]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "qemu/timer.h"
39 #include "qemu/config-file.h"
40 #include "qemu/error-report.h"
41 #include "qemu/qemu-print.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include "qemu.h"
44 #else /* !CONFIG_USER_ONLY */
45 #include "exec/memory.h"
46 #include "exec/ioport.h"
47 #include "sysemu/dma.h"
48 #include "sysemu/hostmem.h"
49 #include "sysemu/hw_accel.h"
50 #include "exec/address-spaces.h"
51 #include "sysemu/xen-mapcache.h"
52 #include "trace-root.h"
53
54 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
55 #include <linux/falloc.h>
56 #endif
57
58 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
63
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
67
68 #include "migration/vmstate.h"
69
70 #include "qemu/range.h"
71 #ifndef _WIN32
72 #include "qemu/mmap-alloc.h"
73 #endif
74
75 #include "monitor/monitor.h"
76
77 //#define DEBUG_SUBPAGE
78
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
83 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
84
85 static MemoryRegion *system_memory;
86 static MemoryRegion *system_io;
87
88 AddressSpace address_space_io;
89 AddressSpace address_space_memory;
90
91 static MemoryRegion io_mem_unassigned;
92 #endif
93
94 #ifdef TARGET_PAGE_BITS_VARY
95 int target_page_bits;
96 bool target_page_bits_decided;
97 #endif
98
99 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
100
101 /* current CPU in the current thread. It is only valid inside
102 cpu_exec() */
103 __thread CPUState *current_cpu;
104 /* 0 = Do not count executed instructions.
105 1 = Precise instruction counting.
106 2 = Adaptive rate instruction counting. */
107 int use_icount;
108
109 uintptr_t qemu_host_page_size;
110 intptr_t qemu_host_page_mask;
111
112 bool set_preferred_target_page_bits(int bits)
113 {
114 /* The target page size is the lowest common denominator for all
115 * the CPUs in the system, so we can only make it smaller, never
116 * larger. And we can't make it smaller once we've committed to
117 * a particular size.
118 */
119 #ifdef TARGET_PAGE_BITS_VARY
120 assert(bits >= TARGET_PAGE_BITS_MIN);
121 if (target_page_bits == 0 || target_page_bits > bits) {
122 if (target_page_bits_decided) {
123 return false;
124 }
125 target_page_bits = bits;
126 }
127 #endif
128 return true;
129 }
130
131 #if !defined(CONFIG_USER_ONLY)
132
133 static void finalize_target_page_bits(void)
134 {
135 #ifdef TARGET_PAGE_BITS_VARY
136 if (target_page_bits == 0) {
137 target_page_bits = TARGET_PAGE_BITS_MIN;
138 }
139 target_page_bits_decided = true;
140 #endif
141 }
142
143 typedef struct PhysPageEntry PhysPageEntry;
144
145 struct PhysPageEntry {
146 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
147 uint32_t skip : 6;
148 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
149 uint32_t ptr : 26;
150 };
151
152 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
153
154 /* Size of the L2 (and L3, etc) page tables. */
155 #define ADDR_SPACE_BITS 64
156
157 #define P_L2_BITS 9
158 #define P_L2_SIZE (1 << P_L2_BITS)
159
160 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
161
162 typedef PhysPageEntry Node[P_L2_SIZE];
163
164 typedef struct PhysPageMap {
165 struct rcu_head rcu;
166
167 unsigned sections_nb;
168 unsigned sections_nb_alloc;
169 unsigned nodes_nb;
170 unsigned nodes_nb_alloc;
171 Node *nodes;
172 MemoryRegionSection *sections;
173 } PhysPageMap;
174
175 struct AddressSpaceDispatch {
176 MemoryRegionSection *mru_section;
177 /* This is a multi-level map on the physical address space.
178 * The bottom level has pointers to MemoryRegionSections.
179 */
180 PhysPageEntry phys_map;
181 PhysPageMap map;
182 };
183
184 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
185 typedef struct subpage_t {
186 MemoryRegion iomem;
187 FlatView *fv;
188 hwaddr base;
189 uint16_t sub_section[];
190 } subpage_t;
191
192 #define PHYS_SECTION_UNASSIGNED 0
193
194 static void io_mem_init(void);
195 static void memory_map_init(void);
196 static void tcg_log_global_after_sync(MemoryListener *listener);
197 static void tcg_commit(MemoryListener *listener);
198
199 /**
200 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
201 * @cpu: the CPU whose AddressSpace this is
202 * @as: the AddressSpace itself
203 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
204 * @tcg_as_listener: listener for tracking changes to the AddressSpace
205 */
206 struct CPUAddressSpace {
207 CPUState *cpu;
208 AddressSpace *as;
209 struct AddressSpaceDispatch *memory_dispatch;
210 MemoryListener tcg_as_listener;
211 };
212
213 struct DirtyBitmapSnapshot {
214 ram_addr_t start;
215 ram_addr_t end;
216 unsigned long dirty[];
217 };
218
219 #endif
220
221 #if !defined(CONFIG_USER_ONLY)
222
223 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
224 {
225 static unsigned alloc_hint = 16;
226 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
227 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
228 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
229 alloc_hint = map->nodes_nb_alloc;
230 }
231 }
232
233 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
234 {
235 unsigned i;
236 uint32_t ret;
237 PhysPageEntry e;
238 PhysPageEntry *p;
239
240 ret = map->nodes_nb++;
241 p = map->nodes[ret];
242 assert(ret != PHYS_MAP_NODE_NIL);
243 assert(ret != map->nodes_nb_alloc);
244
245 e.skip = leaf ? 0 : 1;
246 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
247 for (i = 0; i < P_L2_SIZE; ++i) {
248 memcpy(&p[i], &e, sizeof(e));
249 }
250 return ret;
251 }
252
253 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
254 hwaddr *index, uint64_t *nb, uint16_t leaf,
255 int level)
256 {
257 PhysPageEntry *p;
258 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
259
260 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
261 lp->ptr = phys_map_node_alloc(map, level == 0);
262 }
263 p = map->nodes[lp->ptr];
264 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
265
266 while (*nb && lp < &p[P_L2_SIZE]) {
267 if ((*index & (step - 1)) == 0 && *nb >= step) {
268 lp->skip = 0;
269 lp->ptr = leaf;
270 *index += step;
271 *nb -= step;
272 } else {
273 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
274 }
275 ++lp;
276 }
277 }
278
279 static void phys_page_set(AddressSpaceDispatch *d,
280 hwaddr index, uint64_t nb,
281 uint16_t leaf)
282 {
283 /* Wildly overreserve - it doesn't matter much. */
284 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
285
286 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
287 }
288
289 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
290 * and update our entry so we can skip it and go directly to the destination.
291 */
292 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
293 {
294 unsigned valid_ptr = P_L2_SIZE;
295 int valid = 0;
296 PhysPageEntry *p;
297 int i;
298
299 if (lp->ptr == PHYS_MAP_NODE_NIL) {
300 return;
301 }
302
303 p = nodes[lp->ptr];
304 for (i = 0; i < P_L2_SIZE; i++) {
305 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
306 continue;
307 }
308
309 valid_ptr = i;
310 valid++;
311 if (p[i].skip) {
312 phys_page_compact(&p[i], nodes);
313 }
314 }
315
316 /* We can only compress if there's only one child. */
317 if (valid != 1) {
318 return;
319 }
320
321 assert(valid_ptr < P_L2_SIZE);
322
323 /* Don't compress if it won't fit in the # of bits we have. */
324 if (P_L2_LEVELS >= (1 << 6) &&
325 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
326 return;
327 }
328
329 lp->ptr = p[valid_ptr].ptr;
330 if (!p[valid_ptr].skip) {
331 /* If our only child is a leaf, make this a leaf. */
332 /* By design, we should have made this node a leaf to begin with so we
333 * should never reach here.
334 * But since it's so simple to handle this, let's do it just in case we
335 * change this rule.
336 */
337 lp->skip = 0;
338 } else {
339 lp->skip += p[valid_ptr].skip;
340 }
341 }
342
343 void address_space_dispatch_compact(AddressSpaceDispatch *d)
344 {
345 if (d->phys_map.skip) {
346 phys_page_compact(&d->phys_map, d->map.nodes);
347 }
348 }
349
350 static inline bool section_covers_addr(const MemoryRegionSection *section,
351 hwaddr addr)
352 {
353 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
354 * the section must cover the entire address space.
355 */
356 return int128_gethi(section->size) ||
357 range_covers_byte(section->offset_within_address_space,
358 int128_getlo(section->size), addr);
359 }
360
361 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
362 {
363 PhysPageEntry lp = d->phys_map, *p;
364 Node *nodes = d->map.nodes;
365 MemoryRegionSection *sections = d->map.sections;
366 hwaddr index = addr >> TARGET_PAGE_BITS;
367 int i;
368
369 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
370 if (lp.ptr == PHYS_MAP_NODE_NIL) {
371 return &sections[PHYS_SECTION_UNASSIGNED];
372 }
373 p = nodes[lp.ptr];
374 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
375 }
376
377 if (section_covers_addr(&sections[lp.ptr], addr)) {
378 return &sections[lp.ptr];
379 } else {
380 return &sections[PHYS_SECTION_UNASSIGNED];
381 }
382 }
383
384 /* Called from RCU critical section */
385 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
386 hwaddr addr,
387 bool resolve_subpage)
388 {
389 MemoryRegionSection *section = atomic_read(&d->mru_section);
390 subpage_t *subpage;
391
392 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
393 !section_covers_addr(section, addr)) {
394 section = phys_page_find(d, addr);
395 atomic_set(&d->mru_section, section);
396 }
397 if (resolve_subpage && section->mr->subpage) {
398 subpage = container_of(section->mr, subpage_t, iomem);
399 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
400 }
401 return section;
402 }
403
404 /* Called from RCU critical section */
405 static MemoryRegionSection *
406 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
407 hwaddr *plen, bool resolve_subpage)
408 {
409 MemoryRegionSection *section;
410 MemoryRegion *mr;
411 Int128 diff;
412
413 section = address_space_lookup_region(d, addr, resolve_subpage);
414 /* Compute offset within MemoryRegionSection */
415 addr -= section->offset_within_address_space;
416
417 /* Compute offset within MemoryRegion */
418 *xlat = addr + section->offset_within_region;
419
420 mr = section->mr;
421
422 /* MMIO registers can be expected to perform full-width accesses based only
423 * on their address, without considering adjacent registers that could
424 * decode to completely different MemoryRegions. When such registers
425 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
426 * regions overlap wildly. For this reason we cannot clamp the accesses
427 * here.
428 *
429 * If the length is small (as is the case for address_space_ldl/stl),
430 * everything works fine. If the incoming length is large, however,
431 * the caller really has to do the clamping through memory_access_size.
432 */
433 if (memory_region_is_ram(mr)) {
434 diff = int128_sub(section->size, int128_make64(addr));
435 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
436 }
437 return section;
438 }
439
440 /**
441 * address_space_translate_iommu - translate an address through an IOMMU
442 * memory region and then through the target address space.
443 *
444 * @iommu_mr: the IOMMU memory region that we start the translation from
445 * @addr: the address to be translated through the MMU
446 * @xlat: the translated address offset within the destination memory region.
447 * It cannot be %NULL.
448 * @plen_out: valid read/write length of the translated address. It
449 * cannot be %NULL.
450 * @page_mask_out: page mask for the translated address. This
451 * should only be meaningful for IOMMU translated
452 * addresses, since there may be huge pages that this bit
453 * would tell. It can be %NULL if we don't care about it.
454 * @is_write: whether the translation operation is for write
455 * @is_mmio: whether this can be MMIO, set true if it can
456 * @target_as: the address space targeted by the IOMMU
457 * @attrs: transaction attributes
458 *
459 * This function is called from RCU critical section. It is the common
460 * part of flatview_do_translate and address_space_translate_cached.
461 */
462 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
463 hwaddr *xlat,
464 hwaddr *plen_out,
465 hwaddr *page_mask_out,
466 bool is_write,
467 bool is_mmio,
468 AddressSpace **target_as,
469 MemTxAttrs attrs)
470 {
471 MemoryRegionSection *section;
472 hwaddr page_mask = (hwaddr)-1;
473
474 do {
475 hwaddr addr = *xlat;
476 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
477 int iommu_idx = 0;
478 IOMMUTLBEntry iotlb;
479
480 if (imrc->attrs_to_index) {
481 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
482 }
483
484 iotlb = imrc->translate(iommu_mr, addr, is_write ?
485 IOMMU_WO : IOMMU_RO, iommu_idx);
486
487 if (!(iotlb.perm & (1 << is_write))) {
488 goto unassigned;
489 }
490
491 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
492 | (addr & iotlb.addr_mask));
493 page_mask &= iotlb.addr_mask;
494 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
495 *target_as = iotlb.target_as;
496
497 section = address_space_translate_internal(
498 address_space_to_dispatch(iotlb.target_as), addr, xlat,
499 plen_out, is_mmio);
500
501 iommu_mr = memory_region_get_iommu(section->mr);
502 } while (unlikely(iommu_mr));
503
504 if (page_mask_out) {
505 *page_mask_out = page_mask;
506 }
507 return *section;
508
509 unassigned:
510 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
511 }
512
513 /**
514 * flatview_do_translate - translate an address in FlatView
515 *
516 * @fv: the flat view that we want to translate on
517 * @addr: the address to be translated in above address space
518 * @xlat: the translated address offset within memory region. It
519 * cannot be @NULL.
520 * @plen_out: valid read/write length of the translated address. It
521 * can be @NULL when we don't care about it.
522 * @page_mask_out: page mask for the translated address. This
523 * should only be meaningful for IOMMU translated
524 * addresses, since there may be huge pages that this bit
525 * would tell. It can be @NULL if we don't care about it.
526 * @is_write: whether the translation operation is for write
527 * @is_mmio: whether this can be MMIO, set true if it can
528 * @target_as: the address space targeted by the IOMMU
529 * @attrs: memory transaction attributes
530 *
531 * This function is called from RCU critical section
532 */
533 static MemoryRegionSection flatview_do_translate(FlatView *fv,
534 hwaddr addr,
535 hwaddr *xlat,
536 hwaddr *plen_out,
537 hwaddr *page_mask_out,
538 bool is_write,
539 bool is_mmio,
540 AddressSpace **target_as,
541 MemTxAttrs attrs)
542 {
543 MemoryRegionSection *section;
544 IOMMUMemoryRegion *iommu_mr;
545 hwaddr plen = (hwaddr)(-1);
546
547 if (!plen_out) {
548 plen_out = &plen;
549 }
550
551 section = address_space_translate_internal(
552 flatview_to_dispatch(fv), addr, xlat,
553 plen_out, is_mmio);
554
555 iommu_mr = memory_region_get_iommu(section->mr);
556 if (unlikely(iommu_mr)) {
557 return address_space_translate_iommu(iommu_mr, xlat,
558 plen_out, page_mask_out,
559 is_write, is_mmio,
560 target_as, attrs);
561 }
562 if (page_mask_out) {
563 /* Not behind an IOMMU, use default page size. */
564 *page_mask_out = ~TARGET_PAGE_MASK;
565 }
566
567 return *section;
568 }
569
570 /* Called from RCU critical section */
571 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
572 bool is_write, MemTxAttrs attrs)
573 {
574 MemoryRegionSection section;
575 hwaddr xlat, page_mask;
576
577 /*
578 * This can never be MMIO, and we don't really care about plen,
579 * but page mask.
580 */
581 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
582 NULL, &page_mask, is_write, false, &as,
583 attrs);
584
585 /* Illegal translation */
586 if (section.mr == &io_mem_unassigned) {
587 goto iotlb_fail;
588 }
589
590 /* Convert memory region offset into address space offset */
591 xlat += section.offset_within_address_space -
592 section.offset_within_region;
593
594 return (IOMMUTLBEntry) {
595 .target_as = as,
596 .iova = addr & ~page_mask,
597 .translated_addr = xlat & ~page_mask,
598 .addr_mask = page_mask,
599 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
600 .perm = IOMMU_RW,
601 };
602
603 iotlb_fail:
604 return (IOMMUTLBEntry) {0};
605 }
606
607 /* Called from RCU critical section */
608 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
609 hwaddr *plen, bool is_write,
610 MemTxAttrs attrs)
611 {
612 MemoryRegion *mr;
613 MemoryRegionSection section;
614 AddressSpace *as = NULL;
615
616 /* This can be MMIO, so setup MMIO bit. */
617 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
618 is_write, true, &as, attrs);
619 mr = section.mr;
620
621 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
622 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
623 *plen = MIN(page, *plen);
624 }
625
626 return mr;
627 }
628
629 typedef struct TCGIOMMUNotifier {
630 IOMMUNotifier n;
631 MemoryRegion *mr;
632 CPUState *cpu;
633 int iommu_idx;
634 bool active;
635 } TCGIOMMUNotifier;
636
637 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
638 {
639 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
640
641 if (!notifier->active) {
642 return;
643 }
644 tlb_flush(notifier->cpu);
645 notifier->active = false;
646 /* We leave the notifier struct on the list to avoid reallocating it later.
647 * Generally the number of IOMMUs a CPU deals with will be small.
648 * In any case we can't unregister the iommu notifier from a notify
649 * callback.
650 */
651 }
652
653 static void tcg_register_iommu_notifier(CPUState *cpu,
654 IOMMUMemoryRegion *iommu_mr,
655 int iommu_idx)
656 {
657 /* Make sure this CPU has an IOMMU notifier registered for this
658 * IOMMU/IOMMU index combination, so that we can flush its TLB
659 * when the IOMMU tells us the mappings we've cached have changed.
660 */
661 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
662 TCGIOMMUNotifier *notifier;
663 Error *err = NULL;
664 int i, ret;
665
666 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
667 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
668 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
669 break;
670 }
671 }
672 if (i == cpu->iommu_notifiers->len) {
673 /* Not found, add a new entry at the end of the array */
674 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
675 notifier = g_new0(TCGIOMMUNotifier, 1);
676 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
677
678 notifier->mr = mr;
679 notifier->iommu_idx = iommu_idx;
680 notifier->cpu = cpu;
681 /* Rather than trying to register interest in the specific part
682 * of the iommu's address space that we've accessed and then
683 * expand it later as subsequent accesses touch more of it, we
684 * just register interest in the whole thing, on the assumption
685 * that iommu reconfiguration will be rare.
686 */
687 iommu_notifier_init(&notifier->n,
688 tcg_iommu_unmap_notify,
689 IOMMU_NOTIFIER_UNMAP,
690 0,
691 HWADDR_MAX,
692 iommu_idx);
693 ret = memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
694 &err);
695 if (ret) {
696 error_report_err(err);
697 exit(1);
698 }
699 }
700
701 if (!notifier->active) {
702 notifier->active = true;
703 }
704 }
705
706 static void tcg_iommu_free_notifier_list(CPUState *cpu)
707 {
708 /* Destroy the CPU's notifier list */
709 int i;
710 TCGIOMMUNotifier *notifier;
711
712 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
713 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
714 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
715 g_free(notifier);
716 }
717 g_array_free(cpu->iommu_notifiers, true);
718 }
719
720 /* Called from RCU critical section */
721 MemoryRegionSection *
722 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
723 hwaddr *xlat, hwaddr *plen,
724 MemTxAttrs attrs, int *prot)
725 {
726 MemoryRegionSection *section;
727 IOMMUMemoryRegion *iommu_mr;
728 IOMMUMemoryRegionClass *imrc;
729 IOMMUTLBEntry iotlb;
730 int iommu_idx;
731 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
732
733 for (;;) {
734 section = address_space_translate_internal(d, addr, &addr, plen, false);
735
736 iommu_mr = memory_region_get_iommu(section->mr);
737 if (!iommu_mr) {
738 break;
739 }
740
741 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
742
743 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
744 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
745 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
746 * doesn't short-cut its translation table walk.
747 */
748 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
749 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
750 | (addr & iotlb.addr_mask));
751 /* Update the caller's prot bits to remove permissions the IOMMU
752 * is giving us a failure response for. If we get down to no
753 * permissions left at all we can give up now.
754 */
755 if (!(iotlb.perm & IOMMU_RO)) {
756 *prot &= ~(PAGE_READ | PAGE_EXEC);
757 }
758 if (!(iotlb.perm & IOMMU_WO)) {
759 *prot &= ~PAGE_WRITE;
760 }
761
762 if (!*prot) {
763 goto translate_fail;
764 }
765
766 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
767 }
768
769 assert(!memory_region_is_iommu(section->mr));
770 *xlat = addr;
771 return section;
772
773 translate_fail:
774 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
775 }
776 #endif
777
778 #if !defined(CONFIG_USER_ONLY)
779
780 static int cpu_common_post_load(void *opaque, int version_id)
781 {
782 CPUState *cpu = opaque;
783
784 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
785 version_id is increased. */
786 cpu->interrupt_request &= ~0x01;
787 tlb_flush(cpu);
788
789 /* loadvm has just updated the content of RAM, bypassing the
790 * usual mechanisms that ensure we flush TBs for writes to
791 * memory we've translated code from. So we must flush all TBs,
792 * which will now be stale.
793 */
794 tb_flush(cpu);
795
796 return 0;
797 }
798
799 static int cpu_common_pre_load(void *opaque)
800 {
801 CPUState *cpu = opaque;
802
803 cpu->exception_index = -1;
804
805 return 0;
806 }
807
808 static bool cpu_common_exception_index_needed(void *opaque)
809 {
810 CPUState *cpu = opaque;
811
812 return tcg_enabled() && cpu->exception_index != -1;
813 }
814
815 static const VMStateDescription vmstate_cpu_common_exception_index = {
816 .name = "cpu_common/exception_index",
817 .version_id = 1,
818 .minimum_version_id = 1,
819 .needed = cpu_common_exception_index_needed,
820 .fields = (VMStateField[]) {
821 VMSTATE_INT32(exception_index, CPUState),
822 VMSTATE_END_OF_LIST()
823 }
824 };
825
826 static bool cpu_common_crash_occurred_needed(void *opaque)
827 {
828 CPUState *cpu = opaque;
829
830 return cpu->crash_occurred;
831 }
832
833 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
834 .name = "cpu_common/crash_occurred",
835 .version_id = 1,
836 .minimum_version_id = 1,
837 .needed = cpu_common_crash_occurred_needed,
838 .fields = (VMStateField[]) {
839 VMSTATE_BOOL(crash_occurred, CPUState),
840 VMSTATE_END_OF_LIST()
841 }
842 };
843
844 const VMStateDescription vmstate_cpu_common = {
845 .name = "cpu_common",
846 .version_id = 1,
847 .minimum_version_id = 1,
848 .pre_load = cpu_common_pre_load,
849 .post_load = cpu_common_post_load,
850 .fields = (VMStateField[]) {
851 VMSTATE_UINT32(halted, CPUState),
852 VMSTATE_UINT32(interrupt_request, CPUState),
853 VMSTATE_END_OF_LIST()
854 },
855 .subsections = (const VMStateDescription*[]) {
856 &vmstate_cpu_common_exception_index,
857 &vmstate_cpu_common_crash_occurred,
858 NULL
859 }
860 };
861
862 #endif
863
864 CPUState *qemu_get_cpu(int index)
865 {
866 CPUState *cpu;
867
868 CPU_FOREACH(cpu) {
869 if (cpu->cpu_index == index) {
870 return cpu;
871 }
872 }
873
874 return NULL;
875 }
876
877 #if !defined(CONFIG_USER_ONLY)
878 void cpu_address_space_init(CPUState *cpu, int asidx,
879 const char *prefix, MemoryRegion *mr)
880 {
881 CPUAddressSpace *newas;
882 AddressSpace *as = g_new0(AddressSpace, 1);
883 char *as_name;
884
885 assert(mr);
886 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
887 address_space_init(as, mr, as_name);
888 g_free(as_name);
889
890 /* Target code should have set num_ases before calling us */
891 assert(asidx < cpu->num_ases);
892
893 if (asidx == 0) {
894 /* address space 0 gets the convenience alias */
895 cpu->as = as;
896 }
897
898 /* KVM cannot currently support multiple address spaces. */
899 assert(asidx == 0 || !kvm_enabled());
900
901 if (!cpu->cpu_ases) {
902 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
903 }
904
905 newas = &cpu->cpu_ases[asidx];
906 newas->cpu = cpu;
907 newas->as = as;
908 if (tcg_enabled()) {
909 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
910 newas->tcg_as_listener.commit = tcg_commit;
911 memory_listener_register(&newas->tcg_as_listener, as);
912 }
913 }
914
915 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
916 {
917 /* Return the AddressSpace corresponding to the specified index */
918 return cpu->cpu_ases[asidx].as;
919 }
920 #endif
921
922 void cpu_exec_unrealizefn(CPUState *cpu)
923 {
924 CPUClass *cc = CPU_GET_CLASS(cpu);
925
926 cpu_list_remove(cpu);
927
928 if (cc->vmsd != NULL) {
929 vmstate_unregister(NULL, cc->vmsd, cpu);
930 }
931 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
932 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
933 }
934 #ifndef CONFIG_USER_ONLY
935 tcg_iommu_free_notifier_list(cpu);
936 #endif
937 }
938
939 Property cpu_common_props[] = {
940 #ifndef CONFIG_USER_ONLY
941 /* Create a memory property for softmmu CPU object,
942 * so users can wire up its memory. (This can't go in hw/core/cpu.c
943 * because that file is compiled only once for both user-mode
944 * and system builds.) The default if no link is set up is to use
945 * the system address space.
946 */
947 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
948 MemoryRegion *),
949 #endif
950 DEFINE_PROP_END_OF_LIST(),
951 };
952
953 void cpu_exec_initfn(CPUState *cpu)
954 {
955 cpu->as = NULL;
956 cpu->num_ases = 0;
957
958 #ifndef CONFIG_USER_ONLY
959 cpu->thread_id = qemu_get_thread_id();
960 cpu->memory = system_memory;
961 object_ref(OBJECT(cpu->memory));
962 #endif
963 }
964
965 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
966 {
967 CPUClass *cc = CPU_GET_CLASS(cpu);
968 static bool tcg_target_initialized;
969
970 cpu_list_add(cpu);
971
972 if (tcg_enabled() && !tcg_target_initialized) {
973 tcg_target_initialized = true;
974 cc->tcg_initialize();
975 }
976 tlb_init(cpu);
977
978 #ifndef CONFIG_USER_ONLY
979 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
980 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
981 }
982 if (cc->vmsd != NULL) {
983 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
984 }
985
986 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
987 #endif
988 }
989
990 const char *parse_cpu_option(const char *cpu_option)
991 {
992 ObjectClass *oc;
993 CPUClass *cc;
994 gchar **model_pieces;
995 const char *cpu_type;
996
997 model_pieces = g_strsplit(cpu_option, ",", 2);
998 if (!model_pieces[0]) {
999 error_report("-cpu option cannot be empty");
1000 exit(1);
1001 }
1002
1003 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
1004 if (oc == NULL) {
1005 error_report("unable to find CPU model '%s'", model_pieces[0]);
1006 g_strfreev(model_pieces);
1007 exit(EXIT_FAILURE);
1008 }
1009
1010 cpu_type = object_class_get_name(oc);
1011 cc = CPU_CLASS(oc);
1012 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1013 g_strfreev(model_pieces);
1014 return cpu_type;
1015 }
1016
1017 #if defined(CONFIG_USER_ONLY)
1018 void tb_invalidate_phys_addr(target_ulong addr)
1019 {
1020 mmap_lock();
1021 tb_invalidate_phys_page_range(addr, addr + 1);
1022 mmap_unlock();
1023 }
1024
1025 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1026 {
1027 tb_invalidate_phys_addr(pc);
1028 }
1029 #else
1030 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1031 {
1032 ram_addr_t ram_addr;
1033 MemoryRegion *mr;
1034 hwaddr l = 1;
1035
1036 if (!tcg_enabled()) {
1037 return;
1038 }
1039
1040 rcu_read_lock();
1041 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1042 if (!(memory_region_is_ram(mr)
1043 || memory_region_is_romd(mr))) {
1044 rcu_read_unlock();
1045 return;
1046 }
1047 ram_addr = memory_region_get_ram_addr(mr) + addr;
1048 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
1049 rcu_read_unlock();
1050 }
1051
1052 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1053 {
1054 MemTxAttrs attrs;
1055 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1056 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1057 if (phys != -1) {
1058 /* Locks grabbed by tb_invalidate_phys_addr */
1059 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1060 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1061 }
1062 }
1063 #endif
1064
1065 #ifndef CONFIG_USER_ONLY
1066 /* Add a watchpoint. */
1067 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1068 int flags, CPUWatchpoint **watchpoint)
1069 {
1070 CPUWatchpoint *wp;
1071
1072 /* forbid ranges which are empty or run off the end of the address space */
1073 if (len == 0 || (addr + len - 1) < addr) {
1074 error_report("tried to set invalid watchpoint at %"
1075 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1076 return -EINVAL;
1077 }
1078 wp = g_malloc(sizeof(*wp));
1079
1080 wp->vaddr = addr;
1081 wp->len = len;
1082 wp->flags = flags;
1083
1084 /* keep all GDB-injected watchpoints in front */
1085 if (flags & BP_GDB) {
1086 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1087 } else {
1088 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1089 }
1090
1091 tlb_flush_page(cpu, addr);
1092
1093 if (watchpoint)
1094 *watchpoint = wp;
1095 return 0;
1096 }
1097
1098 /* Remove a specific watchpoint. */
1099 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1100 int flags)
1101 {
1102 CPUWatchpoint *wp;
1103
1104 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1105 if (addr == wp->vaddr && len == wp->len
1106 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1107 cpu_watchpoint_remove_by_ref(cpu, wp);
1108 return 0;
1109 }
1110 }
1111 return -ENOENT;
1112 }
1113
1114 /* Remove a specific watchpoint by reference. */
1115 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1116 {
1117 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1118
1119 tlb_flush_page(cpu, watchpoint->vaddr);
1120
1121 g_free(watchpoint);
1122 }
1123
1124 /* Remove all matching watchpoints. */
1125 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1126 {
1127 CPUWatchpoint *wp, *next;
1128
1129 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1130 if (wp->flags & mask) {
1131 cpu_watchpoint_remove_by_ref(cpu, wp);
1132 }
1133 }
1134 }
1135
1136 /* Return true if this watchpoint address matches the specified
1137 * access (ie the address range covered by the watchpoint overlaps
1138 * partially or completely with the address range covered by the
1139 * access).
1140 */
1141 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1142 vaddr addr, vaddr len)
1143 {
1144 /* We know the lengths are non-zero, but a little caution is
1145 * required to avoid errors in the case where the range ends
1146 * exactly at the top of the address space and so addr + len
1147 * wraps round to zero.
1148 */
1149 vaddr wpend = wp->vaddr + wp->len - 1;
1150 vaddr addrend = addr + len - 1;
1151
1152 return !(addr > wpend || wp->vaddr > addrend);
1153 }
1154
1155 /* Return flags for watchpoints that match addr + prot. */
1156 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1157 {
1158 CPUWatchpoint *wp;
1159 int ret = 0;
1160
1161 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1162 if (watchpoint_address_matches(wp, addr, TARGET_PAGE_SIZE)) {
1163 ret |= wp->flags;
1164 }
1165 }
1166 return ret;
1167 }
1168 #endif /* !CONFIG_USER_ONLY */
1169
1170 /* Add a breakpoint. */
1171 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1172 CPUBreakpoint **breakpoint)
1173 {
1174 CPUBreakpoint *bp;
1175
1176 bp = g_malloc(sizeof(*bp));
1177
1178 bp->pc = pc;
1179 bp->flags = flags;
1180
1181 /* keep all GDB-injected breakpoints in front */
1182 if (flags & BP_GDB) {
1183 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1184 } else {
1185 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1186 }
1187
1188 breakpoint_invalidate(cpu, pc);
1189
1190 if (breakpoint) {
1191 *breakpoint = bp;
1192 }
1193 return 0;
1194 }
1195
1196 /* Remove a specific breakpoint. */
1197 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1198 {
1199 CPUBreakpoint *bp;
1200
1201 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1202 if (bp->pc == pc && bp->flags == flags) {
1203 cpu_breakpoint_remove_by_ref(cpu, bp);
1204 return 0;
1205 }
1206 }
1207 return -ENOENT;
1208 }
1209
1210 /* Remove a specific breakpoint by reference. */
1211 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1212 {
1213 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1214
1215 breakpoint_invalidate(cpu, breakpoint->pc);
1216
1217 g_free(breakpoint);
1218 }
1219
1220 /* Remove all matching breakpoints. */
1221 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1222 {
1223 CPUBreakpoint *bp, *next;
1224
1225 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1226 if (bp->flags & mask) {
1227 cpu_breakpoint_remove_by_ref(cpu, bp);
1228 }
1229 }
1230 }
1231
1232 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1233 CPU loop after each instruction */
1234 void cpu_single_step(CPUState *cpu, int enabled)
1235 {
1236 if (cpu->singlestep_enabled != enabled) {
1237 cpu->singlestep_enabled = enabled;
1238 if (kvm_enabled()) {
1239 kvm_update_guest_debug(cpu, 0);
1240 } else {
1241 /* must flush all the translated code to avoid inconsistencies */
1242 /* XXX: only flush what is necessary */
1243 tb_flush(cpu);
1244 }
1245 }
1246 }
1247
1248 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1249 {
1250 va_list ap;
1251 va_list ap2;
1252
1253 va_start(ap, fmt);
1254 va_copy(ap2, ap);
1255 fprintf(stderr, "qemu: fatal: ");
1256 vfprintf(stderr, fmt, ap);
1257 fprintf(stderr, "\n");
1258 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1259 if (qemu_log_separate()) {
1260 qemu_log_lock();
1261 qemu_log("qemu: fatal: ");
1262 qemu_log_vprintf(fmt, ap2);
1263 qemu_log("\n");
1264 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1265 qemu_log_flush();
1266 qemu_log_unlock();
1267 qemu_log_close();
1268 }
1269 va_end(ap2);
1270 va_end(ap);
1271 replay_finish();
1272 #if defined(CONFIG_USER_ONLY)
1273 {
1274 struct sigaction act;
1275 sigfillset(&act.sa_mask);
1276 act.sa_handler = SIG_DFL;
1277 act.sa_flags = 0;
1278 sigaction(SIGABRT, &act, NULL);
1279 }
1280 #endif
1281 abort();
1282 }
1283
1284 #if !defined(CONFIG_USER_ONLY)
1285 /* Called from RCU critical section */
1286 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1287 {
1288 RAMBlock *block;
1289
1290 block = atomic_rcu_read(&ram_list.mru_block);
1291 if (block && addr - block->offset < block->max_length) {
1292 return block;
1293 }
1294 RAMBLOCK_FOREACH(block) {
1295 if (addr - block->offset < block->max_length) {
1296 goto found;
1297 }
1298 }
1299
1300 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1301 abort();
1302
1303 found:
1304 /* It is safe to write mru_block outside the iothread lock. This
1305 * is what happens:
1306 *
1307 * mru_block = xxx
1308 * rcu_read_unlock()
1309 * xxx removed from list
1310 * rcu_read_lock()
1311 * read mru_block
1312 * mru_block = NULL;
1313 * call_rcu(reclaim_ramblock, xxx);
1314 * rcu_read_unlock()
1315 *
1316 * atomic_rcu_set is not needed here. The block was already published
1317 * when it was placed into the list. Here we're just making an extra
1318 * copy of the pointer.
1319 */
1320 ram_list.mru_block = block;
1321 return block;
1322 }
1323
1324 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1325 {
1326 CPUState *cpu;
1327 ram_addr_t start1;
1328 RAMBlock *block;
1329 ram_addr_t end;
1330
1331 assert(tcg_enabled());
1332 end = TARGET_PAGE_ALIGN(start + length);
1333 start &= TARGET_PAGE_MASK;
1334
1335 rcu_read_lock();
1336 block = qemu_get_ram_block(start);
1337 assert(block == qemu_get_ram_block(end - 1));
1338 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1339 CPU_FOREACH(cpu) {
1340 tlb_reset_dirty(cpu, start1, length);
1341 }
1342 rcu_read_unlock();
1343 }
1344
1345 /* Note: start and end must be within the same ram block. */
1346 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1347 ram_addr_t length,
1348 unsigned client)
1349 {
1350 DirtyMemoryBlocks *blocks;
1351 unsigned long end, page;
1352 bool dirty = false;
1353 RAMBlock *ramblock;
1354 uint64_t mr_offset, mr_size;
1355
1356 if (length == 0) {
1357 return false;
1358 }
1359
1360 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1361 page = start >> TARGET_PAGE_BITS;
1362
1363 rcu_read_lock();
1364
1365 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1366 ramblock = qemu_get_ram_block(start);
1367 /* Range sanity check on the ramblock */
1368 assert(start >= ramblock->offset &&
1369 start + length <= ramblock->offset + ramblock->used_length);
1370
1371 while (page < end) {
1372 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1373 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1374 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1375
1376 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1377 offset, num);
1378 page += num;
1379 }
1380
1381 mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
1382 mr_size = (end - page) << TARGET_PAGE_BITS;
1383 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1384
1385 rcu_read_unlock();
1386
1387 if (dirty && tcg_enabled()) {
1388 tlb_reset_dirty_range_all(start, length);
1389 }
1390
1391 return dirty;
1392 }
1393
1394 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1395 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1396 {
1397 DirtyMemoryBlocks *blocks;
1398 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1399 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1400 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1401 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1402 DirtyBitmapSnapshot *snap;
1403 unsigned long page, end, dest;
1404
1405 snap = g_malloc0(sizeof(*snap) +
1406 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1407 snap->start = first;
1408 snap->end = last;
1409
1410 page = first >> TARGET_PAGE_BITS;
1411 end = last >> TARGET_PAGE_BITS;
1412 dest = 0;
1413
1414 rcu_read_lock();
1415
1416 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1417
1418 while (page < end) {
1419 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1420 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1421 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1422
1423 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1424 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1425 offset >>= BITS_PER_LEVEL;
1426
1427 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1428 blocks->blocks[idx] + offset,
1429 num);
1430 page += num;
1431 dest += num >> BITS_PER_LEVEL;
1432 }
1433
1434 rcu_read_unlock();
1435
1436 if (tcg_enabled()) {
1437 tlb_reset_dirty_range_all(start, length);
1438 }
1439
1440 memory_region_clear_dirty_bitmap(mr, offset, length);
1441
1442 return snap;
1443 }
1444
1445 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1446 ram_addr_t start,
1447 ram_addr_t length)
1448 {
1449 unsigned long page, end;
1450
1451 assert(start >= snap->start);
1452 assert(start + length <= snap->end);
1453
1454 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1455 page = (start - snap->start) >> TARGET_PAGE_BITS;
1456
1457 while (page < end) {
1458 if (test_bit(page, snap->dirty)) {
1459 return true;
1460 }
1461 page++;
1462 }
1463 return false;
1464 }
1465
1466 /* Called from RCU critical section */
1467 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1468 MemoryRegionSection *section)
1469 {
1470 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1471 return section - d->map.sections;
1472 }
1473 #endif /* defined(CONFIG_USER_ONLY) */
1474
1475 #if !defined(CONFIG_USER_ONLY)
1476
1477 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1478 uint16_t section);
1479 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1480
1481 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1482 qemu_anon_ram_alloc;
1483
1484 /*
1485 * Set a custom physical guest memory alloator.
1486 * Accelerators with unusual needs may need this. Hopefully, we can
1487 * get rid of it eventually.
1488 */
1489 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1490 {
1491 phys_mem_alloc = alloc;
1492 }
1493
1494 static uint16_t phys_section_add(PhysPageMap *map,
1495 MemoryRegionSection *section)
1496 {
1497 /* The physical section number is ORed with a page-aligned
1498 * pointer to produce the iotlb entries. Thus it should
1499 * never overflow into the page-aligned value.
1500 */
1501 assert(map->sections_nb < TARGET_PAGE_SIZE);
1502
1503 if (map->sections_nb == map->sections_nb_alloc) {
1504 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1505 map->sections = g_renew(MemoryRegionSection, map->sections,
1506 map->sections_nb_alloc);
1507 }
1508 map->sections[map->sections_nb] = *section;
1509 memory_region_ref(section->mr);
1510 return map->sections_nb++;
1511 }
1512
1513 static void phys_section_destroy(MemoryRegion *mr)
1514 {
1515 bool have_sub_page = mr->subpage;
1516
1517 memory_region_unref(mr);
1518
1519 if (have_sub_page) {
1520 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1521 object_unref(OBJECT(&subpage->iomem));
1522 g_free(subpage);
1523 }
1524 }
1525
1526 static void phys_sections_free(PhysPageMap *map)
1527 {
1528 while (map->sections_nb > 0) {
1529 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1530 phys_section_destroy(section->mr);
1531 }
1532 g_free(map->sections);
1533 g_free(map->nodes);
1534 }
1535
1536 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1537 {
1538 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1539 subpage_t *subpage;
1540 hwaddr base = section->offset_within_address_space
1541 & TARGET_PAGE_MASK;
1542 MemoryRegionSection *existing = phys_page_find(d, base);
1543 MemoryRegionSection subsection = {
1544 .offset_within_address_space = base,
1545 .size = int128_make64(TARGET_PAGE_SIZE),
1546 };
1547 hwaddr start, end;
1548
1549 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1550
1551 if (!(existing->mr->subpage)) {
1552 subpage = subpage_init(fv, base);
1553 subsection.fv = fv;
1554 subsection.mr = &subpage->iomem;
1555 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1556 phys_section_add(&d->map, &subsection));
1557 } else {
1558 subpage = container_of(existing->mr, subpage_t, iomem);
1559 }
1560 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1561 end = start + int128_get64(section->size) - 1;
1562 subpage_register(subpage, start, end,
1563 phys_section_add(&d->map, section));
1564 }
1565
1566
1567 static void register_multipage(FlatView *fv,
1568 MemoryRegionSection *section)
1569 {
1570 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1571 hwaddr start_addr = section->offset_within_address_space;
1572 uint16_t section_index = phys_section_add(&d->map, section);
1573 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1574 TARGET_PAGE_BITS));
1575
1576 assert(num_pages);
1577 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1578 }
1579
1580 /*
1581 * The range in *section* may look like this:
1582 *
1583 * |s|PPPPPPP|s|
1584 *
1585 * where s stands for subpage and P for page.
1586 */
1587 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1588 {
1589 MemoryRegionSection remain = *section;
1590 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1591
1592 /* register first subpage */
1593 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1594 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1595 - remain.offset_within_address_space;
1596
1597 MemoryRegionSection now = remain;
1598 now.size = int128_min(int128_make64(left), now.size);
1599 register_subpage(fv, &now);
1600 if (int128_eq(remain.size, now.size)) {
1601 return;
1602 }
1603 remain.size = int128_sub(remain.size, now.size);
1604 remain.offset_within_address_space += int128_get64(now.size);
1605 remain.offset_within_region += int128_get64(now.size);
1606 }
1607
1608 /* register whole pages */
1609 if (int128_ge(remain.size, page_size)) {
1610 MemoryRegionSection now = remain;
1611 now.size = int128_and(now.size, int128_neg(page_size));
1612 register_multipage(fv, &now);
1613 if (int128_eq(remain.size, now.size)) {
1614 return;
1615 }
1616 remain.size = int128_sub(remain.size, now.size);
1617 remain.offset_within_address_space += int128_get64(now.size);
1618 remain.offset_within_region += int128_get64(now.size);
1619 }
1620
1621 /* register last subpage */
1622 register_subpage(fv, &remain);
1623 }
1624
1625 void qemu_flush_coalesced_mmio_buffer(void)
1626 {
1627 if (kvm_enabled())
1628 kvm_flush_coalesced_mmio_buffer();
1629 }
1630
1631 void qemu_mutex_lock_ramlist(void)
1632 {
1633 qemu_mutex_lock(&ram_list.mutex);
1634 }
1635
1636 void qemu_mutex_unlock_ramlist(void)
1637 {
1638 qemu_mutex_unlock(&ram_list.mutex);
1639 }
1640
1641 void ram_block_dump(Monitor *mon)
1642 {
1643 RAMBlock *block;
1644 char *psize;
1645
1646 rcu_read_lock();
1647 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1648 "Block Name", "PSize", "Offset", "Used", "Total");
1649 RAMBLOCK_FOREACH(block) {
1650 psize = size_to_str(block->page_size);
1651 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1652 " 0x%016" PRIx64 "\n", block->idstr, psize,
1653 (uint64_t)block->offset,
1654 (uint64_t)block->used_length,
1655 (uint64_t)block->max_length);
1656 g_free(psize);
1657 }
1658 rcu_read_unlock();
1659 }
1660
1661 #ifdef __linux__
1662 /*
1663 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1664 * may or may not name the same files / on the same filesystem now as
1665 * when we actually open and map them. Iterate over the file
1666 * descriptors instead, and use qemu_fd_getpagesize().
1667 */
1668 static int find_min_backend_pagesize(Object *obj, void *opaque)
1669 {
1670 long *hpsize_min = opaque;
1671
1672 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1673 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1674 long hpsize = host_memory_backend_pagesize(backend);
1675
1676 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1677 *hpsize_min = hpsize;
1678 }
1679 }
1680
1681 return 0;
1682 }
1683
1684 static int find_max_backend_pagesize(Object *obj, void *opaque)
1685 {
1686 long *hpsize_max = opaque;
1687
1688 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1689 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1690 long hpsize = host_memory_backend_pagesize(backend);
1691
1692 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1693 *hpsize_max = hpsize;
1694 }
1695 }
1696
1697 return 0;
1698 }
1699
1700 /*
1701 * TODO: We assume right now that all mapped host memory backends are
1702 * used as RAM, however some might be used for different purposes.
1703 */
1704 long qemu_minrampagesize(void)
1705 {
1706 long hpsize = LONG_MAX;
1707 long mainrampagesize;
1708 Object *memdev_root;
1709 MachineState *ms = MACHINE(qdev_get_machine());
1710
1711 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1712
1713 /* it's possible we have memory-backend objects with
1714 * hugepage-backed RAM. these may get mapped into system
1715 * address space via -numa parameters or memory hotplug
1716 * hooks. we want to take these into account, but we
1717 * also want to make sure these supported hugepage
1718 * sizes are applicable across the entire range of memory
1719 * we may boot from, so we take the min across all
1720 * backends, and assume normal pages in cases where a
1721 * backend isn't backed by hugepages.
1722 */
1723 memdev_root = object_resolve_path("/objects", NULL);
1724 if (memdev_root) {
1725 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1726 }
1727 if (hpsize == LONG_MAX) {
1728 /* No additional memory regions found ==> Report main RAM page size */
1729 return mainrampagesize;
1730 }
1731
1732 /* If NUMA is disabled or the NUMA nodes are not backed with a
1733 * memory-backend, then there is at least one node using "normal" RAM,
1734 * so if its page size is smaller we have got to report that size instead.
1735 */
1736 if (hpsize > mainrampagesize &&
1737 (ms->numa_state == NULL ||
1738 ms->numa_state->num_nodes == 0 ||
1739 ms->numa_state->nodes[0].node_memdev == NULL)) {
1740 static bool warned;
1741 if (!warned) {
1742 error_report("Huge page support disabled (n/a for main memory).");
1743 warned = true;
1744 }
1745 return mainrampagesize;
1746 }
1747
1748 return hpsize;
1749 }
1750
1751 long qemu_maxrampagesize(void)
1752 {
1753 long pagesize = qemu_mempath_getpagesize(mem_path);
1754 Object *memdev_root = object_resolve_path("/objects", NULL);
1755
1756 if (memdev_root) {
1757 object_child_foreach(memdev_root, find_max_backend_pagesize,
1758 &pagesize);
1759 }
1760 return pagesize;
1761 }
1762 #else
1763 long qemu_minrampagesize(void)
1764 {
1765 return getpagesize();
1766 }
1767 long qemu_maxrampagesize(void)
1768 {
1769 return getpagesize();
1770 }
1771 #endif
1772
1773 #ifdef CONFIG_POSIX
1774 static int64_t get_file_size(int fd)
1775 {
1776 int64_t size;
1777 #if defined(__linux__)
1778 struct stat st;
1779
1780 if (fstat(fd, &st) < 0) {
1781 return -errno;
1782 }
1783
1784 /* Special handling for devdax character devices */
1785 if (S_ISCHR(st.st_mode)) {
1786 g_autofree char *subsystem_path = NULL;
1787 g_autofree char *subsystem = NULL;
1788
1789 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1790 major(st.st_rdev), minor(st.st_rdev));
1791 subsystem = g_file_read_link(subsystem_path, NULL);
1792
1793 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1794 g_autofree char *size_path = NULL;
1795 g_autofree char *size_str = NULL;
1796
1797 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1798 major(st.st_rdev), minor(st.st_rdev));
1799
1800 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1801 return g_ascii_strtoll(size_str, NULL, 0);
1802 }
1803 }
1804 }
1805 #endif /* defined(__linux__) */
1806
1807 /* st.st_size may be zero for special files yet lseek(2) works */
1808 size = lseek(fd, 0, SEEK_END);
1809 if (size < 0) {
1810 return -errno;
1811 }
1812 return size;
1813 }
1814
1815 static int file_ram_open(const char *path,
1816 const char *region_name,
1817 bool *created,
1818 Error **errp)
1819 {
1820 char *filename;
1821 char *sanitized_name;
1822 char *c;
1823 int fd = -1;
1824
1825 *created = false;
1826 for (;;) {
1827 fd = open(path, O_RDWR);
1828 if (fd >= 0) {
1829 /* @path names an existing file, use it */
1830 break;
1831 }
1832 if (errno == ENOENT) {
1833 /* @path names a file that doesn't exist, create it */
1834 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1835 if (fd >= 0) {
1836 *created = true;
1837 break;
1838 }
1839 } else if (errno == EISDIR) {
1840 /* @path names a directory, create a file there */
1841 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1842 sanitized_name = g_strdup(region_name);
1843 for (c = sanitized_name; *c != '\0'; c++) {
1844 if (*c == '/') {
1845 *c = '_';
1846 }
1847 }
1848
1849 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1850 sanitized_name);
1851 g_free(sanitized_name);
1852
1853 fd = mkstemp(filename);
1854 if (fd >= 0) {
1855 unlink(filename);
1856 g_free(filename);
1857 break;
1858 }
1859 g_free(filename);
1860 }
1861 if (errno != EEXIST && errno != EINTR) {
1862 error_setg_errno(errp, errno,
1863 "can't open backing store %s for guest RAM",
1864 path);
1865 return -1;
1866 }
1867 /*
1868 * Try again on EINTR and EEXIST. The latter happens when
1869 * something else creates the file between our two open().
1870 */
1871 }
1872
1873 return fd;
1874 }
1875
1876 static void *file_ram_alloc(RAMBlock *block,
1877 ram_addr_t memory,
1878 int fd,
1879 bool truncate,
1880 Error **errp)
1881 {
1882 MachineState *ms = MACHINE(qdev_get_machine());
1883 void *area;
1884
1885 block->page_size = qemu_fd_getpagesize(fd);
1886 if (block->mr->align % block->page_size) {
1887 error_setg(errp, "alignment 0x%" PRIx64
1888 " must be multiples of page size 0x%zx",
1889 block->mr->align, block->page_size);
1890 return NULL;
1891 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1892 error_setg(errp, "alignment 0x%" PRIx64
1893 " must be a power of two", block->mr->align);
1894 return NULL;
1895 }
1896 block->mr->align = MAX(block->page_size, block->mr->align);
1897 #if defined(__s390x__)
1898 if (kvm_enabled()) {
1899 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1900 }
1901 #endif
1902
1903 if (memory < block->page_size) {
1904 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1905 "or larger than page size 0x%zx",
1906 memory, block->page_size);
1907 return NULL;
1908 }
1909
1910 memory = ROUND_UP(memory, block->page_size);
1911
1912 /*
1913 * ftruncate is not supported by hugetlbfs in older
1914 * hosts, so don't bother bailing out on errors.
1915 * If anything goes wrong with it under other filesystems,
1916 * mmap will fail.
1917 *
1918 * Do not truncate the non-empty backend file to avoid corrupting
1919 * the existing data in the file. Disabling shrinking is not
1920 * enough. For example, the current vNVDIMM implementation stores
1921 * the guest NVDIMM labels at the end of the backend file. If the
1922 * backend file is later extended, QEMU will not be able to find
1923 * those labels. Therefore, extending the non-empty backend file
1924 * is disabled as well.
1925 */
1926 if (truncate && ftruncate(fd, memory)) {
1927 perror("ftruncate");
1928 }
1929
1930 area = qemu_ram_mmap(fd, memory, block->mr->align,
1931 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1932 if (area == MAP_FAILED) {
1933 error_setg_errno(errp, errno,
1934 "unable to map backing store for guest RAM");
1935 return NULL;
1936 }
1937
1938 if (mem_prealloc) {
1939 os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
1940 if (errp && *errp) {
1941 qemu_ram_munmap(fd, area, memory);
1942 return NULL;
1943 }
1944 }
1945
1946 block->fd = fd;
1947 return area;
1948 }
1949 #endif
1950
1951 /* Allocate space within the ram_addr_t space that governs the
1952 * dirty bitmaps.
1953 * Called with the ramlist lock held.
1954 */
1955 static ram_addr_t find_ram_offset(ram_addr_t size)
1956 {
1957 RAMBlock *block, *next_block;
1958 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1959
1960 assert(size != 0); /* it would hand out same offset multiple times */
1961
1962 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1963 return 0;
1964 }
1965
1966 RAMBLOCK_FOREACH(block) {
1967 ram_addr_t candidate, next = RAM_ADDR_MAX;
1968
1969 /* Align blocks to start on a 'long' in the bitmap
1970 * which makes the bitmap sync'ing take the fast path.
1971 */
1972 candidate = block->offset + block->max_length;
1973 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1974
1975 /* Search for the closest following block
1976 * and find the gap.
1977 */
1978 RAMBLOCK_FOREACH(next_block) {
1979 if (next_block->offset >= candidate) {
1980 next = MIN(next, next_block->offset);
1981 }
1982 }
1983
1984 /* If it fits remember our place and remember the size
1985 * of gap, but keep going so that we might find a smaller
1986 * gap to fill so avoiding fragmentation.
1987 */
1988 if (next - candidate >= size && next - candidate < mingap) {
1989 offset = candidate;
1990 mingap = next - candidate;
1991 }
1992
1993 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1994 }
1995
1996 if (offset == RAM_ADDR_MAX) {
1997 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1998 (uint64_t)size);
1999 abort();
2000 }
2001
2002 trace_find_ram_offset(size, offset);
2003
2004 return offset;
2005 }
2006
2007 static unsigned long last_ram_page(void)
2008 {
2009 RAMBlock *block;
2010 ram_addr_t last = 0;
2011
2012 rcu_read_lock();
2013 RAMBLOCK_FOREACH(block) {
2014 last = MAX(last, block->offset + block->max_length);
2015 }
2016 rcu_read_unlock();
2017 return last >> TARGET_PAGE_BITS;
2018 }
2019
2020 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2021 {
2022 int ret;
2023
2024 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2025 if (!machine_dump_guest_core(current_machine)) {
2026 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2027 if (ret) {
2028 perror("qemu_madvise");
2029 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2030 "but dump_guest_core=off specified\n");
2031 }
2032 }
2033 }
2034
2035 const char *qemu_ram_get_idstr(RAMBlock *rb)
2036 {
2037 return rb->idstr;
2038 }
2039
2040 void *qemu_ram_get_host_addr(RAMBlock *rb)
2041 {
2042 return rb->host;
2043 }
2044
2045 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2046 {
2047 return rb->offset;
2048 }
2049
2050 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2051 {
2052 return rb->used_length;
2053 }
2054
2055 bool qemu_ram_is_shared(RAMBlock *rb)
2056 {
2057 return rb->flags & RAM_SHARED;
2058 }
2059
2060 /* Note: Only set at the start of postcopy */
2061 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2062 {
2063 return rb->flags & RAM_UF_ZEROPAGE;
2064 }
2065
2066 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2067 {
2068 rb->flags |= RAM_UF_ZEROPAGE;
2069 }
2070
2071 bool qemu_ram_is_migratable(RAMBlock *rb)
2072 {
2073 return rb->flags & RAM_MIGRATABLE;
2074 }
2075
2076 void qemu_ram_set_migratable(RAMBlock *rb)
2077 {
2078 rb->flags |= RAM_MIGRATABLE;
2079 }
2080
2081 void qemu_ram_unset_migratable(RAMBlock *rb)
2082 {
2083 rb->flags &= ~RAM_MIGRATABLE;
2084 }
2085
2086 /* Called with iothread lock held. */
2087 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2088 {
2089 RAMBlock *block;
2090
2091 assert(new_block);
2092 assert(!new_block->idstr[0]);
2093
2094 if (dev) {
2095 char *id = qdev_get_dev_path(dev);
2096 if (id) {
2097 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2098 g_free(id);
2099 }
2100 }
2101 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2102
2103 rcu_read_lock();
2104 RAMBLOCK_FOREACH(block) {
2105 if (block != new_block &&
2106 !strcmp(block->idstr, new_block->idstr)) {
2107 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2108 new_block->idstr);
2109 abort();
2110 }
2111 }
2112 rcu_read_unlock();
2113 }
2114
2115 /* Called with iothread lock held. */
2116 void qemu_ram_unset_idstr(RAMBlock *block)
2117 {
2118 /* FIXME: arch_init.c assumes that this is not called throughout
2119 * migration. Ignore the problem since hot-unplug during migration
2120 * does not work anyway.
2121 */
2122 if (block) {
2123 memset(block->idstr, 0, sizeof(block->idstr));
2124 }
2125 }
2126
2127 size_t qemu_ram_pagesize(RAMBlock *rb)
2128 {
2129 return rb->page_size;
2130 }
2131
2132 /* Returns the largest size of page in use */
2133 size_t qemu_ram_pagesize_largest(void)
2134 {
2135 RAMBlock *block;
2136 size_t largest = 0;
2137
2138 RAMBLOCK_FOREACH(block) {
2139 largest = MAX(largest, qemu_ram_pagesize(block));
2140 }
2141
2142 return largest;
2143 }
2144
2145 static int memory_try_enable_merging(void *addr, size_t len)
2146 {
2147 if (!machine_mem_merge(current_machine)) {
2148 /* disabled by the user */
2149 return 0;
2150 }
2151
2152 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2153 }
2154
2155 /* Only legal before guest might have detected the memory size: e.g. on
2156 * incoming migration, or right after reset.
2157 *
2158 * As memory core doesn't know how is memory accessed, it is up to
2159 * resize callback to update device state and/or add assertions to detect
2160 * misuse, if necessary.
2161 */
2162 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2163 {
2164 assert(block);
2165
2166 newsize = HOST_PAGE_ALIGN(newsize);
2167
2168 if (block->used_length == newsize) {
2169 return 0;
2170 }
2171
2172 if (!(block->flags & RAM_RESIZEABLE)) {
2173 error_setg_errno(errp, EINVAL,
2174 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2175 " in != 0x" RAM_ADDR_FMT, block->idstr,
2176 newsize, block->used_length);
2177 return -EINVAL;
2178 }
2179
2180 if (block->max_length < newsize) {
2181 error_setg_errno(errp, EINVAL,
2182 "Length too large: %s: 0x" RAM_ADDR_FMT
2183 " > 0x" RAM_ADDR_FMT, block->idstr,
2184 newsize, block->max_length);
2185 return -EINVAL;
2186 }
2187
2188 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2189 block->used_length = newsize;
2190 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2191 DIRTY_CLIENTS_ALL);
2192 memory_region_set_size(block->mr, newsize);
2193 if (block->resized) {
2194 block->resized(block->idstr, newsize, block->host);
2195 }
2196 return 0;
2197 }
2198
2199 /* Called with ram_list.mutex held */
2200 static void dirty_memory_extend(ram_addr_t old_ram_size,
2201 ram_addr_t new_ram_size)
2202 {
2203 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2204 DIRTY_MEMORY_BLOCK_SIZE);
2205 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2206 DIRTY_MEMORY_BLOCK_SIZE);
2207 int i;
2208
2209 /* Only need to extend if block count increased */
2210 if (new_num_blocks <= old_num_blocks) {
2211 return;
2212 }
2213
2214 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2215 DirtyMemoryBlocks *old_blocks;
2216 DirtyMemoryBlocks *new_blocks;
2217 int j;
2218
2219 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2220 new_blocks = g_malloc(sizeof(*new_blocks) +
2221 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2222
2223 if (old_num_blocks) {
2224 memcpy(new_blocks->blocks, old_blocks->blocks,
2225 old_num_blocks * sizeof(old_blocks->blocks[0]));
2226 }
2227
2228 for (j = old_num_blocks; j < new_num_blocks; j++) {
2229 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2230 }
2231
2232 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2233
2234 if (old_blocks) {
2235 g_free_rcu(old_blocks, rcu);
2236 }
2237 }
2238 }
2239
2240 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2241 {
2242 RAMBlock *block;
2243 RAMBlock *last_block = NULL;
2244 ram_addr_t old_ram_size, new_ram_size;
2245 Error *err = NULL;
2246
2247 old_ram_size = last_ram_page();
2248
2249 qemu_mutex_lock_ramlist();
2250 new_block->offset = find_ram_offset(new_block->max_length);
2251
2252 if (!new_block->host) {
2253 if (xen_enabled()) {
2254 xen_ram_alloc(new_block->offset, new_block->max_length,
2255 new_block->mr, &err);
2256 if (err) {
2257 error_propagate(errp, err);
2258 qemu_mutex_unlock_ramlist();
2259 return;
2260 }
2261 } else {
2262 new_block->host = phys_mem_alloc(new_block->max_length,
2263 &new_block->mr->align, shared);
2264 if (!new_block->host) {
2265 error_setg_errno(errp, errno,
2266 "cannot set up guest memory '%s'",
2267 memory_region_name(new_block->mr));
2268 qemu_mutex_unlock_ramlist();
2269 return;
2270 }
2271 memory_try_enable_merging(new_block->host, new_block->max_length);
2272 }
2273 }
2274
2275 new_ram_size = MAX(old_ram_size,
2276 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2277 if (new_ram_size > old_ram_size) {
2278 dirty_memory_extend(old_ram_size, new_ram_size);
2279 }
2280 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2281 * QLIST (which has an RCU-friendly variant) does not have insertion at
2282 * tail, so save the last element in last_block.
2283 */
2284 RAMBLOCK_FOREACH(block) {
2285 last_block = block;
2286 if (block->max_length < new_block->max_length) {
2287 break;
2288 }
2289 }
2290 if (block) {
2291 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2292 } else if (last_block) {
2293 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2294 } else { /* list is empty */
2295 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2296 }
2297 ram_list.mru_block = NULL;
2298
2299 /* Write list before version */
2300 smp_wmb();
2301 ram_list.version++;
2302 qemu_mutex_unlock_ramlist();
2303
2304 cpu_physical_memory_set_dirty_range(new_block->offset,
2305 new_block->used_length,
2306 DIRTY_CLIENTS_ALL);
2307
2308 if (new_block->host) {
2309 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2310 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2311 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2312 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2313 ram_block_notify_add(new_block->host, new_block->max_length);
2314 }
2315 }
2316
2317 #ifdef CONFIG_POSIX
2318 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2319 uint32_t ram_flags, int fd,
2320 Error **errp)
2321 {
2322 RAMBlock *new_block;
2323 Error *local_err = NULL;
2324 int64_t file_size;
2325
2326 /* Just support these ram flags by now. */
2327 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2328
2329 if (xen_enabled()) {
2330 error_setg(errp, "-mem-path not supported with Xen");
2331 return NULL;
2332 }
2333
2334 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2335 error_setg(errp,
2336 "host lacks kvm mmu notifiers, -mem-path unsupported");
2337 return NULL;
2338 }
2339
2340 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2341 /*
2342 * file_ram_alloc() needs to allocate just like
2343 * phys_mem_alloc, but we haven't bothered to provide
2344 * a hook there.
2345 */
2346 error_setg(errp,
2347 "-mem-path not supported with this accelerator");
2348 return NULL;
2349 }
2350
2351 size = HOST_PAGE_ALIGN(size);
2352 file_size = get_file_size(fd);
2353 if (file_size > 0 && file_size < size) {
2354 error_setg(errp, "backing store %s size 0x%" PRIx64
2355 " does not match 'size' option 0x" RAM_ADDR_FMT,
2356 mem_path, file_size, size);
2357 return NULL;
2358 }
2359
2360 new_block = g_malloc0(sizeof(*new_block));
2361 new_block->mr = mr;
2362 new_block->used_length = size;
2363 new_block->max_length = size;
2364 new_block->flags = ram_flags;
2365 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2366 if (!new_block->host) {
2367 g_free(new_block);
2368 return NULL;
2369 }
2370
2371 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2372 if (local_err) {
2373 g_free(new_block);
2374 error_propagate(errp, local_err);
2375 return NULL;
2376 }
2377 return new_block;
2378
2379 }
2380
2381
2382 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2383 uint32_t ram_flags, const char *mem_path,
2384 Error **errp)
2385 {
2386 int fd;
2387 bool created;
2388 RAMBlock *block;
2389
2390 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2391 if (fd < 0) {
2392 return NULL;
2393 }
2394
2395 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2396 if (!block) {
2397 if (created) {
2398 unlink(mem_path);
2399 }
2400 close(fd);
2401 return NULL;
2402 }
2403
2404 return block;
2405 }
2406 #endif
2407
2408 static
2409 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2410 void (*resized)(const char*,
2411 uint64_t length,
2412 void *host),
2413 void *host, bool resizeable, bool share,
2414 MemoryRegion *mr, Error **errp)
2415 {
2416 RAMBlock *new_block;
2417 Error *local_err = NULL;
2418
2419 size = HOST_PAGE_ALIGN(size);
2420 max_size = HOST_PAGE_ALIGN(max_size);
2421 new_block = g_malloc0(sizeof(*new_block));
2422 new_block->mr = mr;
2423 new_block->resized = resized;
2424 new_block->used_length = size;
2425 new_block->max_length = max_size;
2426 assert(max_size >= size);
2427 new_block->fd = -1;
2428 new_block->page_size = getpagesize();
2429 new_block->host = host;
2430 if (host) {
2431 new_block->flags |= RAM_PREALLOC;
2432 }
2433 if (resizeable) {
2434 new_block->flags |= RAM_RESIZEABLE;
2435 }
2436 ram_block_add(new_block, &local_err, share);
2437 if (local_err) {
2438 g_free(new_block);
2439 error_propagate(errp, local_err);
2440 return NULL;
2441 }
2442 return new_block;
2443 }
2444
2445 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2446 MemoryRegion *mr, Error **errp)
2447 {
2448 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2449 false, mr, errp);
2450 }
2451
2452 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2453 MemoryRegion *mr, Error **errp)
2454 {
2455 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2456 share, mr, errp);
2457 }
2458
2459 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2460 void (*resized)(const char*,
2461 uint64_t length,
2462 void *host),
2463 MemoryRegion *mr, Error **errp)
2464 {
2465 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2466 false, mr, errp);
2467 }
2468
2469 static void reclaim_ramblock(RAMBlock *block)
2470 {
2471 if (block->flags & RAM_PREALLOC) {
2472 ;
2473 } else if (xen_enabled()) {
2474 xen_invalidate_map_cache_entry(block->host);
2475 #ifndef _WIN32
2476 } else if (block->fd >= 0) {
2477 qemu_ram_munmap(block->fd, block->host, block->max_length);
2478 close(block->fd);
2479 #endif
2480 } else {
2481 qemu_anon_ram_free(block->host, block->max_length);
2482 }
2483 g_free(block);
2484 }
2485
2486 void qemu_ram_free(RAMBlock *block)
2487 {
2488 if (!block) {
2489 return;
2490 }
2491
2492 if (block->host) {
2493 ram_block_notify_remove(block->host, block->max_length);
2494 }
2495
2496 qemu_mutex_lock_ramlist();
2497 QLIST_REMOVE_RCU(block, next);
2498 ram_list.mru_block = NULL;
2499 /* Write list before version */
2500 smp_wmb();
2501 ram_list.version++;
2502 call_rcu(block, reclaim_ramblock, rcu);
2503 qemu_mutex_unlock_ramlist();
2504 }
2505
2506 #ifndef _WIN32
2507 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2508 {
2509 RAMBlock *block;
2510 ram_addr_t offset;
2511 int flags;
2512 void *area, *vaddr;
2513
2514 RAMBLOCK_FOREACH(block) {
2515 offset = addr - block->offset;
2516 if (offset < block->max_length) {
2517 vaddr = ramblock_ptr(block, offset);
2518 if (block->flags & RAM_PREALLOC) {
2519 ;
2520 } else if (xen_enabled()) {
2521 abort();
2522 } else {
2523 flags = MAP_FIXED;
2524 if (block->fd >= 0) {
2525 flags |= (block->flags & RAM_SHARED ?
2526 MAP_SHARED : MAP_PRIVATE);
2527 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2528 flags, block->fd, offset);
2529 } else {
2530 /*
2531 * Remap needs to match alloc. Accelerators that
2532 * set phys_mem_alloc never remap. If they did,
2533 * we'd need a remap hook here.
2534 */
2535 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2536
2537 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2538 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2539 flags, -1, 0);
2540 }
2541 if (area != vaddr) {
2542 error_report("Could not remap addr: "
2543 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2544 length, addr);
2545 exit(1);
2546 }
2547 memory_try_enable_merging(vaddr, length);
2548 qemu_ram_setup_dump(vaddr, length);
2549 }
2550 }
2551 }
2552 }
2553 #endif /* !_WIN32 */
2554
2555 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2556 * This should not be used for general purpose DMA. Use address_space_map
2557 * or address_space_rw instead. For local memory (e.g. video ram) that the
2558 * device owns, use memory_region_get_ram_ptr.
2559 *
2560 * Called within RCU critical section.
2561 */
2562 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2563 {
2564 RAMBlock *block = ram_block;
2565
2566 if (block == NULL) {
2567 block = qemu_get_ram_block(addr);
2568 addr -= block->offset;
2569 }
2570
2571 if (xen_enabled() && block->host == NULL) {
2572 /* We need to check if the requested address is in the RAM
2573 * because we don't want to map the entire memory in QEMU.
2574 * In that case just map until the end of the page.
2575 */
2576 if (block->offset == 0) {
2577 return xen_map_cache(addr, 0, 0, false);
2578 }
2579
2580 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2581 }
2582 return ramblock_ptr(block, addr);
2583 }
2584
2585 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2586 * but takes a size argument.
2587 *
2588 * Called within RCU critical section.
2589 */
2590 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2591 hwaddr *size, bool lock)
2592 {
2593 RAMBlock *block = ram_block;
2594 if (*size == 0) {
2595 return NULL;
2596 }
2597
2598 if (block == NULL) {
2599 block = qemu_get_ram_block(addr);
2600 addr -= block->offset;
2601 }
2602 *size = MIN(*size, block->max_length - addr);
2603
2604 if (xen_enabled() && block->host == NULL) {
2605 /* We need to check if the requested address is in the RAM
2606 * because we don't want to map the entire memory in QEMU.
2607 * In that case just map the requested area.
2608 */
2609 if (block->offset == 0) {
2610 return xen_map_cache(addr, *size, lock, lock);
2611 }
2612
2613 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2614 }
2615
2616 return ramblock_ptr(block, addr);
2617 }
2618
2619 /* Return the offset of a hostpointer within a ramblock */
2620 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2621 {
2622 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2623 assert((uintptr_t)host >= (uintptr_t)rb->host);
2624 assert(res < rb->max_length);
2625
2626 return res;
2627 }
2628
2629 /*
2630 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2631 * in that RAMBlock.
2632 *
2633 * ptr: Host pointer to look up
2634 * round_offset: If true round the result offset down to a page boundary
2635 * *ram_addr: set to result ram_addr
2636 * *offset: set to result offset within the RAMBlock
2637 *
2638 * Returns: RAMBlock (or NULL if not found)
2639 *
2640 * By the time this function returns, the returned pointer is not protected
2641 * by RCU anymore. If the caller is not within an RCU critical section and
2642 * does not hold the iothread lock, it must have other means of protecting the
2643 * pointer, such as a reference to the region that includes the incoming
2644 * ram_addr_t.
2645 */
2646 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2647 ram_addr_t *offset)
2648 {
2649 RAMBlock *block;
2650 uint8_t *host = ptr;
2651
2652 if (xen_enabled()) {
2653 ram_addr_t ram_addr;
2654 rcu_read_lock();
2655 ram_addr = xen_ram_addr_from_mapcache(ptr);
2656 block = qemu_get_ram_block(ram_addr);
2657 if (block) {
2658 *offset = ram_addr - block->offset;
2659 }
2660 rcu_read_unlock();
2661 return block;
2662 }
2663
2664 rcu_read_lock();
2665 block = atomic_rcu_read(&ram_list.mru_block);
2666 if (block && block->host && host - block->host < block->max_length) {
2667 goto found;
2668 }
2669
2670 RAMBLOCK_FOREACH(block) {
2671 /* This case append when the block is not mapped. */
2672 if (block->host == NULL) {
2673 continue;
2674 }
2675 if (host - block->host < block->max_length) {
2676 goto found;
2677 }
2678 }
2679
2680 rcu_read_unlock();
2681 return NULL;
2682
2683 found:
2684 *offset = (host - block->host);
2685 if (round_offset) {
2686 *offset &= TARGET_PAGE_MASK;
2687 }
2688 rcu_read_unlock();
2689 return block;
2690 }
2691
2692 /*
2693 * Finds the named RAMBlock
2694 *
2695 * name: The name of RAMBlock to find
2696 *
2697 * Returns: RAMBlock (or NULL if not found)
2698 */
2699 RAMBlock *qemu_ram_block_by_name(const char *name)
2700 {
2701 RAMBlock *block;
2702
2703 RAMBLOCK_FOREACH(block) {
2704 if (!strcmp(name, block->idstr)) {
2705 return block;
2706 }
2707 }
2708
2709 return NULL;
2710 }
2711
2712 /* Some of the softmmu routines need to translate from a host pointer
2713 (typically a TLB entry) back to a ram offset. */
2714 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2715 {
2716 RAMBlock *block;
2717 ram_addr_t offset;
2718
2719 block = qemu_ram_block_from_host(ptr, false, &offset);
2720 if (!block) {
2721 return RAM_ADDR_INVALID;
2722 }
2723
2724 return block->offset + offset;
2725 }
2726
2727 /* Generate a debug exception if a watchpoint has been hit. */
2728 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2729 MemTxAttrs attrs, int flags, uintptr_t ra)
2730 {
2731 CPUClass *cc = CPU_GET_CLASS(cpu);
2732 CPUWatchpoint *wp;
2733
2734 assert(tcg_enabled());
2735 if (cpu->watchpoint_hit) {
2736 /*
2737 * We re-entered the check after replacing the TB.
2738 * Now raise the debug interrupt so that it will
2739 * trigger after the current instruction.
2740 */
2741 qemu_mutex_lock_iothread();
2742 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2743 qemu_mutex_unlock_iothread();
2744 return;
2745 }
2746
2747 addr = cc->adjust_watchpoint_address(cpu, addr, len);
2748 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2749 if (watchpoint_address_matches(wp, addr, len)
2750 && (wp->flags & flags)) {
2751 if (flags == BP_MEM_READ) {
2752 wp->flags |= BP_WATCHPOINT_HIT_READ;
2753 } else {
2754 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2755 }
2756 wp->hitaddr = MAX(addr, wp->vaddr);
2757 wp->hitattrs = attrs;
2758 if (!cpu->watchpoint_hit) {
2759 if (wp->flags & BP_CPU &&
2760 !cc->debug_check_watchpoint(cpu, wp)) {
2761 wp->flags &= ~BP_WATCHPOINT_HIT;
2762 continue;
2763 }
2764 cpu->watchpoint_hit = wp;
2765
2766 mmap_lock();
2767 tb_check_watchpoint(cpu, ra);
2768 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2769 cpu->exception_index = EXCP_DEBUG;
2770 mmap_unlock();
2771 cpu_loop_exit_restore(cpu, ra);
2772 } else {
2773 /* Force execution of one insn next time. */
2774 cpu->cflags_next_tb = 1 | curr_cflags();
2775 mmap_unlock();
2776 if (ra) {
2777 cpu_restore_state(cpu, ra, true);
2778 }
2779 cpu_loop_exit_noexc(cpu);
2780 }
2781 }
2782 } else {
2783 wp->flags &= ~BP_WATCHPOINT_HIT;
2784 }
2785 }
2786 }
2787
2788 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2789 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2790 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2791 const uint8_t *buf, hwaddr len);
2792 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2793 bool is_write, MemTxAttrs attrs);
2794
2795 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2796 unsigned len, MemTxAttrs attrs)
2797 {
2798 subpage_t *subpage = opaque;
2799 uint8_t buf[8];
2800 MemTxResult res;
2801
2802 #if defined(DEBUG_SUBPAGE)
2803 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2804 subpage, len, addr);
2805 #endif
2806 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2807 if (res) {
2808 return res;
2809 }
2810 *data = ldn_p(buf, len);
2811 return MEMTX_OK;
2812 }
2813
2814 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2815 uint64_t value, unsigned len, MemTxAttrs attrs)
2816 {
2817 subpage_t *subpage = opaque;
2818 uint8_t buf[8];
2819
2820 #if defined(DEBUG_SUBPAGE)
2821 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2822 " value %"PRIx64"\n",
2823 __func__, subpage, len, addr, value);
2824 #endif
2825 stn_p(buf, len, value);
2826 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2827 }
2828
2829 static bool subpage_accepts(void *opaque, hwaddr addr,
2830 unsigned len, bool is_write,
2831 MemTxAttrs attrs)
2832 {
2833 subpage_t *subpage = opaque;
2834 #if defined(DEBUG_SUBPAGE)
2835 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2836 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2837 #endif
2838
2839 return flatview_access_valid(subpage->fv, addr + subpage->base,
2840 len, is_write, attrs);
2841 }
2842
2843 static const MemoryRegionOps subpage_ops = {
2844 .read_with_attrs = subpage_read,
2845 .write_with_attrs = subpage_write,
2846 .impl.min_access_size = 1,
2847 .impl.max_access_size = 8,
2848 .valid.min_access_size = 1,
2849 .valid.max_access_size = 8,
2850 .valid.accepts = subpage_accepts,
2851 .endianness = DEVICE_NATIVE_ENDIAN,
2852 };
2853
2854 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2855 uint16_t section)
2856 {
2857 int idx, eidx;
2858
2859 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2860 return -1;
2861 idx = SUBPAGE_IDX(start);
2862 eidx = SUBPAGE_IDX(end);
2863 #if defined(DEBUG_SUBPAGE)
2864 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2865 __func__, mmio, start, end, idx, eidx, section);
2866 #endif
2867 for (; idx <= eidx; idx++) {
2868 mmio->sub_section[idx] = section;
2869 }
2870
2871 return 0;
2872 }
2873
2874 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2875 {
2876 subpage_t *mmio;
2877
2878 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2879 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2880 mmio->fv = fv;
2881 mmio->base = base;
2882 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2883 NULL, TARGET_PAGE_SIZE);
2884 mmio->iomem.subpage = true;
2885 #if defined(DEBUG_SUBPAGE)
2886 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2887 mmio, base, TARGET_PAGE_SIZE);
2888 #endif
2889
2890 return mmio;
2891 }
2892
2893 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2894 {
2895 assert(fv);
2896 MemoryRegionSection section = {
2897 .fv = fv,
2898 .mr = mr,
2899 .offset_within_address_space = 0,
2900 .offset_within_region = 0,
2901 .size = int128_2_64(),
2902 };
2903
2904 return phys_section_add(map, &section);
2905 }
2906
2907 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2908 hwaddr index, MemTxAttrs attrs)
2909 {
2910 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2911 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2912 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2913 MemoryRegionSection *sections = d->map.sections;
2914
2915 return &sections[index & ~TARGET_PAGE_MASK];
2916 }
2917
2918 static void io_mem_init(void)
2919 {
2920 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2921 NULL, UINT64_MAX);
2922 }
2923
2924 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2925 {
2926 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2927 uint16_t n;
2928
2929 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2930 assert(n == PHYS_SECTION_UNASSIGNED);
2931
2932 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2933
2934 return d;
2935 }
2936
2937 void address_space_dispatch_free(AddressSpaceDispatch *d)
2938 {
2939 phys_sections_free(&d->map);
2940 g_free(d);
2941 }
2942
2943 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2944 {
2945 }
2946
2947 static void tcg_log_global_after_sync(MemoryListener *listener)
2948 {
2949 CPUAddressSpace *cpuas;
2950
2951 /* Wait for the CPU to end the current TB. This avoids the following
2952 * incorrect race:
2953 *
2954 * vCPU migration
2955 * ---------------------- -------------------------
2956 * TLB check -> slow path
2957 * notdirty_mem_write
2958 * write to RAM
2959 * mark dirty
2960 * clear dirty flag
2961 * TLB check -> fast path
2962 * read memory
2963 * write to RAM
2964 *
2965 * by pushing the migration thread's memory read after the vCPU thread has
2966 * written the memory.
2967 */
2968 if (replay_mode == REPLAY_MODE_NONE) {
2969 /*
2970 * VGA can make calls to this function while updating the screen.
2971 * In record/replay mode this causes a deadlock, because
2972 * run_on_cpu waits for rr mutex. Therefore no races are possible
2973 * in this case and no need for making run_on_cpu when
2974 * record/replay is not enabled.
2975 */
2976 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2977 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2978 }
2979 }
2980
2981 static void tcg_commit(MemoryListener *listener)
2982 {
2983 CPUAddressSpace *cpuas;
2984 AddressSpaceDispatch *d;
2985
2986 assert(tcg_enabled());
2987 /* since each CPU stores ram addresses in its TLB cache, we must
2988 reset the modified entries */
2989 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2990 cpu_reloading_memory_map();
2991 /* The CPU and TLB are protected by the iothread lock.
2992 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2993 * may have split the RCU critical section.
2994 */
2995 d = address_space_to_dispatch(cpuas->as);
2996 atomic_rcu_set(&cpuas->memory_dispatch, d);
2997 tlb_flush(cpuas->cpu);
2998 }
2999
3000 static void memory_map_init(void)
3001 {
3002 system_memory = g_malloc(sizeof(*system_memory));
3003
3004 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3005 address_space_init(&address_space_memory, system_memory, "memory");
3006
3007 system_io = g_malloc(sizeof(*system_io));
3008 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3009 65536);
3010 address_space_init(&address_space_io, system_io, "I/O");
3011 }
3012
3013 MemoryRegion *get_system_memory(void)
3014 {
3015 return system_memory;
3016 }
3017
3018 MemoryRegion *get_system_io(void)
3019 {
3020 return system_io;
3021 }
3022
3023 #endif /* !defined(CONFIG_USER_ONLY) */
3024
3025 /* physical memory access (slow version, mainly for debug) */
3026 #if defined(CONFIG_USER_ONLY)
3027 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3028 uint8_t *buf, target_ulong len, int is_write)
3029 {
3030 int flags;
3031 target_ulong l, page;
3032 void * p;
3033
3034 while (len > 0) {
3035 page = addr & TARGET_PAGE_MASK;
3036 l = (page + TARGET_PAGE_SIZE) - addr;
3037 if (l > len)
3038 l = len;
3039 flags = page_get_flags(page);
3040 if (!(flags & PAGE_VALID))
3041 return -1;
3042 if (is_write) {
3043 if (!(flags & PAGE_WRITE))
3044 return -1;
3045 /* XXX: this code should not depend on lock_user */
3046 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3047 return -1;
3048 memcpy(p, buf, l);
3049 unlock_user(p, addr, l);
3050 } else {
3051 if (!(flags & PAGE_READ))
3052 return -1;
3053 /* XXX: this code should not depend on lock_user */
3054 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3055 return -1;
3056 memcpy(buf, p, l);
3057 unlock_user(p, addr, 0);
3058 }
3059 len -= l;
3060 buf += l;
3061 addr += l;
3062 }
3063 return 0;
3064 }
3065
3066 #else
3067
3068 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3069 hwaddr length)
3070 {
3071 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3072 addr += memory_region_get_ram_addr(mr);
3073
3074 /* No early return if dirty_log_mask is or becomes 0, because
3075 * cpu_physical_memory_set_dirty_range will still call
3076 * xen_modified_memory.
3077 */
3078 if (dirty_log_mask) {
3079 dirty_log_mask =
3080 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3081 }
3082 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3083 assert(tcg_enabled());
3084 tb_invalidate_phys_range(addr, addr + length);
3085 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3086 }
3087 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3088 }
3089
3090 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3091 {
3092 /*
3093 * In principle this function would work on other memory region types too,
3094 * but the ROM device use case is the only one where this operation is
3095 * necessary. Other memory regions should use the
3096 * address_space_read/write() APIs.
3097 */
3098 assert(memory_region_is_romd(mr));
3099
3100 invalidate_and_set_dirty(mr, addr, size);
3101 }
3102
3103 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3104 {
3105 unsigned access_size_max = mr->ops->valid.max_access_size;
3106
3107 /* Regions are assumed to support 1-4 byte accesses unless
3108 otherwise specified. */
3109 if (access_size_max == 0) {
3110 access_size_max = 4;
3111 }
3112
3113 /* Bound the maximum access by the alignment of the address. */
3114 if (!mr->ops->impl.unaligned) {
3115 unsigned align_size_max = addr & -addr;
3116 if (align_size_max != 0 && align_size_max < access_size_max) {
3117 access_size_max = align_size_max;
3118 }
3119 }
3120
3121 /* Don't attempt accesses larger than the maximum. */
3122 if (l > access_size_max) {
3123 l = access_size_max;
3124 }
3125 l = pow2floor(l);
3126
3127 return l;
3128 }
3129
3130 static bool prepare_mmio_access(MemoryRegion *mr)
3131 {
3132 bool unlocked = !qemu_mutex_iothread_locked();
3133 bool release_lock = false;
3134
3135 if (unlocked && mr->global_locking) {
3136 qemu_mutex_lock_iothread();
3137 unlocked = false;
3138 release_lock = true;
3139 }
3140 if (mr->flush_coalesced_mmio) {
3141 if (unlocked) {
3142 qemu_mutex_lock_iothread();
3143 }
3144 qemu_flush_coalesced_mmio_buffer();
3145 if (unlocked) {
3146 qemu_mutex_unlock_iothread();
3147 }
3148 }
3149
3150 return release_lock;
3151 }
3152
3153 /* Called within RCU critical section. */
3154 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3155 MemTxAttrs attrs,
3156 const uint8_t *buf,
3157 hwaddr len, hwaddr addr1,
3158 hwaddr l, MemoryRegion *mr)
3159 {
3160 uint8_t *ptr;
3161 uint64_t val;
3162 MemTxResult result = MEMTX_OK;
3163 bool release_lock = false;
3164
3165 for (;;) {
3166 if (!memory_access_is_direct(mr, true)) {
3167 release_lock |= prepare_mmio_access(mr);
3168 l = memory_access_size(mr, l, addr1);
3169 /* XXX: could force current_cpu to NULL to avoid
3170 potential bugs */
3171 val = ldn_he_p(buf, l);
3172 result |= memory_region_dispatch_write(mr, addr1, val,
3173 size_memop(l), attrs);
3174 } else {
3175 /* RAM case */
3176 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3177 memcpy(ptr, buf, l);
3178 invalidate_and_set_dirty(mr, addr1, l);
3179 }
3180
3181 if (release_lock) {
3182 qemu_mutex_unlock_iothread();
3183 release_lock = false;
3184 }
3185
3186 len -= l;
3187 buf += l;
3188 addr += l;
3189
3190 if (!len) {
3191 break;
3192 }
3193
3194 l = len;
3195 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3196 }
3197
3198 return result;
3199 }
3200
3201 /* Called from RCU critical section. */
3202 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3203 const uint8_t *buf, hwaddr len)
3204 {
3205 hwaddr l;
3206 hwaddr addr1;
3207 MemoryRegion *mr;
3208 MemTxResult result = MEMTX_OK;
3209
3210 l = len;
3211 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3212 result = flatview_write_continue(fv, addr, attrs, buf, len,
3213 addr1, l, mr);
3214
3215 return result;
3216 }
3217
3218 /* Called within RCU critical section. */
3219 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3220 MemTxAttrs attrs, uint8_t *buf,
3221 hwaddr len, hwaddr addr1, hwaddr l,
3222 MemoryRegion *mr)
3223 {
3224 uint8_t *ptr;
3225 uint64_t val;
3226 MemTxResult result = MEMTX_OK;
3227 bool release_lock = false;
3228
3229 for (;;) {
3230 if (!memory_access_is_direct(mr, false)) {
3231 /* I/O case */
3232 release_lock |= prepare_mmio_access(mr);
3233 l = memory_access_size(mr, l, addr1);
3234 result |= memory_region_dispatch_read(mr, addr1, &val,
3235 size_memop(l), attrs);
3236 stn_he_p(buf, l, val);
3237 } else {
3238 /* RAM case */
3239 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3240 memcpy(buf, ptr, l);
3241 }
3242
3243 if (release_lock) {
3244 qemu_mutex_unlock_iothread();
3245 release_lock = false;
3246 }
3247
3248 len -= l;
3249 buf += l;
3250 addr += l;
3251
3252 if (!len) {
3253 break;
3254 }
3255
3256 l = len;
3257 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3258 }
3259
3260 return result;
3261 }
3262
3263 /* Called from RCU critical section. */
3264 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3265 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3266 {
3267 hwaddr l;
3268 hwaddr addr1;
3269 MemoryRegion *mr;
3270
3271 l = len;
3272 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3273 return flatview_read_continue(fv, addr, attrs, buf, len,
3274 addr1, l, mr);
3275 }
3276
3277 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3278 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3279 {
3280 MemTxResult result = MEMTX_OK;
3281 FlatView *fv;
3282
3283 if (len > 0) {
3284 rcu_read_lock();
3285 fv = address_space_to_flatview(as);
3286 result = flatview_read(fv, addr, attrs, buf, len);
3287 rcu_read_unlock();
3288 }
3289
3290 return result;
3291 }
3292
3293 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3294 MemTxAttrs attrs,
3295 const uint8_t *buf, hwaddr len)
3296 {
3297 MemTxResult result = MEMTX_OK;
3298 FlatView *fv;
3299
3300 if (len > 0) {
3301 rcu_read_lock();
3302 fv = address_space_to_flatview(as);
3303 result = flatview_write(fv, addr, attrs, buf, len);
3304 rcu_read_unlock();
3305 }
3306
3307 return result;
3308 }
3309
3310 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3311 uint8_t *buf, hwaddr len, bool is_write)
3312 {
3313 if (is_write) {
3314 return address_space_write(as, addr, attrs, buf, len);
3315 } else {
3316 return address_space_read_full(as, addr, attrs, buf, len);
3317 }
3318 }
3319
3320 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3321 hwaddr len, int is_write)
3322 {
3323 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3324 buf, len, is_write);
3325 }
3326
3327 enum write_rom_type {
3328 WRITE_DATA,
3329 FLUSH_CACHE,
3330 };
3331
3332 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3333 hwaddr addr,
3334 MemTxAttrs attrs,
3335 const uint8_t *buf,
3336 hwaddr len,
3337 enum write_rom_type type)
3338 {
3339 hwaddr l;
3340 uint8_t *ptr;
3341 hwaddr addr1;
3342 MemoryRegion *mr;
3343
3344 rcu_read_lock();
3345 while (len > 0) {
3346 l = len;
3347 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3348
3349 if (!(memory_region_is_ram(mr) ||
3350 memory_region_is_romd(mr))) {
3351 l = memory_access_size(mr, l, addr1);
3352 } else {
3353 /* ROM/RAM case */
3354 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3355 switch (type) {
3356 case WRITE_DATA:
3357 memcpy(ptr, buf, l);
3358 invalidate_and_set_dirty(mr, addr1, l);
3359 break;
3360 case FLUSH_CACHE:
3361 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3362 break;
3363 }
3364 }
3365 len -= l;
3366 buf += l;
3367 addr += l;
3368 }
3369 rcu_read_unlock();
3370 return MEMTX_OK;
3371 }
3372
3373 /* used for ROM loading : can write in RAM and ROM */
3374 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3375 MemTxAttrs attrs,
3376 const uint8_t *buf, hwaddr len)
3377 {
3378 return address_space_write_rom_internal(as, addr, attrs,
3379 buf, len, WRITE_DATA);
3380 }
3381
3382 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3383 {
3384 /*
3385 * This function should do the same thing as an icache flush that was
3386 * triggered from within the guest. For TCG we are always cache coherent,
3387 * so there is no need to flush anything. For KVM / Xen we need to flush
3388 * the host's instruction cache at least.
3389 */
3390 if (tcg_enabled()) {
3391 return;
3392 }
3393
3394 address_space_write_rom_internal(&address_space_memory,
3395 start, MEMTXATTRS_UNSPECIFIED,
3396 NULL, len, FLUSH_CACHE);
3397 }
3398
3399 typedef struct {
3400 MemoryRegion *mr;
3401 void *buffer;
3402 hwaddr addr;
3403 hwaddr len;
3404 bool in_use;
3405 } BounceBuffer;
3406
3407 static BounceBuffer bounce;
3408
3409 typedef struct MapClient {
3410 QEMUBH *bh;
3411 QLIST_ENTRY(MapClient) link;
3412 } MapClient;
3413
3414 QemuMutex map_client_list_lock;
3415 static QLIST_HEAD(, MapClient) map_client_list
3416 = QLIST_HEAD_INITIALIZER(map_client_list);
3417
3418 static void cpu_unregister_map_client_do(MapClient *client)
3419 {
3420 QLIST_REMOVE(client, link);
3421 g_free(client);
3422 }
3423
3424 static void cpu_notify_map_clients_locked(void)
3425 {
3426 MapClient *client;
3427
3428 while (!QLIST_EMPTY(&map_client_list)) {
3429 client = QLIST_FIRST(&map_client_list);
3430 qemu_bh_schedule(client->bh);
3431 cpu_unregister_map_client_do(client);
3432 }
3433 }
3434
3435 void cpu_register_map_client(QEMUBH *bh)
3436 {
3437 MapClient *client = g_malloc(sizeof(*client));
3438
3439 qemu_mutex_lock(&map_client_list_lock);
3440 client->bh = bh;
3441 QLIST_INSERT_HEAD(&map_client_list, client, link);
3442 if (!atomic_read(&bounce.in_use)) {
3443 cpu_notify_map_clients_locked();
3444 }
3445 qemu_mutex_unlock(&map_client_list_lock);
3446 }
3447
3448 void cpu_exec_init_all(void)
3449 {
3450 qemu_mutex_init(&ram_list.mutex);
3451 /* The data structures we set up here depend on knowing the page size,
3452 * so no more changes can be made after this point.
3453 * In an ideal world, nothing we did before we had finished the
3454 * machine setup would care about the target page size, and we could
3455 * do this much later, rather than requiring board models to state
3456 * up front what their requirements are.
3457 */
3458 finalize_target_page_bits();
3459 io_mem_init();
3460 memory_map_init();
3461 qemu_mutex_init(&map_client_list_lock);
3462 }
3463
3464 void cpu_unregister_map_client(QEMUBH *bh)
3465 {
3466 MapClient *client;
3467
3468 qemu_mutex_lock(&map_client_list_lock);
3469 QLIST_FOREACH(client, &map_client_list, link) {
3470 if (client->bh == bh) {
3471 cpu_unregister_map_client_do(client);
3472 break;
3473 }
3474 }
3475 qemu_mutex_unlock(&map_client_list_lock);
3476 }
3477
3478 static void cpu_notify_map_clients(void)
3479 {
3480 qemu_mutex_lock(&map_client_list_lock);
3481 cpu_notify_map_clients_locked();
3482 qemu_mutex_unlock(&map_client_list_lock);
3483 }
3484
3485 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3486 bool is_write, MemTxAttrs attrs)
3487 {
3488 MemoryRegion *mr;
3489 hwaddr l, xlat;
3490
3491 while (len > 0) {
3492 l = len;
3493 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3494 if (!memory_access_is_direct(mr, is_write)) {
3495 l = memory_access_size(mr, l, addr);
3496 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3497 return false;
3498 }
3499 }
3500
3501 len -= l;
3502 addr += l;
3503 }
3504 return true;
3505 }
3506
3507 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3508 hwaddr len, bool is_write,
3509 MemTxAttrs attrs)
3510 {
3511 FlatView *fv;
3512 bool result;
3513
3514 rcu_read_lock();
3515 fv = address_space_to_flatview(as);
3516 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3517 rcu_read_unlock();
3518 return result;
3519 }
3520
3521 static hwaddr
3522 flatview_extend_translation(FlatView *fv, hwaddr addr,
3523 hwaddr target_len,
3524 MemoryRegion *mr, hwaddr base, hwaddr len,
3525 bool is_write, MemTxAttrs attrs)
3526 {
3527 hwaddr done = 0;
3528 hwaddr xlat;
3529 MemoryRegion *this_mr;
3530
3531 for (;;) {
3532 target_len -= len;
3533 addr += len;
3534 done += len;
3535 if (target_len == 0) {
3536 return done;
3537 }
3538
3539 len = target_len;
3540 this_mr = flatview_translate(fv, addr, &xlat,
3541 &len, is_write, attrs);
3542 if (this_mr != mr || xlat != base + done) {
3543 return done;
3544 }
3545 }
3546 }
3547
3548 /* Map a physical memory region into a host virtual address.
3549 * May map a subset of the requested range, given by and returned in *plen.
3550 * May return NULL if resources needed to perform the mapping are exhausted.
3551 * Use only for reads OR writes - not for read-modify-write operations.
3552 * Use cpu_register_map_client() to know when retrying the map operation is
3553 * likely to succeed.
3554 */
3555 void *address_space_map(AddressSpace *as,
3556 hwaddr addr,
3557 hwaddr *plen,
3558 bool is_write,
3559 MemTxAttrs attrs)
3560 {
3561 hwaddr len = *plen;
3562 hwaddr l, xlat;
3563 MemoryRegion *mr;
3564 void *ptr;
3565 FlatView *fv;
3566
3567 if (len == 0) {
3568 return NULL;
3569 }
3570
3571 l = len;
3572 rcu_read_lock();
3573 fv = address_space_to_flatview(as);
3574 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3575
3576 if (!memory_access_is_direct(mr, is_write)) {
3577 if (atomic_xchg(&bounce.in_use, true)) {
3578 rcu_read_unlock();
3579 return NULL;
3580 }
3581 /* Avoid unbounded allocations */
3582 l = MIN(l, TARGET_PAGE_SIZE);
3583 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3584 bounce.addr = addr;
3585 bounce.len = l;
3586
3587 memory_region_ref(mr);
3588 bounce.mr = mr;
3589 if (!is_write) {
3590 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3591 bounce.buffer, l);
3592 }
3593
3594 rcu_read_unlock();
3595 *plen = l;
3596 return bounce.buffer;
3597 }
3598
3599
3600 memory_region_ref(mr);
3601 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3602 l, is_write, attrs);
3603 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3604 rcu_read_unlock();
3605
3606 return ptr;
3607 }
3608
3609 /* Unmaps a memory region previously mapped by address_space_map().
3610 * Will also mark the memory as dirty if is_write == 1. access_len gives
3611 * the amount of memory that was actually read or written by the caller.
3612 */
3613 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3614 int is_write, hwaddr access_len)
3615 {
3616 if (buffer != bounce.buffer) {
3617 MemoryRegion *mr;
3618 ram_addr_t addr1;
3619
3620 mr = memory_region_from_host(buffer, &addr1);
3621 assert(mr != NULL);
3622 if (is_write) {
3623 invalidate_and_set_dirty(mr, addr1, access_len);
3624 }
3625 if (xen_enabled()) {
3626 xen_invalidate_map_cache_entry(buffer);
3627 }
3628 memory_region_unref(mr);
3629 return;
3630 }
3631 if (is_write) {
3632 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3633 bounce.buffer, access_len);
3634 }
3635 qemu_vfree(bounce.buffer);
3636 bounce.buffer = NULL;
3637 memory_region_unref(bounce.mr);
3638 atomic_mb_set(&bounce.in_use, false);
3639 cpu_notify_map_clients();
3640 }
3641
3642 void *cpu_physical_memory_map(hwaddr addr,
3643 hwaddr *plen,
3644 int is_write)
3645 {
3646 return address_space_map(&address_space_memory, addr, plen, is_write,
3647 MEMTXATTRS_UNSPECIFIED);
3648 }
3649
3650 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3651 int is_write, hwaddr access_len)
3652 {
3653 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3654 }
3655
3656 #define ARG1_DECL AddressSpace *as
3657 #define ARG1 as
3658 #define SUFFIX
3659 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3660 #define RCU_READ_LOCK(...) rcu_read_lock()
3661 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3662 #include "memory_ldst.inc.c"
3663
3664 int64_t address_space_cache_init(MemoryRegionCache *cache,
3665 AddressSpace *as,
3666 hwaddr addr,
3667 hwaddr len,
3668 bool is_write)
3669 {
3670 AddressSpaceDispatch *d;
3671 hwaddr l;
3672 MemoryRegion *mr;
3673
3674 assert(len > 0);
3675
3676 l = len;
3677 cache->fv = address_space_get_flatview(as);
3678 d = flatview_to_dispatch(cache->fv);
3679 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3680
3681 mr = cache->mrs.mr;
3682 memory_region_ref(mr);
3683 if (memory_access_is_direct(mr, is_write)) {
3684 /* We don't care about the memory attributes here as we're only
3685 * doing this if we found actual RAM, which behaves the same
3686 * regardless of attributes; so UNSPECIFIED is fine.
3687 */
3688 l = flatview_extend_translation(cache->fv, addr, len, mr,
3689 cache->xlat, l, is_write,
3690 MEMTXATTRS_UNSPECIFIED);
3691 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3692 } else {
3693 cache->ptr = NULL;
3694 }
3695
3696 cache->len = l;
3697 cache->is_write = is_write;
3698 return l;
3699 }
3700
3701 void address_space_cache_invalidate(MemoryRegionCache *cache,
3702 hwaddr addr,
3703 hwaddr access_len)
3704 {
3705 assert(cache->is_write);
3706 if (likely(cache->ptr)) {
3707 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3708 }
3709 }
3710
3711 void address_space_cache_destroy(MemoryRegionCache *cache)
3712 {
3713 if (!cache->mrs.mr) {
3714 return;
3715 }
3716
3717 if (xen_enabled()) {
3718 xen_invalidate_map_cache_entry(cache->ptr);
3719 }
3720 memory_region_unref(cache->mrs.mr);
3721 flatview_unref(cache->fv);
3722 cache->mrs.mr = NULL;
3723 cache->fv = NULL;
3724 }
3725
3726 /* Called from RCU critical section. This function has the same
3727 * semantics as address_space_translate, but it only works on a
3728 * predefined range of a MemoryRegion that was mapped with
3729 * address_space_cache_init.
3730 */
3731 static inline MemoryRegion *address_space_translate_cached(
3732 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3733 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3734 {
3735 MemoryRegionSection section;
3736 MemoryRegion *mr;
3737 IOMMUMemoryRegion *iommu_mr;
3738 AddressSpace *target_as;
3739
3740 assert(!cache->ptr);
3741 *xlat = addr + cache->xlat;
3742
3743 mr = cache->mrs.mr;
3744 iommu_mr = memory_region_get_iommu(mr);
3745 if (!iommu_mr) {
3746 /* MMIO region. */
3747 return mr;
3748 }
3749
3750 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3751 NULL, is_write, true,
3752 &target_as, attrs);
3753 return section.mr;
3754 }
3755
3756 /* Called from RCU critical section. address_space_read_cached uses this
3757 * out of line function when the target is an MMIO or IOMMU region.
3758 */
3759 void
3760 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3761 void *buf, hwaddr len)
3762 {
3763 hwaddr addr1, l;
3764 MemoryRegion *mr;
3765
3766 l = len;
3767 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3768 MEMTXATTRS_UNSPECIFIED);
3769 flatview_read_continue(cache->fv,
3770 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3771 addr1, l, mr);
3772 }
3773
3774 /* Called from RCU critical section. address_space_write_cached uses this
3775 * out of line function when the target is an MMIO or IOMMU region.
3776 */
3777 void
3778 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3779 const void *buf, hwaddr len)
3780 {
3781 hwaddr addr1, l;
3782 MemoryRegion *mr;
3783
3784 l = len;
3785 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3786 MEMTXATTRS_UNSPECIFIED);
3787 flatview_write_continue(cache->fv,
3788 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3789 addr1, l, mr);
3790 }
3791
3792 #define ARG1_DECL MemoryRegionCache *cache
3793 #define ARG1 cache
3794 #define SUFFIX _cached_slow
3795 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3796 #define RCU_READ_LOCK() ((void)0)
3797 #define RCU_READ_UNLOCK() ((void)0)
3798 #include "memory_ldst.inc.c"
3799
3800 /* virtual memory access for debug (includes writing to ROM) */
3801 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3802 uint8_t *buf, target_ulong len, int is_write)
3803 {
3804 hwaddr phys_addr;
3805 target_ulong l, page;
3806
3807 cpu_synchronize_state(cpu);
3808 while (len > 0) {
3809 int asidx;
3810 MemTxAttrs attrs;
3811
3812 page = addr & TARGET_PAGE_MASK;
3813 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3814 asidx = cpu_asidx_from_attrs(cpu, attrs);
3815 /* if no physical page mapped, return an error */
3816 if (phys_addr == -1)
3817 return -1;
3818 l = (page + TARGET_PAGE_SIZE) - addr;
3819 if (l > len)
3820 l = len;
3821 phys_addr += (addr & ~TARGET_PAGE_MASK);
3822 if (is_write) {
3823 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3824 attrs, buf, l);
3825 } else {
3826 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3827 attrs, buf, l, 0);
3828 }
3829 len -= l;
3830 buf += l;
3831 addr += l;
3832 }
3833 return 0;
3834 }
3835
3836 /*
3837 * Allows code that needs to deal with migration bitmaps etc to still be built
3838 * target independent.
3839 */
3840 size_t qemu_target_page_size(void)
3841 {
3842 return TARGET_PAGE_SIZE;
3843 }
3844
3845 int qemu_target_page_bits(void)
3846 {
3847 return TARGET_PAGE_BITS;
3848 }
3849
3850 int qemu_target_page_bits_min(void)
3851 {
3852 return TARGET_PAGE_BITS_MIN;
3853 }
3854 #endif
3855
3856 bool target_words_bigendian(void)
3857 {
3858 #if defined(TARGET_WORDS_BIGENDIAN)
3859 return true;
3860 #else
3861 return false;
3862 #endif
3863 }
3864
3865 #ifndef CONFIG_USER_ONLY
3866 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3867 {
3868 MemoryRegion*mr;
3869 hwaddr l = 1;
3870 bool res;
3871
3872 rcu_read_lock();
3873 mr = address_space_translate(&address_space_memory,
3874 phys_addr, &phys_addr, &l, false,
3875 MEMTXATTRS_UNSPECIFIED);
3876
3877 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3878 rcu_read_unlock();
3879 return res;
3880 }
3881
3882 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3883 {
3884 RAMBlock *block;
3885 int ret = 0;
3886
3887 rcu_read_lock();
3888 RAMBLOCK_FOREACH(block) {
3889 ret = func(block, opaque);
3890 if (ret) {
3891 break;
3892 }
3893 }
3894 rcu_read_unlock();
3895 return ret;
3896 }
3897
3898 /*
3899 * Unmap pages of memory from start to start+length such that
3900 * they a) read as 0, b) Trigger whatever fault mechanism
3901 * the OS provides for postcopy.
3902 * The pages must be unmapped by the end of the function.
3903 * Returns: 0 on success, none-0 on failure
3904 *
3905 */
3906 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3907 {
3908 int ret = -1;
3909
3910 uint8_t *host_startaddr = rb->host + start;
3911
3912 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3913 error_report("ram_block_discard_range: Unaligned start address: %p",
3914 host_startaddr);
3915 goto err;
3916 }
3917
3918 if ((start + length) <= rb->used_length) {
3919 bool need_madvise, need_fallocate;
3920 uint8_t *host_endaddr = host_startaddr + length;
3921 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3922 error_report("ram_block_discard_range: Unaligned end address: %p",
3923 host_endaddr);
3924 goto err;
3925 }
3926
3927 errno = ENOTSUP; /* If we are missing MADVISE etc */
3928
3929 /* The logic here is messy;
3930 * madvise DONTNEED fails for hugepages
3931 * fallocate works on hugepages and shmem
3932 */
3933 need_madvise = (rb->page_size == qemu_host_page_size);
3934 need_fallocate = rb->fd != -1;
3935 if (need_fallocate) {
3936 /* For a file, this causes the area of the file to be zero'd
3937 * if read, and for hugetlbfs also causes it to be unmapped
3938 * so a userfault will trigger.
3939 */
3940 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3941 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3942 start, length);
3943 if (ret) {
3944 ret = -errno;
3945 error_report("ram_block_discard_range: Failed to fallocate "
3946 "%s:%" PRIx64 " +%zx (%d)",
3947 rb->idstr, start, length, ret);
3948 goto err;
3949 }
3950 #else
3951 ret = -ENOSYS;
3952 error_report("ram_block_discard_range: fallocate not available/file"
3953 "%s:%" PRIx64 " +%zx (%d)",
3954 rb->idstr, start, length, ret);
3955 goto err;
3956 #endif
3957 }
3958 if (need_madvise) {
3959 /* For normal RAM this causes it to be unmapped,
3960 * for shared memory it causes the local mapping to disappear
3961 * and to fall back on the file contents (which we just
3962 * fallocate'd away).
3963 */
3964 #if defined(CONFIG_MADVISE)
3965 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3966 if (ret) {
3967 ret = -errno;
3968 error_report("ram_block_discard_range: Failed to discard range "
3969 "%s:%" PRIx64 " +%zx (%d)",
3970 rb->idstr, start, length, ret);
3971 goto err;
3972 }
3973 #else
3974 ret = -ENOSYS;
3975 error_report("ram_block_discard_range: MADVISE not available"
3976 "%s:%" PRIx64 " +%zx (%d)",
3977 rb->idstr, start, length, ret);
3978 goto err;
3979 #endif
3980 }
3981 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3982 need_madvise, need_fallocate, ret);
3983 } else {
3984 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3985 "/%zx/" RAM_ADDR_FMT")",
3986 rb->idstr, start, length, rb->used_length);
3987 }
3988
3989 err:
3990 return ret;
3991 }
3992
3993 bool ramblock_is_pmem(RAMBlock *rb)
3994 {
3995 return rb->flags & RAM_PMEM;
3996 }
3997
3998 #endif
3999
4000 void page_size_init(void)
4001 {
4002 /* NOTE: we can always suppose that qemu_host_page_size >=
4003 TARGET_PAGE_SIZE */
4004 if (qemu_host_page_size == 0) {
4005 qemu_host_page_size = qemu_real_host_page_size;
4006 }
4007 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4008 qemu_host_page_size = TARGET_PAGE_SIZE;
4009 }
4010 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4011 }
4012
4013 #if !defined(CONFIG_USER_ONLY)
4014
4015 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
4016 {
4017 if (start == end - 1) {
4018 qemu_printf("\t%3d ", start);
4019 } else {
4020 qemu_printf("\t%3d..%-3d ", start, end - 1);
4021 }
4022 qemu_printf(" skip=%d ", skip);
4023 if (ptr == PHYS_MAP_NODE_NIL) {
4024 qemu_printf(" ptr=NIL");
4025 } else if (!skip) {
4026 qemu_printf(" ptr=#%d", ptr);
4027 } else {
4028 qemu_printf(" ptr=[%d]", ptr);
4029 }
4030 qemu_printf("\n");
4031 }
4032
4033 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4034 int128_sub((size), int128_one())) : 0)
4035
4036 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4037 {
4038 int i;
4039
4040 qemu_printf(" Dispatch\n");
4041 qemu_printf(" Physical sections\n");
4042
4043 for (i = 0; i < d->map.sections_nb; ++i) {
4044 MemoryRegionSection *s = d->map.sections + i;
4045 const char *names[] = { " [unassigned]", " [not dirty]",
4046 " [ROM]", " [watch]" };
4047
4048 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4049 " %s%s%s%s%s",
4050 i,
4051 s->offset_within_address_space,
4052 s->offset_within_address_space + MR_SIZE(s->mr->size),
4053 s->mr->name ? s->mr->name : "(noname)",
4054 i < ARRAY_SIZE(names) ? names[i] : "",
4055 s->mr == root ? " [ROOT]" : "",
4056 s == d->mru_section ? " [MRU]" : "",
4057 s->mr->is_iommu ? " [iommu]" : "");
4058
4059 if (s->mr->alias) {
4060 qemu_printf(" alias=%s", s->mr->alias->name ?
4061 s->mr->alias->name : "noname");
4062 }
4063 qemu_printf("\n");
4064 }
4065
4066 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4067 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4068 for (i = 0; i < d->map.nodes_nb; ++i) {
4069 int j, jprev;
4070 PhysPageEntry prev;
4071 Node *n = d->map.nodes + i;
4072
4073 qemu_printf(" [%d]\n", i);
4074
4075 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4076 PhysPageEntry *pe = *n + j;
4077
4078 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4079 continue;
4080 }
4081
4082 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4083
4084 jprev = j;
4085 prev = *pe;
4086 }
4087
4088 if (jprev != ARRAY_SIZE(*n)) {
4089 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4090 }
4091 }
4092 }
4093
4094 #endif