]> git.proxmox.com Git - mirror_qemu.git/blob - gdbstub.c
gdbstub: Implement generic set/query (Q/q pkt) with new infra
[mirror_qemu.git] / gdbstub.c
1 /*
2 * gdb server stub
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23 #include "qemu/error-report.h"
24 #include "qemu/ctype.h"
25 #include "qemu/cutils.h"
26 #include "qemu/module.h"
27 #include "trace-root.h"
28 #ifdef CONFIG_USER_ONLY
29 #include "qemu.h"
30 #else
31 #include "monitor/monitor.h"
32 #include "chardev/char.h"
33 #include "chardev/char-fe.h"
34 #include "sysemu/sysemu.h"
35 #include "exec/gdbstub.h"
36 #include "hw/cpu/cluster.h"
37 #endif
38
39 #define MAX_PACKET_LENGTH 4096
40
41 #include "qemu/sockets.h"
42 #include "sysemu/hw_accel.h"
43 #include "sysemu/kvm.h"
44 #include "hw/semihosting/semihost.h"
45 #include "exec/exec-all.h"
46
47 #ifdef CONFIG_USER_ONLY
48 #define GDB_ATTACHED "0"
49 #else
50 #define GDB_ATTACHED "1"
51 #endif
52
53 static inline int target_memory_rw_debug(CPUState *cpu, target_ulong addr,
54 uint8_t *buf, int len, bool is_write)
55 {
56 CPUClass *cc = CPU_GET_CLASS(cpu);
57
58 if (cc->memory_rw_debug) {
59 return cc->memory_rw_debug(cpu, addr, buf, len, is_write);
60 }
61 return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
62 }
63
64 /* Return the GDB index for a given vCPU state.
65 *
66 * For user mode this is simply the thread id. In system mode GDB
67 * numbers CPUs from 1 as 0 is reserved as an "any cpu" index.
68 */
69 static inline int cpu_gdb_index(CPUState *cpu)
70 {
71 #if defined(CONFIG_USER_ONLY)
72 TaskState *ts = (TaskState *) cpu->opaque;
73 return ts->ts_tid;
74 #else
75 return cpu->cpu_index + 1;
76 #endif
77 }
78
79 enum {
80 GDB_SIGNAL_0 = 0,
81 GDB_SIGNAL_INT = 2,
82 GDB_SIGNAL_QUIT = 3,
83 GDB_SIGNAL_TRAP = 5,
84 GDB_SIGNAL_ABRT = 6,
85 GDB_SIGNAL_ALRM = 14,
86 GDB_SIGNAL_IO = 23,
87 GDB_SIGNAL_XCPU = 24,
88 GDB_SIGNAL_UNKNOWN = 143
89 };
90
91 #ifdef CONFIG_USER_ONLY
92
93 /* Map target signal numbers to GDB protocol signal numbers and vice
94 * versa. For user emulation's currently supported systems, we can
95 * assume most signals are defined.
96 */
97
98 static int gdb_signal_table[] = {
99 0,
100 TARGET_SIGHUP,
101 TARGET_SIGINT,
102 TARGET_SIGQUIT,
103 TARGET_SIGILL,
104 TARGET_SIGTRAP,
105 TARGET_SIGABRT,
106 -1, /* SIGEMT */
107 TARGET_SIGFPE,
108 TARGET_SIGKILL,
109 TARGET_SIGBUS,
110 TARGET_SIGSEGV,
111 TARGET_SIGSYS,
112 TARGET_SIGPIPE,
113 TARGET_SIGALRM,
114 TARGET_SIGTERM,
115 TARGET_SIGURG,
116 TARGET_SIGSTOP,
117 TARGET_SIGTSTP,
118 TARGET_SIGCONT,
119 TARGET_SIGCHLD,
120 TARGET_SIGTTIN,
121 TARGET_SIGTTOU,
122 TARGET_SIGIO,
123 TARGET_SIGXCPU,
124 TARGET_SIGXFSZ,
125 TARGET_SIGVTALRM,
126 TARGET_SIGPROF,
127 TARGET_SIGWINCH,
128 -1, /* SIGLOST */
129 TARGET_SIGUSR1,
130 TARGET_SIGUSR2,
131 #ifdef TARGET_SIGPWR
132 TARGET_SIGPWR,
133 #else
134 -1,
135 #endif
136 -1, /* SIGPOLL */
137 -1,
138 -1,
139 -1,
140 -1,
141 -1,
142 -1,
143 -1,
144 -1,
145 -1,
146 -1,
147 -1,
148 #ifdef __SIGRTMIN
149 __SIGRTMIN + 1,
150 __SIGRTMIN + 2,
151 __SIGRTMIN + 3,
152 __SIGRTMIN + 4,
153 __SIGRTMIN + 5,
154 __SIGRTMIN + 6,
155 __SIGRTMIN + 7,
156 __SIGRTMIN + 8,
157 __SIGRTMIN + 9,
158 __SIGRTMIN + 10,
159 __SIGRTMIN + 11,
160 __SIGRTMIN + 12,
161 __SIGRTMIN + 13,
162 __SIGRTMIN + 14,
163 __SIGRTMIN + 15,
164 __SIGRTMIN + 16,
165 __SIGRTMIN + 17,
166 __SIGRTMIN + 18,
167 __SIGRTMIN + 19,
168 __SIGRTMIN + 20,
169 __SIGRTMIN + 21,
170 __SIGRTMIN + 22,
171 __SIGRTMIN + 23,
172 __SIGRTMIN + 24,
173 __SIGRTMIN + 25,
174 __SIGRTMIN + 26,
175 __SIGRTMIN + 27,
176 __SIGRTMIN + 28,
177 __SIGRTMIN + 29,
178 __SIGRTMIN + 30,
179 __SIGRTMIN + 31,
180 -1, /* SIGCANCEL */
181 __SIGRTMIN,
182 __SIGRTMIN + 32,
183 __SIGRTMIN + 33,
184 __SIGRTMIN + 34,
185 __SIGRTMIN + 35,
186 __SIGRTMIN + 36,
187 __SIGRTMIN + 37,
188 __SIGRTMIN + 38,
189 __SIGRTMIN + 39,
190 __SIGRTMIN + 40,
191 __SIGRTMIN + 41,
192 __SIGRTMIN + 42,
193 __SIGRTMIN + 43,
194 __SIGRTMIN + 44,
195 __SIGRTMIN + 45,
196 __SIGRTMIN + 46,
197 __SIGRTMIN + 47,
198 __SIGRTMIN + 48,
199 __SIGRTMIN + 49,
200 __SIGRTMIN + 50,
201 __SIGRTMIN + 51,
202 __SIGRTMIN + 52,
203 __SIGRTMIN + 53,
204 __SIGRTMIN + 54,
205 __SIGRTMIN + 55,
206 __SIGRTMIN + 56,
207 __SIGRTMIN + 57,
208 __SIGRTMIN + 58,
209 __SIGRTMIN + 59,
210 __SIGRTMIN + 60,
211 __SIGRTMIN + 61,
212 __SIGRTMIN + 62,
213 __SIGRTMIN + 63,
214 __SIGRTMIN + 64,
215 __SIGRTMIN + 65,
216 __SIGRTMIN + 66,
217 __SIGRTMIN + 67,
218 __SIGRTMIN + 68,
219 __SIGRTMIN + 69,
220 __SIGRTMIN + 70,
221 __SIGRTMIN + 71,
222 __SIGRTMIN + 72,
223 __SIGRTMIN + 73,
224 __SIGRTMIN + 74,
225 __SIGRTMIN + 75,
226 __SIGRTMIN + 76,
227 __SIGRTMIN + 77,
228 __SIGRTMIN + 78,
229 __SIGRTMIN + 79,
230 __SIGRTMIN + 80,
231 __SIGRTMIN + 81,
232 __SIGRTMIN + 82,
233 __SIGRTMIN + 83,
234 __SIGRTMIN + 84,
235 __SIGRTMIN + 85,
236 __SIGRTMIN + 86,
237 __SIGRTMIN + 87,
238 __SIGRTMIN + 88,
239 __SIGRTMIN + 89,
240 __SIGRTMIN + 90,
241 __SIGRTMIN + 91,
242 __SIGRTMIN + 92,
243 __SIGRTMIN + 93,
244 __SIGRTMIN + 94,
245 __SIGRTMIN + 95,
246 -1, /* SIGINFO */
247 -1, /* UNKNOWN */
248 -1, /* DEFAULT */
249 -1,
250 -1,
251 -1,
252 -1,
253 -1,
254 -1
255 #endif
256 };
257 #else
258 /* In system mode we only need SIGINT and SIGTRAP; other signals
259 are not yet supported. */
260
261 enum {
262 TARGET_SIGINT = 2,
263 TARGET_SIGTRAP = 5
264 };
265
266 static int gdb_signal_table[] = {
267 -1,
268 -1,
269 TARGET_SIGINT,
270 -1,
271 -1,
272 TARGET_SIGTRAP
273 };
274 #endif
275
276 #ifdef CONFIG_USER_ONLY
277 static int target_signal_to_gdb (int sig)
278 {
279 int i;
280 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
281 if (gdb_signal_table[i] == sig)
282 return i;
283 return GDB_SIGNAL_UNKNOWN;
284 }
285 #endif
286
287 static int gdb_signal_to_target (int sig)
288 {
289 if (sig < ARRAY_SIZE (gdb_signal_table))
290 return gdb_signal_table[sig];
291 else
292 return -1;
293 }
294
295 typedef struct GDBRegisterState {
296 int base_reg;
297 int num_regs;
298 gdb_reg_cb get_reg;
299 gdb_reg_cb set_reg;
300 const char *xml;
301 struct GDBRegisterState *next;
302 } GDBRegisterState;
303
304 typedef struct GDBProcess {
305 uint32_t pid;
306 bool attached;
307
308 char target_xml[1024];
309 } GDBProcess;
310
311 enum RSState {
312 RS_INACTIVE,
313 RS_IDLE,
314 RS_GETLINE,
315 RS_GETLINE_ESC,
316 RS_GETLINE_RLE,
317 RS_CHKSUM1,
318 RS_CHKSUM2,
319 };
320 typedef struct GDBState {
321 CPUState *c_cpu; /* current CPU for step/continue ops */
322 CPUState *g_cpu; /* current CPU for other ops */
323 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
324 enum RSState state; /* parsing state */
325 char line_buf[MAX_PACKET_LENGTH];
326 int line_buf_index;
327 int line_sum; /* running checksum */
328 int line_csum; /* checksum at the end of the packet */
329 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
330 int last_packet_len;
331 int signal;
332 #ifdef CONFIG_USER_ONLY
333 int fd;
334 int running_state;
335 #else
336 CharBackend chr;
337 Chardev *mon_chr;
338 #endif
339 bool multiprocess;
340 GDBProcess *processes;
341 int process_num;
342 char syscall_buf[256];
343 gdb_syscall_complete_cb current_syscall_cb;
344 } GDBState;
345
346 /* By default use no IRQs and no timers while single stepping so as to
347 * make single stepping like an ICE HW step.
348 */
349 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
350
351 static GDBState *gdbserver_state;
352
353 bool gdb_has_xml;
354
355 #ifdef CONFIG_USER_ONLY
356 /* XXX: This is not thread safe. Do we care? */
357 static int gdbserver_fd = -1;
358
359 static int get_char(GDBState *s)
360 {
361 uint8_t ch;
362 int ret;
363
364 for(;;) {
365 ret = qemu_recv(s->fd, &ch, 1, 0);
366 if (ret < 0) {
367 if (errno == ECONNRESET)
368 s->fd = -1;
369 if (errno != EINTR)
370 return -1;
371 } else if (ret == 0) {
372 close(s->fd);
373 s->fd = -1;
374 return -1;
375 } else {
376 break;
377 }
378 }
379 return ch;
380 }
381 #endif
382
383 static enum {
384 GDB_SYS_UNKNOWN,
385 GDB_SYS_ENABLED,
386 GDB_SYS_DISABLED,
387 } gdb_syscall_mode;
388
389 /* Decide if either remote gdb syscalls or native file IO should be used. */
390 int use_gdb_syscalls(void)
391 {
392 SemihostingTarget target = semihosting_get_target();
393 if (target == SEMIHOSTING_TARGET_NATIVE) {
394 /* -semihosting-config target=native */
395 return false;
396 } else if (target == SEMIHOSTING_TARGET_GDB) {
397 /* -semihosting-config target=gdb */
398 return true;
399 }
400
401 /* -semihosting-config target=auto */
402 /* On the first call check if gdb is connected and remember. */
403 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
404 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
405 : GDB_SYS_DISABLED);
406 }
407 return gdb_syscall_mode == GDB_SYS_ENABLED;
408 }
409
410 /* Resume execution. */
411 static inline void gdb_continue(GDBState *s)
412 {
413
414 #ifdef CONFIG_USER_ONLY
415 s->running_state = 1;
416 trace_gdbstub_op_continue();
417 #else
418 if (!runstate_needs_reset()) {
419 trace_gdbstub_op_continue();
420 vm_start();
421 }
422 #endif
423 }
424
425 /*
426 * Resume execution, per CPU actions. For user-mode emulation it's
427 * equivalent to gdb_continue.
428 */
429 static int gdb_continue_partial(GDBState *s, char *newstates)
430 {
431 CPUState *cpu;
432 int res = 0;
433 #ifdef CONFIG_USER_ONLY
434 /*
435 * This is not exactly accurate, but it's an improvement compared to the
436 * previous situation, where only one CPU would be single-stepped.
437 */
438 CPU_FOREACH(cpu) {
439 if (newstates[cpu->cpu_index] == 's') {
440 trace_gdbstub_op_stepping(cpu->cpu_index);
441 cpu_single_step(cpu, sstep_flags);
442 }
443 }
444 s->running_state = 1;
445 #else
446 int flag = 0;
447
448 if (!runstate_needs_reset()) {
449 if (vm_prepare_start()) {
450 return 0;
451 }
452
453 CPU_FOREACH(cpu) {
454 switch (newstates[cpu->cpu_index]) {
455 case 0:
456 case 1:
457 break; /* nothing to do here */
458 case 's':
459 trace_gdbstub_op_stepping(cpu->cpu_index);
460 cpu_single_step(cpu, sstep_flags);
461 cpu_resume(cpu);
462 flag = 1;
463 break;
464 case 'c':
465 trace_gdbstub_op_continue_cpu(cpu->cpu_index);
466 cpu_resume(cpu);
467 flag = 1;
468 break;
469 default:
470 res = -1;
471 break;
472 }
473 }
474 }
475 if (flag) {
476 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
477 }
478 #endif
479 return res;
480 }
481
482 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
483 {
484 #ifdef CONFIG_USER_ONLY
485 int ret;
486
487 while (len > 0) {
488 ret = send(s->fd, buf, len, 0);
489 if (ret < 0) {
490 if (errno != EINTR)
491 return;
492 } else {
493 buf += ret;
494 len -= ret;
495 }
496 }
497 #else
498 /* XXX this blocks entire thread. Rewrite to use
499 * qemu_chr_fe_write and background I/O callbacks */
500 qemu_chr_fe_write_all(&s->chr, buf, len);
501 #endif
502 }
503
504 static inline int fromhex(int v)
505 {
506 if (v >= '0' && v <= '9')
507 return v - '0';
508 else if (v >= 'A' && v <= 'F')
509 return v - 'A' + 10;
510 else if (v >= 'a' && v <= 'f')
511 return v - 'a' + 10;
512 else
513 return 0;
514 }
515
516 static inline int tohex(int v)
517 {
518 if (v < 10)
519 return v + '0';
520 else
521 return v - 10 + 'a';
522 }
523
524 /* writes 2*len+1 bytes in buf */
525 static void memtohex(char *buf, const uint8_t *mem, int len)
526 {
527 int i, c;
528 char *q;
529 q = buf;
530 for(i = 0; i < len; i++) {
531 c = mem[i];
532 *q++ = tohex(c >> 4);
533 *q++ = tohex(c & 0xf);
534 }
535 *q = '\0';
536 }
537
538 static void hextomem(uint8_t *mem, const char *buf, int len)
539 {
540 int i;
541
542 for(i = 0; i < len; i++) {
543 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
544 buf += 2;
545 }
546 }
547
548 static void hexdump(const char *buf, int len,
549 void (*trace_fn)(size_t ofs, char const *text))
550 {
551 char line_buffer[3 * 16 + 4 + 16 + 1];
552
553 size_t i;
554 for (i = 0; i < len || (i & 0xF); ++i) {
555 size_t byte_ofs = i & 15;
556
557 if (byte_ofs == 0) {
558 memset(line_buffer, ' ', 3 * 16 + 4 + 16);
559 line_buffer[3 * 16 + 4 + 16] = 0;
560 }
561
562 size_t col_group = (i >> 2) & 3;
563 size_t hex_col = byte_ofs * 3 + col_group;
564 size_t txt_col = 3 * 16 + 4 + byte_ofs;
565
566 if (i < len) {
567 char value = buf[i];
568
569 line_buffer[hex_col + 0] = tohex((value >> 4) & 0xF);
570 line_buffer[hex_col + 1] = tohex((value >> 0) & 0xF);
571 line_buffer[txt_col + 0] = (value >= ' ' && value < 127)
572 ? value
573 : '.';
574 }
575
576 if (byte_ofs == 0xF)
577 trace_fn(i & -16, line_buffer);
578 }
579 }
580
581 /* return -1 if error, 0 if OK */
582 static int put_packet_binary(GDBState *s, const char *buf, int len, bool dump)
583 {
584 int csum, i;
585 uint8_t *p;
586
587 if (dump && trace_event_get_state_backends(TRACE_GDBSTUB_IO_BINARYREPLY)) {
588 hexdump(buf, len, trace_gdbstub_io_binaryreply);
589 }
590
591 for(;;) {
592 p = s->last_packet;
593 *(p++) = '$';
594 memcpy(p, buf, len);
595 p += len;
596 csum = 0;
597 for(i = 0; i < len; i++) {
598 csum += buf[i];
599 }
600 *(p++) = '#';
601 *(p++) = tohex((csum >> 4) & 0xf);
602 *(p++) = tohex((csum) & 0xf);
603
604 s->last_packet_len = p - s->last_packet;
605 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
606
607 #ifdef CONFIG_USER_ONLY
608 i = get_char(s);
609 if (i < 0)
610 return -1;
611 if (i == '+')
612 break;
613 #else
614 break;
615 #endif
616 }
617 return 0;
618 }
619
620 /* return -1 if error, 0 if OK */
621 static int put_packet(GDBState *s, const char *buf)
622 {
623 trace_gdbstub_io_reply(buf);
624
625 return put_packet_binary(s, buf, strlen(buf), false);
626 }
627
628 /* Encode data using the encoding for 'x' packets. */
629 static int memtox(char *buf, const char *mem, int len)
630 {
631 char *p = buf;
632 char c;
633
634 while (len--) {
635 c = *(mem++);
636 switch (c) {
637 case '#': case '$': case '*': case '}':
638 *(p++) = '}';
639 *(p++) = c ^ 0x20;
640 break;
641 default:
642 *(p++) = c;
643 break;
644 }
645 }
646 return p - buf;
647 }
648
649 static uint32_t gdb_get_cpu_pid(const GDBState *s, CPUState *cpu)
650 {
651 /* TODO: In user mode, we should use the task state PID */
652 if (cpu->cluster_index == UNASSIGNED_CLUSTER_INDEX) {
653 /* Return the default process' PID */
654 return s->processes[s->process_num - 1].pid;
655 }
656 return cpu->cluster_index + 1;
657 }
658
659 static GDBProcess *gdb_get_process(const GDBState *s, uint32_t pid)
660 {
661 int i;
662
663 if (!pid) {
664 /* 0 means any process, we take the first one */
665 return &s->processes[0];
666 }
667
668 for (i = 0; i < s->process_num; i++) {
669 if (s->processes[i].pid == pid) {
670 return &s->processes[i];
671 }
672 }
673
674 return NULL;
675 }
676
677 static GDBProcess *gdb_get_cpu_process(const GDBState *s, CPUState *cpu)
678 {
679 return gdb_get_process(s, gdb_get_cpu_pid(s, cpu));
680 }
681
682 static CPUState *find_cpu(uint32_t thread_id)
683 {
684 CPUState *cpu;
685
686 CPU_FOREACH(cpu) {
687 if (cpu_gdb_index(cpu) == thread_id) {
688 return cpu;
689 }
690 }
691
692 return NULL;
693 }
694
695 static CPUState *get_first_cpu_in_process(const GDBState *s,
696 GDBProcess *process)
697 {
698 CPUState *cpu;
699
700 CPU_FOREACH(cpu) {
701 if (gdb_get_cpu_pid(s, cpu) == process->pid) {
702 return cpu;
703 }
704 }
705
706 return NULL;
707 }
708
709 static CPUState *gdb_next_cpu_in_process(const GDBState *s, CPUState *cpu)
710 {
711 uint32_t pid = gdb_get_cpu_pid(s, cpu);
712 cpu = CPU_NEXT(cpu);
713
714 while (cpu) {
715 if (gdb_get_cpu_pid(s, cpu) == pid) {
716 break;
717 }
718
719 cpu = CPU_NEXT(cpu);
720 }
721
722 return cpu;
723 }
724
725 /* Return the cpu following @cpu, while ignoring unattached processes. */
726 static CPUState *gdb_next_attached_cpu(const GDBState *s, CPUState *cpu)
727 {
728 cpu = CPU_NEXT(cpu);
729
730 while (cpu) {
731 if (gdb_get_cpu_process(s, cpu)->attached) {
732 break;
733 }
734
735 cpu = CPU_NEXT(cpu);
736 }
737
738 return cpu;
739 }
740
741 /* Return the first attached cpu */
742 static CPUState *gdb_first_attached_cpu(const GDBState *s)
743 {
744 CPUState *cpu = first_cpu;
745 GDBProcess *process = gdb_get_cpu_process(s, cpu);
746
747 if (!process->attached) {
748 return gdb_next_attached_cpu(s, cpu);
749 }
750
751 return cpu;
752 }
753
754 static CPUState *gdb_get_cpu(const GDBState *s, uint32_t pid, uint32_t tid)
755 {
756 GDBProcess *process;
757 CPUState *cpu;
758
759 if (!pid && !tid) {
760 /* 0 means any process/thread, we take the first attached one */
761 return gdb_first_attached_cpu(s);
762 } else if (pid && !tid) {
763 /* any thread in a specific process */
764 process = gdb_get_process(s, pid);
765
766 if (process == NULL) {
767 return NULL;
768 }
769
770 if (!process->attached) {
771 return NULL;
772 }
773
774 return get_first_cpu_in_process(s, process);
775 } else {
776 /* a specific thread */
777 cpu = find_cpu(tid);
778
779 if (cpu == NULL) {
780 return NULL;
781 }
782
783 process = gdb_get_cpu_process(s, cpu);
784
785 if (pid && process->pid != pid) {
786 return NULL;
787 }
788
789 if (!process->attached) {
790 return NULL;
791 }
792
793 return cpu;
794 }
795 }
796
797 static const char *get_feature_xml(const GDBState *s, const char *p,
798 const char **newp, GDBProcess *process)
799 {
800 size_t len;
801 int i;
802 const char *name;
803 CPUState *cpu = get_first_cpu_in_process(s, process);
804 CPUClass *cc = CPU_GET_CLASS(cpu);
805
806 len = 0;
807 while (p[len] && p[len] != ':')
808 len++;
809 *newp = p + len;
810
811 name = NULL;
812 if (strncmp(p, "target.xml", len) == 0) {
813 char *buf = process->target_xml;
814 const size_t buf_sz = sizeof(process->target_xml);
815
816 /* Generate the XML description for this CPU. */
817 if (!buf[0]) {
818 GDBRegisterState *r;
819
820 pstrcat(buf, buf_sz,
821 "<?xml version=\"1.0\"?>"
822 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
823 "<target>");
824 if (cc->gdb_arch_name) {
825 gchar *arch = cc->gdb_arch_name(cpu);
826 pstrcat(buf, buf_sz, "<architecture>");
827 pstrcat(buf, buf_sz, arch);
828 pstrcat(buf, buf_sz, "</architecture>");
829 g_free(arch);
830 }
831 pstrcat(buf, buf_sz, "<xi:include href=\"");
832 pstrcat(buf, buf_sz, cc->gdb_core_xml_file);
833 pstrcat(buf, buf_sz, "\"/>");
834 for (r = cpu->gdb_regs; r; r = r->next) {
835 pstrcat(buf, buf_sz, "<xi:include href=\"");
836 pstrcat(buf, buf_sz, r->xml);
837 pstrcat(buf, buf_sz, "\"/>");
838 }
839 pstrcat(buf, buf_sz, "</target>");
840 }
841 return buf;
842 }
843 if (cc->gdb_get_dynamic_xml) {
844 char *xmlname = g_strndup(p, len);
845 const char *xml = cc->gdb_get_dynamic_xml(cpu, xmlname);
846
847 g_free(xmlname);
848 if (xml) {
849 return xml;
850 }
851 }
852 for (i = 0; ; i++) {
853 name = xml_builtin[i][0];
854 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
855 break;
856 }
857 return name ? xml_builtin[i][1] : NULL;
858 }
859
860 static int gdb_read_register(CPUState *cpu, uint8_t *mem_buf, int reg)
861 {
862 CPUClass *cc = CPU_GET_CLASS(cpu);
863 CPUArchState *env = cpu->env_ptr;
864 GDBRegisterState *r;
865
866 if (reg < cc->gdb_num_core_regs) {
867 return cc->gdb_read_register(cpu, mem_buf, reg);
868 }
869
870 for (r = cpu->gdb_regs; r; r = r->next) {
871 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
872 return r->get_reg(env, mem_buf, reg - r->base_reg);
873 }
874 }
875 return 0;
876 }
877
878 static int gdb_write_register(CPUState *cpu, uint8_t *mem_buf, int reg)
879 {
880 CPUClass *cc = CPU_GET_CLASS(cpu);
881 CPUArchState *env = cpu->env_ptr;
882 GDBRegisterState *r;
883
884 if (reg < cc->gdb_num_core_regs) {
885 return cc->gdb_write_register(cpu, mem_buf, reg);
886 }
887
888 for (r = cpu->gdb_regs; r; r = r->next) {
889 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
890 return r->set_reg(env, mem_buf, reg - r->base_reg);
891 }
892 }
893 return 0;
894 }
895
896 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
897 specifies the first register number and these registers are included in
898 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
899 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
900 */
901
902 void gdb_register_coprocessor(CPUState *cpu,
903 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
904 int num_regs, const char *xml, int g_pos)
905 {
906 GDBRegisterState *s;
907 GDBRegisterState **p;
908
909 p = &cpu->gdb_regs;
910 while (*p) {
911 /* Check for duplicates. */
912 if (strcmp((*p)->xml, xml) == 0)
913 return;
914 p = &(*p)->next;
915 }
916
917 s = g_new0(GDBRegisterState, 1);
918 s->base_reg = cpu->gdb_num_regs;
919 s->num_regs = num_regs;
920 s->get_reg = get_reg;
921 s->set_reg = set_reg;
922 s->xml = xml;
923
924 /* Add to end of list. */
925 cpu->gdb_num_regs += num_regs;
926 *p = s;
927 if (g_pos) {
928 if (g_pos != s->base_reg) {
929 error_report("Error: Bad gdb register numbering for '%s', "
930 "expected %d got %d", xml, g_pos, s->base_reg);
931 } else {
932 cpu->gdb_num_g_regs = cpu->gdb_num_regs;
933 }
934 }
935 }
936
937 #ifndef CONFIG_USER_ONLY
938 /* Translate GDB watchpoint type to a flags value for cpu_watchpoint_* */
939 static inline int xlat_gdb_type(CPUState *cpu, int gdbtype)
940 {
941 static const int xlat[] = {
942 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
943 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
944 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
945 };
946
947 CPUClass *cc = CPU_GET_CLASS(cpu);
948 int cputype = xlat[gdbtype];
949
950 if (cc->gdb_stop_before_watchpoint) {
951 cputype |= BP_STOP_BEFORE_ACCESS;
952 }
953 return cputype;
954 }
955 #endif
956
957 static int gdb_breakpoint_insert(int type, target_ulong addr, target_ulong len)
958 {
959 CPUState *cpu;
960 int err = 0;
961
962 if (kvm_enabled()) {
963 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
964 }
965
966 switch (type) {
967 case GDB_BREAKPOINT_SW:
968 case GDB_BREAKPOINT_HW:
969 CPU_FOREACH(cpu) {
970 err = cpu_breakpoint_insert(cpu, addr, BP_GDB, NULL);
971 if (err) {
972 break;
973 }
974 }
975 return err;
976 #ifndef CONFIG_USER_ONLY
977 case GDB_WATCHPOINT_WRITE:
978 case GDB_WATCHPOINT_READ:
979 case GDB_WATCHPOINT_ACCESS:
980 CPU_FOREACH(cpu) {
981 err = cpu_watchpoint_insert(cpu, addr, len,
982 xlat_gdb_type(cpu, type), NULL);
983 if (err) {
984 break;
985 }
986 }
987 return err;
988 #endif
989 default:
990 return -ENOSYS;
991 }
992 }
993
994 static int gdb_breakpoint_remove(int type, target_ulong addr, target_ulong len)
995 {
996 CPUState *cpu;
997 int err = 0;
998
999 if (kvm_enabled()) {
1000 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1001 }
1002
1003 switch (type) {
1004 case GDB_BREAKPOINT_SW:
1005 case GDB_BREAKPOINT_HW:
1006 CPU_FOREACH(cpu) {
1007 err = cpu_breakpoint_remove(cpu, addr, BP_GDB);
1008 if (err) {
1009 break;
1010 }
1011 }
1012 return err;
1013 #ifndef CONFIG_USER_ONLY
1014 case GDB_WATCHPOINT_WRITE:
1015 case GDB_WATCHPOINT_READ:
1016 case GDB_WATCHPOINT_ACCESS:
1017 CPU_FOREACH(cpu) {
1018 err = cpu_watchpoint_remove(cpu, addr, len,
1019 xlat_gdb_type(cpu, type));
1020 if (err)
1021 break;
1022 }
1023 return err;
1024 #endif
1025 default:
1026 return -ENOSYS;
1027 }
1028 }
1029
1030 static inline void gdb_cpu_breakpoint_remove_all(CPUState *cpu)
1031 {
1032 cpu_breakpoint_remove_all(cpu, BP_GDB);
1033 #ifndef CONFIG_USER_ONLY
1034 cpu_watchpoint_remove_all(cpu, BP_GDB);
1035 #endif
1036 }
1037
1038 static void gdb_process_breakpoint_remove_all(const GDBState *s, GDBProcess *p)
1039 {
1040 CPUState *cpu = get_first_cpu_in_process(s, p);
1041
1042 while (cpu) {
1043 gdb_cpu_breakpoint_remove_all(cpu);
1044 cpu = gdb_next_cpu_in_process(s, cpu);
1045 }
1046 }
1047
1048 static void gdb_breakpoint_remove_all(void)
1049 {
1050 CPUState *cpu;
1051
1052 if (kvm_enabled()) {
1053 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1054 return;
1055 }
1056
1057 CPU_FOREACH(cpu) {
1058 gdb_cpu_breakpoint_remove_all(cpu);
1059 }
1060 }
1061
1062 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1063 {
1064 CPUState *cpu = s->c_cpu;
1065
1066 cpu_synchronize_state(cpu);
1067 cpu_set_pc(cpu, pc);
1068 }
1069
1070 static char *gdb_fmt_thread_id(const GDBState *s, CPUState *cpu,
1071 char *buf, size_t buf_size)
1072 {
1073 if (s->multiprocess) {
1074 snprintf(buf, buf_size, "p%02x.%02x",
1075 gdb_get_cpu_pid(s, cpu), cpu_gdb_index(cpu));
1076 } else {
1077 snprintf(buf, buf_size, "%02x", cpu_gdb_index(cpu));
1078 }
1079
1080 return buf;
1081 }
1082
1083 typedef enum GDBThreadIdKind {
1084 GDB_ONE_THREAD = 0,
1085 GDB_ALL_THREADS, /* One process, all threads */
1086 GDB_ALL_PROCESSES,
1087 GDB_READ_THREAD_ERR
1088 } GDBThreadIdKind;
1089
1090 static GDBThreadIdKind read_thread_id(const char *buf, const char **end_buf,
1091 uint32_t *pid, uint32_t *tid)
1092 {
1093 unsigned long p, t;
1094 int ret;
1095
1096 if (*buf == 'p') {
1097 buf++;
1098 ret = qemu_strtoul(buf, &buf, 16, &p);
1099
1100 if (ret) {
1101 return GDB_READ_THREAD_ERR;
1102 }
1103
1104 /* Skip '.' */
1105 buf++;
1106 } else {
1107 p = 1;
1108 }
1109
1110 ret = qemu_strtoul(buf, &buf, 16, &t);
1111
1112 if (ret) {
1113 return GDB_READ_THREAD_ERR;
1114 }
1115
1116 *end_buf = buf;
1117
1118 if (p == -1) {
1119 return GDB_ALL_PROCESSES;
1120 }
1121
1122 if (pid) {
1123 *pid = p;
1124 }
1125
1126 if (t == -1) {
1127 return GDB_ALL_THREADS;
1128 }
1129
1130 if (tid) {
1131 *tid = t;
1132 }
1133
1134 return GDB_ONE_THREAD;
1135 }
1136
1137 /**
1138 * gdb_handle_vcont - Parses and handles a vCont packet.
1139 * returns -ENOTSUP if a command is unsupported, -EINVAL or -ERANGE if there is
1140 * a format error, 0 on success.
1141 */
1142 static int gdb_handle_vcont(GDBState *s, const char *p)
1143 {
1144 int res, signal = 0;
1145 char cur_action;
1146 char *newstates;
1147 unsigned long tmp;
1148 uint32_t pid, tid;
1149 GDBProcess *process;
1150 CPUState *cpu;
1151 GDBThreadIdKind kind;
1152 #ifdef CONFIG_USER_ONLY
1153 int max_cpus = 1; /* global variable max_cpus exists only in system mode */
1154
1155 CPU_FOREACH(cpu) {
1156 max_cpus = max_cpus <= cpu->cpu_index ? cpu->cpu_index + 1 : max_cpus;
1157 }
1158 #endif
1159 /* uninitialised CPUs stay 0 */
1160 newstates = g_new0(char, max_cpus);
1161
1162 /* mark valid CPUs with 1 */
1163 CPU_FOREACH(cpu) {
1164 newstates[cpu->cpu_index] = 1;
1165 }
1166
1167 /*
1168 * res keeps track of what error we are returning, with -ENOTSUP meaning
1169 * that the command is unknown or unsupported, thus returning an empty
1170 * packet, while -EINVAL and -ERANGE cause an E22 packet, due to invalid,
1171 * or incorrect parameters passed.
1172 */
1173 res = 0;
1174 while (*p) {
1175 if (*p++ != ';') {
1176 res = -ENOTSUP;
1177 goto out;
1178 }
1179
1180 cur_action = *p++;
1181 if (cur_action == 'C' || cur_action == 'S') {
1182 cur_action = qemu_tolower(cur_action);
1183 res = qemu_strtoul(p + 1, &p, 16, &tmp);
1184 if (res) {
1185 goto out;
1186 }
1187 signal = gdb_signal_to_target(tmp);
1188 } else if (cur_action != 'c' && cur_action != 's') {
1189 /* unknown/invalid/unsupported command */
1190 res = -ENOTSUP;
1191 goto out;
1192 }
1193
1194 if (*p == '\0' || *p == ';') {
1195 /*
1196 * No thread specifier, action is on "all threads". The
1197 * specification is unclear regarding the process to act on. We
1198 * choose all processes.
1199 */
1200 kind = GDB_ALL_PROCESSES;
1201 } else if (*p++ == ':') {
1202 kind = read_thread_id(p, &p, &pid, &tid);
1203 } else {
1204 res = -ENOTSUP;
1205 goto out;
1206 }
1207
1208 switch (kind) {
1209 case GDB_READ_THREAD_ERR:
1210 res = -EINVAL;
1211 goto out;
1212
1213 case GDB_ALL_PROCESSES:
1214 cpu = gdb_first_attached_cpu(s);
1215 while (cpu) {
1216 if (newstates[cpu->cpu_index] == 1) {
1217 newstates[cpu->cpu_index] = cur_action;
1218 }
1219
1220 cpu = gdb_next_attached_cpu(s, cpu);
1221 }
1222 break;
1223
1224 case GDB_ALL_THREADS:
1225 process = gdb_get_process(s, pid);
1226
1227 if (!process->attached) {
1228 res = -EINVAL;
1229 goto out;
1230 }
1231
1232 cpu = get_first_cpu_in_process(s, process);
1233 while (cpu) {
1234 if (newstates[cpu->cpu_index] == 1) {
1235 newstates[cpu->cpu_index] = cur_action;
1236 }
1237
1238 cpu = gdb_next_cpu_in_process(s, cpu);
1239 }
1240 break;
1241
1242 case GDB_ONE_THREAD:
1243 cpu = gdb_get_cpu(s, pid, tid);
1244
1245 /* invalid CPU/thread specified */
1246 if (!cpu) {
1247 res = -EINVAL;
1248 goto out;
1249 }
1250
1251 /* only use if no previous match occourred */
1252 if (newstates[cpu->cpu_index] == 1) {
1253 newstates[cpu->cpu_index] = cur_action;
1254 }
1255 break;
1256 }
1257 }
1258 s->signal = signal;
1259 gdb_continue_partial(s, newstates);
1260
1261 out:
1262 g_free(newstates);
1263
1264 return res;
1265 }
1266
1267 typedef union GdbCmdVariant {
1268 const char *data;
1269 uint8_t opcode;
1270 unsigned long val_ul;
1271 unsigned long long val_ull;
1272 struct {
1273 GDBThreadIdKind kind;
1274 uint32_t pid;
1275 uint32_t tid;
1276 } thread_id;
1277 } GdbCmdVariant;
1278
1279 static const char *cmd_next_param(const char *param, const char delimiter)
1280 {
1281 static const char all_delimiters[] = ",;:=";
1282 char curr_delimiters[2] = {0};
1283 const char *delimiters;
1284
1285 if (delimiter == '?') {
1286 delimiters = all_delimiters;
1287 } else if (delimiter == '0') {
1288 return strchr(param, '\0');
1289 } else if (delimiter == '.' && *param) {
1290 return param + 1;
1291 } else {
1292 curr_delimiters[0] = delimiter;
1293 delimiters = curr_delimiters;
1294 }
1295
1296 param += strcspn(param, delimiters);
1297 if (*param) {
1298 param++;
1299 }
1300 return param;
1301 }
1302
1303 static int cmd_parse_params(const char *data, const char *schema,
1304 GdbCmdVariant *params, int *num_params)
1305 {
1306 int curr_param;
1307 const char *curr_schema, *curr_data;
1308
1309 *num_params = 0;
1310
1311 if (!schema) {
1312 return 0;
1313 }
1314
1315 curr_schema = schema;
1316 curr_param = 0;
1317 curr_data = data;
1318 while (curr_schema[0] && curr_schema[1] && *curr_data) {
1319 switch (curr_schema[0]) {
1320 case 'l':
1321 if (qemu_strtoul(curr_data, &curr_data, 16,
1322 &params[curr_param].val_ul)) {
1323 return -EINVAL;
1324 }
1325 curr_param++;
1326 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1327 break;
1328 case 'L':
1329 if (qemu_strtou64(curr_data, &curr_data, 16,
1330 (uint64_t *)&params[curr_param].val_ull)) {
1331 return -EINVAL;
1332 }
1333 curr_param++;
1334 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1335 break;
1336 case 's':
1337 params[curr_param].data = curr_data;
1338 curr_param++;
1339 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1340 break;
1341 case 'o':
1342 params[curr_param].opcode = *(uint8_t *)curr_data;
1343 curr_param++;
1344 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1345 break;
1346 case 't':
1347 params[curr_param].thread_id.kind =
1348 read_thread_id(curr_data, &curr_data,
1349 &params[curr_param].thread_id.pid,
1350 &params[curr_param].thread_id.tid);
1351 curr_param++;
1352 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1353 break;
1354 case '?':
1355 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1356 break;
1357 default:
1358 return -EINVAL;
1359 }
1360 curr_schema += 2;
1361 }
1362
1363 *num_params = curr_param;
1364 return 0;
1365 }
1366
1367 typedef struct GdbCmdContext {
1368 GDBState *s;
1369 GdbCmdVariant *params;
1370 int num_params;
1371 uint8_t mem_buf[MAX_PACKET_LENGTH];
1372 char str_buf[MAX_PACKET_LENGTH + 1];
1373 } GdbCmdContext;
1374
1375 typedef void (*GdbCmdHandler)(GdbCmdContext *gdb_ctx, void *user_ctx);
1376
1377 /*
1378 * cmd_startswith -> cmd is compared using startswith
1379 *
1380 *
1381 * schema definitions:
1382 * Each schema parameter entry consists of 2 chars,
1383 * the first char represents the parameter type handling
1384 * the second char represents the delimiter for the next parameter
1385 *
1386 * Currently supported schema types:
1387 * 'l' -> unsigned long (stored in .val_ul)
1388 * 'L' -> unsigned long long (stored in .val_ull)
1389 * 's' -> string (stored in .data)
1390 * 'o' -> single char (stored in .opcode)
1391 * 't' -> thread id (stored in .thread_id)
1392 * '?' -> skip according to delimiter
1393 *
1394 * Currently supported delimiters:
1395 * '?' -> Stop at any delimiter (",;:=\0")
1396 * '0' -> Stop at "\0"
1397 * '.' -> Skip 1 char unless reached "\0"
1398 * Any other value is treated as the delimiter value itself
1399 */
1400 typedef struct GdbCmdParseEntry {
1401 GdbCmdHandler handler;
1402 const char *cmd;
1403 bool cmd_startswith;
1404 const char *schema;
1405 } GdbCmdParseEntry;
1406
1407 static inline int startswith(const char *string, const char *pattern)
1408 {
1409 return !strncmp(string, pattern, strlen(pattern));
1410 }
1411
1412 static int process_string_cmd(GDBState *s, void *user_ctx, const char *data,
1413 const GdbCmdParseEntry *cmds, int num_cmds)
1414 {
1415 int i, schema_len, max_num_params = 0;
1416 GdbCmdContext gdb_ctx;
1417
1418 if (!cmds) {
1419 return -1;
1420 }
1421
1422 for (i = 0; i < num_cmds; i++) {
1423 const GdbCmdParseEntry *cmd = &cmds[i];
1424 g_assert(cmd->handler && cmd->cmd);
1425
1426 if ((cmd->cmd_startswith && !startswith(data, cmd->cmd)) ||
1427 (!cmd->cmd_startswith && strcmp(cmd->cmd, data))) {
1428 continue;
1429 }
1430
1431 if (cmd->schema) {
1432 schema_len = strlen(cmd->schema);
1433 if (schema_len % 2) {
1434 return -2;
1435 }
1436
1437 max_num_params = schema_len / 2;
1438 }
1439
1440 gdb_ctx.params =
1441 (GdbCmdVariant *)alloca(sizeof(*gdb_ctx.params) * max_num_params);
1442 memset(gdb_ctx.params, 0, sizeof(*gdb_ctx.params) * max_num_params);
1443
1444 if (cmd_parse_params(&data[strlen(cmd->cmd)], cmd->schema,
1445 gdb_ctx.params, &gdb_ctx.num_params)) {
1446 return -1;
1447 }
1448
1449 gdb_ctx.s = s;
1450 cmd->handler(&gdb_ctx, user_ctx);
1451 return 0;
1452 }
1453
1454 return -1;
1455 }
1456
1457 static void run_cmd_parser(GDBState *s, const char *data,
1458 const GdbCmdParseEntry *cmd)
1459 {
1460 if (!data) {
1461 return;
1462 }
1463
1464 /* In case there was an error during the command parsing we must
1465 * send a NULL packet to indicate the command is not supported */
1466 if (process_string_cmd(s, NULL, data, cmd, 1)) {
1467 put_packet(s, "");
1468 }
1469 }
1470
1471 static void handle_detach(GdbCmdContext *gdb_ctx, void *user_ctx)
1472 {
1473 GDBProcess *process;
1474 GDBState *s = gdb_ctx->s;
1475 uint32_t pid = 1;
1476
1477 if (s->multiprocess) {
1478 if (!gdb_ctx->num_params) {
1479 put_packet(s, "E22");
1480 return;
1481 }
1482
1483 pid = gdb_ctx->params[0].val_ul;
1484 }
1485
1486 process = gdb_get_process(s, pid);
1487 gdb_process_breakpoint_remove_all(s, process);
1488 process->attached = false;
1489
1490 if (pid == gdb_get_cpu_pid(s, s->c_cpu)) {
1491 s->c_cpu = gdb_first_attached_cpu(s);
1492 }
1493
1494 if (pid == gdb_get_cpu_pid(s, s->g_cpu)) {
1495 s->g_cpu = gdb_first_attached_cpu(s);
1496 }
1497
1498 if (!s->c_cpu) {
1499 /* No more process attached */
1500 gdb_syscall_mode = GDB_SYS_DISABLED;
1501 gdb_continue(s);
1502 }
1503 put_packet(s, "OK");
1504 }
1505
1506 static void handle_thread_alive(GdbCmdContext *gdb_ctx, void *user_ctx)
1507 {
1508 CPUState *cpu;
1509
1510 if (!gdb_ctx->num_params) {
1511 put_packet(gdb_ctx->s, "E22");
1512 return;
1513 }
1514
1515 if (gdb_ctx->params[0].thread_id.kind == GDB_READ_THREAD_ERR) {
1516 put_packet(gdb_ctx->s, "E22");
1517 return;
1518 }
1519
1520 cpu = gdb_get_cpu(gdb_ctx->s, gdb_ctx->params[0].thread_id.pid,
1521 gdb_ctx->params[0].thread_id.tid);
1522 if (!cpu) {
1523 put_packet(gdb_ctx->s, "E22");
1524 return;
1525 }
1526
1527 put_packet(gdb_ctx->s, "OK");
1528 }
1529
1530 static void handle_continue(GdbCmdContext *gdb_ctx, void *user_ctx)
1531 {
1532 if (gdb_ctx->num_params) {
1533 gdb_set_cpu_pc(gdb_ctx->s, gdb_ctx->params[0].val_ull);
1534 }
1535
1536 gdb_ctx->s->signal = 0;
1537 gdb_continue(gdb_ctx->s);
1538 }
1539
1540 static void handle_cont_with_sig(GdbCmdContext *gdb_ctx, void *user_ctx)
1541 {
1542 unsigned long signal = 0;
1543
1544 /*
1545 * Note: C sig;[addr] is currently unsupported and we simply
1546 * omit the addr parameter
1547 */
1548 if (gdb_ctx->num_params) {
1549 signal = gdb_ctx->params[0].val_ul;
1550 }
1551
1552 gdb_ctx->s->signal = gdb_signal_to_target(signal);
1553 if (gdb_ctx->s->signal == -1) {
1554 gdb_ctx->s->signal = 0;
1555 }
1556 gdb_continue(gdb_ctx->s);
1557 }
1558
1559 static void handle_set_thread(GdbCmdContext *gdb_ctx, void *user_ctx)
1560 {
1561 CPUState *cpu;
1562
1563 if (gdb_ctx->num_params != 2) {
1564 put_packet(gdb_ctx->s, "E22");
1565 return;
1566 }
1567
1568 if (gdb_ctx->params[1].thread_id.kind == GDB_READ_THREAD_ERR) {
1569 put_packet(gdb_ctx->s, "E22");
1570 return;
1571 }
1572
1573 if (gdb_ctx->params[1].thread_id.kind != GDB_ONE_THREAD) {
1574 put_packet(gdb_ctx->s, "OK");
1575 return;
1576 }
1577
1578 cpu = gdb_get_cpu(gdb_ctx->s, gdb_ctx->params[1].thread_id.pid,
1579 gdb_ctx->params[1].thread_id.tid);
1580 if (!cpu) {
1581 put_packet(gdb_ctx->s, "E22");
1582 return;
1583 }
1584
1585 /*
1586 * Note: This command is deprecated and modern gdb's will be using the
1587 * vCont command instead.
1588 */
1589 switch (gdb_ctx->params[0].opcode) {
1590 case 'c':
1591 gdb_ctx->s->c_cpu = cpu;
1592 put_packet(gdb_ctx->s, "OK");
1593 break;
1594 case 'g':
1595 gdb_ctx->s->g_cpu = cpu;
1596 put_packet(gdb_ctx->s, "OK");
1597 break;
1598 default:
1599 put_packet(gdb_ctx->s, "E22");
1600 break;
1601 }
1602 }
1603
1604 static void handle_insert_bp(GdbCmdContext *gdb_ctx, void *user_ctx)
1605 {
1606 int res;
1607
1608 if (gdb_ctx->num_params != 3) {
1609 put_packet(gdb_ctx->s, "E22");
1610 return;
1611 }
1612
1613 res = gdb_breakpoint_insert(gdb_ctx->params[0].val_ul,
1614 gdb_ctx->params[1].val_ull,
1615 gdb_ctx->params[2].val_ull);
1616 if (res >= 0) {
1617 put_packet(gdb_ctx->s, "OK");
1618 return;
1619 } else if (res == -ENOSYS) {
1620 put_packet(gdb_ctx->s, "");
1621 return;
1622 }
1623
1624 put_packet(gdb_ctx->s, "E22");
1625 }
1626
1627 static void handle_remove_bp(GdbCmdContext *gdb_ctx, void *user_ctx)
1628 {
1629 int res;
1630
1631 if (gdb_ctx->num_params != 3) {
1632 put_packet(gdb_ctx->s, "E22");
1633 return;
1634 }
1635
1636 res = gdb_breakpoint_remove(gdb_ctx->params[0].val_ul,
1637 gdb_ctx->params[1].val_ull,
1638 gdb_ctx->params[2].val_ull);
1639 if (res >= 0) {
1640 put_packet(gdb_ctx->s, "OK");
1641 return;
1642 } else if (res == -ENOSYS) {
1643 put_packet(gdb_ctx->s, "");
1644 return;
1645 }
1646
1647 put_packet(gdb_ctx->s, "E22");
1648 }
1649
1650 static void handle_set_reg(GdbCmdContext *gdb_ctx, void *user_ctx)
1651 {
1652 int reg_size;
1653
1654 if (!gdb_has_xml) {
1655 put_packet(gdb_ctx->s, "E00");
1656 return;
1657 }
1658
1659 if (gdb_ctx->num_params != 2) {
1660 put_packet(gdb_ctx->s, "E22");
1661 return;
1662 }
1663
1664 reg_size = strlen(gdb_ctx->params[1].data) / 2;
1665 hextomem(gdb_ctx->mem_buf, gdb_ctx->params[1].data, reg_size);
1666 gdb_write_register(gdb_ctx->s->g_cpu, gdb_ctx->mem_buf,
1667 gdb_ctx->params[0].val_ull);
1668 put_packet(gdb_ctx->s, "OK");
1669 }
1670
1671 static void handle_get_reg(GdbCmdContext *gdb_ctx, void *user_ctx)
1672 {
1673 int reg_size;
1674
1675 /*
1676 * Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1677 * This works, but can be very slow. Anything new enough to
1678 * understand XML also knows how to use this properly.
1679 */
1680 if (!gdb_has_xml) {
1681 put_packet(gdb_ctx->s, "");
1682 return;
1683 }
1684
1685 if (!gdb_ctx->num_params) {
1686 put_packet(gdb_ctx->s, "E14");
1687 return;
1688 }
1689
1690 reg_size = gdb_read_register(gdb_ctx->s->g_cpu, gdb_ctx->mem_buf,
1691 gdb_ctx->params[0].val_ull);
1692 if (!reg_size) {
1693 put_packet(gdb_ctx->s, "E14");
1694 return;
1695 }
1696
1697 memtohex(gdb_ctx->str_buf, gdb_ctx->mem_buf, reg_size);
1698 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1699 }
1700
1701 static void handle_write_mem(GdbCmdContext *gdb_ctx, void *user_ctx)
1702 {
1703 if (gdb_ctx->num_params != 3) {
1704 put_packet(gdb_ctx->s, "E22");
1705 return;
1706 }
1707
1708 /* hextomem() reads 2*len bytes */
1709 if (gdb_ctx->params[1].val_ull > strlen(gdb_ctx->params[2].data) / 2) {
1710 put_packet(gdb_ctx->s, "E22");
1711 return;
1712 }
1713
1714 hextomem(gdb_ctx->mem_buf, gdb_ctx->params[2].data,
1715 gdb_ctx->params[1].val_ull);
1716 if (target_memory_rw_debug(gdb_ctx->s->g_cpu, gdb_ctx->params[0].val_ull,
1717 gdb_ctx->mem_buf,
1718 gdb_ctx->params[1].val_ull, true)) {
1719 put_packet(gdb_ctx->s, "E14");
1720 return;
1721 }
1722
1723 put_packet(gdb_ctx->s, "OK");
1724 }
1725
1726 static void handle_read_mem(GdbCmdContext *gdb_ctx, void *user_ctx)
1727 {
1728 if (gdb_ctx->num_params != 2) {
1729 put_packet(gdb_ctx->s, "E22");
1730 return;
1731 }
1732
1733 /* memtohex() doubles the required space */
1734 if (gdb_ctx->params[1].val_ull > MAX_PACKET_LENGTH / 2) {
1735 put_packet(gdb_ctx->s, "E22");
1736 return;
1737 }
1738
1739 if (target_memory_rw_debug(gdb_ctx->s->g_cpu, gdb_ctx->params[0].val_ull,
1740 gdb_ctx->mem_buf,
1741 gdb_ctx->params[1].val_ull, false)) {
1742 put_packet(gdb_ctx->s, "E14");
1743 return;
1744 }
1745
1746 memtohex(gdb_ctx->str_buf, gdb_ctx->mem_buf, gdb_ctx->params[1].val_ull);
1747 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1748 }
1749
1750 static void handle_write_all_regs(GdbCmdContext *gdb_ctx, void *user_ctx)
1751 {
1752 target_ulong addr, len;
1753 uint8_t *registers;
1754 int reg_size;
1755
1756 if (!gdb_ctx->num_params) {
1757 return;
1758 }
1759
1760 cpu_synchronize_state(gdb_ctx->s->g_cpu);
1761 registers = gdb_ctx->mem_buf;
1762 len = strlen(gdb_ctx->params[0].data) / 2;
1763 hextomem(registers, gdb_ctx->params[0].data, len);
1764 for (addr = 0; addr < gdb_ctx->s->g_cpu->gdb_num_g_regs && len > 0;
1765 addr++) {
1766 reg_size = gdb_write_register(gdb_ctx->s->g_cpu, registers, addr);
1767 len -= reg_size;
1768 registers += reg_size;
1769 }
1770 put_packet(gdb_ctx->s, "OK");
1771 }
1772
1773 static void handle_read_all_regs(GdbCmdContext *gdb_ctx, void *user_ctx)
1774 {
1775 target_ulong addr, len;
1776
1777 cpu_synchronize_state(gdb_ctx->s->g_cpu);
1778 len = 0;
1779 for (addr = 0; addr < gdb_ctx->s->g_cpu->gdb_num_g_regs; addr++) {
1780 len += gdb_read_register(gdb_ctx->s->g_cpu, gdb_ctx->mem_buf + len,
1781 addr);
1782 }
1783
1784 memtohex(gdb_ctx->str_buf, gdb_ctx->mem_buf, len);
1785 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1786 }
1787
1788 static void handle_file_io(GdbCmdContext *gdb_ctx, void *user_ctx)
1789 {
1790 if (gdb_ctx->num_params >= 2 && gdb_ctx->s->current_syscall_cb) {
1791 target_ulong ret, err;
1792
1793 ret = (target_ulong)gdb_ctx->params[0].val_ull;
1794 err = (target_ulong)gdb_ctx->params[1].val_ull;
1795 gdb_ctx->s->current_syscall_cb(gdb_ctx->s->c_cpu, ret, err);
1796 gdb_ctx->s->current_syscall_cb = NULL;
1797 }
1798
1799 if (gdb_ctx->num_params >= 3 && gdb_ctx->params[2].opcode == (uint8_t)'C') {
1800 put_packet(gdb_ctx->s, "T02");
1801 return;
1802 }
1803
1804 gdb_continue(gdb_ctx->s);
1805 }
1806
1807 static void handle_step(GdbCmdContext *gdb_ctx, void *user_ctx)
1808 {
1809 if (gdb_ctx->num_params) {
1810 gdb_set_cpu_pc(gdb_ctx->s, (target_ulong)gdb_ctx->params[0].val_ull);
1811 }
1812
1813 cpu_single_step(gdb_ctx->s->c_cpu, sstep_flags);
1814 gdb_continue(gdb_ctx->s);
1815 }
1816
1817 static void handle_v_cont_query(GdbCmdContext *gdb_ctx, void *user_ctx)
1818 {
1819 put_packet(gdb_ctx->s, "vCont;c;C;s;S");
1820 }
1821
1822 static void handle_v_cont(GdbCmdContext *gdb_ctx, void *user_ctx)
1823 {
1824 int res;
1825
1826 if (!gdb_ctx->num_params) {
1827 return;
1828 }
1829
1830 res = gdb_handle_vcont(gdb_ctx->s, gdb_ctx->params[0].data);
1831 if ((res == -EINVAL) || (res == -ERANGE)) {
1832 put_packet(gdb_ctx->s, "E22");
1833 } else if (res) {
1834 put_packet(gdb_ctx->s, "");
1835 }
1836 }
1837
1838 static void handle_v_attach(GdbCmdContext *gdb_ctx, void *user_ctx)
1839 {
1840 GDBProcess *process;
1841 CPUState *cpu;
1842 char thread_id[16];
1843
1844 pstrcpy(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "E22");
1845 if (!gdb_ctx->num_params) {
1846 goto cleanup;
1847 }
1848
1849 process = gdb_get_process(gdb_ctx->s, gdb_ctx->params[0].val_ul);
1850 if (!process) {
1851 goto cleanup;
1852 }
1853
1854 cpu = get_first_cpu_in_process(gdb_ctx->s, process);
1855 if (!cpu) {
1856 goto cleanup;
1857 }
1858
1859 process->attached = true;
1860 gdb_ctx->s->g_cpu = cpu;
1861 gdb_ctx->s->c_cpu = cpu;
1862
1863 gdb_fmt_thread_id(gdb_ctx->s, cpu, thread_id, sizeof(thread_id));
1864 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "T%02xthread:%s;",
1865 GDB_SIGNAL_TRAP, thread_id);
1866 cleanup:
1867 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1868 }
1869
1870 static void handle_v_kill(GdbCmdContext *gdb_ctx, void *user_ctx)
1871 {
1872 /* Kill the target */
1873 put_packet(gdb_ctx->s, "OK");
1874 error_report("QEMU: Terminated via GDBstub");
1875 exit(0);
1876 }
1877
1878 static GdbCmdParseEntry gdb_v_commands_table[] = {
1879 /* Order is important if has same prefix */
1880 {
1881 .handler = handle_v_cont_query,
1882 .cmd = "Cont?",
1883 .cmd_startswith = 1
1884 },
1885 {
1886 .handler = handle_v_cont,
1887 .cmd = "Cont",
1888 .cmd_startswith = 1,
1889 .schema = "s0"
1890 },
1891 {
1892 .handler = handle_v_attach,
1893 .cmd = "Attach;",
1894 .cmd_startswith = 1,
1895 .schema = "l0"
1896 },
1897 {
1898 .handler = handle_v_kill,
1899 .cmd = "Kill;",
1900 .cmd_startswith = 1
1901 },
1902 };
1903
1904 static void handle_v_commands(GdbCmdContext *gdb_ctx, void *user_ctx)
1905 {
1906 if (!gdb_ctx->num_params) {
1907 return;
1908 }
1909
1910 if (process_string_cmd(gdb_ctx->s, NULL, gdb_ctx->params[0].data,
1911 gdb_v_commands_table,
1912 ARRAY_SIZE(gdb_v_commands_table))) {
1913 put_packet(gdb_ctx->s, "");
1914 }
1915 }
1916
1917 static void handle_query_qemu_sstepbits(GdbCmdContext *gdb_ctx, void *user_ctx)
1918 {
1919 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf),
1920 "ENABLE=%x,NOIRQ=%x,NOTIMER=%x", SSTEP_ENABLE,
1921 SSTEP_NOIRQ, SSTEP_NOTIMER);
1922 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1923 }
1924
1925 static void handle_set_qemu_sstep(GdbCmdContext *gdb_ctx, void *user_ctx)
1926 {
1927 if (!gdb_ctx->num_params) {
1928 return;
1929 }
1930
1931 sstep_flags = gdb_ctx->params[0].val_ul;
1932 put_packet(gdb_ctx->s, "OK");
1933 }
1934
1935 static void handle_query_qemu_sstep(GdbCmdContext *gdb_ctx, void *user_ctx)
1936 {
1937 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "0x%x", sstep_flags);
1938 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1939 }
1940
1941 static void handle_query_curr_tid(GdbCmdContext *gdb_ctx, void *user_ctx)
1942 {
1943 CPUState *cpu;
1944 GDBProcess *process;
1945 char thread_id[16];
1946
1947 /*
1948 * "Current thread" remains vague in the spec, so always return
1949 * the first thread of the current process (gdb returns the
1950 * first thread).
1951 */
1952 process = gdb_get_cpu_process(gdb_ctx->s, gdb_ctx->s->g_cpu);
1953 cpu = get_first_cpu_in_process(gdb_ctx->s, process);
1954 gdb_fmt_thread_id(gdb_ctx->s, cpu, thread_id, sizeof(thread_id));
1955 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "QC%s", thread_id);
1956 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1957 }
1958
1959 static void handle_query_threads(GdbCmdContext *gdb_ctx, void *user_ctx)
1960 {
1961 char thread_id[16];
1962
1963 if (!gdb_ctx->s->query_cpu) {
1964 put_packet(gdb_ctx->s, "l");
1965 return;
1966 }
1967
1968 gdb_fmt_thread_id(gdb_ctx->s, gdb_ctx->s->query_cpu, thread_id,
1969 sizeof(thread_id));
1970 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "m%s", thread_id);
1971 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1972 gdb_ctx->s->query_cpu =
1973 gdb_next_attached_cpu(gdb_ctx->s, gdb_ctx->s->query_cpu);
1974 }
1975
1976 static void handle_query_first_threads(GdbCmdContext *gdb_ctx, void *user_ctx)
1977 {
1978 gdb_ctx->s->query_cpu = gdb_first_attached_cpu(gdb_ctx->s);
1979 handle_query_threads(gdb_ctx, user_ctx);
1980 }
1981
1982 static void handle_query_thread_extra(GdbCmdContext *gdb_ctx, void *user_ctx)
1983 {
1984 CPUState *cpu;
1985 int len;
1986
1987 if (!gdb_ctx->num_params ||
1988 gdb_ctx->params[0].thread_id.kind == GDB_READ_THREAD_ERR) {
1989 put_packet(gdb_ctx->s, "E22");
1990 return;
1991 }
1992
1993 cpu = gdb_get_cpu(gdb_ctx->s, gdb_ctx->params[0].thread_id.pid,
1994 gdb_ctx->params[0].thread_id.tid);
1995 if (!cpu) {
1996 return;
1997 }
1998
1999 cpu_synchronize_state(cpu);
2000
2001 if (gdb_ctx->s->multiprocess && (gdb_ctx->s->process_num > 1)) {
2002 /* Print the CPU model and name in multiprocess mode */
2003 ObjectClass *oc = object_get_class(OBJECT(cpu));
2004 const char *cpu_model = object_class_get_name(oc);
2005 char *cpu_name = object_get_canonical_path_component(OBJECT(cpu));
2006 len = snprintf((char *)gdb_ctx->mem_buf, sizeof(gdb_ctx->str_buf) / 2,
2007 "%s %s [%s]", cpu_model, cpu_name,
2008 cpu->halted ? "halted " : "running");
2009 g_free(cpu_name);
2010 } else {
2011 /* memtohex() doubles the required space */
2012 len = snprintf((char *)gdb_ctx->mem_buf, sizeof(gdb_ctx->str_buf) / 2,
2013 "CPU#%d [%s]", cpu->cpu_index,
2014 cpu->halted ? "halted " : "running");
2015 }
2016 trace_gdbstub_op_extra_info((char *)gdb_ctx->mem_buf);
2017 memtohex(gdb_ctx->str_buf, gdb_ctx->mem_buf, len);
2018 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
2019 }
2020
2021 #ifdef CONFIG_USER_ONLY
2022 static void handle_query_offsets(GdbCmdContext *gdb_ctx, void *user_ctx)
2023 {
2024 TaskState *ts;
2025
2026 ts = gdb_ctx->s->c_cpu->opaque;
2027 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf),
2028 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
2029 ";Bss=" TARGET_ABI_FMT_lx,
2030 ts->info->code_offset,
2031 ts->info->data_offset,
2032 ts->info->data_offset);
2033 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
2034 }
2035 #else
2036 static void handle_query_rcmd(GdbCmdContext *gdb_ctx, void *user_ctx)
2037 {
2038 int len;
2039
2040 if (!gdb_ctx->num_params) {
2041 put_packet(gdb_ctx->s, "E22");
2042 return;
2043 }
2044
2045 len = strlen(gdb_ctx->params[0].data);
2046 if (len % 2) {
2047 put_packet(gdb_ctx->s, "E01");
2048 return;
2049 }
2050
2051 len = len / 2;
2052 hextomem(gdb_ctx->mem_buf, gdb_ctx->params[0].data, len);
2053 gdb_ctx->mem_buf[len++] = 0;
2054 qemu_chr_be_write(gdb_ctx->s->mon_chr, gdb_ctx->mem_buf, len);
2055 put_packet(gdb_ctx->s, "OK");
2056
2057 }
2058 #endif
2059
2060 static void handle_query_supported(GdbCmdContext *gdb_ctx, void *user_ctx)
2061 {
2062 CPUClass *cc;
2063
2064 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "PacketSize=%x",
2065 MAX_PACKET_LENGTH);
2066 cc = CPU_GET_CLASS(first_cpu);
2067 if (cc->gdb_core_xml_file) {
2068 pstrcat(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf),
2069 ";qXfer:features:read+");
2070 }
2071
2072 if (gdb_ctx->num_params &&
2073 strstr(gdb_ctx->params[0].data, "multiprocess+")) {
2074 gdb_ctx->s->multiprocess = true;
2075 }
2076
2077 pstrcat(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), ";multiprocess+");
2078 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
2079 }
2080
2081 static void handle_query_xfer_features(GdbCmdContext *gdb_ctx, void *user_ctx)
2082 {
2083 GDBProcess *process;
2084 CPUClass *cc;
2085 unsigned long len, total_len, addr;
2086 const char *xml;
2087 const char *p;
2088
2089 if (gdb_ctx->num_params < 3) {
2090 put_packet(gdb_ctx->s, "E22");
2091 return;
2092 }
2093
2094 process = gdb_get_cpu_process(gdb_ctx->s, gdb_ctx->s->g_cpu);
2095 cc = CPU_GET_CLASS(gdb_ctx->s->g_cpu);
2096 if (!cc->gdb_core_xml_file) {
2097 put_packet(gdb_ctx->s, "");
2098 return;
2099 }
2100
2101 gdb_has_xml = true;
2102 p = gdb_ctx->params[0].data;
2103 xml = get_feature_xml(gdb_ctx->s, p, &p, process);
2104 if (!xml) {
2105 put_packet(gdb_ctx->s, "E00");
2106 return;
2107 }
2108
2109 addr = gdb_ctx->params[1].val_ul;
2110 len = gdb_ctx->params[2].val_ul;
2111 total_len = strlen(xml);
2112 if (addr > total_len) {
2113 put_packet(gdb_ctx->s, "E00");
2114 return;
2115 }
2116
2117 if (len > (MAX_PACKET_LENGTH - 5) / 2) {
2118 len = (MAX_PACKET_LENGTH - 5) / 2;
2119 }
2120
2121 if (len < total_len - addr) {
2122 gdb_ctx->str_buf[0] = 'm';
2123 len = memtox(gdb_ctx->str_buf + 1, xml + addr, len);
2124 } else {
2125 gdb_ctx->str_buf[0] = 'l';
2126 len = memtox(gdb_ctx->str_buf + 1, xml + addr, total_len - addr);
2127 }
2128
2129 put_packet_binary(gdb_ctx->s, gdb_ctx->str_buf, len + 1, true);
2130 }
2131
2132 static void handle_query_attached(GdbCmdContext *gdb_ctx, void *user_ctx)
2133 {
2134 put_packet(gdb_ctx->s, GDB_ATTACHED);
2135 }
2136
2137 static void handle_query_qemu_supported(GdbCmdContext *gdb_ctx, void *user_ctx)
2138 {
2139 put_packet(gdb_ctx->s, "sstepbits;sstep");
2140 }
2141
2142 static GdbCmdParseEntry gdb_gen_query_set_common_table[] = {
2143 /* Order is important if has same prefix */
2144 {
2145 .handler = handle_query_qemu_sstepbits,
2146 .cmd = "qemu.sstepbits",
2147 },
2148 {
2149 .handler = handle_query_qemu_sstep,
2150 .cmd = "qemu.sstep",
2151 },
2152 {
2153 .handler = handle_set_qemu_sstep,
2154 .cmd = "qemu.sstep=",
2155 .cmd_startswith = 1,
2156 .schema = "l0"
2157 },
2158 };
2159
2160 static GdbCmdParseEntry gdb_gen_query_table[] = {
2161 {
2162 .handler = handle_query_curr_tid,
2163 .cmd = "C",
2164 },
2165 {
2166 .handler = handle_query_threads,
2167 .cmd = "sThreadInfo",
2168 },
2169 {
2170 .handler = handle_query_first_threads,
2171 .cmd = "fThreadInfo",
2172 },
2173 {
2174 .handler = handle_query_thread_extra,
2175 .cmd = "ThreadExtraInfo,",
2176 .cmd_startswith = 1,
2177 .schema = "t0"
2178 },
2179 #ifdef CONFIG_USER_ONLY
2180 {
2181 .handler = handle_query_offsets,
2182 .cmd = "Offsets",
2183 },
2184 #else
2185 {
2186 .handler = handle_query_rcmd,
2187 .cmd = "Rcmd,",
2188 .cmd_startswith = 1,
2189 .schema = "s0"
2190 },
2191 #endif
2192 {
2193 .handler = handle_query_supported,
2194 .cmd = "Supported:",
2195 .cmd_startswith = 1,
2196 .schema = "s0"
2197 },
2198 {
2199 .handler = handle_query_supported,
2200 .cmd = "Supported",
2201 .schema = "s0"
2202 },
2203 {
2204 .handler = handle_query_xfer_features,
2205 .cmd = "Xfer:features:read:",
2206 .cmd_startswith = 1,
2207 .schema = "s:l,l0"
2208 },
2209 {
2210 .handler = handle_query_attached,
2211 .cmd = "Attached:",
2212 .cmd_startswith = 1
2213 },
2214 {
2215 .handler = handle_query_attached,
2216 .cmd = "Attached",
2217 },
2218 {
2219 .handler = handle_query_qemu_supported,
2220 .cmd = "qemu.Supported",
2221 },
2222 };
2223
2224 static GdbCmdParseEntry gdb_gen_set_table[] = {
2225 /* Order is important if has same prefix */
2226 {
2227 .handler = handle_set_qemu_sstep,
2228 .cmd = "qemu.sstep:",
2229 .cmd_startswith = 1,
2230 .schema = "l0"
2231 },
2232 };
2233
2234 static void handle_gen_query(GdbCmdContext *gdb_ctx, void *user_ctx)
2235 {
2236 if (!gdb_ctx->num_params) {
2237 return;
2238 }
2239
2240 if (!process_string_cmd(gdb_ctx->s, NULL, gdb_ctx->params[0].data,
2241 gdb_gen_query_set_common_table,
2242 ARRAY_SIZE(gdb_gen_query_set_common_table))) {
2243 return;
2244 }
2245
2246 if (process_string_cmd(gdb_ctx->s, NULL, gdb_ctx->params[0].data,
2247 gdb_gen_query_table,
2248 ARRAY_SIZE(gdb_gen_query_table))) {
2249 put_packet(gdb_ctx->s, "");
2250 }
2251 }
2252
2253 static void handle_gen_set(GdbCmdContext *gdb_ctx, void *user_ctx)
2254 {
2255 if (!gdb_ctx->num_params) {
2256 return;
2257 }
2258
2259 if (!process_string_cmd(gdb_ctx->s, NULL, gdb_ctx->params[0].data,
2260 gdb_gen_query_set_common_table,
2261 ARRAY_SIZE(gdb_gen_query_set_common_table))) {
2262 return;
2263 }
2264
2265 if (process_string_cmd(gdb_ctx->s, NULL, gdb_ctx->params[0].data,
2266 gdb_gen_set_table,
2267 ARRAY_SIZE(gdb_gen_set_table))) {
2268 put_packet(gdb_ctx->s, "");
2269 }
2270 }
2271
2272 static int gdb_handle_packet(GDBState *s, const char *line_buf)
2273 {
2274 const char *p;
2275 int ch;
2276 uint8_t mem_buf[MAX_PACKET_LENGTH];
2277 char buf[sizeof(mem_buf) + 1 /* trailing NUL */];
2278 char thread_id[16];
2279 const GdbCmdParseEntry *cmd_parser = NULL;
2280
2281 trace_gdbstub_io_command(line_buf);
2282
2283 p = line_buf;
2284 ch = *p++;
2285 switch(ch) {
2286 case '!':
2287 put_packet(s, "OK");
2288 break;
2289 case '?':
2290 /* TODO: Make this return the correct value for user-mode. */
2291 snprintf(buf, sizeof(buf), "T%02xthread:%s;", GDB_SIGNAL_TRAP,
2292 gdb_fmt_thread_id(s, s->c_cpu, thread_id, sizeof(thread_id)));
2293 put_packet(s, buf);
2294 /* Remove all the breakpoints when this query is issued,
2295 * because gdb is doing and initial connect and the state
2296 * should be cleaned up.
2297 */
2298 gdb_breakpoint_remove_all();
2299 break;
2300 case 'c':
2301 {
2302 static const GdbCmdParseEntry continue_cmd_desc = {
2303 .handler = handle_continue,
2304 .cmd = "c",
2305 .cmd_startswith = 1,
2306 .schema = "L0"
2307 };
2308 cmd_parser = &continue_cmd_desc;
2309 }
2310 break;
2311 case 'C':
2312 {
2313 static const GdbCmdParseEntry cont_with_sig_cmd_desc = {
2314 .handler = handle_cont_with_sig,
2315 .cmd = "C",
2316 .cmd_startswith = 1,
2317 .schema = "l0"
2318 };
2319 cmd_parser = &cont_with_sig_cmd_desc;
2320 }
2321 break;
2322 case 'v':
2323 {
2324 static const GdbCmdParseEntry v_cmd_desc = {
2325 .handler = handle_v_commands,
2326 .cmd = "v",
2327 .cmd_startswith = 1,
2328 .schema = "s0"
2329 };
2330 cmd_parser = &v_cmd_desc;
2331 }
2332 break;
2333 case 'k':
2334 /* Kill the target */
2335 error_report("QEMU: Terminated via GDBstub");
2336 exit(0);
2337 case 'D':
2338 {
2339 static const GdbCmdParseEntry detach_cmd_desc = {
2340 .handler = handle_detach,
2341 .cmd = "D",
2342 .cmd_startswith = 1,
2343 .schema = "?.l0"
2344 };
2345 cmd_parser = &detach_cmd_desc;
2346 }
2347 break;
2348 case 's':
2349 {
2350 static const GdbCmdParseEntry step_cmd_desc = {
2351 .handler = handle_step,
2352 .cmd = "s",
2353 .cmd_startswith = 1,
2354 .schema = "L0"
2355 };
2356 cmd_parser = &step_cmd_desc;
2357 }
2358 break;
2359 case 'F':
2360 {
2361 static const GdbCmdParseEntry file_io_cmd_desc = {
2362 .handler = handle_file_io,
2363 .cmd = "F",
2364 .cmd_startswith = 1,
2365 .schema = "L,L,o0"
2366 };
2367 cmd_parser = &file_io_cmd_desc;
2368 }
2369 break;
2370 case 'g':
2371 {
2372 static const GdbCmdParseEntry read_all_regs_cmd_desc = {
2373 .handler = handle_read_all_regs,
2374 .cmd = "g",
2375 .cmd_startswith = 1
2376 };
2377 cmd_parser = &read_all_regs_cmd_desc;
2378 }
2379 break;
2380 case 'G':
2381 {
2382 static const GdbCmdParseEntry write_all_regs_cmd_desc = {
2383 .handler = handle_write_all_regs,
2384 .cmd = "G",
2385 .cmd_startswith = 1,
2386 .schema = "s0"
2387 };
2388 cmd_parser = &write_all_regs_cmd_desc;
2389 }
2390 break;
2391 case 'm':
2392 {
2393 static const GdbCmdParseEntry read_mem_cmd_desc = {
2394 .handler = handle_read_mem,
2395 .cmd = "m",
2396 .cmd_startswith = 1,
2397 .schema = "L,L0"
2398 };
2399 cmd_parser = &read_mem_cmd_desc;
2400 }
2401 break;
2402 case 'M':
2403 {
2404 static const GdbCmdParseEntry write_mem_cmd_desc = {
2405 .handler = handle_write_mem,
2406 .cmd = "M",
2407 .cmd_startswith = 1,
2408 .schema = "L,L:s0"
2409 };
2410 cmd_parser = &write_mem_cmd_desc;
2411 }
2412 break;
2413 case 'p':
2414 {
2415 static const GdbCmdParseEntry get_reg_cmd_desc = {
2416 .handler = handle_get_reg,
2417 .cmd = "p",
2418 .cmd_startswith = 1,
2419 .schema = "L0"
2420 };
2421 cmd_parser = &get_reg_cmd_desc;
2422 }
2423 break;
2424 case 'P':
2425 {
2426 static const GdbCmdParseEntry set_reg_cmd_desc = {
2427 .handler = handle_set_reg,
2428 .cmd = "P",
2429 .cmd_startswith = 1,
2430 .schema = "L?s0"
2431 };
2432 cmd_parser = &set_reg_cmd_desc;
2433 }
2434 break;
2435 case 'Z':
2436 {
2437 static const GdbCmdParseEntry insert_bp_cmd_desc = {
2438 .handler = handle_insert_bp,
2439 .cmd = "Z",
2440 .cmd_startswith = 1,
2441 .schema = "l?L?L0"
2442 };
2443 cmd_parser = &insert_bp_cmd_desc;
2444 }
2445 break;
2446 case 'z':
2447 {
2448 static const GdbCmdParseEntry remove_bp_cmd_desc = {
2449 .handler = handle_remove_bp,
2450 .cmd = "z",
2451 .cmd_startswith = 1,
2452 .schema = "l?L?L0"
2453 };
2454 cmd_parser = &remove_bp_cmd_desc;
2455 }
2456 break;
2457 case 'H':
2458 {
2459 static const GdbCmdParseEntry set_thread_cmd_desc = {
2460 .handler = handle_set_thread,
2461 .cmd = "H",
2462 .cmd_startswith = 1,
2463 .schema = "o.t0"
2464 };
2465 cmd_parser = &set_thread_cmd_desc;
2466 }
2467 break;
2468 case 'T':
2469 {
2470 static const GdbCmdParseEntry thread_alive_cmd_desc = {
2471 .handler = handle_thread_alive,
2472 .cmd = "T",
2473 .cmd_startswith = 1,
2474 .schema = "t0"
2475 };
2476 cmd_parser = &thread_alive_cmd_desc;
2477 }
2478 break;
2479 case 'q':
2480 {
2481 static const GdbCmdParseEntry gen_query_cmd_desc = {
2482 .handler = handle_gen_query,
2483 .cmd = "q",
2484 .cmd_startswith = 1,
2485 .schema = "s0"
2486 };
2487 cmd_parser = &gen_query_cmd_desc;
2488 }
2489 break;
2490 case 'Q':
2491 {
2492 static const GdbCmdParseEntry gen_set_cmd_desc = {
2493 .handler = handle_gen_set,
2494 .cmd = "Q",
2495 .cmd_startswith = 1,
2496 .schema = "s0"
2497 };
2498 cmd_parser = &gen_set_cmd_desc;
2499 }
2500 break;
2501 default:
2502 /* put empty packet */
2503 buf[0] = '\0';
2504 put_packet(s, buf);
2505 break;
2506 }
2507
2508 run_cmd_parser(s, line_buf, cmd_parser);
2509
2510 return RS_IDLE;
2511 }
2512
2513 void gdb_set_stop_cpu(CPUState *cpu)
2514 {
2515 GDBProcess *p = gdb_get_cpu_process(gdbserver_state, cpu);
2516
2517 if (!p->attached) {
2518 /*
2519 * Having a stop CPU corresponding to a process that is not attached
2520 * confuses GDB. So we ignore the request.
2521 */
2522 return;
2523 }
2524
2525 gdbserver_state->c_cpu = cpu;
2526 gdbserver_state->g_cpu = cpu;
2527 }
2528
2529 #ifndef CONFIG_USER_ONLY
2530 static void gdb_vm_state_change(void *opaque, int running, RunState state)
2531 {
2532 GDBState *s = gdbserver_state;
2533 CPUState *cpu = s->c_cpu;
2534 char buf[256];
2535 char thread_id[16];
2536 const char *type;
2537 int ret;
2538
2539 if (running || s->state == RS_INACTIVE) {
2540 return;
2541 }
2542 /* Is there a GDB syscall waiting to be sent? */
2543 if (s->current_syscall_cb) {
2544 put_packet(s, s->syscall_buf);
2545 return;
2546 }
2547
2548 if (cpu == NULL) {
2549 /* No process attached */
2550 return;
2551 }
2552
2553 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id));
2554
2555 switch (state) {
2556 case RUN_STATE_DEBUG:
2557 if (cpu->watchpoint_hit) {
2558 switch (cpu->watchpoint_hit->flags & BP_MEM_ACCESS) {
2559 case BP_MEM_READ:
2560 type = "r";
2561 break;
2562 case BP_MEM_ACCESS:
2563 type = "a";
2564 break;
2565 default:
2566 type = "";
2567 break;
2568 }
2569 trace_gdbstub_hit_watchpoint(type, cpu_gdb_index(cpu),
2570 (target_ulong)cpu->watchpoint_hit->vaddr);
2571 snprintf(buf, sizeof(buf),
2572 "T%02xthread:%s;%swatch:" TARGET_FMT_lx ";",
2573 GDB_SIGNAL_TRAP, thread_id, type,
2574 (target_ulong)cpu->watchpoint_hit->vaddr);
2575 cpu->watchpoint_hit = NULL;
2576 goto send_packet;
2577 } else {
2578 trace_gdbstub_hit_break();
2579 }
2580 tb_flush(cpu);
2581 ret = GDB_SIGNAL_TRAP;
2582 break;
2583 case RUN_STATE_PAUSED:
2584 trace_gdbstub_hit_paused();
2585 ret = GDB_SIGNAL_INT;
2586 break;
2587 case RUN_STATE_SHUTDOWN:
2588 trace_gdbstub_hit_shutdown();
2589 ret = GDB_SIGNAL_QUIT;
2590 break;
2591 case RUN_STATE_IO_ERROR:
2592 trace_gdbstub_hit_io_error();
2593 ret = GDB_SIGNAL_IO;
2594 break;
2595 case RUN_STATE_WATCHDOG:
2596 trace_gdbstub_hit_watchdog();
2597 ret = GDB_SIGNAL_ALRM;
2598 break;
2599 case RUN_STATE_INTERNAL_ERROR:
2600 trace_gdbstub_hit_internal_error();
2601 ret = GDB_SIGNAL_ABRT;
2602 break;
2603 case RUN_STATE_SAVE_VM:
2604 case RUN_STATE_RESTORE_VM:
2605 return;
2606 case RUN_STATE_FINISH_MIGRATE:
2607 ret = GDB_SIGNAL_XCPU;
2608 break;
2609 default:
2610 trace_gdbstub_hit_unknown(state);
2611 ret = GDB_SIGNAL_UNKNOWN;
2612 break;
2613 }
2614 gdb_set_stop_cpu(cpu);
2615 snprintf(buf, sizeof(buf), "T%02xthread:%s;", ret, thread_id);
2616
2617 send_packet:
2618 put_packet(s, buf);
2619
2620 /* disable single step if it was enabled */
2621 cpu_single_step(cpu, 0);
2622 }
2623 #endif
2624
2625 /* Send a gdb syscall request.
2626 This accepts limited printf-style format specifiers, specifically:
2627 %x - target_ulong argument printed in hex.
2628 %lx - 64-bit argument printed in hex.
2629 %s - string pointer (target_ulong) and length (int) pair. */
2630 void gdb_do_syscallv(gdb_syscall_complete_cb cb, const char *fmt, va_list va)
2631 {
2632 char *p;
2633 char *p_end;
2634 target_ulong addr;
2635 uint64_t i64;
2636 GDBState *s;
2637
2638 s = gdbserver_state;
2639 if (!s)
2640 return;
2641 s->current_syscall_cb = cb;
2642 #ifndef CONFIG_USER_ONLY
2643 vm_stop(RUN_STATE_DEBUG);
2644 #endif
2645 p = s->syscall_buf;
2646 p_end = &s->syscall_buf[sizeof(s->syscall_buf)];
2647 *(p++) = 'F';
2648 while (*fmt) {
2649 if (*fmt == '%') {
2650 fmt++;
2651 switch (*fmt++) {
2652 case 'x':
2653 addr = va_arg(va, target_ulong);
2654 p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
2655 break;
2656 case 'l':
2657 if (*(fmt++) != 'x')
2658 goto bad_format;
2659 i64 = va_arg(va, uint64_t);
2660 p += snprintf(p, p_end - p, "%" PRIx64, i64);
2661 break;
2662 case 's':
2663 addr = va_arg(va, target_ulong);
2664 p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
2665 addr, va_arg(va, int));
2666 break;
2667 default:
2668 bad_format:
2669 error_report("gdbstub: Bad syscall format string '%s'",
2670 fmt - 1);
2671 break;
2672 }
2673 } else {
2674 *(p++) = *(fmt++);
2675 }
2676 }
2677 *p = 0;
2678 #ifdef CONFIG_USER_ONLY
2679 put_packet(s, s->syscall_buf);
2680 /* Return control to gdb for it to process the syscall request.
2681 * Since the protocol requires that gdb hands control back to us
2682 * using a "here are the results" F packet, we don't need to check
2683 * gdb_handlesig's return value (which is the signal to deliver if
2684 * execution was resumed via a continue packet).
2685 */
2686 gdb_handlesig(s->c_cpu, 0);
2687 #else
2688 /* In this case wait to send the syscall packet until notification that
2689 the CPU has stopped. This must be done because if the packet is sent
2690 now the reply from the syscall request could be received while the CPU
2691 is still in the running state, which can cause packets to be dropped
2692 and state transition 'T' packets to be sent while the syscall is still
2693 being processed. */
2694 qemu_cpu_kick(s->c_cpu);
2695 #endif
2696 }
2697
2698 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2699 {
2700 va_list va;
2701
2702 va_start(va, fmt);
2703 gdb_do_syscallv(cb, fmt, va);
2704 va_end(va);
2705 }
2706
2707 static void gdb_read_byte(GDBState *s, uint8_t ch)
2708 {
2709 uint8_t reply;
2710
2711 #ifndef CONFIG_USER_ONLY
2712 if (s->last_packet_len) {
2713 /* Waiting for a response to the last packet. If we see the start
2714 of a new command then abandon the previous response. */
2715 if (ch == '-') {
2716 trace_gdbstub_err_got_nack();
2717 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2718 } else if (ch == '+') {
2719 trace_gdbstub_io_got_ack();
2720 } else {
2721 trace_gdbstub_io_got_unexpected(ch);
2722 }
2723
2724 if (ch == '+' || ch == '$')
2725 s->last_packet_len = 0;
2726 if (ch != '$')
2727 return;
2728 }
2729 if (runstate_is_running()) {
2730 /* when the CPU is running, we cannot do anything except stop
2731 it when receiving a char */
2732 vm_stop(RUN_STATE_PAUSED);
2733 } else
2734 #endif
2735 {
2736 switch(s->state) {
2737 case RS_IDLE:
2738 if (ch == '$') {
2739 /* start of command packet */
2740 s->line_buf_index = 0;
2741 s->line_sum = 0;
2742 s->state = RS_GETLINE;
2743 } else {
2744 trace_gdbstub_err_garbage(ch);
2745 }
2746 break;
2747 case RS_GETLINE:
2748 if (ch == '}') {
2749 /* start escape sequence */
2750 s->state = RS_GETLINE_ESC;
2751 s->line_sum += ch;
2752 } else if (ch == '*') {
2753 /* start run length encoding sequence */
2754 s->state = RS_GETLINE_RLE;
2755 s->line_sum += ch;
2756 } else if (ch == '#') {
2757 /* end of command, start of checksum*/
2758 s->state = RS_CHKSUM1;
2759 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2760 trace_gdbstub_err_overrun();
2761 s->state = RS_IDLE;
2762 } else {
2763 /* unescaped command character */
2764 s->line_buf[s->line_buf_index++] = ch;
2765 s->line_sum += ch;
2766 }
2767 break;
2768 case RS_GETLINE_ESC:
2769 if (ch == '#') {
2770 /* unexpected end of command in escape sequence */
2771 s->state = RS_CHKSUM1;
2772 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2773 /* command buffer overrun */
2774 trace_gdbstub_err_overrun();
2775 s->state = RS_IDLE;
2776 } else {
2777 /* parse escaped character and leave escape state */
2778 s->line_buf[s->line_buf_index++] = ch ^ 0x20;
2779 s->line_sum += ch;
2780 s->state = RS_GETLINE;
2781 }
2782 break;
2783 case RS_GETLINE_RLE:
2784 /*
2785 * Run-length encoding is explained in "Debugging with GDB /
2786 * Appendix E GDB Remote Serial Protocol / Overview".
2787 */
2788 if (ch < ' ' || ch == '#' || ch == '$' || ch > 126) {
2789 /* invalid RLE count encoding */
2790 trace_gdbstub_err_invalid_repeat(ch);
2791 s->state = RS_GETLINE;
2792 } else {
2793 /* decode repeat length */
2794 int repeat = ch - ' ' + 3;
2795 if (s->line_buf_index + repeat >= sizeof(s->line_buf) - 1) {
2796 /* that many repeats would overrun the command buffer */
2797 trace_gdbstub_err_overrun();
2798 s->state = RS_IDLE;
2799 } else if (s->line_buf_index < 1) {
2800 /* got a repeat but we have nothing to repeat */
2801 trace_gdbstub_err_invalid_rle();
2802 s->state = RS_GETLINE;
2803 } else {
2804 /* repeat the last character */
2805 memset(s->line_buf + s->line_buf_index,
2806 s->line_buf[s->line_buf_index - 1], repeat);
2807 s->line_buf_index += repeat;
2808 s->line_sum += ch;
2809 s->state = RS_GETLINE;
2810 }
2811 }
2812 break;
2813 case RS_CHKSUM1:
2814 /* get high hex digit of checksum */
2815 if (!isxdigit(ch)) {
2816 trace_gdbstub_err_checksum_invalid(ch);
2817 s->state = RS_GETLINE;
2818 break;
2819 }
2820 s->line_buf[s->line_buf_index] = '\0';
2821 s->line_csum = fromhex(ch) << 4;
2822 s->state = RS_CHKSUM2;
2823 break;
2824 case RS_CHKSUM2:
2825 /* get low hex digit of checksum */
2826 if (!isxdigit(ch)) {
2827 trace_gdbstub_err_checksum_invalid(ch);
2828 s->state = RS_GETLINE;
2829 break;
2830 }
2831 s->line_csum |= fromhex(ch);
2832
2833 if (s->line_csum != (s->line_sum & 0xff)) {
2834 trace_gdbstub_err_checksum_incorrect(s->line_sum, s->line_csum);
2835 /* send NAK reply */
2836 reply = '-';
2837 put_buffer(s, &reply, 1);
2838 s->state = RS_IDLE;
2839 } else {
2840 /* send ACK reply */
2841 reply = '+';
2842 put_buffer(s, &reply, 1);
2843 s->state = gdb_handle_packet(s, s->line_buf);
2844 }
2845 break;
2846 default:
2847 abort();
2848 }
2849 }
2850 }
2851
2852 /* Tell the remote gdb that the process has exited. */
2853 void gdb_exit(CPUArchState *env, int code)
2854 {
2855 GDBState *s;
2856 char buf[4];
2857
2858 s = gdbserver_state;
2859 if (!s) {
2860 return;
2861 }
2862 #ifdef CONFIG_USER_ONLY
2863 if (gdbserver_fd < 0 || s->fd < 0) {
2864 return;
2865 }
2866 #endif
2867
2868 trace_gdbstub_op_exiting((uint8_t)code);
2869
2870 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2871 put_packet(s, buf);
2872
2873 #ifndef CONFIG_USER_ONLY
2874 qemu_chr_fe_deinit(&s->chr, true);
2875 #endif
2876 }
2877
2878 /*
2879 * Create the process that will contain all the "orphan" CPUs (that are not
2880 * part of a CPU cluster). Note that if this process contains no CPUs, it won't
2881 * be attachable and thus will be invisible to the user.
2882 */
2883 static void create_default_process(GDBState *s)
2884 {
2885 GDBProcess *process;
2886 int max_pid = 0;
2887
2888 if (s->process_num) {
2889 max_pid = s->processes[s->process_num - 1].pid;
2890 }
2891
2892 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
2893 process = &s->processes[s->process_num - 1];
2894
2895 /* We need an available PID slot for this process */
2896 assert(max_pid < UINT32_MAX);
2897
2898 process->pid = max_pid + 1;
2899 process->attached = false;
2900 process->target_xml[0] = '\0';
2901 }
2902
2903 #ifdef CONFIG_USER_ONLY
2904 int
2905 gdb_handlesig(CPUState *cpu, int sig)
2906 {
2907 GDBState *s;
2908 char buf[256];
2909 int n;
2910
2911 s = gdbserver_state;
2912 if (gdbserver_fd < 0 || s->fd < 0) {
2913 return sig;
2914 }
2915
2916 /* disable single step if it was enabled */
2917 cpu_single_step(cpu, 0);
2918 tb_flush(cpu);
2919
2920 if (sig != 0) {
2921 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb(sig));
2922 put_packet(s, buf);
2923 }
2924 /* put_packet() might have detected that the peer terminated the
2925 connection. */
2926 if (s->fd < 0) {
2927 return sig;
2928 }
2929
2930 sig = 0;
2931 s->state = RS_IDLE;
2932 s->running_state = 0;
2933 while (s->running_state == 0) {
2934 n = read(s->fd, buf, 256);
2935 if (n > 0) {
2936 int i;
2937
2938 for (i = 0; i < n; i++) {
2939 gdb_read_byte(s, buf[i]);
2940 }
2941 } else {
2942 /* XXX: Connection closed. Should probably wait for another
2943 connection before continuing. */
2944 if (n == 0) {
2945 close(s->fd);
2946 }
2947 s->fd = -1;
2948 return sig;
2949 }
2950 }
2951 sig = s->signal;
2952 s->signal = 0;
2953 return sig;
2954 }
2955
2956 /* Tell the remote gdb that the process has exited due to SIG. */
2957 void gdb_signalled(CPUArchState *env, int sig)
2958 {
2959 GDBState *s;
2960 char buf[4];
2961
2962 s = gdbserver_state;
2963 if (gdbserver_fd < 0 || s->fd < 0) {
2964 return;
2965 }
2966
2967 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb(sig));
2968 put_packet(s, buf);
2969 }
2970
2971 static bool gdb_accept(void)
2972 {
2973 GDBState *s;
2974 struct sockaddr_in sockaddr;
2975 socklen_t len;
2976 int fd;
2977
2978 for(;;) {
2979 len = sizeof(sockaddr);
2980 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2981 if (fd < 0 && errno != EINTR) {
2982 perror("accept");
2983 return false;
2984 } else if (fd >= 0) {
2985 qemu_set_cloexec(fd);
2986 break;
2987 }
2988 }
2989
2990 /* set short latency */
2991 if (socket_set_nodelay(fd)) {
2992 perror("setsockopt");
2993 close(fd);
2994 return false;
2995 }
2996
2997 s = g_malloc0(sizeof(GDBState));
2998 create_default_process(s);
2999 s->processes[0].attached = true;
3000 s->c_cpu = gdb_first_attached_cpu(s);
3001 s->g_cpu = s->c_cpu;
3002 s->fd = fd;
3003 gdb_has_xml = false;
3004
3005 gdbserver_state = s;
3006 return true;
3007 }
3008
3009 static int gdbserver_open(int port)
3010 {
3011 struct sockaddr_in sockaddr;
3012 int fd, ret;
3013
3014 fd = socket(PF_INET, SOCK_STREAM, 0);
3015 if (fd < 0) {
3016 perror("socket");
3017 return -1;
3018 }
3019 qemu_set_cloexec(fd);
3020
3021 socket_set_fast_reuse(fd);
3022
3023 sockaddr.sin_family = AF_INET;
3024 sockaddr.sin_port = htons(port);
3025 sockaddr.sin_addr.s_addr = 0;
3026 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
3027 if (ret < 0) {
3028 perror("bind");
3029 close(fd);
3030 return -1;
3031 }
3032 ret = listen(fd, 1);
3033 if (ret < 0) {
3034 perror("listen");
3035 close(fd);
3036 return -1;
3037 }
3038 return fd;
3039 }
3040
3041 int gdbserver_start(int port)
3042 {
3043 gdbserver_fd = gdbserver_open(port);
3044 if (gdbserver_fd < 0)
3045 return -1;
3046 /* accept connections */
3047 if (!gdb_accept()) {
3048 close(gdbserver_fd);
3049 gdbserver_fd = -1;
3050 return -1;
3051 }
3052 return 0;
3053 }
3054
3055 /* Disable gdb stub for child processes. */
3056 void gdbserver_fork(CPUState *cpu)
3057 {
3058 GDBState *s = gdbserver_state;
3059
3060 if (gdbserver_fd < 0 || s->fd < 0) {
3061 return;
3062 }
3063 close(s->fd);
3064 s->fd = -1;
3065 cpu_breakpoint_remove_all(cpu, BP_GDB);
3066 cpu_watchpoint_remove_all(cpu, BP_GDB);
3067 }
3068 #else
3069 static int gdb_chr_can_receive(void *opaque)
3070 {
3071 /* We can handle an arbitrarily large amount of data.
3072 Pick the maximum packet size, which is as good as anything. */
3073 return MAX_PACKET_LENGTH;
3074 }
3075
3076 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
3077 {
3078 int i;
3079
3080 for (i = 0; i < size; i++) {
3081 gdb_read_byte(gdbserver_state, buf[i]);
3082 }
3083 }
3084
3085 static void gdb_chr_event(void *opaque, int event)
3086 {
3087 int i;
3088 GDBState *s = (GDBState *) opaque;
3089
3090 switch (event) {
3091 case CHR_EVENT_OPENED:
3092 /* Start with first process attached, others detached */
3093 for (i = 0; i < s->process_num; i++) {
3094 s->processes[i].attached = !i;
3095 }
3096
3097 s->c_cpu = gdb_first_attached_cpu(s);
3098 s->g_cpu = s->c_cpu;
3099
3100 vm_stop(RUN_STATE_PAUSED);
3101 gdb_has_xml = false;
3102 break;
3103 default:
3104 break;
3105 }
3106 }
3107
3108 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
3109 {
3110 char buf[MAX_PACKET_LENGTH];
3111
3112 buf[0] = 'O';
3113 if (len > (MAX_PACKET_LENGTH/2) - 1)
3114 len = (MAX_PACKET_LENGTH/2) - 1;
3115 memtohex(buf + 1, (uint8_t *)msg, len);
3116 put_packet(s, buf);
3117 }
3118
3119 static int gdb_monitor_write(Chardev *chr, const uint8_t *buf, int len)
3120 {
3121 const char *p = (const char *)buf;
3122 int max_sz;
3123
3124 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
3125 for (;;) {
3126 if (len <= max_sz) {
3127 gdb_monitor_output(gdbserver_state, p, len);
3128 break;
3129 }
3130 gdb_monitor_output(gdbserver_state, p, max_sz);
3131 p += max_sz;
3132 len -= max_sz;
3133 }
3134 return len;
3135 }
3136
3137 #ifndef _WIN32
3138 static void gdb_sigterm_handler(int signal)
3139 {
3140 if (runstate_is_running()) {
3141 vm_stop(RUN_STATE_PAUSED);
3142 }
3143 }
3144 #endif
3145
3146 static void gdb_monitor_open(Chardev *chr, ChardevBackend *backend,
3147 bool *be_opened, Error **errp)
3148 {
3149 *be_opened = false;
3150 }
3151
3152 static void char_gdb_class_init(ObjectClass *oc, void *data)
3153 {
3154 ChardevClass *cc = CHARDEV_CLASS(oc);
3155
3156 cc->internal = true;
3157 cc->open = gdb_monitor_open;
3158 cc->chr_write = gdb_monitor_write;
3159 }
3160
3161 #define TYPE_CHARDEV_GDB "chardev-gdb"
3162
3163 static const TypeInfo char_gdb_type_info = {
3164 .name = TYPE_CHARDEV_GDB,
3165 .parent = TYPE_CHARDEV,
3166 .class_init = char_gdb_class_init,
3167 };
3168
3169 static int find_cpu_clusters(Object *child, void *opaque)
3170 {
3171 if (object_dynamic_cast(child, TYPE_CPU_CLUSTER)) {
3172 GDBState *s = (GDBState *) opaque;
3173 CPUClusterState *cluster = CPU_CLUSTER(child);
3174 GDBProcess *process;
3175
3176 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
3177
3178 process = &s->processes[s->process_num - 1];
3179
3180 /*
3181 * GDB process IDs -1 and 0 are reserved. To avoid subtle errors at
3182 * runtime, we enforce here that the machine does not use a cluster ID
3183 * that would lead to PID 0.
3184 */
3185 assert(cluster->cluster_id != UINT32_MAX);
3186 process->pid = cluster->cluster_id + 1;
3187 process->attached = false;
3188 process->target_xml[0] = '\0';
3189
3190 return 0;
3191 }
3192
3193 return object_child_foreach(child, find_cpu_clusters, opaque);
3194 }
3195
3196 static int pid_order(const void *a, const void *b)
3197 {
3198 GDBProcess *pa = (GDBProcess *) a;
3199 GDBProcess *pb = (GDBProcess *) b;
3200
3201 if (pa->pid < pb->pid) {
3202 return -1;
3203 } else if (pa->pid > pb->pid) {
3204 return 1;
3205 } else {
3206 return 0;
3207 }
3208 }
3209
3210 static void create_processes(GDBState *s)
3211 {
3212 object_child_foreach(object_get_root(), find_cpu_clusters, s);
3213
3214 if (s->processes) {
3215 /* Sort by PID */
3216 qsort(s->processes, s->process_num, sizeof(s->processes[0]), pid_order);
3217 }
3218
3219 create_default_process(s);
3220 }
3221
3222 static void cleanup_processes(GDBState *s)
3223 {
3224 g_free(s->processes);
3225 s->process_num = 0;
3226 s->processes = NULL;
3227 }
3228
3229 int gdbserver_start(const char *device)
3230 {
3231 trace_gdbstub_op_start(device);
3232
3233 GDBState *s;
3234 char gdbstub_device_name[128];
3235 Chardev *chr = NULL;
3236 Chardev *mon_chr;
3237
3238 if (!first_cpu) {
3239 error_report("gdbstub: meaningless to attach gdb to a "
3240 "machine without any CPU.");
3241 return -1;
3242 }
3243
3244 if (!device)
3245 return -1;
3246 if (strcmp(device, "none") != 0) {
3247 if (strstart(device, "tcp:", NULL)) {
3248 /* enforce required TCP attributes */
3249 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
3250 "%s,nowait,nodelay,server", device);
3251 device = gdbstub_device_name;
3252 }
3253 #ifndef _WIN32
3254 else if (strcmp(device, "stdio") == 0) {
3255 struct sigaction act;
3256
3257 memset(&act, 0, sizeof(act));
3258 act.sa_handler = gdb_sigterm_handler;
3259 sigaction(SIGINT, &act, NULL);
3260 }
3261 #endif
3262 /*
3263 * FIXME: it's a bit weird to allow using a mux chardev here
3264 * and implicitly setup a monitor. We may want to break this.
3265 */
3266 chr = qemu_chr_new_noreplay("gdb", device, true, NULL);
3267 if (!chr)
3268 return -1;
3269 }
3270
3271 s = gdbserver_state;
3272 if (!s) {
3273 s = g_malloc0(sizeof(GDBState));
3274 gdbserver_state = s;
3275
3276 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
3277
3278 /* Initialize a monitor terminal for gdb */
3279 mon_chr = qemu_chardev_new(NULL, TYPE_CHARDEV_GDB,
3280 NULL, NULL, &error_abort);
3281 monitor_init(mon_chr, 0);
3282 } else {
3283 qemu_chr_fe_deinit(&s->chr, true);
3284 mon_chr = s->mon_chr;
3285 cleanup_processes(s);
3286 memset(s, 0, sizeof(GDBState));
3287 s->mon_chr = mon_chr;
3288 }
3289
3290 create_processes(s);
3291
3292 if (chr) {
3293 qemu_chr_fe_init(&s->chr, chr, &error_abort);
3294 qemu_chr_fe_set_handlers(&s->chr, gdb_chr_can_receive, gdb_chr_receive,
3295 gdb_chr_event, NULL, s, NULL, true);
3296 }
3297 s->state = chr ? RS_IDLE : RS_INACTIVE;
3298 s->mon_chr = mon_chr;
3299 s->current_syscall_cb = NULL;
3300
3301 return 0;
3302 }
3303
3304 void gdbserver_cleanup(void)
3305 {
3306 if (gdbserver_state) {
3307 put_packet(gdbserver_state, "W00");
3308 }
3309 }
3310
3311 static void register_types(void)
3312 {
3313 type_register_static(&char_gdb_type_info);
3314 }
3315
3316 type_init(register_types);
3317 #endif