
3093 tlb_flush(cpuas->cpu);
3094 }
3095
3096 static void memory_map_init(void)
3097 {
3098 system_memory = g_malloc(sizeof(*system_memory));
3099
3100 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3101 address_space_init(&address_space_memory, system_memory, "memory");
3102
3103 system_io = g_malloc(sizeof(*system_io));
3104 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3105 65536);
3106 address_space_init(&address_space_io, system_io, "I/O");
3107 }
3108
3109 MemoryRegion *get_system_memory(void)
3110 {
3111 return system_memory;
3112 }
3113
3114 MemoryRegion *get_system_io(void)
3115 {
3116 return system_io;
3117 }
3118
3119 #endif /* !defined(CONFIG_USER_ONLY) */
3120
3121 /* physical memory access (slow version, mainly for debug) */
3122 #if defined(CONFIG_USER_ONLY)
3123 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3124 uint8_t *buf, target_ulong len, int is_write)
3125 {
3126 int flags;
3127 target_ulong l, page;
3128 void * p;
3129
3130 while (len > 0) {
3131 page = addr & TARGET_PAGE_MASK;
3132 l = (page + TARGET_PAGE_SIZE) - addr;
3133 if (l > len)
3134 l = len;
3135 flags = page_get_flags(page);
3136 if (!(flags & PAGE_VALID))
3137 return -1;
3138 if (is_write) {
3139 if (!(flags & PAGE_WRITE))
3140 return -1;
3141 /* XXX: this code should not depend on lock_user */
3142 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3143 return -1;
3144 memcpy(p, buf, l);
3145 unlock_user(p, addr, l);
3146 } else {
3147 if (!(flags & PAGE_READ))
3148 return -1;
3149 /* XXX: this code should not depend on lock_user */
3150 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3151 return -1;
3152 memcpy(buf, p, l);
3153 unlock_user(p, addr, 0);
3154 }
3155 len -= l;
3156 buf += l;
3157 addr += l;
3158 }
3159 return 0;
3160 }
3161
3162 #else
3163
3164 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3165 hwaddr length)
3166 {
3167 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3168 addr += memory_region_get_ram_addr(mr);
3169
3170 /* No early return if dirty_log_mask is or becomes 0, because
3171 * cpu_physical_memory_set_dirty_range will still call
3172 * xen_modified_memory.
3173 */
3174 if (dirty_log_mask) {
3175 dirty_log_mask =
3176 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3177 }
3178 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3179 assert(tcg_enabled());
3180 tb_invalidate_phys_range(addr, addr + length);
3181 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3182 }
3183 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3184 }
3185
3186 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3187 {
3188 /*
3189 * In principle this function would work on other memory region types too,
3190 * but the ROM device use case is the only one where this operation is
3191 * necessary. Other memory regions should use the
3192 * address_space_read/write() APIs.
3193 */
3194 assert(memory_region_is_romd(mr));
3195
3196 invalidate_and_set_dirty(mr, addr, size);
3197 }
3198
3199 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3200 {
3201 unsigned access_size_max = mr->ops->valid.max_access_size;
3202
3203 /* Regions are assumed to support 1-4 byte accesses unless
3204 otherwise specified. */
3205 if (access_size_max == 0) {
3206 access_size_max = 4;
3207 }
3208
3209 /* Bound the maximum access by the alignment of the address. */
3210 if (!mr->ops->impl.unaligned) {
3211 unsigned align_size_max = addr & -addr;
3212 if (align_size_max != 0 && align_size_max < access_size_max) {
3213 access_size_max = align_size_max;
3214 }
3215 }
3216
3217 /* Don't attempt accesses larger than the maximum. */
3218 if (l > access_size_max) {
3219 l = access_size_max;
3220 }
3221 l = pow2floor(l);
3222
3223 return l;
3224 }
3225
3226 static bool prepare_mmio_access(MemoryRegion *mr)
3227 {
3228 bool unlocked = !qemu_mutex_iothread_locked();
3229 bool release_lock = false;
3230
3231 if (unlocked && mr->global_locking) {
3232 qemu_mutex_lock_iothread();
3233 unlocked = false;
3234 release_lock = true;
3235 }
3236 if (mr->flush_coalesced_mmio) {
3237 if (unlocked) {
3238 qemu_mutex_lock_iothread();
3239 }
3240 qemu_flush_coalesced_mmio_buffer();
3241 if (unlocked) {
3242 qemu_mutex_unlock_iothread();
3243 }
3244 }
3245
3246 return release_lock;
3247 }
3248
3249 /* Called within RCU critical section. */
3250 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3251 MemTxAttrs attrs,
3252 const uint8_t *buf,
3253 hwaddr len, hwaddr addr1,
3254 hwaddr l, MemoryRegion *mr)
3255 {
3256 uint8_t *ptr;
3257 uint64_t val;
3258 MemTxResult result = MEMTX_OK;
3259 bool release_lock = false;
3260
3261 for (;;) {
3262 if (!memory_access_is_direct(mr, true)) {
3263 release_lock |= prepare_mmio_access(mr);
3264 l = memory_access_size(mr, l, addr1);
3265 /* XXX: could force current_cpu to NULL to avoid
3266 potential bugs */
3267 val = ldn_he_p(buf, l);
3268 result |= memory_region_dispatch_write(mr, addr1, val,
3269 size_memop(l), attrs);
3270 } else {
3271 /* RAM case */
3272 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3273 memcpy(ptr, buf, l);
3274 invalidate_and_set_dirty(mr, addr1, l);
3275 }
3276
3277 if (release_lock) {
3278 qemu_mutex_unlock_iothread();
3279 release_lock = false;
3280 }
3281
3282 len -= l;
3283 buf += l;
3284 addr += l;
3285
3286 if (!len) {
3287 break;
3288 }
3289
3290 l = len;
3291 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3292 }
3293
3294 return result;
3295 }
3296
3297 /* Called from RCU critical section. */
3298 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3299 const uint8_t *buf, hwaddr len)
3300 {
3301 hwaddr l;
3302 hwaddr addr1;
3303 MemoryRegion *mr;
3304 MemTxResult result = MEMTX_OK;
3305
3306 l = len;
3307 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3308 result = flatview_write_continue(fv, addr, attrs, buf, len,
3309 addr1, l, mr);
3310
3311 return result;
3312 }
3313
3314 /* Called within RCU critical section. */
3315 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3316 MemTxAttrs attrs, uint8_t *buf,
3317 hwaddr len, hwaddr addr1, hwaddr l,
3318 MemoryRegion *mr)
3319 {
3320 uint8_t *ptr;
3321 uint64_t val;
3322 MemTxResult result = MEMTX_OK;
3323 bool release_lock = false;
3324
3325 for (;;) {
3326 if (!memory_access_is_direct(mr, false)) {
3327 /* I/O case */
3328 release_lock |= prepare_mmio_access(mr);
3329 l = memory_access_size(mr, l, addr1);
3330 result |= memory_region_dispatch_read(mr, addr1, &val,
3331 size_memop(l), attrs);
3332 stn_he_p(buf, l, val);
3333 } else {
3334 /* RAM case */
3335 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3336 memcpy(buf, ptr, l);
3337 }
3338
3339 if (release_lock) {
3340 qemu_mutex_unlock_iothread();
3341 release_lock = false;
3342 }
3343
3344 len -= l;
3345 buf += l;
3346 addr += l;
3347
3348 if (!len) {
3349 break;
3350 }
3351
3352 l = len;
3353 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3354 }
3355
3356 return result;
3357 }
3358
3359 /* Called from RCU critical section. */
3360 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3361 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3362 {
3363 hwaddr l;
3364 hwaddr addr1;
3365 MemoryRegion *mr;
3366
3367 l = len;
3368 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3369 return flatview_read_continue(fv, addr, attrs, buf, len,
3370 addr1, l, mr);
3371 }
3372
3373 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3374 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3375 {
3376 MemTxResult result = MEMTX_OK;
3377 FlatView *fv;
3378
3379 if (len > 0) {
3380 rcu_read_lock();
3381 fv = address_space_to_flatview(as);
3382 result = flatview_read(fv, addr, attrs, buf, len);
3383 rcu_read_unlock();
3384 }
3385
3386 return result;
3387 }
3388
3389 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3390 MemTxAttrs attrs,
3391 const uint8_t *buf, hwaddr len)
3392 {
3393 MemTxResult result = MEMTX_OK;
3394 FlatView *fv;
3395
3396 if (len > 0) {
3397 rcu_read_lock();
3398 fv = address_space_to_flatview(as);
3399 result = flatview_write(fv, addr, attrs, buf, len);
3400 rcu_read_unlock();
3401 }
3402
3403 return result;
3404 }
3405
3406 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3407 uint8_t *buf, hwaddr len, bool is_write)
3408 {
3409 if (is_write) {
3410 return address_space_write(as, addr, attrs, buf, len);
3411 } else {
3412 return address_space_read_full(as, addr, attrs, buf, len);
3413 }
3414 }
3415
3416 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3417 hwaddr len, int is_write)
3418 {
3419 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3420 buf, len, is_write);
3421 }
3422
3423 enum write_rom_type {
3424 WRITE_DATA,
3425 FLUSH_CACHE,
3426 };
3427
3428 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3429 hwaddr addr,
3430 MemTxAttrs attrs,
3431 const uint8_t *buf,
3432 hwaddr len,
3433 enum write_rom_type type)
3434 {
3435 hwaddr l;
3436 uint8_t *ptr;
3437 hwaddr addr1;
3438 MemoryRegion *mr;
3439
3440 rcu_read_lock();
3441 while (len > 0) {
3442 l = len;
3443 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3444
3445 if (!(memory_region_is_ram(mr) ||
3446 memory_region_is_romd(mr))) {
3447 l = memory_access_size(mr, l, addr1);
3448 } else {
3449 /* ROM/RAM case */
3450 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3451 switch (type) {
3452 case WRITE_DATA:
3453 memcpy(ptr, buf, l);
3454 invalidate_and_set_dirty(mr, addr1, l);
3455 break;
3456 case FLUSH_CACHE:
3457 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3458 break;
3459 }
3460 }
3461 len -= l;
3462 buf += l;
3463 addr += l;
3464 }
3465 rcu_read_unlock();
3466 return MEMTX_OK;
3467 }
3468
3469 /* used for ROM loading : can write in RAM and ROM */
3470 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3471 MemTxAttrs attrs,
3472 const uint8_t *buf, hwaddr len)
3473 {
3474 return address_space_write_rom_internal(as, addr, attrs,
3475 buf, len, WRITE_DATA);
3476 }
3477
3478 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3479 {
3480 /*
3481 * This function should do the same thing as an icache flush that was
3482 * triggered from within the guest. For TCG we are always cache coherent,
3483 * so there is no need to flush anything. For KVM / Xen we need to flush
3484 * the host's instruction cache at least.
3485 */
3486 if (tcg_enabled()) {
3487 return;
3488 }
3489
3490 address_space_write_rom_internal(&address_space_memory,
3491 start, MEMTXATTRS_UNSPECIFIED,
3492 NULL, len, FLUSH_CACHE);
3493 }
3494
3495 typedef struct {
3496 MemoryRegion *mr;
3497 void *buffer;
3498 hwaddr addr;
3499 hwaddr len;
3500 bool in_use;
3501 } BounceBuffer;
3502
3503 static BounceBuffer bounce;
3504
3505 typedef struct MapClient {
3506 QEMUBH *bh;
3507 QLIST_ENTRY(MapClient) link;
3508 } MapClient;
3509
3510 QemuMutex map_client_list_lock;
3511 static QLIST_HEAD(, MapClient) map_client_list
3512 = QLIST_HEAD_INITIALIZER(map_client_list);
3513
3514 static void cpu_unregister_map_client_do(MapClient *client)
3515 {
3516 QLIST_REMOVE(client, link);
3517 g_free(client);
3518 }
3519
3520 static void cpu_notify_map_clients_locked(void)
3521 {
3522 MapClient *client;
3523
3524 while (!QLIST_EMPTY(&map_client_list)) {
3525 client = QLIST_FIRST(&map_client_list);
3526 qemu_bh_schedule(client->bh);
3527 cpu_unregister_map_client_do(client);
3528 }
3529 }
3530
3531 void cpu_register_map_client(QEMUBH *bh)
3532 {
3533 MapClient *client = g_malloc(sizeof(*client));
3534
3535 qemu_mutex_lock(&map_client_list_lock);
3536 client->bh = bh;
3537 QLIST_INSERT_HEAD(&map_client_list, client, link);
3538 if (!atomic_read(&bounce.in_use)) {
3539 cpu_notify_map_clients_locked();
3540 }
3541 qemu_mutex_unlock(&map_client_list_lock);
3542 }
3543
3544 void cpu_exec_init_all(void)
3545 {
3546 qemu_mutex_init(&ram_list.mutex);
3547 /* The data structures we set up here depend on knowing the page size,
3548 * so no more changes can be made after this point.
3549 * In an ideal world, nothing we did before we had finished the
3550 * machine setup would care about the target page size, and we could
3551 * do this much later, rather than requiring board models to state
3552 * up front what their requirements are.
3553 */
3554 finalize_target_page_bits();
3555 io_mem_init();
3556 memory_map_init();
3557 qemu_mutex_init(&map_client_list_lock);
3558 }
3559
3560 void cpu_unregister_map_client(QEMUBH *bh)
3561 {
3562 MapClient *client;
3563
3564 qemu_mutex_lock(&map_client_list_lock);
3565 QLIST_FOREACH(client, &map_client_list, link) {
3566 if (client->bh == bh) {
3567 cpu_unregister_map_client_do(client);
3568 break;
3569 }
3570 }
3571 qemu_mutex_unlock(&map_client_list_lock);
3572 }
3573
3574 static void cpu_notify_map_clients(void)
3575 {
3576 qemu_mutex_lock(&map_client_list_lock);
3577 cpu_notify_map_clients_locked();
3578 qemu_mutex_unlock(&map_client_list_lock);
3579 }
3580
3581 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3582 bool is_write, MemTxAttrs attrs)
3583 {
3584 MemoryRegion *mr;
3585 hwaddr l, xlat;
3586
3587 while (len > 0) {
3588 l = len;
3589 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3590 if (!memory_access_is_direct(mr, is_write)) {
3591 l = memory_access_size(mr, l, addr);
3592 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3593 return false;
3594 }
3595 }
3596
3597 len -= l;
3598 addr += l;
3599 }
3600 return true;
3601 }
3602
3603 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3604 hwaddr len, bool is_write,
3605 MemTxAttrs attrs)
3606 {
3607 FlatView *fv;
3608 bool result;
3609
3610 rcu_read_lock();
3611 fv = address_space_to_flatview(as);
3612 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3613 rcu_read_unlock();
3614 return result;
3615 }
3616
3617 static hwaddr
3618 flatview_extend_translation(FlatView *fv, hwaddr addr,
3619 hwaddr target_len,
3620 MemoryRegion *mr, hwaddr base, hwaddr len,
3621 bool is_write, MemTxAttrs attrs)
3622 {
3623 hwaddr done = 0;
3624 hwaddr xlat;
3625 MemoryRegion *this_mr;
3626
3627 for (;;) {
3628 target_len -= len;
3629 addr += len;
3630 done += len;
3631 if (target_len == 0) {
3632 return done;
3633 }
3634
3635 len = target_len;
3636 this_mr = flatview_translate(fv, addr, &xlat,
3637 &len, is_write, attrs);
3638 if (this_mr != mr || xlat != base + done) {
3639 return done;
3640 }
3641 }
3642 }
3643
3644 /* Map a physical memory region into a host virtual address.
3645 * May map a subset of the requested range, given by and returned in *plen.
3646 * May return NULL if resources needed to perform the mapping are exhausted.
3647 * Use only for reads OR writes - not for read-modify-write operations.
3648 * Use cpu_register_map_client() to know when retrying the map operation is
3649 * likely to succeed.
3650 */
3651 void *address_space_map(AddressSpace *as,
3652 hwaddr addr,
3653 hwaddr *plen,
3654 bool is_write,
3655 MemTxAttrs attrs)
3656 {
3657 hwaddr len = *plen;
3658 hwaddr l, xlat;
3659 MemoryRegion *mr;
3660 void *ptr;
3661 FlatView *fv;
3662
3663 if (len == 0) {
3664 return NULL;
3665 }
3666
3667 l = len;
3668 rcu_read_lock();
3669 fv = address_space_to_flatview(as);
3670 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3671
3672 if (!memory_access_is_direct(mr, is_write)) {
3673 if (atomic_xchg(&bounce.in_use, true)) {
3674 rcu_read_unlock();
3675 return NULL;
3676 }
3677 /* Avoid unbounded allocations */
3678 l = MIN(l, TARGET_PAGE_SIZE);
3679 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3680 bounce.addr = addr;
3681 bounce.len = l;
3682
3683 memory_region_ref(mr);
3684 bounce.mr = mr;
3685 if (!is_write) {
3686 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3687 bounce.buffer, l);
3688 }
3689
3690 rcu_read_unlock();
3691 *plen = l;
3692 return bounce.buffer;
3693 }
3694
3695
3696 memory_region_ref(mr);
3697 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3698 l, is_write, attrs);
3699 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3700 rcu_read_unlock();
3701
3702 return ptr;
3703 }
3704
3705 /* Unmaps a memory region previously mapped by address_space_map().
3706 * Will also mark the memory as dirty if is_write == 1. access_len gives
3707 * the amount of memory that was actually read or written by the caller.
3708 */
3709 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3710 int is_write, hwaddr access_len)
3711 {
3712 if (buffer != bounce.buffer) {
3713 MemoryRegion *mr;
3714 ram_addr_t addr1;
3715
3716 mr = memory_region_from_host(buffer, &addr1);
3717 assert(mr != NULL);
3718 if (is_write) {
3719 invalidate_and_set_dirty(mr, addr1, access_len);
3720 }
3721 if (xen_enabled()) {
3722 xen_invalidate_map_cache_entry(buffer);
3723 }
3724 memory_region_unref(mr);
3725 return;
3726 }
3727 if (is_write) {
3728 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3729 bounce.buffer, access_len);
3730 }
3731 qemu_vfree(bounce.buffer);
3732 bounce.buffer = NULL;
3733 memory_region_unref(bounce.mr);
3734 atomic_mb_set(&bounce.in_use, false);
3735 cpu_notify_map_clients();
3736 }
3737
3738 void *cpu_physical_memory_map(hwaddr addr,
3739 hwaddr *plen,
3740 int is_write)
3741 {
3742 return address_space_map(&address_space_memory, addr, plen, is_write,
3743 MEMTXATTRS_UNSPECIFIED);
3744 }
3745
3746 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3747 int is_write, hwaddr access_len)
3748 {
3749 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3750 }
3751
3752 #define ARG1_DECL AddressSpace *as
3753 #define ARG1 as
3754 #define SUFFIX
3755 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3756 #define RCU_READ_LOCK(...) rcu_read_lock()
3757 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3758 #include "memory_ldst.inc.c"
3759
3760 int64_t address_space_cache_init(MemoryRegionCache *cache,
3761 AddressSpace *as,
3762 hwaddr addr,
3763 hwaddr len,
3764 bool is_write)
3765 {
3766 AddressSpaceDispatch *d;
3767 hwaddr l;
3768 MemoryRegion *mr;
3769
3770 assert(len > 0);
3771
3772 l = len;
3773 cache->fv = address_space_get_flatview(as);
3774 d = flatview_to_dispatch(cache->fv);
3775 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3776
3777 mr = cache->mrs.mr;
3778 memory_region_ref(mr);
3779 if (memory_access_is_direct(mr, is_write)) {
3780 /* We don't care about the memory attributes here as we're only
3781 * doing this if we found actual RAM, which behaves the same
3782 * regardless of attributes; so UNSPECIFIED is fine.
3783 */
3784 l = flatview_extend_translation(cache->fv, addr, len, mr,
3785 cache->xlat, l, is_write,
3786 MEMTXATTRS_UNSPECIFIED);
3787 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3788 } else {
3789 cache->ptr = NULL;
3790 }
3791
3792 cache->len = l;
3793 cache->is_write = is_write;
3794 return l;
3795 }
3796
3797 void address_space_cache_invalidate(MemoryRegionCache *cache,
3798 hwaddr addr,
3799 hwaddr access_len)
3800 {
3801 assert(cache->is_write);
3802 if (likely(cache->ptr)) {
3803 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3804 }
3805 }
3806
3807 void address_space_cache_destroy(MemoryRegionCache *cache)
3808 {
3809 if (!cache->mrs.mr) {
3810 return;
3811 }
3812
3813 if (xen_enabled()) {
3814 xen_invalidate_map_cache_entry(cache->ptr);
3815 }
3816 memory_region_unref(cache->mrs.mr);
3817 flatview_unref(cache->fv);
3818 cache->mrs.mr = NULL;
3819 cache->fv = NULL;
3820 }
3821
3822 /* Called from RCU critical section. This function has the same
3823 * semantics as address_space_translate, but it only works on a
3824 * predefined range of a MemoryRegion that was mapped with
3825 * address_space_cache_init.
3826 */
3827 static inline MemoryRegion *address_space_translate_cached(
3828 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3829 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3830 {
3831 MemoryRegionSection section;
3832 MemoryRegion *mr;
3833 IOMMUMemoryRegion *iommu_mr;
3834 AddressSpace *target_as;
3835
3836 assert(!cache->ptr);
3837 *xlat = addr + cache->xlat;
3838
3839 mr = cache->mrs.mr;
3840 iommu_mr = memory_region_get_iommu(mr);
3841 if (!iommu_mr) {
3842 /* MMIO region. */
3843 return mr;
3844 }
3845
3846 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3847 NULL, is_write, true,
3848 &target_as, attrs);
3849 return section.mr;
3850 }
3851
3852 /* Called from RCU critical section. address_space_read_cached uses this
3853 * out of line function when the target is an MMIO or IOMMU region.
3854 */
3855 void
3856 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3857 void *buf, hwaddr len)
3858 {
3859 hwaddr addr1, l;
3860 MemoryRegion *mr;
3861
3862 l = len;
3863 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3864 MEMTXATTRS_UNSPECIFIED);
3865 flatview_read_continue(cache->fv,
3866 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3867 addr1, l, mr);
3868 }
3869
3870 /* Called from RCU critical section. address_space_write_cached uses this
3871 * out of line function when the target is an MMIO or IOMMU region.
3872 */
3873 void
3874 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3875 const void *buf, hwaddr len)
3876 {
3877 hwaddr addr1, l;
3878 MemoryRegion *mr;
3879
3880 l = len;
3881 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3882 MEMTXATTRS_UNSPECIFIED);
3883 flatview_write_continue(cache->fv,
3884 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3885 addr1, l, mr);
3886 }
3887
3888 #define ARG1_DECL MemoryRegionCache *cache
3889 #define ARG1 cache
3890 #define SUFFIX _cached_slow
3891 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3892 #define RCU_READ_LOCK() ((void)0)
3893 #define RCU_READ_UNLOCK() ((void)0)
3894 #include "memory_ldst.inc.c"
3895
3896 /* virtual memory access for debug (includes writing to ROM) */
3897 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3898 uint8_t *buf, target_ulong len, int is_write)
3899 {
3900 hwaddr phys_addr;
3901 target_ulong l, page;
3902
3903 cpu_synchronize_state(cpu);
3904 while (len > 0) {
3905 int asidx;
3906 MemTxAttrs attrs;
3907
3908 page = addr & TARGET_PAGE_MASK;
3909 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3910 asidx = cpu_asidx_from_attrs(cpu, attrs);
3911 /* if no physical page mapped, return an error */
3912 if (phys_addr == -1)
3913 return -1;
3914 l = (page + TARGET_PAGE_SIZE) - addr;
3915 if (l > len)
3916 l = len;
3917 phys_addr += (addr & ~TARGET_PAGE_MASK);
3918 if (is_write) {
3919 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3920 attrs, buf, l);
3921 } else {
3922 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3923 attrs, buf, l, 0);
3924 }
3925 len -= l;
3926 buf += l;
3927 addr += l;
3928 }
3929 return 0;
3930 }
3931
3932 /*
3933 * Allows code that needs to deal with migration bitmaps etc to still be built
3934 * target independent.
3935 */
3936 size_t qemu_target_page_size(void)
3937 {
3938 return TARGET_PAGE_SIZE;
3939 }
3940
3941 int qemu_target_page_bits(void)
3942 {
3943 return TARGET_PAGE_BITS;
3944 }
3945
3946 int qemu_target_page_bits_min(void)
3947 {
3948 return TARGET_PAGE_BITS_MIN;
3949 }
3950 #endif
3951
3952 bool target_words_bigendian(void)
3953 {
3954 #if defined(TARGET_WORDS_BIGENDIAN)
3955 return true;
3956 #else
3957 return false;
3958 #endif
3959 }
3960
3961 #ifndef CONFIG_USER_ONLY
3962 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3963 {
3964 MemoryRegion*mr;
3965 hwaddr l = 1;
3966 bool res;
3967
3968 rcu_read_lock();
3969 mr = address_space_translate(&address_space_memory,
3970 phys_addr, &phys_addr, &l, false,
3971 MEMTXATTRS_UNSPECIFIED);
3972
3973 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3974 rcu_read_unlock();
3975 return res;
3976 }
3977
3978 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3979 {
3980 RAMBlock *block;
3981 int ret = 0;
3982
3983 rcu_read_lock();
3984 RAMBLOCK_FOREACH(block) {
3985 ret = func(block, opaque);
3986 if (ret) {
3987 break;
3988 }
3989 }
3990 rcu_read_unlock();
3991 return ret;
3992 }
3993
3994 /*
3995 * Unmap pages of memory from start to start+length such that
3996 * they a) read as 0, b) Trigger whatever fault mechanism
3997 * the OS provides for postcopy.
3998 * The pages must be unmapped by the end of the function.
3999 * Returns: 0 on success, none-0 on failure
4000 *
4001 */
4002 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4003 {
4004 int ret = -1;
4005
4006 uint8_t *host_startaddr = rb->host + start;
4007
4008 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4009 error_report("ram_block_discard_range: Unaligned start address: %p",
4010 host_startaddr);
4011 goto err;
4012 }
4013
4014 if ((start + length) <= rb->used_length) {
4015 bool need_madvise, need_fallocate;
4016 uint8_t *host_endaddr = host_startaddr + length;
4017 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4018 error_report("ram_block_discard_range: Unaligned end address: %p",
4019 host_endaddr);
4020 goto err;
4021 }
4022
4023 errno = ENOTSUP; /* If we are missing MADVISE etc */
4024
4025 /* The logic here is messy;
4026 * madvise DONTNEED fails for hugepages
4027 * fallocate works on hugepages and shmem
4028 */
4029 need_madvise = (rb->page_size == qemu_host_page_size);
4030 need_fallocate = rb->fd != -1;
4031 if (need_fallocate) {
4032 /* For a file, this causes the area of the file to be zero'd
4033 * if read, and for hugetlbfs also causes it to be unmapped
4034 * so a userfault will trigger.
4035 */
4036 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4037 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4038 start, length);
4039 if (ret) {
4040 ret = -errno;
4041 error_report("ram_block_discard_range: Failed to fallocate "
4042 "%s:%" PRIx64 " +%zx (%d)",
4043 rb->idstr, start, length, ret);
4044 goto err;
4045 }
4046 #else
4047 ret = -ENOSYS;
4048 error_report("ram_block_discard_range: fallocate not available/file"
4049 "%s:%" PRIx64 " +%zx (%d)",
4050 rb->idstr, start, length, ret);
4051 goto err;
4052 #endif
4053 }
4054 if (need_madvise) {
4055 /* For normal RAM this causes it to be unmapped,
4056 * for shared memory it causes the local mapping to disappear
4057 * and to fall back on the file contents (which we just
4058 * fallocate'd away).
4059 */
4060 #if defined(CONFIG_MADVISE)
4061 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4062 if (ret) {
4063 ret = -errno;
4064 error_report("ram_block_discard_range: Failed to discard range "
4065 "%s:%" PRIx64 " +%zx (%d)",
4066 rb->idstr, start, length, ret);
4067 goto err;
4068 }
4069 #else
4070 ret = -ENOSYS;
4071 error_report("ram_block_discard_range: MADVISE not available"
4072 "%s:%" PRIx64 " +%zx (%d)",
4073 rb->idstr, start, length, ret);
4074 goto err;
4075 #endif
4076 }
4077 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4078 need_madvise, need_fallocate, ret);
4079 } else {
4080 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4081 "/%zx/" RAM_ADDR_FMT")",
4082 rb->idstr, start, length, rb->used_length);
4083 }
4084
4085 err:
4086 return ret;
4087 }
4088
4089 bool ramblock_is_pmem(RAMBlock *rb)
4090 {
4091 return rb->flags & RAM_PMEM;
4092 }
4093
4094 #endif
4095
4096 void page_size_init(void)
4097 {
4098 /* NOTE: we can always suppose that qemu_host_page_size >=
4099 TARGET_PAGE_SIZE */
4100 if (qemu_host_page_size == 0) {
4101 qemu_host_page_size = qemu_real_host_page_size;
4102 }
4103 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4104 qemu_host_page_size = TARGET_PAGE_SIZE;
4105 }
4106 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4107 }
4108
4109 #if !defined(CONFIG_USER_ONLY)
4110
4111 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
4112 {
4113 if (start == end - 1) {
4114 qemu_printf("\t%3d ", start);
4115 } else {
4116 qemu_printf("\t%3d..%-3d ", start, end - 1);
4117 }
4118 qemu_printf(" skip=%d ", skip);
4119 if (ptr == PHYS_MAP_NODE_NIL) {
4120 qemu_printf(" ptr=NIL");
4121 } else if (!skip) {
4122 qemu_printf(" ptr=#%d", ptr);
4123 } else {
4124 qemu_printf(" ptr=[%d]", ptr);
4125 }
4126 qemu_printf("\n");
4127 }
4128
4129 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4130 int128_sub((size), int128_one())) : 0)
4131
4132 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4133 {
4134 int i;
4135
4136 qemu_printf(" Dispatch\n");
4137 qemu_printf(" Physical sections\n");
4138
4139 for (i = 0; i < d->map.sections_nb; ++i) {
4140 MemoryRegionSection *s = d->map.sections + i;
4141 const char *names[] = { " [unassigned]", " [not dirty]",
4142 " [ROM]", " [watch]" };
4143
4144 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4145 " %s%s%s%s%s",
4146 i,
4147 s->offset_within_address_space,
4148 s->offset_within_address_space + MR_SIZE(s->mr->size),
4149 s->mr->name ? s->mr->name : "(noname)",
4150 i < ARRAY_SIZE(names) ? names[i] : "",
4151 s->mr == root ? " [ROOT]" : "",
4152 s == d->mru_section ? " [MRU]" : "",
4153 s->mr->is_iommu ? " [iommu]" : "");
4154
4155 if (s->mr->alias) {
4156 qemu_printf(" alias=%s", s->mr->alias->name ?
4157 s->mr->alias->name : "noname");
4158 }
4159 qemu_printf("\n");
4160 }
4161
4162 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4163 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4164 for (i = 0; i < d->map.nodes_nb; ++i) {
4165 int j, jprev;
4166 PhysPageEntry prev;
4167 Node *n = d->map.nodes + i;
4168
4169 qemu_printf(" [%d]\n", i);
4170
4171 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4172 PhysPageEntry *pe = *n + j;
4173
4174 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4175 continue;
4176 }
4177
4178 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4179
4180 jprev = j;
4181 prev = *pe;
4182 }
4183
4184 if (jprev != ARRAY_SIZE(*n)) {
4185 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4186 }
4187 }
4188 }
4189
4190 #endif