]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
exec: Factor out cpu_watchpoint_address_matches
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "qemu/timer.h"
39 #include "qemu/config-file.h"
40 #include "qemu/error-report.h"
41 #include "qemu/qemu-print.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include "qemu.h"
44 #else /* !CONFIG_USER_ONLY */
45 #include "exec/memory.h"
46 #include "exec/ioport.h"
47 #include "sysemu/dma.h"
48 #include "sysemu/hostmem.h"
49 #include "sysemu/hw_accel.h"
50 #include "exec/address-spaces.h"
51 #include "sysemu/xen-mapcache.h"
52 #include "trace-root.h"
53
54 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
55 #include <linux/falloc.h>
56 #endif
57
58 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
63
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
67
68 #include "migration/vmstate.h"
69
70 #include "qemu/range.h"
71 #ifndef _WIN32
72 #include "qemu/mmap-alloc.h"
73 #endif
74
75 #include "monitor/monitor.h"
76
77 //#define DEBUG_SUBPAGE
78
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
83 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
84
85 static MemoryRegion *system_memory;
86 static MemoryRegion *system_io;
87
88 AddressSpace address_space_io;
89 AddressSpace address_space_memory;
90
91 MemoryRegion io_mem_rom, io_mem_notdirty;
92 static MemoryRegion io_mem_unassigned;
93 #endif
94
95 #ifdef TARGET_PAGE_BITS_VARY
96 int target_page_bits;
97 bool target_page_bits_decided;
98 #endif
99
100 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
101
102 /* current CPU in the current thread. It is only valid inside
103 cpu_exec() */
104 __thread CPUState *current_cpu;
105 /* 0 = Do not count executed instructions.
106 1 = Precise instruction counting.
107 2 = Adaptive rate instruction counting. */
108 int use_icount;
109
110 uintptr_t qemu_host_page_size;
111 intptr_t qemu_host_page_mask;
112
113 bool set_preferred_target_page_bits(int bits)
114 {
115 /* The target page size is the lowest common denominator for all
116 * the CPUs in the system, so we can only make it smaller, never
117 * larger. And we can't make it smaller once we've committed to
118 * a particular size.
119 */
120 #ifdef TARGET_PAGE_BITS_VARY
121 assert(bits >= TARGET_PAGE_BITS_MIN);
122 if (target_page_bits == 0 || target_page_bits > bits) {
123 if (target_page_bits_decided) {
124 return false;
125 }
126 target_page_bits = bits;
127 }
128 #endif
129 return true;
130 }
131
132 #if !defined(CONFIG_USER_ONLY)
133
134 static void finalize_target_page_bits(void)
135 {
136 #ifdef TARGET_PAGE_BITS_VARY
137 if (target_page_bits == 0) {
138 target_page_bits = TARGET_PAGE_BITS_MIN;
139 }
140 target_page_bits_decided = true;
141 #endif
142 }
143
144 typedef struct PhysPageEntry PhysPageEntry;
145
146 struct PhysPageEntry {
147 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
148 uint32_t skip : 6;
149 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
150 uint32_t ptr : 26;
151 };
152
153 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
154
155 /* Size of the L2 (and L3, etc) page tables. */
156 #define ADDR_SPACE_BITS 64
157
158 #define P_L2_BITS 9
159 #define P_L2_SIZE (1 << P_L2_BITS)
160
161 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
162
163 typedef PhysPageEntry Node[P_L2_SIZE];
164
165 typedef struct PhysPageMap {
166 struct rcu_head rcu;
167
168 unsigned sections_nb;
169 unsigned sections_nb_alloc;
170 unsigned nodes_nb;
171 unsigned nodes_nb_alloc;
172 Node *nodes;
173 MemoryRegionSection *sections;
174 } PhysPageMap;
175
176 struct AddressSpaceDispatch {
177 MemoryRegionSection *mru_section;
178 /* This is a multi-level map on the physical address space.
179 * The bottom level has pointers to MemoryRegionSections.
180 */
181 PhysPageEntry phys_map;
182 PhysPageMap map;
183 };
184
185 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
186 typedef struct subpage_t {
187 MemoryRegion iomem;
188 FlatView *fv;
189 hwaddr base;
190 uint16_t sub_section[];
191 } subpage_t;
192
193 #define PHYS_SECTION_UNASSIGNED 0
194 #define PHYS_SECTION_NOTDIRTY 1
195 #define PHYS_SECTION_ROM 2
196 #define PHYS_SECTION_WATCH 3
197
198 static void io_mem_init(void);
199 static void memory_map_init(void);
200 static void tcg_log_global_after_sync(MemoryListener *listener);
201 static void tcg_commit(MemoryListener *listener);
202
203 static MemoryRegion io_mem_watch;
204
205 /**
206 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
207 * @cpu: the CPU whose AddressSpace this is
208 * @as: the AddressSpace itself
209 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
210 * @tcg_as_listener: listener for tracking changes to the AddressSpace
211 */
212 struct CPUAddressSpace {
213 CPUState *cpu;
214 AddressSpace *as;
215 struct AddressSpaceDispatch *memory_dispatch;
216 MemoryListener tcg_as_listener;
217 };
218
219 struct DirtyBitmapSnapshot {
220 ram_addr_t start;
221 ram_addr_t end;
222 unsigned long dirty[];
223 };
224
225 #endif
226
227 #if !defined(CONFIG_USER_ONLY)
228
229 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
230 {
231 static unsigned alloc_hint = 16;
232 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
233 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
234 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
235 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
236 alloc_hint = map->nodes_nb_alloc;
237 }
238 }
239
240 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
241 {
242 unsigned i;
243 uint32_t ret;
244 PhysPageEntry e;
245 PhysPageEntry *p;
246
247 ret = map->nodes_nb++;
248 p = map->nodes[ret];
249 assert(ret != PHYS_MAP_NODE_NIL);
250 assert(ret != map->nodes_nb_alloc);
251
252 e.skip = leaf ? 0 : 1;
253 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
254 for (i = 0; i < P_L2_SIZE; ++i) {
255 memcpy(&p[i], &e, sizeof(e));
256 }
257 return ret;
258 }
259
260 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
261 hwaddr *index, hwaddr *nb, uint16_t leaf,
262 int level)
263 {
264 PhysPageEntry *p;
265 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
266
267 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
268 lp->ptr = phys_map_node_alloc(map, level == 0);
269 }
270 p = map->nodes[lp->ptr];
271 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
272
273 while (*nb && lp < &p[P_L2_SIZE]) {
274 if ((*index & (step - 1)) == 0 && *nb >= step) {
275 lp->skip = 0;
276 lp->ptr = leaf;
277 *index += step;
278 *nb -= step;
279 } else {
280 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
281 }
282 ++lp;
283 }
284 }
285
286 static void phys_page_set(AddressSpaceDispatch *d,
287 hwaddr index, hwaddr nb,
288 uint16_t leaf)
289 {
290 /* Wildly overreserve - it doesn't matter much. */
291 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
292
293 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
294 }
295
296 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
297 * and update our entry so we can skip it and go directly to the destination.
298 */
299 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
300 {
301 unsigned valid_ptr = P_L2_SIZE;
302 int valid = 0;
303 PhysPageEntry *p;
304 int i;
305
306 if (lp->ptr == PHYS_MAP_NODE_NIL) {
307 return;
308 }
309
310 p = nodes[lp->ptr];
311 for (i = 0; i < P_L2_SIZE; i++) {
312 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
313 continue;
314 }
315
316 valid_ptr = i;
317 valid++;
318 if (p[i].skip) {
319 phys_page_compact(&p[i], nodes);
320 }
321 }
322
323 /* We can only compress if there's only one child. */
324 if (valid != 1) {
325 return;
326 }
327
328 assert(valid_ptr < P_L2_SIZE);
329
330 /* Don't compress if it won't fit in the # of bits we have. */
331 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
332 return;
333 }
334
335 lp->ptr = p[valid_ptr].ptr;
336 if (!p[valid_ptr].skip) {
337 /* If our only child is a leaf, make this a leaf. */
338 /* By design, we should have made this node a leaf to begin with so we
339 * should never reach here.
340 * But since it's so simple to handle this, let's do it just in case we
341 * change this rule.
342 */
343 lp->skip = 0;
344 } else {
345 lp->skip += p[valid_ptr].skip;
346 }
347 }
348
349 void address_space_dispatch_compact(AddressSpaceDispatch *d)
350 {
351 if (d->phys_map.skip) {
352 phys_page_compact(&d->phys_map, d->map.nodes);
353 }
354 }
355
356 static inline bool section_covers_addr(const MemoryRegionSection *section,
357 hwaddr addr)
358 {
359 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
360 * the section must cover the entire address space.
361 */
362 return int128_gethi(section->size) ||
363 range_covers_byte(section->offset_within_address_space,
364 int128_getlo(section->size), addr);
365 }
366
367 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
368 {
369 PhysPageEntry lp = d->phys_map, *p;
370 Node *nodes = d->map.nodes;
371 MemoryRegionSection *sections = d->map.sections;
372 hwaddr index = addr >> TARGET_PAGE_BITS;
373 int i;
374
375 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
376 if (lp.ptr == PHYS_MAP_NODE_NIL) {
377 return &sections[PHYS_SECTION_UNASSIGNED];
378 }
379 p = nodes[lp.ptr];
380 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
381 }
382
383 if (section_covers_addr(&sections[lp.ptr], addr)) {
384 return &sections[lp.ptr];
385 } else {
386 return &sections[PHYS_SECTION_UNASSIGNED];
387 }
388 }
389
390 /* Called from RCU critical section */
391 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
392 hwaddr addr,
393 bool resolve_subpage)
394 {
395 MemoryRegionSection *section = atomic_read(&d->mru_section);
396 subpage_t *subpage;
397
398 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
399 !section_covers_addr(section, addr)) {
400 section = phys_page_find(d, addr);
401 atomic_set(&d->mru_section, section);
402 }
403 if (resolve_subpage && section->mr->subpage) {
404 subpage = container_of(section->mr, subpage_t, iomem);
405 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
406 }
407 return section;
408 }
409
410 /* Called from RCU critical section */
411 static MemoryRegionSection *
412 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
413 hwaddr *plen, bool resolve_subpage)
414 {
415 MemoryRegionSection *section;
416 MemoryRegion *mr;
417 Int128 diff;
418
419 section = address_space_lookup_region(d, addr, resolve_subpage);
420 /* Compute offset within MemoryRegionSection */
421 addr -= section->offset_within_address_space;
422
423 /* Compute offset within MemoryRegion */
424 *xlat = addr + section->offset_within_region;
425
426 mr = section->mr;
427
428 /* MMIO registers can be expected to perform full-width accesses based only
429 * on their address, without considering adjacent registers that could
430 * decode to completely different MemoryRegions. When such registers
431 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
432 * regions overlap wildly. For this reason we cannot clamp the accesses
433 * here.
434 *
435 * If the length is small (as is the case for address_space_ldl/stl),
436 * everything works fine. If the incoming length is large, however,
437 * the caller really has to do the clamping through memory_access_size.
438 */
439 if (memory_region_is_ram(mr)) {
440 diff = int128_sub(section->size, int128_make64(addr));
441 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
442 }
443 return section;
444 }
445
446 /**
447 * address_space_translate_iommu - translate an address through an IOMMU
448 * memory region and then through the target address space.
449 *
450 * @iommu_mr: the IOMMU memory region that we start the translation from
451 * @addr: the address to be translated through the MMU
452 * @xlat: the translated address offset within the destination memory region.
453 * It cannot be %NULL.
454 * @plen_out: valid read/write length of the translated address. It
455 * cannot be %NULL.
456 * @page_mask_out: page mask for the translated address. This
457 * should only be meaningful for IOMMU translated
458 * addresses, since there may be huge pages that this bit
459 * would tell. It can be %NULL if we don't care about it.
460 * @is_write: whether the translation operation is for write
461 * @is_mmio: whether this can be MMIO, set true if it can
462 * @target_as: the address space targeted by the IOMMU
463 * @attrs: transaction attributes
464 *
465 * This function is called from RCU critical section. It is the common
466 * part of flatview_do_translate and address_space_translate_cached.
467 */
468 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
469 hwaddr *xlat,
470 hwaddr *plen_out,
471 hwaddr *page_mask_out,
472 bool is_write,
473 bool is_mmio,
474 AddressSpace **target_as,
475 MemTxAttrs attrs)
476 {
477 MemoryRegionSection *section;
478 hwaddr page_mask = (hwaddr)-1;
479
480 do {
481 hwaddr addr = *xlat;
482 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
483 int iommu_idx = 0;
484 IOMMUTLBEntry iotlb;
485
486 if (imrc->attrs_to_index) {
487 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
488 }
489
490 iotlb = imrc->translate(iommu_mr, addr, is_write ?
491 IOMMU_WO : IOMMU_RO, iommu_idx);
492
493 if (!(iotlb.perm & (1 << is_write))) {
494 goto unassigned;
495 }
496
497 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
498 | (addr & iotlb.addr_mask));
499 page_mask &= iotlb.addr_mask;
500 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
501 *target_as = iotlb.target_as;
502
503 section = address_space_translate_internal(
504 address_space_to_dispatch(iotlb.target_as), addr, xlat,
505 plen_out, is_mmio);
506
507 iommu_mr = memory_region_get_iommu(section->mr);
508 } while (unlikely(iommu_mr));
509
510 if (page_mask_out) {
511 *page_mask_out = page_mask;
512 }
513 return *section;
514
515 unassigned:
516 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
517 }
518
519 /**
520 * flatview_do_translate - translate an address in FlatView
521 *
522 * @fv: the flat view that we want to translate on
523 * @addr: the address to be translated in above address space
524 * @xlat: the translated address offset within memory region. It
525 * cannot be @NULL.
526 * @plen_out: valid read/write length of the translated address. It
527 * can be @NULL when we don't care about it.
528 * @page_mask_out: page mask for the translated address. This
529 * should only be meaningful for IOMMU translated
530 * addresses, since there may be huge pages that this bit
531 * would tell. It can be @NULL if we don't care about it.
532 * @is_write: whether the translation operation is for write
533 * @is_mmio: whether this can be MMIO, set true if it can
534 * @target_as: the address space targeted by the IOMMU
535 * @attrs: memory transaction attributes
536 *
537 * This function is called from RCU critical section
538 */
539 static MemoryRegionSection flatview_do_translate(FlatView *fv,
540 hwaddr addr,
541 hwaddr *xlat,
542 hwaddr *plen_out,
543 hwaddr *page_mask_out,
544 bool is_write,
545 bool is_mmio,
546 AddressSpace **target_as,
547 MemTxAttrs attrs)
548 {
549 MemoryRegionSection *section;
550 IOMMUMemoryRegion *iommu_mr;
551 hwaddr plen = (hwaddr)(-1);
552
553 if (!plen_out) {
554 plen_out = &plen;
555 }
556
557 section = address_space_translate_internal(
558 flatview_to_dispatch(fv), addr, xlat,
559 plen_out, is_mmio);
560
561 iommu_mr = memory_region_get_iommu(section->mr);
562 if (unlikely(iommu_mr)) {
563 return address_space_translate_iommu(iommu_mr, xlat,
564 plen_out, page_mask_out,
565 is_write, is_mmio,
566 target_as, attrs);
567 }
568 if (page_mask_out) {
569 /* Not behind an IOMMU, use default page size. */
570 *page_mask_out = ~TARGET_PAGE_MASK;
571 }
572
573 return *section;
574 }
575
576 /* Called from RCU critical section */
577 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
578 bool is_write, MemTxAttrs attrs)
579 {
580 MemoryRegionSection section;
581 hwaddr xlat, page_mask;
582
583 /*
584 * This can never be MMIO, and we don't really care about plen,
585 * but page mask.
586 */
587 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
588 NULL, &page_mask, is_write, false, &as,
589 attrs);
590
591 /* Illegal translation */
592 if (section.mr == &io_mem_unassigned) {
593 goto iotlb_fail;
594 }
595
596 /* Convert memory region offset into address space offset */
597 xlat += section.offset_within_address_space -
598 section.offset_within_region;
599
600 return (IOMMUTLBEntry) {
601 .target_as = as,
602 .iova = addr & ~page_mask,
603 .translated_addr = xlat & ~page_mask,
604 .addr_mask = page_mask,
605 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
606 .perm = IOMMU_RW,
607 };
608
609 iotlb_fail:
610 return (IOMMUTLBEntry) {0};
611 }
612
613 /* Called from RCU critical section */
614 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
615 hwaddr *plen, bool is_write,
616 MemTxAttrs attrs)
617 {
618 MemoryRegion *mr;
619 MemoryRegionSection section;
620 AddressSpace *as = NULL;
621
622 /* This can be MMIO, so setup MMIO bit. */
623 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
624 is_write, true, &as, attrs);
625 mr = section.mr;
626
627 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
628 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
629 *plen = MIN(page, *plen);
630 }
631
632 return mr;
633 }
634
635 typedef struct TCGIOMMUNotifier {
636 IOMMUNotifier n;
637 MemoryRegion *mr;
638 CPUState *cpu;
639 int iommu_idx;
640 bool active;
641 } TCGIOMMUNotifier;
642
643 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
644 {
645 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
646
647 if (!notifier->active) {
648 return;
649 }
650 tlb_flush(notifier->cpu);
651 notifier->active = false;
652 /* We leave the notifier struct on the list to avoid reallocating it later.
653 * Generally the number of IOMMUs a CPU deals with will be small.
654 * In any case we can't unregister the iommu notifier from a notify
655 * callback.
656 */
657 }
658
659 static void tcg_register_iommu_notifier(CPUState *cpu,
660 IOMMUMemoryRegion *iommu_mr,
661 int iommu_idx)
662 {
663 /* Make sure this CPU has an IOMMU notifier registered for this
664 * IOMMU/IOMMU index combination, so that we can flush its TLB
665 * when the IOMMU tells us the mappings we've cached have changed.
666 */
667 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
668 TCGIOMMUNotifier *notifier;
669 int i;
670
671 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
672 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
673 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
674 break;
675 }
676 }
677 if (i == cpu->iommu_notifiers->len) {
678 /* Not found, add a new entry at the end of the array */
679 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
680 notifier = g_new0(TCGIOMMUNotifier, 1);
681 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
682
683 notifier->mr = mr;
684 notifier->iommu_idx = iommu_idx;
685 notifier->cpu = cpu;
686 /* Rather than trying to register interest in the specific part
687 * of the iommu's address space that we've accessed and then
688 * expand it later as subsequent accesses touch more of it, we
689 * just register interest in the whole thing, on the assumption
690 * that iommu reconfiguration will be rare.
691 */
692 iommu_notifier_init(&notifier->n,
693 tcg_iommu_unmap_notify,
694 IOMMU_NOTIFIER_UNMAP,
695 0,
696 HWADDR_MAX,
697 iommu_idx);
698 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
699 }
700
701 if (!notifier->active) {
702 notifier->active = true;
703 }
704 }
705
706 static void tcg_iommu_free_notifier_list(CPUState *cpu)
707 {
708 /* Destroy the CPU's notifier list */
709 int i;
710 TCGIOMMUNotifier *notifier;
711
712 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
713 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
714 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
715 g_free(notifier);
716 }
717 g_array_free(cpu->iommu_notifiers, true);
718 }
719
720 /* Called from RCU critical section */
721 MemoryRegionSection *
722 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
723 hwaddr *xlat, hwaddr *plen,
724 MemTxAttrs attrs, int *prot)
725 {
726 MemoryRegionSection *section;
727 IOMMUMemoryRegion *iommu_mr;
728 IOMMUMemoryRegionClass *imrc;
729 IOMMUTLBEntry iotlb;
730 int iommu_idx;
731 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
732
733 for (;;) {
734 section = address_space_translate_internal(d, addr, &addr, plen, false);
735
736 iommu_mr = memory_region_get_iommu(section->mr);
737 if (!iommu_mr) {
738 break;
739 }
740
741 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
742
743 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
744 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
745 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
746 * doesn't short-cut its translation table walk.
747 */
748 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
749 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
750 | (addr & iotlb.addr_mask));
751 /* Update the caller's prot bits to remove permissions the IOMMU
752 * is giving us a failure response for. If we get down to no
753 * permissions left at all we can give up now.
754 */
755 if (!(iotlb.perm & IOMMU_RO)) {
756 *prot &= ~(PAGE_READ | PAGE_EXEC);
757 }
758 if (!(iotlb.perm & IOMMU_WO)) {
759 *prot &= ~PAGE_WRITE;
760 }
761
762 if (!*prot) {
763 goto translate_fail;
764 }
765
766 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
767 }
768
769 assert(!memory_region_is_iommu(section->mr));
770 *xlat = addr;
771 return section;
772
773 translate_fail:
774 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
775 }
776 #endif
777
778 #if !defined(CONFIG_USER_ONLY)
779
780 static int cpu_common_post_load(void *opaque, int version_id)
781 {
782 CPUState *cpu = opaque;
783
784 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
785 version_id is increased. */
786 cpu->interrupt_request &= ~0x01;
787 tlb_flush(cpu);
788
789 /* loadvm has just updated the content of RAM, bypassing the
790 * usual mechanisms that ensure we flush TBs for writes to
791 * memory we've translated code from. So we must flush all TBs,
792 * which will now be stale.
793 */
794 tb_flush(cpu);
795
796 return 0;
797 }
798
799 static int cpu_common_pre_load(void *opaque)
800 {
801 CPUState *cpu = opaque;
802
803 cpu->exception_index = -1;
804
805 return 0;
806 }
807
808 static bool cpu_common_exception_index_needed(void *opaque)
809 {
810 CPUState *cpu = opaque;
811
812 return tcg_enabled() && cpu->exception_index != -1;
813 }
814
815 static const VMStateDescription vmstate_cpu_common_exception_index = {
816 .name = "cpu_common/exception_index",
817 .version_id = 1,
818 .minimum_version_id = 1,
819 .needed = cpu_common_exception_index_needed,
820 .fields = (VMStateField[]) {
821 VMSTATE_INT32(exception_index, CPUState),
822 VMSTATE_END_OF_LIST()
823 }
824 };
825
826 static bool cpu_common_crash_occurred_needed(void *opaque)
827 {
828 CPUState *cpu = opaque;
829
830 return cpu->crash_occurred;
831 }
832
833 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
834 .name = "cpu_common/crash_occurred",
835 .version_id = 1,
836 .minimum_version_id = 1,
837 .needed = cpu_common_crash_occurred_needed,
838 .fields = (VMStateField[]) {
839 VMSTATE_BOOL(crash_occurred, CPUState),
840 VMSTATE_END_OF_LIST()
841 }
842 };
843
844 const VMStateDescription vmstate_cpu_common = {
845 .name = "cpu_common",
846 .version_id = 1,
847 .minimum_version_id = 1,
848 .pre_load = cpu_common_pre_load,
849 .post_load = cpu_common_post_load,
850 .fields = (VMStateField[]) {
851 VMSTATE_UINT32(halted, CPUState),
852 VMSTATE_UINT32(interrupt_request, CPUState),
853 VMSTATE_END_OF_LIST()
854 },
855 .subsections = (const VMStateDescription*[]) {
856 &vmstate_cpu_common_exception_index,
857 &vmstate_cpu_common_crash_occurred,
858 NULL
859 }
860 };
861
862 #endif
863
864 CPUState *qemu_get_cpu(int index)
865 {
866 CPUState *cpu;
867
868 CPU_FOREACH(cpu) {
869 if (cpu->cpu_index == index) {
870 return cpu;
871 }
872 }
873
874 return NULL;
875 }
876
877 #if !defined(CONFIG_USER_ONLY)
878 void cpu_address_space_init(CPUState *cpu, int asidx,
879 const char *prefix, MemoryRegion *mr)
880 {
881 CPUAddressSpace *newas;
882 AddressSpace *as = g_new0(AddressSpace, 1);
883 char *as_name;
884
885 assert(mr);
886 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
887 address_space_init(as, mr, as_name);
888 g_free(as_name);
889
890 /* Target code should have set num_ases before calling us */
891 assert(asidx < cpu->num_ases);
892
893 if (asidx == 0) {
894 /* address space 0 gets the convenience alias */
895 cpu->as = as;
896 }
897
898 /* KVM cannot currently support multiple address spaces. */
899 assert(asidx == 0 || !kvm_enabled());
900
901 if (!cpu->cpu_ases) {
902 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
903 }
904
905 newas = &cpu->cpu_ases[asidx];
906 newas->cpu = cpu;
907 newas->as = as;
908 if (tcg_enabled()) {
909 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
910 newas->tcg_as_listener.commit = tcg_commit;
911 memory_listener_register(&newas->tcg_as_listener, as);
912 }
913 }
914
915 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
916 {
917 /* Return the AddressSpace corresponding to the specified index */
918 return cpu->cpu_ases[asidx].as;
919 }
920 #endif
921
922 void cpu_exec_unrealizefn(CPUState *cpu)
923 {
924 CPUClass *cc = CPU_GET_CLASS(cpu);
925
926 cpu_list_remove(cpu);
927
928 if (cc->vmsd != NULL) {
929 vmstate_unregister(NULL, cc->vmsd, cpu);
930 }
931 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
932 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
933 }
934 #ifndef CONFIG_USER_ONLY
935 tcg_iommu_free_notifier_list(cpu);
936 #endif
937 }
938
939 Property cpu_common_props[] = {
940 #ifndef CONFIG_USER_ONLY
941 /* Create a memory property for softmmu CPU object,
942 * so users can wire up its memory. (This can't go in hw/core/cpu.c
943 * because that file is compiled only once for both user-mode
944 * and system builds.) The default if no link is set up is to use
945 * the system address space.
946 */
947 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
948 MemoryRegion *),
949 #endif
950 DEFINE_PROP_END_OF_LIST(),
951 };
952
953 void cpu_exec_initfn(CPUState *cpu)
954 {
955 cpu->as = NULL;
956 cpu->num_ases = 0;
957
958 #ifndef CONFIG_USER_ONLY
959 cpu->thread_id = qemu_get_thread_id();
960 cpu->memory = system_memory;
961 object_ref(OBJECT(cpu->memory));
962 #endif
963 }
964
965 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
966 {
967 CPUClass *cc = CPU_GET_CLASS(cpu);
968 static bool tcg_target_initialized;
969
970 cpu_list_add(cpu);
971
972 if (tcg_enabled() && !tcg_target_initialized) {
973 tcg_target_initialized = true;
974 cc->tcg_initialize();
975 }
976 tlb_init(cpu);
977
978 #ifndef CONFIG_USER_ONLY
979 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
980 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
981 }
982 if (cc->vmsd != NULL) {
983 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
984 }
985
986 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
987 #endif
988 }
989
990 const char *parse_cpu_option(const char *cpu_option)
991 {
992 ObjectClass *oc;
993 CPUClass *cc;
994 gchar **model_pieces;
995 const char *cpu_type;
996
997 model_pieces = g_strsplit(cpu_option, ",", 2);
998 if (!model_pieces[0]) {
999 error_report("-cpu option cannot be empty");
1000 exit(1);
1001 }
1002
1003 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
1004 if (oc == NULL) {
1005 error_report("unable to find CPU model '%s'", model_pieces[0]);
1006 g_strfreev(model_pieces);
1007 exit(EXIT_FAILURE);
1008 }
1009
1010 cpu_type = object_class_get_name(oc);
1011 cc = CPU_CLASS(oc);
1012 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1013 g_strfreev(model_pieces);
1014 return cpu_type;
1015 }
1016
1017 #if defined(CONFIG_USER_ONLY)
1018 void tb_invalidate_phys_addr(target_ulong addr)
1019 {
1020 mmap_lock();
1021 tb_invalidate_phys_page_range(addr, addr + 1, 0);
1022 mmap_unlock();
1023 }
1024
1025 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1026 {
1027 tb_invalidate_phys_addr(pc);
1028 }
1029 #else
1030 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1031 {
1032 ram_addr_t ram_addr;
1033 MemoryRegion *mr;
1034 hwaddr l = 1;
1035
1036 if (!tcg_enabled()) {
1037 return;
1038 }
1039
1040 rcu_read_lock();
1041 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1042 if (!(memory_region_is_ram(mr)
1043 || memory_region_is_romd(mr))) {
1044 rcu_read_unlock();
1045 return;
1046 }
1047 ram_addr = memory_region_get_ram_addr(mr) + addr;
1048 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1049 rcu_read_unlock();
1050 }
1051
1052 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1053 {
1054 MemTxAttrs attrs;
1055 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1056 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1057 if (phys != -1) {
1058 /* Locks grabbed by tb_invalidate_phys_addr */
1059 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1060 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1061 }
1062 }
1063 #endif
1064
1065 #ifndef CONFIG_USER_ONLY
1066 /* Add a watchpoint. */
1067 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1068 int flags, CPUWatchpoint **watchpoint)
1069 {
1070 CPUWatchpoint *wp;
1071
1072 /* forbid ranges which are empty or run off the end of the address space */
1073 if (len == 0 || (addr + len - 1) < addr) {
1074 error_report("tried to set invalid watchpoint at %"
1075 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1076 return -EINVAL;
1077 }
1078 wp = g_malloc(sizeof(*wp));
1079
1080 wp->vaddr = addr;
1081 wp->len = len;
1082 wp->flags = flags;
1083
1084 /* keep all GDB-injected watchpoints in front */
1085 if (flags & BP_GDB) {
1086 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1087 } else {
1088 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1089 }
1090
1091 tlb_flush_page(cpu, addr);
1092
1093 if (watchpoint)
1094 *watchpoint = wp;
1095 return 0;
1096 }
1097
1098 /* Remove a specific watchpoint. */
1099 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1100 int flags)
1101 {
1102 CPUWatchpoint *wp;
1103
1104 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1105 if (addr == wp->vaddr && len == wp->len
1106 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1107 cpu_watchpoint_remove_by_ref(cpu, wp);
1108 return 0;
1109 }
1110 }
1111 return -ENOENT;
1112 }
1113
1114 /* Remove a specific watchpoint by reference. */
1115 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1116 {
1117 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1118
1119 tlb_flush_page(cpu, watchpoint->vaddr);
1120
1121 g_free(watchpoint);
1122 }
1123
1124 /* Remove all matching watchpoints. */
1125 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1126 {
1127 CPUWatchpoint *wp, *next;
1128
1129 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1130 if (wp->flags & mask) {
1131 cpu_watchpoint_remove_by_ref(cpu, wp);
1132 }
1133 }
1134 }
1135
1136 /* Return true if this watchpoint address matches the specified
1137 * access (ie the address range covered by the watchpoint overlaps
1138 * partially or completely with the address range covered by the
1139 * access).
1140 */
1141 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1142 vaddr addr, vaddr len)
1143 {
1144 /* We know the lengths are non-zero, but a little caution is
1145 * required to avoid errors in the case where the range ends
1146 * exactly at the top of the address space and so addr + len
1147 * wraps round to zero.
1148 */
1149 vaddr wpend = wp->vaddr + wp->len - 1;
1150 vaddr addrend = addr + len - 1;
1151
1152 return !(addr > wpend || wp->vaddr > addrend);
1153 }
1154
1155 /* Return flags for watchpoints that match addr + prot. */
1156 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1157 {
1158 CPUWatchpoint *wp;
1159 int ret = 0;
1160
1161 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1162 if (watchpoint_address_matches(wp, addr, TARGET_PAGE_SIZE)) {
1163 ret |= wp->flags;
1164 }
1165 }
1166 return ret;
1167 }
1168 #endif /* !CONFIG_USER_ONLY */
1169
1170 /* Add a breakpoint. */
1171 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1172 CPUBreakpoint **breakpoint)
1173 {
1174 CPUBreakpoint *bp;
1175
1176 bp = g_malloc(sizeof(*bp));
1177
1178 bp->pc = pc;
1179 bp->flags = flags;
1180
1181 /* keep all GDB-injected breakpoints in front */
1182 if (flags & BP_GDB) {
1183 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1184 } else {
1185 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1186 }
1187
1188 breakpoint_invalidate(cpu, pc);
1189
1190 if (breakpoint) {
1191 *breakpoint = bp;
1192 }
1193 return 0;
1194 }
1195
1196 /* Remove a specific breakpoint. */
1197 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1198 {
1199 CPUBreakpoint *bp;
1200
1201 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1202 if (bp->pc == pc && bp->flags == flags) {
1203 cpu_breakpoint_remove_by_ref(cpu, bp);
1204 return 0;
1205 }
1206 }
1207 return -ENOENT;
1208 }
1209
1210 /* Remove a specific breakpoint by reference. */
1211 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1212 {
1213 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1214
1215 breakpoint_invalidate(cpu, breakpoint->pc);
1216
1217 g_free(breakpoint);
1218 }
1219
1220 /* Remove all matching breakpoints. */
1221 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1222 {
1223 CPUBreakpoint *bp, *next;
1224
1225 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1226 if (bp->flags & mask) {
1227 cpu_breakpoint_remove_by_ref(cpu, bp);
1228 }
1229 }
1230 }
1231
1232 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1233 CPU loop after each instruction */
1234 void cpu_single_step(CPUState *cpu, int enabled)
1235 {
1236 if (cpu->singlestep_enabled != enabled) {
1237 cpu->singlestep_enabled = enabled;
1238 if (kvm_enabled()) {
1239 kvm_update_guest_debug(cpu, 0);
1240 } else {
1241 /* must flush all the translated code to avoid inconsistencies */
1242 /* XXX: only flush what is necessary */
1243 tb_flush(cpu);
1244 }
1245 }
1246 }
1247
1248 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1249 {
1250 va_list ap;
1251 va_list ap2;
1252
1253 va_start(ap, fmt);
1254 va_copy(ap2, ap);
1255 fprintf(stderr, "qemu: fatal: ");
1256 vfprintf(stderr, fmt, ap);
1257 fprintf(stderr, "\n");
1258 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1259 if (qemu_log_separate()) {
1260 qemu_log_lock();
1261 qemu_log("qemu: fatal: ");
1262 qemu_log_vprintf(fmt, ap2);
1263 qemu_log("\n");
1264 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1265 qemu_log_flush();
1266 qemu_log_unlock();
1267 qemu_log_close();
1268 }
1269 va_end(ap2);
1270 va_end(ap);
1271 replay_finish();
1272 #if defined(CONFIG_USER_ONLY)
1273 {
1274 struct sigaction act;
1275 sigfillset(&act.sa_mask);
1276 act.sa_handler = SIG_DFL;
1277 act.sa_flags = 0;
1278 sigaction(SIGABRT, &act, NULL);
1279 }
1280 #endif
1281 abort();
1282 }
1283
1284 #if !defined(CONFIG_USER_ONLY)
1285 /* Called from RCU critical section */
1286 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1287 {
1288 RAMBlock *block;
1289
1290 block = atomic_rcu_read(&ram_list.mru_block);
1291 if (block && addr - block->offset < block->max_length) {
1292 return block;
1293 }
1294 RAMBLOCK_FOREACH(block) {
1295 if (addr - block->offset < block->max_length) {
1296 goto found;
1297 }
1298 }
1299
1300 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1301 abort();
1302
1303 found:
1304 /* It is safe to write mru_block outside the iothread lock. This
1305 * is what happens:
1306 *
1307 * mru_block = xxx
1308 * rcu_read_unlock()
1309 * xxx removed from list
1310 * rcu_read_lock()
1311 * read mru_block
1312 * mru_block = NULL;
1313 * call_rcu(reclaim_ramblock, xxx);
1314 * rcu_read_unlock()
1315 *
1316 * atomic_rcu_set is not needed here. The block was already published
1317 * when it was placed into the list. Here we're just making an extra
1318 * copy of the pointer.
1319 */
1320 ram_list.mru_block = block;
1321 return block;
1322 }
1323
1324 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1325 {
1326 CPUState *cpu;
1327 ram_addr_t start1;
1328 RAMBlock *block;
1329 ram_addr_t end;
1330
1331 assert(tcg_enabled());
1332 end = TARGET_PAGE_ALIGN(start + length);
1333 start &= TARGET_PAGE_MASK;
1334
1335 rcu_read_lock();
1336 block = qemu_get_ram_block(start);
1337 assert(block == qemu_get_ram_block(end - 1));
1338 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1339 CPU_FOREACH(cpu) {
1340 tlb_reset_dirty(cpu, start1, length);
1341 }
1342 rcu_read_unlock();
1343 }
1344
1345 /* Note: start and end must be within the same ram block. */
1346 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1347 ram_addr_t length,
1348 unsigned client)
1349 {
1350 DirtyMemoryBlocks *blocks;
1351 unsigned long end, page;
1352 bool dirty = false;
1353 RAMBlock *ramblock;
1354 uint64_t mr_offset, mr_size;
1355
1356 if (length == 0) {
1357 return false;
1358 }
1359
1360 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1361 page = start >> TARGET_PAGE_BITS;
1362
1363 rcu_read_lock();
1364
1365 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1366 ramblock = qemu_get_ram_block(start);
1367 /* Range sanity check on the ramblock */
1368 assert(start >= ramblock->offset &&
1369 start + length <= ramblock->offset + ramblock->used_length);
1370
1371 while (page < end) {
1372 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1373 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1374 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1375
1376 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1377 offset, num);
1378 page += num;
1379 }
1380
1381 mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
1382 mr_size = (end - page) << TARGET_PAGE_BITS;
1383 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1384
1385 rcu_read_unlock();
1386
1387 if (dirty && tcg_enabled()) {
1388 tlb_reset_dirty_range_all(start, length);
1389 }
1390
1391 return dirty;
1392 }
1393
1394 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1395 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1396 {
1397 DirtyMemoryBlocks *blocks;
1398 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1399 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1400 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1401 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1402 DirtyBitmapSnapshot *snap;
1403 unsigned long page, end, dest;
1404
1405 snap = g_malloc0(sizeof(*snap) +
1406 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1407 snap->start = first;
1408 snap->end = last;
1409
1410 page = first >> TARGET_PAGE_BITS;
1411 end = last >> TARGET_PAGE_BITS;
1412 dest = 0;
1413
1414 rcu_read_lock();
1415
1416 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1417
1418 while (page < end) {
1419 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1420 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1421 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1422
1423 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1424 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1425 offset >>= BITS_PER_LEVEL;
1426
1427 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1428 blocks->blocks[idx] + offset,
1429 num);
1430 page += num;
1431 dest += num >> BITS_PER_LEVEL;
1432 }
1433
1434 rcu_read_unlock();
1435
1436 if (tcg_enabled()) {
1437 tlb_reset_dirty_range_all(start, length);
1438 }
1439
1440 memory_region_clear_dirty_bitmap(mr, offset, length);
1441
1442 return snap;
1443 }
1444
1445 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1446 ram_addr_t start,
1447 ram_addr_t length)
1448 {
1449 unsigned long page, end;
1450
1451 assert(start >= snap->start);
1452 assert(start + length <= snap->end);
1453
1454 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1455 page = (start - snap->start) >> TARGET_PAGE_BITS;
1456
1457 while (page < end) {
1458 if (test_bit(page, snap->dirty)) {
1459 return true;
1460 }
1461 page++;
1462 }
1463 return false;
1464 }
1465
1466 /* Called from RCU critical section */
1467 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1468 MemoryRegionSection *section,
1469 target_ulong vaddr,
1470 hwaddr paddr, hwaddr xlat,
1471 int prot,
1472 target_ulong *address)
1473 {
1474 hwaddr iotlb;
1475 int flags, match;
1476
1477 if (memory_region_is_ram(section->mr)) {
1478 /* Normal RAM. */
1479 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1480 if (!section->readonly) {
1481 iotlb |= PHYS_SECTION_NOTDIRTY;
1482 } else {
1483 iotlb |= PHYS_SECTION_ROM;
1484 }
1485 } else {
1486 AddressSpaceDispatch *d;
1487
1488 d = flatview_to_dispatch(section->fv);
1489 iotlb = section - d->map.sections;
1490 iotlb += xlat;
1491 }
1492
1493 /* Avoid trapping reads of pages with a write breakpoint. */
1494 match = (prot & PAGE_READ ? BP_MEM_READ : 0)
1495 | (prot & PAGE_WRITE ? BP_MEM_WRITE : 0);
1496 flags = cpu_watchpoint_address_matches(cpu, vaddr, TARGET_PAGE_SIZE);
1497 if (flags & match) {
1498 /*
1499 * Make accesses to pages with watchpoints go via the
1500 * watchpoint trap routines.
1501 */
1502 iotlb = PHYS_SECTION_WATCH + paddr;
1503 *address |= TLB_MMIO;
1504 }
1505
1506 return iotlb;
1507 }
1508 #endif /* defined(CONFIG_USER_ONLY) */
1509
1510 #if !defined(CONFIG_USER_ONLY)
1511
1512 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1513 uint16_t section);
1514 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1515
1516 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1517 qemu_anon_ram_alloc;
1518
1519 /*
1520 * Set a custom physical guest memory alloator.
1521 * Accelerators with unusual needs may need this. Hopefully, we can
1522 * get rid of it eventually.
1523 */
1524 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1525 {
1526 phys_mem_alloc = alloc;
1527 }
1528
1529 static uint16_t phys_section_add(PhysPageMap *map,
1530 MemoryRegionSection *section)
1531 {
1532 /* The physical section number is ORed with a page-aligned
1533 * pointer to produce the iotlb entries. Thus it should
1534 * never overflow into the page-aligned value.
1535 */
1536 assert(map->sections_nb < TARGET_PAGE_SIZE);
1537
1538 if (map->sections_nb == map->sections_nb_alloc) {
1539 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1540 map->sections = g_renew(MemoryRegionSection, map->sections,
1541 map->sections_nb_alloc);
1542 }
1543 map->sections[map->sections_nb] = *section;
1544 memory_region_ref(section->mr);
1545 return map->sections_nb++;
1546 }
1547
1548 static void phys_section_destroy(MemoryRegion *mr)
1549 {
1550 bool have_sub_page = mr->subpage;
1551
1552 memory_region_unref(mr);
1553
1554 if (have_sub_page) {
1555 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1556 object_unref(OBJECT(&subpage->iomem));
1557 g_free(subpage);
1558 }
1559 }
1560
1561 static void phys_sections_free(PhysPageMap *map)
1562 {
1563 while (map->sections_nb > 0) {
1564 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1565 phys_section_destroy(section->mr);
1566 }
1567 g_free(map->sections);
1568 g_free(map->nodes);
1569 }
1570
1571 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1572 {
1573 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1574 subpage_t *subpage;
1575 hwaddr base = section->offset_within_address_space
1576 & TARGET_PAGE_MASK;
1577 MemoryRegionSection *existing = phys_page_find(d, base);
1578 MemoryRegionSection subsection = {
1579 .offset_within_address_space = base,
1580 .size = int128_make64(TARGET_PAGE_SIZE),
1581 };
1582 hwaddr start, end;
1583
1584 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1585
1586 if (!(existing->mr->subpage)) {
1587 subpage = subpage_init(fv, base);
1588 subsection.fv = fv;
1589 subsection.mr = &subpage->iomem;
1590 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1591 phys_section_add(&d->map, &subsection));
1592 } else {
1593 subpage = container_of(existing->mr, subpage_t, iomem);
1594 }
1595 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1596 end = start + int128_get64(section->size) - 1;
1597 subpage_register(subpage, start, end,
1598 phys_section_add(&d->map, section));
1599 }
1600
1601
1602 static void register_multipage(FlatView *fv,
1603 MemoryRegionSection *section)
1604 {
1605 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1606 hwaddr start_addr = section->offset_within_address_space;
1607 uint16_t section_index = phys_section_add(&d->map, section);
1608 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1609 TARGET_PAGE_BITS));
1610
1611 assert(num_pages);
1612 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1613 }
1614
1615 /*
1616 * The range in *section* may look like this:
1617 *
1618 * |s|PPPPPPP|s|
1619 *
1620 * where s stands for subpage and P for page.
1621 */
1622 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1623 {
1624 MemoryRegionSection remain = *section;
1625 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1626
1627 /* register first subpage */
1628 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1629 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1630 - remain.offset_within_address_space;
1631
1632 MemoryRegionSection now = remain;
1633 now.size = int128_min(int128_make64(left), now.size);
1634 register_subpage(fv, &now);
1635 if (int128_eq(remain.size, now.size)) {
1636 return;
1637 }
1638 remain.size = int128_sub(remain.size, now.size);
1639 remain.offset_within_address_space += int128_get64(now.size);
1640 remain.offset_within_region += int128_get64(now.size);
1641 }
1642
1643 /* register whole pages */
1644 if (int128_ge(remain.size, page_size)) {
1645 MemoryRegionSection now = remain;
1646 now.size = int128_and(now.size, int128_neg(page_size));
1647 register_multipage(fv, &now);
1648 if (int128_eq(remain.size, now.size)) {
1649 return;
1650 }
1651 remain.size = int128_sub(remain.size, now.size);
1652 remain.offset_within_address_space += int128_get64(now.size);
1653 remain.offset_within_region += int128_get64(now.size);
1654 }
1655
1656 /* register last subpage */
1657 register_subpage(fv, &remain);
1658 }
1659
1660 void qemu_flush_coalesced_mmio_buffer(void)
1661 {
1662 if (kvm_enabled())
1663 kvm_flush_coalesced_mmio_buffer();
1664 }
1665
1666 void qemu_mutex_lock_ramlist(void)
1667 {
1668 qemu_mutex_lock(&ram_list.mutex);
1669 }
1670
1671 void qemu_mutex_unlock_ramlist(void)
1672 {
1673 qemu_mutex_unlock(&ram_list.mutex);
1674 }
1675
1676 void ram_block_dump(Monitor *mon)
1677 {
1678 RAMBlock *block;
1679 char *psize;
1680
1681 rcu_read_lock();
1682 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1683 "Block Name", "PSize", "Offset", "Used", "Total");
1684 RAMBLOCK_FOREACH(block) {
1685 psize = size_to_str(block->page_size);
1686 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1687 " 0x%016" PRIx64 "\n", block->idstr, psize,
1688 (uint64_t)block->offset,
1689 (uint64_t)block->used_length,
1690 (uint64_t)block->max_length);
1691 g_free(psize);
1692 }
1693 rcu_read_unlock();
1694 }
1695
1696 #ifdef __linux__
1697 /*
1698 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1699 * may or may not name the same files / on the same filesystem now as
1700 * when we actually open and map them. Iterate over the file
1701 * descriptors instead, and use qemu_fd_getpagesize().
1702 */
1703 static int find_min_backend_pagesize(Object *obj, void *opaque)
1704 {
1705 long *hpsize_min = opaque;
1706
1707 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1708 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1709 long hpsize = host_memory_backend_pagesize(backend);
1710
1711 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1712 *hpsize_min = hpsize;
1713 }
1714 }
1715
1716 return 0;
1717 }
1718
1719 static int find_max_backend_pagesize(Object *obj, void *opaque)
1720 {
1721 long *hpsize_max = opaque;
1722
1723 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1724 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1725 long hpsize = host_memory_backend_pagesize(backend);
1726
1727 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1728 *hpsize_max = hpsize;
1729 }
1730 }
1731
1732 return 0;
1733 }
1734
1735 /*
1736 * TODO: We assume right now that all mapped host memory backends are
1737 * used as RAM, however some might be used for different purposes.
1738 */
1739 long qemu_minrampagesize(void)
1740 {
1741 long hpsize = LONG_MAX;
1742 long mainrampagesize;
1743 Object *memdev_root;
1744
1745 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1746
1747 /* it's possible we have memory-backend objects with
1748 * hugepage-backed RAM. these may get mapped into system
1749 * address space via -numa parameters or memory hotplug
1750 * hooks. we want to take these into account, but we
1751 * also want to make sure these supported hugepage
1752 * sizes are applicable across the entire range of memory
1753 * we may boot from, so we take the min across all
1754 * backends, and assume normal pages in cases where a
1755 * backend isn't backed by hugepages.
1756 */
1757 memdev_root = object_resolve_path("/objects", NULL);
1758 if (memdev_root) {
1759 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1760 }
1761 if (hpsize == LONG_MAX) {
1762 /* No additional memory regions found ==> Report main RAM page size */
1763 return mainrampagesize;
1764 }
1765
1766 /* If NUMA is disabled or the NUMA nodes are not backed with a
1767 * memory-backend, then there is at least one node using "normal" RAM,
1768 * so if its page size is smaller we have got to report that size instead.
1769 */
1770 if (hpsize > mainrampagesize &&
1771 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1772 static bool warned;
1773 if (!warned) {
1774 error_report("Huge page support disabled (n/a for main memory).");
1775 warned = true;
1776 }
1777 return mainrampagesize;
1778 }
1779
1780 return hpsize;
1781 }
1782
1783 long qemu_maxrampagesize(void)
1784 {
1785 long pagesize = qemu_mempath_getpagesize(mem_path);
1786 Object *memdev_root = object_resolve_path("/objects", NULL);
1787
1788 if (memdev_root) {
1789 object_child_foreach(memdev_root, find_max_backend_pagesize,
1790 &pagesize);
1791 }
1792 return pagesize;
1793 }
1794 #else
1795 long qemu_minrampagesize(void)
1796 {
1797 return getpagesize();
1798 }
1799 long qemu_maxrampagesize(void)
1800 {
1801 return getpagesize();
1802 }
1803 #endif
1804
1805 #ifdef CONFIG_POSIX
1806 static int64_t get_file_size(int fd)
1807 {
1808 int64_t size = lseek(fd, 0, SEEK_END);
1809 if (size < 0) {
1810 return -errno;
1811 }
1812 return size;
1813 }
1814
1815 static int file_ram_open(const char *path,
1816 const char *region_name,
1817 bool *created,
1818 Error **errp)
1819 {
1820 char *filename;
1821 char *sanitized_name;
1822 char *c;
1823 int fd = -1;
1824
1825 *created = false;
1826 for (;;) {
1827 fd = open(path, O_RDWR);
1828 if (fd >= 0) {
1829 /* @path names an existing file, use it */
1830 break;
1831 }
1832 if (errno == ENOENT) {
1833 /* @path names a file that doesn't exist, create it */
1834 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1835 if (fd >= 0) {
1836 *created = true;
1837 break;
1838 }
1839 } else if (errno == EISDIR) {
1840 /* @path names a directory, create a file there */
1841 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1842 sanitized_name = g_strdup(region_name);
1843 for (c = sanitized_name; *c != '\0'; c++) {
1844 if (*c == '/') {
1845 *c = '_';
1846 }
1847 }
1848
1849 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1850 sanitized_name);
1851 g_free(sanitized_name);
1852
1853 fd = mkstemp(filename);
1854 if (fd >= 0) {
1855 unlink(filename);
1856 g_free(filename);
1857 break;
1858 }
1859 g_free(filename);
1860 }
1861 if (errno != EEXIST && errno != EINTR) {
1862 error_setg_errno(errp, errno,
1863 "can't open backing store %s for guest RAM",
1864 path);
1865 return -1;
1866 }
1867 /*
1868 * Try again on EINTR and EEXIST. The latter happens when
1869 * something else creates the file between our two open().
1870 */
1871 }
1872
1873 return fd;
1874 }
1875
1876 static void *file_ram_alloc(RAMBlock *block,
1877 ram_addr_t memory,
1878 int fd,
1879 bool truncate,
1880 Error **errp)
1881 {
1882 MachineState *ms = MACHINE(qdev_get_machine());
1883 void *area;
1884
1885 block->page_size = qemu_fd_getpagesize(fd);
1886 if (block->mr->align % block->page_size) {
1887 error_setg(errp, "alignment 0x%" PRIx64
1888 " must be multiples of page size 0x%zx",
1889 block->mr->align, block->page_size);
1890 return NULL;
1891 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1892 error_setg(errp, "alignment 0x%" PRIx64
1893 " must be a power of two", block->mr->align);
1894 return NULL;
1895 }
1896 block->mr->align = MAX(block->page_size, block->mr->align);
1897 #if defined(__s390x__)
1898 if (kvm_enabled()) {
1899 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1900 }
1901 #endif
1902
1903 if (memory < block->page_size) {
1904 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1905 "or larger than page size 0x%zx",
1906 memory, block->page_size);
1907 return NULL;
1908 }
1909
1910 memory = ROUND_UP(memory, block->page_size);
1911
1912 /*
1913 * ftruncate is not supported by hugetlbfs in older
1914 * hosts, so don't bother bailing out on errors.
1915 * If anything goes wrong with it under other filesystems,
1916 * mmap will fail.
1917 *
1918 * Do not truncate the non-empty backend file to avoid corrupting
1919 * the existing data in the file. Disabling shrinking is not
1920 * enough. For example, the current vNVDIMM implementation stores
1921 * the guest NVDIMM labels at the end of the backend file. If the
1922 * backend file is later extended, QEMU will not be able to find
1923 * those labels. Therefore, extending the non-empty backend file
1924 * is disabled as well.
1925 */
1926 if (truncate && ftruncate(fd, memory)) {
1927 perror("ftruncate");
1928 }
1929
1930 area = qemu_ram_mmap(fd, memory, block->mr->align,
1931 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1932 if (area == MAP_FAILED) {
1933 error_setg_errno(errp, errno,
1934 "unable to map backing store for guest RAM");
1935 return NULL;
1936 }
1937
1938 if (mem_prealloc) {
1939 os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
1940 if (errp && *errp) {
1941 qemu_ram_munmap(fd, area, memory);
1942 return NULL;
1943 }
1944 }
1945
1946 block->fd = fd;
1947 return area;
1948 }
1949 #endif
1950
1951 /* Allocate space within the ram_addr_t space that governs the
1952 * dirty bitmaps.
1953 * Called with the ramlist lock held.
1954 */
1955 static ram_addr_t find_ram_offset(ram_addr_t size)
1956 {
1957 RAMBlock *block, *next_block;
1958 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1959
1960 assert(size != 0); /* it would hand out same offset multiple times */
1961
1962 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1963 return 0;
1964 }
1965
1966 RAMBLOCK_FOREACH(block) {
1967 ram_addr_t candidate, next = RAM_ADDR_MAX;
1968
1969 /* Align blocks to start on a 'long' in the bitmap
1970 * which makes the bitmap sync'ing take the fast path.
1971 */
1972 candidate = block->offset + block->max_length;
1973 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1974
1975 /* Search for the closest following block
1976 * and find the gap.
1977 */
1978 RAMBLOCK_FOREACH(next_block) {
1979 if (next_block->offset >= candidate) {
1980 next = MIN(next, next_block->offset);
1981 }
1982 }
1983
1984 /* If it fits remember our place and remember the size
1985 * of gap, but keep going so that we might find a smaller
1986 * gap to fill so avoiding fragmentation.
1987 */
1988 if (next - candidate >= size && next - candidate < mingap) {
1989 offset = candidate;
1990 mingap = next - candidate;
1991 }
1992
1993 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1994 }
1995
1996 if (offset == RAM_ADDR_MAX) {
1997 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1998 (uint64_t)size);
1999 abort();
2000 }
2001
2002 trace_find_ram_offset(size, offset);
2003
2004 return offset;
2005 }
2006
2007 static unsigned long last_ram_page(void)
2008 {
2009 RAMBlock *block;
2010 ram_addr_t last = 0;
2011
2012 rcu_read_lock();
2013 RAMBLOCK_FOREACH(block) {
2014 last = MAX(last, block->offset + block->max_length);
2015 }
2016 rcu_read_unlock();
2017 return last >> TARGET_PAGE_BITS;
2018 }
2019
2020 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2021 {
2022 int ret;
2023
2024 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2025 if (!machine_dump_guest_core(current_machine)) {
2026 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2027 if (ret) {
2028 perror("qemu_madvise");
2029 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2030 "but dump_guest_core=off specified\n");
2031 }
2032 }
2033 }
2034
2035 const char *qemu_ram_get_idstr(RAMBlock *rb)
2036 {
2037 return rb->idstr;
2038 }
2039
2040 void *qemu_ram_get_host_addr(RAMBlock *rb)
2041 {
2042 return rb->host;
2043 }
2044
2045 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2046 {
2047 return rb->offset;
2048 }
2049
2050 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2051 {
2052 return rb->used_length;
2053 }
2054
2055 bool qemu_ram_is_shared(RAMBlock *rb)
2056 {
2057 return rb->flags & RAM_SHARED;
2058 }
2059
2060 /* Note: Only set at the start of postcopy */
2061 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2062 {
2063 return rb->flags & RAM_UF_ZEROPAGE;
2064 }
2065
2066 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2067 {
2068 rb->flags |= RAM_UF_ZEROPAGE;
2069 }
2070
2071 bool qemu_ram_is_migratable(RAMBlock *rb)
2072 {
2073 return rb->flags & RAM_MIGRATABLE;
2074 }
2075
2076 void qemu_ram_set_migratable(RAMBlock *rb)
2077 {
2078 rb->flags |= RAM_MIGRATABLE;
2079 }
2080
2081 void qemu_ram_unset_migratable(RAMBlock *rb)
2082 {
2083 rb->flags &= ~RAM_MIGRATABLE;
2084 }
2085
2086 /* Called with iothread lock held. */
2087 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2088 {
2089 RAMBlock *block;
2090
2091 assert(new_block);
2092 assert(!new_block->idstr[0]);
2093
2094 if (dev) {
2095 char *id = qdev_get_dev_path(dev);
2096 if (id) {
2097 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2098 g_free(id);
2099 }
2100 }
2101 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2102
2103 rcu_read_lock();
2104 RAMBLOCK_FOREACH(block) {
2105 if (block != new_block &&
2106 !strcmp(block->idstr, new_block->idstr)) {
2107 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2108 new_block->idstr);
2109 abort();
2110 }
2111 }
2112 rcu_read_unlock();
2113 }
2114
2115 /* Called with iothread lock held. */
2116 void qemu_ram_unset_idstr(RAMBlock *block)
2117 {
2118 /* FIXME: arch_init.c assumes that this is not called throughout
2119 * migration. Ignore the problem since hot-unplug during migration
2120 * does not work anyway.
2121 */
2122 if (block) {
2123 memset(block->idstr, 0, sizeof(block->idstr));
2124 }
2125 }
2126
2127 size_t qemu_ram_pagesize(RAMBlock *rb)
2128 {
2129 return rb->page_size;
2130 }
2131
2132 /* Returns the largest size of page in use */
2133 size_t qemu_ram_pagesize_largest(void)
2134 {
2135 RAMBlock *block;
2136 size_t largest = 0;
2137
2138 RAMBLOCK_FOREACH(block) {
2139 largest = MAX(largest, qemu_ram_pagesize(block));
2140 }
2141
2142 return largest;
2143 }
2144
2145 static int memory_try_enable_merging(void *addr, size_t len)
2146 {
2147 if (!machine_mem_merge(current_machine)) {
2148 /* disabled by the user */
2149 return 0;
2150 }
2151
2152 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2153 }
2154
2155 /* Only legal before guest might have detected the memory size: e.g. on
2156 * incoming migration, or right after reset.
2157 *
2158 * As memory core doesn't know how is memory accessed, it is up to
2159 * resize callback to update device state and/or add assertions to detect
2160 * misuse, if necessary.
2161 */
2162 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2163 {
2164 assert(block);
2165
2166 newsize = HOST_PAGE_ALIGN(newsize);
2167
2168 if (block->used_length == newsize) {
2169 return 0;
2170 }
2171
2172 if (!(block->flags & RAM_RESIZEABLE)) {
2173 error_setg_errno(errp, EINVAL,
2174 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2175 " in != 0x" RAM_ADDR_FMT, block->idstr,
2176 newsize, block->used_length);
2177 return -EINVAL;
2178 }
2179
2180 if (block->max_length < newsize) {
2181 error_setg_errno(errp, EINVAL,
2182 "Length too large: %s: 0x" RAM_ADDR_FMT
2183 " > 0x" RAM_ADDR_FMT, block->idstr,
2184 newsize, block->max_length);
2185 return -EINVAL;
2186 }
2187
2188 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2189 block->used_length = newsize;
2190 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2191 DIRTY_CLIENTS_ALL);
2192 memory_region_set_size(block->mr, newsize);
2193 if (block->resized) {
2194 block->resized(block->idstr, newsize, block->host);
2195 }
2196 return 0;
2197 }
2198
2199 /* Called with ram_list.mutex held */
2200 static void dirty_memory_extend(ram_addr_t old_ram_size,
2201 ram_addr_t new_ram_size)
2202 {
2203 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2204 DIRTY_MEMORY_BLOCK_SIZE);
2205 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2206 DIRTY_MEMORY_BLOCK_SIZE);
2207 int i;
2208
2209 /* Only need to extend if block count increased */
2210 if (new_num_blocks <= old_num_blocks) {
2211 return;
2212 }
2213
2214 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2215 DirtyMemoryBlocks *old_blocks;
2216 DirtyMemoryBlocks *new_blocks;
2217 int j;
2218
2219 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2220 new_blocks = g_malloc(sizeof(*new_blocks) +
2221 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2222
2223 if (old_num_blocks) {
2224 memcpy(new_blocks->blocks, old_blocks->blocks,
2225 old_num_blocks * sizeof(old_blocks->blocks[0]));
2226 }
2227
2228 for (j = old_num_blocks; j < new_num_blocks; j++) {
2229 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2230 }
2231
2232 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2233
2234 if (old_blocks) {
2235 g_free_rcu(old_blocks, rcu);
2236 }
2237 }
2238 }
2239
2240 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2241 {
2242 RAMBlock *block;
2243 RAMBlock *last_block = NULL;
2244 ram_addr_t old_ram_size, new_ram_size;
2245 Error *err = NULL;
2246
2247 old_ram_size = last_ram_page();
2248
2249 qemu_mutex_lock_ramlist();
2250 new_block->offset = find_ram_offset(new_block->max_length);
2251
2252 if (!new_block->host) {
2253 if (xen_enabled()) {
2254 xen_ram_alloc(new_block->offset, new_block->max_length,
2255 new_block->mr, &err);
2256 if (err) {
2257 error_propagate(errp, err);
2258 qemu_mutex_unlock_ramlist();
2259 return;
2260 }
2261 } else {
2262 new_block->host = phys_mem_alloc(new_block->max_length,
2263 &new_block->mr->align, shared);
2264 if (!new_block->host) {
2265 error_setg_errno(errp, errno,
2266 "cannot set up guest memory '%s'",
2267 memory_region_name(new_block->mr));
2268 qemu_mutex_unlock_ramlist();
2269 return;
2270 }
2271 memory_try_enable_merging(new_block->host, new_block->max_length);
2272 }
2273 }
2274
2275 new_ram_size = MAX(old_ram_size,
2276 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2277 if (new_ram_size > old_ram_size) {
2278 dirty_memory_extend(old_ram_size, new_ram_size);
2279 }
2280 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2281 * QLIST (which has an RCU-friendly variant) does not have insertion at
2282 * tail, so save the last element in last_block.
2283 */
2284 RAMBLOCK_FOREACH(block) {
2285 last_block = block;
2286 if (block->max_length < new_block->max_length) {
2287 break;
2288 }
2289 }
2290 if (block) {
2291 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2292 } else if (last_block) {
2293 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2294 } else { /* list is empty */
2295 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2296 }
2297 ram_list.mru_block = NULL;
2298
2299 /* Write list before version */
2300 smp_wmb();
2301 ram_list.version++;
2302 qemu_mutex_unlock_ramlist();
2303
2304 cpu_physical_memory_set_dirty_range(new_block->offset,
2305 new_block->used_length,
2306 DIRTY_CLIENTS_ALL);
2307
2308 if (new_block->host) {
2309 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2310 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2311 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2312 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2313 ram_block_notify_add(new_block->host, new_block->max_length);
2314 }
2315 }
2316
2317 #ifdef CONFIG_POSIX
2318 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2319 uint32_t ram_flags, int fd,
2320 Error **errp)
2321 {
2322 RAMBlock *new_block;
2323 Error *local_err = NULL;
2324 int64_t file_size;
2325
2326 /* Just support these ram flags by now. */
2327 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2328
2329 if (xen_enabled()) {
2330 error_setg(errp, "-mem-path not supported with Xen");
2331 return NULL;
2332 }
2333
2334 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2335 error_setg(errp,
2336 "host lacks kvm mmu notifiers, -mem-path unsupported");
2337 return NULL;
2338 }
2339
2340 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2341 /*
2342 * file_ram_alloc() needs to allocate just like
2343 * phys_mem_alloc, but we haven't bothered to provide
2344 * a hook there.
2345 */
2346 error_setg(errp,
2347 "-mem-path not supported with this accelerator");
2348 return NULL;
2349 }
2350
2351 size = HOST_PAGE_ALIGN(size);
2352 file_size = get_file_size(fd);
2353 if (file_size > 0 && file_size < size) {
2354 error_setg(errp, "backing store %s size 0x%" PRIx64
2355 " does not match 'size' option 0x" RAM_ADDR_FMT,
2356 mem_path, file_size, size);
2357 return NULL;
2358 }
2359
2360 new_block = g_malloc0(sizeof(*new_block));
2361 new_block->mr = mr;
2362 new_block->used_length = size;
2363 new_block->max_length = size;
2364 new_block->flags = ram_flags;
2365 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2366 if (!new_block->host) {
2367 g_free(new_block);
2368 return NULL;
2369 }
2370
2371 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2372 if (local_err) {
2373 g_free(new_block);
2374 error_propagate(errp, local_err);
2375 return NULL;
2376 }
2377 return new_block;
2378
2379 }
2380
2381
2382 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2383 uint32_t ram_flags, const char *mem_path,
2384 Error **errp)
2385 {
2386 int fd;
2387 bool created;
2388 RAMBlock *block;
2389
2390 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2391 if (fd < 0) {
2392 return NULL;
2393 }
2394
2395 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2396 if (!block) {
2397 if (created) {
2398 unlink(mem_path);
2399 }
2400 close(fd);
2401 return NULL;
2402 }
2403
2404 return block;
2405 }
2406 #endif
2407
2408 static
2409 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2410 void (*resized)(const char*,
2411 uint64_t length,
2412 void *host),
2413 void *host, bool resizeable, bool share,
2414 MemoryRegion *mr, Error **errp)
2415 {
2416 RAMBlock *new_block;
2417 Error *local_err = NULL;
2418
2419 size = HOST_PAGE_ALIGN(size);
2420 max_size = HOST_PAGE_ALIGN(max_size);
2421 new_block = g_malloc0(sizeof(*new_block));
2422 new_block->mr = mr;
2423 new_block->resized = resized;
2424 new_block->used_length = size;
2425 new_block->max_length = max_size;
2426 assert(max_size >= size);
2427 new_block->fd = -1;
2428 new_block->page_size = getpagesize();
2429 new_block->host = host;
2430 if (host) {
2431 new_block->flags |= RAM_PREALLOC;
2432 }
2433 if (resizeable) {
2434 new_block->flags |= RAM_RESIZEABLE;
2435 }
2436 ram_block_add(new_block, &local_err, share);
2437 if (local_err) {
2438 g_free(new_block);
2439 error_propagate(errp, local_err);
2440 return NULL;
2441 }
2442 return new_block;
2443 }
2444
2445 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2446 MemoryRegion *mr, Error **errp)
2447 {
2448 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2449 false, mr, errp);
2450 }
2451
2452 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2453 MemoryRegion *mr, Error **errp)
2454 {
2455 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2456 share, mr, errp);
2457 }
2458
2459 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2460 void (*resized)(const char*,
2461 uint64_t length,
2462 void *host),
2463 MemoryRegion *mr, Error **errp)
2464 {
2465 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2466 false, mr, errp);
2467 }
2468
2469 static void reclaim_ramblock(RAMBlock *block)
2470 {
2471 if (block->flags & RAM_PREALLOC) {
2472 ;
2473 } else if (xen_enabled()) {
2474 xen_invalidate_map_cache_entry(block->host);
2475 #ifndef _WIN32
2476 } else if (block->fd >= 0) {
2477 qemu_ram_munmap(block->fd, block->host, block->max_length);
2478 close(block->fd);
2479 #endif
2480 } else {
2481 qemu_anon_ram_free(block->host, block->max_length);
2482 }
2483 g_free(block);
2484 }
2485
2486 void qemu_ram_free(RAMBlock *block)
2487 {
2488 if (!block) {
2489 return;
2490 }
2491
2492 if (block->host) {
2493 ram_block_notify_remove(block->host, block->max_length);
2494 }
2495
2496 qemu_mutex_lock_ramlist();
2497 QLIST_REMOVE_RCU(block, next);
2498 ram_list.mru_block = NULL;
2499 /* Write list before version */
2500 smp_wmb();
2501 ram_list.version++;
2502 call_rcu(block, reclaim_ramblock, rcu);
2503 qemu_mutex_unlock_ramlist();
2504 }
2505
2506 #ifndef _WIN32
2507 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2508 {
2509 RAMBlock *block;
2510 ram_addr_t offset;
2511 int flags;
2512 void *area, *vaddr;
2513
2514 RAMBLOCK_FOREACH(block) {
2515 offset = addr - block->offset;
2516 if (offset < block->max_length) {
2517 vaddr = ramblock_ptr(block, offset);
2518 if (block->flags & RAM_PREALLOC) {
2519 ;
2520 } else if (xen_enabled()) {
2521 abort();
2522 } else {
2523 flags = MAP_FIXED;
2524 if (block->fd >= 0) {
2525 flags |= (block->flags & RAM_SHARED ?
2526 MAP_SHARED : MAP_PRIVATE);
2527 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2528 flags, block->fd, offset);
2529 } else {
2530 /*
2531 * Remap needs to match alloc. Accelerators that
2532 * set phys_mem_alloc never remap. If they did,
2533 * we'd need a remap hook here.
2534 */
2535 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2536
2537 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2538 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2539 flags, -1, 0);
2540 }
2541 if (area != vaddr) {
2542 error_report("Could not remap addr: "
2543 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2544 length, addr);
2545 exit(1);
2546 }
2547 memory_try_enable_merging(vaddr, length);
2548 qemu_ram_setup_dump(vaddr, length);
2549 }
2550 }
2551 }
2552 }
2553 #endif /* !_WIN32 */
2554
2555 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2556 * This should not be used for general purpose DMA. Use address_space_map
2557 * or address_space_rw instead. For local memory (e.g. video ram) that the
2558 * device owns, use memory_region_get_ram_ptr.
2559 *
2560 * Called within RCU critical section.
2561 */
2562 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2563 {
2564 RAMBlock *block = ram_block;
2565
2566 if (block == NULL) {
2567 block = qemu_get_ram_block(addr);
2568 addr -= block->offset;
2569 }
2570
2571 if (xen_enabled() && block->host == NULL) {
2572 /* We need to check if the requested address is in the RAM
2573 * because we don't want to map the entire memory in QEMU.
2574 * In that case just map until the end of the page.
2575 */
2576 if (block->offset == 0) {
2577 return xen_map_cache(addr, 0, 0, false);
2578 }
2579
2580 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2581 }
2582 return ramblock_ptr(block, addr);
2583 }
2584
2585 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2586 * but takes a size argument.
2587 *
2588 * Called within RCU critical section.
2589 */
2590 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2591 hwaddr *size, bool lock)
2592 {
2593 RAMBlock *block = ram_block;
2594 if (*size == 0) {
2595 return NULL;
2596 }
2597
2598 if (block == NULL) {
2599 block = qemu_get_ram_block(addr);
2600 addr -= block->offset;
2601 }
2602 *size = MIN(*size, block->max_length - addr);
2603
2604 if (xen_enabled() && block->host == NULL) {
2605 /* We need to check if the requested address is in the RAM
2606 * because we don't want to map the entire memory in QEMU.
2607 * In that case just map the requested area.
2608 */
2609 if (block->offset == 0) {
2610 return xen_map_cache(addr, *size, lock, lock);
2611 }
2612
2613 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2614 }
2615
2616 return ramblock_ptr(block, addr);
2617 }
2618
2619 /* Return the offset of a hostpointer within a ramblock */
2620 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2621 {
2622 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2623 assert((uintptr_t)host >= (uintptr_t)rb->host);
2624 assert(res < rb->max_length);
2625
2626 return res;
2627 }
2628
2629 /*
2630 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2631 * in that RAMBlock.
2632 *
2633 * ptr: Host pointer to look up
2634 * round_offset: If true round the result offset down to a page boundary
2635 * *ram_addr: set to result ram_addr
2636 * *offset: set to result offset within the RAMBlock
2637 *
2638 * Returns: RAMBlock (or NULL if not found)
2639 *
2640 * By the time this function returns, the returned pointer is not protected
2641 * by RCU anymore. If the caller is not within an RCU critical section and
2642 * does not hold the iothread lock, it must have other means of protecting the
2643 * pointer, such as a reference to the region that includes the incoming
2644 * ram_addr_t.
2645 */
2646 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2647 ram_addr_t *offset)
2648 {
2649 RAMBlock *block;
2650 uint8_t *host = ptr;
2651
2652 if (xen_enabled()) {
2653 ram_addr_t ram_addr;
2654 rcu_read_lock();
2655 ram_addr = xen_ram_addr_from_mapcache(ptr);
2656 block = qemu_get_ram_block(ram_addr);
2657 if (block) {
2658 *offset = ram_addr - block->offset;
2659 }
2660 rcu_read_unlock();
2661 return block;
2662 }
2663
2664 rcu_read_lock();
2665 block = atomic_rcu_read(&ram_list.mru_block);
2666 if (block && block->host && host - block->host < block->max_length) {
2667 goto found;
2668 }
2669
2670 RAMBLOCK_FOREACH(block) {
2671 /* This case append when the block is not mapped. */
2672 if (block->host == NULL) {
2673 continue;
2674 }
2675 if (host - block->host < block->max_length) {
2676 goto found;
2677 }
2678 }
2679
2680 rcu_read_unlock();
2681 return NULL;
2682
2683 found:
2684 *offset = (host - block->host);
2685 if (round_offset) {
2686 *offset &= TARGET_PAGE_MASK;
2687 }
2688 rcu_read_unlock();
2689 return block;
2690 }
2691
2692 /*
2693 * Finds the named RAMBlock
2694 *
2695 * name: The name of RAMBlock to find
2696 *
2697 * Returns: RAMBlock (or NULL if not found)
2698 */
2699 RAMBlock *qemu_ram_block_by_name(const char *name)
2700 {
2701 RAMBlock *block;
2702
2703 RAMBLOCK_FOREACH(block) {
2704 if (!strcmp(name, block->idstr)) {
2705 return block;
2706 }
2707 }
2708
2709 return NULL;
2710 }
2711
2712 /* Some of the softmmu routines need to translate from a host pointer
2713 (typically a TLB entry) back to a ram offset. */
2714 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2715 {
2716 RAMBlock *block;
2717 ram_addr_t offset;
2718
2719 block = qemu_ram_block_from_host(ptr, false, &offset);
2720 if (!block) {
2721 return RAM_ADDR_INVALID;
2722 }
2723
2724 return block->offset + offset;
2725 }
2726
2727 /* Called within RCU critical section. */
2728 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2729 CPUState *cpu,
2730 vaddr mem_vaddr,
2731 ram_addr_t ram_addr,
2732 unsigned size)
2733 {
2734 ndi->cpu = cpu;
2735 ndi->ram_addr = ram_addr;
2736 ndi->mem_vaddr = mem_vaddr;
2737 ndi->size = size;
2738 ndi->pages = NULL;
2739
2740 assert(tcg_enabled());
2741 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2742 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2743 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2744 }
2745 }
2746
2747 /* Called within RCU critical section. */
2748 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2749 {
2750 if (ndi->pages) {
2751 assert(tcg_enabled());
2752 page_collection_unlock(ndi->pages);
2753 ndi->pages = NULL;
2754 }
2755
2756 /* Set both VGA and migration bits for simplicity and to remove
2757 * the notdirty callback faster.
2758 */
2759 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2760 DIRTY_CLIENTS_NOCODE);
2761 /* we remove the notdirty callback only if the code has been
2762 flushed */
2763 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2764 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2765 }
2766 }
2767
2768 /* Called within RCU critical section. */
2769 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2770 uint64_t val, unsigned size)
2771 {
2772 NotDirtyInfo ndi;
2773
2774 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2775 ram_addr, size);
2776
2777 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2778 memory_notdirty_write_complete(&ndi);
2779 }
2780
2781 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2782 unsigned size, bool is_write,
2783 MemTxAttrs attrs)
2784 {
2785 return is_write;
2786 }
2787
2788 static const MemoryRegionOps notdirty_mem_ops = {
2789 .write = notdirty_mem_write,
2790 .valid.accepts = notdirty_mem_accepts,
2791 .endianness = DEVICE_NATIVE_ENDIAN,
2792 .valid = {
2793 .min_access_size = 1,
2794 .max_access_size = 8,
2795 .unaligned = false,
2796 },
2797 .impl = {
2798 .min_access_size = 1,
2799 .max_access_size = 8,
2800 .unaligned = false,
2801 },
2802 };
2803
2804 /* Generate a debug exception if a watchpoint has been hit. */
2805 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2806 MemTxAttrs attrs, int flags, uintptr_t ra)
2807 {
2808 CPUClass *cc = CPU_GET_CLASS(cpu);
2809 CPUWatchpoint *wp;
2810
2811 assert(tcg_enabled());
2812 if (cpu->watchpoint_hit) {
2813 /* We re-entered the check after replacing the TB. Now raise
2814 * the debug interrupt so that is will trigger after the
2815 * current instruction. */
2816 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2817 return;
2818 }
2819
2820 addr = cc->adjust_watchpoint_address(cpu, addr, len);
2821 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2822 if (watchpoint_address_matches(wp, addr, len)
2823 && (wp->flags & flags)) {
2824 if (flags == BP_MEM_READ) {
2825 wp->flags |= BP_WATCHPOINT_HIT_READ;
2826 } else {
2827 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2828 }
2829 wp->hitaddr = MAX(addr, wp->vaddr);
2830 wp->hitattrs = attrs;
2831 if (!cpu->watchpoint_hit) {
2832 if (wp->flags & BP_CPU &&
2833 !cc->debug_check_watchpoint(cpu, wp)) {
2834 wp->flags &= ~BP_WATCHPOINT_HIT;
2835 continue;
2836 }
2837 cpu->watchpoint_hit = wp;
2838
2839 mmap_lock();
2840 tb_check_watchpoint(cpu);
2841 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2842 cpu->exception_index = EXCP_DEBUG;
2843 mmap_unlock();
2844 cpu_loop_exit_restore(cpu, ra);
2845 } else {
2846 /* Force execution of one insn next time. */
2847 cpu->cflags_next_tb = 1 | curr_cflags();
2848 mmap_unlock();
2849 if (ra) {
2850 cpu_restore_state(cpu, ra, true);
2851 }
2852 cpu_loop_exit_noexc(cpu);
2853 }
2854 }
2855 } else {
2856 wp->flags &= ~BP_WATCHPOINT_HIT;
2857 }
2858 }
2859 }
2860
2861 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2862 {
2863 CPUState *cpu = current_cpu;
2864 vaddr addr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2865
2866 cpu_check_watchpoint(cpu, addr, len, attrs, flags, 0);
2867 }
2868
2869 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2870 so these check for a hit then pass through to the normal out-of-line
2871 phys routines. */
2872 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2873 unsigned size, MemTxAttrs attrs)
2874 {
2875 MemTxResult res;
2876 uint64_t data;
2877 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2878 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2879
2880 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2881 switch (size) {
2882 case 1:
2883 data = address_space_ldub(as, addr, attrs, &res);
2884 break;
2885 case 2:
2886 data = address_space_lduw(as, addr, attrs, &res);
2887 break;
2888 case 4:
2889 data = address_space_ldl(as, addr, attrs, &res);
2890 break;
2891 case 8:
2892 data = address_space_ldq(as, addr, attrs, &res);
2893 break;
2894 default: abort();
2895 }
2896 *pdata = data;
2897 return res;
2898 }
2899
2900 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2901 uint64_t val, unsigned size,
2902 MemTxAttrs attrs)
2903 {
2904 MemTxResult res;
2905 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2906 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2907
2908 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2909 switch (size) {
2910 case 1:
2911 address_space_stb(as, addr, val, attrs, &res);
2912 break;
2913 case 2:
2914 address_space_stw(as, addr, val, attrs, &res);
2915 break;
2916 case 4:
2917 address_space_stl(as, addr, val, attrs, &res);
2918 break;
2919 case 8:
2920 address_space_stq(as, addr, val, attrs, &res);
2921 break;
2922 default: abort();
2923 }
2924 return res;
2925 }
2926
2927 static const MemoryRegionOps watch_mem_ops = {
2928 .read_with_attrs = watch_mem_read,
2929 .write_with_attrs = watch_mem_write,
2930 .endianness = DEVICE_NATIVE_ENDIAN,
2931 .valid = {
2932 .min_access_size = 1,
2933 .max_access_size = 8,
2934 .unaligned = false,
2935 },
2936 .impl = {
2937 .min_access_size = 1,
2938 .max_access_size = 8,
2939 .unaligned = false,
2940 },
2941 };
2942
2943 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2944 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2945 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2946 const uint8_t *buf, hwaddr len);
2947 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2948 bool is_write, MemTxAttrs attrs);
2949
2950 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2951 unsigned len, MemTxAttrs attrs)
2952 {
2953 subpage_t *subpage = opaque;
2954 uint8_t buf[8];
2955 MemTxResult res;
2956
2957 #if defined(DEBUG_SUBPAGE)
2958 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2959 subpage, len, addr);
2960 #endif
2961 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2962 if (res) {
2963 return res;
2964 }
2965 *data = ldn_p(buf, len);
2966 return MEMTX_OK;
2967 }
2968
2969 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2970 uint64_t value, unsigned len, MemTxAttrs attrs)
2971 {
2972 subpage_t *subpage = opaque;
2973 uint8_t buf[8];
2974
2975 #if defined(DEBUG_SUBPAGE)
2976 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2977 " value %"PRIx64"\n",
2978 __func__, subpage, len, addr, value);
2979 #endif
2980 stn_p(buf, len, value);
2981 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2982 }
2983
2984 static bool subpage_accepts(void *opaque, hwaddr addr,
2985 unsigned len, bool is_write,
2986 MemTxAttrs attrs)
2987 {
2988 subpage_t *subpage = opaque;
2989 #if defined(DEBUG_SUBPAGE)
2990 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2991 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2992 #endif
2993
2994 return flatview_access_valid(subpage->fv, addr + subpage->base,
2995 len, is_write, attrs);
2996 }
2997
2998 static const MemoryRegionOps subpage_ops = {
2999 .read_with_attrs = subpage_read,
3000 .write_with_attrs = subpage_write,
3001 .impl.min_access_size = 1,
3002 .impl.max_access_size = 8,
3003 .valid.min_access_size = 1,
3004 .valid.max_access_size = 8,
3005 .valid.accepts = subpage_accepts,
3006 .endianness = DEVICE_NATIVE_ENDIAN,
3007 };
3008
3009 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3010 uint16_t section)
3011 {
3012 int idx, eidx;
3013
3014 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3015 return -1;
3016 idx = SUBPAGE_IDX(start);
3017 eidx = SUBPAGE_IDX(end);
3018 #if defined(DEBUG_SUBPAGE)
3019 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
3020 __func__, mmio, start, end, idx, eidx, section);
3021 #endif
3022 for (; idx <= eidx; idx++) {
3023 mmio->sub_section[idx] = section;
3024 }
3025
3026 return 0;
3027 }
3028
3029 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
3030 {
3031 subpage_t *mmio;
3032
3033 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
3034 mmio->fv = fv;
3035 mmio->base = base;
3036 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
3037 NULL, TARGET_PAGE_SIZE);
3038 mmio->iomem.subpage = true;
3039 #if defined(DEBUG_SUBPAGE)
3040 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
3041 mmio, base, TARGET_PAGE_SIZE);
3042 #endif
3043 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
3044
3045 return mmio;
3046 }
3047
3048 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
3049 {
3050 assert(fv);
3051 MemoryRegionSection section = {
3052 .fv = fv,
3053 .mr = mr,
3054 .offset_within_address_space = 0,
3055 .offset_within_region = 0,
3056 .size = int128_2_64(),
3057 };
3058
3059 return phys_section_add(map, &section);
3060 }
3061
3062 static void readonly_mem_write(void *opaque, hwaddr addr,
3063 uint64_t val, unsigned size)
3064 {
3065 /* Ignore any write to ROM. */
3066 }
3067
3068 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
3069 unsigned size, bool is_write,
3070 MemTxAttrs attrs)
3071 {
3072 return is_write;
3073 }
3074
3075 /* This will only be used for writes, because reads are special cased
3076 * to directly access the underlying host ram.
3077 */
3078 static const MemoryRegionOps readonly_mem_ops = {
3079 .write = readonly_mem_write,
3080 .valid.accepts = readonly_mem_accepts,
3081 .endianness = DEVICE_NATIVE_ENDIAN,
3082 .valid = {
3083 .min_access_size = 1,
3084 .max_access_size = 8,
3085 .unaligned = false,
3086 },
3087 .impl = {
3088 .min_access_size = 1,
3089 .max_access_size = 8,
3090 .unaligned = false,
3091 },
3092 };
3093
3094 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3095 hwaddr index, MemTxAttrs attrs)
3096 {
3097 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3098 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3099 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3100 MemoryRegionSection *sections = d->map.sections;
3101
3102 return &sections[index & ~TARGET_PAGE_MASK];
3103 }
3104
3105 static void io_mem_init(void)
3106 {
3107 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3108 NULL, NULL, UINT64_MAX);
3109 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3110 NULL, UINT64_MAX);
3111
3112 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3113 * which can be called without the iothread mutex.
3114 */
3115 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3116 NULL, UINT64_MAX);
3117 memory_region_clear_global_locking(&io_mem_notdirty);
3118
3119 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3120 NULL, UINT64_MAX);
3121 }
3122
3123 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3124 {
3125 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3126 uint16_t n;
3127
3128 n = dummy_section(&d->map, fv, &io_mem_unassigned);
3129 assert(n == PHYS_SECTION_UNASSIGNED);
3130 n = dummy_section(&d->map, fv, &io_mem_notdirty);
3131 assert(n == PHYS_SECTION_NOTDIRTY);
3132 n = dummy_section(&d->map, fv, &io_mem_rom);
3133 assert(n == PHYS_SECTION_ROM);
3134 n = dummy_section(&d->map, fv, &io_mem_watch);
3135 assert(n == PHYS_SECTION_WATCH);
3136
3137 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3138
3139 return d;
3140 }
3141
3142 void address_space_dispatch_free(AddressSpaceDispatch *d)
3143 {
3144 phys_sections_free(&d->map);
3145 g_free(d);
3146 }
3147
3148 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
3149 {
3150 }
3151
3152 static void tcg_log_global_after_sync(MemoryListener *listener)
3153 {
3154 CPUAddressSpace *cpuas;
3155
3156 /* Wait for the CPU to end the current TB. This avoids the following
3157 * incorrect race:
3158 *
3159 * vCPU migration
3160 * ---------------------- -------------------------
3161 * TLB check -> slow path
3162 * notdirty_mem_write
3163 * write to RAM
3164 * mark dirty
3165 * clear dirty flag
3166 * TLB check -> fast path
3167 * read memory
3168 * write to RAM
3169 *
3170 * by pushing the migration thread's memory read after the vCPU thread has
3171 * written the memory.
3172 */
3173 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3174 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
3175 }
3176
3177 static void tcg_commit(MemoryListener *listener)
3178 {
3179 CPUAddressSpace *cpuas;
3180 AddressSpaceDispatch *d;
3181
3182 assert(tcg_enabled());
3183 /* since each CPU stores ram addresses in its TLB cache, we must
3184 reset the modified entries */
3185 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3186 cpu_reloading_memory_map();
3187 /* The CPU and TLB are protected by the iothread lock.
3188 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3189 * may have split the RCU critical section.
3190 */
3191 d = address_space_to_dispatch(cpuas->as);
3192 atomic_rcu_set(&cpuas->memory_dispatch, d);
3193 tlb_flush(cpuas->cpu);
3194 }
3195
3196 static void memory_map_init(void)
3197 {
3198 system_memory = g_malloc(sizeof(*system_memory));
3199
3200 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3201 address_space_init(&address_space_memory, system_memory, "memory");
3202
3203 system_io = g_malloc(sizeof(*system_io));
3204 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3205 65536);
3206 address_space_init(&address_space_io, system_io, "I/O");
3207 }
3208
3209 MemoryRegion *get_system_memory(void)
3210 {
3211 return system_memory;
3212 }
3213
3214 MemoryRegion *get_system_io(void)
3215 {
3216 return system_io;
3217 }
3218
3219 #endif /* !defined(CONFIG_USER_ONLY) */
3220
3221 /* physical memory access (slow version, mainly for debug) */
3222 #if defined(CONFIG_USER_ONLY)
3223 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3224 uint8_t *buf, target_ulong len, int is_write)
3225 {
3226 int flags;
3227 target_ulong l, page;
3228 void * p;
3229
3230 while (len > 0) {
3231 page = addr & TARGET_PAGE_MASK;
3232 l = (page + TARGET_PAGE_SIZE) - addr;
3233 if (l > len)
3234 l = len;
3235 flags = page_get_flags(page);
3236 if (!(flags & PAGE_VALID))
3237 return -1;
3238 if (is_write) {
3239 if (!(flags & PAGE_WRITE))
3240 return -1;
3241 /* XXX: this code should not depend on lock_user */
3242 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3243 return -1;
3244 memcpy(p, buf, l);
3245 unlock_user(p, addr, l);
3246 } else {
3247 if (!(flags & PAGE_READ))
3248 return -1;
3249 /* XXX: this code should not depend on lock_user */
3250 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3251 return -1;
3252 memcpy(buf, p, l);
3253 unlock_user(p, addr, 0);
3254 }
3255 len -= l;
3256 buf += l;
3257 addr += l;
3258 }
3259 return 0;
3260 }
3261
3262 #else
3263
3264 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3265 hwaddr length)
3266 {
3267 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3268 addr += memory_region_get_ram_addr(mr);
3269
3270 /* No early return if dirty_log_mask is or becomes 0, because
3271 * cpu_physical_memory_set_dirty_range will still call
3272 * xen_modified_memory.
3273 */
3274 if (dirty_log_mask) {
3275 dirty_log_mask =
3276 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3277 }
3278 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3279 assert(tcg_enabled());
3280 tb_invalidate_phys_range(addr, addr + length);
3281 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3282 }
3283 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3284 }
3285
3286 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3287 {
3288 /*
3289 * In principle this function would work on other memory region types too,
3290 * but the ROM device use case is the only one where this operation is
3291 * necessary. Other memory regions should use the
3292 * address_space_read/write() APIs.
3293 */
3294 assert(memory_region_is_romd(mr));
3295
3296 invalidate_and_set_dirty(mr, addr, size);
3297 }
3298
3299 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3300 {
3301 unsigned access_size_max = mr->ops->valid.max_access_size;
3302
3303 /* Regions are assumed to support 1-4 byte accesses unless
3304 otherwise specified. */
3305 if (access_size_max == 0) {
3306 access_size_max = 4;
3307 }
3308
3309 /* Bound the maximum access by the alignment of the address. */
3310 if (!mr->ops->impl.unaligned) {
3311 unsigned align_size_max = addr & -addr;
3312 if (align_size_max != 0 && align_size_max < access_size_max) {
3313 access_size_max = align_size_max;
3314 }
3315 }
3316
3317 /* Don't attempt accesses larger than the maximum. */
3318 if (l > access_size_max) {
3319 l = access_size_max;
3320 }
3321 l = pow2floor(l);
3322
3323 return l;
3324 }
3325
3326 static bool prepare_mmio_access(MemoryRegion *mr)
3327 {
3328 bool unlocked = !qemu_mutex_iothread_locked();
3329 bool release_lock = false;
3330
3331 if (unlocked && mr->global_locking) {
3332 qemu_mutex_lock_iothread();
3333 unlocked = false;
3334 release_lock = true;
3335 }
3336 if (mr->flush_coalesced_mmio) {
3337 if (unlocked) {
3338 qemu_mutex_lock_iothread();
3339 }
3340 qemu_flush_coalesced_mmio_buffer();
3341 if (unlocked) {
3342 qemu_mutex_unlock_iothread();
3343 }
3344 }
3345
3346 return release_lock;
3347 }
3348
3349 /* Called within RCU critical section. */
3350 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3351 MemTxAttrs attrs,
3352 const uint8_t *buf,
3353 hwaddr len, hwaddr addr1,
3354 hwaddr l, MemoryRegion *mr)
3355 {
3356 uint8_t *ptr;
3357 uint64_t val;
3358 MemTxResult result = MEMTX_OK;
3359 bool release_lock = false;
3360
3361 for (;;) {
3362 if (!memory_access_is_direct(mr, true)) {
3363 release_lock |= prepare_mmio_access(mr);
3364 l = memory_access_size(mr, l, addr1);
3365 /* XXX: could force current_cpu to NULL to avoid
3366 potential bugs */
3367 val = ldn_he_p(buf, l);
3368 result |= memory_region_dispatch_write(mr, addr1, val,
3369 size_memop(l), attrs);
3370 } else {
3371 /* RAM case */
3372 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3373 memcpy(ptr, buf, l);
3374 invalidate_and_set_dirty(mr, addr1, l);
3375 }
3376
3377 if (release_lock) {
3378 qemu_mutex_unlock_iothread();
3379 release_lock = false;
3380 }
3381
3382 len -= l;
3383 buf += l;
3384 addr += l;
3385
3386 if (!len) {
3387 break;
3388 }
3389
3390 l = len;
3391 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3392 }
3393
3394 return result;
3395 }
3396
3397 /* Called from RCU critical section. */
3398 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3399 const uint8_t *buf, hwaddr len)
3400 {
3401 hwaddr l;
3402 hwaddr addr1;
3403 MemoryRegion *mr;
3404 MemTxResult result = MEMTX_OK;
3405
3406 l = len;
3407 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3408 result = flatview_write_continue(fv, addr, attrs, buf, len,
3409 addr1, l, mr);
3410
3411 return result;
3412 }
3413
3414 /* Called within RCU critical section. */
3415 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3416 MemTxAttrs attrs, uint8_t *buf,
3417 hwaddr len, hwaddr addr1, hwaddr l,
3418 MemoryRegion *mr)
3419 {
3420 uint8_t *ptr;
3421 uint64_t val;
3422 MemTxResult result = MEMTX_OK;
3423 bool release_lock = false;
3424
3425 for (;;) {
3426 if (!memory_access_is_direct(mr, false)) {
3427 /* I/O case */
3428 release_lock |= prepare_mmio_access(mr);
3429 l = memory_access_size(mr, l, addr1);
3430 result |= memory_region_dispatch_read(mr, addr1, &val,
3431 size_memop(l), attrs);
3432 stn_he_p(buf, l, val);
3433 } else {
3434 /* RAM case */
3435 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3436 memcpy(buf, ptr, l);
3437 }
3438
3439 if (release_lock) {
3440 qemu_mutex_unlock_iothread();
3441 release_lock = false;
3442 }
3443
3444 len -= l;
3445 buf += l;
3446 addr += l;
3447
3448 if (!len) {
3449 break;
3450 }
3451
3452 l = len;
3453 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3454 }
3455
3456 return result;
3457 }
3458
3459 /* Called from RCU critical section. */
3460 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3461 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3462 {
3463 hwaddr l;
3464 hwaddr addr1;
3465 MemoryRegion *mr;
3466
3467 l = len;
3468 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3469 return flatview_read_continue(fv, addr, attrs, buf, len,
3470 addr1, l, mr);
3471 }
3472
3473 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3474 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3475 {
3476 MemTxResult result = MEMTX_OK;
3477 FlatView *fv;
3478
3479 if (len > 0) {
3480 rcu_read_lock();
3481 fv = address_space_to_flatview(as);
3482 result = flatview_read(fv, addr, attrs, buf, len);
3483 rcu_read_unlock();
3484 }
3485
3486 return result;
3487 }
3488
3489 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3490 MemTxAttrs attrs,
3491 const uint8_t *buf, hwaddr len)
3492 {
3493 MemTxResult result = MEMTX_OK;
3494 FlatView *fv;
3495
3496 if (len > 0) {
3497 rcu_read_lock();
3498 fv = address_space_to_flatview(as);
3499 result = flatview_write(fv, addr, attrs, buf, len);
3500 rcu_read_unlock();
3501 }
3502
3503 return result;
3504 }
3505
3506 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3507 uint8_t *buf, hwaddr len, bool is_write)
3508 {
3509 if (is_write) {
3510 return address_space_write(as, addr, attrs, buf, len);
3511 } else {
3512 return address_space_read_full(as, addr, attrs, buf, len);
3513 }
3514 }
3515
3516 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3517 hwaddr len, int is_write)
3518 {
3519 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3520 buf, len, is_write);
3521 }
3522
3523 enum write_rom_type {
3524 WRITE_DATA,
3525 FLUSH_CACHE,
3526 };
3527
3528 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3529 hwaddr addr,
3530 MemTxAttrs attrs,
3531 const uint8_t *buf,
3532 hwaddr len,
3533 enum write_rom_type type)
3534 {
3535 hwaddr l;
3536 uint8_t *ptr;
3537 hwaddr addr1;
3538 MemoryRegion *mr;
3539
3540 rcu_read_lock();
3541 while (len > 0) {
3542 l = len;
3543 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3544
3545 if (!(memory_region_is_ram(mr) ||
3546 memory_region_is_romd(mr))) {
3547 l = memory_access_size(mr, l, addr1);
3548 } else {
3549 /* ROM/RAM case */
3550 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3551 switch (type) {
3552 case WRITE_DATA:
3553 memcpy(ptr, buf, l);
3554 invalidate_and_set_dirty(mr, addr1, l);
3555 break;
3556 case FLUSH_CACHE:
3557 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3558 break;
3559 }
3560 }
3561 len -= l;
3562 buf += l;
3563 addr += l;
3564 }
3565 rcu_read_unlock();
3566 return MEMTX_OK;
3567 }
3568
3569 /* used for ROM loading : can write in RAM and ROM */
3570 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3571 MemTxAttrs attrs,
3572 const uint8_t *buf, hwaddr len)
3573 {
3574 return address_space_write_rom_internal(as, addr, attrs,
3575 buf, len, WRITE_DATA);
3576 }
3577
3578 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3579 {
3580 /*
3581 * This function should do the same thing as an icache flush that was
3582 * triggered from within the guest. For TCG we are always cache coherent,
3583 * so there is no need to flush anything. For KVM / Xen we need to flush
3584 * the host's instruction cache at least.
3585 */
3586 if (tcg_enabled()) {
3587 return;
3588 }
3589
3590 address_space_write_rom_internal(&address_space_memory,
3591 start, MEMTXATTRS_UNSPECIFIED,
3592 NULL, len, FLUSH_CACHE);
3593 }
3594
3595 typedef struct {
3596 MemoryRegion *mr;
3597 void *buffer;
3598 hwaddr addr;
3599 hwaddr len;
3600 bool in_use;
3601 } BounceBuffer;
3602
3603 static BounceBuffer bounce;
3604
3605 typedef struct MapClient {
3606 QEMUBH *bh;
3607 QLIST_ENTRY(MapClient) link;
3608 } MapClient;
3609
3610 QemuMutex map_client_list_lock;
3611 static QLIST_HEAD(, MapClient) map_client_list
3612 = QLIST_HEAD_INITIALIZER(map_client_list);
3613
3614 static void cpu_unregister_map_client_do(MapClient *client)
3615 {
3616 QLIST_REMOVE(client, link);
3617 g_free(client);
3618 }
3619
3620 static void cpu_notify_map_clients_locked(void)
3621 {
3622 MapClient *client;
3623
3624 while (!QLIST_EMPTY(&map_client_list)) {
3625 client = QLIST_FIRST(&map_client_list);
3626 qemu_bh_schedule(client->bh);
3627 cpu_unregister_map_client_do(client);
3628 }
3629 }
3630
3631 void cpu_register_map_client(QEMUBH *bh)
3632 {
3633 MapClient *client = g_malloc(sizeof(*client));
3634
3635 qemu_mutex_lock(&map_client_list_lock);
3636 client->bh = bh;
3637 QLIST_INSERT_HEAD(&map_client_list, client, link);
3638 if (!atomic_read(&bounce.in_use)) {
3639 cpu_notify_map_clients_locked();
3640 }
3641 qemu_mutex_unlock(&map_client_list_lock);
3642 }
3643
3644 void cpu_exec_init_all(void)
3645 {
3646 qemu_mutex_init(&ram_list.mutex);
3647 /* The data structures we set up here depend on knowing the page size,
3648 * so no more changes can be made after this point.
3649 * In an ideal world, nothing we did before we had finished the
3650 * machine setup would care about the target page size, and we could
3651 * do this much later, rather than requiring board models to state
3652 * up front what their requirements are.
3653 */
3654 finalize_target_page_bits();
3655 io_mem_init();
3656 memory_map_init();
3657 qemu_mutex_init(&map_client_list_lock);
3658 }
3659
3660 void cpu_unregister_map_client(QEMUBH *bh)
3661 {
3662 MapClient *client;
3663
3664 qemu_mutex_lock(&map_client_list_lock);
3665 QLIST_FOREACH(client, &map_client_list, link) {
3666 if (client->bh == bh) {
3667 cpu_unregister_map_client_do(client);
3668 break;
3669 }
3670 }
3671 qemu_mutex_unlock(&map_client_list_lock);
3672 }
3673
3674 static void cpu_notify_map_clients(void)
3675 {
3676 qemu_mutex_lock(&map_client_list_lock);
3677 cpu_notify_map_clients_locked();
3678 qemu_mutex_unlock(&map_client_list_lock);
3679 }
3680
3681 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3682 bool is_write, MemTxAttrs attrs)
3683 {
3684 MemoryRegion *mr;
3685 hwaddr l, xlat;
3686
3687 while (len > 0) {
3688 l = len;
3689 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3690 if (!memory_access_is_direct(mr, is_write)) {
3691 l = memory_access_size(mr, l, addr);
3692 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3693 return false;
3694 }
3695 }
3696
3697 len -= l;
3698 addr += l;
3699 }
3700 return true;
3701 }
3702
3703 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3704 hwaddr len, bool is_write,
3705 MemTxAttrs attrs)
3706 {
3707 FlatView *fv;
3708 bool result;
3709
3710 rcu_read_lock();
3711 fv = address_space_to_flatview(as);
3712 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3713 rcu_read_unlock();
3714 return result;
3715 }
3716
3717 static hwaddr
3718 flatview_extend_translation(FlatView *fv, hwaddr addr,
3719 hwaddr target_len,
3720 MemoryRegion *mr, hwaddr base, hwaddr len,
3721 bool is_write, MemTxAttrs attrs)
3722 {
3723 hwaddr done = 0;
3724 hwaddr xlat;
3725 MemoryRegion *this_mr;
3726
3727 for (;;) {
3728 target_len -= len;
3729 addr += len;
3730 done += len;
3731 if (target_len == 0) {
3732 return done;
3733 }
3734
3735 len = target_len;
3736 this_mr = flatview_translate(fv, addr, &xlat,
3737 &len, is_write, attrs);
3738 if (this_mr != mr || xlat != base + done) {
3739 return done;
3740 }
3741 }
3742 }
3743
3744 /* Map a physical memory region into a host virtual address.
3745 * May map a subset of the requested range, given by and returned in *plen.
3746 * May return NULL if resources needed to perform the mapping are exhausted.
3747 * Use only for reads OR writes - not for read-modify-write operations.
3748 * Use cpu_register_map_client() to know when retrying the map operation is
3749 * likely to succeed.
3750 */
3751 void *address_space_map(AddressSpace *as,
3752 hwaddr addr,
3753 hwaddr *plen,
3754 bool is_write,
3755 MemTxAttrs attrs)
3756 {
3757 hwaddr len = *plen;
3758 hwaddr l, xlat;
3759 MemoryRegion *mr;
3760 void *ptr;
3761 FlatView *fv;
3762
3763 if (len == 0) {
3764 return NULL;
3765 }
3766
3767 l = len;
3768 rcu_read_lock();
3769 fv = address_space_to_flatview(as);
3770 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3771
3772 if (!memory_access_is_direct(mr, is_write)) {
3773 if (atomic_xchg(&bounce.in_use, true)) {
3774 rcu_read_unlock();
3775 return NULL;
3776 }
3777 /* Avoid unbounded allocations */
3778 l = MIN(l, TARGET_PAGE_SIZE);
3779 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3780 bounce.addr = addr;
3781 bounce.len = l;
3782
3783 memory_region_ref(mr);
3784 bounce.mr = mr;
3785 if (!is_write) {
3786 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3787 bounce.buffer, l);
3788 }
3789
3790 rcu_read_unlock();
3791 *plen = l;
3792 return bounce.buffer;
3793 }
3794
3795
3796 memory_region_ref(mr);
3797 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3798 l, is_write, attrs);
3799 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3800 rcu_read_unlock();
3801
3802 return ptr;
3803 }
3804
3805 /* Unmaps a memory region previously mapped by address_space_map().
3806 * Will also mark the memory as dirty if is_write == 1. access_len gives
3807 * the amount of memory that was actually read or written by the caller.
3808 */
3809 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3810 int is_write, hwaddr access_len)
3811 {
3812 if (buffer != bounce.buffer) {
3813 MemoryRegion *mr;
3814 ram_addr_t addr1;
3815
3816 mr = memory_region_from_host(buffer, &addr1);
3817 assert(mr != NULL);
3818 if (is_write) {
3819 invalidate_and_set_dirty(mr, addr1, access_len);
3820 }
3821 if (xen_enabled()) {
3822 xen_invalidate_map_cache_entry(buffer);
3823 }
3824 memory_region_unref(mr);
3825 return;
3826 }
3827 if (is_write) {
3828 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3829 bounce.buffer, access_len);
3830 }
3831 qemu_vfree(bounce.buffer);
3832 bounce.buffer = NULL;
3833 memory_region_unref(bounce.mr);
3834 atomic_mb_set(&bounce.in_use, false);
3835 cpu_notify_map_clients();
3836 }
3837
3838 void *cpu_physical_memory_map(hwaddr addr,
3839 hwaddr *plen,
3840 int is_write)
3841 {
3842 return address_space_map(&address_space_memory, addr, plen, is_write,
3843 MEMTXATTRS_UNSPECIFIED);
3844 }
3845
3846 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3847 int is_write, hwaddr access_len)
3848 {
3849 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3850 }
3851
3852 #define ARG1_DECL AddressSpace *as
3853 #define ARG1 as
3854 #define SUFFIX
3855 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3856 #define RCU_READ_LOCK(...) rcu_read_lock()
3857 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3858 #include "memory_ldst.inc.c"
3859
3860 int64_t address_space_cache_init(MemoryRegionCache *cache,
3861 AddressSpace *as,
3862 hwaddr addr,
3863 hwaddr len,
3864 bool is_write)
3865 {
3866 AddressSpaceDispatch *d;
3867 hwaddr l;
3868 MemoryRegion *mr;
3869
3870 assert(len > 0);
3871
3872 l = len;
3873 cache->fv = address_space_get_flatview(as);
3874 d = flatview_to_dispatch(cache->fv);
3875 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3876
3877 mr = cache->mrs.mr;
3878 memory_region_ref(mr);
3879 if (memory_access_is_direct(mr, is_write)) {
3880 /* We don't care about the memory attributes here as we're only
3881 * doing this if we found actual RAM, which behaves the same
3882 * regardless of attributes; so UNSPECIFIED is fine.
3883 */
3884 l = flatview_extend_translation(cache->fv, addr, len, mr,
3885 cache->xlat, l, is_write,
3886 MEMTXATTRS_UNSPECIFIED);
3887 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3888 } else {
3889 cache->ptr = NULL;
3890 }
3891
3892 cache->len = l;
3893 cache->is_write = is_write;
3894 return l;
3895 }
3896
3897 void address_space_cache_invalidate(MemoryRegionCache *cache,
3898 hwaddr addr,
3899 hwaddr access_len)
3900 {
3901 assert(cache->is_write);
3902 if (likely(cache->ptr)) {
3903 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3904 }
3905 }
3906
3907 void address_space_cache_destroy(MemoryRegionCache *cache)
3908 {
3909 if (!cache->mrs.mr) {
3910 return;
3911 }
3912
3913 if (xen_enabled()) {
3914 xen_invalidate_map_cache_entry(cache->ptr);
3915 }
3916 memory_region_unref(cache->mrs.mr);
3917 flatview_unref(cache->fv);
3918 cache->mrs.mr = NULL;
3919 cache->fv = NULL;
3920 }
3921
3922 /* Called from RCU critical section. This function has the same
3923 * semantics as address_space_translate, but it only works on a
3924 * predefined range of a MemoryRegion that was mapped with
3925 * address_space_cache_init.
3926 */
3927 static inline MemoryRegion *address_space_translate_cached(
3928 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3929 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3930 {
3931 MemoryRegionSection section;
3932 MemoryRegion *mr;
3933 IOMMUMemoryRegion *iommu_mr;
3934 AddressSpace *target_as;
3935
3936 assert(!cache->ptr);
3937 *xlat = addr + cache->xlat;
3938
3939 mr = cache->mrs.mr;
3940 iommu_mr = memory_region_get_iommu(mr);
3941 if (!iommu_mr) {
3942 /* MMIO region. */
3943 return mr;
3944 }
3945
3946 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3947 NULL, is_write, true,
3948 &target_as, attrs);
3949 return section.mr;
3950 }
3951
3952 /* Called from RCU critical section. address_space_read_cached uses this
3953 * out of line function when the target is an MMIO or IOMMU region.
3954 */
3955 void
3956 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3957 void *buf, hwaddr len)
3958 {
3959 hwaddr addr1, l;
3960 MemoryRegion *mr;
3961
3962 l = len;
3963 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3964 MEMTXATTRS_UNSPECIFIED);
3965 flatview_read_continue(cache->fv,
3966 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3967 addr1, l, mr);
3968 }
3969
3970 /* Called from RCU critical section. address_space_write_cached uses this
3971 * out of line function when the target is an MMIO or IOMMU region.
3972 */
3973 void
3974 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3975 const void *buf, hwaddr len)
3976 {
3977 hwaddr addr1, l;
3978 MemoryRegion *mr;
3979
3980 l = len;
3981 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3982 MEMTXATTRS_UNSPECIFIED);
3983 flatview_write_continue(cache->fv,
3984 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3985 addr1, l, mr);
3986 }
3987
3988 #define ARG1_DECL MemoryRegionCache *cache
3989 #define ARG1 cache
3990 #define SUFFIX _cached_slow
3991 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3992 #define RCU_READ_LOCK() ((void)0)
3993 #define RCU_READ_UNLOCK() ((void)0)
3994 #include "memory_ldst.inc.c"
3995
3996 /* virtual memory access for debug (includes writing to ROM) */
3997 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3998 uint8_t *buf, target_ulong len, int is_write)
3999 {
4000 hwaddr phys_addr;
4001 target_ulong l, page;
4002
4003 cpu_synchronize_state(cpu);
4004 while (len > 0) {
4005 int asidx;
4006 MemTxAttrs attrs;
4007
4008 page = addr & TARGET_PAGE_MASK;
4009 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
4010 asidx = cpu_asidx_from_attrs(cpu, attrs);
4011 /* if no physical page mapped, return an error */
4012 if (phys_addr == -1)
4013 return -1;
4014 l = (page + TARGET_PAGE_SIZE) - addr;
4015 if (l > len)
4016 l = len;
4017 phys_addr += (addr & ~TARGET_PAGE_MASK);
4018 if (is_write) {
4019 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
4020 attrs, buf, l);
4021 } else {
4022 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
4023 attrs, buf, l, 0);
4024 }
4025 len -= l;
4026 buf += l;
4027 addr += l;
4028 }
4029 return 0;
4030 }
4031
4032 /*
4033 * Allows code that needs to deal with migration bitmaps etc to still be built
4034 * target independent.
4035 */
4036 size_t qemu_target_page_size(void)
4037 {
4038 return TARGET_PAGE_SIZE;
4039 }
4040
4041 int qemu_target_page_bits(void)
4042 {
4043 return TARGET_PAGE_BITS;
4044 }
4045
4046 int qemu_target_page_bits_min(void)
4047 {
4048 return TARGET_PAGE_BITS_MIN;
4049 }
4050 #endif
4051
4052 bool target_words_bigendian(void)
4053 {
4054 #if defined(TARGET_WORDS_BIGENDIAN)
4055 return true;
4056 #else
4057 return false;
4058 #endif
4059 }
4060
4061 #ifndef CONFIG_USER_ONLY
4062 bool cpu_physical_memory_is_io(hwaddr phys_addr)
4063 {
4064 MemoryRegion*mr;
4065 hwaddr l = 1;
4066 bool res;
4067
4068 rcu_read_lock();
4069 mr = address_space_translate(&address_space_memory,
4070 phys_addr, &phys_addr, &l, false,
4071 MEMTXATTRS_UNSPECIFIED);
4072
4073 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
4074 rcu_read_unlock();
4075 return res;
4076 }
4077
4078 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
4079 {
4080 RAMBlock *block;
4081 int ret = 0;
4082
4083 rcu_read_lock();
4084 RAMBLOCK_FOREACH(block) {
4085 ret = func(block, opaque);
4086 if (ret) {
4087 break;
4088 }
4089 }
4090 rcu_read_unlock();
4091 return ret;
4092 }
4093
4094 /*
4095 * Unmap pages of memory from start to start+length such that
4096 * they a) read as 0, b) Trigger whatever fault mechanism
4097 * the OS provides for postcopy.
4098 * The pages must be unmapped by the end of the function.
4099 * Returns: 0 on success, none-0 on failure
4100 *
4101 */
4102 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4103 {
4104 int ret = -1;
4105
4106 uint8_t *host_startaddr = rb->host + start;
4107
4108 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4109 error_report("ram_block_discard_range: Unaligned start address: %p",
4110 host_startaddr);
4111 goto err;
4112 }
4113
4114 if ((start + length) <= rb->used_length) {
4115 bool need_madvise, need_fallocate;
4116 uint8_t *host_endaddr = host_startaddr + length;
4117 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4118 error_report("ram_block_discard_range: Unaligned end address: %p",
4119 host_endaddr);
4120 goto err;
4121 }
4122
4123 errno = ENOTSUP; /* If we are missing MADVISE etc */
4124
4125 /* The logic here is messy;
4126 * madvise DONTNEED fails for hugepages
4127 * fallocate works on hugepages and shmem
4128 */
4129 need_madvise = (rb->page_size == qemu_host_page_size);
4130 need_fallocate = rb->fd != -1;
4131 if (need_fallocate) {
4132 /* For a file, this causes the area of the file to be zero'd
4133 * if read, and for hugetlbfs also causes it to be unmapped
4134 * so a userfault will trigger.
4135 */
4136 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4137 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4138 start, length);
4139 if (ret) {
4140 ret = -errno;
4141 error_report("ram_block_discard_range: Failed to fallocate "
4142 "%s:%" PRIx64 " +%zx (%d)",
4143 rb->idstr, start, length, ret);
4144 goto err;
4145 }
4146 #else
4147 ret = -ENOSYS;
4148 error_report("ram_block_discard_range: fallocate not available/file"
4149 "%s:%" PRIx64 " +%zx (%d)",
4150 rb->idstr, start, length, ret);
4151 goto err;
4152 #endif
4153 }
4154 if (need_madvise) {
4155 /* For normal RAM this causes it to be unmapped,
4156 * for shared memory it causes the local mapping to disappear
4157 * and to fall back on the file contents (which we just
4158 * fallocate'd away).
4159 */
4160 #if defined(CONFIG_MADVISE)
4161 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4162 if (ret) {
4163 ret = -errno;
4164 error_report("ram_block_discard_range: Failed to discard range "
4165 "%s:%" PRIx64 " +%zx (%d)",
4166 rb->idstr, start, length, ret);
4167 goto err;
4168 }
4169 #else
4170 ret = -ENOSYS;
4171 error_report("ram_block_discard_range: MADVISE not available"
4172 "%s:%" PRIx64 " +%zx (%d)",
4173 rb->idstr, start, length, ret);
4174 goto err;
4175 #endif
4176 }
4177 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4178 need_madvise, need_fallocate, ret);
4179 } else {
4180 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4181 "/%zx/" RAM_ADDR_FMT")",
4182 rb->idstr, start, length, rb->used_length);
4183 }
4184
4185 err:
4186 return ret;
4187 }
4188
4189 bool ramblock_is_pmem(RAMBlock *rb)
4190 {
4191 return rb->flags & RAM_PMEM;
4192 }
4193
4194 #endif
4195
4196 void page_size_init(void)
4197 {
4198 /* NOTE: we can always suppose that qemu_host_page_size >=
4199 TARGET_PAGE_SIZE */
4200 if (qemu_host_page_size == 0) {
4201 qemu_host_page_size = qemu_real_host_page_size;
4202 }
4203 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4204 qemu_host_page_size = TARGET_PAGE_SIZE;
4205 }
4206 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4207 }
4208
4209 #if !defined(CONFIG_USER_ONLY)
4210
4211 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
4212 {
4213 if (start == end - 1) {
4214 qemu_printf("\t%3d ", start);
4215 } else {
4216 qemu_printf("\t%3d..%-3d ", start, end - 1);
4217 }
4218 qemu_printf(" skip=%d ", skip);
4219 if (ptr == PHYS_MAP_NODE_NIL) {
4220 qemu_printf(" ptr=NIL");
4221 } else if (!skip) {
4222 qemu_printf(" ptr=#%d", ptr);
4223 } else {
4224 qemu_printf(" ptr=[%d]", ptr);
4225 }
4226 qemu_printf("\n");
4227 }
4228
4229 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4230 int128_sub((size), int128_one())) : 0)
4231
4232 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4233 {
4234 int i;
4235
4236 qemu_printf(" Dispatch\n");
4237 qemu_printf(" Physical sections\n");
4238
4239 for (i = 0; i < d->map.sections_nb; ++i) {
4240 MemoryRegionSection *s = d->map.sections + i;
4241 const char *names[] = { " [unassigned]", " [not dirty]",
4242 " [ROM]", " [watch]" };
4243
4244 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4245 " %s%s%s%s%s",
4246 i,
4247 s->offset_within_address_space,
4248 s->offset_within_address_space + MR_SIZE(s->mr->size),
4249 s->mr->name ? s->mr->name : "(noname)",
4250 i < ARRAY_SIZE(names) ? names[i] : "",
4251 s->mr == root ? " [ROOT]" : "",
4252 s == d->mru_section ? " [MRU]" : "",
4253 s->mr->is_iommu ? " [iommu]" : "");
4254
4255 if (s->mr->alias) {
4256 qemu_printf(" alias=%s", s->mr->alias->name ?
4257 s->mr->alias->name : "noname");
4258 }
4259 qemu_printf("\n");
4260 }
4261
4262 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4263 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4264 for (i = 0; i < d->map.nodes_nb; ++i) {
4265 int j, jprev;
4266 PhysPageEntry prev;
4267 Node *n = d->map.nodes + i;
4268
4269 qemu_printf(" [%d]\n", i);
4270
4271 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4272 PhysPageEntry *pe = *n + j;
4273
4274 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4275 continue;
4276 }
4277
4278 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4279
4280 jprev = j;
4281 prev = *pe;
4282 }
4283
4284 if (jprev != ARRAY_SIZE(*n)) {
4285 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4286 }
4287 }
4288 }
4289
4290 #endif