]> git.proxmox.com Git - mirror_qemu.git/blob - fpu/softfloat-parts.c.inc
softfloat: Use _Generic instead of QEMU_GENERIC
[mirror_qemu.git] / fpu / softfloat-parts.c.inc
1 /*
2 * QEMU float support
3 *
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
10 * the BSD license
11 * GPL-v2-or-later
12 *
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
16 */
17
18 static void partsN(return_nan)(FloatPartsN *a, float_status *s)
19 {
20 switch (a->cls) {
21 case float_class_snan:
22 float_raise(float_flag_invalid, s);
23 if (s->default_nan_mode) {
24 parts_default_nan(a, s);
25 } else {
26 parts_silence_nan(a, s);
27 }
28 break;
29 case float_class_qnan:
30 if (s->default_nan_mode) {
31 parts_default_nan(a, s);
32 }
33 break;
34 default:
35 g_assert_not_reached();
36 }
37 }
38
39 static FloatPartsN *partsN(pick_nan)(FloatPartsN *a, FloatPartsN *b,
40 float_status *s)
41 {
42 if (is_snan(a->cls) || is_snan(b->cls)) {
43 float_raise(float_flag_invalid, s);
44 }
45
46 if (s->default_nan_mode) {
47 parts_default_nan(a, s);
48 } else {
49 int cmp = frac_cmp(a, b);
50 if (cmp == 0) {
51 cmp = a->sign < b->sign;
52 }
53
54 if (pickNaN(a->cls, b->cls, cmp > 0, s)) {
55 a = b;
56 }
57 if (is_snan(a->cls)) {
58 parts_silence_nan(a, s);
59 }
60 }
61 return a;
62 }
63
64 static FloatPartsN *partsN(pick_nan_muladd)(FloatPartsN *a, FloatPartsN *b,
65 FloatPartsN *c, float_status *s,
66 int ab_mask, int abc_mask)
67 {
68 int which;
69
70 if (unlikely(abc_mask & float_cmask_snan)) {
71 float_raise(float_flag_invalid, s);
72 }
73
74 which = pickNaNMulAdd(a->cls, b->cls, c->cls,
75 ab_mask == float_cmask_infzero, s);
76
77 if (s->default_nan_mode || which == 3) {
78 /*
79 * Note that this check is after pickNaNMulAdd so that function
80 * has an opportunity to set the Invalid flag for infzero.
81 */
82 parts_default_nan(a, s);
83 return a;
84 }
85
86 switch (which) {
87 case 0:
88 break;
89 case 1:
90 a = b;
91 break;
92 case 2:
93 a = c;
94 break;
95 default:
96 g_assert_not_reached();
97 }
98 if (is_snan(a->cls)) {
99 parts_silence_nan(a, s);
100 }
101 return a;
102 }
103
104 /*
105 * Canonicalize the FloatParts structure. Determine the class,
106 * unbias the exponent, and normalize the fraction.
107 */
108 static void partsN(canonicalize)(FloatPartsN *p, float_status *status,
109 const FloatFmt *fmt)
110 {
111 if (unlikely(p->exp == 0)) {
112 if (likely(frac_eqz(p))) {
113 p->cls = float_class_zero;
114 } else if (status->flush_inputs_to_zero) {
115 float_raise(float_flag_input_denormal, status);
116 p->cls = float_class_zero;
117 frac_clear(p);
118 } else {
119 int shift = frac_normalize(p);
120 p->cls = float_class_normal;
121 p->exp = fmt->frac_shift - fmt->exp_bias - shift + 1;
122 }
123 } else if (likely(p->exp < fmt->exp_max) || fmt->arm_althp) {
124 p->cls = float_class_normal;
125 p->exp -= fmt->exp_bias;
126 frac_shl(p, fmt->frac_shift);
127 p->frac_hi |= DECOMPOSED_IMPLICIT_BIT;
128 } else if (likely(frac_eqz(p))) {
129 p->cls = float_class_inf;
130 } else {
131 frac_shl(p, fmt->frac_shift);
132 p->cls = (parts_is_snan_frac(p->frac_hi, status)
133 ? float_class_snan : float_class_qnan);
134 }
135 }
136
137 /*
138 * Round and uncanonicalize a floating-point number by parts. There
139 * are FRAC_SHIFT bits that may require rounding at the bottom of the
140 * fraction; these bits will be removed. The exponent will be biased
141 * by EXP_BIAS and must be bounded by [EXP_MAX-1, 0].
142 */
143 static void partsN(uncanon_normal)(FloatPartsN *p, float_status *s,
144 const FloatFmt *fmt)
145 {
146 const int exp_max = fmt->exp_max;
147 const int frac_shift = fmt->frac_shift;
148 const uint64_t round_mask = fmt->round_mask;
149 const uint64_t frac_lsb = round_mask + 1;
150 const uint64_t frac_lsbm1 = round_mask ^ (round_mask >> 1);
151 const uint64_t roundeven_mask = round_mask | frac_lsb;
152 uint64_t inc;
153 bool overflow_norm = false;
154 int exp, flags = 0;
155
156 switch (s->float_rounding_mode) {
157 case float_round_nearest_even:
158 if (N > 64 && frac_lsb == 0) {
159 inc = ((p->frac_hi & 1) || (p->frac_lo & round_mask) != frac_lsbm1
160 ? frac_lsbm1 : 0);
161 } else {
162 inc = ((p->frac_lo & roundeven_mask) != frac_lsbm1
163 ? frac_lsbm1 : 0);
164 }
165 break;
166 case float_round_ties_away:
167 inc = frac_lsbm1;
168 break;
169 case float_round_to_zero:
170 overflow_norm = true;
171 inc = 0;
172 break;
173 case float_round_up:
174 inc = p->sign ? 0 : round_mask;
175 overflow_norm = p->sign;
176 break;
177 case float_round_down:
178 inc = p->sign ? round_mask : 0;
179 overflow_norm = !p->sign;
180 break;
181 case float_round_to_odd:
182 overflow_norm = true;
183 /* fall through */
184 case float_round_to_odd_inf:
185 if (N > 64 && frac_lsb == 0) {
186 inc = p->frac_hi & 1 ? 0 : round_mask;
187 } else {
188 inc = p->frac_lo & frac_lsb ? 0 : round_mask;
189 }
190 break;
191 default:
192 g_assert_not_reached();
193 }
194
195 exp = p->exp + fmt->exp_bias;
196 if (likely(exp > 0)) {
197 if (p->frac_lo & round_mask) {
198 flags |= float_flag_inexact;
199 if (frac_addi(p, p, inc)) {
200 frac_shr(p, 1);
201 p->frac_hi |= DECOMPOSED_IMPLICIT_BIT;
202 exp++;
203 }
204 p->frac_lo &= ~round_mask;
205 }
206
207 if (fmt->arm_althp) {
208 /* ARM Alt HP eschews Inf and NaN for a wider exponent. */
209 if (unlikely(exp > exp_max)) {
210 /* Overflow. Return the maximum normal. */
211 flags = float_flag_invalid;
212 exp = exp_max;
213 frac_allones(p);
214 p->frac_lo &= ~round_mask;
215 }
216 } else if (unlikely(exp >= exp_max)) {
217 flags |= float_flag_overflow | float_flag_inexact;
218 if (overflow_norm) {
219 exp = exp_max - 1;
220 frac_allones(p);
221 p->frac_lo &= ~round_mask;
222 } else {
223 p->cls = float_class_inf;
224 exp = exp_max;
225 frac_clear(p);
226 }
227 }
228 frac_shr(p, frac_shift);
229 } else if (s->flush_to_zero) {
230 flags |= float_flag_output_denormal;
231 p->cls = float_class_zero;
232 exp = 0;
233 frac_clear(p);
234 } else {
235 bool is_tiny = s->tininess_before_rounding || exp < 0;
236
237 if (!is_tiny) {
238 FloatPartsN discard;
239 is_tiny = !frac_addi(&discard, p, inc);
240 }
241
242 frac_shrjam(p, 1 - exp);
243
244 if (p->frac_lo & round_mask) {
245 /* Need to recompute round-to-even/round-to-odd. */
246 switch (s->float_rounding_mode) {
247 case float_round_nearest_even:
248 if (N > 64 && frac_lsb == 0) {
249 inc = ((p->frac_hi & 1) ||
250 (p->frac_lo & round_mask) != frac_lsbm1
251 ? frac_lsbm1 : 0);
252 } else {
253 inc = ((p->frac_lo & roundeven_mask) != frac_lsbm1
254 ? frac_lsbm1 : 0);
255 }
256 break;
257 case float_round_to_odd:
258 case float_round_to_odd_inf:
259 if (N > 64 && frac_lsb == 0) {
260 inc = p->frac_hi & 1 ? 0 : round_mask;
261 } else {
262 inc = p->frac_lo & frac_lsb ? 0 : round_mask;
263 }
264 break;
265 default:
266 break;
267 }
268 flags |= float_flag_inexact;
269 frac_addi(p, p, inc);
270 p->frac_lo &= ~round_mask;
271 }
272
273 exp = (p->frac_hi & DECOMPOSED_IMPLICIT_BIT) != 0;
274 frac_shr(p, frac_shift);
275
276 if (is_tiny && (flags & float_flag_inexact)) {
277 flags |= float_flag_underflow;
278 }
279 if (exp == 0 && frac_eqz(p)) {
280 p->cls = float_class_zero;
281 }
282 }
283 p->exp = exp;
284 float_raise(flags, s);
285 }
286
287 static void partsN(uncanon)(FloatPartsN *p, float_status *s,
288 const FloatFmt *fmt)
289 {
290 if (likely(p->cls == float_class_normal)) {
291 parts_uncanon_normal(p, s, fmt);
292 } else {
293 switch (p->cls) {
294 case float_class_zero:
295 p->exp = 0;
296 frac_clear(p);
297 return;
298 case float_class_inf:
299 g_assert(!fmt->arm_althp);
300 p->exp = fmt->exp_max;
301 frac_clear(p);
302 return;
303 case float_class_qnan:
304 case float_class_snan:
305 g_assert(!fmt->arm_althp);
306 p->exp = fmt->exp_max;
307 frac_shr(p, fmt->frac_shift);
308 return;
309 default:
310 break;
311 }
312 g_assert_not_reached();
313 }
314 }
315
316 /*
317 * Returns the result of adding or subtracting the values of the
318 * floating-point values `a' and `b'. The operation is performed
319 * according to the IEC/IEEE Standard for Binary Floating-Point
320 * Arithmetic.
321 */
322 static FloatPartsN *partsN(addsub)(FloatPartsN *a, FloatPartsN *b,
323 float_status *s, bool subtract)
324 {
325 bool b_sign = b->sign ^ subtract;
326 int ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
327
328 if (a->sign != b_sign) {
329 /* Subtraction */
330 if (likely(ab_mask == float_cmask_normal)) {
331 if (parts_sub_normal(a, b)) {
332 return a;
333 }
334 /* Subtract was exact, fall through to set sign. */
335 ab_mask = float_cmask_zero;
336 }
337
338 if (ab_mask == float_cmask_zero) {
339 a->sign = s->float_rounding_mode == float_round_down;
340 return a;
341 }
342
343 if (unlikely(ab_mask & float_cmask_anynan)) {
344 goto p_nan;
345 }
346
347 if (ab_mask & float_cmask_inf) {
348 if (a->cls != float_class_inf) {
349 /* N - Inf */
350 goto return_b;
351 }
352 if (b->cls != float_class_inf) {
353 /* Inf - N */
354 return a;
355 }
356 /* Inf - Inf */
357 float_raise(float_flag_invalid, s);
358 parts_default_nan(a, s);
359 return a;
360 }
361 } else {
362 /* Addition */
363 if (likely(ab_mask == float_cmask_normal)) {
364 parts_add_normal(a, b);
365 return a;
366 }
367
368 if (ab_mask == float_cmask_zero) {
369 return a;
370 }
371
372 if (unlikely(ab_mask & float_cmask_anynan)) {
373 goto p_nan;
374 }
375
376 if (ab_mask & float_cmask_inf) {
377 a->cls = float_class_inf;
378 return a;
379 }
380 }
381
382 if (b->cls == float_class_zero) {
383 g_assert(a->cls == float_class_normal);
384 return a;
385 }
386
387 g_assert(a->cls == float_class_zero);
388 g_assert(b->cls == float_class_normal);
389 return_b:
390 b->sign = b_sign;
391 return b;
392
393 p_nan:
394 return parts_pick_nan(a, b, s);
395 }
396
397 /*
398 * Returns the result of multiplying the floating-point values `a' and
399 * `b'. The operation is performed according to the IEC/IEEE Standard
400 * for Binary Floating-Point Arithmetic.
401 */
402 static FloatPartsN *partsN(mul)(FloatPartsN *a, FloatPartsN *b,
403 float_status *s)
404 {
405 int ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
406 bool sign = a->sign ^ b->sign;
407
408 if (likely(ab_mask == float_cmask_normal)) {
409 FloatPartsW tmp;
410
411 frac_mulw(&tmp, a, b);
412 frac_truncjam(a, &tmp);
413
414 a->exp += b->exp + 1;
415 if (!(a->frac_hi & DECOMPOSED_IMPLICIT_BIT)) {
416 frac_add(a, a, a);
417 a->exp -= 1;
418 }
419
420 a->sign = sign;
421 return a;
422 }
423
424 /* Inf * Zero == NaN */
425 if (unlikely(ab_mask == float_cmask_infzero)) {
426 float_raise(float_flag_invalid, s);
427 parts_default_nan(a, s);
428 return a;
429 }
430
431 if (unlikely(ab_mask & float_cmask_anynan)) {
432 return parts_pick_nan(a, b, s);
433 }
434
435 /* Multiply by 0 or Inf */
436 if (ab_mask & float_cmask_inf) {
437 a->cls = float_class_inf;
438 a->sign = sign;
439 return a;
440 }
441
442 g_assert(ab_mask & float_cmask_zero);
443 a->cls = float_class_zero;
444 a->sign = sign;
445 return a;
446 }
447
448 /*
449 * Returns the result of multiplying the floating-point values `a' and
450 * `b' then adding 'c', with no intermediate rounding step after the
451 * multiplication. The operation is performed according to the
452 * IEC/IEEE Standard for Binary Floating-Point Arithmetic 754-2008.
453 * The flags argument allows the caller to select negation of the
454 * addend, the intermediate product, or the final result. (The
455 * difference between this and having the caller do a separate
456 * negation is that negating externally will flip the sign bit on NaNs.)
457 *
458 * Requires A and C extracted into a double-sized structure to provide the
459 * extra space for the widening multiply.
460 */
461 static FloatPartsN *partsN(muladd)(FloatPartsN *a, FloatPartsN *b,
462 FloatPartsN *c, int flags, float_status *s)
463 {
464 int ab_mask, abc_mask;
465 FloatPartsW p_widen, c_widen;
466
467 ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
468 abc_mask = float_cmask(c->cls) | ab_mask;
469
470 /*
471 * It is implementation-defined whether the cases of (0,inf,qnan)
472 * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
473 * they return if they do), so we have to hand this information
474 * off to the target-specific pick-a-NaN routine.
475 */
476 if (unlikely(abc_mask & float_cmask_anynan)) {
477 return parts_pick_nan_muladd(a, b, c, s, ab_mask, abc_mask);
478 }
479
480 if (flags & float_muladd_negate_c) {
481 c->sign ^= 1;
482 }
483
484 /* Compute the sign of the product into A. */
485 a->sign ^= b->sign;
486 if (flags & float_muladd_negate_product) {
487 a->sign ^= 1;
488 }
489
490 if (unlikely(ab_mask != float_cmask_normal)) {
491 if (unlikely(ab_mask == float_cmask_infzero)) {
492 goto d_nan;
493 }
494
495 if (ab_mask & float_cmask_inf) {
496 if (c->cls == float_class_inf && a->sign != c->sign) {
497 goto d_nan;
498 }
499 goto return_inf;
500 }
501
502 g_assert(ab_mask & float_cmask_zero);
503 if (c->cls == float_class_normal) {
504 *a = *c;
505 goto return_normal;
506 }
507 if (c->cls == float_class_zero) {
508 if (a->sign != c->sign) {
509 goto return_sub_zero;
510 }
511 goto return_zero;
512 }
513 g_assert(c->cls == float_class_inf);
514 }
515
516 if (unlikely(c->cls == float_class_inf)) {
517 a->sign = c->sign;
518 goto return_inf;
519 }
520
521 /* Perform the multiplication step. */
522 p_widen.sign = a->sign;
523 p_widen.exp = a->exp + b->exp + 1;
524 frac_mulw(&p_widen, a, b);
525 if (!(p_widen.frac_hi & DECOMPOSED_IMPLICIT_BIT)) {
526 frac_add(&p_widen, &p_widen, &p_widen);
527 p_widen.exp -= 1;
528 }
529
530 /* Perform the addition step. */
531 if (c->cls != float_class_zero) {
532 /* Zero-extend C to less significant bits. */
533 frac_widen(&c_widen, c);
534 c_widen.exp = c->exp;
535
536 if (a->sign == c->sign) {
537 parts_add_normal(&p_widen, &c_widen);
538 } else if (!parts_sub_normal(&p_widen, &c_widen)) {
539 goto return_sub_zero;
540 }
541 }
542
543 /* Narrow with sticky bit, for proper rounding later. */
544 frac_truncjam(a, &p_widen);
545 a->sign = p_widen.sign;
546 a->exp = p_widen.exp;
547
548 return_normal:
549 if (flags & float_muladd_halve_result) {
550 a->exp -= 1;
551 }
552 finish_sign:
553 if (flags & float_muladd_negate_result) {
554 a->sign ^= 1;
555 }
556 return a;
557
558 return_sub_zero:
559 a->sign = s->float_rounding_mode == float_round_down;
560 return_zero:
561 a->cls = float_class_zero;
562 goto finish_sign;
563
564 return_inf:
565 a->cls = float_class_inf;
566 goto finish_sign;
567
568 d_nan:
569 float_raise(float_flag_invalid, s);
570 parts_default_nan(a, s);
571 return a;
572 }
573
574 /*
575 * Returns the result of dividing the floating-point value `a' by the
576 * corresponding value `b'. The operation is performed according to
577 * the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
578 */
579 static FloatPartsN *partsN(div)(FloatPartsN *a, FloatPartsN *b,
580 float_status *s)
581 {
582 int ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
583 bool sign = a->sign ^ b->sign;
584
585 if (likely(ab_mask == float_cmask_normal)) {
586 a->sign = sign;
587 a->exp -= b->exp + frac_div(a, b);
588 return a;
589 }
590
591 /* 0/0 or Inf/Inf => NaN */
592 if (unlikely(ab_mask == float_cmask_zero) ||
593 unlikely(ab_mask == float_cmask_inf)) {
594 float_raise(float_flag_invalid, s);
595 parts_default_nan(a, s);
596 return a;
597 }
598
599 /* All the NaN cases */
600 if (unlikely(ab_mask & float_cmask_anynan)) {
601 return parts_pick_nan(a, b, s);
602 }
603
604 a->sign = sign;
605
606 /* Inf / X */
607 if (a->cls == float_class_inf) {
608 return a;
609 }
610
611 /* 0 / X */
612 if (a->cls == float_class_zero) {
613 return a;
614 }
615
616 /* X / Inf */
617 if (b->cls == float_class_inf) {
618 a->cls = float_class_zero;
619 return a;
620 }
621
622 /* X / 0 => Inf */
623 g_assert(b->cls == float_class_zero);
624 float_raise(float_flag_divbyzero, s);
625 a->cls = float_class_inf;
626 return a;
627 }
628
629 /*
630 * Floating point remainder, per IEC/IEEE, or modulus.
631 */
632 static FloatPartsN *partsN(modrem)(FloatPartsN *a, FloatPartsN *b,
633 uint64_t *mod_quot, float_status *s)
634 {
635 int ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
636
637 if (likely(ab_mask == float_cmask_normal)) {
638 frac_modrem(a, b, mod_quot);
639 return a;
640 }
641
642 if (mod_quot) {
643 *mod_quot = 0;
644 }
645
646 /* All the NaN cases */
647 if (unlikely(ab_mask & float_cmask_anynan)) {
648 return parts_pick_nan(a, b, s);
649 }
650
651 /* Inf % N; N % 0 */
652 if (a->cls == float_class_inf || b->cls == float_class_zero) {
653 float_raise(float_flag_invalid, s);
654 parts_default_nan(a, s);
655 return a;
656 }
657
658 /* N % Inf; 0 % N */
659 g_assert(b->cls == float_class_inf || a->cls == float_class_zero);
660 return a;
661 }
662
663 /*
664 * Square Root
665 *
666 * The base algorithm is lifted from
667 * https://git.musl-libc.org/cgit/musl/tree/src/math/sqrtf.c
668 * https://git.musl-libc.org/cgit/musl/tree/src/math/sqrt.c
669 * https://git.musl-libc.org/cgit/musl/tree/src/math/sqrtl.c
670 * and is thus MIT licenced.
671 */
672 static void partsN(sqrt)(FloatPartsN *a, float_status *status,
673 const FloatFmt *fmt)
674 {
675 const uint32_t three32 = 3u << 30;
676 const uint64_t three64 = 3ull << 62;
677 uint32_t d32, m32, r32, s32, u32; /* 32-bit computation */
678 uint64_t d64, m64, r64, s64, u64; /* 64-bit computation */
679 uint64_t dh, dl, rh, rl, sh, sl, uh, ul; /* 128-bit computation */
680 uint64_t d0h, d0l, d1h, d1l, d2h, d2l;
681 uint64_t discard;
682 bool exp_odd;
683 size_t index;
684
685 if (unlikely(a->cls != float_class_normal)) {
686 switch (a->cls) {
687 case float_class_snan:
688 case float_class_qnan:
689 parts_return_nan(a, status);
690 return;
691 case float_class_zero:
692 return;
693 case float_class_inf:
694 if (unlikely(a->sign)) {
695 goto d_nan;
696 }
697 return;
698 default:
699 g_assert_not_reached();
700 }
701 }
702
703 if (unlikely(a->sign)) {
704 goto d_nan;
705 }
706
707 /*
708 * Argument reduction.
709 * x = 4^e frac; with integer e, and frac in [1, 4)
710 * m = frac fixed point at bit 62, since we're in base 4.
711 * If base-2 exponent is odd, exchange that for multiply by 2,
712 * which results in no shift.
713 */
714 exp_odd = a->exp & 1;
715 index = extract64(a->frac_hi, 57, 6) | (!exp_odd << 6);
716 if (!exp_odd) {
717 frac_shr(a, 1);
718 }
719
720 /*
721 * Approximate r ~= 1/sqrt(m) and s ~= sqrt(m) when m in [1, 4).
722 *
723 * Initial estimate:
724 * 7-bit lookup table (1-bit exponent and 6-bit significand).
725 *
726 * The relative error (e = r0*sqrt(m)-1) of a linear estimate
727 * (r0 = a*m + b) is |e| < 0.085955 ~ 0x1.6p-4 at best;
728 * a table lookup is faster and needs one less iteration.
729 * The 7-bit table gives |e| < 0x1.fdp-9.
730 *
731 * A Newton-Raphson iteration for r is
732 * s = m*r
733 * d = s*r
734 * u = 3 - d
735 * r = r*u/2
736 *
737 * Fixed point representations:
738 * m, s, d, u, three are all 2.30; r is 0.32
739 */
740 m64 = a->frac_hi;
741 m32 = m64 >> 32;
742
743 r32 = rsqrt_tab[index] << 16;
744 /* |r*sqrt(m) - 1| < 0x1.FDp-9 */
745
746 s32 = ((uint64_t)m32 * r32) >> 32;
747 d32 = ((uint64_t)s32 * r32) >> 32;
748 u32 = three32 - d32;
749
750 if (N == 64) {
751 /* float64 or smaller */
752
753 r32 = ((uint64_t)r32 * u32) >> 31;
754 /* |r*sqrt(m) - 1| < 0x1.7Bp-16 */
755
756 s32 = ((uint64_t)m32 * r32) >> 32;
757 d32 = ((uint64_t)s32 * r32) >> 32;
758 u32 = three32 - d32;
759
760 if (fmt->frac_size <= 23) {
761 /* float32 or smaller */
762
763 s32 = ((uint64_t)s32 * u32) >> 32; /* 3.29 */
764 s32 = (s32 - 1) >> 6; /* 9.23 */
765 /* s < sqrt(m) < s + 0x1.08p-23 */
766
767 /* compute nearest rounded result to 2.23 bits */
768 uint32_t d0 = (m32 << 16) - s32 * s32;
769 uint32_t d1 = s32 - d0;
770 uint32_t d2 = d1 + s32 + 1;
771 s32 += d1 >> 31;
772 a->frac_hi = (uint64_t)s32 << (64 - 25);
773
774 /* increment or decrement for inexact */
775 if (d2 != 0) {
776 a->frac_hi += ((int32_t)(d1 ^ d2) < 0 ? -1 : 1);
777 }
778 goto done;
779 }
780
781 /* float64 */
782
783 r64 = (uint64_t)r32 * u32 * 2;
784 /* |r*sqrt(m) - 1| < 0x1.37-p29; convert to 64-bit arithmetic */
785 mul64To128(m64, r64, &s64, &discard);
786 mul64To128(s64, r64, &d64, &discard);
787 u64 = three64 - d64;
788
789 mul64To128(s64, u64, &s64, &discard); /* 3.61 */
790 s64 = (s64 - 2) >> 9; /* 12.52 */
791
792 /* Compute nearest rounded result */
793 uint64_t d0 = (m64 << 42) - s64 * s64;
794 uint64_t d1 = s64 - d0;
795 uint64_t d2 = d1 + s64 + 1;
796 s64 += d1 >> 63;
797 a->frac_hi = s64 << (64 - 54);
798
799 /* increment or decrement for inexact */
800 if (d2 != 0) {
801 a->frac_hi += ((int64_t)(d1 ^ d2) < 0 ? -1 : 1);
802 }
803 goto done;
804 }
805
806 r64 = (uint64_t)r32 * u32 * 2;
807 /* |r*sqrt(m) - 1| < 0x1.7Bp-16; convert to 64-bit arithmetic */
808
809 mul64To128(m64, r64, &s64, &discard);
810 mul64To128(s64, r64, &d64, &discard);
811 u64 = three64 - d64;
812 mul64To128(u64, r64, &r64, &discard);
813 r64 <<= 1;
814 /* |r*sqrt(m) - 1| < 0x1.a5p-31 */
815
816 mul64To128(m64, r64, &s64, &discard);
817 mul64To128(s64, r64, &d64, &discard);
818 u64 = three64 - d64;
819 mul64To128(u64, r64, &rh, &rl);
820 add128(rh, rl, rh, rl, &rh, &rl);
821 /* |r*sqrt(m) - 1| < 0x1.c001p-59; change to 128-bit arithmetic */
822
823 mul128To256(a->frac_hi, a->frac_lo, rh, rl, &sh, &sl, &discard, &discard);
824 mul128To256(sh, sl, rh, rl, &dh, &dl, &discard, &discard);
825 sub128(three64, 0, dh, dl, &uh, &ul);
826 mul128To256(uh, ul, sh, sl, &sh, &sl, &discard, &discard); /* 3.125 */
827 /* -0x1p-116 < s - sqrt(m) < 0x3.8001p-125 */
828
829 sub128(sh, sl, 0, 4, &sh, &sl);
830 shift128Right(sh, sl, 13, &sh, &sl); /* 16.112 */
831 /* s < sqrt(m) < s + 1ulp */
832
833 /* Compute nearest rounded result */
834 mul64To128(sl, sl, &d0h, &d0l);
835 d0h += 2 * sh * sl;
836 sub128(a->frac_lo << 34, 0, d0h, d0l, &d0h, &d0l);
837 sub128(sh, sl, d0h, d0l, &d1h, &d1l);
838 add128(sh, sl, 0, 1, &d2h, &d2l);
839 add128(d2h, d2l, d1h, d1l, &d2h, &d2l);
840 add128(sh, sl, 0, d1h >> 63, &sh, &sl);
841 shift128Left(sh, sl, 128 - 114, &sh, &sl);
842
843 /* increment or decrement for inexact */
844 if (d2h | d2l) {
845 if ((int64_t)(d1h ^ d2h) < 0) {
846 sub128(sh, sl, 0, 1, &sh, &sl);
847 } else {
848 add128(sh, sl, 0, 1, &sh, &sl);
849 }
850 }
851 a->frac_lo = sl;
852 a->frac_hi = sh;
853
854 done:
855 /* Convert back from base 4 to base 2. */
856 a->exp >>= 1;
857 if (!(a->frac_hi & DECOMPOSED_IMPLICIT_BIT)) {
858 frac_add(a, a, a);
859 } else {
860 a->exp += 1;
861 }
862 return;
863
864 d_nan:
865 float_raise(float_flag_invalid, status);
866 parts_default_nan(a, status);
867 }
868
869 /*
870 * Rounds the floating-point value `a' to an integer, and returns the
871 * result as a floating-point value. The operation is performed
872 * according to the IEC/IEEE Standard for Binary Floating-Point
873 * Arithmetic.
874 *
875 * parts_round_to_int_normal is an internal helper function for
876 * normal numbers only, returning true for inexact but not directly
877 * raising float_flag_inexact.
878 */
879 static bool partsN(round_to_int_normal)(FloatPartsN *a, FloatRoundMode rmode,
880 int scale, int frac_size)
881 {
882 uint64_t frac_lsb, frac_lsbm1, rnd_even_mask, rnd_mask, inc;
883 int shift_adj;
884
885 scale = MIN(MAX(scale, -0x10000), 0x10000);
886 a->exp += scale;
887
888 if (a->exp < 0) {
889 bool one;
890
891 /* All fractional */
892 switch (rmode) {
893 case float_round_nearest_even:
894 one = false;
895 if (a->exp == -1) {
896 FloatPartsN tmp;
897 /* Shift left one, discarding DECOMPOSED_IMPLICIT_BIT */
898 frac_add(&tmp, a, a);
899 /* Anything remaining means frac > 0.5. */
900 one = !frac_eqz(&tmp);
901 }
902 break;
903 case float_round_ties_away:
904 one = a->exp == -1;
905 break;
906 case float_round_to_zero:
907 one = false;
908 break;
909 case float_round_up:
910 one = !a->sign;
911 break;
912 case float_round_down:
913 one = a->sign;
914 break;
915 case float_round_to_odd:
916 one = true;
917 break;
918 default:
919 g_assert_not_reached();
920 }
921
922 frac_clear(a);
923 a->exp = 0;
924 if (one) {
925 a->frac_hi = DECOMPOSED_IMPLICIT_BIT;
926 } else {
927 a->cls = float_class_zero;
928 }
929 return true;
930 }
931
932 if (a->exp >= frac_size) {
933 /* All integral */
934 return false;
935 }
936
937 if (N > 64 && a->exp < N - 64) {
938 /*
939 * Rounding is not in the low word -- shift lsb to bit 2,
940 * which leaves room for sticky and rounding bit.
941 */
942 shift_adj = (N - 1) - (a->exp + 2);
943 frac_shrjam(a, shift_adj);
944 frac_lsb = 1 << 2;
945 } else {
946 shift_adj = 0;
947 frac_lsb = DECOMPOSED_IMPLICIT_BIT >> (a->exp & 63);
948 }
949
950 frac_lsbm1 = frac_lsb >> 1;
951 rnd_mask = frac_lsb - 1;
952 rnd_even_mask = rnd_mask | frac_lsb;
953
954 if (!(a->frac_lo & rnd_mask)) {
955 /* Fractional bits already clear, undo the shift above. */
956 frac_shl(a, shift_adj);
957 return false;
958 }
959
960 switch (rmode) {
961 case float_round_nearest_even:
962 inc = ((a->frac_lo & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
963 break;
964 case float_round_ties_away:
965 inc = frac_lsbm1;
966 break;
967 case float_round_to_zero:
968 inc = 0;
969 break;
970 case float_round_up:
971 inc = a->sign ? 0 : rnd_mask;
972 break;
973 case float_round_down:
974 inc = a->sign ? rnd_mask : 0;
975 break;
976 case float_round_to_odd:
977 inc = a->frac_lo & frac_lsb ? 0 : rnd_mask;
978 break;
979 default:
980 g_assert_not_reached();
981 }
982
983 if (shift_adj == 0) {
984 if (frac_addi(a, a, inc)) {
985 frac_shr(a, 1);
986 a->frac_hi |= DECOMPOSED_IMPLICIT_BIT;
987 a->exp++;
988 }
989 a->frac_lo &= ~rnd_mask;
990 } else {
991 frac_addi(a, a, inc);
992 a->frac_lo &= ~rnd_mask;
993 /* Be careful shifting back, not to overflow */
994 frac_shl(a, shift_adj - 1);
995 if (a->frac_hi & DECOMPOSED_IMPLICIT_BIT) {
996 a->exp++;
997 } else {
998 frac_add(a, a, a);
999 }
1000 }
1001 return true;
1002 }
1003
1004 static void partsN(round_to_int)(FloatPartsN *a, FloatRoundMode rmode,
1005 int scale, float_status *s,
1006 const FloatFmt *fmt)
1007 {
1008 switch (a->cls) {
1009 case float_class_qnan:
1010 case float_class_snan:
1011 parts_return_nan(a, s);
1012 break;
1013 case float_class_zero:
1014 case float_class_inf:
1015 break;
1016 case float_class_normal:
1017 if (parts_round_to_int_normal(a, rmode, scale, fmt->frac_size)) {
1018 float_raise(float_flag_inexact, s);
1019 }
1020 break;
1021 default:
1022 g_assert_not_reached();
1023 }
1024 }
1025
1026 /*
1027 * Returns the result of converting the floating-point value `a' to
1028 * the two's complement integer format. The conversion is performed
1029 * according to the IEC/IEEE Standard for Binary Floating-Point
1030 * Arithmetic---which means in particular that the conversion is
1031 * rounded according to the current rounding mode. If `a' is a NaN,
1032 * the largest positive integer is returned. Otherwise, if the
1033 * conversion overflows, the largest integer with the same sign as `a'
1034 * is returned.
1035 */
1036 static int64_t partsN(float_to_sint)(FloatPartsN *p, FloatRoundMode rmode,
1037 int scale, int64_t min, int64_t max,
1038 float_status *s)
1039 {
1040 int flags = 0;
1041 uint64_t r;
1042
1043 switch (p->cls) {
1044 case float_class_snan:
1045 case float_class_qnan:
1046 flags = float_flag_invalid;
1047 r = max;
1048 break;
1049
1050 case float_class_inf:
1051 flags = float_flag_invalid;
1052 r = p->sign ? min : max;
1053 break;
1054
1055 case float_class_zero:
1056 return 0;
1057
1058 case float_class_normal:
1059 /* TODO: N - 2 is frac_size for rounding; could use input fmt. */
1060 if (parts_round_to_int_normal(p, rmode, scale, N - 2)) {
1061 flags = float_flag_inexact;
1062 }
1063
1064 if (p->exp <= DECOMPOSED_BINARY_POINT) {
1065 r = p->frac_hi >> (DECOMPOSED_BINARY_POINT - p->exp);
1066 } else {
1067 r = UINT64_MAX;
1068 }
1069 if (p->sign) {
1070 if (r <= -(uint64_t)min) {
1071 r = -r;
1072 } else {
1073 flags = float_flag_invalid;
1074 r = min;
1075 }
1076 } else if (r > max) {
1077 flags = float_flag_invalid;
1078 r = max;
1079 }
1080 break;
1081
1082 default:
1083 g_assert_not_reached();
1084 }
1085
1086 float_raise(flags, s);
1087 return r;
1088 }
1089
1090 /*
1091 * Returns the result of converting the floating-point value `a' to
1092 * the unsigned integer format. The conversion is performed according
1093 * to the IEC/IEEE Standard for Binary Floating-Point
1094 * Arithmetic---which means in particular that the conversion is
1095 * rounded according to the current rounding mode. If `a' is a NaN,
1096 * the largest unsigned integer is returned. Otherwise, if the
1097 * conversion overflows, the largest unsigned integer is returned. If
1098 * the 'a' is negative, the result is rounded and zero is returned;
1099 * values that do not round to zero will raise the inexact exception
1100 * flag.
1101 */
1102 static uint64_t partsN(float_to_uint)(FloatPartsN *p, FloatRoundMode rmode,
1103 int scale, uint64_t max, float_status *s)
1104 {
1105 int flags = 0;
1106 uint64_t r;
1107
1108 switch (p->cls) {
1109 case float_class_snan:
1110 case float_class_qnan:
1111 flags = float_flag_invalid;
1112 r = max;
1113 break;
1114
1115 case float_class_inf:
1116 flags = float_flag_invalid;
1117 r = p->sign ? 0 : max;
1118 break;
1119
1120 case float_class_zero:
1121 return 0;
1122
1123 case float_class_normal:
1124 /* TODO: N - 2 is frac_size for rounding; could use input fmt. */
1125 if (parts_round_to_int_normal(p, rmode, scale, N - 2)) {
1126 flags = float_flag_inexact;
1127 if (p->cls == float_class_zero) {
1128 r = 0;
1129 break;
1130 }
1131 }
1132
1133 if (p->sign) {
1134 flags = float_flag_invalid;
1135 r = 0;
1136 } else if (p->exp > DECOMPOSED_BINARY_POINT) {
1137 flags = float_flag_invalid;
1138 r = max;
1139 } else {
1140 r = p->frac_hi >> (DECOMPOSED_BINARY_POINT - p->exp);
1141 if (r > max) {
1142 flags = float_flag_invalid;
1143 r = max;
1144 }
1145 }
1146 break;
1147
1148 default:
1149 g_assert_not_reached();
1150 }
1151
1152 float_raise(flags, s);
1153 return r;
1154 }
1155
1156 /*
1157 * Integer to float conversions
1158 *
1159 * Returns the result of converting the two's complement integer `a'
1160 * to the floating-point format. The conversion is performed according
1161 * to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1162 */
1163 static void partsN(sint_to_float)(FloatPartsN *p, int64_t a,
1164 int scale, float_status *s)
1165 {
1166 uint64_t f = a;
1167 int shift;
1168
1169 memset(p, 0, sizeof(*p));
1170
1171 if (a == 0) {
1172 p->cls = float_class_zero;
1173 return;
1174 }
1175
1176 p->cls = float_class_normal;
1177 if (a < 0) {
1178 f = -f;
1179 p->sign = true;
1180 }
1181 shift = clz64(f);
1182 scale = MIN(MAX(scale, -0x10000), 0x10000);
1183
1184 p->exp = DECOMPOSED_BINARY_POINT - shift + scale;
1185 p->frac_hi = f << shift;
1186 }
1187
1188 /*
1189 * Unsigned Integer to float conversions
1190 *
1191 * Returns the result of converting the unsigned integer `a' to the
1192 * floating-point format. The conversion is performed according to the
1193 * IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1194 */
1195 static void partsN(uint_to_float)(FloatPartsN *p, uint64_t a,
1196 int scale, float_status *status)
1197 {
1198 memset(p, 0, sizeof(*p));
1199
1200 if (a == 0) {
1201 p->cls = float_class_zero;
1202 } else {
1203 int shift = clz64(a);
1204 scale = MIN(MAX(scale, -0x10000), 0x10000);
1205 p->cls = float_class_normal;
1206 p->exp = DECOMPOSED_BINARY_POINT - shift + scale;
1207 p->frac_hi = a << shift;
1208 }
1209 }
1210
1211 /*
1212 * Float min/max.
1213 */
1214 static FloatPartsN *partsN(minmax)(FloatPartsN *a, FloatPartsN *b,
1215 float_status *s, int flags)
1216 {
1217 int ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
1218 int a_exp, b_exp, cmp;
1219
1220 if (unlikely(ab_mask & float_cmask_anynan)) {
1221 /*
1222 * For minnum/maxnum, if one operand is a QNaN, and the other
1223 * operand is numerical, then return numerical argument.
1224 */
1225 if ((flags & minmax_isnum)
1226 && !(ab_mask & float_cmask_snan)
1227 && (ab_mask & ~float_cmask_qnan)) {
1228 return is_nan(a->cls) ? b : a;
1229 }
1230 return parts_pick_nan(a, b, s);
1231 }
1232
1233 a_exp = a->exp;
1234 b_exp = b->exp;
1235
1236 if (unlikely(ab_mask != float_cmask_normal)) {
1237 switch (a->cls) {
1238 case float_class_normal:
1239 break;
1240 case float_class_inf:
1241 a_exp = INT16_MAX;
1242 break;
1243 case float_class_zero:
1244 a_exp = INT16_MIN;
1245 break;
1246 default:
1247 g_assert_not_reached();
1248 break;
1249 }
1250 switch (b->cls) {
1251 case float_class_normal:
1252 break;
1253 case float_class_inf:
1254 b_exp = INT16_MAX;
1255 break;
1256 case float_class_zero:
1257 b_exp = INT16_MIN;
1258 break;
1259 default:
1260 g_assert_not_reached();
1261 break;
1262 }
1263 }
1264
1265 /* Compare magnitudes. */
1266 cmp = a_exp - b_exp;
1267 if (cmp == 0) {
1268 cmp = frac_cmp(a, b);
1269 }
1270
1271 /*
1272 * Take the sign into account.
1273 * For ismag, only do this if the magnitudes are equal.
1274 */
1275 if (!(flags & minmax_ismag) || cmp == 0) {
1276 if (a->sign != b->sign) {
1277 /* For differing signs, the negative operand is less. */
1278 cmp = a->sign ? -1 : 1;
1279 } else if (a->sign) {
1280 /* For two negative operands, invert the magnitude comparison. */
1281 cmp = -cmp;
1282 }
1283 }
1284
1285 if (flags & minmax_ismin) {
1286 cmp = -cmp;
1287 }
1288 return cmp < 0 ? b : a;
1289 }
1290
1291 /*
1292 * Floating point compare
1293 */
1294 static FloatRelation partsN(compare)(FloatPartsN *a, FloatPartsN *b,
1295 float_status *s, bool is_quiet)
1296 {
1297 int ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
1298 int cmp;
1299
1300 if (likely(ab_mask == float_cmask_normal)) {
1301 if (a->sign != b->sign) {
1302 goto a_sign;
1303 }
1304 if (a->exp != b->exp) {
1305 cmp = a->exp < b->exp ? -1 : 1;
1306 } else {
1307 cmp = frac_cmp(a, b);
1308 }
1309 if (a->sign) {
1310 cmp = -cmp;
1311 }
1312 return cmp;
1313 }
1314
1315 if (unlikely(ab_mask & float_cmask_anynan)) {
1316 if (!is_quiet || (ab_mask & float_cmask_snan)) {
1317 float_raise(float_flag_invalid, s);
1318 }
1319 return float_relation_unordered;
1320 }
1321
1322 if (ab_mask & float_cmask_zero) {
1323 if (ab_mask == float_cmask_zero) {
1324 return float_relation_equal;
1325 } else if (a->cls == float_class_zero) {
1326 goto b_sign;
1327 } else {
1328 goto a_sign;
1329 }
1330 }
1331
1332 if (ab_mask == float_cmask_inf) {
1333 if (a->sign == b->sign) {
1334 return float_relation_equal;
1335 }
1336 } else if (b->cls == float_class_inf) {
1337 goto b_sign;
1338 } else {
1339 g_assert(a->cls == float_class_inf);
1340 }
1341
1342 a_sign:
1343 return a->sign ? float_relation_less : float_relation_greater;
1344 b_sign:
1345 return b->sign ? float_relation_greater : float_relation_less;
1346 }
1347
1348 /*
1349 * Multiply A by 2 raised to the power N.
1350 */
1351 static void partsN(scalbn)(FloatPartsN *a, int n, float_status *s)
1352 {
1353 switch (a->cls) {
1354 case float_class_snan:
1355 case float_class_qnan:
1356 parts_return_nan(a, s);
1357 break;
1358 case float_class_zero:
1359 case float_class_inf:
1360 break;
1361 case float_class_normal:
1362 a->exp += MIN(MAX(n, -0x10000), 0x10000);
1363 break;
1364 default:
1365 g_assert_not_reached();
1366 }
1367 }
1368
1369 /*
1370 * Return log2(A)
1371 */
1372 static void partsN(log2)(FloatPartsN *a, float_status *s, const FloatFmt *fmt)
1373 {
1374 uint64_t a0, a1, r, t, ign;
1375 FloatPartsN f;
1376 int i, n, a_exp, f_exp;
1377
1378 if (unlikely(a->cls != float_class_normal)) {
1379 switch (a->cls) {
1380 case float_class_snan:
1381 case float_class_qnan:
1382 parts_return_nan(a, s);
1383 return;
1384 case float_class_zero:
1385 /* log2(0) = -inf */
1386 a->cls = float_class_inf;
1387 a->sign = 1;
1388 return;
1389 case float_class_inf:
1390 if (unlikely(a->sign)) {
1391 goto d_nan;
1392 }
1393 return;
1394 default:
1395 break;
1396 }
1397 g_assert_not_reached();
1398 }
1399 if (unlikely(a->sign)) {
1400 goto d_nan;
1401 }
1402
1403 /* TODO: This algorithm looses bits too quickly for float128. */
1404 g_assert(N == 64);
1405
1406 a_exp = a->exp;
1407 f_exp = -1;
1408
1409 r = 0;
1410 t = DECOMPOSED_IMPLICIT_BIT;
1411 a0 = a->frac_hi;
1412 a1 = 0;
1413
1414 n = fmt->frac_size + 2;
1415 if (unlikely(a_exp == -1)) {
1416 /*
1417 * When a_exp == -1, we're computing the log2 of a value [0.5,1.0).
1418 * When the value is very close to 1.0, there are lots of 1's in
1419 * the msb parts of the fraction. At the end, when we subtract
1420 * this value from -1.0, we can see a catastrophic loss of precision,
1421 * as 0x800..000 - 0x7ff..ffx becomes 0x000..00y, leaving only the
1422 * bits of y in the final result. To minimize this, compute as many
1423 * digits as we can.
1424 * ??? This case needs another algorithm to avoid this.
1425 */
1426 n = fmt->frac_size * 2 + 2;
1427 /* Don't compute a value overlapping the sticky bit */
1428 n = MIN(n, 62);
1429 }
1430
1431 for (i = 0; i < n; i++) {
1432 if (a1) {
1433 mul128To256(a0, a1, a0, a1, &a0, &a1, &ign, &ign);
1434 } else if (a0 & 0xffffffffull) {
1435 mul64To128(a0, a0, &a0, &a1);
1436 } else if (a0 & ~DECOMPOSED_IMPLICIT_BIT) {
1437 a0 >>= 32;
1438 a0 *= a0;
1439 } else {
1440 goto exact;
1441 }
1442
1443 if (a0 & DECOMPOSED_IMPLICIT_BIT) {
1444 if (unlikely(a_exp == 0 && r == 0)) {
1445 /*
1446 * When a_exp == 0, we're computing the log2 of a value
1447 * [1.0,2.0). When the value is very close to 1.0, there
1448 * are lots of 0's in the msb parts of the fraction.
1449 * We need to compute more digits to produce a correct
1450 * result -- restart at the top of the fraction.
1451 * ??? This is likely to lose precision quickly, as for
1452 * float128; we may need another method.
1453 */
1454 f_exp -= i;
1455 t = r = DECOMPOSED_IMPLICIT_BIT;
1456 i = 0;
1457 } else {
1458 r |= t;
1459 }
1460 } else {
1461 add128(a0, a1, a0, a1, &a0, &a1);
1462 }
1463 t >>= 1;
1464 }
1465
1466 /* Set sticky for inexact. */
1467 r |= (a1 || a0 & ~DECOMPOSED_IMPLICIT_BIT);
1468
1469 exact:
1470 parts_sint_to_float(a, a_exp, 0, s);
1471 if (r == 0) {
1472 return;
1473 }
1474
1475 memset(&f, 0, sizeof(f));
1476 f.cls = float_class_normal;
1477 f.frac_hi = r;
1478 f.exp = f_exp - frac_normalize(&f);
1479
1480 if (a_exp < 0) {
1481 parts_sub_normal(a, &f);
1482 } else if (a_exp > 0) {
1483 parts_add_normal(a, &f);
1484 } else {
1485 *a = f;
1486 }
1487 return;
1488
1489 d_nan:
1490 float_raise(float_flag_invalid, s);
1491 parts_default_nan(a, s);
1492 }