]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
Merge remote-tracking branch 'remotes/cleber/tags/python-next-pull-request' into...
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "qemu/timer.h"
39 #include "qemu/config-file.h"
40 #include "qemu/error-report.h"
41 #include "qemu/qemu-print.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include "qemu.h"
44 #else /* !CONFIG_USER_ONLY */
45 #include "exec/memory.h"
46 #include "exec/ioport.h"
47 #include "sysemu/dma.h"
48 #include "sysemu/hostmem.h"
49 #include "sysemu/hw_accel.h"
50 #include "exec/address-spaces.h"
51 #include "sysemu/xen-mapcache.h"
52 #include "trace-root.h"
53
54 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
55 #include <linux/falloc.h>
56 #endif
57
58 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
63
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
67
68 #include "migration/vmstate.h"
69
70 #include "qemu/range.h"
71 #ifndef _WIN32
72 #include "qemu/mmap-alloc.h"
73 #endif
74
75 #include "monitor/monitor.h"
76
77 //#define DEBUG_SUBPAGE
78
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
83 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
84
85 static MemoryRegion *system_memory;
86 static MemoryRegion *system_io;
87
88 AddressSpace address_space_io;
89 AddressSpace address_space_memory;
90
91 static MemoryRegion io_mem_unassigned;
92 #endif
93
94 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
95
96 /* current CPU in the current thread. It is only valid inside
97 cpu_exec() */
98 __thread CPUState *current_cpu;
99 /* 0 = Do not count executed instructions.
100 1 = Precise instruction counting.
101 2 = Adaptive rate instruction counting. */
102 int use_icount;
103
104 uintptr_t qemu_host_page_size;
105 intptr_t qemu_host_page_mask;
106
107 #if !defined(CONFIG_USER_ONLY)
108
109 typedef struct PhysPageEntry PhysPageEntry;
110
111 struct PhysPageEntry {
112 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
113 uint32_t skip : 6;
114 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
115 uint32_t ptr : 26;
116 };
117
118 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
119
120 /* Size of the L2 (and L3, etc) page tables. */
121 #define ADDR_SPACE_BITS 64
122
123 #define P_L2_BITS 9
124 #define P_L2_SIZE (1 << P_L2_BITS)
125
126 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
127
128 typedef PhysPageEntry Node[P_L2_SIZE];
129
130 typedef struct PhysPageMap {
131 struct rcu_head rcu;
132
133 unsigned sections_nb;
134 unsigned sections_nb_alloc;
135 unsigned nodes_nb;
136 unsigned nodes_nb_alloc;
137 Node *nodes;
138 MemoryRegionSection *sections;
139 } PhysPageMap;
140
141 struct AddressSpaceDispatch {
142 MemoryRegionSection *mru_section;
143 /* This is a multi-level map on the physical address space.
144 * The bottom level has pointers to MemoryRegionSections.
145 */
146 PhysPageEntry phys_map;
147 PhysPageMap map;
148 };
149
150 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
151 typedef struct subpage_t {
152 MemoryRegion iomem;
153 FlatView *fv;
154 hwaddr base;
155 uint16_t sub_section[];
156 } subpage_t;
157
158 #define PHYS_SECTION_UNASSIGNED 0
159
160 static void io_mem_init(void);
161 static void memory_map_init(void);
162 static void tcg_log_global_after_sync(MemoryListener *listener);
163 static void tcg_commit(MemoryListener *listener);
164
165 /**
166 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
167 * @cpu: the CPU whose AddressSpace this is
168 * @as: the AddressSpace itself
169 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
170 * @tcg_as_listener: listener for tracking changes to the AddressSpace
171 */
172 struct CPUAddressSpace {
173 CPUState *cpu;
174 AddressSpace *as;
175 struct AddressSpaceDispatch *memory_dispatch;
176 MemoryListener tcg_as_listener;
177 };
178
179 struct DirtyBitmapSnapshot {
180 ram_addr_t start;
181 ram_addr_t end;
182 unsigned long dirty[];
183 };
184
185 #endif
186
187 #if !defined(CONFIG_USER_ONLY)
188
189 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
190 {
191 static unsigned alloc_hint = 16;
192 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
193 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
194 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
195 alloc_hint = map->nodes_nb_alloc;
196 }
197 }
198
199 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
200 {
201 unsigned i;
202 uint32_t ret;
203 PhysPageEntry e;
204 PhysPageEntry *p;
205
206 ret = map->nodes_nb++;
207 p = map->nodes[ret];
208 assert(ret != PHYS_MAP_NODE_NIL);
209 assert(ret != map->nodes_nb_alloc);
210
211 e.skip = leaf ? 0 : 1;
212 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
213 for (i = 0; i < P_L2_SIZE; ++i) {
214 memcpy(&p[i], &e, sizeof(e));
215 }
216 return ret;
217 }
218
219 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
220 hwaddr *index, uint64_t *nb, uint16_t leaf,
221 int level)
222 {
223 PhysPageEntry *p;
224 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
225
226 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
227 lp->ptr = phys_map_node_alloc(map, level == 0);
228 }
229 p = map->nodes[lp->ptr];
230 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
231
232 while (*nb && lp < &p[P_L2_SIZE]) {
233 if ((*index & (step - 1)) == 0 && *nb >= step) {
234 lp->skip = 0;
235 lp->ptr = leaf;
236 *index += step;
237 *nb -= step;
238 } else {
239 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
240 }
241 ++lp;
242 }
243 }
244
245 static void phys_page_set(AddressSpaceDispatch *d,
246 hwaddr index, uint64_t nb,
247 uint16_t leaf)
248 {
249 /* Wildly overreserve - it doesn't matter much. */
250 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
251
252 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
253 }
254
255 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
256 * and update our entry so we can skip it and go directly to the destination.
257 */
258 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
259 {
260 unsigned valid_ptr = P_L2_SIZE;
261 int valid = 0;
262 PhysPageEntry *p;
263 int i;
264
265 if (lp->ptr == PHYS_MAP_NODE_NIL) {
266 return;
267 }
268
269 p = nodes[lp->ptr];
270 for (i = 0; i < P_L2_SIZE; i++) {
271 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
272 continue;
273 }
274
275 valid_ptr = i;
276 valid++;
277 if (p[i].skip) {
278 phys_page_compact(&p[i], nodes);
279 }
280 }
281
282 /* We can only compress if there's only one child. */
283 if (valid != 1) {
284 return;
285 }
286
287 assert(valid_ptr < P_L2_SIZE);
288
289 /* Don't compress if it won't fit in the # of bits we have. */
290 if (P_L2_LEVELS >= (1 << 6) &&
291 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
292 return;
293 }
294
295 lp->ptr = p[valid_ptr].ptr;
296 if (!p[valid_ptr].skip) {
297 /* If our only child is a leaf, make this a leaf. */
298 /* By design, we should have made this node a leaf to begin with so we
299 * should never reach here.
300 * But since it's so simple to handle this, let's do it just in case we
301 * change this rule.
302 */
303 lp->skip = 0;
304 } else {
305 lp->skip += p[valid_ptr].skip;
306 }
307 }
308
309 void address_space_dispatch_compact(AddressSpaceDispatch *d)
310 {
311 if (d->phys_map.skip) {
312 phys_page_compact(&d->phys_map, d->map.nodes);
313 }
314 }
315
316 static inline bool section_covers_addr(const MemoryRegionSection *section,
317 hwaddr addr)
318 {
319 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
320 * the section must cover the entire address space.
321 */
322 return int128_gethi(section->size) ||
323 range_covers_byte(section->offset_within_address_space,
324 int128_getlo(section->size), addr);
325 }
326
327 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
328 {
329 PhysPageEntry lp = d->phys_map, *p;
330 Node *nodes = d->map.nodes;
331 MemoryRegionSection *sections = d->map.sections;
332 hwaddr index = addr >> TARGET_PAGE_BITS;
333 int i;
334
335 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
336 if (lp.ptr == PHYS_MAP_NODE_NIL) {
337 return &sections[PHYS_SECTION_UNASSIGNED];
338 }
339 p = nodes[lp.ptr];
340 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
341 }
342
343 if (section_covers_addr(&sections[lp.ptr], addr)) {
344 return &sections[lp.ptr];
345 } else {
346 return &sections[PHYS_SECTION_UNASSIGNED];
347 }
348 }
349
350 /* Called from RCU critical section */
351 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
352 hwaddr addr,
353 bool resolve_subpage)
354 {
355 MemoryRegionSection *section = atomic_read(&d->mru_section);
356 subpage_t *subpage;
357
358 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
359 !section_covers_addr(section, addr)) {
360 section = phys_page_find(d, addr);
361 atomic_set(&d->mru_section, section);
362 }
363 if (resolve_subpage && section->mr->subpage) {
364 subpage = container_of(section->mr, subpage_t, iomem);
365 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
366 }
367 return section;
368 }
369
370 /* Called from RCU critical section */
371 static MemoryRegionSection *
372 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
373 hwaddr *plen, bool resolve_subpage)
374 {
375 MemoryRegionSection *section;
376 MemoryRegion *mr;
377 Int128 diff;
378
379 section = address_space_lookup_region(d, addr, resolve_subpage);
380 /* Compute offset within MemoryRegionSection */
381 addr -= section->offset_within_address_space;
382
383 /* Compute offset within MemoryRegion */
384 *xlat = addr + section->offset_within_region;
385
386 mr = section->mr;
387
388 /* MMIO registers can be expected to perform full-width accesses based only
389 * on their address, without considering adjacent registers that could
390 * decode to completely different MemoryRegions. When such registers
391 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
392 * regions overlap wildly. For this reason we cannot clamp the accesses
393 * here.
394 *
395 * If the length is small (as is the case for address_space_ldl/stl),
396 * everything works fine. If the incoming length is large, however,
397 * the caller really has to do the clamping through memory_access_size.
398 */
399 if (memory_region_is_ram(mr)) {
400 diff = int128_sub(section->size, int128_make64(addr));
401 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
402 }
403 return section;
404 }
405
406 /**
407 * address_space_translate_iommu - translate an address through an IOMMU
408 * memory region and then through the target address space.
409 *
410 * @iommu_mr: the IOMMU memory region that we start the translation from
411 * @addr: the address to be translated through the MMU
412 * @xlat: the translated address offset within the destination memory region.
413 * It cannot be %NULL.
414 * @plen_out: valid read/write length of the translated address. It
415 * cannot be %NULL.
416 * @page_mask_out: page mask for the translated address. This
417 * should only be meaningful for IOMMU translated
418 * addresses, since there may be huge pages that this bit
419 * would tell. It can be %NULL if we don't care about it.
420 * @is_write: whether the translation operation is for write
421 * @is_mmio: whether this can be MMIO, set true if it can
422 * @target_as: the address space targeted by the IOMMU
423 * @attrs: transaction attributes
424 *
425 * This function is called from RCU critical section. It is the common
426 * part of flatview_do_translate and address_space_translate_cached.
427 */
428 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
429 hwaddr *xlat,
430 hwaddr *plen_out,
431 hwaddr *page_mask_out,
432 bool is_write,
433 bool is_mmio,
434 AddressSpace **target_as,
435 MemTxAttrs attrs)
436 {
437 MemoryRegionSection *section;
438 hwaddr page_mask = (hwaddr)-1;
439
440 do {
441 hwaddr addr = *xlat;
442 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
443 int iommu_idx = 0;
444 IOMMUTLBEntry iotlb;
445
446 if (imrc->attrs_to_index) {
447 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
448 }
449
450 iotlb = imrc->translate(iommu_mr, addr, is_write ?
451 IOMMU_WO : IOMMU_RO, iommu_idx);
452
453 if (!(iotlb.perm & (1 << is_write))) {
454 goto unassigned;
455 }
456
457 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
458 | (addr & iotlb.addr_mask));
459 page_mask &= iotlb.addr_mask;
460 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
461 *target_as = iotlb.target_as;
462
463 section = address_space_translate_internal(
464 address_space_to_dispatch(iotlb.target_as), addr, xlat,
465 plen_out, is_mmio);
466
467 iommu_mr = memory_region_get_iommu(section->mr);
468 } while (unlikely(iommu_mr));
469
470 if (page_mask_out) {
471 *page_mask_out = page_mask;
472 }
473 return *section;
474
475 unassigned:
476 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
477 }
478
479 /**
480 * flatview_do_translate - translate an address in FlatView
481 *
482 * @fv: the flat view that we want to translate on
483 * @addr: the address to be translated in above address space
484 * @xlat: the translated address offset within memory region. It
485 * cannot be @NULL.
486 * @plen_out: valid read/write length of the translated address. It
487 * can be @NULL when we don't care about it.
488 * @page_mask_out: page mask for the translated address. This
489 * should only be meaningful for IOMMU translated
490 * addresses, since there may be huge pages that this bit
491 * would tell. It can be @NULL if we don't care about it.
492 * @is_write: whether the translation operation is for write
493 * @is_mmio: whether this can be MMIO, set true if it can
494 * @target_as: the address space targeted by the IOMMU
495 * @attrs: memory transaction attributes
496 *
497 * This function is called from RCU critical section
498 */
499 static MemoryRegionSection flatview_do_translate(FlatView *fv,
500 hwaddr addr,
501 hwaddr *xlat,
502 hwaddr *plen_out,
503 hwaddr *page_mask_out,
504 bool is_write,
505 bool is_mmio,
506 AddressSpace **target_as,
507 MemTxAttrs attrs)
508 {
509 MemoryRegionSection *section;
510 IOMMUMemoryRegion *iommu_mr;
511 hwaddr plen = (hwaddr)(-1);
512
513 if (!plen_out) {
514 plen_out = &plen;
515 }
516
517 section = address_space_translate_internal(
518 flatview_to_dispatch(fv), addr, xlat,
519 plen_out, is_mmio);
520
521 iommu_mr = memory_region_get_iommu(section->mr);
522 if (unlikely(iommu_mr)) {
523 return address_space_translate_iommu(iommu_mr, xlat,
524 plen_out, page_mask_out,
525 is_write, is_mmio,
526 target_as, attrs);
527 }
528 if (page_mask_out) {
529 /* Not behind an IOMMU, use default page size. */
530 *page_mask_out = ~TARGET_PAGE_MASK;
531 }
532
533 return *section;
534 }
535
536 /* Called from RCU critical section */
537 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
538 bool is_write, MemTxAttrs attrs)
539 {
540 MemoryRegionSection section;
541 hwaddr xlat, page_mask;
542
543 /*
544 * This can never be MMIO, and we don't really care about plen,
545 * but page mask.
546 */
547 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
548 NULL, &page_mask, is_write, false, &as,
549 attrs);
550
551 /* Illegal translation */
552 if (section.mr == &io_mem_unassigned) {
553 goto iotlb_fail;
554 }
555
556 /* Convert memory region offset into address space offset */
557 xlat += section.offset_within_address_space -
558 section.offset_within_region;
559
560 return (IOMMUTLBEntry) {
561 .target_as = as,
562 .iova = addr & ~page_mask,
563 .translated_addr = xlat & ~page_mask,
564 .addr_mask = page_mask,
565 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
566 .perm = IOMMU_RW,
567 };
568
569 iotlb_fail:
570 return (IOMMUTLBEntry) {0};
571 }
572
573 /* Called from RCU critical section */
574 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
575 hwaddr *plen, bool is_write,
576 MemTxAttrs attrs)
577 {
578 MemoryRegion *mr;
579 MemoryRegionSection section;
580 AddressSpace *as = NULL;
581
582 /* This can be MMIO, so setup MMIO bit. */
583 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
584 is_write, true, &as, attrs);
585 mr = section.mr;
586
587 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
588 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
589 *plen = MIN(page, *plen);
590 }
591
592 return mr;
593 }
594
595 typedef struct TCGIOMMUNotifier {
596 IOMMUNotifier n;
597 MemoryRegion *mr;
598 CPUState *cpu;
599 int iommu_idx;
600 bool active;
601 } TCGIOMMUNotifier;
602
603 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
604 {
605 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
606
607 if (!notifier->active) {
608 return;
609 }
610 tlb_flush(notifier->cpu);
611 notifier->active = false;
612 /* We leave the notifier struct on the list to avoid reallocating it later.
613 * Generally the number of IOMMUs a CPU deals with will be small.
614 * In any case we can't unregister the iommu notifier from a notify
615 * callback.
616 */
617 }
618
619 static void tcg_register_iommu_notifier(CPUState *cpu,
620 IOMMUMemoryRegion *iommu_mr,
621 int iommu_idx)
622 {
623 /* Make sure this CPU has an IOMMU notifier registered for this
624 * IOMMU/IOMMU index combination, so that we can flush its TLB
625 * when the IOMMU tells us the mappings we've cached have changed.
626 */
627 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
628 TCGIOMMUNotifier *notifier;
629 Error *err = NULL;
630 int i, ret;
631
632 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
633 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
634 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
635 break;
636 }
637 }
638 if (i == cpu->iommu_notifiers->len) {
639 /* Not found, add a new entry at the end of the array */
640 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
641 notifier = g_new0(TCGIOMMUNotifier, 1);
642 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
643
644 notifier->mr = mr;
645 notifier->iommu_idx = iommu_idx;
646 notifier->cpu = cpu;
647 /* Rather than trying to register interest in the specific part
648 * of the iommu's address space that we've accessed and then
649 * expand it later as subsequent accesses touch more of it, we
650 * just register interest in the whole thing, on the assumption
651 * that iommu reconfiguration will be rare.
652 */
653 iommu_notifier_init(&notifier->n,
654 tcg_iommu_unmap_notify,
655 IOMMU_NOTIFIER_UNMAP,
656 0,
657 HWADDR_MAX,
658 iommu_idx);
659 ret = memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
660 &err);
661 if (ret) {
662 error_report_err(err);
663 exit(1);
664 }
665 }
666
667 if (!notifier->active) {
668 notifier->active = true;
669 }
670 }
671
672 static void tcg_iommu_free_notifier_list(CPUState *cpu)
673 {
674 /* Destroy the CPU's notifier list */
675 int i;
676 TCGIOMMUNotifier *notifier;
677
678 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
679 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
680 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
681 g_free(notifier);
682 }
683 g_array_free(cpu->iommu_notifiers, true);
684 }
685
686 /* Called from RCU critical section */
687 MemoryRegionSection *
688 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
689 hwaddr *xlat, hwaddr *plen,
690 MemTxAttrs attrs, int *prot)
691 {
692 MemoryRegionSection *section;
693 IOMMUMemoryRegion *iommu_mr;
694 IOMMUMemoryRegionClass *imrc;
695 IOMMUTLBEntry iotlb;
696 int iommu_idx;
697 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
698
699 for (;;) {
700 section = address_space_translate_internal(d, addr, &addr, plen, false);
701
702 iommu_mr = memory_region_get_iommu(section->mr);
703 if (!iommu_mr) {
704 break;
705 }
706
707 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
708
709 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
710 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
711 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
712 * doesn't short-cut its translation table walk.
713 */
714 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
715 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
716 | (addr & iotlb.addr_mask));
717 /* Update the caller's prot bits to remove permissions the IOMMU
718 * is giving us a failure response for. If we get down to no
719 * permissions left at all we can give up now.
720 */
721 if (!(iotlb.perm & IOMMU_RO)) {
722 *prot &= ~(PAGE_READ | PAGE_EXEC);
723 }
724 if (!(iotlb.perm & IOMMU_WO)) {
725 *prot &= ~PAGE_WRITE;
726 }
727
728 if (!*prot) {
729 goto translate_fail;
730 }
731
732 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
733 }
734
735 assert(!memory_region_is_iommu(section->mr));
736 *xlat = addr;
737 return section;
738
739 translate_fail:
740 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
741 }
742 #endif
743
744 #if !defined(CONFIG_USER_ONLY)
745
746 static int cpu_common_post_load(void *opaque, int version_id)
747 {
748 CPUState *cpu = opaque;
749
750 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
751 version_id is increased. */
752 cpu->interrupt_request &= ~0x01;
753 tlb_flush(cpu);
754
755 /* loadvm has just updated the content of RAM, bypassing the
756 * usual mechanisms that ensure we flush TBs for writes to
757 * memory we've translated code from. So we must flush all TBs,
758 * which will now be stale.
759 */
760 tb_flush(cpu);
761
762 return 0;
763 }
764
765 static int cpu_common_pre_load(void *opaque)
766 {
767 CPUState *cpu = opaque;
768
769 cpu->exception_index = -1;
770
771 return 0;
772 }
773
774 static bool cpu_common_exception_index_needed(void *opaque)
775 {
776 CPUState *cpu = opaque;
777
778 return tcg_enabled() && cpu->exception_index != -1;
779 }
780
781 static const VMStateDescription vmstate_cpu_common_exception_index = {
782 .name = "cpu_common/exception_index",
783 .version_id = 1,
784 .minimum_version_id = 1,
785 .needed = cpu_common_exception_index_needed,
786 .fields = (VMStateField[]) {
787 VMSTATE_INT32(exception_index, CPUState),
788 VMSTATE_END_OF_LIST()
789 }
790 };
791
792 static bool cpu_common_crash_occurred_needed(void *opaque)
793 {
794 CPUState *cpu = opaque;
795
796 return cpu->crash_occurred;
797 }
798
799 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
800 .name = "cpu_common/crash_occurred",
801 .version_id = 1,
802 .minimum_version_id = 1,
803 .needed = cpu_common_crash_occurred_needed,
804 .fields = (VMStateField[]) {
805 VMSTATE_BOOL(crash_occurred, CPUState),
806 VMSTATE_END_OF_LIST()
807 }
808 };
809
810 const VMStateDescription vmstate_cpu_common = {
811 .name = "cpu_common",
812 .version_id = 1,
813 .minimum_version_id = 1,
814 .pre_load = cpu_common_pre_load,
815 .post_load = cpu_common_post_load,
816 .fields = (VMStateField[]) {
817 VMSTATE_UINT32(halted, CPUState),
818 VMSTATE_UINT32(interrupt_request, CPUState),
819 VMSTATE_END_OF_LIST()
820 },
821 .subsections = (const VMStateDescription*[]) {
822 &vmstate_cpu_common_exception_index,
823 &vmstate_cpu_common_crash_occurred,
824 NULL
825 }
826 };
827
828 #endif
829
830 CPUState *qemu_get_cpu(int index)
831 {
832 CPUState *cpu;
833
834 CPU_FOREACH(cpu) {
835 if (cpu->cpu_index == index) {
836 return cpu;
837 }
838 }
839
840 return NULL;
841 }
842
843 #if !defined(CONFIG_USER_ONLY)
844 void cpu_address_space_init(CPUState *cpu, int asidx,
845 const char *prefix, MemoryRegion *mr)
846 {
847 CPUAddressSpace *newas;
848 AddressSpace *as = g_new0(AddressSpace, 1);
849 char *as_name;
850
851 assert(mr);
852 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
853 address_space_init(as, mr, as_name);
854 g_free(as_name);
855
856 /* Target code should have set num_ases before calling us */
857 assert(asidx < cpu->num_ases);
858
859 if (asidx == 0) {
860 /* address space 0 gets the convenience alias */
861 cpu->as = as;
862 }
863
864 /* KVM cannot currently support multiple address spaces. */
865 assert(asidx == 0 || !kvm_enabled());
866
867 if (!cpu->cpu_ases) {
868 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
869 }
870
871 newas = &cpu->cpu_ases[asidx];
872 newas->cpu = cpu;
873 newas->as = as;
874 if (tcg_enabled()) {
875 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
876 newas->tcg_as_listener.commit = tcg_commit;
877 memory_listener_register(&newas->tcg_as_listener, as);
878 }
879 }
880
881 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
882 {
883 /* Return the AddressSpace corresponding to the specified index */
884 return cpu->cpu_ases[asidx].as;
885 }
886 #endif
887
888 void cpu_exec_unrealizefn(CPUState *cpu)
889 {
890 CPUClass *cc = CPU_GET_CLASS(cpu);
891
892 cpu_list_remove(cpu);
893
894 if (cc->vmsd != NULL) {
895 vmstate_unregister(NULL, cc->vmsd, cpu);
896 }
897 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
898 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
899 }
900 #ifndef CONFIG_USER_ONLY
901 tcg_iommu_free_notifier_list(cpu);
902 #endif
903 }
904
905 Property cpu_common_props[] = {
906 #ifndef CONFIG_USER_ONLY
907 /* Create a memory property for softmmu CPU object,
908 * so users can wire up its memory. (This can't go in hw/core/cpu.c
909 * because that file is compiled only once for both user-mode
910 * and system builds.) The default if no link is set up is to use
911 * the system address space.
912 */
913 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
914 MemoryRegion *),
915 #endif
916 DEFINE_PROP_END_OF_LIST(),
917 };
918
919 void cpu_exec_initfn(CPUState *cpu)
920 {
921 cpu->as = NULL;
922 cpu->num_ases = 0;
923
924 #ifndef CONFIG_USER_ONLY
925 cpu->thread_id = qemu_get_thread_id();
926 cpu->memory = system_memory;
927 object_ref(OBJECT(cpu->memory));
928 #endif
929 }
930
931 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
932 {
933 CPUClass *cc = CPU_GET_CLASS(cpu);
934 static bool tcg_target_initialized;
935
936 cpu_list_add(cpu);
937
938 if (tcg_enabled() && !tcg_target_initialized) {
939 tcg_target_initialized = true;
940 cc->tcg_initialize();
941 }
942 tlb_init(cpu);
943
944 #ifndef CONFIG_USER_ONLY
945 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
946 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
947 }
948 if (cc->vmsd != NULL) {
949 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
950 }
951
952 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
953 #endif
954 }
955
956 const char *parse_cpu_option(const char *cpu_option)
957 {
958 ObjectClass *oc;
959 CPUClass *cc;
960 gchar **model_pieces;
961 const char *cpu_type;
962
963 model_pieces = g_strsplit(cpu_option, ",", 2);
964 if (!model_pieces[0]) {
965 error_report("-cpu option cannot be empty");
966 exit(1);
967 }
968
969 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
970 if (oc == NULL) {
971 error_report("unable to find CPU model '%s'", model_pieces[0]);
972 g_strfreev(model_pieces);
973 exit(EXIT_FAILURE);
974 }
975
976 cpu_type = object_class_get_name(oc);
977 cc = CPU_CLASS(oc);
978 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
979 g_strfreev(model_pieces);
980 return cpu_type;
981 }
982
983 #if defined(CONFIG_USER_ONLY)
984 void tb_invalidate_phys_addr(target_ulong addr)
985 {
986 mmap_lock();
987 tb_invalidate_phys_page_range(addr, addr + 1);
988 mmap_unlock();
989 }
990
991 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
992 {
993 tb_invalidate_phys_addr(pc);
994 }
995 #else
996 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
997 {
998 ram_addr_t ram_addr;
999 MemoryRegion *mr;
1000 hwaddr l = 1;
1001
1002 if (!tcg_enabled()) {
1003 return;
1004 }
1005
1006 RCU_READ_LOCK_GUARD();
1007 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1008 if (!(memory_region_is_ram(mr)
1009 || memory_region_is_romd(mr))) {
1010 return;
1011 }
1012 ram_addr = memory_region_get_ram_addr(mr) + addr;
1013 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
1014 }
1015
1016 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1017 {
1018 MemTxAttrs attrs;
1019 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1020 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1021 if (phys != -1) {
1022 /* Locks grabbed by tb_invalidate_phys_addr */
1023 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1024 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1025 }
1026 }
1027 #endif
1028
1029 #ifndef CONFIG_USER_ONLY
1030 /* Add a watchpoint. */
1031 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1032 int flags, CPUWatchpoint **watchpoint)
1033 {
1034 CPUWatchpoint *wp;
1035
1036 /* forbid ranges which are empty or run off the end of the address space */
1037 if (len == 0 || (addr + len - 1) < addr) {
1038 error_report("tried to set invalid watchpoint at %"
1039 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1040 return -EINVAL;
1041 }
1042 wp = g_malloc(sizeof(*wp));
1043
1044 wp->vaddr = addr;
1045 wp->len = len;
1046 wp->flags = flags;
1047
1048 /* keep all GDB-injected watchpoints in front */
1049 if (flags & BP_GDB) {
1050 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1051 } else {
1052 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1053 }
1054
1055 tlb_flush_page(cpu, addr);
1056
1057 if (watchpoint)
1058 *watchpoint = wp;
1059 return 0;
1060 }
1061
1062 /* Remove a specific watchpoint. */
1063 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1064 int flags)
1065 {
1066 CPUWatchpoint *wp;
1067
1068 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1069 if (addr == wp->vaddr && len == wp->len
1070 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1071 cpu_watchpoint_remove_by_ref(cpu, wp);
1072 return 0;
1073 }
1074 }
1075 return -ENOENT;
1076 }
1077
1078 /* Remove a specific watchpoint by reference. */
1079 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1080 {
1081 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1082
1083 tlb_flush_page(cpu, watchpoint->vaddr);
1084
1085 g_free(watchpoint);
1086 }
1087
1088 /* Remove all matching watchpoints. */
1089 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1090 {
1091 CPUWatchpoint *wp, *next;
1092
1093 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1094 if (wp->flags & mask) {
1095 cpu_watchpoint_remove_by_ref(cpu, wp);
1096 }
1097 }
1098 }
1099
1100 /* Return true if this watchpoint address matches the specified
1101 * access (ie the address range covered by the watchpoint overlaps
1102 * partially or completely with the address range covered by the
1103 * access).
1104 */
1105 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1106 vaddr addr, vaddr len)
1107 {
1108 /* We know the lengths are non-zero, but a little caution is
1109 * required to avoid errors in the case where the range ends
1110 * exactly at the top of the address space and so addr + len
1111 * wraps round to zero.
1112 */
1113 vaddr wpend = wp->vaddr + wp->len - 1;
1114 vaddr addrend = addr + len - 1;
1115
1116 return !(addr > wpend || wp->vaddr > addrend);
1117 }
1118
1119 /* Return flags for watchpoints that match addr + prot. */
1120 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1121 {
1122 CPUWatchpoint *wp;
1123 int ret = 0;
1124
1125 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1126 if (watchpoint_address_matches(wp, addr, TARGET_PAGE_SIZE)) {
1127 ret |= wp->flags;
1128 }
1129 }
1130 return ret;
1131 }
1132 #endif /* !CONFIG_USER_ONLY */
1133
1134 /* Add a breakpoint. */
1135 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1136 CPUBreakpoint **breakpoint)
1137 {
1138 CPUBreakpoint *bp;
1139
1140 bp = g_malloc(sizeof(*bp));
1141
1142 bp->pc = pc;
1143 bp->flags = flags;
1144
1145 /* keep all GDB-injected breakpoints in front */
1146 if (flags & BP_GDB) {
1147 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1148 } else {
1149 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1150 }
1151
1152 breakpoint_invalidate(cpu, pc);
1153
1154 if (breakpoint) {
1155 *breakpoint = bp;
1156 }
1157 return 0;
1158 }
1159
1160 /* Remove a specific breakpoint. */
1161 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1162 {
1163 CPUBreakpoint *bp;
1164
1165 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1166 if (bp->pc == pc && bp->flags == flags) {
1167 cpu_breakpoint_remove_by_ref(cpu, bp);
1168 return 0;
1169 }
1170 }
1171 return -ENOENT;
1172 }
1173
1174 /* Remove a specific breakpoint by reference. */
1175 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1176 {
1177 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1178
1179 breakpoint_invalidate(cpu, breakpoint->pc);
1180
1181 g_free(breakpoint);
1182 }
1183
1184 /* Remove all matching breakpoints. */
1185 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1186 {
1187 CPUBreakpoint *bp, *next;
1188
1189 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1190 if (bp->flags & mask) {
1191 cpu_breakpoint_remove_by_ref(cpu, bp);
1192 }
1193 }
1194 }
1195
1196 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1197 CPU loop after each instruction */
1198 void cpu_single_step(CPUState *cpu, int enabled)
1199 {
1200 if (cpu->singlestep_enabled != enabled) {
1201 cpu->singlestep_enabled = enabled;
1202 if (kvm_enabled()) {
1203 kvm_update_guest_debug(cpu, 0);
1204 } else {
1205 /* must flush all the translated code to avoid inconsistencies */
1206 /* XXX: only flush what is necessary */
1207 tb_flush(cpu);
1208 }
1209 }
1210 }
1211
1212 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1213 {
1214 va_list ap;
1215 va_list ap2;
1216
1217 va_start(ap, fmt);
1218 va_copy(ap2, ap);
1219 fprintf(stderr, "qemu: fatal: ");
1220 vfprintf(stderr, fmt, ap);
1221 fprintf(stderr, "\n");
1222 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1223 if (qemu_log_separate()) {
1224 qemu_log_lock();
1225 qemu_log("qemu: fatal: ");
1226 qemu_log_vprintf(fmt, ap2);
1227 qemu_log("\n");
1228 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1229 qemu_log_flush();
1230 qemu_log_unlock();
1231 qemu_log_close();
1232 }
1233 va_end(ap2);
1234 va_end(ap);
1235 replay_finish();
1236 #if defined(CONFIG_USER_ONLY)
1237 {
1238 struct sigaction act;
1239 sigfillset(&act.sa_mask);
1240 act.sa_handler = SIG_DFL;
1241 act.sa_flags = 0;
1242 sigaction(SIGABRT, &act, NULL);
1243 }
1244 #endif
1245 abort();
1246 }
1247
1248 #if !defined(CONFIG_USER_ONLY)
1249 /* Called from RCU critical section */
1250 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1251 {
1252 RAMBlock *block;
1253
1254 block = atomic_rcu_read(&ram_list.mru_block);
1255 if (block && addr - block->offset < block->max_length) {
1256 return block;
1257 }
1258 RAMBLOCK_FOREACH(block) {
1259 if (addr - block->offset < block->max_length) {
1260 goto found;
1261 }
1262 }
1263
1264 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1265 abort();
1266
1267 found:
1268 /* It is safe to write mru_block outside the iothread lock. This
1269 * is what happens:
1270 *
1271 * mru_block = xxx
1272 * rcu_read_unlock()
1273 * xxx removed from list
1274 * rcu_read_lock()
1275 * read mru_block
1276 * mru_block = NULL;
1277 * call_rcu(reclaim_ramblock, xxx);
1278 * rcu_read_unlock()
1279 *
1280 * atomic_rcu_set is not needed here. The block was already published
1281 * when it was placed into the list. Here we're just making an extra
1282 * copy of the pointer.
1283 */
1284 ram_list.mru_block = block;
1285 return block;
1286 }
1287
1288 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1289 {
1290 CPUState *cpu;
1291 ram_addr_t start1;
1292 RAMBlock *block;
1293 ram_addr_t end;
1294
1295 assert(tcg_enabled());
1296 end = TARGET_PAGE_ALIGN(start + length);
1297 start &= TARGET_PAGE_MASK;
1298
1299 RCU_READ_LOCK_GUARD();
1300 block = qemu_get_ram_block(start);
1301 assert(block == qemu_get_ram_block(end - 1));
1302 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1303 CPU_FOREACH(cpu) {
1304 tlb_reset_dirty(cpu, start1, length);
1305 }
1306 }
1307
1308 /* Note: start and end must be within the same ram block. */
1309 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1310 ram_addr_t length,
1311 unsigned client)
1312 {
1313 DirtyMemoryBlocks *blocks;
1314 unsigned long end, page;
1315 bool dirty = false;
1316 RAMBlock *ramblock;
1317 uint64_t mr_offset, mr_size;
1318
1319 if (length == 0) {
1320 return false;
1321 }
1322
1323 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1324 page = start >> TARGET_PAGE_BITS;
1325
1326 WITH_RCU_READ_LOCK_GUARD() {
1327 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1328 ramblock = qemu_get_ram_block(start);
1329 /* Range sanity check on the ramblock */
1330 assert(start >= ramblock->offset &&
1331 start + length <= ramblock->offset + ramblock->used_length);
1332
1333 while (page < end) {
1334 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1335 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1336 unsigned long num = MIN(end - page,
1337 DIRTY_MEMORY_BLOCK_SIZE - offset);
1338
1339 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1340 offset, num);
1341 page += num;
1342 }
1343
1344 mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
1345 mr_size = (end - page) << TARGET_PAGE_BITS;
1346 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1347 }
1348
1349 if (dirty && tcg_enabled()) {
1350 tlb_reset_dirty_range_all(start, length);
1351 }
1352
1353 return dirty;
1354 }
1355
1356 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1357 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1358 {
1359 DirtyMemoryBlocks *blocks;
1360 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1361 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1362 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1363 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1364 DirtyBitmapSnapshot *snap;
1365 unsigned long page, end, dest;
1366
1367 snap = g_malloc0(sizeof(*snap) +
1368 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1369 snap->start = first;
1370 snap->end = last;
1371
1372 page = first >> TARGET_PAGE_BITS;
1373 end = last >> TARGET_PAGE_BITS;
1374 dest = 0;
1375
1376 WITH_RCU_READ_LOCK_GUARD() {
1377 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1378
1379 while (page < end) {
1380 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1381 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1382 unsigned long num = MIN(end - page,
1383 DIRTY_MEMORY_BLOCK_SIZE - offset);
1384
1385 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1386 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1387 offset >>= BITS_PER_LEVEL;
1388
1389 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1390 blocks->blocks[idx] + offset,
1391 num);
1392 page += num;
1393 dest += num >> BITS_PER_LEVEL;
1394 }
1395 }
1396
1397 if (tcg_enabled()) {
1398 tlb_reset_dirty_range_all(start, length);
1399 }
1400
1401 memory_region_clear_dirty_bitmap(mr, offset, length);
1402
1403 return snap;
1404 }
1405
1406 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1407 ram_addr_t start,
1408 ram_addr_t length)
1409 {
1410 unsigned long page, end;
1411
1412 assert(start >= snap->start);
1413 assert(start + length <= snap->end);
1414
1415 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1416 page = (start - snap->start) >> TARGET_PAGE_BITS;
1417
1418 while (page < end) {
1419 if (test_bit(page, snap->dirty)) {
1420 return true;
1421 }
1422 page++;
1423 }
1424 return false;
1425 }
1426
1427 /* Called from RCU critical section */
1428 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1429 MemoryRegionSection *section)
1430 {
1431 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1432 return section - d->map.sections;
1433 }
1434 #endif /* defined(CONFIG_USER_ONLY) */
1435
1436 #if !defined(CONFIG_USER_ONLY)
1437
1438 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1439 uint16_t section);
1440 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1441
1442 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1443 qemu_anon_ram_alloc;
1444
1445 /*
1446 * Set a custom physical guest memory alloator.
1447 * Accelerators with unusual needs may need this. Hopefully, we can
1448 * get rid of it eventually.
1449 */
1450 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1451 {
1452 phys_mem_alloc = alloc;
1453 }
1454
1455 static uint16_t phys_section_add(PhysPageMap *map,
1456 MemoryRegionSection *section)
1457 {
1458 /* The physical section number is ORed with a page-aligned
1459 * pointer to produce the iotlb entries. Thus it should
1460 * never overflow into the page-aligned value.
1461 */
1462 assert(map->sections_nb < TARGET_PAGE_SIZE);
1463
1464 if (map->sections_nb == map->sections_nb_alloc) {
1465 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1466 map->sections = g_renew(MemoryRegionSection, map->sections,
1467 map->sections_nb_alloc);
1468 }
1469 map->sections[map->sections_nb] = *section;
1470 memory_region_ref(section->mr);
1471 return map->sections_nb++;
1472 }
1473
1474 static void phys_section_destroy(MemoryRegion *mr)
1475 {
1476 bool have_sub_page = mr->subpage;
1477
1478 memory_region_unref(mr);
1479
1480 if (have_sub_page) {
1481 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1482 object_unref(OBJECT(&subpage->iomem));
1483 g_free(subpage);
1484 }
1485 }
1486
1487 static void phys_sections_free(PhysPageMap *map)
1488 {
1489 while (map->sections_nb > 0) {
1490 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1491 phys_section_destroy(section->mr);
1492 }
1493 g_free(map->sections);
1494 g_free(map->nodes);
1495 }
1496
1497 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1498 {
1499 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1500 subpage_t *subpage;
1501 hwaddr base = section->offset_within_address_space
1502 & TARGET_PAGE_MASK;
1503 MemoryRegionSection *existing = phys_page_find(d, base);
1504 MemoryRegionSection subsection = {
1505 .offset_within_address_space = base,
1506 .size = int128_make64(TARGET_PAGE_SIZE),
1507 };
1508 hwaddr start, end;
1509
1510 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1511
1512 if (!(existing->mr->subpage)) {
1513 subpage = subpage_init(fv, base);
1514 subsection.fv = fv;
1515 subsection.mr = &subpage->iomem;
1516 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1517 phys_section_add(&d->map, &subsection));
1518 } else {
1519 subpage = container_of(existing->mr, subpage_t, iomem);
1520 }
1521 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1522 end = start + int128_get64(section->size) - 1;
1523 subpage_register(subpage, start, end,
1524 phys_section_add(&d->map, section));
1525 }
1526
1527
1528 static void register_multipage(FlatView *fv,
1529 MemoryRegionSection *section)
1530 {
1531 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1532 hwaddr start_addr = section->offset_within_address_space;
1533 uint16_t section_index = phys_section_add(&d->map, section);
1534 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1535 TARGET_PAGE_BITS));
1536
1537 assert(num_pages);
1538 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1539 }
1540
1541 /*
1542 * The range in *section* may look like this:
1543 *
1544 * |s|PPPPPPP|s|
1545 *
1546 * where s stands for subpage and P for page.
1547 */
1548 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1549 {
1550 MemoryRegionSection remain = *section;
1551 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1552
1553 /* register first subpage */
1554 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1555 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1556 - remain.offset_within_address_space;
1557
1558 MemoryRegionSection now = remain;
1559 now.size = int128_min(int128_make64(left), now.size);
1560 register_subpage(fv, &now);
1561 if (int128_eq(remain.size, now.size)) {
1562 return;
1563 }
1564 remain.size = int128_sub(remain.size, now.size);
1565 remain.offset_within_address_space += int128_get64(now.size);
1566 remain.offset_within_region += int128_get64(now.size);
1567 }
1568
1569 /* register whole pages */
1570 if (int128_ge(remain.size, page_size)) {
1571 MemoryRegionSection now = remain;
1572 now.size = int128_and(now.size, int128_neg(page_size));
1573 register_multipage(fv, &now);
1574 if (int128_eq(remain.size, now.size)) {
1575 return;
1576 }
1577 remain.size = int128_sub(remain.size, now.size);
1578 remain.offset_within_address_space += int128_get64(now.size);
1579 remain.offset_within_region += int128_get64(now.size);
1580 }
1581
1582 /* register last subpage */
1583 register_subpage(fv, &remain);
1584 }
1585
1586 void qemu_flush_coalesced_mmio_buffer(void)
1587 {
1588 if (kvm_enabled())
1589 kvm_flush_coalesced_mmio_buffer();
1590 }
1591
1592 void qemu_mutex_lock_ramlist(void)
1593 {
1594 qemu_mutex_lock(&ram_list.mutex);
1595 }
1596
1597 void qemu_mutex_unlock_ramlist(void)
1598 {
1599 qemu_mutex_unlock(&ram_list.mutex);
1600 }
1601
1602 void ram_block_dump(Monitor *mon)
1603 {
1604 RAMBlock *block;
1605 char *psize;
1606
1607 RCU_READ_LOCK_GUARD();
1608 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1609 "Block Name", "PSize", "Offset", "Used", "Total");
1610 RAMBLOCK_FOREACH(block) {
1611 psize = size_to_str(block->page_size);
1612 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1613 " 0x%016" PRIx64 "\n", block->idstr, psize,
1614 (uint64_t)block->offset,
1615 (uint64_t)block->used_length,
1616 (uint64_t)block->max_length);
1617 g_free(psize);
1618 }
1619 }
1620
1621 #ifdef __linux__
1622 /*
1623 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1624 * may or may not name the same files / on the same filesystem now as
1625 * when we actually open and map them. Iterate over the file
1626 * descriptors instead, and use qemu_fd_getpagesize().
1627 */
1628 static int find_min_backend_pagesize(Object *obj, void *opaque)
1629 {
1630 long *hpsize_min = opaque;
1631
1632 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1633 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1634 long hpsize = host_memory_backend_pagesize(backend);
1635
1636 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1637 *hpsize_min = hpsize;
1638 }
1639 }
1640
1641 return 0;
1642 }
1643
1644 static int find_max_backend_pagesize(Object *obj, void *opaque)
1645 {
1646 long *hpsize_max = opaque;
1647
1648 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1649 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1650 long hpsize = host_memory_backend_pagesize(backend);
1651
1652 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1653 *hpsize_max = hpsize;
1654 }
1655 }
1656
1657 return 0;
1658 }
1659
1660 /*
1661 * TODO: We assume right now that all mapped host memory backends are
1662 * used as RAM, however some might be used for different purposes.
1663 */
1664 long qemu_minrampagesize(void)
1665 {
1666 long hpsize = LONG_MAX;
1667 long mainrampagesize;
1668 Object *memdev_root;
1669 MachineState *ms = MACHINE(qdev_get_machine());
1670
1671 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1672
1673 /* it's possible we have memory-backend objects with
1674 * hugepage-backed RAM. these may get mapped into system
1675 * address space via -numa parameters or memory hotplug
1676 * hooks. we want to take these into account, but we
1677 * also want to make sure these supported hugepage
1678 * sizes are applicable across the entire range of memory
1679 * we may boot from, so we take the min across all
1680 * backends, and assume normal pages in cases where a
1681 * backend isn't backed by hugepages.
1682 */
1683 memdev_root = object_resolve_path("/objects", NULL);
1684 if (memdev_root) {
1685 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1686 }
1687 if (hpsize == LONG_MAX) {
1688 /* No additional memory regions found ==> Report main RAM page size */
1689 return mainrampagesize;
1690 }
1691
1692 /* If NUMA is disabled or the NUMA nodes are not backed with a
1693 * memory-backend, then there is at least one node using "normal" RAM,
1694 * so if its page size is smaller we have got to report that size instead.
1695 */
1696 if (hpsize > mainrampagesize &&
1697 (ms->numa_state == NULL ||
1698 ms->numa_state->num_nodes == 0 ||
1699 ms->numa_state->nodes[0].node_memdev == NULL)) {
1700 static bool warned;
1701 if (!warned) {
1702 error_report("Huge page support disabled (n/a for main memory).");
1703 warned = true;
1704 }
1705 return mainrampagesize;
1706 }
1707
1708 return hpsize;
1709 }
1710
1711 long qemu_maxrampagesize(void)
1712 {
1713 long pagesize = qemu_mempath_getpagesize(mem_path);
1714 Object *memdev_root = object_resolve_path("/objects", NULL);
1715
1716 if (memdev_root) {
1717 object_child_foreach(memdev_root, find_max_backend_pagesize,
1718 &pagesize);
1719 }
1720 return pagesize;
1721 }
1722 #else
1723 long qemu_minrampagesize(void)
1724 {
1725 return qemu_real_host_page_size;
1726 }
1727 long qemu_maxrampagesize(void)
1728 {
1729 return qemu_real_host_page_size;
1730 }
1731 #endif
1732
1733 #ifdef CONFIG_POSIX
1734 static int64_t get_file_size(int fd)
1735 {
1736 int64_t size;
1737 #if defined(__linux__)
1738 struct stat st;
1739
1740 if (fstat(fd, &st) < 0) {
1741 return -errno;
1742 }
1743
1744 /* Special handling for devdax character devices */
1745 if (S_ISCHR(st.st_mode)) {
1746 g_autofree char *subsystem_path = NULL;
1747 g_autofree char *subsystem = NULL;
1748
1749 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1750 major(st.st_rdev), minor(st.st_rdev));
1751 subsystem = g_file_read_link(subsystem_path, NULL);
1752
1753 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1754 g_autofree char *size_path = NULL;
1755 g_autofree char *size_str = NULL;
1756
1757 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1758 major(st.st_rdev), minor(st.st_rdev));
1759
1760 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1761 return g_ascii_strtoll(size_str, NULL, 0);
1762 }
1763 }
1764 }
1765 #endif /* defined(__linux__) */
1766
1767 /* st.st_size may be zero for special files yet lseek(2) works */
1768 size = lseek(fd, 0, SEEK_END);
1769 if (size < 0) {
1770 return -errno;
1771 }
1772 return size;
1773 }
1774
1775 static int file_ram_open(const char *path,
1776 const char *region_name,
1777 bool *created,
1778 Error **errp)
1779 {
1780 char *filename;
1781 char *sanitized_name;
1782 char *c;
1783 int fd = -1;
1784
1785 *created = false;
1786 for (;;) {
1787 fd = open(path, O_RDWR);
1788 if (fd >= 0) {
1789 /* @path names an existing file, use it */
1790 break;
1791 }
1792 if (errno == ENOENT) {
1793 /* @path names a file that doesn't exist, create it */
1794 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1795 if (fd >= 0) {
1796 *created = true;
1797 break;
1798 }
1799 } else if (errno == EISDIR) {
1800 /* @path names a directory, create a file there */
1801 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1802 sanitized_name = g_strdup(region_name);
1803 for (c = sanitized_name; *c != '\0'; c++) {
1804 if (*c == '/') {
1805 *c = '_';
1806 }
1807 }
1808
1809 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1810 sanitized_name);
1811 g_free(sanitized_name);
1812
1813 fd = mkstemp(filename);
1814 if (fd >= 0) {
1815 unlink(filename);
1816 g_free(filename);
1817 break;
1818 }
1819 g_free(filename);
1820 }
1821 if (errno != EEXIST && errno != EINTR) {
1822 error_setg_errno(errp, errno,
1823 "can't open backing store %s for guest RAM",
1824 path);
1825 return -1;
1826 }
1827 /*
1828 * Try again on EINTR and EEXIST. The latter happens when
1829 * something else creates the file between our two open().
1830 */
1831 }
1832
1833 return fd;
1834 }
1835
1836 static void *file_ram_alloc(RAMBlock *block,
1837 ram_addr_t memory,
1838 int fd,
1839 bool truncate,
1840 Error **errp)
1841 {
1842 MachineState *ms = MACHINE(qdev_get_machine());
1843 void *area;
1844
1845 block->page_size = qemu_fd_getpagesize(fd);
1846 if (block->mr->align % block->page_size) {
1847 error_setg(errp, "alignment 0x%" PRIx64
1848 " must be multiples of page size 0x%zx",
1849 block->mr->align, block->page_size);
1850 return NULL;
1851 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1852 error_setg(errp, "alignment 0x%" PRIx64
1853 " must be a power of two", block->mr->align);
1854 return NULL;
1855 }
1856 block->mr->align = MAX(block->page_size, block->mr->align);
1857 #if defined(__s390x__)
1858 if (kvm_enabled()) {
1859 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1860 }
1861 #endif
1862
1863 if (memory < block->page_size) {
1864 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1865 "or larger than page size 0x%zx",
1866 memory, block->page_size);
1867 return NULL;
1868 }
1869
1870 memory = ROUND_UP(memory, block->page_size);
1871
1872 /*
1873 * ftruncate is not supported by hugetlbfs in older
1874 * hosts, so don't bother bailing out on errors.
1875 * If anything goes wrong with it under other filesystems,
1876 * mmap will fail.
1877 *
1878 * Do not truncate the non-empty backend file to avoid corrupting
1879 * the existing data in the file. Disabling shrinking is not
1880 * enough. For example, the current vNVDIMM implementation stores
1881 * the guest NVDIMM labels at the end of the backend file. If the
1882 * backend file is later extended, QEMU will not be able to find
1883 * those labels. Therefore, extending the non-empty backend file
1884 * is disabled as well.
1885 */
1886 if (truncate && ftruncate(fd, memory)) {
1887 perror("ftruncate");
1888 }
1889
1890 area = qemu_ram_mmap(fd, memory, block->mr->align,
1891 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1892 if (area == MAP_FAILED) {
1893 error_setg_errno(errp, errno,
1894 "unable to map backing store for guest RAM");
1895 return NULL;
1896 }
1897
1898 if (mem_prealloc) {
1899 os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
1900 if (errp && *errp) {
1901 qemu_ram_munmap(fd, area, memory);
1902 return NULL;
1903 }
1904 }
1905
1906 block->fd = fd;
1907 return area;
1908 }
1909 #endif
1910
1911 /* Allocate space within the ram_addr_t space that governs the
1912 * dirty bitmaps.
1913 * Called with the ramlist lock held.
1914 */
1915 static ram_addr_t find_ram_offset(ram_addr_t size)
1916 {
1917 RAMBlock *block, *next_block;
1918 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1919
1920 assert(size != 0); /* it would hand out same offset multiple times */
1921
1922 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1923 return 0;
1924 }
1925
1926 RAMBLOCK_FOREACH(block) {
1927 ram_addr_t candidate, next = RAM_ADDR_MAX;
1928
1929 /* Align blocks to start on a 'long' in the bitmap
1930 * which makes the bitmap sync'ing take the fast path.
1931 */
1932 candidate = block->offset + block->max_length;
1933 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1934
1935 /* Search for the closest following block
1936 * and find the gap.
1937 */
1938 RAMBLOCK_FOREACH(next_block) {
1939 if (next_block->offset >= candidate) {
1940 next = MIN(next, next_block->offset);
1941 }
1942 }
1943
1944 /* If it fits remember our place and remember the size
1945 * of gap, but keep going so that we might find a smaller
1946 * gap to fill so avoiding fragmentation.
1947 */
1948 if (next - candidate >= size && next - candidate < mingap) {
1949 offset = candidate;
1950 mingap = next - candidate;
1951 }
1952
1953 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1954 }
1955
1956 if (offset == RAM_ADDR_MAX) {
1957 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1958 (uint64_t)size);
1959 abort();
1960 }
1961
1962 trace_find_ram_offset(size, offset);
1963
1964 return offset;
1965 }
1966
1967 static unsigned long last_ram_page(void)
1968 {
1969 RAMBlock *block;
1970 ram_addr_t last = 0;
1971
1972 RCU_READ_LOCK_GUARD();
1973 RAMBLOCK_FOREACH(block) {
1974 last = MAX(last, block->offset + block->max_length);
1975 }
1976 return last >> TARGET_PAGE_BITS;
1977 }
1978
1979 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1980 {
1981 int ret;
1982
1983 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1984 if (!machine_dump_guest_core(current_machine)) {
1985 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1986 if (ret) {
1987 perror("qemu_madvise");
1988 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1989 "but dump_guest_core=off specified\n");
1990 }
1991 }
1992 }
1993
1994 const char *qemu_ram_get_idstr(RAMBlock *rb)
1995 {
1996 return rb->idstr;
1997 }
1998
1999 void *qemu_ram_get_host_addr(RAMBlock *rb)
2000 {
2001 return rb->host;
2002 }
2003
2004 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2005 {
2006 return rb->offset;
2007 }
2008
2009 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2010 {
2011 return rb->used_length;
2012 }
2013
2014 bool qemu_ram_is_shared(RAMBlock *rb)
2015 {
2016 return rb->flags & RAM_SHARED;
2017 }
2018
2019 /* Note: Only set at the start of postcopy */
2020 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2021 {
2022 return rb->flags & RAM_UF_ZEROPAGE;
2023 }
2024
2025 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2026 {
2027 rb->flags |= RAM_UF_ZEROPAGE;
2028 }
2029
2030 bool qemu_ram_is_migratable(RAMBlock *rb)
2031 {
2032 return rb->flags & RAM_MIGRATABLE;
2033 }
2034
2035 void qemu_ram_set_migratable(RAMBlock *rb)
2036 {
2037 rb->flags |= RAM_MIGRATABLE;
2038 }
2039
2040 void qemu_ram_unset_migratable(RAMBlock *rb)
2041 {
2042 rb->flags &= ~RAM_MIGRATABLE;
2043 }
2044
2045 /* Called with iothread lock held. */
2046 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2047 {
2048 RAMBlock *block;
2049
2050 assert(new_block);
2051 assert(!new_block->idstr[0]);
2052
2053 if (dev) {
2054 char *id = qdev_get_dev_path(dev);
2055 if (id) {
2056 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2057 g_free(id);
2058 }
2059 }
2060 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2061
2062 RCU_READ_LOCK_GUARD();
2063 RAMBLOCK_FOREACH(block) {
2064 if (block != new_block &&
2065 !strcmp(block->idstr, new_block->idstr)) {
2066 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2067 new_block->idstr);
2068 abort();
2069 }
2070 }
2071 }
2072
2073 /* Called with iothread lock held. */
2074 void qemu_ram_unset_idstr(RAMBlock *block)
2075 {
2076 /* FIXME: arch_init.c assumes that this is not called throughout
2077 * migration. Ignore the problem since hot-unplug during migration
2078 * does not work anyway.
2079 */
2080 if (block) {
2081 memset(block->idstr, 0, sizeof(block->idstr));
2082 }
2083 }
2084
2085 size_t qemu_ram_pagesize(RAMBlock *rb)
2086 {
2087 return rb->page_size;
2088 }
2089
2090 /* Returns the largest size of page in use */
2091 size_t qemu_ram_pagesize_largest(void)
2092 {
2093 RAMBlock *block;
2094 size_t largest = 0;
2095
2096 RAMBLOCK_FOREACH(block) {
2097 largest = MAX(largest, qemu_ram_pagesize(block));
2098 }
2099
2100 return largest;
2101 }
2102
2103 static int memory_try_enable_merging(void *addr, size_t len)
2104 {
2105 if (!machine_mem_merge(current_machine)) {
2106 /* disabled by the user */
2107 return 0;
2108 }
2109
2110 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2111 }
2112
2113 /* Only legal before guest might have detected the memory size: e.g. on
2114 * incoming migration, or right after reset.
2115 *
2116 * As memory core doesn't know how is memory accessed, it is up to
2117 * resize callback to update device state and/or add assertions to detect
2118 * misuse, if necessary.
2119 */
2120 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2121 {
2122 assert(block);
2123
2124 newsize = HOST_PAGE_ALIGN(newsize);
2125
2126 if (block->used_length == newsize) {
2127 return 0;
2128 }
2129
2130 if (!(block->flags & RAM_RESIZEABLE)) {
2131 error_setg_errno(errp, EINVAL,
2132 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2133 " in != 0x" RAM_ADDR_FMT, block->idstr,
2134 newsize, block->used_length);
2135 return -EINVAL;
2136 }
2137
2138 if (block->max_length < newsize) {
2139 error_setg_errno(errp, EINVAL,
2140 "Length too large: %s: 0x" RAM_ADDR_FMT
2141 " > 0x" RAM_ADDR_FMT, block->idstr,
2142 newsize, block->max_length);
2143 return -EINVAL;
2144 }
2145
2146 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2147 block->used_length = newsize;
2148 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2149 DIRTY_CLIENTS_ALL);
2150 memory_region_set_size(block->mr, newsize);
2151 if (block->resized) {
2152 block->resized(block->idstr, newsize, block->host);
2153 }
2154 return 0;
2155 }
2156
2157 /* Called with ram_list.mutex held */
2158 static void dirty_memory_extend(ram_addr_t old_ram_size,
2159 ram_addr_t new_ram_size)
2160 {
2161 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2162 DIRTY_MEMORY_BLOCK_SIZE);
2163 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2164 DIRTY_MEMORY_BLOCK_SIZE);
2165 int i;
2166
2167 /* Only need to extend if block count increased */
2168 if (new_num_blocks <= old_num_blocks) {
2169 return;
2170 }
2171
2172 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2173 DirtyMemoryBlocks *old_blocks;
2174 DirtyMemoryBlocks *new_blocks;
2175 int j;
2176
2177 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2178 new_blocks = g_malloc(sizeof(*new_blocks) +
2179 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2180
2181 if (old_num_blocks) {
2182 memcpy(new_blocks->blocks, old_blocks->blocks,
2183 old_num_blocks * sizeof(old_blocks->blocks[0]));
2184 }
2185
2186 for (j = old_num_blocks; j < new_num_blocks; j++) {
2187 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2188 }
2189
2190 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2191
2192 if (old_blocks) {
2193 g_free_rcu(old_blocks, rcu);
2194 }
2195 }
2196 }
2197
2198 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2199 {
2200 RAMBlock *block;
2201 RAMBlock *last_block = NULL;
2202 ram_addr_t old_ram_size, new_ram_size;
2203 Error *err = NULL;
2204
2205 old_ram_size = last_ram_page();
2206
2207 qemu_mutex_lock_ramlist();
2208 new_block->offset = find_ram_offset(new_block->max_length);
2209
2210 if (!new_block->host) {
2211 if (xen_enabled()) {
2212 xen_ram_alloc(new_block->offset, new_block->max_length,
2213 new_block->mr, &err);
2214 if (err) {
2215 error_propagate(errp, err);
2216 qemu_mutex_unlock_ramlist();
2217 return;
2218 }
2219 } else {
2220 new_block->host = phys_mem_alloc(new_block->max_length,
2221 &new_block->mr->align, shared);
2222 if (!new_block->host) {
2223 error_setg_errno(errp, errno,
2224 "cannot set up guest memory '%s'",
2225 memory_region_name(new_block->mr));
2226 qemu_mutex_unlock_ramlist();
2227 return;
2228 }
2229 memory_try_enable_merging(new_block->host, new_block->max_length);
2230 }
2231 }
2232
2233 new_ram_size = MAX(old_ram_size,
2234 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2235 if (new_ram_size > old_ram_size) {
2236 dirty_memory_extend(old_ram_size, new_ram_size);
2237 }
2238 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2239 * QLIST (which has an RCU-friendly variant) does not have insertion at
2240 * tail, so save the last element in last_block.
2241 */
2242 RAMBLOCK_FOREACH(block) {
2243 last_block = block;
2244 if (block->max_length < new_block->max_length) {
2245 break;
2246 }
2247 }
2248 if (block) {
2249 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2250 } else if (last_block) {
2251 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2252 } else { /* list is empty */
2253 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2254 }
2255 ram_list.mru_block = NULL;
2256
2257 /* Write list before version */
2258 smp_wmb();
2259 ram_list.version++;
2260 qemu_mutex_unlock_ramlist();
2261
2262 cpu_physical_memory_set_dirty_range(new_block->offset,
2263 new_block->used_length,
2264 DIRTY_CLIENTS_ALL);
2265
2266 if (new_block->host) {
2267 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2268 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2269 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2270 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2271 ram_block_notify_add(new_block->host, new_block->max_length);
2272 }
2273 }
2274
2275 #ifdef CONFIG_POSIX
2276 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2277 uint32_t ram_flags, int fd,
2278 Error **errp)
2279 {
2280 RAMBlock *new_block;
2281 Error *local_err = NULL;
2282 int64_t file_size;
2283
2284 /* Just support these ram flags by now. */
2285 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2286
2287 if (xen_enabled()) {
2288 error_setg(errp, "-mem-path not supported with Xen");
2289 return NULL;
2290 }
2291
2292 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2293 error_setg(errp,
2294 "host lacks kvm mmu notifiers, -mem-path unsupported");
2295 return NULL;
2296 }
2297
2298 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2299 /*
2300 * file_ram_alloc() needs to allocate just like
2301 * phys_mem_alloc, but we haven't bothered to provide
2302 * a hook there.
2303 */
2304 error_setg(errp,
2305 "-mem-path not supported with this accelerator");
2306 return NULL;
2307 }
2308
2309 size = HOST_PAGE_ALIGN(size);
2310 file_size = get_file_size(fd);
2311 if (file_size > 0 && file_size < size) {
2312 error_setg(errp, "backing store %s size 0x%" PRIx64
2313 " does not match 'size' option 0x" RAM_ADDR_FMT,
2314 mem_path, file_size, size);
2315 return NULL;
2316 }
2317
2318 new_block = g_malloc0(sizeof(*new_block));
2319 new_block->mr = mr;
2320 new_block->used_length = size;
2321 new_block->max_length = size;
2322 new_block->flags = ram_flags;
2323 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2324 if (!new_block->host) {
2325 g_free(new_block);
2326 return NULL;
2327 }
2328
2329 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2330 if (local_err) {
2331 g_free(new_block);
2332 error_propagate(errp, local_err);
2333 return NULL;
2334 }
2335 return new_block;
2336
2337 }
2338
2339
2340 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2341 uint32_t ram_flags, const char *mem_path,
2342 Error **errp)
2343 {
2344 int fd;
2345 bool created;
2346 RAMBlock *block;
2347
2348 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2349 if (fd < 0) {
2350 return NULL;
2351 }
2352
2353 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2354 if (!block) {
2355 if (created) {
2356 unlink(mem_path);
2357 }
2358 close(fd);
2359 return NULL;
2360 }
2361
2362 return block;
2363 }
2364 #endif
2365
2366 static
2367 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2368 void (*resized)(const char*,
2369 uint64_t length,
2370 void *host),
2371 void *host, bool resizeable, bool share,
2372 MemoryRegion *mr, Error **errp)
2373 {
2374 RAMBlock *new_block;
2375 Error *local_err = NULL;
2376
2377 size = HOST_PAGE_ALIGN(size);
2378 max_size = HOST_PAGE_ALIGN(max_size);
2379 new_block = g_malloc0(sizeof(*new_block));
2380 new_block->mr = mr;
2381 new_block->resized = resized;
2382 new_block->used_length = size;
2383 new_block->max_length = max_size;
2384 assert(max_size >= size);
2385 new_block->fd = -1;
2386 new_block->page_size = qemu_real_host_page_size;
2387 new_block->host = host;
2388 if (host) {
2389 new_block->flags |= RAM_PREALLOC;
2390 }
2391 if (resizeable) {
2392 new_block->flags |= RAM_RESIZEABLE;
2393 }
2394 ram_block_add(new_block, &local_err, share);
2395 if (local_err) {
2396 g_free(new_block);
2397 error_propagate(errp, local_err);
2398 return NULL;
2399 }
2400 return new_block;
2401 }
2402
2403 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2404 MemoryRegion *mr, Error **errp)
2405 {
2406 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2407 false, mr, errp);
2408 }
2409
2410 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2411 MemoryRegion *mr, Error **errp)
2412 {
2413 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2414 share, mr, errp);
2415 }
2416
2417 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2418 void (*resized)(const char*,
2419 uint64_t length,
2420 void *host),
2421 MemoryRegion *mr, Error **errp)
2422 {
2423 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2424 false, mr, errp);
2425 }
2426
2427 static void reclaim_ramblock(RAMBlock *block)
2428 {
2429 if (block->flags & RAM_PREALLOC) {
2430 ;
2431 } else if (xen_enabled()) {
2432 xen_invalidate_map_cache_entry(block->host);
2433 #ifndef _WIN32
2434 } else if (block->fd >= 0) {
2435 qemu_ram_munmap(block->fd, block->host, block->max_length);
2436 close(block->fd);
2437 #endif
2438 } else {
2439 qemu_anon_ram_free(block->host, block->max_length);
2440 }
2441 g_free(block);
2442 }
2443
2444 void qemu_ram_free(RAMBlock *block)
2445 {
2446 if (!block) {
2447 return;
2448 }
2449
2450 if (block->host) {
2451 ram_block_notify_remove(block->host, block->max_length);
2452 }
2453
2454 qemu_mutex_lock_ramlist();
2455 QLIST_REMOVE_RCU(block, next);
2456 ram_list.mru_block = NULL;
2457 /* Write list before version */
2458 smp_wmb();
2459 ram_list.version++;
2460 call_rcu(block, reclaim_ramblock, rcu);
2461 qemu_mutex_unlock_ramlist();
2462 }
2463
2464 #ifndef _WIN32
2465 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2466 {
2467 RAMBlock *block;
2468 ram_addr_t offset;
2469 int flags;
2470 void *area, *vaddr;
2471
2472 RAMBLOCK_FOREACH(block) {
2473 offset = addr - block->offset;
2474 if (offset < block->max_length) {
2475 vaddr = ramblock_ptr(block, offset);
2476 if (block->flags & RAM_PREALLOC) {
2477 ;
2478 } else if (xen_enabled()) {
2479 abort();
2480 } else {
2481 flags = MAP_FIXED;
2482 if (block->fd >= 0) {
2483 flags |= (block->flags & RAM_SHARED ?
2484 MAP_SHARED : MAP_PRIVATE);
2485 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2486 flags, block->fd, offset);
2487 } else {
2488 /*
2489 * Remap needs to match alloc. Accelerators that
2490 * set phys_mem_alloc never remap. If they did,
2491 * we'd need a remap hook here.
2492 */
2493 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2494
2495 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2496 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2497 flags, -1, 0);
2498 }
2499 if (area != vaddr) {
2500 error_report("Could not remap addr: "
2501 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2502 length, addr);
2503 exit(1);
2504 }
2505 memory_try_enable_merging(vaddr, length);
2506 qemu_ram_setup_dump(vaddr, length);
2507 }
2508 }
2509 }
2510 }
2511 #endif /* !_WIN32 */
2512
2513 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2514 * This should not be used for general purpose DMA. Use address_space_map
2515 * or address_space_rw instead. For local memory (e.g. video ram) that the
2516 * device owns, use memory_region_get_ram_ptr.
2517 *
2518 * Called within RCU critical section.
2519 */
2520 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2521 {
2522 RAMBlock *block = ram_block;
2523
2524 if (block == NULL) {
2525 block = qemu_get_ram_block(addr);
2526 addr -= block->offset;
2527 }
2528
2529 if (xen_enabled() && block->host == NULL) {
2530 /* We need to check if the requested address is in the RAM
2531 * because we don't want to map the entire memory in QEMU.
2532 * In that case just map until the end of the page.
2533 */
2534 if (block->offset == 0) {
2535 return xen_map_cache(addr, 0, 0, false);
2536 }
2537
2538 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2539 }
2540 return ramblock_ptr(block, addr);
2541 }
2542
2543 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2544 * but takes a size argument.
2545 *
2546 * Called within RCU critical section.
2547 */
2548 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2549 hwaddr *size, bool lock)
2550 {
2551 RAMBlock *block = ram_block;
2552 if (*size == 0) {
2553 return NULL;
2554 }
2555
2556 if (block == NULL) {
2557 block = qemu_get_ram_block(addr);
2558 addr -= block->offset;
2559 }
2560 *size = MIN(*size, block->max_length - addr);
2561
2562 if (xen_enabled() && block->host == NULL) {
2563 /* We need to check if the requested address is in the RAM
2564 * because we don't want to map the entire memory in QEMU.
2565 * In that case just map the requested area.
2566 */
2567 if (block->offset == 0) {
2568 return xen_map_cache(addr, *size, lock, lock);
2569 }
2570
2571 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2572 }
2573
2574 return ramblock_ptr(block, addr);
2575 }
2576
2577 /* Return the offset of a hostpointer within a ramblock */
2578 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2579 {
2580 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2581 assert((uintptr_t)host >= (uintptr_t)rb->host);
2582 assert(res < rb->max_length);
2583
2584 return res;
2585 }
2586
2587 /*
2588 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2589 * in that RAMBlock.
2590 *
2591 * ptr: Host pointer to look up
2592 * round_offset: If true round the result offset down to a page boundary
2593 * *ram_addr: set to result ram_addr
2594 * *offset: set to result offset within the RAMBlock
2595 *
2596 * Returns: RAMBlock (or NULL if not found)
2597 *
2598 * By the time this function returns, the returned pointer is not protected
2599 * by RCU anymore. If the caller is not within an RCU critical section and
2600 * does not hold the iothread lock, it must have other means of protecting the
2601 * pointer, such as a reference to the region that includes the incoming
2602 * ram_addr_t.
2603 */
2604 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2605 ram_addr_t *offset)
2606 {
2607 RAMBlock *block;
2608 uint8_t *host = ptr;
2609
2610 if (xen_enabled()) {
2611 ram_addr_t ram_addr;
2612 RCU_READ_LOCK_GUARD();
2613 ram_addr = xen_ram_addr_from_mapcache(ptr);
2614 block = qemu_get_ram_block(ram_addr);
2615 if (block) {
2616 *offset = ram_addr - block->offset;
2617 }
2618 return block;
2619 }
2620
2621 RCU_READ_LOCK_GUARD();
2622 block = atomic_rcu_read(&ram_list.mru_block);
2623 if (block && block->host && host - block->host < block->max_length) {
2624 goto found;
2625 }
2626
2627 RAMBLOCK_FOREACH(block) {
2628 /* This case append when the block is not mapped. */
2629 if (block->host == NULL) {
2630 continue;
2631 }
2632 if (host - block->host < block->max_length) {
2633 goto found;
2634 }
2635 }
2636
2637 return NULL;
2638
2639 found:
2640 *offset = (host - block->host);
2641 if (round_offset) {
2642 *offset &= TARGET_PAGE_MASK;
2643 }
2644 return block;
2645 }
2646
2647 /*
2648 * Finds the named RAMBlock
2649 *
2650 * name: The name of RAMBlock to find
2651 *
2652 * Returns: RAMBlock (or NULL if not found)
2653 */
2654 RAMBlock *qemu_ram_block_by_name(const char *name)
2655 {
2656 RAMBlock *block;
2657
2658 RAMBLOCK_FOREACH(block) {
2659 if (!strcmp(name, block->idstr)) {
2660 return block;
2661 }
2662 }
2663
2664 return NULL;
2665 }
2666
2667 /* Some of the softmmu routines need to translate from a host pointer
2668 (typically a TLB entry) back to a ram offset. */
2669 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2670 {
2671 RAMBlock *block;
2672 ram_addr_t offset;
2673
2674 block = qemu_ram_block_from_host(ptr, false, &offset);
2675 if (!block) {
2676 return RAM_ADDR_INVALID;
2677 }
2678
2679 return block->offset + offset;
2680 }
2681
2682 /* Generate a debug exception if a watchpoint has been hit. */
2683 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2684 MemTxAttrs attrs, int flags, uintptr_t ra)
2685 {
2686 CPUClass *cc = CPU_GET_CLASS(cpu);
2687 CPUWatchpoint *wp;
2688
2689 assert(tcg_enabled());
2690 if (cpu->watchpoint_hit) {
2691 /*
2692 * We re-entered the check after replacing the TB.
2693 * Now raise the debug interrupt so that it will
2694 * trigger after the current instruction.
2695 */
2696 qemu_mutex_lock_iothread();
2697 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2698 qemu_mutex_unlock_iothread();
2699 return;
2700 }
2701
2702 addr = cc->adjust_watchpoint_address(cpu, addr, len);
2703 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2704 if (watchpoint_address_matches(wp, addr, len)
2705 && (wp->flags & flags)) {
2706 if (flags == BP_MEM_READ) {
2707 wp->flags |= BP_WATCHPOINT_HIT_READ;
2708 } else {
2709 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2710 }
2711 wp->hitaddr = MAX(addr, wp->vaddr);
2712 wp->hitattrs = attrs;
2713 if (!cpu->watchpoint_hit) {
2714 if (wp->flags & BP_CPU &&
2715 !cc->debug_check_watchpoint(cpu, wp)) {
2716 wp->flags &= ~BP_WATCHPOINT_HIT;
2717 continue;
2718 }
2719 cpu->watchpoint_hit = wp;
2720
2721 mmap_lock();
2722 tb_check_watchpoint(cpu, ra);
2723 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2724 cpu->exception_index = EXCP_DEBUG;
2725 mmap_unlock();
2726 cpu_loop_exit_restore(cpu, ra);
2727 } else {
2728 /* Force execution of one insn next time. */
2729 cpu->cflags_next_tb = 1 | curr_cflags();
2730 mmap_unlock();
2731 if (ra) {
2732 cpu_restore_state(cpu, ra, true);
2733 }
2734 cpu_loop_exit_noexc(cpu);
2735 }
2736 }
2737 } else {
2738 wp->flags &= ~BP_WATCHPOINT_HIT;
2739 }
2740 }
2741 }
2742
2743 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2744 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2745 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2746 const uint8_t *buf, hwaddr len);
2747 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2748 bool is_write, MemTxAttrs attrs);
2749
2750 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2751 unsigned len, MemTxAttrs attrs)
2752 {
2753 subpage_t *subpage = opaque;
2754 uint8_t buf[8];
2755 MemTxResult res;
2756
2757 #if defined(DEBUG_SUBPAGE)
2758 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2759 subpage, len, addr);
2760 #endif
2761 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2762 if (res) {
2763 return res;
2764 }
2765 *data = ldn_p(buf, len);
2766 return MEMTX_OK;
2767 }
2768
2769 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2770 uint64_t value, unsigned len, MemTxAttrs attrs)
2771 {
2772 subpage_t *subpage = opaque;
2773 uint8_t buf[8];
2774
2775 #if defined(DEBUG_SUBPAGE)
2776 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2777 " value %"PRIx64"\n",
2778 __func__, subpage, len, addr, value);
2779 #endif
2780 stn_p(buf, len, value);
2781 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2782 }
2783
2784 static bool subpage_accepts(void *opaque, hwaddr addr,
2785 unsigned len, bool is_write,
2786 MemTxAttrs attrs)
2787 {
2788 subpage_t *subpage = opaque;
2789 #if defined(DEBUG_SUBPAGE)
2790 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2791 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2792 #endif
2793
2794 return flatview_access_valid(subpage->fv, addr + subpage->base,
2795 len, is_write, attrs);
2796 }
2797
2798 static const MemoryRegionOps subpage_ops = {
2799 .read_with_attrs = subpage_read,
2800 .write_with_attrs = subpage_write,
2801 .impl.min_access_size = 1,
2802 .impl.max_access_size = 8,
2803 .valid.min_access_size = 1,
2804 .valid.max_access_size = 8,
2805 .valid.accepts = subpage_accepts,
2806 .endianness = DEVICE_NATIVE_ENDIAN,
2807 };
2808
2809 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2810 uint16_t section)
2811 {
2812 int idx, eidx;
2813
2814 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2815 return -1;
2816 idx = SUBPAGE_IDX(start);
2817 eidx = SUBPAGE_IDX(end);
2818 #if defined(DEBUG_SUBPAGE)
2819 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2820 __func__, mmio, start, end, idx, eidx, section);
2821 #endif
2822 for (; idx <= eidx; idx++) {
2823 mmio->sub_section[idx] = section;
2824 }
2825
2826 return 0;
2827 }
2828
2829 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2830 {
2831 subpage_t *mmio;
2832
2833 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2834 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2835 mmio->fv = fv;
2836 mmio->base = base;
2837 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2838 NULL, TARGET_PAGE_SIZE);
2839 mmio->iomem.subpage = true;
2840 #if defined(DEBUG_SUBPAGE)
2841 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2842 mmio, base, TARGET_PAGE_SIZE);
2843 #endif
2844
2845 return mmio;
2846 }
2847
2848 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2849 {
2850 assert(fv);
2851 MemoryRegionSection section = {
2852 .fv = fv,
2853 .mr = mr,
2854 .offset_within_address_space = 0,
2855 .offset_within_region = 0,
2856 .size = int128_2_64(),
2857 };
2858
2859 return phys_section_add(map, &section);
2860 }
2861
2862 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2863 hwaddr index, MemTxAttrs attrs)
2864 {
2865 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2866 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2867 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2868 MemoryRegionSection *sections = d->map.sections;
2869
2870 return &sections[index & ~TARGET_PAGE_MASK];
2871 }
2872
2873 static void io_mem_init(void)
2874 {
2875 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2876 NULL, UINT64_MAX);
2877 }
2878
2879 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2880 {
2881 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2882 uint16_t n;
2883
2884 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2885 assert(n == PHYS_SECTION_UNASSIGNED);
2886
2887 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2888
2889 return d;
2890 }
2891
2892 void address_space_dispatch_free(AddressSpaceDispatch *d)
2893 {
2894 phys_sections_free(&d->map);
2895 g_free(d);
2896 }
2897
2898 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2899 {
2900 }
2901
2902 static void tcg_log_global_after_sync(MemoryListener *listener)
2903 {
2904 CPUAddressSpace *cpuas;
2905
2906 /* Wait for the CPU to end the current TB. This avoids the following
2907 * incorrect race:
2908 *
2909 * vCPU migration
2910 * ---------------------- -------------------------
2911 * TLB check -> slow path
2912 * notdirty_mem_write
2913 * write to RAM
2914 * mark dirty
2915 * clear dirty flag
2916 * TLB check -> fast path
2917 * read memory
2918 * write to RAM
2919 *
2920 * by pushing the migration thread's memory read after the vCPU thread has
2921 * written the memory.
2922 */
2923 if (replay_mode == REPLAY_MODE_NONE) {
2924 /*
2925 * VGA can make calls to this function while updating the screen.
2926 * In record/replay mode this causes a deadlock, because
2927 * run_on_cpu waits for rr mutex. Therefore no races are possible
2928 * in this case and no need for making run_on_cpu when
2929 * record/replay is not enabled.
2930 */
2931 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2932 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2933 }
2934 }
2935
2936 static void tcg_commit(MemoryListener *listener)
2937 {
2938 CPUAddressSpace *cpuas;
2939 AddressSpaceDispatch *d;
2940
2941 assert(tcg_enabled());
2942 /* since each CPU stores ram addresses in its TLB cache, we must
2943 reset the modified entries */
2944 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2945 cpu_reloading_memory_map();
2946 /* The CPU and TLB are protected by the iothread lock.
2947 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2948 * may have split the RCU critical section.
2949 */
2950 d = address_space_to_dispatch(cpuas->as);
2951 atomic_rcu_set(&cpuas->memory_dispatch, d);
2952 tlb_flush(cpuas->cpu);
2953 }
2954
2955 static void memory_map_init(void)
2956 {
2957 system_memory = g_malloc(sizeof(*system_memory));
2958
2959 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2960 address_space_init(&address_space_memory, system_memory, "memory");
2961
2962 system_io = g_malloc(sizeof(*system_io));
2963 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2964 65536);
2965 address_space_init(&address_space_io, system_io, "I/O");
2966 }
2967
2968 MemoryRegion *get_system_memory(void)
2969 {
2970 return system_memory;
2971 }
2972
2973 MemoryRegion *get_system_io(void)
2974 {
2975 return system_io;
2976 }
2977
2978 #endif /* !defined(CONFIG_USER_ONLY) */
2979
2980 /* physical memory access (slow version, mainly for debug) */
2981 #if defined(CONFIG_USER_ONLY)
2982 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2983 uint8_t *buf, target_ulong len, int is_write)
2984 {
2985 int flags;
2986 target_ulong l, page;
2987 void * p;
2988
2989 while (len > 0) {
2990 page = addr & TARGET_PAGE_MASK;
2991 l = (page + TARGET_PAGE_SIZE) - addr;
2992 if (l > len)
2993 l = len;
2994 flags = page_get_flags(page);
2995 if (!(flags & PAGE_VALID))
2996 return -1;
2997 if (is_write) {
2998 if (!(flags & PAGE_WRITE))
2999 return -1;
3000 /* XXX: this code should not depend on lock_user */
3001 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3002 return -1;
3003 memcpy(p, buf, l);
3004 unlock_user(p, addr, l);
3005 } else {
3006 if (!(flags & PAGE_READ))
3007 return -1;
3008 /* XXX: this code should not depend on lock_user */
3009 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3010 return -1;
3011 memcpy(buf, p, l);
3012 unlock_user(p, addr, 0);
3013 }
3014 len -= l;
3015 buf += l;
3016 addr += l;
3017 }
3018 return 0;
3019 }
3020
3021 #else
3022
3023 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3024 hwaddr length)
3025 {
3026 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3027 addr += memory_region_get_ram_addr(mr);
3028
3029 /* No early return if dirty_log_mask is or becomes 0, because
3030 * cpu_physical_memory_set_dirty_range will still call
3031 * xen_modified_memory.
3032 */
3033 if (dirty_log_mask) {
3034 dirty_log_mask =
3035 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3036 }
3037 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3038 assert(tcg_enabled());
3039 tb_invalidate_phys_range(addr, addr + length);
3040 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3041 }
3042 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3043 }
3044
3045 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3046 {
3047 /*
3048 * In principle this function would work on other memory region types too,
3049 * but the ROM device use case is the only one where this operation is
3050 * necessary. Other memory regions should use the
3051 * address_space_read/write() APIs.
3052 */
3053 assert(memory_region_is_romd(mr));
3054
3055 invalidate_and_set_dirty(mr, addr, size);
3056 }
3057
3058 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3059 {
3060 unsigned access_size_max = mr->ops->valid.max_access_size;
3061
3062 /* Regions are assumed to support 1-4 byte accesses unless
3063 otherwise specified. */
3064 if (access_size_max == 0) {
3065 access_size_max = 4;
3066 }
3067
3068 /* Bound the maximum access by the alignment of the address. */
3069 if (!mr->ops->impl.unaligned) {
3070 unsigned align_size_max = addr & -addr;
3071 if (align_size_max != 0 && align_size_max < access_size_max) {
3072 access_size_max = align_size_max;
3073 }
3074 }
3075
3076 /* Don't attempt accesses larger than the maximum. */
3077 if (l > access_size_max) {
3078 l = access_size_max;
3079 }
3080 l = pow2floor(l);
3081
3082 return l;
3083 }
3084
3085 static bool prepare_mmio_access(MemoryRegion *mr)
3086 {
3087 bool unlocked = !qemu_mutex_iothread_locked();
3088 bool release_lock = false;
3089
3090 if (unlocked && mr->global_locking) {
3091 qemu_mutex_lock_iothread();
3092 unlocked = false;
3093 release_lock = true;
3094 }
3095 if (mr->flush_coalesced_mmio) {
3096 if (unlocked) {
3097 qemu_mutex_lock_iothread();
3098 }
3099 qemu_flush_coalesced_mmio_buffer();
3100 if (unlocked) {
3101 qemu_mutex_unlock_iothread();
3102 }
3103 }
3104
3105 return release_lock;
3106 }
3107
3108 /* Called within RCU critical section. */
3109 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3110 MemTxAttrs attrs,
3111 const uint8_t *buf,
3112 hwaddr len, hwaddr addr1,
3113 hwaddr l, MemoryRegion *mr)
3114 {
3115 uint8_t *ptr;
3116 uint64_t val;
3117 MemTxResult result = MEMTX_OK;
3118 bool release_lock = false;
3119
3120 for (;;) {
3121 if (!memory_access_is_direct(mr, true)) {
3122 release_lock |= prepare_mmio_access(mr);
3123 l = memory_access_size(mr, l, addr1);
3124 /* XXX: could force current_cpu to NULL to avoid
3125 potential bugs */
3126 val = ldn_he_p(buf, l);
3127 result |= memory_region_dispatch_write(mr, addr1, val,
3128 size_memop(l), attrs);
3129 } else {
3130 /* RAM case */
3131 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3132 memcpy(ptr, buf, l);
3133 invalidate_and_set_dirty(mr, addr1, l);
3134 }
3135
3136 if (release_lock) {
3137 qemu_mutex_unlock_iothread();
3138 release_lock = false;
3139 }
3140
3141 len -= l;
3142 buf += l;
3143 addr += l;
3144
3145 if (!len) {
3146 break;
3147 }
3148
3149 l = len;
3150 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3151 }
3152
3153 return result;
3154 }
3155
3156 /* Called from RCU critical section. */
3157 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3158 const uint8_t *buf, hwaddr len)
3159 {
3160 hwaddr l;
3161 hwaddr addr1;
3162 MemoryRegion *mr;
3163 MemTxResult result = MEMTX_OK;
3164
3165 l = len;
3166 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3167 result = flatview_write_continue(fv, addr, attrs, buf, len,
3168 addr1, l, mr);
3169
3170 return result;
3171 }
3172
3173 /* Called within RCU critical section. */
3174 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3175 MemTxAttrs attrs, uint8_t *buf,
3176 hwaddr len, hwaddr addr1, hwaddr l,
3177 MemoryRegion *mr)
3178 {
3179 uint8_t *ptr;
3180 uint64_t val;
3181 MemTxResult result = MEMTX_OK;
3182 bool release_lock = false;
3183
3184 for (;;) {
3185 if (!memory_access_is_direct(mr, false)) {
3186 /* I/O case */
3187 release_lock |= prepare_mmio_access(mr);
3188 l = memory_access_size(mr, l, addr1);
3189 result |= memory_region_dispatch_read(mr, addr1, &val,
3190 size_memop(l), attrs);
3191 stn_he_p(buf, l, val);
3192 } else {
3193 /* RAM case */
3194 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3195 memcpy(buf, ptr, l);
3196 }
3197
3198 if (release_lock) {
3199 qemu_mutex_unlock_iothread();
3200 release_lock = false;
3201 }
3202
3203 len -= l;
3204 buf += l;
3205 addr += l;
3206
3207 if (!len) {
3208 break;
3209 }
3210
3211 l = len;
3212 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3213 }
3214
3215 return result;
3216 }
3217
3218 /* Called from RCU critical section. */
3219 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3220 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3221 {
3222 hwaddr l;
3223 hwaddr addr1;
3224 MemoryRegion *mr;
3225
3226 l = len;
3227 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3228 return flatview_read_continue(fv, addr, attrs, buf, len,
3229 addr1, l, mr);
3230 }
3231
3232 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3233 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3234 {
3235 MemTxResult result = MEMTX_OK;
3236 FlatView *fv;
3237
3238 if (len > 0) {
3239 RCU_READ_LOCK_GUARD();
3240 fv = address_space_to_flatview(as);
3241 result = flatview_read(fv, addr, attrs, buf, len);
3242 }
3243
3244 return result;
3245 }
3246
3247 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3248 MemTxAttrs attrs,
3249 const uint8_t *buf, hwaddr len)
3250 {
3251 MemTxResult result = MEMTX_OK;
3252 FlatView *fv;
3253
3254 if (len > 0) {
3255 RCU_READ_LOCK_GUARD();
3256 fv = address_space_to_flatview(as);
3257 result = flatview_write(fv, addr, attrs, buf, len);
3258 }
3259
3260 return result;
3261 }
3262
3263 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3264 uint8_t *buf, hwaddr len, bool is_write)
3265 {
3266 if (is_write) {
3267 return address_space_write(as, addr, attrs, buf, len);
3268 } else {
3269 return address_space_read_full(as, addr, attrs, buf, len);
3270 }
3271 }
3272
3273 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3274 hwaddr len, int is_write)
3275 {
3276 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3277 buf, len, is_write);
3278 }
3279
3280 enum write_rom_type {
3281 WRITE_DATA,
3282 FLUSH_CACHE,
3283 };
3284
3285 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3286 hwaddr addr,
3287 MemTxAttrs attrs,
3288 const uint8_t *buf,
3289 hwaddr len,
3290 enum write_rom_type type)
3291 {
3292 hwaddr l;
3293 uint8_t *ptr;
3294 hwaddr addr1;
3295 MemoryRegion *mr;
3296
3297 RCU_READ_LOCK_GUARD();
3298 while (len > 0) {
3299 l = len;
3300 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3301
3302 if (!(memory_region_is_ram(mr) ||
3303 memory_region_is_romd(mr))) {
3304 l = memory_access_size(mr, l, addr1);
3305 } else {
3306 /* ROM/RAM case */
3307 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3308 switch (type) {
3309 case WRITE_DATA:
3310 memcpy(ptr, buf, l);
3311 invalidate_and_set_dirty(mr, addr1, l);
3312 break;
3313 case FLUSH_CACHE:
3314 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3315 break;
3316 }
3317 }
3318 len -= l;
3319 buf += l;
3320 addr += l;
3321 }
3322 return MEMTX_OK;
3323 }
3324
3325 /* used for ROM loading : can write in RAM and ROM */
3326 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3327 MemTxAttrs attrs,
3328 const uint8_t *buf, hwaddr len)
3329 {
3330 return address_space_write_rom_internal(as, addr, attrs,
3331 buf, len, WRITE_DATA);
3332 }
3333
3334 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3335 {
3336 /*
3337 * This function should do the same thing as an icache flush that was
3338 * triggered from within the guest. For TCG we are always cache coherent,
3339 * so there is no need to flush anything. For KVM / Xen we need to flush
3340 * the host's instruction cache at least.
3341 */
3342 if (tcg_enabled()) {
3343 return;
3344 }
3345
3346 address_space_write_rom_internal(&address_space_memory,
3347 start, MEMTXATTRS_UNSPECIFIED,
3348 NULL, len, FLUSH_CACHE);
3349 }
3350
3351 typedef struct {
3352 MemoryRegion *mr;
3353 void *buffer;
3354 hwaddr addr;
3355 hwaddr len;
3356 bool in_use;
3357 } BounceBuffer;
3358
3359 static BounceBuffer bounce;
3360
3361 typedef struct MapClient {
3362 QEMUBH *bh;
3363 QLIST_ENTRY(MapClient) link;
3364 } MapClient;
3365
3366 QemuMutex map_client_list_lock;
3367 static QLIST_HEAD(, MapClient) map_client_list
3368 = QLIST_HEAD_INITIALIZER(map_client_list);
3369
3370 static void cpu_unregister_map_client_do(MapClient *client)
3371 {
3372 QLIST_REMOVE(client, link);
3373 g_free(client);
3374 }
3375
3376 static void cpu_notify_map_clients_locked(void)
3377 {
3378 MapClient *client;
3379
3380 while (!QLIST_EMPTY(&map_client_list)) {
3381 client = QLIST_FIRST(&map_client_list);
3382 qemu_bh_schedule(client->bh);
3383 cpu_unregister_map_client_do(client);
3384 }
3385 }
3386
3387 void cpu_register_map_client(QEMUBH *bh)
3388 {
3389 MapClient *client = g_malloc(sizeof(*client));
3390
3391 qemu_mutex_lock(&map_client_list_lock);
3392 client->bh = bh;
3393 QLIST_INSERT_HEAD(&map_client_list, client, link);
3394 if (!atomic_read(&bounce.in_use)) {
3395 cpu_notify_map_clients_locked();
3396 }
3397 qemu_mutex_unlock(&map_client_list_lock);
3398 }
3399
3400 void cpu_exec_init_all(void)
3401 {
3402 qemu_mutex_init(&ram_list.mutex);
3403 /* The data structures we set up here depend on knowing the page size,
3404 * so no more changes can be made after this point.
3405 * In an ideal world, nothing we did before we had finished the
3406 * machine setup would care about the target page size, and we could
3407 * do this much later, rather than requiring board models to state
3408 * up front what their requirements are.
3409 */
3410 finalize_target_page_bits();
3411 io_mem_init();
3412 memory_map_init();
3413 qemu_mutex_init(&map_client_list_lock);
3414 }
3415
3416 void cpu_unregister_map_client(QEMUBH *bh)
3417 {
3418 MapClient *client;
3419
3420 qemu_mutex_lock(&map_client_list_lock);
3421 QLIST_FOREACH(client, &map_client_list, link) {
3422 if (client->bh == bh) {
3423 cpu_unregister_map_client_do(client);
3424 break;
3425 }
3426 }
3427 qemu_mutex_unlock(&map_client_list_lock);
3428 }
3429
3430 static void cpu_notify_map_clients(void)
3431 {
3432 qemu_mutex_lock(&map_client_list_lock);
3433 cpu_notify_map_clients_locked();
3434 qemu_mutex_unlock(&map_client_list_lock);
3435 }
3436
3437 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3438 bool is_write, MemTxAttrs attrs)
3439 {
3440 MemoryRegion *mr;
3441 hwaddr l, xlat;
3442
3443 while (len > 0) {
3444 l = len;
3445 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3446 if (!memory_access_is_direct(mr, is_write)) {
3447 l = memory_access_size(mr, l, addr);
3448 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3449 return false;
3450 }
3451 }
3452
3453 len -= l;
3454 addr += l;
3455 }
3456 return true;
3457 }
3458
3459 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3460 hwaddr len, bool is_write,
3461 MemTxAttrs attrs)
3462 {
3463 FlatView *fv;
3464 bool result;
3465
3466 RCU_READ_LOCK_GUARD();
3467 fv = address_space_to_flatview(as);
3468 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3469 return result;
3470 }
3471
3472 static hwaddr
3473 flatview_extend_translation(FlatView *fv, hwaddr addr,
3474 hwaddr target_len,
3475 MemoryRegion *mr, hwaddr base, hwaddr len,
3476 bool is_write, MemTxAttrs attrs)
3477 {
3478 hwaddr done = 0;
3479 hwaddr xlat;
3480 MemoryRegion *this_mr;
3481
3482 for (;;) {
3483 target_len -= len;
3484 addr += len;
3485 done += len;
3486 if (target_len == 0) {
3487 return done;
3488 }
3489
3490 len = target_len;
3491 this_mr = flatview_translate(fv, addr, &xlat,
3492 &len, is_write, attrs);
3493 if (this_mr != mr || xlat != base + done) {
3494 return done;
3495 }
3496 }
3497 }
3498
3499 /* Map a physical memory region into a host virtual address.
3500 * May map a subset of the requested range, given by and returned in *plen.
3501 * May return NULL if resources needed to perform the mapping are exhausted.
3502 * Use only for reads OR writes - not for read-modify-write operations.
3503 * Use cpu_register_map_client() to know when retrying the map operation is
3504 * likely to succeed.
3505 */
3506 void *address_space_map(AddressSpace *as,
3507 hwaddr addr,
3508 hwaddr *plen,
3509 bool is_write,
3510 MemTxAttrs attrs)
3511 {
3512 hwaddr len = *plen;
3513 hwaddr l, xlat;
3514 MemoryRegion *mr;
3515 void *ptr;
3516 FlatView *fv;
3517
3518 if (len == 0) {
3519 return NULL;
3520 }
3521
3522 l = len;
3523 RCU_READ_LOCK_GUARD();
3524 fv = address_space_to_flatview(as);
3525 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3526
3527 if (!memory_access_is_direct(mr, is_write)) {
3528 if (atomic_xchg(&bounce.in_use, true)) {
3529 return NULL;
3530 }
3531 /* Avoid unbounded allocations */
3532 l = MIN(l, TARGET_PAGE_SIZE);
3533 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3534 bounce.addr = addr;
3535 bounce.len = l;
3536
3537 memory_region_ref(mr);
3538 bounce.mr = mr;
3539 if (!is_write) {
3540 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3541 bounce.buffer, l);
3542 }
3543
3544 *plen = l;
3545 return bounce.buffer;
3546 }
3547
3548
3549 memory_region_ref(mr);
3550 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3551 l, is_write, attrs);
3552 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3553
3554 return ptr;
3555 }
3556
3557 /* Unmaps a memory region previously mapped by address_space_map().
3558 * Will also mark the memory as dirty if is_write == 1. access_len gives
3559 * the amount of memory that was actually read or written by the caller.
3560 */
3561 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3562 int is_write, hwaddr access_len)
3563 {
3564 if (buffer != bounce.buffer) {
3565 MemoryRegion *mr;
3566 ram_addr_t addr1;
3567
3568 mr = memory_region_from_host(buffer, &addr1);
3569 assert(mr != NULL);
3570 if (is_write) {
3571 invalidate_and_set_dirty(mr, addr1, access_len);
3572 }
3573 if (xen_enabled()) {
3574 xen_invalidate_map_cache_entry(buffer);
3575 }
3576 memory_region_unref(mr);
3577 return;
3578 }
3579 if (is_write) {
3580 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3581 bounce.buffer, access_len);
3582 }
3583 qemu_vfree(bounce.buffer);
3584 bounce.buffer = NULL;
3585 memory_region_unref(bounce.mr);
3586 atomic_mb_set(&bounce.in_use, false);
3587 cpu_notify_map_clients();
3588 }
3589
3590 void *cpu_physical_memory_map(hwaddr addr,
3591 hwaddr *plen,
3592 int is_write)
3593 {
3594 return address_space_map(&address_space_memory, addr, plen, is_write,
3595 MEMTXATTRS_UNSPECIFIED);
3596 }
3597
3598 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3599 int is_write, hwaddr access_len)
3600 {
3601 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3602 }
3603
3604 #define ARG1_DECL AddressSpace *as
3605 #define ARG1 as
3606 #define SUFFIX
3607 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3608 #define RCU_READ_LOCK(...) rcu_read_lock()
3609 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3610 #include "memory_ldst.inc.c"
3611
3612 int64_t address_space_cache_init(MemoryRegionCache *cache,
3613 AddressSpace *as,
3614 hwaddr addr,
3615 hwaddr len,
3616 bool is_write)
3617 {
3618 AddressSpaceDispatch *d;
3619 hwaddr l;
3620 MemoryRegion *mr;
3621
3622 assert(len > 0);
3623
3624 l = len;
3625 cache->fv = address_space_get_flatview(as);
3626 d = flatview_to_dispatch(cache->fv);
3627 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3628
3629 mr = cache->mrs.mr;
3630 memory_region_ref(mr);
3631 if (memory_access_is_direct(mr, is_write)) {
3632 /* We don't care about the memory attributes here as we're only
3633 * doing this if we found actual RAM, which behaves the same
3634 * regardless of attributes; so UNSPECIFIED is fine.
3635 */
3636 l = flatview_extend_translation(cache->fv, addr, len, mr,
3637 cache->xlat, l, is_write,
3638 MEMTXATTRS_UNSPECIFIED);
3639 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3640 } else {
3641 cache->ptr = NULL;
3642 }
3643
3644 cache->len = l;
3645 cache->is_write = is_write;
3646 return l;
3647 }
3648
3649 void address_space_cache_invalidate(MemoryRegionCache *cache,
3650 hwaddr addr,
3651 hwaddr access_len)
3652 {
3653 assert(cache->is_write);
3654 if (likely(cache->ptr)) {
3655 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3656 }
3657 }
3658
3659 void address_space_cache_destroy(MemoryRegionCache *cache)
3660 {
3661 if (!cache->mrs.mr) {
3662 return;
3663 }
3664
3665 if (xen_enabled()) {
3666 xen_invalidate_map_cache_entry(cache->ptr);
3667 }
3668 memory_region_unref(cache->mrs.mr);
3669 flatview_unref(cache->fv);
3670 cache->mrs.mr = NULL;
3671 cache->fv = NULL;
3672 }
3673
3674 /* Called from RCU critical section. This function has the same
3675 * semantics as address_space_translate, but it only works on a
3676 * predefined range of a MemoryRegion that was mapped with
3677 * address_space_cache_init.
3678 */
3679 static inline MemoryRegion *address_space_translate_cached(
3680 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3681 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3682 {
3683 MemoryRegionSection section;
3684 MemoryRegion *mr;
3685 IOMMUMemoryRegion *iommu_mr;
3686 AddressSpace *target_as;
3687
3688 assert(!cache->ptr);
3689 *xlat = addr + cache->xlat;
3690
3691 mr = cache->mrs.mr;
3692 iommu_mr = memory_region_get_iommu(mr);
3693 if (!iommu_mr) {
3694 /* MMIO region. */
3695 return mr;
3696 }
3697
3698 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3699 NULL, is_write, true,
3700 &target_as, attrs);
3701 return section.mr;
3702 }
3703
3704 /* Called from RCU critical section. address_space_read_cached uses this
3705 * out of line function when the target is an MMIO or IOMMU region.
3706 */
3707 void
3708 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3709 void *buf, hwaddr len)
3710 {
3711 hwaddr addr1, l;
3712 MemoryRegion *mr;
3713
3714 l = len;
3715 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3716 MEMTXATTRS_UNSPECIFIED);
3717 flatview_read_continue(cache->fv,
3718 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3719 addr1, l, mr);
3720 }
3721
3722 /* Called from RCU critical section. address_space_write_cached uses this
3723 * out of line function when the target is an MMIO or IOMMU region.
3724 */
3725 void
3726 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3727 const void *buf, hwaddr len)
3728 {
3729 hwaddr addr1, l;
3730 MemoryRegion *mr;
3731
3732 l = len;
3733 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3734 MEMTXATTRS_UNSPECIFIED);
3735 flatview_write_continue(cache->fv,
3736 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3737 addr1, l, mr);
3738 }
3739
3740 #define ARG1_DECL MemoryRegionCache *cache
3741 #define ARG1 cache
3742 #define SUFFIX _cached_slow
3743 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3744 #define RCU_READ_LOCK() ((void)0)
3745 #define RCU_READ_UNLOCK() ((void)0)
3746 #include "memory_ldst.inc.c"
3747
3748 /* virtual memory access for debug (includes writing to ROM) */
3749 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3750 uint8_t *buf, target_ulong len, int is_write)
3751 {
3752 hwaddr phys_addr;
3753 target_ulong l, page;
3754
3755 cpu_synchronize_state(cpu);
3756 while (len > 0) {
3757 int asidx;
3758 MemTxAttrs attrs;
3759
3760 page = addr & TARGET_PAGE_MASK;
3761 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3762 asidx = cpu_asidx_from_attrs(cpu, attrs);
3763 /* if no physical page mapped, return an error */
3764 if (phys_addr == -1)
3765 return -1;
3766 l = (page + TARGET_PAGE_SIZE) - addr;
3767 if (l > len)
3768 l = len;
3769 phys_addr += (addr & ~TARGET_PAGE_MASK);
3770 if (is_write) {
3771 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3772 attrs, buf, l);
3773 } else {
3774 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3775 attrs, buf, l, 0);
3776 }
3777 len -= l;
3778 buf += l;
3779 addr += l;
3780 }
3781 return 0;
3782 }
3783
3784 /*
3785 * Allows code that needs to deal with migration bitmaps etc to still be built
3786 * target independent.
3787 */
3788 size_t qemu_target_page_size(void)
3789 {
3790 return TARGET_PAGE_SIZE;
3791 }
3792
3793 int qemu_target_page_bits(void)
3794 {
3795 return TARGET_PAGE_BITS;
3796 }
3797
3798 int qemu_target_page_bits_min(void)
3799 {
3800 return TARGET_PAGE_BITS_MIN;
3801 }
3802 #endif
3803
3804 bool target_words_bigendian(void)
3805 {
3806 #if defined(TARGET_WORDS_BIGENDIAN)
3807 return true;
3808 #else
3809 return false;
3810 #endif
3811 }
3812
3813 #ifndef CONFIG_USER_ONLY
3814 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3815 {
3816 MemoryRegion*mr;
3817 hwaddr l = 1;
3818 bool res;
3819
3820 RCU_READ_LOCK_GUARD();
3821 mr = address_space_translate(&address_space_memory,
3822 phys_addr, &phys_addr, &l, false,
3823 MEMTXATTRS_UNSPECIFIED);
3824
3825 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3826 return res;
3827 }
3828
3829 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3830 {
3831 RAMBlock *block;
3832 int ret = 0;
3833
3834 RCU_READ_LOCK_GUARD();
3835 RAMBLOCK_FOREACH(block) {
3836 ret = func(block, opaque);
3837 if (ret) {
3838 break;
3839 }
3840 }
3841 return ret;
3842 }
3843
3844 /*
3845 * Unmap pages of memory from start to start+length such that
3846 * they a) read as 0, b) Trigger whatever fault mechanism
3847 * the OS provides for postcopy.
3848 * The pages must be unmapped by the end of the function.
3849 * Returns: 0 on success, none-0 on failure
3850 *
3851 */
3852 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3853 {
3854 int ret = -1;
3855
3856 uint8_t *host_startaddr = rb->host + start;
3857
3858 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3859 error_report("ram_block_discard_range: Unaligned start address: %p",
3860 host_startaddr);
3861 goto err;
3862 }
3863
3864 if ((start + length) <= rb->used_length) {
3865 bool need_madvise, need_fallocate;
3866 uint8_t *host_endaddr = host_startaddr + length;
3867 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3868 error_report("ram_block_discard_range: Unaligned end address: %p",
3869 host_endaddr);
3870 goto err;
3871 }
3872
3873 errno = ENOTSUP; /* If we are missing MADVISE etc */
3874
3875 /* The logic here is messy;
3876 * madvise DONTNEED fails for hugepages
3877 * fallocate works on hugepages and shmem
3878 */
3879 need_madvise = (rb->page_size == qemu_host_page_size);
3880 need_fallocate = rb->fd != -1;
3881 if (need_fallocate) {
3882 /* For a file, this causes the area of the file to be zero'd
3883 * if read, and for hugetlbfs also causes it to be unmapped
3884 * so a userfault will trigger.
3885 */
3886 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3887 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3888 start, length);
3889 if (ret) {
3890 ret = -errno;
3891 error_report("ram_block_discard_range: Failed to fallocate "
3892 "%s:%" PRIx64 " +%zx (%d)",
3893 rb->idstr, start, length, ret);
3894 goto err;
3895 }
3896 #else
3897 ret = -ENOSYS;
3898 error_report("ram_block_discard_range: fallocate not available/file"
3899 "%s:%" PRIx64 " +%zx (%d)",
3900 rb->idstr, start, length, ret);
3901 goto err;
3902 #endif
3903 }
3904 if (need_madvise) {
3905 /* For normal RAM this causes it to be unmapped,
3906 * for shared memory it causes the local mapping to disappear
3907 * and to fall back on the file contents (which we just
3908 * fallocate'd away).
3909 */
3910 #if defined(CONFIG_MADVISE)
3911 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3912 if (ret) {
3913 ret = -errno;
3914 error_report("ram_block_discard_range: Failed to discard range "
3915 "%s:%" PRIx64 " +%zx (%d)",
3916 rb->idstr, start, length, ret);
3917 goto err;
3918 }
3919 #else
3920 ret = -ENOSYS;
3921 error_report("ram_block_discard_range: MADVISE not available"
3922 "%s:%" PRIx64 " +%zx (%d)",
3923 rb->idstr, start, length, ret);
3924 goto err;
3925 #endif
3926 }
3927 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3928 need_madvise, need_fallocate, ret);
3929 } else {
3930 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3931 "/%zx/" RAM_ADDR_FMT")",
3932 rb->idstr, start, length, rb->used_length);
3933 }
3934
3935 err:
3936 return ret;
3937 }
3938
3939 bool ramblock_is_pmem(RAMBlock *rb)
3940 {
3941 return rb->flags & RAM_PMEM;
3942 }
3943
3944 #endif
3945
3946 void page_size_init(void)
3947 {
3948 /* NOTE: we can always suppose that qemu_host_page_size >=
3949 TARGET_PAGE_SIZE */
3950 if (qemu_host_page_size == 0) {
3951 qemu_host_page_size = qemu_real_host_page_size;
3952 }
3953 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3954 qemu_host_page_size = TARGET_PAGE_SIZE;
3955 }
3956 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3957 }
3958
3959 #if !defined(CONFIG_USER_ONLY)
3960
3961 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3962 {
3963 if (start == end - 1) {
3964 qemu_printf("\t%3d ", start);
3965 } else {
3966 qemu_printf("\t%3d..%-3d ", start, end - 1);
3967 }
3968 qemu_printf(" skip=%d ", skip);
3969 if (ptr == PHYS_MAP_NODE_NIL) {
3970 qemu_printf(" ptr=NIL");
3971 } else if (!skip) {
3972 qemu_printf(" ptr=#%d", ptr);
3973 } else {
3974 qemu_printf(" ptr=[%d]", ptr);
3975 }
3976 qemu_printf("\n");
3977 }
3978
3979 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3980 int128_sub((size), int128_one())) : 0)
3981
3982 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3983 {
3984 int i;
3985
3986 qemu_printf(" Dispatch\n");
3987 qemu_printf(" Physical sections\n");
3988
3989 for (i = 0; i < d->map.sections_nb; ++i) {
3990 MemoryRegionSection *s = d->map.sections + i;
3991 const char *names[] = { " [unassigned]", " [not dirty]",
3992 " [ROM]", " [watch]" };
3993
3994 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
3995 " %s%s%s%s%s",
3996 i,
3997 s->offset_within_address_space,
3998 s->offset_within_address_space + MR_SIZE(s->mr->size),
3999 s->mr->name ? s->mr->name : "(noname)",
4000 i < ARRAY_SIZE(names) ? names[i] : "",
4001 s->mr == root ? " [ROOT]" : "",
4002 s == d->mru_section ? " [MRU]" : "",
4003 s->mr->is_iommu ? " [iommu]" : "");
4004
4005 if (s->mr->alias) {
4006 qemu_printf(" alias=%s", s->mr->alias->name ?
4007 s->mr->alias->name : "noname");
4008 }
4009 qemu_printf("\n");
4010 }
4011
4012 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4013 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4014 for (i = 0; i < d->map.nodes_nb; ++i) {
4015 int j, jprev;
4016 PhysPageEntry prev;
4017 Node *n = d->map.nodes + i;
4018
4019 qemu_printf(" [%d]\n", i);
4020
4021 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4022 PhysPageEntry *pe = *n + j;
4023
4024 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4025 continue;
4026 }
4027
4028 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4029
4030 jprev = j;
4031 prev = *pe;
4032 }
4033
4034 if (jprev != ARRAY_SIZE(*n)) {
4035 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4036 }
4037 }
4038 }
4039
4040 #endif