]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
cputlb: Pass retaddr to tb_check_watchpoint
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "qemu/timer.h"
39 #include "qemu/config-file.h"
40 #include "qemu/error-report.h"
41 #include "qemu/qemu-print.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include "qemu.h"
44 #else /* !CONFIG_USER_ONLY */
45 #include "exec/memory.h"
46 #include "exec/ioport.h"
47 #include "sysemu/dma.h"
48 #include "sysemu/hostmem.h"
49 #include "sysemu/hw_accel.h"
50 #include "exec/address-spaces.h"
51 #include "sysemu/xen-mapcache.h"
52 #include "trace-root.h"
53
54 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
55 #include <linux/falloc.h>
56 #endif
57
58 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
63
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
67
68 #include "migration/vmstate.h"
69
70 #include "qemu/range.h"
71 #ifndef _WIN32
72 #include "qemu/mmap-alloc.h"
73 #endif
74
75 #include "monitor/monitor.h"
76
77 //#define DEBUG_SUBPAGE
78
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
83 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
84
85 static MemoryRegion *system_memory;
86 static MemoryRegion *system_io;
87
88 AddressSpace address_space_io;
89 AddressSpace address_space_memory;
90
91 static MemoryRegion io_mem_unassigned;
92 #endif
93
94 #ifdef TARGET_PAGE_BITS_VARY
95 int target_page_bits;
96 bool target_page_bits_decided;
97 #endif
98
99 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
100
101 /* current CPU in the current thread. It is only valid inside
102 cpu_exec() */
103 __thread CPUState *current_cpu;
104 /* 0 = Do not count executed instructions.
105 1 = Precise instruction counting.
106 2 = Adaptive rate instruction counting. */
107 int use_icount;
108
109 uintptr_t qemu_host_page_size;
110 intptr_t qemu_host_page_mask;
111
112 bool set_preferred_target_page_bits(int bits)
113 {
114 /* The target page size is the lowest common denominator for all
115 * the CPUs in the system, so we can only make it smaller, never
116 * larger. And we can't make it smaller once we've committed to
117 * a particular size.
118 */
119 #ifdef TARGET_PAGE_BITS_VARY
120 assert(bits >= TARGET_PAGE_BITS_MIN);
121 if (target_page_bits == 0 || target_page_bits > bits) {
122 if (target_page_bits_decided) {
123 return false;
124 }
125 target_page_bits = bits;
126 }
127 #endif
128 return true;
129 }
130
131 #if !defined(CONFIG_USER_ONLY)
132
133 static void finalize_target_page_bits(void)
134 {
135 #ifdef TARGET_PAGE_BITS_VARY
136 if (target_page_bits == 0) {
137 target_page_bits = TARGET_PAGE_BITS_MIN;
138 }
139 target_page_bits_decided = true;
140 #endif
141 }
142
143 typedef struct PhysPageEntry PhysPageEntry;
144
145 struct PhysPageEntry {
146 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
147 uint32_t skip : 6;
148 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
149 uint32_t ptr : 26;
150 };
151
152 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
153
154 /* Size of the L2 (and L3, etc) page tables. */
155 #define ADDR_SPACE_BITS 64
156
157 #define P_L2_BITS 9
158 #define P_L2_SIZE (1 << P_L2_BITS)
159
160 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
161
162 typedef PhysPageEntry Node[P_L2_SIZE];
163
164 typedef struct PhysPageMap {
165 struct rcu_head rcu;
166
167 unsigned sections_nb;
168 unsigned sections_nb_alloc;
169 unsigned nodes_nb;
170 unsigned nodes_nb_alloc;
171 Node *nodes;
172 MemoryRegionSection *sections;
173 } PhysPageMap;
174
175 struct AddressSpaceDispatch {
176 MemoryRegionSection *mru_section;
177 /* This is a multi-level map on the physical address space.
178 * The bottom level has pointers to MemoryRegionSections.
179 */
180 PhysPageEntry phys_map;
181 PhysPageMap map;
182 };
183
184 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
185 typedef struct subpage_t {
186 MemoryRegion iomem;
187 FlatView *fv;
188 hwaddr base;
189 uint16_t sub_section[];
190 } subpage_t;
191
192 #define PHYS_SECTION_UNASSIGNED 0
193
194 static void io_mem_init(void);
195 static void memory_map_init(void);
196 static void tcg_log_global_after_sync(MemoryListener *listener);
197 static void tcg_commit(MemoryListener *listener);
198
199 /**
200 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
201 * @cpu: the CPU whose AddressSpace this is
202 * @as: the AddressSpace itself
203 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
204 * @tcg_as_listener: listener for tracking changes to the AddressSpace
205 */
206 struct CPUAddressSpace {
207 CPUState *cpu;
208 AddressSpace *as;
209 struct AddressSpaceDispatch *memory_dispatch;
210 MemoryListener tcg_as_listener;
211 };
212
213 struct DirtyBitmapSnapshot {
214 ram_addr_t start;
215 ram_addr_t end;
216 unsigned long dirty[];
217 };
218
219 #endif
220
221 #if !defined(CONFIG_USER_ONLY)
222
223 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
224 {
225 static unsigned alloc_hint = 16;
226 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
227 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
228 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
229 alloc_hint = map->nodes_nb_alloc;
230 }
231 }
232
233 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
234 {
235 unsigned i;
236 uint32_t ret;
237 PhysPageEntry e;
238 PhysPageEntry *p;
239
240 ret = map->nodes_nb++;
241 p = map->nodes[ret];
242 assert(ret != PHYS_MAP_NODE_NIL);
243 assert(ret != map->nodes_nb_alloc);
244
245 e.skip = leaf ? 0 : 1;
246 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
247 for (i = 0; i < P_L2_SIZE; ++i) {
248 memcpy(&p[i], &e, sizeof(e));
249 }
250 return ret;
251 }
252
253 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
254 hwaddr *index, uint64_t *nb, uint16_t leaf,
255 int level)
256 {
257 PhysPageEntry *p;
258 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
259
260 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
261 lp->ptr = phys_map_node_alloc(map, level == 0);
262 }
263 p = map->nodes[lp->ptr];
264 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
265
266 while (*nb && lp < &p[P_L2_SIZE]) {
267 if ((*index & (step - 1)) == 0 && *nb >= step) {
268 lp->skip = 0;
269 lp->ptr = leaf;
270 *index += step;
271 *nb -= step;
272 } else {
273 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
274 }
275 ++lp;
276 }
277 }
278
279 static void phys_page_set(AddressSpaceDispatch *d,
280 hwaddr index, uint64_t nb,
281 uint16_t leaf)
282 {
283 /* Wildly overreserve - it doesn't matter much. */
284 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
285
286 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
287 }
288
289 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
290 * and update our entry so we can skip it and go directly to the destination.
291 */
292 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
293 {
294 unsigned valid_ptr = P_L2_SIZE;
295 int valid = 0;
296 PhysPageEntry *p;
297 int i;
298
299 if (lp->ptr == PHYS_MAP_NODE_NIL) {
300 return;
301 }
302
303 p = nodes[lp->ptr];
304 for (i = 0; i < P_L2_SIZE; i++) {
305 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
306 continue;
307 }
308
309 valid_ptr = i;
310 valid++;
311 if (p[i].skip) {
312 phys_page_compact(&p[i], nodes);
313 }
314 }
315
316 /* We can only compress if there's only one child. */
317 if (valid != 1) {
318 return;
319 }
320
321 assert(valid_ptr < P_L2_SIZE);
322
323 /* Don't compress if it won't fit in the # of bits we have. */
324 if (P_L2_LEVELS >= (1 << 6) &&
325 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
326 return;
327 }
328
329 lp->ptr = p[valid_ptr].ptr;
330 if (!p[valid_ptr].skip) {
331 /* If our only child is a leaf, make this a leaf. */
332 /* By design, we should have made this node a leaf to begin with so we
333 * should never reach here.
334 * But since it's so simple to handle this, let's do it just in case we
335 * change this rule.
336 */
337 lp->skip = 0;
338 } else {
339 lp->skip += p[valid_ptr].skip;
340 }
341 }
342
343 void address_space_dispatch_compact(AddressSpaceDispatch *d)
344 {
345 if (d->phys_map.skip) {
346 phys_page_compact(&d->phys_map, d->map.nodes);
347 }
348 }
349
350 static inline bool section_covers_addr(const MemoryRegionSection *section,
351 hwaddr addr)
352 {
353 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
354 * the section must cover the entire address space.
355 */
356 return int128_gethi(section->size) ||
357 range_covers_byte(section->offset_within_address_space,
358 int128_getlo(section->size), addr);
359 }
360
361 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
362 {
363 PhysPageEntry lp = d->phys_map, *p;
364 Node *nodes = d->map.nodes;
365 MemoryRegionSection *sections = d->map.sections;
366 hwaddr index = addr >> TARGET_PAGE_BITS;
367 int i;
368
369 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
370 if (lp.ptr == PHYS_MAP_NODE_NIL) {
371 return &sections[PHYS_SECTION_UNASSIGNED];
372 }
373 p = nodes[lp.ptr];
374 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
375 }
376
377 if (section_covers_addr(&sections[lp.ptr], addr)) {
378 return &sections[lp.ptr];
379 } else {
380 return &sections[PHYS_SECTION_UNASSIGNED];
381 }
382 }
383
384 /* Called from RCU critical section */
385 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
386 hwaddr addr,
387 bool resolve_subpage)
388 {
389 MemoryRegionSection *section = atomic_read(&d->mru_section);
390 subpage_t *subpage;
391
392 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
393 !section_covers_addr(section, addr)) {
394 section = phys_page_find(d, addr);
395 atomic_set(&d->mru_section, section);
396 }
397 if (resolve_subpage && section->mr->subpage) {
398 subpage = container_of(section->mr, subpage_t, iomem);
399 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
400 }
401 return section;
402 }
403
404 /* Called from RCU critical section */
405 static MemoryRegionSection *
406 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
407 hwaddr *plen, bool resolve_subpage)
408 {
409 MemoryRegionSection *section;
410 MemoryRegion *mr;
411 Int128 diff;
412
413 section = address_space_lookup_region(d, addr, resolve_subpage);
414 /* Compute offset within MemoryRegionSection */
415 addr -= section->offset_within_address_space;
416
417 /* Compute offset within MemoryRegion */
418 *xlat = addr + section->offset_within_region;
419
420 mr = section->mr;
421
422 /* MMIO registers can be expected to perform full-width accesses based only
423 * on their address, without considering adjacent registers that could
424 * decode to completely different MemoryRegions. When such registers
425 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
426 * regions overlap wildly. For this reason we cannot clamp the accesses
427 * here.
428 *
429 * If the length is small (as is the case for address_space_ldl/stl),
430 * everything works fine. If the incoming length is large, however,
431 * the caller really has to do the clamping through memory_access_size.
432 */
433 if (memory_region_is_ram(mr)) {
434 diff = int128_sub(section->size, int128_make64(addr));
435 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
436 }
437 return section;
438 }
439
440 /**
441 * address_space_translate_iommu - translate an address through an IOMMU
442 * memory region and then through the target address space.
443 *
444 * @iommu_mr: the IOMMU memory region that we start the translation from
445 * @addr: the address to be translated through the MMU
446 * @xlat: the translated address offset within the destination memory region.
447 * It cannot be %NULL.
448 * @plen_out: valid read/write length of the translated address. It
449 * cannot be %NULL.
450 * @page_mask_out: page mask for the translated address. This
451 * should only be meaningful for IOMMU translated
452 * addresses, since there may be huge pages that this bit
453 * would tell. It can be %NULL if we don't care about it.
454 * @is_write: whether the translation operation is for write
455 * @is_mmio: whether this can be MMIO, set true if it can
456 * @target_as: the address space targeted by the IOMMU
457 * @attrs: transaction attributes
458 *
459 * This function is called from RCU critical section. It is the common
460 * part of flatview_do_translate and address_space_translate_cached.
461 */
462 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
463 hwaddr *xlat,
464 hwaddr *plen_out,
465 hwaddr *page_mask_out,
466 bool is_write,
467 bool is_mmio,
468 AddressSpace **target_as,
469 MemTxAttrs attrs)
470 {
471 MemoryRegionSection *section;
472 hwaddr page_mask = (hwaddr)-1;
473
474 do {
475 hwaddr addr = *xlat;
476 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
477 int iommu_idx = 0;
478 IOMMUTLBEntry iotlb;
479
480 if (imrc->attrs_to_index) {
481 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
482 }
483
484 iotlb = imrc->translate(iommu_mr, addr, is_write ?
485 IOMMU_WO : IOMMU_RO, iommu_idx);
486
487 if (!(iotlb.perm & (1 << is_write))) {
488 goto unassigned;
489 }
490
491 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
492 | (addr & iotlb.addr_mask));
493 page_mask &= iotlb.addr_mask;
494 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
495 *target_as = iotlb.target_as;
496
497 section = address_space_translate_internal(
498 address_space_to_dispatch(iotlb.target_as), addr, xlat,
499 plen_out, is_mmio);
500
501 iommu_mr = memory_region_get_iommu(section->mr);
502 } while (unlikely(iommu_mr));
503
504 if (page_mask_out) {
505 *page_mask_out = page_mask;
506 }
507 return *section;
508
509 unassigned:
510 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
511 }
512
513 /**
514 * flatview_do_translate - translate an address in FlatView
515 *
516 * @fv: the flat view that we want to translate on
517 * @addr: the address to be translated in above address space
518 * @xlat: the translated address offset within memory region. It
519 * cannot be @NULL.
520 * @plen_out: valid read/write length of the translated address. It
521 * can be @NULL when we don't care about it.
522 * @page_mask_out: page mask for the translated address. This
523 * should only be meaningful for IOMMU translated
524 * addresses, since there may be huge pages that this bit
525 * would tell. It can be @NULL if we don't care about it.
526 * @is_write: whether the translation operation is for write
527 * @is_mmio: whether this can be MMIO, set true if it can
528 * @target_as: the address space targeted by the IOMMU
529 * @attrs: memory transaction attributes
530 *
531 * This function is called from RCU critical section
532 */
533 static MemoryRegionSection flatview_do_translate(FlatView *fv,
534 hwaddr addr,
535 hwaddr *xlat,
536 hwaddr *plen_out,
537 hwaddr *page_mask_out,
538 bool is_write,
539 bool is_mmio,
540 AddressSpace **target_as,
541 MemTxAttrs attrs)
542 {
543 MemoryRegionSection *section;
544 IOMMUMemoryRegion *iommu_mr;
545 hwaddr plen = (hwaddr)(-1);
546
547 if (!plen_out) {
548 plen_out = &plen;
549 }
550
551 section = address_space_translate_internal(
552 flatview_to_dispatch(fv), addr, xlat,
553 plen_out, is_mmio);
554
555 iommu_mr = memory_region_get_iommu(section->mr);
556 if (unlikely(iommu_mr)) {
557 return address_space_translate_iommu(iommu_mr, xlat,
558 plen_out, page_mask_out,
559 is_write, is_mmio,
560 target_as, attrs);
561 }
562 if (page_mask_out) {
563 /* Not behind an IOMMU, use default page size. */
564 *page_mask_out = ~TARGET_PAGE_MASK;
565 }
566
567 return *section;
568 }
569
570 /* Called from RCU critical section */
571 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
572 bool is_write, MemTxAttrs attrs)
573 {
574 MemoryRegionSection section;
575 hwaddr xlat, page_mask;
576
577 /*
578 * This can never be MMIO, and we don't really care about plen,
579 * but page mask.
580 */
581 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
582 NULL, &page_mask, is_write, false, &as,
583 attrs);
584
585 /* Illegal translation */
586 if (section.mr == &io_mem_unassigned) {
587 goto iotlb_fail;
588 }
589
590 /* Convert memory region offset into address space offset */
591 xlat += section.offset_within_address_space -
592 section.offset_within_region;
593
594 return (IOMMUTLBEntry) {
595 .target_as = as,
596 .iova = addr & ~page_mask,
597 .translated_addr = xlat & ~page_mask,
598 .addr_mask = page_mask,
599 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
600 .perm = IOMMU_RW,
601 };
602
603 iotlb_fail:
604 return (IOMMUTLBEntry) {0};
605 }
606
607 /* Called from RCU critical section */
608 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
609 hwaddr *plen, bool is_write,
610 MemTxAttrs attrs)
611 {
612 MemoryRegion *mr;
613 MemoryRegionSection section;
614 AddressSpace *as = NULL;
615
616 /* This can be MMIO, so setup MMIO bit. */
617 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
618 is_write, true, &as, attrs);
619 mr = section.mr;
620
621 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
622 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
623 *plen = MIN(page, *plen);
624 }
625
626 return mr;
627 }
628
629 typedef struct TCGIOMMUNotifier {
630 IOMMUNotifier n;
631 MemoryRegion *mr;
632 CPUState *cpu;
633 int iommu_idx;
634 bool active;
635 } TCGIOMMUNotifier;
636
637 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
638 {
639 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
640
641 if (!notifier->active) {
642 return;
643 }
644 tlb_flush(notifier->cpu);
645 notifier->active = false;
646 /* We leave the notifier struct on the list to avoid reallocating it later.
647 * Generally the number of IOMMUs a CPU deals with will be small.
648 * In any case we can't unregister the iommu notifier from a notify
649 * callback.
650 */
651 }
652
653 static void tcg_register_iommu_notifier(CPUState *cpu,
654 IOMMUMemoryRegion *iommu_mr,
655 int iommu_idx)
656 {
657 /* Make sure this CPU has an IOMMU notifier registered for this
658 * IOMMU/IOMMU index combination, so that we can flush its TLB
659 * when the IOMMU tells us the mappings we've cached have changed.
660 */
661 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
662 TCGIOMMUNotifier *notifier;
663 int i;
664
665 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
666 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
667 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
668 break;
669 }
670 }
671 if (i == cpu->iommu_notifiers->len) {
672 /* Not found, add a new entry at the end of the array */
673 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
674 notifier = g_new0(TCGIOMMUNotifier, 1);
675 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
676
677 notifier->mr = mr;
678 notifier->iommu_idx = iommu_idx;
679 notifier->cpu = cpu;
680 /* Rather than trying to register interest in the specific part
681 * of the iommu's address space that we've accessed and then
682 * expand it later as subsequent accesses touch more of it, we
683 * just register interest in the whole thing, on the assumption
684 * that iommu reconfiguration will be rare.
685 */
686 iommu_notifier_init(&notifier->n,
687 tcg_iommu_unmap_notify,
688 IOMMU_NOTIFIER_UNMAP,
689 0,
690 HWADDR_MAX,
691 iommu_idx);
692 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
693 }
694
695 if (!notifier->active) {
696 notifier->active = true;
697 }
698 }
699
700 static void tcg_iommu_free_notifier_list(CPUState *cpu)
701 {
702 /* Destroy the CPU's notifier list */
703 int i;
704 TCGIOMMUNotifier *notifier;
705
706 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
707 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
708 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
709 g_free(notifier);
710 }
711 g_array_free(cpu->iommu_notifiers, true);
712 }
713
714 /* Called from RCU critical section */
715 MemoryRegionSection *
716 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
717 hwaddr *xlat, hwaddr *plen,
718 MemTxAttrs attrs, int *prot)
719 {
720 MemoryRegionSection *section;
721 IOMMUMemoryRegion *iommu_mr;
722 IOMMUMemoryRegionClass *imrc;
723 IOMMUTLBEntry iotlb;
724 int iommu_idx;
725 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
726
727 for (;;) {
728 section = address_space_translate_internal(d, addr, &addr, plen, false);
729
730 iommu_mr = memory_region_get_iommu(section->mr);
731 if (!iommu_mr) {
732 break;
733 }
734
735 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
736
737 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
738 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
739 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
740 * doesn't short-cut its translation table walk.
741 */
742 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
743 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
744 | (addr & iotlb.addr_mask));
745 /* Update the caller's prot bits to remove permissions the IOMMU
746 * is giving us a failure response for. If we get down to no
747 * permissions left at all we can give up now.
748 */
749 if (!(iotlb.perm & IOMMU_RO)) {
750 *prot &= ~(PAGE_READ | PAGE_EXEC);
751 }
752 if (!(iotlb.perm & IOMMU_WO)) {
753 *prot &= ~PAGE_WRITE;
754 }
755
756 if (!*prot) {
757 goto translate_fail;
758 }
759
760 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
761 }
762
763 assert(!memory_region_is_iommu(section->mr));
764 *xlat = addr;
765 return section;
766
767 translate_fail:
768 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
769 }
770 #endif
771
772 #if !defined(CONFIG_USER_ONLY)
773
774 static int cpu_common_post_load(void *opaque, int version_id)
775 {
776 CPUState *cpu = opaque;
777
778 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
779 version_id is increased. */
780 cpu->interrupt_request &= ~0x01;
781 tlb_flush(cpu);
782
783 /* loadvm has just updated the content of RAM, bypassing the
784 * usual mechanisms that ensure we flush TBs for writes to
785 * memory we've translated code from. So we must flush all TBs,
786 * which will now be stale.
787 */
788 tb_flush(cpu);
789
790 return 0;
791 }
792
793 static int cpu_common_pre_load(void *opaque)
794 {
795 CPUState *cpu = opaque;
796
797 cpu->exception_index = -1;
798
799 return 0;
800 }
801
802 static bool cpu_common_exception_index_needed(void *opaque)
803 {
804 CPUState *cpu = opaque;
805
806 return tcg_enabled() && cpu->exception_index != -1;
807 }
808
809 static const VMStateDescription vmstate_cpu_common_exception_index = {
810 .name = "cpu_common/exception_index",
811 .version_id = 1,
812 .minimum_version_id = 1,
813 .needed = cpu_common_exception_index_needed,
814 .fields = (VMStateField[]) {
815 VMSTATE_INT32(exception_index, CPUState),
816 VMSTATE_END_OF_LIST()
817 }
818 };
819
820 static bool cpu_common_crash_occurred_needed(void *opaque)
821 {
822 CPUState *cpu = opaque;
823
824 return cpu->crash_occurred;
825 }
826
827 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
828 .name = "cpu_common/crash_occurred",
829 .version_id = 1,
830 .minimum_version_id = 1,
831 .needed = cpu_common_crash_occurred_needed,
832 .fields = (VMStateField[]) {
833 VMSTATE_BOOL(crash_occurred, CPUState),
834 VMSTATE_END_OF_LIST()
835 }
836 };
837
838 const VMStateDescription vmstate_cpu_common = {
839 .name = "cpu_common",
840 .version_id = 1,
841 .minimum_version_id = 1,
842 .pre_load = cpu_common_pre_load,
843 .post_load = cpu_common_post_load,
844 .fields = (VMStateField[]) {
845 VMSTATE_UINT32(halted, CPUState),
846 VMSTATE_UINT32(interrupt_request, CPUState),
847 VMSTATE_END_OF_LIST()
848 },
849 .subsections = (const VMStateDescription*[]) {
850 &vmstate_cpu_common_exception_index,
851 &vmstate_cpu_common_crash_occurred,
852 NULL
853 }
854 };
855
856 #endif
857
858 CPUState *qemu_get_cpu(int index)
859 {
860 CPUState *cpu;
861
862 CPU_FOREACH(cpu) {
863 if (cpu->cpu_index == index) {
864 return cpu;
865 }
866 }
867
868 return NULL;
869 }
870
871 #if !defined(CONFIG_USER_ONLY)
872 void cpu_address_space_init(CPUState *cpu, int asidx,
873 const char *prefix, MemoryRegion *mr)
874 {
875 CPUAddressSpace *newas;
876 AddressSpace *as = g_new0(AddressSpace, 1);
877 char *as_name;
878
879 assert(mr);
880 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
881 address_space_init(as, mr, as_name);
882 g_free(as_name);
883
884 /* Target code should have set num_ases before calling us */
885 assert(asidx < cpu->num_ases);
886
887 if (asidx == 0) {
888 /* address space 0 gets the convenience alias */
889 cpu->as = as;
890 }
891
892 /* KVM cannot currently support multiple address spaces. */
893 assert(asidx == 0 || !kvm_enabled());
894
895 if (!cpu->cpu_ases) {
896 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
897 }
898
899 newas = &cpu->cpu_ases[asidx];
900 newas->cpu = cpu;
901 newas->as = as;
902 if (tcg_enabled()) {
903 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
904 newas->tcg_as_listener.commit = tcg_commit;
905 memory_listener_register(&newas->tcg_as_listener, as);
906 }
907 }
908
909 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
910 {
911 /* Return the AddressSpace corresponding to the specified index */
912 return cpu->cpu_ases[asidx].as;
913 }
914 #endif
915
916 void cpu_exec_unrealizefn(CPUState *cpu)
917 {
918 CPUClass *cc = CPU_GET_CLASS(cpu);
919
920 cpu_list_remove(cpu);
921
922 if (cc->vmsd != NULL) {
923 vmstate_unregister(NULL, cc->vmsd, cpu);
924 }
925 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
926 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
927 }
928 #ifndef CONFIG_USER_ONLY
929 tcg_iommu_free_notifier_list(cpu);
930 #endif
931 }
932
933 Property cpu_common_props[] = {
934 #ifndef CONFIG_USER_ONLY
935 /* Create a memory property for softmmu CPU object,
936 * so users can wire up its memory. (This can't go in hw/core/cpu.c
937 * because that file is compiled only once for both user-mode
938 * and system builds.) The default if no link is set up is to use
939 * the system address space.
940 */
941 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
942 MemoryRegion *),
943 #endif
944 DEFINE_PROP_END_OF_LIST(),
945 };
946
947 void cpu_exec_initfn(CPUState *cpu)
948 {
949 cpu->as = NULL;
950 cpu->num_ases = 0;
951
952 #ifndef CONFIG_USER_ONLY
953 cpu->thread_id = qemu_get_thread_id();
954 cpu->memory = system_memory;
955 object_ref(OBJECT(cpu->memory));
956 #endif
957 }
958
959 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
960 {
961 CPUClass *cc = CPU_GET_CLASS(cpu);
962 static bool tcg_target_initialized;
963
964 cpu_list_add(cpu);
965
966 if (tcg_enabled() && !tcg_target_initialized) {
967 tcg_target_initialized = true;
968 cc->tcg_initialize();
969 }
970 tlb_init(cpu);
971
972 #ifndef CONFIG_USER_ONLY
973 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
974 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
975 }
976 if (cc->vmsd != NULL) {
977 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
978 }
979
980 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
981 #endif
982 }
983
984 const char *parse_cpu_option(const char *cpu_option)
985 {
986 ObjectClass *oc;
987 CPUClass *cc;
988 gchar **model_pieces;
989 const char *cpu_type;
990
991 model_pieces = g_strsplit(cpu_option, ",", 2);
992 if (!model_pieces[0]) {
993 error_report("-cpu option cannot be empty");
994 exit(1);
995 }
996
997 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
998 if (oc == NULL) {
999 error_report("unable to find CPU model '%s'", model_pieces[0]);
1000 g_strfreev(model_pieces);
1001 exit(EXIT_FAILURE);
1002 }
1003
1004 cpu_type = object_class_get_name(oc);
1005 cc = CPU_CLASS(oc);
1006 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1007 g_strfreev(model_pieces);
1008 return cpu_type;
1009 }
1010
1011 #if defined(CONFIG_USER_ONLY)
1012 void tb_invalidate_phys_addr(target_ulong addr)
1013 {
1014 mmap_lock();
1015 tb_invalidate_phys_page_range(addr, addr + 1);
1016 mmap_unlock();
1017 }
1018
1019 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1020 {
1021 tb_invalidate_phys_addr(pc);
1022 }
1023 #else
1024 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1025 {
1026 ram_addr_t ram_addr;
1027 MemoryRegion *mr;
1028 hwaddr l = 1;
1029
1030 if (!tcg_enabled()) {
1031 return;
1032 }
1033
1034 rcu_read_lock();
1035 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1036 if (!(memory_region_is_ram(mr)
1037 || memory_region_is_romd(mr))) {
1038 rcu_read_unlock();
1039 return;
1040 }
1041 ram_addr = memory_region_get_ram_addr(mr) + addr;
1042 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
1043 rcu_read_unlock();
1044 }
1045
1046 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1047 {
1048 MemTxAttrs attrs;
1049 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1050 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1051 if (phys != -1) {
1052 /* Locks grabbed by tb_invalidate_phys_addr */
1053 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1054 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1055 }
1056 }
1057 #endif
1058
1059 #ifndef CONFIG_USER_ONLY
1060 /* Add a watchpoint. */
1061 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1062 int flags, CPUWatchpoint **watchpoint)
1063 {
1064 CPUWatchpoint *wp;
1065
1066 /* forbid ranges which are empty or run off the end of the address space */
1067 if (len == 0 || (addr + len - 1) < addr) {
1068 error_report("tried to set invalid watchpoint at %"
1069 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1070 return -EINVAL;
1071 }
1072 wp = g_malloc(sizeof(*wp));
1073
1074 wp->vaddr = addr;
1075 wp->len = len;
1076 wp->flags = flags;
1077
1078 /* keep all GDB-injected watchpoints in front */
1079 if (flags & BP_GDB) {
1080 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1081 } else {
1082 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1083 }
1084
1085 tlb_flush_page(cpu, addr);
1086
1087 if (watchpoint)
1088 *watchpoint = wp;
1089 return 0;
1090 }
1091
1092 /* Remove a specific watchpoint. */
1093 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1094 int flags)
1095 {
1096 CPUWatchpoint *wp;
1097
1098 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1099 if (addr == wp->vaddr && len == wp->len
1100 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1101 cpu_watchpoint_remove_by_ref(cpu, wp);
1102 return 0;
1103 }
1104 }
1105 return -ENOENT;
1106 }
1107
1108 /* Remove a specific watchpoint by reference. */
1109 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1110 {
1111 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1112
1113 tlb_flush_page(cpu, watchpoint->vaddr);
1114
1115 g_free(watchpoint);
1116 }
1117
1118 /* Remove all matching watchpoints. */
1119 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1120 {
1121 CPUWatchpoint *wp, *next;
1122
1123 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1124 if (wp->flags & mask) {
1125 cpu_watchpoint_remove_by_ref(cpu, wp);
1126 }
1127 }
1128 }
1129
1130 /* Return true if this watchpoint address matches the specified
1131 * access (ie the address range covered by the watchpoint overlaps
1132 * partially or completely with the address range covered by the
1133 * access).
1134 */
1135 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1136 vaddr addr, vaddr len)
1137 {
1138 /* We know the lengths are non-zero, but a little caution is
1139 * required to avoid errors in the case where the range ends
1140 * exactly at the top of the address space and so addr + len
1141 * wraps round to zero.
1142 */
1143 vaddr wpend = wp->vaddr + wp->len - 1;
1144 vaddr addrend = addr + len - 1;
1145
1146 return !(addr > wpend || wp->vaddr > addrend);
1147 }
1148
1149 /* Return flags for watchpoints that match addr + prot. */
1150 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1151 {
1152 CPUWatchpoint *wp;
1153 int ret = 0;
1154
1155 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1156 if (watchpoint_address_matches(wp, addr, TARGET_PAGE_SIZE)) {
1157 ret |= wp->flags;
1158 }
1159 }
1160 return ret;
1161 }
1162 #endif /* !CONFIG_USER_ONLY */
1163
1164 /* Add a breakpoint. */
1165 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1166 CPUBreakpoint **breakpoint)
1167 {
1168 CPUBreakpoint *bp;
1169
1170 bp = g_malloc(sizeof(*bp));
1171
1172 bp->pc = pc;
1173 bp->flags = flags;
1174
1175 /* keep all GDB-injected breakpoints in front */
1176 if (flags & BP_GDB) {
1177 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1178 } else {
1179 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1180 }
1181
1182 breakpoint_invalidate(cpu, pc);
1183
1184 if (breakpoint) {
1185 *breakpoint = bp;
1186 }
1187 return 0;
1188 }
1189
1190 /* Remove a specific breakpoint. */
1191 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1192 {
1193 CPUBreakpoint *bp;
1194
1195 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1196 if (bp->pc == pc && bp->flags == flags) {
1197 cpu_breakpoint_remove_by_ref(cpu, bp);
1198 return 0;
1199 }
1200 }
1201 return -ENOENT;
1202 }
1203
1204 /* Remove a specific breakpoint by reference. */
1205 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1206 {
1207 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1208
1209 breakpoint_invalidate(cpu, breakpoint->pc);
1210
1211 g_free(breakpoint);
1212 }
1213
1214 /* Remove all matching breakpoints. */
1215 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1216 {
1217 CPUBreakpoint *bp, *next;
1218
1219 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1220 if (bp->flags & mask) {
1221 cpu_breakpoint_remove_by_ref(cpu, bp);
1222 }
1223 }
1224 }
1225
1226 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1227 CPU loop after each instruction */
1228 void cpu_single_step(CPUState *cpu, int enabled)
1229 {
1230 if (cpu->singlestep_enabled != enabled) {
1231 cpu->singlestep_enabled = enabled;
1232 if (kvm_enabled()) {
1233 kvm_update_guest_debug(cpu, 0);
1234 } else {
1235 /* must flush all the translated code to avoid inconsistencies */
1236 /* XXX: only flush what is necessary */
1237 tb_flush(cpu);
1238 }
1239 }
1240 }
1241
1242 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1243 {
1244 va_list ap;
1245 va_list ap2;
1246
1247 va_start(ap, fmt);
1248 va_copy(ap2, ap);
1249 fprintf(stderr, "qemu: fatal: ");
1250 vfprintf(stderr, fmt, ap);
1251 fprintf(stderr, "\n");
1252 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1253 if (qemu_log_separate()) {
1254 qemu_log_lock();
1255 qemu_log("qemu: fatal: ");
1256 qemu_log_vprintf(fmt, ap2);
1257 qemu_log("\n");
1258 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1259 qemu_log_flush();
1260 qemu_log_unlock();
1261 qemu_log_close();
1262 }
1263 va_end(ap2);
1264 va_end(ap);
1265 replay_finish();
1266 #if defined(CONFIG_USER_ONLY)
1267 {
1268 struct sigaction act;
1269 sigfillset(&act.sa_mask);
1270 act.sa_handler = SIG_DFL;
1271 act.sa_flags = 0;
1272 sigaction(SIGABRT, &act, NULL);
1273 }
1274 #endif
1275 abort();
1276 }
1277
1278 #if !defined(CONFIG_USER_ONLY)
1279 /* Called from RCU critical section */
1280 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1281 {
1282 RAMBlock *block;
1283
1284 block = atomic_rcu_read(&ram_list.mru_block);
1285 if (block && addr - block->offset < block->max_length) {
1286 return block;
1287 }
1288 RAMBLOCK_FOREACH(block) {
1289 if (addr - block->offset < block->max_length) {
1290 goto found;
1291 }
1292 }
1293
1294 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1295 abort();
1296
1297 found:
1298 /* It is safe to write mru_block outside the iothread lock. This
1299 * is what happens:
1300 *
1301 * mru_block = xxx
1302 * rcu_read_unlock()
1303 * xxx removed from list
1304 * rcu_read_lock()
1305 * read mru_block
1306 * mru_block = NULL;
1307 * call_rcu(reclaim_ramblock, xxx);
1308 * rcu_read_unlock()
1309 *
1310 * atomic_rcu_set is not needed here. The block was already published
1311 * when it was placed into the list. Here we're just making an extra
1312 * copy of the pointer.
1313 */
1314 ram_list.mru_block = block;
1315 return block;
1316 }
1317
1318 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1319 {
1320 CPUState *cpu;
1321 ram_addr_t start1;
1322 RAMBlock *block;
1323 ram_addr_t end;
1324
1325 assert(tcg_enabled());
1326 end = TARGET_PAGE_ALIGN(start + length);
1327 start &= TARGET_PAGE_MASK;
1328
1329 rcu_read_lock();
1330 block = qemu_get_ram_block(start);
1331 assert(block == qemu_get_ram_block(end - 1));
1332 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1333 CPU_FOREACH(cpu) {
1334 tlb_reset_dirty(cpu, start1, length);
1335 }
1336 rcu_read_unlock();
1337 }
1338
1339 /* Note: start and end must be within the same ram block. */
1340 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1341 ram_addr_t length,
1342 unsigned client)
1343 {
1344 DirtyMemoryBlocks *blocks;
1345 unsigned long end, page;
1346 bool dirty = false;
1347 RAMBlock *ramblock;
1348 uint64_t mr_offset, mr_size;
1349
1350 if (length == 0) {
1351 return false;
1352 }
1353
1354 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1355 page = start >> TARGET_PAGE_BITS;
1356
1357 rcu_read_lock();
1358
1359 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1360 ramblock = qemu_get_ram_block(start);
1361 /* Range sanity check on the ramblock */
1362 assert(start >= ramblock->offset &&
1363 start + length <= ramblock->offset + ramblock->used_length);
1364
1365 while (page < end) {
1366 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1367 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1368 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1369
1370 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1371 offset, num);
1372 page += num;
1373 }
1374
1375 mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
1376 mr_size = (end - page) << TARGET_PAGE_BITS;
1377 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1378
1379 rcu_read_unlock();
1380
1381 if (dirty && tcg_enabled()) {
1382 tlb_reset_dirty_range_all(start, length);
1383 }
1384
1385 return dirty;
1386 }
1387
1388 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1389 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1390 {
1391 DirtyMemoryBlocks *blocks;
1392 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1393 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1394 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1395 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1396 DirtyBitmapSnapshot *snap;
1397 unsigned long page, end, dest;
1398
1399 snap = g_malloc0(sizeof(*snap) +
1400 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1401 snap->start = first;
1402 snap->end = last;
1403
1404 page = first >> TARGET_PAGE_BITS;
1405 end = last >> TARGET_PAGE_BITS;
1406 dest = 0;
1407
1408 rcu_read_lock();
1409
1410 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1411
1412 while (page < end) {
1413 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1414 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1415 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1416
1417 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1418 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1419 offset >>= BITS_PER_LEVEL;
1420
1421 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1422 blocks->blocks[idx] + offset,
1423 num);
1424 page += num;
1425 dest += num >> BITS_PER_LEVEL;
1426 }
1427
1428 rcu_read_unlock();
1429
1430 if (tcg_enabled()) {
1431 tlb_reset_dirty_range_all(start, length);
1432 }
1433
1434 memory_region_clear_dirty_bitmap(mr, offset, length);
1435
1436 return snap;
1437 }
1438
1439 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1440 ram_addr_t start,
1441 ram_addr_t length)
1442 {
1443 unsigned long page, end;
1444
1445 assert(start >= snap->start);
1446 assert(start + length <= snap->end);
1447
1448 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1449 page = (start - snap->start) >> TARGET_PAGE_BITS;
1450
1451 while (page < end) {
1452 if (test_bit(page, snap->dirty)) {
1453 return true;
1454 }
1455 page++;
1456 }
1457 return false;
1458 }
1459
1460 /* Called from RCU critical section */
1461 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1462 MemoryRegionSection *section)
1463 {
1464 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1465 return section - d->map.sections;
1466 }
1467 #endif /* defined(CONFIG_USER_ONLY) */
1468
1469 #if !defined(CONFIG_USER_ONLY)
1470
1471 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1472 uint16_t section);
1473 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1474
1475 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1476 qemu_anon_ram_alloc;
1477
1478 /*
1479 * Set a custom physical guest memory alloator.
1480 * Accelerators with unusual needs may need this. Hopefully, we can
1481 * get rid of it eventually.
1482 */
1483 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1484 {
1485 phys_mem_alloc = alloc;
1486 }
1487
1488 static uint16_t phys_section_add(PhysPageMap *map,
1489 MemoryRegionSection *section)
1490 {
1491 /* The physical section number is ORed with a page-aligned
1492 * pointer to produce the iotlb entries. Thus it should
1493 * never overflow into the page-aligned value.
1494 */
1495 assert(map->sections_nb < TARGET_PAGE_SIZE);
1496
1497 if (map->sections_nb == map->sections_nb_alloc) {
1498 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1499 map->sections = g_renew(MemoryRegionSection, map->sections,
1500 map->sections_nb_alloc);
1501 }
1502 map->sections[map->sections_nb] = *section;
1503 memory_region_ref(section->mr);
1504 return map->sections_nb++;
1505 }
1506
1507 static void phys_section_destroy(MemoryRegion *mr)
1508 {
1509 bool have_sub_page = mr->subpage;
1510
1511 memory_region_unref(mr);
1512
1513 if (have_sub_page) {
1514 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1515 object_unref(OBJECT(&subpage->iomem));
1516 g_free(subpage);
1517 }
1518 }
1519
1520 static void phys_sections_free(PhysPageMap *map)
1521 {
1522 while (map->sections_nb > 0) {
1523 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1524 phys_section_destroy(section->mr);
1525 }
1526 g_free(map->sections);
1527 g_free(map->nodes);
1528 }
1529
1530 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1531 {
1532 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1533 subpage_t *subpage;
1534 hwaddr base = section->offset_within_address_space
1535 & TARGET_PAGE_MASK;
1536 MemoryRegionSection *existing = phys_page_find(d, base);
1537 MemoryRegionSection subsection = {
1538 .offset_within_address_space = base,
1539 .size = int128_make64(TARGET_PAGE_SIZE),
1540 };
1541 hwaddr start, end;
1542
1543 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1544
1545 if (!(existing->mr->subpage)) {
1546 subpage = subpage_init(fv, base);
1547 subsection.fv = fv;
1548 subsection.mr = &subpage->iomem;
1549 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1550 phys_section_add(&d->map, &subsection));
1551 } else {
1552 subpage = container_of(existing->mr, subpage_t, iomem);
1553 }
1554 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1555 end = start + int128_get64(section->size) - 1;
1556 subpage_register(subpage, start, end,
1557 phys_section_add(&d->map, section));
1558 }
1559
1560
1561 static void register_multipage(FlatView *fv,
1562 MemoryRegionSection *section)
1563 {
1564 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1565 hwaddr start_addr = section->offset_within_address_space;
1566 uint16_t section_index = phys_section_add(&d->map, section);
1567 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1568 TARGET_PAGE_BITS));
1569
1570 assert(num_pages);
1571 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1572 }
1573
1574 /*
1575 * The range in *section* may look like this:
1576 *
1577 * |s|PPPPPPP|s|
1578 *
1579 * where s stands for subpage and P for page.
1580 */
1581 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1582 {
1583 MemoryRegionSection remain = *section;
1584 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1585
1586 /* register first subpage */
1587 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1588 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1589 - remain.offset_within_address_space;
1590
1591 MemoryRegionSection now = remain;
1592 now.size = int128_min(int128_make64(left), now.size);
1593 register_subpage(fv, &now);
1594 if (int128_eq(remain.size, now.size)) {
1595 return;
1596 }
1597 remain.size = int128_sub(remain.size, now.size);
1598 remain.offset_within_address_space += int128_get64(now.size);
1599 remain.offset_within_region += int128_get64(now.size);
1600 }
1601
1602 /* register whole pages */
1603 if (int128_ge(remain.size, page_size)) {
1604 MemoryRegionSection now = remain;
1605 now.size = int128_and(now.size, int128_neg(page_size));
1606 register_multipage(fv, &now);
1607 if (int128_eq(remain.size, now.size)) {
1608 return;
1609 }
1610 remain.size = int128_sub(remain.size, now.size);
1611 remain.offset_within_address_space += int128_get64(now.size);
1612 remain.offset_within_region += int128_get64(now.size);
1613 }
1614
1615 /* register last subpage */
1616 register_subpage(fv, &remain);
1617 }
1618
1619 void qemu_flush_coalesced_mmio_buffer(void)
1620 {
1621 if (kvm_enabled())
1622 kvm_flush_coalesced_mmio_buffer();
1623 }
1624
1625 void qemu_mutex_lock_ramlist(void)
1626 {
1627 qemu_mutex_lock(&ram_list.mutex);
1628 }
1629
1630 void qemu_mutex_unlock_ramlist(void)
1631 {
1632 qemu_mutex_unlock(&ram_list.mutex);
1633 }
1634
1635 void ram_block_dump(Monitor *mon)
1636 {
1637 RAMBlock *block;
1638 char *psize;
1639
1640 rcu_read_lock();
1641 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1642 "Block Name", "PSize", "Offset", "Used", "Total");
1643 RAMBLOCK_FOREACH(block) {
1644 psize = size_to_str(block->page_size);
1645 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1646 " 0x%016" PRIx64 "\n", block->idstr, psize,
1647 (uint64_t)block->offset,
1648 (uint64_t)block->used_length,
1649 (uint64_t)block->max_length);
1650 g_free(psize);
1651 }
1652 rcu_read_unlock();
1653 }
1654
1655 #ifdef __linux__
1656 /*
1657 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1658 * may or may not name the same files / on the same filesystem now as
1659 * when we actually open and map them. Iterate over the file
1660 * descriptors instead, and use qemu_fd_getpagesize().
1661 */
1662 static int find_min_backend_pagesize(Object *obj, void *opaque)
1663 {
1664 long *hpsize_min = opaque;
1665
1666 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1667 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1668 long hpsize = host_memory_backend_pagesize(backend);
1669
1670 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1671 *hpsize_min = hpsize;
1672 }
1673 }
1674
1675 return 0;
1676 }
1677
1678 static int find_max_backend_pagesize(Object *obj, void *opaque)
1679 {
1680 long *hpsize_max = opaque;
1681
1682 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1683 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1684 long hpsize = host_memory_backend_pagesize(backend);
1685
1686 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1687 *hpsize_max = hpsize;
1688 }
1689 }
1690
1691 return 0;
1692 }
1693
1694 /*
1695 * TODO: We assume right now that all mapped host memory backends are
1696 * used as RAM, however some might be used for different purposes.
1697 */
1698 long qemu_minrampagesize(void)
1699 {
1700 long hpsize = LONG_MAX;
1701 long mainrampagesize;
1702 Object *memdev_root;
1703 MachineState *ms = MACHINE(qdev_get_machine());
1704
1705 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1706
1707 /* it's possible we have memory-backend objects with
1708 * hugepage-backed RAM. these may get mapped into system
1709 * address space via -numa parameters or memory hotplug
1710 * hooks. we want to take these into account, but we
1711 * also want to make sure these supported hugepage
1712 * sizes are applicable across the entire range of memory
1713 * we may boot from, so we take the min across all
1714 * backends, and assume normal pages in cases where a
1715 * backend isn't backed by hugepages.
1716 */
1717 memdev_root = object_resolve_path("/objects", NULL);
1718 if (memdev_root) {
1719 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1720 }
1721 if (hpsize == LONG_MAX) {
1722 /* No additional memory regions found ==> Report main RAM page size */
1723 return mainrampagesize;
1724 }
1725
1726 /* If NUMA is disabled or the NUMA nodes are not backed with a
1727 * memory-backend, then there is at least one node using "normal" RAM,
1728 * so if its page size is smaller we have got to report that size instead.
1729 */
1730 if (hpsize > mainrampagesize &&
1731 (ms->numa_state == NULL ||
1732 ms->numa_state->num_nodes == 0 ||
1733 ms->numa_state->nodes[0].node_memdev == NULL)) {
1734 static bool warned;
1735 if (!warned) {
1736 error_report("Huge page support disabled (n/a for main memory).");
1737 warned = true;
1738 }
1739 return mainrampagesize;
1740 }
1741
1742 return hpsize;
1743 }
1744
1745 long qemu_maxrampagesize(void)
1746 {
1747 long pagesize = qemu_mempath_getpagesize(mem_path);
1748 Object *memdev_root = object_resolve_path("/objects", NULL);
1749
1750 if (memdev_root) {
1751 object_child_foreach(memdev_root, find_max_backend_pagesize,
1752 &pagesize);
1753 }
1754 return pagesize;
1755 }
1756 #else
1757 long qemu_minrampagesize(void)
1758 {
1759 return getpagesize();
1760 }
1761 long qemu_maxrampagesize(void)
1762 {
1763 return getpagesize();
1764 }
1765 #endif
1766
1767 #ifdef CONFIG_POSIX
1768 static int64_t get_file_size(int fd)
1769 {
1770 int64_t size;
1771 #if defined(__linux__)
1772 struct stat st;
1773
1774 if (fstat(fd, &st) < 0) {
1775 return -errno;
1776 }
1777
1778 /* Special handling for devdax character devices */
1779 if (S_ISCHR(st.st_mode)) {
1780 g_autofree char *subsystem_path = NULL;
1781 g_autofree char *subsystem = NULL;
1782
1783 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1784 major(st.st_rdev), minor(st.st_rdev));
1785 subsystem = g_file_read_link(subsystem_path, NULL);
1786
1787 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1788 g_autofree char *size_path = NULL;
1789 g_autofree char *size_str = NULL;
1790
1791 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1792 major(st.st_rdev), minor(st.st_rdev));
1793
1794 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1795 return g_ascii_strtoll(size_str, NULL, 0);
1796 }
1797 }
1798 }
1799 #endif /* defined(__linux__) */
1800
1801 /* st.st_size may be zero for special files yet lseek(2) works */
1802 size = lseek(fd, 0, SEEK_END);
1803 if (size < 0) {
1804 return -errno;
1805 }
1806 return size;
1807 }
1808
1809 static int file_ram_open(const char *path,
1810 const char *region_name,
1811 bool *created,
1812 Error **errp)
1813 {
1814 char *filename;
1815 char *sanitized_name;
1816 char *c;
1817 int fd = -1;
1818
1819 *created = false;
1820 for (;;) {
1821 fd = open(path, O_RDWR);
1822 if (fd >= 0) {
1823 /* @path names an existing file, use it */
1824 break;
1825 }
1826 if (errno == ENOENT) {
1827 /* @path names a file that doesn't exist, create it */
1828 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1829 if (fd >= 0) {
1830 *created = true;
1831 break;
1832 }
1833 } else if (errno == EISDIR) {
1834 /* @path names a directory, create a file there */
1835 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1836 sanitized_name = g_strdup(region_name);
1837 for (c = sanitized_name; *c != '\0'; c++) {
1838 if (*c == '/') {
1839 *c = '_';
1840 }
1841 }
1842
1843 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1844 sanitized_name);
1845 g_free(sanitized_name);
1846
1847 fd = mkstemp(filename);
1848 if (fd >= 0) {
1849 unlink(filename);
1850 g_free(filename);
1851 break;
1852 }
1853 g_free(filename);
1854 }
1855 if (errno != EEXIST && errno != EINTR) {
1856 error_setg_errno(errp, errno,
1857 "can't open backing store %s for guest RAM",
1858 path);
1859 return -1;
1860 }
1861 /*
1862 * Try again on EINTR and EEXIST. The latter happens when
1863 * something else creates the file between our two open().
1864 */
1865 }
1866
1867 return fd;
1868 }
1869
1870 static void *file_ram_alloc(RAMBlock *block,
1871 ram_addr_t memory,
1872 int fd,
1873 bool truncate,
1874 Error **errp)
1875 {
1876 MachineState *ms = MACHINE(qdev_get_machine());
1877 void *area;
1878
1879 block->page_size = qemu_fd_getpagesize(fd);
1880 if (block->mr->align % block->page_size) {
1881 error_setg(errp, "alignment 0x%" PRIx64
1882 " must be multiples of page size 0x%zx",
1883 block->mr->align, block->page_size);
1884 return NULL;
1885 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1886 error_setg(errp, "alignment 0x%" PRIx64
1887 " must be a power of two", block->mr->align);
1888 return NULL;
1889 }
1890 block->mr->align = MAX(block->page_size, block->mr->align);
1891 #if defined(__s390x__)
1892 if (kvm_enabled()) {
1893 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1894 }
1895 #endif
1896
1897 if (memory < block->page_size) {
1898 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1899 "or larger than page size 0x%zx",
1900 memory, block->page_size);
1901 return NULL;
1902 }
1903
1904 memory = ROUND_UP(memory, block->page_size);
1905
1906 /*
1907 * ftruncate is not supported by hugetlbfs in older
1908 * hosts, so don't bother bailing out on errors.
1909 * If anything goes wrong with it under other filesystems,
1910 * mmap will fail.
1911 *
1912 * Do not truncate the non-empty backend file to avoid corrupting
1913 * the existing data in the file. Disabling shrinking is not
1914 * enough. For example, the current vNVDIMM implementation stores
1915 * the guest NVDIMM labels at the end of the backend file. If the
1916 * backend file is later extended, QEMU will not be able to find
1917 * those labels. Therefore, extending the non-empty backend file
1918 * is disabled as well.
1919 */
1920 if (truncate && ftruncate(fd, memory)) {
1921 perror("ftruncate");
1922 }
1923
1924 area = qemu_ram_mmap(fd, memory, block->mr->align,
1925 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1926 if (area == MAP_FAILED) {
1927 error_setg_errno(errp, errno,
1928 "unable to map backing store for guest RAM");
1929 return NULL;
1930 }
1931
1932 if (mem_prealloc) {
1933 os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
1934 if (errp && *errp) {
1935 qemu_ram_munmap(fd, area, memory);
1936 return NULL;
1937 }
1938 }
1939
1940 block->fd = fd;
1941 return area;
1942 }
1943 #endif
1944
1945 /* Allocate space within the ram_addr_t space that governs the
1946 * dirty bitmaps.
1947 * Called with the ramlist lock held.
1948 */
1949 static ram_addr_t find_ram_offset(ram_addr_t size)
1950 {
1951 RAMBlock *block, *next_block;
1952 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1953
1954 assert(size != 0); /* it would hand out same offset multiple times */
1955
1956 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1957 return 0;
1958 }
1959
1960 RAMBLOCK_FOREACH(block) {
1961 ram_addr_t candidate, next = RAM_ADDR_MAX;
1962
1963 /* Align blocks to start on a 'long' in the bitmap
1964 * which makes the bitmap sync'ing take the fast path.
1965 */
1966 candidate = block->offset + block->max_length;
1967 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1968
1969 /* Search for the closest following block
1970 * and find the gap.
1971 */
1972 RAMBLOCK_FOREACH(next_block) {
1973 if (next_block->offset >= candidate) {
1974 next = MIN(next, next_block->offset);
1975 }
1976 }
1977
1978 /* If it fits remember our place and remember the size
1979 * of gap, but keep going so that we might find a smaller
1980 * gap to fill so avoiding fragmentation.
1981 */
1982 if (next - candidate >= size && next - candidate < mingap) {
1983 offset = candidate;
1984 mingap = next - candidate;
1985 }
1986
1987 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1988 }
1989
1990 if (offset == RAM_ADDR_MAX) {
1991 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1992 (uint64_t)size);
1993 abort();
1994 }
1995
1996 trace_find_ram_offset(size, offset);
1997
1998 return offset;
1999 }
2000
2001 static unsigned long last_ram_page(void)
2002 {
2003 RAMBlock *block;
2004 ram_addr_t last = 0;
2005
2006 rcu_read_lock();
2007 RAMBLOCK_FOREACH(block) {
2008 last = MAX(last, block->offset + block->max_length);
2009 }
2010 rcu_read_unlock();
2011 return last >> TARGET_PAGE_BITS;
2012 }
2013
2014 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2015 {
2016 int ret;
2017
2018 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2019 if (!machine_dump_guest_core(current_machine)) {
2020 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2021 if (ret) {
2022 perror("qemu_madvise");
2023 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2024 "but dump_guest_core=off specified\n");
2025 }
2026 }
2027 }
2028
2029 const char *qemu_ram_get_idstr(RAMBlock *rb)
2030 {
2031 return rb->idstr;
2032 }
2033
2034 void *qemu_ram_get_host_addr(RAMBlock *rb)
2035 {
2036 return rb->host;
2037 }
2038
2039 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2040 {
2041 return rb->offset;
2042 }
2043
2044 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2045 {
2046 return rb->used_length;
2047 }
2048
2049 bool qemu_ram_is_shared(RAMBlock *rb)
2050 {
2051 return rb->flags & RAM_SHARED;
2052 }
2053
2054 /* Note: Only set at the start of postcopy */
2055 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2056 {
2057 return rb->flags & RAM_UF_ZEROPAGE;
2058 }
2059
2060 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2061 {
2062 rb->flags |= RAM_UF_ZEROPAGE;
2063 }
2064
2065 bool qemu_ram_is_migratable(RAMBlock *rb)
2066 {
2067 return rb->flags & RAM_MIGRATABLE;
2068 }
2069
2070 void qemu_ram_set_migratable(RAMBlock *rb)
2071 {
2072 rb->flags |= RAM_MIGRATABLE;
2073 }
2074
2075 void qemu_ram_unset_migratable(RAMBlock *rb)
2076 {
2077 rb->flags &= ~RAM_MIGRATABLE;
2078 }
2079
2080 /* Called with iothread lock held. */
2081 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2082 {
2083 RAMBlock *block;
2084
2085 assert(new_block);
2086 assert(!new_block->idstr[0]);
2087
2088 if (dev) {
2089 char *id = qdev_get_dev_path(dev);
2090 if (id) {
2091 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2092 g_free(id);
2093 }
2094 }
2095 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2096
2097 rcu_read_lock();
2098 RAMBLOCK_FOREACH(block) {
2099 if (block != new_block &&
2100 !strcmp(block->idstr, new_block->idstr)) {
2101 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2102 new_block->idstr);
2103 abort();
2104 }
2105 }
2106 rcu_read_unlock();
2107 }
2108
2109 /* Called with iothread lock held. */
2110 void qemu_ram_unset_idstr(RAMBlock *block)
2111 {
2112 /* FIXME: arch_init.c assumes that this is not called throughout
2113 * migration. Ignore the problem since hot-unplug during migration
2114 * does not work anyway.
2115 */
2116 if (block) {
2117 memset(block->idstr, 0, sizeof(block->idstr));
2118 }
2119 }
2120
2121 size_t qemu_ram_pagesize(RAMBlock *rb)
2122 {
2123 return rb->page_size;
2124 }
2125
2126 /* Returns the largest size of page in use */
2127 size_t qemu_ram_pagesize_largest(void)
2128 {
2129 RAMBlock *block;
2130 size_t largest = 0;
2131
2132 RAMBLOCK_FOREACH(block) {
2133 largest = MAX(largest, qemu_ram_pagesize(block));
2134 }
2135
2136 return largest;
2137 }
2138
2139 static int memory_try_enable_merging(void *addr, size_t len)
2140 {
2141 if (!machine_mem_merge(current_machine)) {
2142 /* disabled by the user */
2143 return 0;
2144 }
2145
2146 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2147 }
2148
2149 /* Only legal before guest might have detected the memory size: e.g. on
2150 * incoming migration, or right after reset.
2151 *
2152 * As memory core doesn't know how is memory accessed, it is up to
2153 * resize callback to update device state and/or add assertions to detect
2154 * misuse, if necessary.
2155 */
2156 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2157 {
2158 assert(block);
2159
2160 newsize = HOST_PAGE_ALIGN(newsize);
2161
2162 if (block->used_length == newsize) {
2163 return 0;
2164 }
2165
2166 if (!(block->flags & RAM_RESIZEABLE)) {
2167 error_setg_errno(errp, EINVAL,
2168 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2169 " in != 0x" RAM_ADDR_FMT, block->idstr,
2170 newsize, block->used_length);
2171 return -EINVAL;
2172 }
2173
2174 if (block->max_length < newsize) {
2175 error_setg_errno(errp, EINVAL,
2176 "Length too large: %s: 0x" RAM_ADDR_FMT
2177 " > 0x" RAM_ADDR_FMT, block->idstr,
2178 newsize, block->max_length);
2179 return -EINVAL;
2180 }
2181
2182 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2183 block->used_length = newsize;
2184 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2185 DIRTY_CLIENTS_ALL);
2186 memory_region_set_size(block->mr, newsize);
2187 if (block->resized) {
2188 block->resized(block->idstr, newsize, block->host);
2189 }
2190 return 0;
2191 }
2192
2193 /* Called with ram_list.mutex held */
2194 static void dirty_memory_extend(ram_addr_t old_ram_size,
2195 ram_addr_t new_ram_size)
2196 {
2197 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2198 DIRTY_MEMORY_BLOCK_SIZE);
2199 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2200 DIRTY_MEMORY_BLOCK_SIZE);
2201 int i;
2202
2203 /* Only need to extend if block count increased */
2204 if (new_num_blocks <= old_num_blocks) {
2205 return;
2206 }
2207
2208 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2209 DirtyMemoryBlocks *old_blocks;
2210 DirtyMemoryBlocks *new_blocks;
2211 int j;
2212
2213 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2214 new_blocks = g_malloc(sizeof(*new_blocks) +
2215 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2216
2217 if (old_num_blocks) {
2218 memcpy(new_blocks->blocks, old_blocks->blocks,
2219 old_num_blocks * sizeof(old_blocks->blocks[0]));
2220 }
2221
2222 for (j = old_num_blocks; j < new_num_blocks; j++) {
2223 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2224 }
2225
2226 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2227
2228 if (old_blocks) {
2229 g_free_rcu(old_blocks, rcu);
2230 }
2231 }
2232 }
2233
2234 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2235 {
2236 RAMBlock *block;
2237 RAMBlock *last_block = NULL;
2238 ram_addr_t old_ram_size, new_ram_size;
2239 Error *err = NULL;
2240
2241 old_ram_size = last_ram_page();
2242
2243 qemu_mutex_lock_ramlist();
2244 new_block->offset = find_ram_offset(new_block->max_length);
2245
2246 if (!new_block->host) {
2247 if (xen_enabled()) {
2248 xen_ram_alloc(new_block->offset, new_block->max_length,
2249 new_block->mr, &err);
2250 if (err) {
2251 error_propagate(errp, err);
2252 qemu_mutex_unlock_ramlist();
2253 return;
2254 }
2255 } else {
2256 new_block->host = phys_mem_alloc(new_block->max_length,
2257 &new_block->mr->align, shared);
2258 if (!new_block->host) {
2259 error_setg_errno(errp, errno,
2260 "cannot set up guest memory '%s'",
2261 memory_region_name(new_block->mr));
2262 qemu_mutex_unlock_ramlist();
2263 return;
2264 }
2265 memory_try_enable_merging(new_block->host, new_block->max_length);
2266 }
2267 }
2268
2269 new_ram_size = MAX(old_ram_size,
2270 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2271 if (new_ram_size > old_ram_size) {
2272 dirty_memory_extend(old_ram_size, new_ram_size);
2273 }
2274 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2275 * QLIST (which has an RCU-friendly variant) does not have insertion at
2276 * tail, so save the last element in last_block.
2277 */
2278 RAMBLOCK_FOREACH(block) {
2279 last_block = block;
2280 if (block->max_length < new_block->max_length) {
2281 break;
2282 }
2283 }
2284 if (block) {
2285 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2286 } else if (last_block) {
2287 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2288 } else { /* list is empty */
2289 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2290 }
2291 ram_list.mru_block = NULL;
2292
2293 /* Write list before version */
2294 smp_wmb();
2295 ram_list.version++;
2296 qemu_mutex_unlock_ramlist();
2297
2298 cpu_physical_memory_set_dirty_range(new_block->offset,
2299 new_block->used_length,
2300 DIRTY_CLIENTS_ALL);
2301
2302 if (new_block->host) {
2303 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2304 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2305 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2306 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2307 ram_block_notify_add(new_block->host, new_block->max_length);
2308 }
2309 }
2310
2311 #ifdef CONFIG_POSIX
2312 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2313 uint32_t ram_flags, int fd,
2314 Error **errp)
2315 {
2316 RAMBlock *new_block;
2317 Error *local_err = NULL;
2318 int64_t file_size;
2319
2320 /* Just support these ram flags by now. */
2321 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2322
2323 if (xen_enabled()) {
2324 error_setg(errp, "-mem-path not supported with Xen");
2325 return NULL;
2326 }
2327
2328 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2329 error_setg(errp,
2330 "host lacks kvm mmu notifiers, -mem-path unsupported");
2331 return NULL;
2332 }
2333
2334 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2335 /*
2336 * file_ram_alloc() needs to allocate just like
2337 * phys_mem_alloc, but we haven't bothered to provide
2338 * a hook there.
2339 */
2340 error_setg(errp,
2341 "-mem-path not supported with this accelerator");
2342 return NULL;
2343 }
2344
2345 size = HOST_PAGE_ALIGN(size);
2346 file_size = get_file_size(fd);
2347 if (file_size > 0 && file_size < size) {
2348 error_setg(errp, "backing store %s size 0x%" PRIx64
2349 " does not match 'size' option 0x" RAM_ADDR_FMT,
2350 mem_path, file_size, size);
2351 return NULL;
2352 }
2353
2354 new_block = g_malloc0(sizeof(*new_block));
2355 new_block->mr = mr;
2356 new_block->used_length = size;
2357 new_block->max_length = size;
2358 new_block->flags = ram_flags;
2359 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2360 if (!new_block->host) {
2361 g_free(new_block);
2362 return NULL;
2363 }
2364
2365 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2366 if (local_err) {
2367 g_free(new_block);
2368 error_propagate(errp, local_err);
2369 return NULL;
2370 }
2371 return new_block;
2372
2373 }
2374
2375
2376 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2377 uint32_t ram_flags, const char *mem_path,
2378 Error **errp)
2379 {
2380 int fd;
2381 bool created;
2382 RAMBlock *block;
2383
2384 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2385 if (fd < 0) {
2386 return NULL;
2387 }
2388
2389 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2390 if (!block) {
2391 if (created) {
2392 unlink(mem_path);
2393 }
2394 close(fd);
2395 return NULL;
2396 }
2397
2398 return block;
2399 }
2400 #endif
2401
2402 static
2403 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2404 void (*resized)(const char*,
2405 uint64_t length,
2406 void *host),
2407 void *host, bool resizeable, bool share,
2408 MemoryRegion *mr, Error **errp)
2409 {
2410 RAMBlock *new_block;
2411 Error *local_err = NULL;
2412
2413 size = HOST_PAGE_ALIGN(size);
2414 max_size = HOST_PAGE_ALIGN(max_size);
2415 new_block = g_malloc0(sizeof(*new_block));
2416 new_block->mr = mr;
2417 new_block->resized = resized;
2418 new_block->used_length = size;
2419 new_block->max_length = max_size;
2420 assert(max_size >= size);
2421 new_block->fd = -1;
2422 new_block->page_size = getpagesize();
2423 new_block->host = host;
2424 if (host) {
2425 new_block->flags |= RAM_PREALLOC;
2426 }
2427 if (resizeable) {
2428 new_block->flags |= RAM_RESIZEABLE;
2429 }
2430 ram_block_add(new_block, &local_err, share);
2431 if (local_err) {
2432 g_free(new_block);
2433 error_propagate(errp, local_err);
2434 return NULL;
2435 }
2436 return new_block;
2437 }
2438
2439 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2440 MemoryRegion *mr, Error **errp)
2441 {
2442 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2443 false, mr, errp);
2444 }
2445
2446 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2447 MemoryRegion *mr, Error **errp)
2448 {
2449 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2450 share, mr, errp);
2451 }
2452
2453 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2454 void (*resized)(const char*,
2455 uint64_t length,
2456 void *host),
2457 MemoryRegion *mr, Error **errp)
2458 {
2459 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2460 false, mr, errp);
2461 }
2462
2463 static void reclaim_ramblock(RAMBlock *block)
2464 {
2465 if (block->flags & RAM_PREALLOC) {
2466 ;
2467 } else if (xen_enabled()) {
2468 xen_invalidate_map_cache_entry(block->host);
2469 #ifndef _WIN32
2470 } else if (block->fd >= 0) {
2471 qemu_ram_munmap(block->fd, block->host, block->max_length);
2472 close(block->fd);
2473 #endif
2474 } else {
2475 qemu_anon_ram_free(block->host, block->max_length);
2476 }
2477 g_free(block);
2478 }
2479
2480 void qemu_ram_free(RAMBlock *block)
2481 {
2482 if (!block) {
2483 return;
2484 }
2485
2486 if (block->host) {
2487 ram_block_notify_remove(block->host, block->max_length);
2488 }
2489
2490 qemu_mutex_lock_ramlist();
2491 QLIST_REMOVE_RCU(block, next);
2492 ram_list.mru_block = NULL;
2493 /* Write list before version */
2494 smp_wmb();
2495 ram_list.version++;
2496 call_rcu(block, reclaim_ramblock, rcu);
2497 qemu_mutex_unlock_ramlist();
2498 }
2499
2500 #ifndef _WIN32
2501 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2502 {
2503 RAMBlock *block;
2504 ram_addr_t offset;
2505 int flags;
2506 void *area, *vaddr;
2507
2508 RAMBLOCK_FOREACH(block) {
2509 offset = addr - block->offset;
2510 if (offset < block->max_length) {
2511 vaddr = ramblock_ptr(block, offset);
2512 if (block->flags & RAM_PREALLOC) {
2513 ;
2514 } else if (xen_enabled()) {
2515 abort();
2516 } else {
2517 flags = MAP_FIXED;
2518 if (block->fd >= 0) {
2519 flags |= (block->flags & RAM_SHARED ?
2520 MAP_SHARED : MAP_PRIVATE);
2521 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2522 flags, block->fd, offset);
2523 } else {
2524 /*
2525 * Remap needs to match alloc. Accelerators that
2526 * set phys_mem_alloc never remap. If they did,
2527 * we'd need a remap hook here.
2528 */
2529 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2530
2531 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2532 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2533 flags, -1, 0);
2534 }
2535 if (area != vaddr) {
2536 error_report("Could not remap addr: "
2537 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2538 length, addr);
2539 exit(1);
2540 }
2541 memory_try_enable_merging(vaddr, length);
2542 qemu_ram_setup_dump(vaddr, length);
2543 }
2544 }
2545 }
2546 }
2547 #endif /* !_WIN32 */
2548
2549 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2550 * This should not be used for general purpose DMA. Use address_space_map
2551 * or address_space_rw instead. For local memory (e.g. video ram) that the
2552 * device owns, use memory_region_get_ram_ptr.
2553 *
2554 * Called within RCU critical section.
2555 */
2556 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2557 {
2558 RAMBlock *block = ram_block;
2559
2560 if (block == NULL) {
2561 block = qemu_get_ram_block(addr);
2562 addr -= block->offset;
2563 }
2564
2565 if (xen_enabled() && block->host == NULL) {
2566 /* We need to check if the requested address is in the RAM
2567 * because we don't want to map the entire memory in QEMU.
2568 * In that case just map until the end of the page.
2569 */
2570 if (block->offset == 0) {
2571 return xen_map_cache(addr, 0, 0, false);
2572 }
2573
2574 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2575 }
2576 return ramblock_ptr(block, addr);
2577 }
2578
2579 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2580 * but takes a size argument.
2581 *
2582 * Called within RCU critical section.
2583 */
2584 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2585 hwaddr *size, bool lock)
2586 {
2587 RAMBlock *block = ram_block;
2588 if (*size == 0) {
2589 return NULL;
2590 }
2591
2592 if (block == NULL) {
2593 block = qemu_get_ram_block(addr);
2594 addr -= block->offset;
2595 }
2596 *size = MIN(*size, block->max_length - addr);
2597
2598 if (xen_enabled() && block->host == NULL) {
2599 /* We need to check if the requested address is in the RAM
2600 * because we don't want to map the entire memory in QEMU.
2601 * In that case just map the requested area.
2602 */
2603 if (block->offset == 0) {
2604 return xen_map_cache(addr, *size, lock, lock);
2605 }
2606
2607 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2608 }
2609
2610 return ramblock_ptr(block, addr);
2611 }
2612
2613 /* Return the offset of a hostpointer within a ramblock */
2614 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2615 {
2616 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2617 assert((uintptr_t)host >= (uintptr_t)rb->host);
2618 assert(res < rb->max_length);
2619
2620 return res;
2621 }
2622
2623 /*
2624 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2625 * in that RAMBlock.
2626 *
2627 * ptr: Host pointer to look up
2628 * round_offset: If true round the result offset down to a page boundary
2629 * *ram_addr: set to result ram_addr
2630 * *offset: set to result offset within the RAMBlock
2631 *
2632 * Returns: RAMBlock (or NULL if not found)
2633 *
2634 * By the time this function returns, the returned pointer is not protected
2635 * by RCU anymore. If the caller is not within an RCU critical section and
2636 * does not hold the iothread lock, it must have other means of protecting the
2637 * pointer, such as a reference to the region that includes the incoming
2638 * ram_addr_t.
2639 */
2640 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2641 ram_addr_t *offset)
2642 {
2643 RAMBlock *block;
2644 uint8_t *host = ptr;
2645
2646 if (xen_enabled()) {
2647 ram_addr_t ram_addr;
2648 rcu_read_lock();
2649 ram_addr = xen_ram_addr_from_mapcache(ptr);
2650 block = qemu_get_ram_block(ram_addr);
2651 if (block) {
2652 *offset = ram_addr - block->offset;
2653 }
2654 rcu_read_unlock();
2655 return block;
2656 }
2657
2658 rcu_read_lock();
2659 block = atomic_rcu_read(&ram_list.mru_block);
2660 if (block && block->host && host - block->host < block->max_length) {
2661 goto found;
2662 }
2663
2664 RAMBLOCK_FOREACH(block) {
2665 /* This case append when the block is not mapped. */
2666 if (block->host == NULL) {
2667 continue;
2668 }
2669 if (host - block->host < block->max_length) {
2670 goto found;
2671 }
2672 }
2673
2674 rcu_read_unlock();
2675 return NULL;
2676
2677 found:
2678 *offset = (host - block->host);
2679 if (round_offset) {
2680 *offset &= TARGET_PAGE_MASK;
2681 }
2682 rcu_read_unlock();
2683 return block;
2684 }
2685
2686 /*
2687 * Finds the named RAMBlock
2688 *
2689 * name: The name of RAMBlock to find
2690 *
2691 * Returns: RAMBlock (or NULL if not found)
2692 */
2693 RAMBlock *qemu_ram_block_by_name(const char *name)
2694 {
2695 RAMBlock *block;
2696
2697 RAMBLOCK_FOREACH(block) {
2698 if (!strcmp(name, block->idstr)) {
2699 return block;
2700 }
2701 }
2702
2703 return NULL;
2704 }
2705
2706 /* Some of the softmmu routines need to translate from a host pointer
2707 (typically a TLB entry) back to a ram offset. */
2708 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2709 {
2710 RAMBlock *block;
2711 ram_addr_t offset;
2712
2713 block = qemu_ram_block_from_host(ptr, false, &offset);
2714 if (!block) {
2715 return RAM_ADDR_INVALID;
2716 }
2717
2718 return block->offset + offset;
2719 }
2720
2721 /* Generate a debug exception if a watchpoint has been hit. */
2722 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2723 MemTxAttrs attrs, int flags, uintptr_t ra)
2724 {
2725 CPUClass *cc = CPU_GET_CLASS(cpu);
2726 CPUWatchpoint *wp;
2727
2728 assert(tcg_enabled());
2729 if (cpu->watchpoint_hit) {
2730 /*
2731 * We re-entered the check after replacing the TB.
2732 * Now raise the debug interrupt so that it will
2733 * trigger after the current instruction.
2734 */
2735 qemu_mutex_lock_iothread();
2736 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2737 qemu_mutex_unlock_iothread();
2738 return;
2739 }
2740
2741 addr = cc->adjust_watchpoint_address(cpu, addr, len);
2742 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2743 if (watchpoint_address_matches(wp, addr, len)
2744 && (wp->flags & flags)) {
2745 if (flags == BP_MEM_READ) {
2746 wp->flags |= BP_WATCHPOINT_HIT_READ;
2747 } else {
2748 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2749 }
2750 wp->hitaddr = MAX(addr, wp->vaddr);
2751 wp->hitattrs = attrs;
2752 if (!cpu->watchpoint_hit) {
2753 if (wp->flags & BP_CPU &&
2754 !cc->debug_check_watchpoint(cpu, wp)) {
2755 wp->flags &= ~BP_WATCHPOINT_HIT;
2756 continue;
2757 }
2758 cpu->watchpoint_hit = wp;
2759
2760 mmap_lock();
2761 tb_check_watchpoint(cpu, ra);
2762 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2763 cpu->exception_index = EXCP_DEBUG;
2764 mmap_unlock();
2765 cpu_loop_exit_restore(cpu, ra);
2766 } else {
2767 /* Force execution of one insn next time. */
2768 cpu->cflags_next_tb = 1 | curr_cflags();
2769 mmap_unlock();
2770 if (ra) {
2771 cpu_restore_state(cpu, ra, true);
2772 }
2773 cpu_loop_exit_noexc(cpu);
2774 }
2775 }
2776 } else {
2777 wp->flags &= ~BP_WATCHPOINT_HIT;
2778 }
2779 }
2780 }
2781
2782 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2783 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2784 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2785 const uint8_t *buf, hwaddr len);
2786 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2787 bool is_write, MemTxAttrs attrs);
2788
2789 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2790 unsigned len, MemTxAttrs attrs)
2791 {
2792 subpage_t *subpage = opaque;
2793 uint8_t buf[8];
2794 MemTxResult res;
2795
2796 #if defined(DEBUG_SUBPAGE)
2797 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2798 subpage, len, addr);
2799 #endif
2800 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2801 if (res) {
2802 return res;
2803 }
2804 *data = ldn_p(buf, len);
2805 return MEMTX_OK;
2806 }
2807
2808 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2809 uint64_t value, unsigned len, MemTxAttrs attrs)
2810 {
2811 subpage_t *subpage = opaque;
2812 uint8_t buf[8];
2813
2814 #if defined(DEBUG_SUBPAGE)
2815 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2816 " value %"PRIx64"\n",
2817 __func__, subpage, len, addr, value);
2818 #endif
2819 stn_p(buf, len, value);
2820 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2821 }
2822
2823 static bool subpage_accepts(void *opaque, hwaddr addr,
2824 unsigned len, bool is_write,
2825 MemTxAttrs attrs)
2826 {
2827 subpage_t *subpage = opaque;
2828 #if defined(DEBUG_SUBPAGE)
2829 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2830 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2831 #endif
2832
2833 return flatview_access_valid(subpage->fv, addr + subpage->base,
2834 len, is_write, attrs);
2835 }
2836
2837 static const MemoryRegionOps subpage_ops = {
2838 .read_with_attrs = subpage_read,
2839 .write_with_attrs = subpage_write,
2840 .impl.min_access_size = 1,
2841 .impl.max_access_size = 8,
2842 .valid.min_access_size = 1,
2843 .valid.max_access_size = 8,
2844 .valid.accepts = subpage_accepts,
2845 .endianness = DEVICE_NATIVE_ENDIAN,
2846 };
2847
2848 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2849 uint16_t section)
2850 {
2851 int idx, eidx;
2852
2853 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2854 return -1;
2855 idx = SUBPAGE_IDX(start);
2856 eidx = SUBPAGE_IDX(end);
2857 #if defined(DEBUG_SUBPAGE)
2858 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2859 __func__, mmio, start, end, idx, eidx, section);
2860 #endif
2861 for (; idx <= eidx; idx++) {
2862 mmio->sub_section[idx] = section;
2863 }
2864
2865 return 0;
2866 }
2867
2868 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2869 {
2870 subpage_t *mmio;
2871
2872 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2873 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2874 mmio->fv = fv;
2875 mmio->base = base;
2876 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2877 NULL, TARGET_PAGE_SIZE);
2878 mmio->iomem.subpage = true;
2879 #if defined(DEBUG_SUBPAGE)
2880 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2881 mmio, base, TARGET_PAGE_SIZE);
2882 #endif
2883
2884 return mmio;
2885 }
2886
2887 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2888 {
2889 assert(fv);
2890 MemoryRegionSection section = {
2891 .fv = fv,
2892 .mr = mr,
2893 .offset_within_address_space = 0,
2894 .offset_within_region = 0,
2895 .size = int128_2_64(),
2896 };
2897
2898 return phys_section_add(map, &section);
2899 }
2900
2901 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2902 hwaddr index, MemTxAttrs attrs)
2903 {
2904 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2905 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2906 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2907 MemoryRegionSection *sections = d->map.sections;
2908
2909 return &sections[index & ~TARGET_PAGE_MASK];
2910 }
2911
2912 static void io_mem_init(void)
2913 {
2914 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2915 NULL, UINT64_MAX);
2916 }
2917
2918 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2919 {
2920 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2921 uint16_t n;
2922
2923 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2924 assert(n == PHYS_SECTION_UNASSIGNED);
2925
2926 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2927
2928 return d;
2929 }
2930
2931 void address_space_dispatch_free(AddressSpaceDispatch *d)
2932 {
2933 phys_sections_free(&d->map);
2934 g_free(d);
2935 }
2936
2937 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2938 {
2939 }
2940
2941 static void tcg_log_global_after_sync(MemoryListener *listener)
2942 {
2943 CPUAddressSpace *cpuas;
2944
2945 /* Wait for the CPU to end the current TB. This avoids the following
2946 * incorrect race:
2947 *
2948 * vCPU migration
2949 * ---------------------- -------------------------
2950 * TLB check -> slow path
2951 * notdirty_mem_write
2952 * write to RAM
2953 * mark dirty
2954 * clear dirty flag
2955 * TLB check -> fast path
2956 * read memory
2957 * write to RAM
2958 *
2959 * by pushing the migration thread's memory read after the vCPU thread has
2960 * written the memory.
2961 */
2962 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2963 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2964 }
2965
2966 static void tcg_commit(MemoryListener *listener)
2967 {
2968 CPUAddressSpace *cpuas;
2969 AddressSpaceDispatch *d;
2970
2971 assert(tcg_enabled());
2972 /* since each CPU stores ram addresses in its TLB cache, we must
2973 reset the modified entries */
2974 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2975 cpu_reloading_memory_map();
2976 /* The CPU and TLB are protected by the iothread lock.
2977 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2978 * may have split the RCU critical section.
2979 */
2980 d = address_space_to_dispatch(cpuas->as);
2981 atomic_rcu_set(&cpuas->memory_dispatch, d);
2982 tlb_flush(cpuas->cpu);
2983 }
2984
2985 static void memory_map_init(void)
2986 {
2987 system_memory = g_malloc(sizeof(*system_memory));
2988
2989 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2990 address_space_init(&address_space_memory, system_memory, "memory");
2991
2992 system_io = g_malloc(sizeof(*system_io));
2993 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2994 65536);
2995 address_space_init(&address_space_io, system_io, "I/O");
2996 }
2997
2998 MemoryRegion *get_system_memory(void)
2999 {
3000 return system_memory;
3001 }
3002
3003 MemoryRegion *get_system_io(void)
3004 {
3005 return system_io;
3006 }
3007
3008 #endif /* !defined(CONFIG_USER_ONLY) */
3009
3010 /* physical memory access (slow version, mainly for debug) */
3011 #if defined(CONFIG_USER_ONLY)
3012 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3013 uint8_t *buf, target_ulong len, int is_write)
3014 {
3015 int flags;
3016 target_ulong l, page;
3017 void * p;
3018
3019 while (len > 0) {
3020 page = addr & TARGET_PAGE_MASK;
3021 l = (page + TARGET_PAGE_SIZE) - addr;
3022 if (l > len)
3023 l = len;
3024 flags = page_get_flags(page);
3025 if (!(flags & PAGE_VALID))
3026 return -1;
3027 if (is_write) {
3028 if (!(flags & PAGE_WRITE))
3029 return -1;
3030 /* XXX: this code should not depend on lock_user */
3031 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3032 return -1;
3033 memcpy(p, buf, l);
3034 unlock_user(p, addr, l);
3035 } else {
3036 if (!(flags & PAGE_READ))
3037 return -1;
3038 /* XXX: this code should not depend on lock_user */
3039 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3040 return -1;
3041 memcpy(buf, p, l);
3042 unlock_user(p, addr, 0);
3043 }
3044 len -= l;
3045 buf += l;
3046 addr += l;
3047 }
3048 return 0;
3049 }
3050
3051 #else
3052
3053 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3054 hwaddr length)
3055 {
3056 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3057 addr += memory_region_get_ram_addr(mr);
3058
3059 /* No early return if dirty_log_mask is or becomes 0, because
3060 * cpu_physical_memory_set_dirty_range will still call
3061 * xen_modified_memory.
3062 */
3063 if (dirty_log_mask) {
3064 dirty_log_mask =
3065 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3066 }
3067 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3068 assert(tcg_enabled());
3069 tb_invalidate_phys_range(addr, addr + length);
3070 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3071 }
3072 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3073 }
3074
3075 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3076 {
3077 /*
3078 * In principle this function would work on other memory region types too,
3079 * but the ROM device use case is the only one where this operation is
3080 * necessary. Other memory regions should use the
3081 * address_space_read/write() APIs.
3082 */
3083 assert(memory_region_is_romd(mr));
3084
3085 invalidate_and_set_dirty(mr, addr, size);
3086 }
3087
3088 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3089 {
3090 unsigned access_size_max = mr->ops->valid.max_access_size;
3091
3092 /* Regions are assumed to support 1-4 byte accesses unless
3093 otherwise specified. */
3094 if (access_size_max == 0) {
3095 access_size_max = 4;
3096 }
3097
3098 /* Bound the maximum access by the alignment of the address. */
3099 if (!mr->ops->impl.unaligned) {
3100 unsigned align_size_max = addr & -addr;
3101 if (align_size_max != 0 && align_size_max < access_size_max) {
3102 access_size_max = align_size_max;
3103 }
3104 }
3105
3106 /* Don't attempt accesses larger than the maximum. */
3107 if (l > access_size_max) {
3108 l = access_size_max;
3109 }
3110 l = pow2floor(l);
3111
3112 return l;
3113 }
3114
3115 static bool prepare_mmio_access(MemoryRegion *mr)
3116 {
3117 bool unlocked = !qemu_mutex_iothread_locked();
3118 bool release_lock = false;
3119
3120 if (unlocked && mr->global_locking) {
3121 qemu_mutex_lock_iothread();
3122 unlocked = false;
3123 release_lock = true;
3124 }
3125 if (mr->flush_coalesced_mmio) {
3126 if (unlocked) {
3127 qemu_mutex_lock_iothread();
3128 }
3129 qemu_flush_coalesced_mmio_buffer();
3130 if (unlocked) {
3131 qemu_mutex_unlock_iothread();
3132 }
3133 }
3134
3135 return release_lock;
3136 }
3137
3138 /* Called within RCU critical section. */
3139 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3140 MemTxAttrs attrs,
3141 const uint8_t *buf,
3142 hwaddr len, hwaddr addr1,
3143 hwaddr l, MemoryRegion *mr)
3144 {
3145 uint8_t *ptr;
3146 uint64_t val;
3147 MemTxResult result = MEMTX_OK;
3148 bool release_lock = false;
3149
3150 for (;;) {
3151 if (!memory_access_is_direct(mr, true)) {
3152 release_lock |= prepare_mmio_access(mr);
3153 l = memory_access_size(mr, l, addr1);
3154 /* XXX: could force current_cpu to NULL to avoid
3155 potential bugs */
3156 val = ldn_he_p(buf, l);
3157 result |= memory_region_dispatch_write(mr, addr1, val,
3158 size_memop(l), attrs);
3159 } else {
3160 /* RAM case */
3161 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3162 memcpy(ptr, buf, l);
3163 invalidate_and_set_dirty(mr, addr1, l);
3164 }
3165
3166 if (release_lock) {
3167 qemu_mutex_unlock_iothread();
3168 release_lock = false;
3169 }
3170
3171 len -= l;
3172 buf += l;
3173 addr += l;
3174
3175 if (!len) {
3176 break;
3177 }
3178
3179 l = len;
3180 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3181 }
3182
3183 return result;
3184 }
3185
3186 /* Called from RCU critical section. */
3187 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3188 const uint8_t *buf, hwaddr len)
3189 {
3190 hwaddr l;
3191 hwaddr addr1;
3192 MemoryRegion *mr;
3193 MemTxResult result = MEMTX_OK;
3194
3195 l = len;
3196 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3197 result = flatview_write_continue(fv, addr, attrs, buf, len,
3198 addr1, l, mr);
3199
3200 return result;
3201 }
3202
3203 /* Called within RCU critical section. */
3204 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3205 MemTxAttrs attrs, uint8_t *buf,
3206 hwaddr len, hwaddr addr1, hwaddr l,
3207 MemoryRegion *mr)
3208 {
3209 uint8_t *ptr;
3210 uint64_t val;
3211 MemTxResult result = MEMTX_OK;
3212 bool release_lock = false;
3213
3214 for (;;) {
3215 if (!memory_access_is_direct(mr, false)) {
3216 /* I/O case */
3217 release_lock |= prepare_mmio_access(mr);
3218 l = memory_access_size(mr, l, addr1);
3219 result |= memory_region_dispatch_read(mr, addr1, &val,
3220 size_memop(l), attrs);
3221 stn_he_p(buf, l, val);
3222 } else {
3223 /* RAM case */
3224 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3225 memcpy(buf, ptr, l);
3226 }
3227
3228 if (release_lock) {
3229 qemu_mutex_unlock_iothread();
3230 release_lock = false;
3231 }
3232
3233 len -= l;
3234 buf += l;
3235 addr += l;
3236
3237 if (!len) {
3238 break;
3239 }
3240
3241 l = len;
3242 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3243 }
3244
3245 return result;
3246 }
3247
3248 /* Called from RCU critical section. */
3249 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3250 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3251 {
3252 hwaddr l;
3253 hwaddr addr1;
3254 MemoryRegion *mr;
3255
3256 l = len;
3257 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3258 return flatview_read_continue(fv, addr, attrs, buf, len,
3259 addr1, l, mr);
3260 }
3261
3262 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3263 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3264 {
3265 MemTxResult result = MEMTX_OK;
3266 FlatView *fv;
3267
3268 if (len > 0) {
3269 rcu_read_lock();
3270 fv = address_space_to_flatview(as);
3271 result = flatview_read(fv, addr, attrs, buf, len);
3272 rcu_read_unlock();
3273 }
3274
3275 return result;
3276 }
3277
3278 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3279 MemTxAttrs attrs,
3280 const uint8_t *buf, hwaddr len)
3281 {
3282 MemTxResult result = MEMTX_OK;
3283 FlatView *fv;
3284
3285 if (len > 0) {
3286 rcu_read_lock();
3287 fv = address_space_to_flatview(as);
3288 result = flatview_write(fv, addr, attrs, buf, len);
3289 rcu_read_unlock();
3290 }
3291
3292 return result;
3293 }
3294
3295 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3296 uint8_t *buf, hwaddr len, bool is_write)
3297 {
3298 if (is_write) {
3299 return address_space_write(as, addr, attrs, buf, len);
3300 } else {
3301 return address_space_read_full(as, addr, attrs, buf, len);
3302 }
3303 }
3304
3305 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3306 hwaddr len, int is_write)
3307 {
3308 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3309 buf, len, is_write);
3310 }
3311
3312 enum write_rom_type {
3313 WRITE_DATA,
3314 FLUSH_CACHE,
3315 };
3316
3317 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3318 hwaddr addr,
3319 MemTxAttrs attrs,
3320 const uint8_t *buf,
3321 hwaddr len,
3322 enum write_rom_type type)
3323 {
3324 hwaddr l;
3325 uint8_t *ptr;
3326 hwaddr addr1;
3327 MemoryRegion *mr;
3328
3329 rcu_read_lock();
3330 while (len > 0) {
3331 l = len;
3332 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3333
3334 if (!(memory_region_is_ram(mr) ||
3335 memory_region_is_romd(mr))) {
3336 l = memory_access_size(mr, l, addr1);
3337 } else {
3338 /* ROM/RAM case */
3339 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3340 switch (type) {
3341 case WRITE_DATA:
3342 memcpy(ptr, buf, l);
3343 invalidate_and_set_dirty(mr, addr1, l);
3344 break;
3345 case FLUSH_CACHE:
3346 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3347 break;
3348 }
3349 }
3350 len -= l;
3351 buf += l;
3352 addr += l;
3353 }
3354 rcu_read_unlock();
3355 return MEMTX_OK;
3356 }
3357
3358 /* used for ROM loading : can write in RAM and ROM */
3359 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3360 MemTxAttrs attrs,
3361 const uint8_t *buf, hwaddr len)
3362 {
3363 return address_space_write_rom_internal(as, addr, attrs,
3364 buf, len, WRITE_DATA);
3365 }
3366
3367 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3368 {
3369 /*
3370 * This function should do the same thing as an icache flush that was
3371 * triggered from within the guest. For TCG we are always cache coherent,
3372 * so there is no need to flush anything. For KVM / Xen we need to flush
3373 * the host's instruction cache at least.
3374 */
3375 if (tcg_enabled()) {
3376 return;
3377 }
3378
3379 address_space_write_rom_internal(&address_space_memory,
3380 start, MEMTXATTRS_UNSPECIFIED,
3381 NULL, len, FLUSH_CACHE);
3382 }
3383
3384 typedef struct {
3385 MemoryRegion *mr;
3386 void *buffer;
3387 hwaddr addr;
3388 hwaddr len;
3389 bool in_use;
3390 } BounceBuffer;
3391
3392 static BounceBuffer bounce;
3393
3394 typedef struct MapClient {
3395 QEMUBH *bh;
3396 QLIST_ENTRY(MapClient) link;
3397 } MapClient;
3398
3399 QemuMutex map_client_list_lock;
3400 static QLIST_HEAD(, MapClient) map_client_list
3401 = QLIST_HEAD_INITIALIZER(map_client_list);
3402
3403 static void cpu_unregister_map_client_do(MapClient *client)
3404 {
3405 QLIST_REMOVE(client, link);
3406 g_free(client);
3407 }
3408
3409 static void cpu_notify_map_clients_locked(void)
3410 {
3411 MapClient *client;
3412
3413 while (!QLIST_EMPTY(&map_client_list)) {
3414 client = QLIST_FIRST(&map_client_list);
3415 qemu_bh_schedule(client->bh);
3416 cpu_unregister_map_client_do(client);
3417 }
3418 }
3419
3420 void cpu_register_map_client(QEMUBH *bh)
3421 {
3422 MapClient *client = g_malloc(sizeof(*client));
3423
3424 qemu_mutex_lock(&map_client_list_lock);
3425 client->bh = bh;
3426 QLIST_INSERT_HEAD(&map_client_list, client, link);
3427 if (!atomic_read(&bounce.in_use)) {
3428 cpu_notify_map_clients_locked();
3429 }
3430 qemu_mutex_unlock(&map_client_list_lock);
3431 }
3432
3433 void cpu_exec_init_all(void)
3434 {
3435 qemu_mutex_init(&ram_list.mutex);
3436 /* The data structures we set up here depend on knowing the page size,
3437 * so no more changes can be made after this point.
3438 * In an ideal world, nothing we did before we had finished the
3439 * machine setup would care about the target page size, and we could
3440 * do this much later, rather than requiring board models to state
3441 * up front what their requirements are.
3442 */
3443 finalize_target_page_bits();
3444 io_mem_init();
3445 memory_map_init();
3446 qemu_mutex_init(&map_client_list_lock);
3447 }
3448
3449 void cpu_unregister_map_client(QEMUBH *bh)
3450 {
3451 MapClient *client;
3452
3453 qemu_mutex_lock(&map_client_list_lock);
3454 QLIST_FOREACH(client, &map_client_list, link) {
3455 if (client->bh == bh) {
3456 cpu_unregister_map_client_do(client);
3457 break;
3458 }
3459 }
3460 qemu_mutex_unlock(&map_client_list_lock);
3461 }
3462
3463 static void cpu_notify_map_clients(void)
3464 {
3465 qemu_mutex_lock(&map_client_list_lock);
3466 cpu_notify_map_clients_locked();
3467 qemu_mutex_unlock(&map_client_list_lock);
3468 }
3469
3470 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3471 bool is_write, MemTxAttrs attrs)
3472 {
3473 MemoryRegion *mr;
3474 hwaddr l, xlat;
3475
3476 while (len > 0) {
3477 l = len;
3478 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3479 if (!memory_access_is_direct(mr, is_write)) {
3480 l = memory_access_size(mr, l, addr);
3481 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3482 return false;
3483 }
3484 }
3485
3486 len -= l;
3487 addr += l;
3488 }
3489 return true;
3490 }
3491
3492 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3493 hwaddr len, bool is_write,
3494 MemTxAttrs attrs)
3495 {
3496 FlatView *fv;
3497 bool result;
3498
3499 rcu_read_lock();
3500 fv = address_space_to_flatview(as);
3501 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3502 rcu_read_unlock();
3503 return result;
3504 }
3505
3506 static hwaddr
3507 flatview_extend_translation(FlatView *fv, hwaddr addr,
3508 hwaddr target_len,
3509 MemoryRegion *mr, hwaddr base, hwaddr len,
3510 bool is_write, MemTxAttrs attrs)
3511 {
3512 hwaddr done = 0;
3513 hwaddr xlat;
3514 MemoryRegion *this_mr;
3515
3516 for (;;) {
3517 target_len -= len;
3518 addr += len;
3519 done += len;
3520 if (target_len == 0) {
3521 return done;
3522 }
3523
3524 len = target_len;
3525 this_mr = flatview_translate(fv, addr, &xlat,
3526 &len, is_write, attrs);
3527 if (this_mr != mr || xlat != base + done) {
3528 return done;
3529 }
3530 }
3531 }
3532
3533 /* Map a physical memory region into a host virtual address.
3534 * May map a subset of the requested range, given by and returned in *plen.
3535 * May return NULL if resources needed to perform the mapping are exhausted.
3536 * Use only for reads OR writes - not for read-modify-write operations.
3537 * Use cpu_register_map_client() to know when retrying the map operation is
3538 * likely to succeed.
3539 */
3540 void *address_space_map(AddressSpace *as,
3541 hwaddr addr,
3542 hwaddr *plen,
3543 bool is_write,
3544 MemTxAttrs attrs)
3545 {
3546 hwaddr len = *plen;
3547 hwaddr l, xlat;
3548 MemoryRegion *mr;
3549 void *ptr;
3550 FlatView *fv;
3551
3552 if (len == 0) {
3553 return NULL;
3554 }
3555
3556 l = len;
3557 rcu_read_lock();
3558 fv = address_space_to_flatview(as);
3559 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3560
3561 if (!memory_access_is_direct(mr, is_write)) {
3562 if (atomic_xchg(&bounce.in_use, true)) {
3563 rcu_read_unlock();
3564 return NULL;
3565 }
3566 /* Avoid unbounded allocations */
3567 l = MIN(l, TARGET_PAGE_SIZE);
3568 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3569 bounce.addr = addr;
3570 bounce.len = l;
3571
3572 memory_region_ref(mr);
3573 bounce.mr = mr;
3574 if (!is_write) {
3575 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3576 bounce.buffer, l);
3577 }
3578
3579 rcu_read_unlock();
3580 *plen = l;
3581 return bounce.buffer;
3582 }
3583
3584
3585 memory_region_ref(mr);
3586 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3587 l, is_write, attrs);
3588 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3589 rcu_read_unlock();
3590
3591 return ptr;
3592 }
3593
3594 /* Unmaps a memory region previously mapped by address_space_map().
3595 * Will also mark the memory as dirty if is_write == 1. access_len gives
3596 * the amount of memory that was actually read or written by the caller.
3597 */
3598 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3599 int is_write, hwaddr access_len)
3600 {
3601 if (buffer != bounce.buffer) {
3602 MemoryRegion *mr;
3603 ram_addr_t addr1;
3604
3605 mr = memory_region_from_host(buffer, &addr1);
3606 assert(mr != NULL);
3607 if (is_write) {
3608 invalidate_and_set_dirty(mr, addr1, access_len);
3609 }
3610 if (xen_enabled()) {
3611 xen_invalidate_map_cache_entry(buffer);
3612 }
3613 memory_region_unref(mr);
3614 return;
3615 }
3616 if (is_write) {
3617 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3618 bounce.buffer, access_len);
3619 }
3620 qemu_vfree(bounce.buffer);
3621 bounce.buffer = NULL;
3622 memory_region_unref(bounce.mr);
3623 atomic_mb_set(&bounce.in_use, false);
3624 cpu_notify_map_clients();
3625 }
3626
3627 void *cpu_physical_memory_map(hwaddr addr,
3628 hwaddr *plen,
3629 int is_write)
3630 {
3631 return address_space_map(&address_space_memory, addr, plen, is_write,
3632 MEMTXATTRS_UNSPECIFIED);
3633 }
3634
3635 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3636 int is_write, hwaddr access_len)
3637 {
3638 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3639 }
3640
3641 #define ARG1_DECL AddressSpace *as
3642 #define ARG1 as
3643 #define SUFFIX
3644 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3645 #define RCU_READ_LOCK(...) rcu_read_lock()
3646 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3647 #include "memory_ldst.inc.c"
3648
3649 int64_t address_space_cache_init(MemoryRegionCache *cache,
3650 AddressSpace *as,
3651 hwaddr addr,
3652 hwaddr len,
3653 bool is_write)
3654 {
3655 AddressSpaceDispatch *d;
3656 hwaddr l;
3657 MemoryRegion *mr;
3658
3659 assert(len > 0);
3660
3661 l = len;
3662 cache->fv = address_space_get_flatview(as);
3663 d = flatview_to_dispatch(cache->fv);
3664 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3665
3666 mr = cache->mrs.mr;
3667 memory_region_ref(mr);
3668 if (memory_access_is_direct(mr, is_write)) {
3669 /* We don't care about the memory attributes here as we're only
3670 * doing this if we found actual RAM, which behaves the same
3671 * regardless of attributes; so UNSPECIFIED is fine.
3672 */
3673 l = flatview_extend_translation(cache->fv, addr, len, mr,
3674 cache->xlat, l, is_write,
3675 MEMTXATTRS_UNSPECIFIED);
3676 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3677 } else {
3678 cache->ptr = NULL;
3679 }
3680
3681 cache->len = l;
3682 cache->is_write = is_write;
3683 return l;
3684 }
3685
3686 void address_space_cache_invalidate(MemoryRegionCache *cache,
3687 hwaddr addr,
3688 hwaddr access_len)
3689 {
3690 assert(cache->is_write);
3691 if (likely(cache->ptr)) {
3692 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3693 }
3694 }
3695
3696 void address_space_cache_destroy(MemoryRegionCache *cache)
3697 {
3698 if (!cache->mrs.mr) {
3699 return;
3700 }
3701
3702 if (xen_enabled()) {
3703 xen_invalidate_map_cache_entry(cache->ptr);
3704 }
3705 memory_region_unref(cache->mrs.mr);
3706 flatview_unref(cache->fv);
3707 cache->mrs.mr = NULL;
3708 cache->fv = NULL;
3709 }
3710
3711 /* Called from RCU critical section. This function has the same
3712 * semantics as address_space_translate, but it only works on a
3713 * predefined range of a MemoryRegion that was mapped with
3714 * address_space_cache_init.
3715 */
3716 static inline MemoryRegion *address_space_translate_cached(
3717 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3718 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3719 {
3720 MemoryRegionSection section;
3721 MemoryRegion *mr;
3722 IOMMUMemoryRegion *iommu_mr;
3723 AddressSpace *target_as;
3724
3725 assert(!cache->ptr);
3726 *xlat = addr + cache->xlat;
3727
3728 mr = cache->mrs.mr;
3729 iommu_mr = memory_region_get_iommu(mr);
3730 if (!iommu_mr) {
3731 /* MMIO region. */
3732 return mr;
3733 }
3734
3735 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3736 NULL, is_write, true,
3737 &target_as, attrs);
3738 return section.mr;
3739 }
3740
3741 /* Called from RCU critical section. address_space_read_cached uses this
3742 * out of line function when the target is an MMIO or IOMMU region.
3743 */
3744 void
3745 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3746 void *buf, hwaddr len)
3747 {
3748 hwaddr addr1, l;
3749 MemoryRegion *mr;
3750
3751 l = len;
3752 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3753 MEMTXATTRS_UNSPECIFIED);
3754 flatview_read_continue(cache->fv,
3755 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3756 addr1, l, mr);
3757 }
3758
3759 /* Called from RCU critical section. address_space_write_cached uses this
3760 * out of line function when the target is an MMIO or IOMMU region.
3761 */
3762 void
3763 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3764 const void *buf, hwaddr len)
3765 {
3766 hwaddr addr1, l;
3767 MemoryRegion *mr;
3768
3769 l = len;
3770 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3771 MEMTXATTRS_UNSPECIFIED);
3772 flatview_write_continue(cache->fv,
3773 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3774 addr1, l, mr);
3775 }
3776
3777 #define ARG1_DECL MemoryRegionCache *cache
3778 #define ARG1 cache
3779 #define SUFFIX _cached_slow
3780 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3781 #define RCU_READ_LOCK() ((void)0)
3782 #define RCU_READ_UNLOCK() ((void)0)
3783 #include "memory_ldst.inc.c"
3784
3785 /* virtual memory access for debug (includes writing to ROM) */
3786 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3787 uint8_t *buf, target_ulong len, int is_write)
3788 {
3789 hwaddr phys_addr;
3790 target_ulong l, page;
3791
3792 cpu_synchronize_state(cpu);
3793 while (len > 0) {
3794 int asidx;
3795 MemTxAttrs attrs;
3796
3797 page = addr & TARGET_PAGE_MASK;
3798 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3799 asidx = cpu_asidx_from_attrs(cpu, attrs);
3800 /* if no physical page mapped, return an error */
3801 if (phys_addr == -1)
3802 return -1;
3803 l = (page + TARGET_PAGE_SIZE) - addr;
3804 if (l > len)
3805 l = len;
3806 phys_addr += (addr & ~TARGET_PAGE_MASK);
3807 if (is_write) {
3808 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3809 attrs, buf, l);
3810 } else {
3811 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3812 attrs, buf, l, 0);
3813 }
3814 len -= l;
3815 buf += l;
3816 addr += l;
3817 }
3818 return 0;
3819 }
3820
3821 /*
3822 * Allows code that needs to deal with migration bitmaps etc to still be built
3823 * target independent.
3824 */
3825 size_t qemu_target_page_size(void)
3826 {
3827 return TARGET_PAGE_SIZE;
3828 }
3829
3830 int qemu_target_page_bits(void)
3831 {
3832 return TARGET_PAGE_BITS;
3833 }
3834
3835 int qemu_target_page_bits_min(void)
3836 {
3837 return TARGET_PAGE_BITS_MIN;
3838 }
3839 #endif
3840
3841 bool target_words_bigendian(void)
3842 {
3843 #if defined(TARGET_WORDS_BIGENDIAN)
3844 return true;
3845 #else
3846 return false;
3847 #endif
3848 }
3849
3850 #ifndef CONFIG_USER_ONLY
3851 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3852 {
3853 MemoryRegion*mr;
3854 hwaddr l = 1;
3855 bool res;
3856
3857 rcu_read_lock();
3858 mr = address_space_translate(&address_space_memory,
3859 phys_addr, &phys_addr, &l, false,
3860 MEMTXATTRS_UNSPECIFIED);
3861
3862 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3863 rcu_read_unlock();
3864 return res;
3865 }
3866
3867 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3868 {
3869 RAMBlock *block;
3870 int ret = 0;
3871
3872 rcu_read_lock();
3873 RAMBLOCK_FOREACH(block) {
3874 ret = func(block, opaque);
3875 if (ret) {
3876 break;
3877 }
3878 }
3879 rcu_read_unlock();
3880 return ret;
3881 }
3882
3883 /*
3884 * Unmap pages of memory from start to start+length such that
3885 * they a) read as 0, b) Trigger whatever fault mechanism
3886 * the OS provides for postcopy.
3887 * The pages must be unmapped by the end of the function.
3888 * Returns: 0 on success, none-0 on failure
3889 *
3890 */
3891 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3892 {
3893 int ret = -1;
3894
3895 uint8_t *host_startaddr = rb->host + start;
3896
3897 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3898 error_report("ram_block_discard_range: Unaligned start address: %p",
3899 host_startaddr);
3900 goto err;
3901 }
3902
3903 if ((start + length) <= rb->used_length) {
3904 bool need_madvise, need_fallocate;
3905 uint8_t *host_endaddr = host_startaddr + length;
3906 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3907 error_report("ram_block_discard_range: Unaligned end address: %p",
3908 host_endaddr);
3909 goto err;
3910 }
3911
3912 errno = ENOTSUP; /* If we are missing MADVISE etc */
3913
3914 /* The logic here is messy;
3915 * madvise DONTNEED fails for hugepages
3916 * fallocate works on hugepages and shmem
3917 */
3918 need_madvise = (rb->page_size == qemu_host_page_size);
3919 need_fallocate = rb->fd != -1;
3920 if (need_fallocate) {
3921 /* For a file, this causes the area of the file to be zero'd
3922 * if read, and for hugetlbfs also causes it to be unmapped
3923 * so a userfault will trigger.
3924 */
3925 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3926 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3927 start, length);
3928 if (ret) {
3929 ret = -errno;
3930 error_report("ram_block_discard_range: Failed to fallocate "
3931 "%s:%" PRIx64 " +%zx (%d)",
3932 rb->idstr, start, length, ret);
3933 goto err;
3934 }
3935 #else
3936 ret = -ENOSYS;
3937 error_report("ram_block_discard_range: fallocate not available/file"
3938 "%s:%" PRIx64 " +%zx (%d)",
3939 rb->idstr, start, length, ret);
3940 goto err;
3941 #endif
3942 }
3943 if (need_madvise) {
3944 /* For normal RAM this causes it to be unmapped,
3945 * for shared memory it causes the local mapping to disappear
3946 * and to fall back on the file contents (which we just
3947 * fallocate'd away).
3948 */
3949 #if defined(CONFIG_MADVISE)
3950 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3951 if (ret) {
3952 ret = -errno;
3953 error_report("ram_block_discard_range: Failed to discard range "
3954 "%s:%" PRIx64 " +%zx (%d)",
3955 rb->idstr, start, length, ret);
3956 goto err;
3957 }
3958 #else
3959 ret = -ENOSYS;
3960 error_report("ram_block_discard_range: MADVISE not available"
3961 "%s:%" PRIx64 " +%zx (%d)",
3962 rb->idstr, start, length, ret);
3963 goto err;
3964 #endif
3965 }
3966 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3967 need_madvise, need_fallocate, ret);
3968 } else {
3969 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3970 "/%zx/" RAM_ADDR_FMT")",
3971 rb->idstr, start, length, rb->used_length);
3972 }
3973
3974 err:
3975 return ret;
3976 }
3977
3978 bool ramblock_is_pmem(RAMBlock *rb)
3979 {
3980 return rb->flags & RAM_PMEM;
3981 }
3982
3983 #endif
3984
3985 void page_size_init(void)
3986 {
3987 /* NOTE: we can always suppose that qemu_host_page_size >=
3988 TARGET_PAGE_SIZE */
3989 if (qemu_host_page_size == 0) {
3990 qemu_host_page_size = qemu_real_host_page_size;
3991 }
3992 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3993 qemu_host_page_size = TARGET_PAGE_SIZE;
3994 }
3995 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3996 }
3997
3998 #if !defined(CONFIG_USER_ONLY)
3999
4000 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
4001 {
4002 if (start == end - 1) {
4003 qemu_printf("\t%3d ", start);
4004 } else {
4005 qemu_printf("\t%3d..%-3d ", start, end - 1);
4006 }
4007 qemu_printf(" skip=%d ", skip);
4008 if (ptr == PHYS_MAP_NODE_NIL) {
4009 qemu_printf(" ptr=NIL");
4010 } else if (!skip) {
4011 qemu_printf(" ptr=#%d", ptr);
4012 } else {
4013 qemu_printf(" ptr=[%d]", ptr);
4014 }
4015 qemu_printf("\n");
4016 }
4017
4018 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4019 int128_sub((size), int128_one())) : 0)
4020
4021 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4022 {
4023 int i;
4024
4025 qemu_printf(" Dispatch\n");
4026 qemu_printf(" Physical sections\n");
4027
4028 for (i = 0; i < d->map.sections_nb; ++i) {
4029 MemoryRegionSection *s = d->map.sections + i;
4030 const char *names[] = { " [unassigned]", " [not dirty]",
4031 " [ROM]", " [watch]" };
4032
4033 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4034 " %s%s%s%s%s",
4035 i,
4036 s->offset_within_address_space,
4037 s->offset_within_address_space + MR_SIZE(s->mr->size),
4038 s->mr->name ? s->mr->name : "(noname)",
4039 i < ARRAY_SIZE(names) ? names[i] : "",
4040 s->mr == root ? " [ROOT]" : "",
4041 s == d->mru_section ? " [MRU]" : "",
4042 s->mr->is_iommu ? " [iommu]" : "");
4043
4044 if (s->mr->alias) {
4045 qemu_printf(" alias=%s", s->mr->alias->name ?
4046 s->mr->alias->name : "noname");
4047 }
4048 qemu_printf("\n");
4049 }
4050
4051 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4052 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4053 for (i = 0; i < d->map.nodes_nb; ++i) {
4054 int j, jprev;
4055 PhysPageEntry prev;
4056 Node *n = d->map.nodes + i;
4057
4058 qemu_printf(" [%d]\n", i);
4059
4060 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4061 PhysPageEntry *pe = *n + j;
4062
4063 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4064 continue;
4065 }
4066
4067 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4068
4069 jprev = j;
4070 prev = *pe;
4071 }
4072
4073 if (jprev != ARRAY_SIZE(*n)) {
4074 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4075 }
4076 }
4077 }
4078
4079 #endif