]> git.proxmox.com Git - mirror_qemu.git/blob - fpu/softfloat-specialize.c.inc
softfloat: Use _Generic instead of QEMU_GENERIC
[mirror_qemu.git] / fpu / softfloat-specialize.c.inc
1 /*
2 * QEMU float support
3 *
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
10 * the BSD license
11 * GPL-v2-or-later
12 *
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
16 */
17
18 /*
19 ===============================================================================
20 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
22
23 Written by John R. Hauser. This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704. Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980. The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
32
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
38
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
43
44 ===============================================================================
45 */
46
47 /* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
53 *
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
56 *
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
60 *
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
76 */
77
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
80 */
81
82 /*
83 * Define whether architecture deviates from IEEE in not supporting
84 * signaling NaNs (so all NaNs are treated as quiet).
85 */
86 static inline bool no_signaling_nans(float_status *status)
87 {
88 #if defined(TARGET_XTENSA)
89 return status->no_signaling_nans;
90 #else
91 return false;
92 #endif
93 }
94
95 /* Define how the architecture discriminates signaling NaNs.
96 * This done with the most significant bit of the fraction.
97 * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
98 * the msb must be zero. MIPS is (so far) unique in supporting both the
99 * 2008 revision and backward compatibility with their original choice.
100 * Thus for MIPS we must make the choice at runtime.
101 */
102 static inline bool snan_bit_is_one(float_status *status)
103 {
104 #if defined(TARGET_MIPS)
105 return status->snan_bit_is_one;
106 #elif defined(TARGET_HPPA) || defined(TARGET_SH4)
107 return 1;
108 #else
109 return 0;
110 #endif
111 }
112
113 /*----------------------------------------------------------------------------
114 | For the deconstructed floating-point with fraction FRAC, return true
115 | if the fraction represents a signalling NaN; otherwise false.
116 *----------------------------------------------------------------------------*/
117
118 static bool parts_is_snan_frac(uint64_t frac, float_status *status)
119 {
120 if (no_signaling_nans(status)) {
121 return false;
122 } else {
123 bool msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
124 return msb == snan_bit_is_one(status);
125 }
126 }
127
128 /*----------------------------------------------------------------------------
129 | The pattern for a default generated deconstructed floating-point NaN.
130 *----------------------------------------------------------------------------*/
131
132 static void parts64_default_nan(FloatParts64 *p, float_status *status)
133 {
134 bool sign = 0;
135 uint64_t frac;
136
137 #if defined(TARGET_SPARC) || defined(TARGET_M68K)
138 /* !snan_bit_is_one, set all bits */
139 frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
140 #elif defined(TARGET_I386) || defined(TARGET_X86_64) \
141 || defined(TARGET_MICROBLAZE)
142 /* !snan_bit_is_one, set sign and msb */
143 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
144 sign = 1;
145 #elif defined(TARGET_HPPA)
146 /* snan_bit_is_one, set msb-1. */
147 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
148 #elif defined(TARGET_HEXAGON)
149 sign = 1;
150 frac = ~0ULL;
151 #else
152 /*
153 * This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
154 * S390, SH4, TriCore, and Xtensa. Our other supported targets,
155 * CRIS, Nios2, and Tile, do not have floating-point.
156 */
157 if (snan_bit_is_one(status)) {
158 /* set all bits other than msb */
159 frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
160 } else {
161 /* set msb */
162 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
163 }
164 #endif
165
166 *p = (FloatParts64) {
167 .cls = float_class_qnan,
168 .sign = sign,
169 .exp = INT_MAX,
170 .frac = frac
171 };
172 }
173
174 static void parts128_default_nan(FloatParts128 *p, float_status *status)
175 {
176 /*
177 * Extrapolate from the choices made by parts64_default_nan to fill
178 * in the quad-floating format. If the low bit is set, assume we
179 * want to set all non-snan bits.
180 */
181 FloatParts64 p64;
182 parts64_default_nan(&p64, status);
183
184 *p = (FloatParts128) {
185 .cls = float_class_qnan,
186 .sign = p64.sign,
187 .exp = INT_MAX,
188 .frac_hi = p64.frac,
189 .frac_lo = -(p64.frac & 1)
190 };
191 }
192
193 /*----------------------------------------------------------------------------
194 | Returns a quiet NaN from a signalling NaN for the deconstructed
195 | floating-point parts.
196 *----------------------------------------------------------------------------*/
197
198 static uint64_t parts_silence_nan_frac(uint64_t frac, float_status *status)
199 {
200 g_assert(!no_signaling_nans(status));
201 g_assert(!status->default_nan_mode);
202
203 /* The only snan_bit_is_one target without default_nan_mode is HPPA. */
204 if (snan_bit_is_one(status)) {
205 frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
206 frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
207 } else {
208 frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
209 }
210 return frac;
211 }
212
213 static void parts64_silence_nan(FloatParts64 *p, float_status *status)
214 {
215 p->frac = parts_silence_nan_frac(p->frac, status);
216 p->cls = float_class_qnan;
217 }
218
219 static void parts128_silence_nan(FloatParts128 *p, float_status *status)
220 {
221 p->frac_hi = parts_silence_nan_frac(p->frac_hi, status);
222 p->cls = float_class_qnan;
223 }
224
225 /*----------------------------------------------------------------------------
226 | The pattern for a default generated extended double-precision NaN.
227 *----------------------------------------------------------------------------*/
228 floatx80 floatx80_default_nan(float_status *status)
229 {
230 floatx80 r;
231
232 /* None of the targets that have snan_bit_is_one use floatx80. */
233 assert(!snan_bit_is_one(status));
234 #if defined(TARGET_M68K)
235 r.low = UINT64_C(0xFFFFFFFFFFFFFFFF);
236 r.high = 0x7FFF;
237 #else
238 /* X86 */
239 r.low = UINT64_C(0xC000000000000000);
240 r.high = 0xFFFF;
241 #endif
242 return r;
243 }
244
245 /*----------------------------------------------------------------------------
246 | The pattern for a default generated extended double-precision inf.
247 *----------------------------------------------------------------------------*/
248
249 #define floatx80_infinity_high 0x7FFF
250 #if defined(TARGET_M68K)
251 #define floatx80_infinity_low UINT64_C(0x0000000000000000)
252 #else
253 #define floatx80_infinity_low UINT64_C(0x8000000000000000)
254 #endif
255
256 const floatx80 floatx80_infinity
257 = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
258
259 /*----------------------------------------------------------------------------
260 | Returns 1 if the half-precision floating-point value `a' is a quiet
261 | NaN; otherwise returns 0.
262 *----------------------------------------------------------------------------*/
263
264 bool float16_is_quiet_nan(float16 a_, float_status *status)
265 {
266 if (no_signaling_nans(status)) {
267 return float16_is_any_nan(a_);
268 } else {
269 uint16_t a = float16_val(a_);
270 if (snan_bit_is_one(status)) {
271 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
272 } else {
273
274 return ((a >> 9) & 0x3F) == 0x3F;
275 }
276 }
277 }
278
279 /*----------------------------------------------------------------------------
280 | Returns 1 if the bfloat16 value `a' is a quiet
281 | NaN; otherwise returns 0.
282 *----------------------------------------------------------------------------*/
283
284 bool bfloat16_is_quiet_nan(bfloat16 a_, float_status *status)
285 {
286 if (no_signaling_nans(status)) {
287 return bfloat16_is_any_nan(a_);
288 } else {
289 uint16_t a = a_;
290 if (snan_bit_is_one(status)) {
291 return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
292 } else {
293 return ((a >> 6) & 0x1FF) == 0x1FF;
294 }
295 }
296 }
297
298 /*----------------------------------------------------------------------------
299 | Returns 1 if the half-precision floating-point value `a' is a signaling
300 | NaN; otherwise returns 0.
301 *----------------------------------------------------------------------------*/
302
303 bool float16_is_signaling_nan(float16 a_, float_status *status)
304 {
305 if (no_signaling_nans(status)) {
306 return 0;
307 } else {
308 uint16_t a = float16_val(a_);
309 if (snan_bit_is_one(status)) {
310 return ((a >> 9) & 0x3F) == 0x3F;
311 } else {
312 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
313 }
314 }
315 }
316
317 /*----------------------------------------------------------------------------
318 | Returns 1 if the bfloat16 value `a' is a signaling
319 | NaN; otherwise returns 0.
320 *----------------------------------------------------------------------------*/
321
322 bool bfloat16_is_signaling_nan(bfloat16 a_, float_status *status)
323 {
324 if (no_signaling_nans(status)) {
325 return 0;
326 } else {
327 uint16_t a = a_;
328 if (snan_bit_is_one(status)) {
329 return ((a >> 6) & 0x1FF) == 0x1FF;
330 } else {
331 return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
332 }
333 }
334 }
335
336 /*----------------------------------------------------------------------------
337 | Returns 1 if the single-precision floating-point value `a' is a quiet
338 | NaN; otherwise returns 0.
339 *----------------------------------------------------------------------------*/
340
341 bool float32_is_quiet_nan(float32 a_, float_status *status)
342 {
343 if (no_signaling_nans(status)) {
344 return float32_is_any_nan(a_);
345 } else {
346 uint32_t a = float32_val(a_);
347 if (snan_bit_is_one(status)) {
348 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
349 } else {
350 return ((uint32_t)(a << 1) >= 0xFF800000);
351 }
352 }
353 }
354
355 /*----------------------------------------------------------------------------
356 | Returns 1 if the single-precision floating-point value `a' is a signaling
357 | NaN; otherwise returns 0.
358 *----------------------------------------------------------------------------*/
359
360 bool float32_is_signaling_nan(float32 a_, float_status *status)
361 {
362 if (no_signaling_nans(status)) {
363 return 0;
364 } else {
365 uint32_t a = float32_val(a_);
366 if (snan_bit_is_one(status)) {
367 return ((uint32_t)(a << 1) >= 0xFF800000);
368 } else {
369 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
370 }
371 }
372 }
373
374 /*----------------------------------------------------------------------------
375 | Select which NaN to propagate for a two-input operation.
376 | IEEE754 doesn't specify all the details of this, so the
377 | algorithm is target-specific.
378 | The routine is passed various bits of information about the
379 | two NaNs and should return 0 to select NaN a and 1 for NaN b.
380 | Note that signalling NaNs are always squashed to quiet NaNs
381 | by the caller, by calling floatXX_silence_nan() before
382 | returning them.
383 |
384 | aIsLargerSignificand is only valid if both a and b are NaNs
385 | of some kind, and is true if a has the larger significand,
386 | or if both a and b have the same significand but a is
387 | positive but b is negative. It is only needed for the x87
388 | tie-break rule.
389 *----------------------------------------------------------------------------*/
390
391 static int pickNaN(FloatClass a_cls, FloatClass b_cls,
392 bool aIsLargerSignificand, float_status *status)
393 {
394 #if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA)
395 /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
396 * the first of:
397 * 1. A if it is signaling
398 * 2. B if it is signaling
399 * 3. A (quiet)
400 * 4. B (quiet)
401 * A signaling NaN is always quietened before returning it.
402 */
403 /* According to MIPS specifications, if one of the two operands is
404 * a sNaN, a new qNaN has to be generated. This is done in
405 * floatXX_silence_nan(). For qNaN inputs the specifications
406 * says: "When possible, this QNaN result is one of the operand QNaN
407 * values." In practice it seems that most implementations choose
408 * the first operand if both operands are qNaN. In short this gives
409 * the following rules:
410 * 1. A if it is signaling
411 * 2. B if it is signaling
412 * 3. A (quiet)
413 * 4. B (quiet)
414 * A signaling NaN is always silenced before returning it.
415 */
416 if (is_snan(a_cls)) {
417 return 0;
418 } else if (is_snan(b_cls)) {
419 return 1;
420 } else if (is_qnan(a_cls)) {
421 return 0;
422 } else {
423 return 1;
424 }
425 #elif defined(TARGET_PPC) || defined(TARGET_M68K)
426 /* PowerPC propagation rules:
427 * 1. A if it sNaN or qNaN
428 * 2. B if it sNaN or qNaN
429 * A signaling NaN is always silenced before returning it.
430 */
431 /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
432 * 3.4 FLOATING-POINT INSTRUCTION DETAILS
433 * If either operand, but not both operands, of an operation is a
434 * nonsignaling NaN, then that NaN is returned as the result. If both
435 * operands are nonsignaling NaNs, then the destination operand
436 * nonsignaling NaN is returned as the result.
437 * If either operand to an operation is a signaling NaN (SNaN), then the
438 * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
439 * is set in the FPCR ENABLE byte, then the exception is taken and the
440 * destination is not modified. If the SNaN exception enable bit is not
441 * set, setting the SNaN bit in the operand to a one converts the SNaN to
442 * a nonsignaling NaN. The operation then continues as described in the
443 * preceding paragraph for nonsignaling NaNs.
444 */
445 if (is_nan(a_cls)) {
446 return 0;
447 } else {
448 return 1;
449 }
450 #elif defined(TARGET_XTENSA)
451 /*
452 * Xtensa has two NaN propagation modes.
453 * Which one is active is controlled by float_status::use_first_nan.
454 */
455 if (status->use_first_nan) {
456 if (is_nan(a_cls)) {
457 return 0;
458 } else {
459 return 1;
460 }
461 } else {
462 if (is_nan(b_cls)) {
463 return 1;
464 } else {
465 return 0;
466 }
467 }
468 #else
469 /* This implements x87 NaN propagation rules:
470 * SNaN + QNaN => return the QNaN
471 * two SNaNs => return the one with the larger significand, silenced
472 * two QNaNs => return the one with the larger significand
473 * SNaN and a non-NaN => return the SNaN, silenced
474 * QNaN and a non-NaN => return the QNaN
475 *
476 * If we get down to comparing significands and they are the same,
477 * return the NaN with the positive sign bit (if any).
478 */
479 if (is_snan(a_cls)) {
480 if (is_snan(b_cls)) {
481 return aIsLargerSignificand ? 0 : 1;
482 }
483 return is_qnan(b_cls) ? 1 : 0;
484 } else if (is_qnan(a_cls)) {
485 if (is_snan(b_cls) || !is_qnan(b_cls)) {
486 return 0;
487 } else {
488 return aIsLargerSignificand ? 0 : 1;
489 }
490 } else {
491 return 1;
492 }
493 #endif
494 }
495
496 /*----------------------------------------------------------------------------
497 | Select which NaN to propagate for a three-input operation.
498 | For the moment we assume that no CPU needs the 'larger significand'
499 | information.
500 | Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
501 *----------------------------------------------------------------------------*/
502 static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
503 bool infzero, float_status *status)
504 {
505 #if defined(TARGET_ARM)
506 /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
507 * the default NaN
508 */
509 if (infzero && is_qnan(c_cls)) {
510 float_raise(float_flag_invalid, status);
511 return 3;
512 }
513
514 /* This looks different from the ARM ARM pseudocode, because the ARM ARM
515 * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
516 */
517 if (is_snan(c_cls)) {
518 return 2;
519 } else if (is_snan(a_cls)) {
520 return 0;
521 } else if (is_snan(b_cls)) {
522 return 1;
523 } else if (is_qnan(c_cls)) {
524 return 2;
525 } else if (is_qnan(a_cls)) {
526 return 0;
527 } else {
528 return 1;
529 }
530 #elif defined(TARGET_MIPS)
531 if (snan_bit_is_one(status)) {
532 /*
533 * For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan)
534 * case sets InvalidOp and returns the default NaN
535 */
536 if (infzero) {
537 float_raise(float_flag_invalid, status);
538 return 3;
539 }
540 /* Prefer sNaN over qNaN, in the a, b, c order. */
541 if (is_snan(a_cls)) {
542 return 0;
543 } else if (is_snan(b_cls)) {
544 return 1;
545 } else if (is_snan(c_cls)) {
546 return 2;
547 } else if (is_qnan(a_cls)) {
548 return 0;
549 } else if (is_qnan(b_cls)) {
550 return 1;
551 } else {
552 return 2;
553 }
554 } else {
555 /*
556 * For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan)
557 * case sets InvalidOp and returns the input value 'c'
558 */
559 if (infzero) {
560 float_raise(float_flag_invalid, status);
561 return 2;
562 }
563 /* Prefer sNaN over qNaN, in the c, a, b order. */
564 if (is_snan(c_cls)) {
565 return 2;
566 } else if (is_snan(a_cls)) {
567 return 0;
568 } else if (is_snan(b_cls)) {
569 return 1;
570 } else if (is_qnan(c_cls)) {
571 return 2;
572 } else if (is_qnan(a_cls)) {
573 return 0;
574 } else {
575 return 1;
576 }
577 }
578 #elif defined(TARGET_PPC)
579 /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
580 * to return an input NaN if we have one (ie c) rather than generating
581 * a default NaN
582 */
583 if (infzero) {
584 float_raise(float_flag_invalid, status);
585 return 2;
586 }
587
588 /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
589 * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
590 */
591 if (is_nan(a_cls)) {
592 return 0;
593 } else if (is_nan(c_cls)) {
594 return 2;
595 } else {
596 return 1;
597 }
598 #elif defined(TARGET_RISCV)
599 /* For RISC-V, InvalidOp is set when multiplicands are Inf and zero */
600 if (infzero) {
601 float_raise(float_flag_invalid, status);
602 }
603 return 3; /* default NaN */
604 #elif defined(TARGET_XTENSA)
605 /*
606 * For Xtensa, the (inf,zero,nan) case sets InvalidOp and returns
607 * an input NaN if we have one (ie c).
608 */
609 if (infzero) {
610 float_raise(float_flag_invalid, status);
611 return 2;
612 }
613 if (status->use_first_nan) {
614 if (is_nan(a_cls)) {
615 return 0;
616 } else if (is_nan(b_cls)) {
617 return 1;
618 } else {
619 return 2;
620 }
621 } else {
622 if (is_nan(c_cls)) {
623 return 2;
624 } else if (is_nan(b_cls)) {
625 return 1;
626 } else {
627 return 0;
628 }
629 }
630 #else
631 /* A default implementation: prefer a to b to c.
632 * This is unlikely to actually match any real implementation.
633 */
634 if (is_nan(a_cls)) {
635 return 0;
636 } else if (is_nan(b_cls)) {
637 return 1;
638 } else {
639 return 2;
640 }
641 #endif
642 }
643
644 /*----------------------------------------------------------------------------
645 | Returns 1 if the double-precision floating-point value `a' is a quiet
646 | NaN; otherwise returns 0.
647 *----------------------------------------------------------------------------*/
648
649 bool float64_is_quiet_nan(float64 a_, float_status *status)
650 {
651 if (no_signaling_nans(status)) {
652 return float64_is_any_nan(a_);
653 } else {
654 uint64_t a = float64_val(a_);
655 if (snan_bit_is_one(status)) {
656 return (((a >> 51) & 0xFFF) == 0xFFE)
657 && (a & 0x0007FFFFFFFFFFFFULL);
658 } else {
659 return ((a << 1) >= 0xFFF0000000000000ULL);
660 }
661 }
662 }
663
664 /*----------------------------------------------------------------------------
665 | Returns 1 if the double-precision floating-point value `a' is a signaling
666 | NaN; otherwise returns 0.
667 *----------------------------------------------------------------------------*/
668
669 bool float64_is_signaling_nan(float64 a_, float_status *status)
670 {
671 if (no_signaling_nans(status)) {
672 return 0;
673 } else {
674 uint64_t a = float64_val(a_);
675 if (snan_bit_is_one(status)) {
676 return ((a << 1) >= 0xFFF0000000000000ULL);
677 } else {
678 return (((a >> 51) & 0xFFF) == 0xFFE)
679 && (a & UINT64_C(0x0007FFFFFFFFFFFF));
680 }
681 }
682 }
683
684 /*----------------------------------------------------------------------------
685 | Returns 1 if the extended double-precision floating-point value `a' is a
686 | quiet NaN; otherwise returns 0. This slightly differs from the same
687 | function for other types as floatx80 has an explicit bit.
688 *----------------------------------------------------------------------------*/
689
690 int floatx80_is_quiet_nan(floatx80 a, float_status *status)
691 {
692 if (no_signaling_nans(status)) {
693 return floatx80_is_any_nan(a);
694 } else {
695 if (snan_bit_is_one(status)) {
696 uint64_t aLow;
697
698 aLow = a.low & ~0x4000000000000000ULL;
699 return ((a.high & 0x7FFF) == 0x7FFF)
700 && (aLow << 1)
701 && (a.low == aLow);
702 } else {
703 return ((a.high & 0x7FFF) == 0x7FFF)
704 && (UINT64_C(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
705 }
706 }
707 }
708
709 /*----------------------------------------------------------------------------
710 | Returns 1 if the extended double-precision floating-point value `a' is a
711 | signaling NaN; otherwise returns 0. This slightly differs from the same
712 | function for other types as floatx80 has an explicit bit.
713 *----------------------------------------------------------------------------*/
714
715 int floatx80_is_signaling_nan(floatx80 a, float_status *status)
716 {
717 if (no_signaling_nans(status)) {
718 return 0;
719 } else {
720 if (snan_bit_is_one(status)) {
721 return ((a.high & 0x7FFF) == 0x7FFF)
722 && ((a.low << 1) >= 0x8000000000000000ULL);
723 } else {
724 uint64_t aLow;
725
726 aLow = a.low & ~UINT64_C(0x4000000000000000);
727 return ((a.high & 0x7FFF) == 0x7FFF)
728 && (uint64_t)(aLow << 1)
729 && (a.low == aLow);
730 }
731 }
732 }
733
734 /*----------------------------------------------------------------------------
735 | Returns a quiet NaN from a signalling NaN for the extended double-precision
736 | floating point value `a'.
737 *----------------------------------------------------------------------------*/
738
739 floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
740 {
741 /* None of the targets that have snan_bit_is_one use floatx80. */
742 assert(!snan_bit_is_one(status));
743 a.low |= UINT64_C(0xC000000000000000);
744 return a;
745 }
746
747 /*----------------------------------------------------------------------------
748 | Takes two extended double-precision floating-point values `a' and `b', one
749 | of which is a NaN, and returns the appropriate NaN result. If either `a' or
750 | `b' is a signaling NaN, the invalid exception is raised.
751 *----------------------------------------------------------------------------*/
752
753 floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
754 {
755 bool aIsLargerSignificand;
756 FloatClass a_cls, b_cls;
757
758 /* This is not complete, but is good enough for pickNaN. */
759 a_cls = (!floatx80_is_any_nan(a)
760 ? float_class_normal
761 : floatx80_is_signaling_nan(a, status)
762 ? float_class_snan
763 : float_class_qnan);
764 b_cls = (!floatx80_is_any_nan(b)
765 ? float_class_normal
766 : floatx80_is_signaling_nan(b, status)
767 ? float_class_snan
768 : float_class_qnan);
769
770 if (is_snan(a_cls) || is_snan(b_cls)) {
771 float_raise(float_flag_invalid, status);
772 }
773
774 if (status->default_nan_mode) {
775 return floatx80_default_nan(status);
776 }
777
778 if (a.low < b.low) {
779 aIsLargerSignificand = 0;
780 } else if (b.low < a.low) {
781 aIsLargerSignificand = 1;
782 } else {
783 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
784 }
785
786 if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
787 if (is_snan(b_cls)) {
788 return floatx80_silence_nan(b, status);
789 }
790 return b;
791 } else {
792 if (is_snan(a_cls)) {
793 return floatx80_silence_nan(a, status);
794 }
795 return a;
796 }
797 }
798
799 /*----------------------------------------------------------------------------
800 | Returns 1 if the quadruple-precision floating-point value `a' is a quiet
801 | NaN; otherwise returns 0.
802 *----------------------------------------------------------------------------*/
803
804 bool float128_is_quiet_nan(float128 a, float_status *status)
805 {
806 if (no_signaling_nans(status)) {
807 return float128_is_any_nan(a);
808 } else {
809 if (snan_bit_is_one(status)) {
810 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
811 && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
812 } else {
813 return ((a.high << 1) >= 0xFFFF000000000000ULL)
814 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
815 }
816 }
817 }
818
819 /*----------------------------------------------------------------------------
820 | Returns 1 if the quadruple-precision floating-point value `a' is a
821 | signaling NaN; otherwise returns 0.
822 *----------------------------------------------------------------------------*/
823
824 bool float128_is_signaling_nan(float128 a, float_status *status)
825 {
826 if (no_signaling_nans(status)) {
827 return 0;
828 } else {
829 if (snan_bit_is_one(status)) {
830 return ((a.high << 1) >= 0xFFFF000000000000ULL)
831 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
832 } else {
833 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
834 && (a.low || (a.high & UINT64_C(0x00007FFFFFFFFFFF)));
835 }
836 }
837 }