]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/omap1.c
74dac49fbe3fc46124d54dd131f0a6b1a1de48b5
[mirror_qemu.git] / hw / arm / omap1.c
1 /*
2 * TI OMAP processors emulation.
3 *
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "hw/hw.h"
20 #include "hw/arm/arm.h"
21 #include "hw/arm/omap.h"
22 #include "sysemu/sysemu.h"
23 #include "hw/arm/soc_dma.h"
24 #include "sysemu/block-backend.h"
25 #include "sysemu/blockdev.h"
26 #include "qemu/range.h"
27 #include "hw/sysbus.h"
28
29 /* Should signal the TCMI/GPMC */
30 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
31 {
32 uint8_t ret;
33
34 OMAP_8B_REG(addr);
35 cpu_physical_memory_read(addr, &ret, 1);
36 return ret;
37 }
38
39 void omap_badwidth_write8(void *opaque, hwaddr addr,
40 uint32_t value)
41 {
42 uint8_t val8 = value;
43
44 OMAP_8B_REG(addr);
45 cpu_physical_memory_write(addr, &val8, 1);
46 }
47
48 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
49 {
50 uint16_t ret;
51
52 OMAP_16B_REG(addr);
53 cpu_physical_memory_read(addr, &ret, 2);
54 return ret;
55 }
56
57 void omap_badwidth_write16(void *opaque, hwaddr addr,
58 uint32_t value)
59 {
60 uint16_t val16 = value;
61
62 OMAP_16B_REG(addr);
63 cpu_physical_memory_write(addr, &val16, 2);
64 }
65
66 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
67 {
68 uint32_t ret;
69
70 OMAP_32B_REG(addr);
71 cpu_physical_memory_read(addr, &ret, 4);
72 return ret;
73 }
74
75 void omap_badwidth_write32(void *opaque, hwaddr addr,
76 uint32_t value)
77 {
78 OMAP_32B_REG(addr);
79 cpu_physical_memory_write(addr, &value, 4);
80 }
81
82 /* MPU OS timers */
83 struct omap_mpu_timer_s {
84 MemoryRegion iomem;
85 qemu_irq irq;
86 omap_clk clk;
87 uint32_t val;
88 int64_t time;
89 QEMUTimer *timer;
90 QEMUBH *tick;
91 int64_t rate;
92 int it_ena;
93
94 int enable;
95 int ptv;
96 int ar;
97 int st;
98 uint32_t reset_val;
99 };
100
101 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
102 {
103 uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
104
105 if (timer->st && timer->enable && timer->rate)
106 return timer->val - muldiv64(distance >> (timer->ptv + 1),
107 timer->rate, get_ticks_per_sec());
108 else
109 return timer->val;
110 }
111
112 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
113 {
114 timer->val = omap_timer_read(timer);
115 timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
116 }
117
118 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
119 {
120 int64_t expires;
121
122 if (timer->enable && timer->st && timer->rate) {
123 timer->val = timer->reset_val; /* Should skip this on clk enable */
124 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
125 get_ticks_per_sec(), timer->rate);
126
127 /* If timer expiry would be sooner than in about 1 ms and
128 * auto-reload isn't set, then fire immediately. This is a hack
129 * to make systems like PalmOS run in acceptable time. PalmOS
130 * sets the interval to a very low value and polls the status bit
131 * in a busy loop when it wants to sleep just a couple of CPU
132 * ticks. */
133 if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
134 timer_mod(timer->timer, timer->time + expires);
135 else
136 qemu_bh_schedule(timer->tick);
137 } else
138 timer_del(timer->timer);
139 }
140
141 static void omap_timer_fire(void *opaque)
142 {
143 struct omap_mpu_timer_s *timer = opaque;
144
145 if (!timer->ar) {
146 timer->val = 0;
147 timer->st = 0;
148 }
149
150 if (timer->it_ena)
151 /* Edge-triggered irq */
152 qemu_irq_pulse(timer->irq);
153 }
154
155 static void omap_timer_tick(void *opaque)
156 {
157 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
158
159 omap_timer_sync(timer);
160 omap_timer_fire(timer);
161 omap_timer_update(timer);
162 }
163
164 static void omap_timer_clk_update(void *opaque, int line, int on)
165 {
166 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
167
168 omap_timer_sync(timer);
169 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
170 omap_timer_update(timer);
171 }
172
173 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
174 {
175 omap_clk_adduser(timer->clk,
176 qemu_allocate_irq(omap_timer_clk_update, timer, 0));
177 timer->rate = omap_clk_getrate(timer->clk);
178 }
179
180 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
181 unsigned size)
182 {
183 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
184
185 if (size != 4) {
186 return omap_badwidth_read32(opaque, addr);
187 }
188
189 switch (addr) {
190 case 0x00: /* CNTL_TIMER */
191 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
192
193 case 0x04: /* LOAD_TIM */
194 break;
195
196 case 0x08: /* READ_TIM */
197 return omap_timer_read(s);
198 }
199
200 OMAP_BAD_REG(addr);
201 return 0;
202 }
203
204 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
205 uint64_t value, unsigned size)
206 {
207 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
208
209 if (size != 4) {
210 return omap_badwidth_write32(opaque, addr, value);
211 }
212
213 switch (addr) {
214 case 0x00: /* CNTL_TIMER */
215 omap_timer_sync(s);
216 s->enable = (value >> 5) & 1;
217 s->ptv = (value >> 2) & 7;
218 s->ar = (value >> 1) & 1;
219 s->st = value & 1;
220 omap_timer_update(s);
221 return;
222
223 case 0x04: /* LOAD_TIM */
224 s->reset_val = value;
225 return;
226
227 case 0x08: /* READ_TIM */
228 OMAP_RO_REG(addr);
229 break;
230
231 default:
232 OMAP_BAD_REG(addr);
233 }
234 }
235
236 static const MemoryRegionOps omap_mpu_timer_ops = {
237 .read = omap_mpu_timer_read,
238 .write = omap_mpu_timer_write,
239 .endianness = DEVICE_LITTLE_ENDIAN,
240 };
241
242 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
243 {
244 timer_del(s->timer);
245 s->enable = 0;
246 s->reset_val = 31337;
247 s->val = 0;
248 s->ptv = 0;
249 s->ar = 0;
250 s->st = 0;
251 s->it_ena = 1;
252 }
253
254 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
255 hwaddr base,
256 qemu_irq irq, omap_clk clk)
257 {
258 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
259 g_malloc0(sizeof(struct omap_mpu_timer_s));
260
261 s->irq = irq;
262 s->clk = clk;
263 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
264 s->tick = qemu_bh_new(omap_timer_fire, s);
265 omap_mpu_timer_reset(s);
266 omap_timer_clk_setup(s);
267
268 memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
269 "omap-mpu-timer", 0x100);
270
271 memory_region_add_subregion(system_memory, base, &s->iomem);
272
273 return s;
274 }
275
276 /* Watchdog timer */
277 struct omap_watchdog_timer_s {
278 struct omap_mpu_timer_s timer;
279 MemoryRegion iomem;
280 uint8_t last_wr;
281 int mode;
282 int free;
283 int reset;
284 };
285
286 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
287 unsigned size)
288 {
289 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
290
291 if (size != 2) {
292 return omap_badwidth_read16(opaque, addr);
293 }
294
295 switch (addr) {
296 case 0x00: /* CNTL_TIMER */
297 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
298 (s->timer.st << 7) | (s->free << 1);
299
300 case 0x04: /* READ_TIMER */
301 return omap_timer_read(&s->timer);
302
303 case 0x08: /* TIMER_MODE */
304 return s->mode << 15;
305 }
306
307 OMAP_BAD_REG(addr);
308 return 0;
309 }
310
311 static void omap_wd_timer_write(void *opaque, hwaddr addr,
312 uint64_t value, unsigned size)
313 {
314 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
315
316 if (size != 2) {
317 return omap_badwidth_write16(opaque, addr, value);
318 }
319
320 switch (addr) {
321 case 0x00: /* CNTL_TIMER */
322 omap_timer_sync(&s->timer);
323 s->timer.ptv = (value >> 9) & 7;
324 s->timer.ar = (value >> 8) & 1;
325 s->timer.st = (value >> 7) & 1;
326 s->free = (value >> 1) & 1;
327 omap_timer_update(&s->timer);
328 break;
329
330 case 0x04: /* LOAD_TIMER */
331 s->timer.reset_val = value & 0xffff;
332 break;
333
334 case 0x08: /* TIMER_MODE */
335 if (!s->mode && ((value >> 15) & 1))
336 omap_clk_get(s->timer.clk);
337 s->mode |= (value >> 15) & 1;
338 if (s->last_wr == 0xf5) {
339 if ((value & 0xff) == 0xa0) {
340 if (s->mode) {
341 s->mode = 0;
342 omap_clk_put(s->timer.clk);
343 }
344 } else {
345 /* XXX: on T|E hardware somehow this has no effect,
346 * on Zire 71 it works as specified. */
347 s->reset = 1;
348 qemu_system_reset_request();
349 }
350 }
351 s->last_wr = value & 0xff;
352 break;
353
354 default:
355 OMAP_BAD_REG(addr);
356 }
357 }
358
359 static const MemoryRegionOps omap_wd_timer_ops = {
360 .read = omap_wd_timer_read,
361 .write = omap_wd_timer_write,
362 .endianness = DEVICE_NATIVE_ENDIAN,
363 };
364
365 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
366 {
367 timer_del(s->timer.timer);
368 if (!s->mode)
369 omap_clk_get(s->timer.clk);
370 s->mode = 1;
371 s->free = 1;
372 s->reset = 0;
373 s->timer.enable = 1;
374 s->timer.it_ena = 1;
375 s->timer.reset_val = 0xffff;
376 s->timer.val = 0;
377 s->timer.st = 0;
378 s->timer.ptv = 0;
379 s->timer.ar = 0;
380 omap_timer_update(&s->timer);
381 }
382
383 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
384 hwaddr base,
385 qemu_irq irq, omap_clk clk)
386 {
387 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
388 g_malloc0(sizeof(struct omap_watchdog_timer_s));
389
390 s->timer.irq = irq;
391 s->timer.clk = clk;
392 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
393 omap_wd_timer_reset(s);
394 omap_timer_clk_setup(&s->timer);
395
396 memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
397 "omap-wd-timer", 0x100);
398 memory_region_add_subregion(memory, base, &s->iomem);
399
400 return s;
401 }
402
403 /* 32-kHz timer */
404 struct omap_32khz_timer_s {
405 struct omap_mpu_timer_s timer;
406 MemoryRegion iomem;
407 };
408
409 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
410 unsigned size)
411 {
412 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
413 int offset = addr & OMAP_MPUI_REG_MASK;
414
415 if (size != 4) {
416 return omap_badwidth_read32(opaque, addr);
417 }
418
419 switch (offset) {
420 case 0x00: /* TVR */
421 return s->timer.reset_val;
422
423 case 0x04: /* TCR */
424 return omap_timer_read(&s->timer);
425
426 case 0x08: /* CR */
427 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
428
429 default:
430 break;
431 }
432 OMAP_BAD_REG(addr);
433 return 0;
434 }
435
436 static void omap_os_timer_write(void *opaque, hwaddr addr,
437 uint64_t value, unsigned size)
438 {
439 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
440 int offset = addr & OMAP_MPUI_REG_MASK;
441
442 if (size != 4) {
443 return omap_badwidth_write32(opaque, addr, value);
444 }
445
446 switch (offset) {
447 case 0x00: /* TVR */
448 s->timer.reset_val = value & 0x00ffffff;
449 break;
450
451 case 0x04: /* TCR */
452 OMAP_RO_REG(addr);
453 break;
454
455 case 0x08: /* CR */
456 s->timer.ar = (value >> 3) & 1;
457 s->timer.it_ena = (value >> 2) & 1;
458 if (s->timer.st != (value & 1) || (value & 2)) {
459 omap_timer_sync(&s->timer);
460 s->timer.enable = value & 1;
461 s->timer.st = value & 1;
462 omap_timer_update(&s->timer);
463 }
464 break;
465
466 default:
467 OMAP_BAD_REG(addr);
468 }
469 }
470
471 static const MemoryRegionOps omap_os_timer_ops = {
472 .read = omap_os_timer_read,
473 .write = omap_os_timer_write,
474 .endianness = DEVICE_NATIVE_ENDIAN,
475 };
476
477 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
478 {
479 timer_del(s->timer.timer);
480 s->timer.enable = 0;
481 s->timer.it_ena = 0;
482 s->timer.reset_val = 0x00ffffff;
483 s->timer.val = 0;
484 s->timer.st = 0;
485 s->timer.ptv = 0;
486 s->timer.ar = 1;
487 }
488
489 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
490 hwaddr base,
491 qemu_irq irq, omap_clk clk)
492 {
493 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
494 g_malloc0(sizeof(struct omap_32khz_timer_s));
495
496 s->timer.irq = irq;
497 s->timer.clk = clk;
498 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
499 omap_os_timer_reset(s);
500 omap_timer_clk_setup(&s->timer);
501
502 memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
503 "omap-os-timer", 0x800);
504 memory_region_add_subregion(memory, base, &s->iomem);
505
506 return s;
507 }
508
509 /* Ultra Low-Power Device Module */
510 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
511 unsigned size)
512 {
513 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
514 uint16_t ret;
515
516 if (size != 2) {
517 return omap_badwidth_read16(opaque, addr);
518 }
519
520 switch (addr) {
521 case 0x14: /* IT_STATUS */
522 ret = s->ulpd_pm_regs[addr >> 2];
523 s->ulpd_pm_regs[addr >> 2] = 0;
524 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
525 return ret;
526
527 case 0x18: /* Reserved */
528 case 0x1c: /* Reserved */
529 case 0x20: /* Reserved */
530 case 0x28: /* Reserved */
531 case 0x2c: /* Reserved */
532 OMAP_BAD_REG(addr);
533 /* fall through */
534 case 0x00: /* COUNTER_32_LSB */
535 case 0x04: /* COUNTER_32_MSB */
536 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
537 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
538 case 0x10: /* GAUGING_CTRL */
539 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
540 case 0x30: /* CLOCK_CTRL */
541 case 0x34: /* SOFT_REQ */
542 case 0x38: /* COUNTER_32_FIQ */
543 case 0x3c: /* DPLL_CTRL */
544 case 0x40: /* STATUS_REQ */
545 /* XXX: check clk::usecount state for every clock */
546 case 0x48: /* LOCL_TIME */
547 case 0x4c: /* APLL_CTRL */
548 case 0x50: /* POWER_CTRL */
549 return s->ulpd_pm_regs[addr >> 2];
550 }
551
552 OMAP_BAD_REG(addr);
553 return 0;
554 }
555
556 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
557 uint16_t diff, uint16_t value)
558 {
559 if (diff & (1 << 4)) /* USB_MCLK_EN */
560 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
561 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
562 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
563 }
564
565 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
566 uint16_t diff, uint16_t value)
567 {
568 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
569 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
570 if (diff & (1 << 1)) /* SOFT_COM_REQ */
571 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
572 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
573 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
574 if (diff & (1 << 3)) /* SOFT_USB_REQ */
575 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
576 }
577
578 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
579 uint64_t value, unsigned size)
580 {
581 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
582 int64_t now, ticks;
583 int div, mult;
584 static const int bypass_div[4] = { 1, 2, 4, 4 };
585 uint16_t diff;
586
587 if (size != 2) {
588 return omap_badwidth_write16(opaque, addr, value);
589 }
590
591 switch (addr) {
592 case 0x00: /* COUNTER_32_LSB */
593 case 0x04: /* COUNTER_32_MSB */
594 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
595 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
596 case 0x14: /* IT_STATUS */
597 case 0x40: /* STATUS_REQ */
598 OMAP_RO_REG(addr);
599 break;
600
601 case 0x10: /* GAUGING_CTRL */
602 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
603 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
604 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
605
606 if (value & 1)
607 s->ulpd_gauge_start = now;
608 else {
609 now -= s->ulpd_gauge_start;
610
611 /* 32-kHz ticks */
612 ticks = muldiv64(now, 32768, get_ticks_per_sec());
613 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
614 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
615 if (ticks >> 32) /* OVERFLOW_32K */
616 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
617
618 /* High frequency ticks */
619 ticks = muldiv64(now, 12000000, get_ticks_per_sec());
620 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
621 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
622 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
623 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
624
625 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
626 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
627 }
628 }
629 s->ulpd_pm_regs[addr >> 2] = value;
630 break;
631
632 case 0x18: /* Reserved */
633 case 0x1c: /* Reserved */
634 case 0x20: /* Reserved */
635 case 0x28: /* Reserved */
636 case 0x2c: /* Reserved */
637 OMAP_BAD_REG(addr);
638 /* fall through */
639 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
640 case 0x38: /* COUNTER_32_FIQ */
641 case 0x48: /* LOCL_TIME */
642 case 0x50: /* POWER_CTRL */
643 s->ulpd_pm_regs[addr >> 2] = value;
644 break;
645
646 case 0x30: /* CLOCK_CTRL */
647 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
648 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
649 omap_ulpd_clk_update(s, diff, value);
650 break;
651
652 case 0x34: /* SOFT_REQ */
653 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
654 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
655 omap_ulpd_req_update(s, diff, value);
656 break;
657
658 case 0x3c: /* DPLL_CTRL */
659 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
660 * omitted altogether, probably a typo. */
661 /* This register has identical semantics with DPLL(1:3) control
662 * registers, see omap_dpll_write() */
663 diff = s->ulpd_pm_regs[addr >> 2] & value;
664 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
665 if (diff & (0x3ff << 2)) {
666 if (value & (1 << 4)) { /* PLL_ENABLE */
667 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
668 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
669 } else {
670 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
671 mult = 1;
672 }
673 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
674 }
675
676 /* Enter the desired mode. */
677 s->ulpd_pm_regs[addr >> 2] =
678 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
679 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
680
681 /* Act as if the lock is restored. */
682 s->ulpd_pm_regs[addr >> 2] |= 2;
683 break;
684
685 case 0x4c: /* APLL_CTRL */
686 diff = s->ulpd_pm_regs[addr >> 2] & value;
687 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
688 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
689 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
690 (value & (1 << 0)) ? "apll" : "dpll4"));
691 break;
692
693 default:
694 OMAP_BAD_REG(addr);
695 }
696 }
697
698 static const MemoryRegionOps omap_ulpd_pm_ops = {
699 .read = omap_ulpd_pm_read,
700 .write = omap_ulpd_pm_write,
701 .endianness = DEVICE_NATIVE_ENDIAN,
702 };
703
704 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
705 {
706 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
707 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
708 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
709 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
710 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
711 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
712 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
713 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
714 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
715 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
716 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
717 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
718 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
719 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
720 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
721 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
722 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
723 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
724 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
725 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
726 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
727 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
728 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
729 }
730
731 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
732 hwaddr base,
733 struct omap_mpu_state_s *mpu)
734 {
735 memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
736 "omap-ulpd-pm", 0x800);
737 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
738 omap_ulpd_pm_reset(mpu);
739 }
740
741 /* OMAP Pin Configuration */
742 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
743 unsigned size)
744 {
745 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
746
747 if (size != 4) {
748 return omap_badwidth_read32(opaque, addr);
749 }
750
751 switch (addr) {
752 case 0x00: /* FUNC_MUX_CTRL_0 */
753 case 0x04: /* FUNC_MUX_CTRL_1 */
754 case 0x08: /* FUNC_MUX_CTRL_2 */
755 return s->func_mux_ctrl[addr >> 2];
756
757 case 0x0c: /* COMP_MODE_CTRL_0 */
758 return s->comp_mode_ctrl[0];
759
760 case 0x10: /* FUNC_MUX_CTRL_3 */
761 case 0x14: /* FUNC_MUX_CTRL_4 */
762 case 0x18: /* FUNC_MUX_CTRL_5 */
763 case 0x1c: /* FUNC_MUX_CTRL_6 */
764 case 0x20: /* FUNC_MUX_CTRL_7 */
765 case 0x24: /* FUNC_MUX_CTRL_8 */
766 case 0x28: /* FUNC_MUX_CTRL_9 */
767 case 0x2c: /* FUNC_MUX_CTRL_A */
768 case 0x30: /* FUNC_MUX_CTRL_B */
769 case 0x34: /* FUNC_MUX_CTRL_C */
770 case 0x38: /* FUNC_MUX_CTRL_D */
771 return s->func_mux_ctrl[(addr >> 2) - 1];
772
773 case 0x40: /* PULL_DWN_CTRL_0 */
774 case 0x44: /* PULL_DWN_CTRL_1 */
775 case 0x48: /* PULL_DWN_CTRL_2 */
776 case 0x4c: /* PULL_DWN_CTRL_3 */
777 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
778
779 case 0x50: /* GATE_INH_CTRL_0 */
780 return s->gate_inh_ctrl[0];
781
782 case 0x60: /* VOLTAGE_CTRL_0 */
783 return s->voltage_ctrl[0];
784
785 case 0x70: /* TEST_DBG_CTRL_0 */
786 return s->test_dbg_ctrl[0];
787
788 case 0x80: /* MOD_CONF_CTRL_0 */
789 return s->mod_conf_ctrl[0];
790 }
791
792 OMAP_BAD_REG(addr);
793 return 0;
794 }
795
796 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
797 uint32_t diff, uint32_t value)
798 {
799 if (s->compat1509) {
800 if (diff & (1 << 9)) /* BLUETOOTH */
801 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
802 (~value >> 9) & 1);
803 if (diff & (1 << 7)) /* USB.CLKO */
804 omap_clk_onoff(omap_findclk(s, "usb.clko"),
805 (value >> 7) & 1);
806 }
807 }
808
809 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
810 uint32_t diff, uint32_t value)
811 {
812 if (s->compat1509) {
813 if (diff & (1U << 31)) {
814 /* MCBSP3_CLK_HIZ_DI */
815 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
816 }
817 if (diff & (1 << 1)) {
818 /* CLK32K */
819 omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
820 }
821 }
822 }
823
824 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
825 uint32_t diff, uint32_t value)
826 {
827 if (diff & (1U << 31)) {
828 /* CONF_MOD_UART3_CLK_MODE_R */
829 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
830 omap_findclk(s, ((value >> 31) & 1) ?
831 "ck_48m" : "armper_ck"));
832 }
833 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
834 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
835 omap_findclk(s, ((value >> 30) & 1) ?
836 "ck_48m" : "armper_ck"));
837 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
838 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
839 omap_findclk(s, ((value >> 29) & 1) ?
840 "ck_48m" : "armper_ck"));
841 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
842 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
843 omap_findclk(s, ((value >> 23) & 1) ?
844 "ck_48m" : "armper_ck"));
845 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
846 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
847 omap_findclk(s, ((value >> 12) & 1) ?
848 "ck_48m" : "armper_ck"));
849 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
850 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
851 }
852
853 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
854 uint64_t value, unsigned size)
855 {
856 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
857 uint32_t diff;
858
859 if (size != 4) {
860 return omap_badwidth_write32(opaque, addr, value);
861 }
862
863 switch (addr) {
864 case 0x00: /* FUNC_MUX_CTRL_0 */
865 diff = s->func_mux_ctrl[addr >> 2] ^ value;
866 s->func_mux_ctrl[addr >> 2] = value;
867 omap_pin_funcmux0_update(s, diff, value);
868 return;
869
870 case 0x04: /* FUNC_MUX_CTRL_1 */
871 diff = s->func_mux_ctrl[addr >> 2] ^ value;
872 s->func_mux_ctrl[addr >> 2] = value;
873 omap_pin_funcmux1_update(s, diff, value);
874 return;
875
876 case 0x08: /* FUNC_MUX_CTRL_2 */
877 s->func_mux_ctrl[addr >> 2] = value;
878 return;
879
880 case 0x0c: /* COMP_MODE_CTRL_0 */
881 s->comp_mode_ctrl[0] = value;
882 s->compat1509 = (value != 0x0000eaef);
883 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
884 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
885 return;
886
887 case 0x10: /* FUNC_MUX_CTRL_3 */
888 case 0x14: /* FUNC_MUX_CTRL_4 */
889 case 0x18: /* FUNC_MUX_CTRL_5 */
890 case 0x1c: /* FUNC_MUX_CTRL_6 */
891 case 0x20: /* FUNC_MUX_CTRL_7 */
892 case 0x24: /* FUNC_MUX_CTRL_8 */
893 case 0x28: /* FUNC_MUX_CTRL_9 */
894 case 0x2c: /* FUNC_MUX_CTRL_A */
895 case 0x30: /* FUNC_MUX_CTRL_B */
896 case 0x34: /* FUNC_MUX_CTRL_C */
897 case 0x38: /* FUNC_MUX_CTRL_D */
898 s->func_mux_ctrl[(addr >> 2) - 1] = value;
899 return;
900
901 case 0x40: /* PULL_DWN_CTRL_0 */
902 case 0x44: /* PULL_DWN_CTRL_1 */
903 case 0x48: /* PULL_DWN_CTRL_2 */
904 case 0x4c: /* PULL_DWN_CTRL_3 */
905 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
906 return;
907
908 case 0x50: /* GATE_INH_CTRL_0 */
909 s->gate_inh_ctrl[0] = value;
910 return;
911
912 case 0x60: /* VOLTAGE_CTRL_0 */
913 s->voltage_ctrl[0] = value;
914 return;
915
916 case 0x70: /* TEST_DBG_CTRL_0 */
917 s->test_dbg_ctrl[0] = value;
918 return;
919
920 case 0x80: /* MOD_CONF_CTRL_0 */
921 diff = s->mod_conf_ctrl[0] ^ value;
922 s->mod_conf_ctrl[0] = value;
923 omap_pin_modconf1_update(s, diff, value);
924 return;
925
926 default:
927 OMAP_BAD_REG(addr);
928 }
929 }
930
931 static const MemoryRegionOps omap_pin_cfg_ops = {
932 .read = omap_pin_cfg_read,
933 .write = omap_pin_cfg_write,
934 .endianness = DEVICE_NATIVE_ENDIAN,
935 };
936
937 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
938 {
939 /* Start in Compatibility Mode. */
940 mpu->compat1509 = 1;
941 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
942 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
943 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
944 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
945 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
946 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
947 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
948 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
949 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
950 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
951 }
952
953 static void omap_pin_cfg_init(MemoryRegion *system_memory,
954 hwaddr base,
955 struct omap_mpu_state_s *mpu)
956 {
957 memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
958 "omap-pin-cfg", 0x800);
959 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
960 omap_pin_cfg_reset(mpu);
961 }
962
963 /* Device Identification, Die Identification */
964 static uint64_t omap_id_read(void *opaque, hwaddr addr,
965 unsigned size)
966 {
967 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
968
969 if (size != 4) {
970 return omap_badwidth_read32(opaque, addr);
971 }
972
973 switch (addr) {
974 case 0xfffe1800: /* DIE_ID_LSB */
975 return 0xc9581f0e;
976 case 0xfffe1804: /* DIE_ID_MSB */
977 return 0xa8858bfa;
978
979 case 0xfffe2000: /* PRODUCT_ID_LSB */
980 return 0x00aaaafc;
981 case 0xfffe2004: /* PRODUCT_ID_MSB */
982 return 0xcafeb574;
983
984 case 0xfffed400: /* JTAG_ID_LSB */
985 switch (s->mpu_model) {
986 case omap310:
987 return 0x03310315;
988 case omap1510:
989 return 0x03310115;
990 default:
991 hw_error("%s: bad mpu model\n", __FUNCTION__);
992 }
993 break;
994
995 case 0xfffed404: /* JTAG_ID_MSB */
996 switch (s->mpu_model) {
997 case omap310:
998 return 0xfb57402f;
999 case omap1510:
1000 return 0xfb47002f;
1001 default:
1002 hw_error("%s: bad mpu model\n", __FUNCTION__);
1003 }
1004 break;
1005 }
1006
1007 OMAP_BAD_REG(addr);
1008 return 0;
1009 }
1010
1011 static void omap_id_write(void *opaque, hwaddr addr,
1012 uint64_t value, unsigned size)
1013 {
1014 if (size != 4) {
1015 return omap_badwidth_write32(opaque, addr, value);
1016 }
1017
1018 OMAP_BAD_REG(addr);
1019 }
1020
1021 static const MemoryRegionOps omap_id_ops = {
1022 .read = omap_id_read,
1023 .write = omap_id_write,
1024 .endianness = DEVICE_NATIVE_ENDIAN,
1025 };
1026
1027 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1028 {
1029 memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1030 "omap-id", 0x100000000ULL);
1031 memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1032 0xfffe1800, 0x800);
1033 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1034 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1035 0xfffed400, 0x100);
1036 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1037 if (!cpu_is_omap15xx(mpu)) {
1038 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1039 &mpu->id_iomem, 0xfffe2000, 0x800);
1040 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1041 }
1042 }
1043
1044 /* MPUI Control (Dummy) */
1045 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1046 unsigned size)
1047 {
1048 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1049
1050 if (size != 4) {
1051 return omap_badwidth_read32(opaque, addr);
1052 }
1053
1054 switch (addr) {
1055 case 0x00: /* CTRL */
1056 return s->mpui_ctrl;
1057 case 0x04: /* DEBUG_ADDR */
1058 return 0x01ffffff;
1059 case 0x08: /* DEBUG_DATA */
1060 return 0xffffffff;
1061 case 0x0c: /* DEBUG_FLAG */
1062 return 0x00000800;
1063 case 0x10: /* STATUS */
1064 return 0x00000000;
1065
1066 /* Not in OMAP310 */
1067 case 0x14: /* DSP_STATUS */
1068 case 0x18: /* DSP_BOOT_CONFIG */
1069 return 0x00000000;
1070 case 0x1c: /* DSP_MPUI_CONFIG */
1071 return 0x0000ffff;
1072 }
1073
1074 OMAP_BAD_REG(addr);
1075 return 0;
1076 }
1077
1078 static void omap_mpui_write(void *opaque, hwaddr addr,
1079 uint64_t value, unsigned size)
1080 {
1081 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1082
1083 if (size != 4) {
1084 return omap_badwidth_write32(opaque, addr, value);
1085 }
1086
1087 switch (addr) {
1088 case 0x00: /* CTRL */
1089 s->mpui_ctrl = value & 0x007fffff;
1090 break;
1091
1092 case 0x04: /* DEBUG_ADDR */
1093 case 0x08: /* DEBUG_DATA */
1094 case 0x0c: /* DEBUG_FLAG */
1095 case 0x10: /* STATUS */
1096 /* Not in OMAP310 */
1097 case 0x14: /* DSP_STATUS */
1098 OMAP_RO_REG(addr);
1099 break;
1100 case 0x18: /* DSP_BOOT_CONFIG */
1101 case 0x1c: /* DSP_MPUI_CONFIG */
1102 break;
1103
1104 default:
1105 OMAP_BAD_REG(addr);
1106 }
1107 }
1108
1109 static const MemoryRegionOps omap_mpui_ops = {
1110 .read = omap_mpui_read,
1111 .write = omap_mpui_write,
1112 .endianness = DEVICE_NATIVE_ENDIAN,
1113 };
1114
1115 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1116 {
1117 s->mpui_ctrl = 0x0003ff1b;
1118 }
1119
1120 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1121 struct omap_mpu_state_s *mpu)
1122 {
1123 memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1124 "omap-mpui", 0x100);
1125 memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1126
1127 omap_mpui_reset(mpu);
1128 }
1129
1130 /* TIPB Bridges */
1131 struct omap_tipb_bridge_s {
1132 qemu_irq abort;
1133 MemoryRegion iomem;
1134
1135 int width_intr;
1136 uint16_t control;
1137 uint16_t alloc;
1138 uint16_t buffer;
1139 uint16_t enh_control;
1140 };
1141
1142 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1143 unsigned size)
1144 {
1145 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1146
1147 if (size < 2) {
1148 return omap_badwidth_read16(opaque, addr);
1149 }
1150
1151 switch (addr) {
1152 case 0x00: /* TIPB_CNTL */
1153 return s->control;
1154 case 0x04: /* TIPB_BUS_ALLOC */
1155 return s->alloc;
1156 case 0x08: /* MPU_TIPB_CNTL */
1157 return s->buffer;
1158 case 0x0c: /* ENHANCED_TIPB_CNTL */
1159 return s->enh_control;
1160 case 0x10: /* ADDRESS_DBG */
1161 case 0x14: /* DATA_DEBUG_LOW */
1162 case 0x18: /* DATA_DEBUG_HIGH */
1163 return 0xffff;
1164 case 0x1c: /* DEBUG_CNTR_SIG */
1165 return 0x00f8;
1166 }
1167
1168 OMAP_BAD_REG(addr);
1169 return 0;
1170 }
1171
1172 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1173 uint64_t value, unsigned size)
1174 {
1175 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1176
1177 if (size < 2) {
1178 return omap_badwidth_write16(opaque, addr, value);
1179 }
1180
1181 switch (addr) {
1182 case 0x00: /* TIPB_CNTL */
1183 s->control = value & 0xffff;
1184 break;
1185
1186 case 0x04: /* TIPB_BUS_ALLOC */
1187 s->alloc = value & 0x003f;
1188 break;
1189
1190 case 0x08: /* MPU_TIPB_CNTL */
1191 s->buffer = value & 0x0003;
1192 break;
1193
1194 case 0x0c: /* ENHANCED_TIPB_CNTL */
1195 s->width_intr = !(value & 2);
1196 s->enh_control = value & 0x000f;
1197 break;
1198
1199 case 0x10: /* ADDRESS_DBG */
1200 case 0x14: /* DATA_DEBUG_LOW */
1201 case 0x18: /* DATA_DEBUG_HIGH */
1202 case 0x1c: /* DEBUG_CNTR_SIG */
1203 OMAP_RO_REG(addr);
1204 break;
1205
1206 default:
1207 OMAP_BAD_REG(addr);
1208 }
1209 }
1210
1211 static const MemoryRegionOps omap_tipb_bridge_ops = {
1212 .read = omap_tipb_bridge_read,
1213 .write = omap_tipb_bridge_write,
1214 .endianness = DEVICE_NATIVE_ENDIAN,
1215 };
1216
1217 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1218 {
1219 s->control = 0xffff;
1220 s->alloc = 0x0009;
1221 s->buffer = 0x0000;
1222 s->enh_control = 0x000f;
1223 }
1224
1225 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1226 MemoryRegion *memory, hwaddr base,
1227 qemu_irq abort_irq, omap_clk clk)
1228 {
1229 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1230 g_malloc0(sizeof(struct omap_tipb_bridge_s));
1231
1232 s->abort = abort_irq;
1233 omap_tipb_bridge_reset(s);
1234
1235 memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1236 "omap-tipb-bridge", 0x100);
1237 memory_region_add_subregion(memory, base, &s->iomem);
1238
1239 return s;
1240 }
1241
1242 /* Dummy Traffic Controller's Memory Interface */
1243 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1244 unsigned size)
1245 {
1246 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1247 uint32_t ret;
1248
1249 if (size != 4) {
1250 return omap_badwidth_read32(opaque, addr);
1251 }
1252
1253 switch (addr) {
1254 case 0x00: /* IMIF_PRIO */
1255 case 0x04: /* EMIFS_PRIO */
1256 case 0x08: /* EMIFF_PRIO */
1257 case 0x0c: /* EMIFS_CONFIG */
1258 case 0x10: /* EMIFS_CS0_CONFIG */
1259 case 0x14: /* EMIFS_CS1_CONFIG */
1260 case 0x18: /* EMIFS_CS2_CONFIG */
1261 case 0x1c: /* EMIFS_CS3_CONFIG */
1262 case 0x24: /* EMIFF_MRS */
1263 case 0x28: /* TIMEOUT1 */
1264 case 0x2c: /* TIMEOUT2 */
1265 case 0x30: /* TIMEOUT3 */
1266 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1267 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1268 return s->tcmi_regs[addr >> 2];
1269
1270 case 0x20: /* EMIFF_SDRAM_CONFIG */
1271 ret = s->tcmi_regs[addr >> 2];
1272 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1273 /* XXX: We can try using the VGA_DIRTY flag for this */
1274 return ret;
1275 }
1276
1277 OMAP_BAD_REG(addr);
1278 return 0;
1279 }
1280
1281 static void omap_tcmi_write(void *opaque, hwaddr addr,
1282 uint64_t value, unsigned size)
1283 {
1284 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1285
1286 if (size != 4) {
1287 return omap_badwidth_write32(opaque, addr, value);
1288 }
1289
1290 switch (addr) {
1291 case 0x00: /* IMIF_PRIO */
1292 case 0x04: /* EMIFS_PRIO */
1293 case 0x08: /* EMIFF_PRIO */
1294 case 0x10: /* EMIFS_CS0_CONFIG */
1295 case 0x14: /* EMIFS_CS1_CONFIG */
1296 case 0x18: /* EMIFS_CS2_CONFIG */
1297 case 0x1c: /* EMIFS_CS3_CONFIG */
1298 case 0x20: /* EMIFF_SDRAM_CONFIG */
1299 case 0x24: /* EMIFF_MRS */
1300 case 0x28: /* TIMEOUT1 */
1301 case 0x2c: /* TIMEOUT2 */
1302 case 0x30: /* TIMEOUT3 */
1303 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1304 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1305 s->tcmi_regs[addr >> 2] = value;
1306 break;
1307 case 0x0c: /* EMIFS_CONFIG */
1308 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1309 break;
1310
1311 default:
1312 OMAP_BAD_REG(addr);
1313 }
1314 }
1315
1316 static const MemoryRegionOps omap_tcmi_ops = {
1317 .read = omap_tcmi_read,
1318 .write = omap_tcmi_write,
1319 .endianness = DEVICE_NATIVE_ENDIAN,
1320 };
1321
1322 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1323 {
1324 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1325 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1326 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1327 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1328 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1329 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1330 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1331 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1332 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1333 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1334 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1335 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1336 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1337 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1338 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1339 }
1340
1341 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1342 struct omap_mpu_state_s *mpu)
1343 {
1344 memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1345 "omap-tcmi", 0x100);
1346 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1347 omap_tcmi_reset(mpu);
1348 }
1349
1350 /* Digital phase-locked loops control */
1351 struct dpll_ctl_s {
1352 MemoryRegion iomem;
1353 uint16_t mode;
1354 omap_clk dpll;
1355 };
1356
1357 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1358 unsigned size)
1359 {
1360 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1361
1362 if (size != 2) {
1363 return omap_badwidth_read16(opaque, addr);
1364 }
1365
1366 if (addr == 0x00) /* CTL_REG */
1367 return s->mode;
1368
1369 OMAP_BAD_REG(addr);
1370 return 0;
1371 }
1372
1373 static void omap_dpll_write(void *opaque, hwaddr addr,
1374 uint64_t value, unsigned size)
1375 {
1376 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1377 uint16_t diff;
1378 static const int bypass_div[4] = { 1, 2, 4, 4 };
1379 int div, mult;
1380
1381 if (size != 2) {
1382 return omap_badwidth_write16(opaque, addr, value);
1383 }
1384
1385 if (addr == 0x00) { /* CTL_REG */
1386 /* See omap_ulpd_pm_write() too */
1387 diff = s->mode & value;
1388 s->mode = value & 0x2fff;
1389 if (diff & (0x3ff << 2)) {
1390 if (value & (1 << 4)) { /* PLL_ENABLE */
1391 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1392 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1393 } else {
1394 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1395 mult = 1;
1396 }
1397 omap_clk_setrate(s->dpll, div, mult);
1398 }
1399
1400 /* Enter the desired mode. */
1401 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1402
1403 /* Act as if the lock is restored. */
1404 s->mode |= 2;
1405 } else {
1406 OMAP_BAD_REG(addr);
1407 }
1408 }
1409
1410 static const MemoryRegionOps omap_dpll_ops = {
1411 .read = omap_dpll_read,
1412 .write = omap_dpll_write,
1413 .endianness = DEVICE_NATIVE_ENDIAN,
1414 };
1415
1416 static void omap_dpll_reset(struct dpll_ctl_s *s)
1417 {
1418 s->mode = 0x2002;
1419 omap_clk_setrate(s->dpll, 1, 1);
1420 }
1421
1422 static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
1423 hwaddr base, omap_clk clk)
1424 {
1425 struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1426 memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1427
1428 s->dpll = clk;
1429 omap_dpll_reset(s);
1430
1431 memory_region_add_subregion(memory, base, &s->iomem);
1432 return s;
1433 }
1434
1435 /* MPU Clock/Reset/Power Mode Control */
1436 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1437 unsigned size)
1438 {
1439 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1440
1441 if (size != 2) {
1442 return omap_badwidth_read16(opaque, addr);
1443 }
1444
1445 switch (addr) {
1446 case 0x00: /* ARM_CKCTL */
1447 return s->clkm.arm_ckctl;
1448
1449 case 0x04: /* ARM_IDLECT1 */
1450 return s->clkm.arm_idlect1;
1451
1452 case 0x08: /* ARM_IDLECT2 */
1453 return s->clkm.arm_idlect2;
1454
1455 case 0x0c: /* ARM_EWUPCT */
1456 return s->clkm.arm_ewupct;
1457
1458 case 0x10: /* ARM_RSTCT1 */
1459 return s->clkm.arm_rstct1;
1460
1461 case 0x14: /* ARM_RSTCT2 */
1462 return s->clkm.arm_rstct2;
1463
1464 case 0x18: /* ARM_SYSST */
1465 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1466
1467 case 0x1c: /* ARM_CKOUT1 */
1468 return s->clkm.arm_ckout1;
1469
1470 case 0x20: /* ARM_CKOUT2 */
1471 break;
1472 }
1473
1474 OMAP_BAD_REG(addr);
1475 return 0;
1476 }
1477
1478 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1479 uint16_t diff, uint16_t value)
1480 {
1481 omap_clk clk;
1482
1483 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
1484 if (value & (1 << 14))
1485 /* Reserved */;
1486 else {
1487 clk = omap_findclk(s, "arminth_ck");
1488 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1489 }
1490 }
1491 if (diff & (1 << 12)) { /* ARM_TIMXO */
1492 clk = omap_findclk(s, "armtim_ck");
1493 if (value & (1 << 12))
1494 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1495 else
1496 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1497 }
1498 /* XXX: en_dspck */
1499 if (diff & (3 << 10)) { /* DSPMMUDIV */
1500 clk = omap_findclk(s, "dspmmu_ck");
1501 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1502 }
1503 if (diff & (3 << 8)) { /* TCDIV */
1504 clk = omap_findclk(s, "tc_ck");
1505 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1506 }
1507 if (diff & (3 << 6)) { /* DSPDIV */
1508 clk = omap_findclk(s, "dsp_ck");
1509 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1510 }
1511 if (diff & (3 << 4)) { /* ARMDIV */
1512 clk = omap_findclk(s, "arm_ck");
1513 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1514 }
1515 if (diff & (3 << 2)) { /* LCDDIV */
1516 clk = omap_findclk(s, "lcd_ck");
1517 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1518 }
1519 if (diff & (3 << 0)) { /* PERDIV */
1520 clk = omap_findclk(s, "armper_ck");
1521 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1522 }
1523 }
1524
1525 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1526 uint16_t diff, uint16_t value)
1527 {
1528 omap_clk clk;
1529
1530 if (value & (1 << 11)) { /* SETARM_IDLE */
1531 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1532 }
1533 if (!(value & (1 << 10))) /* WKUP_MODE */
1534 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
1535
1536 #define SET_CANIDLE(clock, bit) \
1537 if (diff & (1 << bit)) { \
1538 clk = omap_findclk(s, clock); \
1539 omap_clk_canidle(clk, (value >> bit) & 1); \
1540 }
1541 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1542 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1543 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1544 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1545 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1546 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1547 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1548 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1549 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1550 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1551 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1552 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1553 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1554 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1555 }
1556
1557 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1558 uint16_t diff, uint16_t value)
1559 {
1560 omap_clk clk;
1561
1562 #define SET_ONOFF(clock, bit) \
1563 if (diff & (1 << bit)) { \
1564 clk = omap_findclk(s, clock); \
1565 omap_clk_onoff(clk, (value >> bit) & 1); \
1566 }
1567 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1568 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1569 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1570 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1571 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1572 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1573 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1574 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1575 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1576 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1577 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1578 }
1579
1580 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1581 uint16_t diff, uint16_t value)
1582 {
1583 omap_clk clk;
1584
1585 if (diff & (3 << 4)) { /* TCLKOUT */
1586 clk = omap_findclk(s, "tclk_out");
1587 switch ((value >> 4) & 3) {
1588 case 1:
1589 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1590 omap_clk_onoff(clk, 1);
1591 break;
1592 case 2:
1593 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1594 omap_clk_onoff(clk, 1);
1595 break;
1596 default:
1597 omap_clk_onoff(clk, 0);
1598 }
1599 }
1600 if (diff & (3 << 2)) { /* DCLKOUT */
1601 clk = omap_findclk(s, "dclk_out");
1602 switch ((value >> 2) & 3) {
1603 case 0:
1604 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1605 break;
1606 case 1:
1607 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1608 break;
1609 case 2:
1610 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1611 break;
1612 case 3:
1613 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1614 break;
1615 }
1616 }
1617 if (diff & (3 << 0)) { /* ACLKOUT */
1618 clk = omap_findclk(s, "aclk_out");
1619 switch ((value >> 0) & 3) {
1620 case 1:
1621 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1622 omap_clk_onoff(clk, 1);
1623 break;
1624 case 2:
1625 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1626 omap_clk_onoff(clk, 1);
1627 break;
1628 case 3:
1629 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1630 omap_clk_onoff(clk, 1);
1631 break;
1632 default:
1633 omap_clk_onoff(clk, 0);
1634 }
1635 }
1636 }
1637
1638 static void omap_clkm_write(void *opaque, hwaddr addr,
1639 uint64_t value, unsigned size)
1640 {
1641 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1642 uint16_t diff;
1643 omap_clk clk;
1644 static const char *clkschemename[8] = {
1645 "fully synchronous", "fully asynchronous", "synchronous scalable",
1646 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1647 };
1648
1649 if (size != 2) {
1650 return omap_badwidth_write16(opaque, addr, value);
1651 }
1652
1653 switch (addr) {
1654 case 0x00: /* ARM_CKCTL */
1655 diff = s->clkm.arm_ckctl ^ value;
1656 s->clkm.arm_ckctl = value & 0x7fff;
1657 omap_clkm_ckctl_update(s, diff, value);
1658 return;
1659
1660 case 0x04: /* ARM_IDLECT1 */
1661 diff = s->clkm.arm_idlect1 ^ value;
1662 s->clkm.arm_idlect1 = value & 0x0fff;
1663 omap_clkm_idlect1_update(s, diff, value);
1664 return;
1665
1666 case 0x08: /* ARM_IDLECT2 */
1667 diff = s->clkm.arm_idlect2 ^ value;
1668 s->clkm.arm_idlect2 = value & 0x07ff;
1669 omap_clkm_idlect2_update(s, diff, value);
1670 return;
1671
1672 case 0x0c: /* ARM_EWUPCT */
1673 s->clkm.arm_ewupct = value & 0x003f;
1674 return;
1675
1676 case 0x10: /* ARM_RSTCT1 */
1677 diff = s->clkm.arm_rstct1 ^ value;
1678 s->clkm.arm_rstct1 = value & 0x0007;
1679 if (value & 9) {
1680 qemu_system_reset_request();
1681 s->clkm.cold_start = 0xa;
1682 }
1683 if (diff & ~value & 4) { /* DSP_RST */
1684 omap_mpui_reset(s);
1685 omap_tipb_bridge_reset(s->private_tipb);
1686 omap_tipb_bridge_reset(s->public_tipb);
1687 }
1688 if (diff & 2) { /* DSP_EN */
1689 clk = omap_findclk(s, "dsp_ck");
1690 omap_clk_canidle(clk, (~value >> 1) & 1);
1691 }
1692 return;
1693
1694 case 0x14: /* ARM_RSTCT2 */
1695 s->clkm.arm_rstct2 = value & 0x0001;
1696 return;
1697
1698 case 0x18: /* ARM_SYSST */
1699 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1700 s->clkm.clocking_scheme = (value >> 11) & 7;
1701 printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1702 clkschemename[s->clkm.clocking_scheme]);
1703 }
1704 s->clkm.cold_start &= value & 0x3f;
1705 return;
1706
1707 case 0x1c: /* ARM_CKOUT1 */
1708 diff = s->clkm.arm_ckout1 ^ value;
1709 s->clkm.arm_ckout1 = value & 0x003f;
1710 omap_clkm_ckout1_update(s, diff, value);
1711 return;
1712
1713 case 0x20: /* ARM_CKOUT2 */
1714 default:
1715 OMAP_BAD_REG(addr);
1716 }
1717 }
1718
1719 static const MemoryRegionOps omap_clkm_ops = {
1720 .read = omap_clkm_read,
1721 .write = omap_clkm_write,
1722 .endianness = DEVICE_NATIVE_ENDIAN,
1723 };
1724
1725 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1726 unsigned size)
1727 {
1728 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1729 CPUState *cpu = CPU(s->cpu);
1730
1731 if (size != 2) {
1732 return omap_badwidth_read16(opaque, addr);
1733 }
1734
1735 switch (addr) {
1736 case 0x04: /* DSP_IDLECT1 */
1737 return s->clkm.dsp_idlect1;
1738
1739 case 0x08: /* DSP_IDLECT2 */
1740 return s->clkm.dsp_idlect2;
1741
1742 case 0x14: /* DSP_RSTCT2 */
1743 return s->clkm.dsp_rstct2;
1744
1745 case 0x18: /* DSP_SYSST */
1746 cpu = CPU(s->cpu);
1747 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1748 (cpu->halted << 6); /* Quite useless... */
1749 }
1750
1751 OMAP_BAD_REG(addr);
1752 return 0;
1753 }
1754
1755 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1756 uint16_t diff, uint16_t value)
1757 {
1758 omap_clk clk;
1759
1760 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
1761 }
1762
1763 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1764 uint16_t diff, uint16_t value)
1765 {
1766 omap_clk clk;
1767
1768 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
1769 }
1770
1771 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1772 uint64_t value, unsigned size)
1773 {
1774 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1775 uint16_t diff;
1776
1777 if (size != 2) {
1778 return omap_badwidth_write16(opaque, addr, value);
1779 }
1780
1781 switch (addr) {
1782 case 0x04: /* DSP_IDLECT1 */
1783 diff = s->clkm.dsp_idlect1 ^ value;
1784 s->clkm.dsp_idlect1 = value & 0x01f7;
1785 omap_clkdsp_idlect1_update(s, diff, value);
1786 break;
1787
1788 case 0x08: /* DSP_IDLECT2 */
1789 s->clkm.dsp_idlect2 = value & 0x0037;
1790 diff = s->clkm.dsp_idlect1 ^ value;
1791 omap_clkdsp_idlect2_update(s, diff, value);
1792 break;
1793
1794 case 0x14: /* DSP_RSTCT2 */
1795 s->clkm.dsp_rstct2 = value & 0x0001;
1796 break;
1797
1798 case 0x18: /* DSP_SYSST */
1799 s->clkm.cold_start &= value & 0x3f;
1800 break;
1801
1802 default:
1803 OMAP_BAD_REG(addr);
1804 }
1805 }
1806
1807 static const MemoryRegionOps omap_clkdsp_ops = {
1808 .read = omap_clkdsp_read,
1809 .write = omap_clkdsp_write,
1810 .endianness = DEVICE_NATIVE_ENDIAN,
1811 };
1812
1813 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1814 {
1815 if (s->wdt && s->wdt->reset)
1816 s->clkm.cold_start = 0x6;
1817 s->clkm.clocking_scheme = 0;
1818 omap_clkm_ckctl_update(s, ~0, 0x3000);
1819 s->clkm.arm_ckctl = 0x3000;
1820 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1821 s->clkm.arm_idlect1 = 0x0400;
1822 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1823 s->clkm.arm_idlect2 = 0x0100;
1824 s->clkm.arm_ewupct = 0x003f;
1825 s->clkm.arm_rstct1 = 0x0000;
1826 s->clkm.arm_rstct2 = 0x0000;
1827 s->clkm.arm_ckout1 = 0x0015;
1828 s->clkm.dpll1_mode = 0x2002;
1829 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1830 s->clkm.dsp_idlect1 = 0x0040;
1831 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1832 s->clkm.dsp_idlect2 = 0x0000;
1833 s->clkm.dsp_rstct2 = 0x0000;
1834 }
1835
1836 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1837 hwaddr dsp_base, struct omap_mpu_state_s *s)
1838 {
1839 memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1840 "omap-clkm", 0x100);
1841 memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1842 "omap-clkdsp", 0x1000);
1843
1844 s->clkm.arm_idlect1 = 0x03ff;
1845 s->clkm.arm_idlect2 = 0x0100;
1846 s->clkm.dsp_idlect1 = 0x0002;
1847 omap_clkm_reset(s);
1848 s->clkm.cold_start = 0x3a;
1849
1850 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1851 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1852 }
1853
1854 /* MPU I/O */
1855 struct omap_mpuio_s {
1856 qemu_irq irq;
1857 qemu_irq kbd_irq;
1858 qemu_irq *in;
1859 qemu_irq handler[16];
1860 qemu_irq wakeup;
1861 MemoryRegion iomem;
1862
1863 uint16_t inputs;
1864 uint16_t outputs;
1865 uint16_t dir;
1866 uint16_t edge;
1867 uint16_t mask;
1868 uint16_t ints;
1869
1870 uint16_t debounce;
1871 uint16_t latch;
1872 uint8_t event;
1873
1874 uint8_t buttons[5];
1875 uint8_t row_latch;
1876 uint8_t cols;
1877 int kbd_mask;
1878 int clk;
1879 };
1880
1881 static void omap_mpuio_set(void *opaque, int line, int level)
1882 {
1883 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1884 uint16_t prev = s->inputs;
1885
1886 if (level)
1887 s->inputs |= 1 << line;
1888 else
1889 s->inputs &= ~(1 << line);
1890
1891 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1892 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1893 s->ints |= 1 << line;
1894 qemu_irq_raise(s->irq);
1895 /* TODO: wakeup */
1896 }
1897 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
1898 (s->event >> 1) == line) /* PIN_SELECT */
1899 s->latch = s->inputs;
1900 }
1901 }
1902
1903 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1904 {
1905 int i;
1906 uint8_t *row, rows = 0, cols = ~s->cols;
1907
1908 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1909 if (*row & cols)
1910 rows |= i;
1911
1912 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1913 s->row_latch = ~rows;
1914 }
1915
1916 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1917 unsigned size)
1918 {
1919 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1920 int offset = addr & OMAP_MPUI_REG_MASK;
1921 uint16_t ret;
1922
1923 if (size != 2) {
1924 return omap_badwidth_read16(opaque, addr);
1925 }
1926
1927 switch (offset) {
1928 case 0x00: /* INPUT_LATCH */
1929 return s->inputs;
1930
1931 case 0x04: /* OUTPUT_REG */
1932 return s->outputs;
1933
1934 case 0x08: /* IO_CNTL */
1935 return s->dir;
1936
1937 case 0x10: /* KBR_LATCH */
1938 return s->row_latch;
1939
1940 case 0x14: /* KBC_REG */
1941 return s->cols;
1942
1943 case 0x18: /* GPIO_EVENT_MODE_REG */
1944 return s->event;
1945
1946 case 0x1c: /* GPIO_INT_EDGE_REG */
1947 return s->edge;
1948
1949 case 0x20: /* KBD_INT */
1950 return (~s->row_latch & 0x1f) && !s->kbd_mask;
1951
1952 case 0x24: /* GPIO_INT */
1953 ret = s->ints;
1954 s->ints &= s->mask;
1955 if (ret)
1956 qemu_irq_lower(s->irq);
1957 return ret;
1958
1959 case 0x28: /* KBD_MASKIT */
1960 return s->kbd_mask;
1961
1962 case 0x2c: /* GPIO_MASKIT */
1963 return s->mask;
1964
1965 case 0x30: /* GPIO_DEBOUNCING_REG */
1966 return s->debounce;
1967
1968 case 0x34: /* GPIO_LATCH_REG */
1969 return s->latch;
1970 }
1971
1972 OMAP_BAD_REG(addr);
1973 return 0;
1974 }
1975
1976 static void omap_mpuio_write(void *opaque, hwaddr addr,
1977 uint64_t value, unsigned size)
1978 {
1979 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1980 int offset = addr & OMAP_MPUI_REG_MASK;
1981 uint16_t diff;
1982 int ln;
1983
1984 if (size != 2) {
1985 return omap_badwidth_write16(opaque, addr, value);
1986 }
1987
1988 switch (offset) {
1989 case 0x04: /* OUTPUT_REG */
1990 diff = (s->outputs ^ value) & ~s->dir;
1991 s->outputs = value;
1992 while ((ln = ffs(diff))) {
1993 ln --;
1994 if (s->handler[ln])
1995 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
1996 diff &= ~(1 << ln);
1997 }
1998 break;
1999
2000 case 0x08: /* IO_CNTL */
2001 diff = s->outputs & (s->dir ^ value);
2002 s->dir = value;
2003
2004 value = s->outputs & ~s->dir;
2005 while ((ln = ffs(diff))) {
2006 ln --;
2007 if (s->handler[ln])
2008 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2009 diff &= ~(1 << ln);
2010 }
2011 break;
2012
2013 case 0x14: /* KBC_REG */
2014 s->cols = value;
2015 omap_mpuio_kbd_update(s);
2016 break;
2017
2018 case 0x18: /* GPIO_EVENT_MODE_REG */
2019 s->event = value & 0x1f;
2020 break;
2021
2022 case 0x1c: /* GPIO_INT_EDGE_REG */
2023 s->edge = value;
2024 break;
2025
2026 case 0x28: /* KBD_MASKIT */
2027 s->kbd_mask = value & 1;
2028 omap_mpuio_kbd_update(s);
2029 break;
2030
2031 case 0x2c: /* GPIO_MASKIT */
2032 s->mask = value;
2033 break;
2034
2035 case 0x30: /* GPIO_DEBOUNCING_REG */
2036 s->debounce = value & 0x1ff;
2037 break;
2038
2039 case 0x00: /* INPUT_LATCH */
2040 case 0x10: /* KBR_LATCH */
2041 case 0x20: /* KBD_INT */
2042 case 0x24: /* GPIO_INT */
2043 case 0x34: /* GPIO_LATCH_REG */
2044 OMAP_RO_REG(addr);
2045 return;
2046
2047 default:
2048 OMAP_BAD_REG(addr);
2049 return;
2050 }
2051 }
2052
2053 static const MemoryRegionOps omap_mpuio_ops = {
2054 .read = omap_mpuio_read,
2055 .write = omap_mpuio_write,
2056 .endianness = DEVICE_NATIVE_ENDIAN,
2057 };
2058
2059 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2060 {
2061 s->inputs = 0;
2062 s->outputs = 0;
2063 s->dir = ~0;
2064 s->event = 0;
2065 s->edge = 0;
2066 s->kbd_mask = 0;
2067 s->mask = 0;
2068 s->debounce = 0;
2069 s->latch = 0;
2070 s->ints = 0;
2071 s->row_latch = 0x1f;
2072 s->clk = 1;
2073 }
2074
2075 static void omap_mpuio_onoff(void *opaque, int line, int on)
2076 {
2077 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2078
2079 s->clk = on;
2080 if (on)
2081 omap_mpuio_kbd_update(s);
2082 }
2083
2084 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2085 hwaddr base,
2086 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2087 omap_clk clk)
2088 {
2089 struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2090 g_malloc0(sizeof(struct omap_mpuio_s));
2091
2092 s->irq = gpio_int;
2093 s->kbd_irq = kbd_int;
2094 s->wakeup = wakeup;
2095 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2096 omap_mpuio_reset(s);
2097
2098 memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2099 "omap-mpuio", 0x800);
2100 memory_region_add_subregion(memory, base, &s->iomem);
2101
2102 omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2103
2104 return s;
2105 }
2106
2107 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2108 {
2109 return s->in;
2110 }
2111
2112 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2113 {
2114 if (line >= 16 || line < 0)
2115 hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2116 s->handler[line] = handler;
2117 }
2118
2119 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2120 {
2121 if (row >= 5 || row < 0)
2122 hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2123
2124 if (down)
2125 s->buttons[row] |= 1 << col;
2126 else
2127 s->buttons[row] &= ~(1 << col);
2128
2129 omap_mpuio_kbd_update(s);
2130 }
2131
2132 /* MicroWire Interface */
2133 struct omap_uwire_s {
2134 MemoryRegion iomem;
2135 qemu_irq txirq;
2136 qemu_irq rxirq;
2137 qemu_irq txdrq;
2138
2139 uint16_t txbuf;
2140 uint16_t rxbuf;
2141 uint16_t control;
2142 uint16_t setup[5];
2143
2144 uWireSlave *chip[4];
2145 };
2146
2147 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2148 {
2149 int chipselect = (s->control >> 10) & 3; /* INDEX */
2150 uWireSlave *slave = s->chip[chipselect];
2151
2152 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2153 if (s->control & (1 << 12)) /* CS_CMD */
2154 if (slave && slave->send)
2155 slave->send(slave->opaque,
2156 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2157 s->control &= ~(1 << 14); /* CSRB */
2158 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2159 * a DRQ. When is the level IRQ supposed to be reset? */
2160 }
2161
2162 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
2163 if (s->control & (1 << 12)) /* CS_CMD */
2164 if (slave && slave->receive)
2165 s->rxbuf = slave->receive(slave->opaque);
2166 s->control |= 1 << 15; /* RDRB */
2167 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2168 * a DRQ. When is the level IRQ supposed to be reset? */
2169 }
2170 }
2171
2172 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2173 unsigned size)
2174 {
2175 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2176 int offset = addr & OMAP_MPUI_REG_MASK;
2177
2178 if (size != 2) {
2179 return omap_badwidth_read16(opaque, addr);
2180 }
2181
2182 switch (offset) {
2183 case 0x00: /* RDR */
2184 s->control &= ~(1 << 15); /* RDRB */
2185 return s->rxbuf;
2186
2187 case 0x04: /* CSR */
2188 return s->control;
2189
2190 case 0x08: /* SR1 */
2191 return s->setup[0];
2192 case 0x0c: /* SR2 */
2193 return s->setup[1];
2194 case 0x10: /* SR3 */
2195 return s->setup[2];
2196 case 0x14: /* SR4 */
2197 return s->setup[3];
2198 case 0x18: /* SR5 */
2199 return s->setup[4];
2200 }
2201
2202 OMAP_BAD_REG(addr);
2203 return 0;
2204 }
2205
2206 static void omap_uwire_write(void *opaque, hwaddr addr,
2207 uint64_t value, unsigned size)
2208 {
2209 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2210 int offset = addr & OMAP_MPUI_REG_MASK;
2211
2212 if (size != 2) {
2213 return omap_badwidth_write16(opaque, addr, value);
2214 }
2215
2216 switch (offset) {
2217 case 0x00: /* TDR */
2218 s->txbuf = value; /* TD */
2219 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
2220 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2221 (s->control & (1 << 12)))) { /* CS_CMD */
2222 s->control |= 1 << 14; /* CSRB */
2223 omap_uwire_transfer_start(s);
2224 }
2225 break;
2226
2227 case 0x04: /* CSR */
2228 s->control = value & 0x1fff;
2229 if (value & (1 << 13)) /* START */
2230 omap_uwire_transfer_start(s);
2231 break;
2232
2233 case 0x08: /* SR1 */
2234 s->setup[0] = value & 0x003f;
2235 break;
2236
2237 case 0x0c: /* SR2 */
2238 s->setup[1] = value & 0x0fc0;
2239 break;
2240
2241 case 0x10: /* SR3 */
2242 s->setup[2] = value & 0x0003;
2243 break;
2244
2245 case 0x14: /* SR4 */
2246 s->setup[3] = value & 0x0001;
2247 break;
2248
2249 case 0x18: /* SR5 */
2250 s->setup[4] = value & 0x000f;
2251 break;
2252
2253 default:
2254 OMAP_BAD_REG(addr);
2255 return;
2256 }
2257 }
2258
2259 static const MemoryRegionOps omap_uwire_ops = {
2260 .read = omap_uwire_read,
2261 .write = omap_uwire_write,
2262 .endianness = DEVICE_NATIVE_ENDIAN,
2263 };
2264
2265 static void omap_uwire_reset(struct omap_uwire_s *s)
2266 {
2267 s->control = 0;
2268 s->setup[0] = 0;
2269 s->setup[1] = 0;
2270 s->setup[2] = 0;
2271 s->setup[3] = 0;
2272 s->setup[4] = 0;
2273 }
2274
2275 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2276 hwaddr base,
2277 qemu_irq txirq, qemu_irq rxirq,
2278 qemu_irq dma,
2279 omap_clk clk)
2280 {
2281 struct omap_uwire_s *s = (struct omap_uwire_s *)
2282 g_malloc0(sizeof(struct omap_uwire_s));
2283
2284 s->txirq = txirq;
2285 s->rxirq = rxirq;
2286 s->txdrq = dma;
2287 omap_uwire_reset(s);
2288
2289 memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2290 memory_region_add_subregion(system_memory, base, &s->iomem);
2291
2292 return s;
2293 }
2294
2295 void omap_uwire_attach(struct omap_uwire_s *s,
2296 uWireSlave *slave, int chipselect)
2297 {
2298 if (chipselect < 0 || chipselect > 3) {
2299 fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2300 exit(-1);
2301 }
2302
2303 s->chip[chipselect] = slave;
2304 }
2305
2306 /* Pseudonoise Pulse-Width Light Modulator */
2307 struct omap_pwl_s {
2308 MemoryRegion iomem;
2309 uint8_t output;
2310 uint8_t level;
2311 uint8_t enable;
2312 int clk;
2313 };
2314
2315 static void omap_pwl_update(struct omap_pwl_s *s)
2316 {
2317 int output = (s->clk && s->enable) ? s->level : 0;
2318
2319 if (output != s->output) {
2320 s->output = output;
2321 printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2322 }
2323 }
2324
2325 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2326 unsigned size)
2327 {
2328 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2329 int offset = addr & OMAP_MPUI_REG_MASK;
2330
2331 if (size != 1) {
2332 return omap_badwidth_read8(opaque, addr);
2333 }
2334
2335 switch (offset) {
2336 case 0x00: /* PWL_LEVEL */
2337 return s->level;
2338 case 0x04: /* PWL_CTRL */
2339 return s->enable;
2340 }
2341 OMAP_BAD_REG(addr);
2342 return 0;
2343 }
2344
2345 static void omap_pwl_write(void *opaque, hwaddr addr,
2346 uint64_t value, unsigned size)
2347 {
2348 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2349 int offset = addr & OMAP_MPUI_REG_MASK;
2350
2351 if (size != 1) {
2352 return omap_badwidth_write8(opaque, addr, value);
2353 }
2354
2355 switch (offset) {
2356 case 0x00: /* PWL_LEVEL */
2357 s->level = value;
2358 omap_pwl_update(s);
2359 break;
2360 case 0x04: /* PWL_CTRL */
2361 s->enable = value & 1;
2362 omap_pwl_update(s);
2363 break;
2364 default:
2365 OMAP_BAD_REG(addr);
2366 return;
2367 }
2368 }
2369
2370 static const MemoryRegionOps omap_pwl_ops = {
2371 .read = omap_pwl_read,
2372 .write = omap_pwl_write,
2373 .endianness = DEVICE_NATIVE_ENDIAN,
2374 };
2375
2376 static void omap_pwl_reset(struct omap_pwl_s *s)
2377 {
2378 s->output = 0;
2379 s->level = 0;
2380 s->enable = 0;
2381 s->clk = 1;
2382 omap_pwl_update(s);
2383 }
2384
2385 static void omap_pwl_clk_update(void *opaque, int line, int on)
2386 {
2387 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2388
2389 s->clk = on;
2390 omap_pwl_update(s);
2391 }
2392
2393 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2394 hwaddr base,
2395 omap_clk clk)
2396 {
2397 struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2398
2399 omap_pwl_reset(s);
2400
2401 memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2402 "omap-pwl", 0x800);
2403 memory_region_add_subregion(system_memory, base, &s->iomem);
2404
2405 omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2406 return s;
2407 }
2408
2409 /* Pulse-Width Tone module */
2410 struct omap_pwt_s {
2411 MemoryRegion iomem;
2412 uint8_t frc;
2413 uint8_t vrc;
2414 uint8_t gcr;
2415 omap_clk clk;
2416 };
2417
2418 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2419 unsigned size)
2420 {
2421 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2422 int offset = addr & OMAP_MPUI_REG_MASK;
2423
2424 if (size != 1) {
2425 return omap_badwidth_read8(opaque, addr);
2426 }
2427
2428 switch (offset) {
2429 case 0x00: /* FRC */
2430 return s->frc;
2431 case 0x04: /* VCR */
2432 return s->vrc;
2433 case 0x08: /* GCR */
2434 return s->gcr;
2435 }
2436 OMAP_BAD_REG(addr);
2437 return 0;
2438 }
2439
2440 static void omap_pwt_write(void *opaque, hwaddr addr,
2441 uint64_t value, unsigned size)
2442 {
2443 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2444 int offset = addr & OMAP_MPUI_REG_MASK;
2445
2446 if (size != 1) {
2447 return omap_badwidth_write8(opaque, addr, value);
2448 }
2449
2450 switch (offset) {
2451 case 0x00: /* FRC */
2452 s->frc = value & 0x3f;
2453 break;
2454 case 0x04: /* VRC */
2455 if ((value ^ s->vrc) & 1) {
2456 if (value & 1)
2457 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2458 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2459 ((omap_clk_getrate(s->clk) >> 3) /
2460 /* Pre-multiplexer divider */
2461 ((s->gcr & 2) ? 1 : 154) /
2462 /* Octave multiplexer */
2463 (2 << (value & 3)) *
2464 /* 101/107 divider */
2465 ((value & (1 << 2)) ? 101 : 107) *
2466 /* 49/55 divider */
2467 ((value & (1 << 3)) ? 49 : 55) *
2468 /* 50/63 divider */
2469 ((value & (1 << 4)) ? 50 : 63) *
2470 /* 80/127 divider */
2471 ((value & (1 << 5)) ? 80 : 127) /
2472 (107 * 55 * 63 * 127)));
2473 else
2474 printf("%s: silence!\n", __FUNCTION__);
2475 }
2476 s->vrc = value & 0x7f;
2477 break;
2478 case 0x08: /* GCR */
2479 s->gcr = value & 3;
2480 break;
2481 default:
2482 OMAP_BAD_REG(addr);
2483 return;
2484 }
2485 }
2486
2487 static const MemoryRegionOps omap_pwt_ops = {
2488 .read =omap_pwt_read,
2489 .write = omap_pwt_write,
2490 .endianness = DEVICE_NATIVE_ENDIAN,
2491 };
2492
2493 static void omap_pwt_reset(struct omap_pwt_s *s)
2494 {
2495 s->frc = 0;
2496 s->vrc = 0;
2497 s->gcr = 0;
2498 }
2499
2500 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2501 hwaddr base,
2502 omap_clk clk)
2503 {
2504 struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2505 s->clk = clk;
2506 omap_pwt_reset(s);
2507
2508 memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2509 "omap-pwt", 0x800);
2510 memory_region_add_subregion(system_memory, base, &s->iomem);
2511 return s;
2512 }
2513
2514 /* Real-time Clock module */
2515 struct omap_rtc_s {
2516 MemoryRegion iomem;
2517 qemu_irq irq;
2518 qemu_irq alarm;
2519 QEMUTimer *clk;
2520
2521 uint8_t interrupts;
2522 uint8_t status;
2523 int16_t comp_reg;
2524 int running;
2525 int pm_am;
2526 int auto_comp;
2527 int round;
2528 struct tm alarm_tm;
2529 time_t alarm_ti;
2530
2531 struct tm current_tm;
2532 time_t ti;
2533 uint64_t tick;
2534 };
2535
2536 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2537 {
2538 /* s->alarm is level-triggered */
2539 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2540 }
2541
2542 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2543 {
2544 s->alarm_ti = mktimegm(&s->alarm_tm);
2545 if (s->alarm_ti == -1)
2546 printf("%s: conversion failed\n", __FUNCTION__);
2547 }
2548
2549 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2550 unsigned size)
2551 {
2552 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2553 int offset = addr & OMAP_MPUI_REG_MASK;
2554 uint8_t i;
2555
2556 if (size != 1) {
2557 return omap_badwidth_read8(opaque, addr);
2558 }
2559
2560 switch (offset) {
2561 case 0x00: /* SECONDS_REG */
2562 return to_bcd(s->current_tm.tm_sec);
2563
2564 case 0x04: /* MINUTES_REG */
2565 return to_bcd(s->current_tm.tm_min);
2566
2567 case 0x08: /* HOURS_REG */
2568 if (s->pm_am)
2569 return ((s->current_tm.tm_hour > 11) << 7) |
2570 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2571 else
2572 return to_bcd(s->current_tm.tm_hour);
2573
2574 case 0x0c: /* DAYS_REG */
2575 return to_bcd(s->current_tm.tm_mday);
2576
2577 case 0x10: /* MONTHS_REG */
2578 return to_bcd(s->current_tm.tm_mon + 1);
2579
2580 case 0x14: /* YEARS_REG */
2581 return to_bcd(s->current_tm.tm_year % 100);
2582
2583 case 0x18: /* WEEK_REG */
2584 return s->current_tm.tm_wday;
2585
2586 case 0x20: /* ALARM_SECONDS_REG */
2587 return to_bcd(s->alarm_tm.tm_sec);
2588
2589 case 0x24: /* ALARM_MINUTES_REG */
2590 return to_bcd(s->alarm_tm.tm_min);
2591
2592 case 0x28: /* ALARM_HOURS_REG */
2593 if (s->pm_am)
2594 return ((s->alarm_tm.tm_hour > 11) << 7) |
2595 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2596 else
2597 return to_bcd(s->alarm_tm.tm_hour);
2598
2599 case 0x2c: /* ALARM_DAYS_REG */
2600 return to_bcd(s->alarm_tm.tm_mday);
2601
2602 case 0x30: /* ALARM_MONTHS_REG */
2603 return to_bcd(s->alarm_tm.tm_mon + 1);
2604
2605 case 0x34: /* ALARM_YEARS_REG */
2606 return to_bcd(s->alarm_tm.tm_year % 100);
2607
2608 case 0x40: /* RTC_CTRL_REG */
2609 return (s->pm_am << 3) | (s->auto_comp << 2) |
2610 (s->round << 1) | s->running;
2611
2612 case 0x44: /* RTC_STATUS_REG */
2613 i = s->status;
2614 s->status &= ~0x3d;
2615 return i;
2616
2617 case 0x48: /* RTC_INTERRUPTS_REG */
2618 return s->interrupts;
2619
2620 case 0x4c: /* RTC_COMP_LSB_REG */
2621 return ((uint16_t) s->comp_reg) & 0xff;
2622
2623 case 0x50: /* RTC_COMP_MSB_REG */
2624 return ((uint16_t) s->comp_reg) >> 8;
2625 }
2626
2627 OMAP_BAD_REG(addr);
2628 return 0;
2629 }
2630
2631 static void omap_rtc_write(void *opaque, hwaddr addr,
2632 uint64_t value, unsigned size)
2633 {
2634 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2635 int offset = addr & OMAP_MPUI_REG_MASK;
2636 struct tm new_tm;
2637 time_t ti[2];
2638
2639 if (size != 1) {
2640 return omap_badwidth_write8(opaque, addr, value);
2641 }
2642
2643 switch (offset) {
2644 case 0x00: /* SECONDS_REG */
2645 #ifdef ALMDEBUG
2646 printf("RTC SEC_REG <-- %02x\n", value);
2647 #endif
2648 s->ti -= s->current_tm.tm_sec;
2649 s->ti += from_bcd(value);
2650 return;
2651
2652 case 0x04: /* MINUTES_REG */
2653 #ifdef ALMDEBUG
2654 printf("RTC MIN_REG <-- %02x\n", value);
2655 #endif
2656 s->ti -= s->current_tm.tm_min * 60;
2657 s->ti += from_bcd(value) * 60;
2658 return;
2659
2660 case 0x08: /* HOURS_REG */
2661 #ifdef ALMDEBUG
2662 printf("RTC HRS_REG <-- %02x\n", value);
2663 #endif
2664 s->ti -= s->current_tm.tm_hour * 3600;
2665 if (s->pm_am) {
2666 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2667 s->ti += ((value >> 7) & 1) * 43200;
2668 } else
2669 s->ti += from_bcd(value & 0x3f) * 3600;
2670 return;
2671
2672 case 0x0c: /* DAYS_REG */
2673 #ifdef ALMDEBUG
2674 printf("RTC DAY_REG <-- %02x\n", value);
2675 #endif
2676 s->ti -= s->current_tm.tm_mday * 86400;
2677 s->ti += from_bcd(value) * 86400;
2678 return;
2679
2680 case 0x10: /* MONTHS_REG */
2681 #ifdef ALMDEBUG
2682 printf("RTC MTH_REG <-- %02x\n", value);
2683 #endif
2684 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2685 new_tm.tm_mon = from_bcd(value);
2686 ti[0] = mktimegm(&s->current_tm);
2687 ti[1] = mktimegm(&new_tm);
2688
2689 if (ti[0] != -1 && ti[1] != -1) {
2690 s->ti -= ti[0];
2691 s->ti += ti[1];
2692 } else {
2693 /* A less accurate version */
2694 s->ti -= s->current_tm.tm_mon * 2592000;
2695 s->ti += from_bcd(value) * 2592000;
2696 }
2697 return;
2698
2699 case 0x14: /* YEARS_REG */
2700 #ifdef ALMDEBUG
2701 printf("RTC YRS_REG <-- %02x\n", value);
2702 #endif
2703 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2704 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2705 ti[0] = mktimegm(&s->current_tm);
2706 ti[1] = mktimegm(&new_tm);
2707
2708 if (ti[0] != -1 && ti[1] != -1) {
2709 s->ti -= ti[0];
2710 s->ti += ti[1];
2711 } else {
2712 /* A less accurate version */
2713 s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2714 s->ti += (time_t)from_bcd(value) * 31536000;
2715 }
2716 return;
2717
2718 case 0x18: /* WEEK_REG */
2719 return; /* Ignored */
2720
2721 case 0x20: /* ALARM_SECONDS_REG */
2722 #ifdef ALMDEBUG
2723 printf("ALM SEC_REG <-- %02x\n", value);
2724 #endif
2725 s->alarm_tm.tm_sec = from_bcd(value);
2726 omap_rtc_alarm_update(s);
2727 return;
2728
2729 case 0x24: /* ALARM_MINUTES_REG */
2730 #ifdef ALMDEBUG
2731 printf("ALM MIN_REG <-- %02x\n", value);
2732 #endif
2733 s->alarm_tm.tm_min = from_bcd(value);
2734 omap_rtc_alarm_update(s);
2735 return;
2736
2737 case 0x28: /* ALARM_HOURS_REG */
2738 #ifdef ALMDEBUG
2739 printf("ALM HRS_REG <-- %02x\n", value);
2740 #endif
2741 if (s->pm_am)
2742 s->alarm_tm.tm_hour =
2743 ((from_bcd(value & 0x3f)) % 12) +
2744 ((value >> 7) & 1) * 12;
2745 else
2746 s->alarm_tm.tm_hour = from_bcd(value);
2747 omap_rtc_alarm_update(s);
2748 return;
2749
2750 case 0x2c: /* ALARM_DAYS_REG */
2751 #ifdef ALMDEBUG
2752 printf("ALM DAY_REG <-- %02x\n", value);
2753 #endif
2754 s->alarm_tm.tm_mday = from_bcd(value);
2755 omap_rtc_alarm_update(s);
2756 return;
2757
2758 case 0x30: /* ALARM_MONTHS_REG */
2759 #ifdef ALMDEBUG
2760 printf("ALM MON_REG <-- %02x\n", value);
2761 #endif
2762 s->alarm_tm.tm_mon = from_bcd(value);
2763 omap_rtc_alarm_update(s);
2764 return;
2765
2766 case 0x34: /* ALARM_YEARS_REG */
2767 #ifdef ALMDEBUG
2768 printf("ALM YRS_REG <-- %02x\n", value);
2769 #endif
2770 s->alarm_tm.tm_year = from_bcd(value);
2771 omap_rtc_alarm_update(s);
2772 return;
2773
2774 case 0x40: /* RTC_CTRL_REG */
2775 #ifdef ALMDEBUG
2776 printf("RTC CONTROL <-- %02x\n", value);
2777 #endif
2778 s->pm_am = (value >> 3) & 1;
2779 s->auto_comp = (value >> 2) & 1;
2780 s->round = (value >> 1) & 1;
2781 s->running = value & 1;
2782 s->status &= 0xfd;
2783 s->status |= s->running << 1;
2784 return;
2785
2786 case 0x44: /* RTC_STATUS_REG */
2787 #ifdef ALMDEBUG
2788 printf("RTC STATUSL <-- %02x\n", value);
2789 #endif
2790 s->status &= ~((value & 0xc0) ^ 0x80);
2791 omap_rtc_interrupts_update(s);
2792 return;
2793
2794 case 0x48: /* RTC_INTERRUPTS_REG */
2795 #ifdef ALMDEBUG
2796 printf("RTC INTRS <-- %02x\n", value);
2797 #endif
2798 s->interrupts = value;
2799 return;
2800
2801 case 0x4c: /* RTC_COMP_LSB_REG */
2802 #ifdef ALMDEBUG
2803 printf("RTC COMPLSB <-- %02x\n", value);
2804 #endif
2805 s->comp_reg &= 0xff00;
2806 s->comp_reg |= 0x00ff & value;
2807 return;
2808
2809 case 0x50: /* RTC_COMP_MSB_REG */
2810 #ifdef ALMDEBUG
2811 printf("RTC COMPMSB <-- %02x\n", value);
2812 #endif
2813 s->comp_reg &= 0x00ff;
2814 s->comp_reg |= 0xff00 & (value << 8);
2815 return;
2816
2817 default:
2818 OMAP_BAD_REG(addr);
2819 return;
2820 }
2821 }
2822
2823 static const MemoryRegionOps omap_rtc_ops = {
2824 .read = omap_rtc_read,
2825 .write = omap_rtc_write,
2826 .endianness = DEVICE_NATIVE_ENDIAN,
2827 };
2828
2829 static void omap_rtc_tick(void *opaque)
2830 {
2831 struct omap_rtc_s *s = opaque;
2832
2833 if (s->round) {
2834 /* Round to nearest full minute. */
2835 if (s->current_tm.tm_sec < 30)
2836 s->ti -= s->current_tm.tm_sec;
2837 else
2838 s->ti += 60 - s->current_tm.tm_sec;
2839
2840 s->round = 0;
2841 }
2842
2843 localtime_r(&s->ti, &s->current_tm);
2844
2845 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2846 s->status |= 0x40;
2847 omap_rtc_interrupts_update(s);
2848 }
2849
2850 if (s->interrupts & 0x04)
2851 switch (s->interrupts & 3) {
2852 case 0:
2853 s->status |= 0x04;
2854 qemu_irq_pulse(s->irq);
2855 break;
2856 case 1:
2857 if (s->current_tm.tm_sec)
2858 break;
2859 s->status |= 0x08;
2860 qemu_irq_pulse(s->irq);
2861 break;
2862 case 2:
2863 if (s->current_tm.tm_sec || s->current_tm.tm_min)
2864 break;
2865 s->status |= 0x10;
2866 qemu_irq_pulse(s->irq);
2867 break;
2868 case 3:
2869 if (s->current_tm.tm_sec ||
2870 s->current_tm.tm_min || s->current_tm.tm_hour)
2871 break;
2872 s->status |= 0x20;
2873 qemu_irq_pulse(s->irq);
2874 break;
2875 }
2876
2877 /* Move on */
2878 if (s->running)
2879 s->ti ++;
2880 s->tick += 1000;
2881
2882 /*
2883 * Every full hour add a rough approximation of the compensation
2884 * register to the 32kHz Timer (which drives the RTC) value.
2885 */
2886 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2887 s->tick += s->comp_reg * 1000 / 32768;
2888
2889 timer_mod(s->clk, s->tick);
2890 }
2891
2892 static void omap_rtc_reset(struct omap_rtc_s *s)
2893 {
2894 struct tm tm;
2895
2896 s->interrupts = 0;
2897 s->comp_reg = 0;
2898 s->running = 0;
2899 s->pm_am = 0;
2900 s->auto_comp = 0;
2901 s->round = 0;
2902 s->tick = qemu_clock_get_ms(rtc_clock);
2903 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2904 s->alarm_tm.tm_mday = 0x01;
2905 s->status = 1 << 7;
2906 qemu_get_timedate(&tm, 0);
2907 s->ti = mktimegm(&tm);
2908
2909 omap_rtc_alarm_update(s);
2910 omap_rtc_tick(s);
2911 }
2912
2913 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2914 hwaddr base,
2915 qemu_irq timerirq, qemu_irq alarmirq,
2916 omap_clk clk)
2917 {
2918 struct omap_rtc_s *s = (struct omap_rtc_s *)
2919 g_malloc0(sizeof(struct omap_rtc_s));
2920
2921 s->irq = timerirq;
2922 s->alarm = alarmirq;
2923 s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2924
2925 omap_rtc_reset(s);
2926
2927 memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2928 "omap-rtc", 0x800);
2929 memory_region_add_subregion(system_memory, base, &s->iomem);
2930
2931 return s;
2932 }
2933
2934 /* Multi-channel Buffered Serial Port interfaces */
2935 struct omap_mcbsp_s {
2936 MemoryRegion iomem;
2937 qemu_irq txirq;
2938 qemu_irq rxirq;
2939 qemu_irq txdrq;
2940 qemu_irq rxdrq;
2941
2942 uint16_t spcr[2];
2943 uint16_t rcr[2];
2944 uint16_t xcr[2];
2945 uint16_t srgr[2];
2946 uint16_t mcr[2];
2947 uint16_t pcr;
2948 uint16_t rcer[8];
2949 uint16_t xcer[8];
2950 int tx_rate;
2951 int rx_rate;
2952 int tx_req;
2953 int rx_req;
2954
2955 I2SCodec *codec;
2956 QEMUTimer *source_timer;
2957 QEMUTimer *sink_timer;
2958 };
2959
2960 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2961 {
2962 int irq;
2963
2964 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
2965 case 0:
2966 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
2967 break;
2968 case 3:
2969 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
2970 break;
2971 default:
2972 irq = 0;
2973 break;
2974 }
2975
2976 if (irq)
2977 qemu_irq_pulse(s->rxirq);
2978
2979 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
2980 case 0:
2981 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
2982 break;
2983 case 3:
2984 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
2985 break;
2986 default:
2987 irq = 0;
2988 break;
2989 }
2990
2991 if (irq)
2992 qemu_irq_pulse(s->txirq);
2993 }
2994
2995 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
2996 {
2997 if ((s->spcr[0] >> 1) & 1) /* RRDY */
2998 s->spcr[0] |= 1 << 2; /* RFULL */
2999 s->spcr[0] |= 1 << 1; /* RRDY */
3000 qemu_irq_raise(s->rxdrq);
3001 omap_mcbsp_intr_update(s);
3002 }
3003
3004 static void omap_mcbsp_source_tick(void *opaque)
3005 {
3006 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3007 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3008
3009 if (!s->rx_rate)
3010 return;
3011 if (s->rx_req)
3012 printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3013
3014 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3015
3016 omap_mcbsp_rx_newdata(s);
3017 timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3018 get_ticks_per_sec());
3019 }
3020
3021 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3022 {
3023 if (!s->codec || !s->codec->rts)
3024 omap_mcbsp_source_tick(s);
3025 else if (s->codec->in.len) {
3026 s->rx_req = s->codec->in.len;
3027 omap_mcbsp_rx_newdata(s);
3028 }
3029 }
3030
3031 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3032 {
3033 timer_del(s->source_timer);
3034 }
3035
3036 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3037 {
3038 s->spcr[0] &= ~(1 << 1); /* RRDY */
3039 qemu_irq_lower(s->rxdrq);
3040 omap_mcbsp_intr_update(s);
3041 }
3042
3043 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3044 {
3045 s->spcr[1] |= 1 << 1; /* XRDY */
3046 qemu_irq_raise(s->txdrq);
3047 omap_mcbsp_intr_update(s);
3048 }
3049
3050 static void omap_mcbsp_sink_tick(void *opaque)
3051 {
3052 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3053 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3054
3055 if (!s->tx_rate)
3056 return;
3057 if (s->tx_req)
3058 printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3059
3060 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3061
3062 omap_mcbsp_tx_newdata(s);
3063 timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3064 get_ticks_per_sec());
3065 }
3066
3067 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3068 {
3069 if (!s->codec || !s->codec->cts)
3070 omap_mcbsp_sink_tick(s);
3071 else if (s->codec->out.size) {
3072 s->tx_req = s->codec->out.size;
3073 omap_mcbsp_tx_newdata(s);
3074 }
3075 }
3076
3077 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3078 {
3079 s->spcr[1] &= ~(1 << 1); /* XRDY */
3080 qemu_irq_lower(s->txdrq);
3081 omap_mcbsp_intr_update(s);
3082 if (s->codec && s->codec->cts)
3083 s->codec->tx_swallow(s->codec->opaque);
3084 }
3085
3086 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3087 {
3088 s->tx_req = 0;
3089 omap_mcbsp_tx_done(s);
3090 timer_del(s->sink_timer);
3091 }
3092
3093 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3094 {
3095 int prev_rx_rate, prev_tx_rate;
3096 int rx_rate = 0, tx_rate = 0;
3097 int cpu_rate = 1500000; /* XXX */
3098
3099 /* TODO: check CLKSTP bit */
3100 if (s->spcr[1] & (1 << 6)) { /* GRST */
3101 if (s->spcr[0] & (1 << 0)) { /* RRST */
3102 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3103 (s->pcr & (1 << 8))) { /* CLKRM */
3104 if (~s->pcr & (1 << 7)) /* SCLKME */
3105 rx_rate = cpu_rate /
3106 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3107 } else
3108 if (s->codec)
3109 rx_rate = s->codec->rx_rate;
3110 }
3111
3112 if (s->spcr[1] & (1 << 0)) { /* XRST */
3113 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3114 (s->pcr & (1 << 9))) { /* CLKXM */
3115 if (~s->pcr & (1 << 7)) /* SCLKME */
3116 tx_rate = cpu_rate /
3117 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3118 } else
3119 if (s->codec)
3120 tx_rate = s->codec->tx_rate;
3121 }
3122 }
3123 prev_tx_rate = s->tx_rate;
3124 prev_rx_rate = s->rx_rate;
3125 s->tx_rate = tx_rate;
3126 s->rx_rate = rx_rate;
3127
3128 if (s->codec)
3129 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3130
3131 if (!prev_tx_rate && tx_rate)
3132 omap_mcbsp_tx_start(s);
3133 else if (s->tx_rate && !tx_rate)
3134 omap_mcbsp_tx_stop(s);
3135
3136 if (!prev_rx_rate && rx_rate)
3137 omap_mcbsp_rx_start(s);
3138 else if (prev_tx_rate && !tx_rate)
3139 omap_mcbsp_rx_stop(s);
3140 }
3141
3142 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3143 unsigned size)
3144 {
3145 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3146 int offset = addr & OMAP_MPUI_REG_MASK;
3147 uint16_t ret;
3148
3149 if (size != 2) {
3150 return omap_badwidth_read16(opaque, addr);
3151 }
3152
3153 switch (offset) {
3154 case 0x00: /* DRR2 */
3155 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3156 return 0x0000;
3157 /* Fall through. */
3158 case 0x02: /* DRR1 */
3159 if (s->rx_req < 2) {
3160 printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3161 omap_mcbsp_rx_done(s);
3162 } else {
3163 s->tx_req -= 2;
3164 if (s->codec && s->codec->in.len >= 2) {
3165 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3166 ret |= s->codec->in.fifo[s->codec->in.start ++];
3167 s->codec->in.len -= 2;
3168 } else
3169 ret = 0x0000;
3170 if (!s->tx_req)
3171 omap_mcbsp_rx_done(s);
3172 return ret;
3173 }
3174 return 0x0000;
3175
3176 case 0x04: /* DXR2 */
3177 case 0x06: /* DXR1 */
3178 return 0x0000;
3179
3180 case 0x08: /* SPCR2 */
3181 return s->spcr[1];
3182 case 0x0a: /* SPCR1 */
3183 return s->spcr[0];
3184 case 0x0c: /* RCR2 */
3185 return s->rcr[1];
3186 case 0x0e: /* RCR1 */
3187 return s->rcr[0];
3188 case 0x10: /* XCR2 */
3189 return s->xcr[1];
3190 case 0x12: /* XCR1 */
3191 return s->xcr[0];
3192 case 0x14: /* SRGR2 */
3193 return s->srgr[1];
3194 case 0x16: /* SRGR1 */
3195 return s->srgr[0];
3196 case 0x18: /* MCR2 */
3197 return s->mcr[1];
3198 case 0x1a: /* MCR1 */
3199 return s->mcr[0];
3200 case 0x1c: /* RCERA */
3201 return s->rcer[0];
3202 case 0x1e: /* RCERB */
3203 return s->rcer[1];
3204 case 0x20: /* XCERA */
3205 return s->xcer[0];
3206 case 0x22: /* XCERB */
3207 return s->xcer[1];
3208 case 0x24: /* PCR0 */
3209 return s->pcr;
3210 case 0x26: /* RCERC */
3211 return s->rcer[2];
3212 case 0x28: /* RCERD */
3213 return s->rcer[3];
3214 case 0x2a: /* XCERC */
3215 return s->xcer[2];
3216 case 0x2c: /* XCERD */
3217 return s->xcer[3];
3218 case 0x2e: /* RCERE */
3219 return s->rcer[4];
3220 case 0x30: /* RCERF */
3221 return s->rcer[5];
3222 case 0x32: /* XCERE */
3223 return s->xcer[4];
3224 case 0x34: /* XCERF */
3225 return s->xcer[5];
3226 case 0x36: /* RCERG */
3227 return s->rcer[6];
3228 case 0x38: /* RCERH */
3229 return s->rcer[7];
3230 case 0x3a: /* XCERG */
3231 return s->xcer[6];
3232 case 0x3c: /* XCERH */
3233 return s->xcer[7];
3234 }
3235
3236 OMAP_BAD_REG(addr);
3237 return 0;
3238 }
3239
3240 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3241 uint32_t value)
3242 {
3243 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3244 int offset = addr & OMAP_MPUI_REG_MASK;
3245
3246 switch (offset) {
3247 case 0x00: /* DRR2 */
3248 case 0x02: /* DRR1 */
3249 OMAP_RO_REG(addr);
3250 return;
3251
3252 case 0x04: /* DXR2 */
3253 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3254 return;
3255 /* Fall through. */
3256 case 0x06: /* DXR1 */
3257 if (s->tx_req > 1) {
3258 s->tx_req -= 2;
3259 if (s->codec && s->codec->cts) {
3260 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3261 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3262 }
3263 if (s->tx_req < 2)
3264 omap_mcbsp_tx_done(s);
3265 } else
3266 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3267 return;
3268
3269 case 0x08: /* SPCR2 */
3270 s->spcr[1] &= 0x0002;
3271 s->spcr[1] |= 0x03f9 & value;
3272 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
3273 if (~value & 1) /* XRST */
3274 s->spcr[1] &= ~6;
3275 omap_mcbsp_req_update(s);
3276 return;
3277 case 0x0a: /* SPCR1 */
3278 s->spcr[0] &= 0x0006;
3279 s->spcr[0] |= 0xf8f9 & value;
3280 if (value & (1 << 15)) /* DLB */
3281 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3282 if (~value & 1) { /* RRST */
3283 s->spcr[0] &= ~6;
3284 s->rx_req = 0;
3285 omap_mcbsp_rx_done(s);
3286 }
3287 omap_mcbsp_req_update(s);
3288 return;
3289
3290 case 0x0c: /* RCR2 */
3291 s->rcr[1] = value & 0xffff;
3292 return;
3293 case 0x0e: /* RCR1 */
3294 s->rcr[0] = value & 0x7fe0;
3295 return;
3296 case 0x10: /* XCR2 */
3297 s->xcr[1] = value & 0xffff;
3298 return;
3299 case 0x12: /* XCR1 */
3300 s->xcr[0] = value & 0x7fe0;
3301 return;
3302 case 0x14: /* SRGR2 */
3303 s->srgr[1] = value & 0xffff;
3304 omap_mcbsp_req_update(s);
3305 return;
3306 case 0x16: /* SRGR1 */
3307 s->srgr[0] = value & 0xffff;
3308 omap_mcbsp_req_update(s);
3309 return;
3310 case 0x18: /* MCR2 */
3311 s->mcr[1] = value & 0x03e3;
3312 if (value & 3) /* XMCM */
3313 printf("%s: Tx channel selection mode enable attempt\n",
3314 __FUNCTION__);
3315 return;
3316 case 0x1a: /* MCR1 */
3317 s->mcr[0] = value & 0x03e1;
3318 if (value & 1) /* RMCM */
3319 printf("%s: Rx channel selection mode enable attempt\n",
3320 __FUNCTION__);
3321 return;
3322 case 0x1c: /* RCERA */
3323 s->rcer[0] = value & 0xffff;
3324 return;
3325 case 0x1e: /* RCERB */
3326 s->rcer[1] = value & 0xffff;
3327 return;
3328 case 0x20: /* XCERA */
3329 s->xcer[0] = value & 0xffff;
3330 return;
3331 case 0x22: /* XCERB */
3332 s->xcer[1] = value & 0xffff;
3333 return;
3334 case 0x24: /* PCR0 */
3335 s->pcr = value & 0x7faf;
3336 return;
3337 case 0x26: /* RCERC */
3338 s->rcer[2] = value & 0xffff;
3339 return;
3340 case 0x28: /* RCERD */
3341 s->rcer[3] = value & 0xffff;
3342 return;
3343 case 0x2a: /* XCERC */
3344 s->xcer[2] = value & 0xffff;
3345 return;
3346 case 0x2c: /* XCERD */
3347 s->xcer[3] = value & 0xffff;
3348 return;
3349 case 0x2e: /* RCERE */
3350 s->rcer[4] = value & 0xffff;
3351 return;
3352 case 0x30: /* RCERF */
3353 s->rcer[5] = value & 0xffff;
3354 return;
3355 case 0x32: /* XCERE */
3356 s->xcer[4] = value & 0xffff;
3357 return;
3358 case 0x34: /* XCERF */
3359 s->xcer[5] = value & 0xffff;
3360 return;
3361 case 0x36: /* RCERG */
3362 s->rcer[6] = value & 0xffff;
3363 return;
3364 case 0x38: /* RCERH */
3365 s->rcer[7] = value & 0xffff;
3366 return;
3367 case 0x3a: /* XCERG */
3368 s->xcer[6] = value & 0xffff;
3369 return;
3370 case 0x3c: /* XCERH */
3371 s->xcer[7] = value & 0xffff;
3372 return;
3373 }
3374
3375 OMAP_BAD_REG(addr);
3376 }
3377
3378 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3379 uint32_t value)
3380 {
3381 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3382 int offset = addr & OMAP_MPUI_REG_MASK;
3383
3384 if (offset == 0x04) { /* DXR */
3385 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3386 return;
3387 if (s->tx_req > 3) {
3388 s->tx_req -= 4;
3389 if (s->codec && s->codec->cts) {
3390 s->codec->out.fifo[s->codec->out.len ++] =
3391 (value >> 24) & 0xff;
3392 s->codec->out.fifo[s->codec->out.len ++] =
3393 (value >> 16) & 0xff;
3394 s->codec->out.fifo[s->codec->out.len ++] =
3395 (value >> 8) & 0xff;
3396 s->codec->out.fifo[s->codec->out.len ++] =
3397 (value >> 0) & 0xff;
3398 }
3399 if (s->tx_req < 4)
3400 omap_mcbsp_tx_done(s);
3401 } else
3402 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3403 return;
3404 }
3405
3406 omap_badwidth_write16(opaque, addr, value);
3407 }
3408
3409 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3410 uint64_t value, unsigned size)
3411 {
3412 switch (size) {
3413 case 2: return omap_mcbsp_writeh(opaque, addr, value);
3414 case 4: return omap_mcbsp_writew(opaque, addr, value);
3415 default: return omap_badwidth_write16(opaque, addr, value);
3416 }
3417 }
3418
3419 static const MemoryRegionOps omap_mcbsp_ops = {
3420 .read = omap_mcbsp_read,
3421 .write = omap_mcbsp_write,
3422 .endianness = DEVICE_NATIVE_ENDIAN,
3423 };
3424
3425 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3426 {
3427 memset(&s->spcr, 0, sizeof(s->spcr));
3428 memset(&s->rcr, 0, sizeof(s->rcr));
3429 memset(&s->xcr, 0, sizeof(s->xcr));
3430 s->srgr[0] = 0x0001;
3431 s->srgr[1] = 0x2000;
3432 memset(&s->mcr, 0, sizeof(s->mcr));
3433 memset(&s->pcr, 0, sizeof(s->pcr));
3434 memset(&s->rcer, 0, sizeof(s->rcer));
3435 memset(&s->xcer, 0, sizeof(s->xcer));
3436 s->tx_req = 0;
3437 s->rx_req = 0;
3438 s->tx_rate = 0;
3439 s->rx_rate = 0;
3440 timer_del(s->source_timer);
3441 timer_del(s->sink_timer);
3442 }
3443
3444 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3445 hwaddr base,
3446 qemu_irq txirq, qemu_irq rxirq,
3447 qemu_irq *dma, omap_clk clk)
3448 {
3449 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
3450 g_malloc0(sizeof(struct omap_mcbsp_s));
3451
3452 s->txirq = txirq;
3453 s->rxirq = rxirq;
3454 s->txdrq = dma[0];
3455 s->rxdrq = dma[1];
3456 s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3457 s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3458 omap_mcbsp_reset(s);
3459
3460 memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3461 memory_region_add_subregion(system_memory, base, &s->iomem);
3462
3463 return s;
3464 }
3465
3466 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3467 {
3468 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3469
3470 if (s->rx_rate) {
3471 s->rx_req = s->codec->in.len;
3472 omap_mcbsp_rx_newdata(s);
3473 }
3474 }
3475
3476 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3477 {
3478 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3479
3480 if (s->tx_rate) {
3481 s->tx_req = s->codec->out.size;
3482 omap_mcbsp_tx_newdata(s);
3483 }
3484 }
3485
3486 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3487 {
3488 s->codec = slave;
3489 slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3490 slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3491 }
3492
3493 /* LED Pulse Generators */
3494 struct omap_lpg_s {
3495 MemoryRegion iomem;
3496 QEMUTimer *tm;
3497
3498 uint8_t control;
3499 uint8_t power;
3500 int64_t on;
3501 int64_t period;
3502 int clk;
3503 int cycle;
3504 };
3505
3506 static void omap_lpg_tick(void *opaque)
3507 {
3508 struct omap_lpg_s *s = opaque;
3509
3510 if (s->cycle)
3511 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3512 else
3513 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3514
3515 s->cycle = !s->cycle;
3516 printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3517 }
3518
3519 static void omap_lpg_update(struct omap_lpg_s *s)
3520 {
3521 int64_t on, period = 1, ticks = 1000;
3522 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3523
3524 if (~s->control & (1 << 6)) /* LPGRES */
3525 on = 0;
3526 else if (s->control & (1 << 7)) /* PERM_ON */
3527 on = period;
3528 else {
3529 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
3530 256 / 32);
3531 on = (s->clk && s->power) ? muldiv64(ticks,
3532 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
3533 }
3534
3535 timer_del(s->tm);
3536 if (on == period && s->on < s->period)
3537 printf("%s: LED is on\n", __FUNCTION__);
3538 else if (on == 0 && s->on)
3539 printf("%s: LED is off\n", __FUNCTION__);
3540 else if (on && (on != s->on || period != s->period)) {
3541 s->cycle = 0;
3542 s->on = on;
3543 s->period = period;
3544 omap_lpg_tick(s);
3545 return;
3546 }
3547
3548 s->on = on;
3549 s->period = period;
3550 }
3551
3552 static void omap_lpg_reset(struct omap_lpg_s *s)
3553 {
3554 s->control = 0x00;
3555 s->power = 0x00;
3556 s->clk = 1;
3557 omap_lpg_update(s);
3558 }
3559
3560 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3561 unsigned size)
3562 {
3563 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3564 int offset = addr & OMAP_MPUI_REG_MASK;
3565
3566 if (size != 1) {
3567 return omap_badwidth_read8(opaque, addr);
3568 }
3569
3570 switch (offset) {
3571 case 0x00: /* LCR */
3572 return s->control;
3573
3574 case 0x04: /* PMR */
3575 return s->power;
3576 }
3577
3578 OMAP_BAD_REG(addr);
3579 return 0;
3580 }
3581
3582 static void omap_lpg_write(void *opaque, hwaddr addr,
3583 uint64_t value, unsigned size)
3584 {
3585 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3586 int offset = addr & OMAP_MPUI_REG_MASK;
3587
3588 if (size != 1) {
3589 return omap_badwidth_write8(opaque, addr, value);
3590 }
3591
3592 switch (offset) {
3593 case 0x00: /* LCR */
3594 if (~value & (1 << 6)) /* LPGRES */
3595 omap_lpg_reset(s);
3596 s->control = value & 0xff;
3597 omap_lpg_update(s);
3598 return;
3599
3600 case 0x04: /* PMR */
3601 s->power = value & 0x01;
3602 omap_lpg_update(s);
3603 return;
3604
3605 default:
3606 OMAP_BAD_REG(addr);
3607 return;
3608 }
3609 }
3610
3611 static const MemoryRegionOps omap_lpg_ops = {
3612 .read = omap_lpg_read,
3613 .write = omap_lpg_write,
3614 .endianness = DEVICE_NATIVE_ENDIAN,
3615 };
3616
3617 static void omap_lpg_clk_update(void *opaque, int line, int on)
3618 {
3619 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3620
3621 s->clk = on;
3622 omap_lpg_update(s);
3623 }
3624
3625 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3626 hwaddr base, omap_clk clk)
3627 {
3628 struct omap_lpg_s *s = (struct omap_lpg_s *)
3629 g_malloc0(sizeof(struct omap_lpg_s));
3630
3631 s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3632
3633 omap_lpg_reset(s);
3634
3635 memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3636 memory_region_add_subregion(system_memory, base, &s->iomem);
3637
3638 omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3639
3640 return s;
3641 }
3642
3643 /* MPUI Peripheral Bridge configuration */
3644 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3645 unsigned size)
3646 {
3647 if (size != 2) {
3648 return omap_badwidth_read16(opaque, addr);
3649 }
3650
3651 if (addr == OMAP_MPUI_BASE) /* CMR */
3652 return 0xfe4d;
3653
3654 OMAP_BAD_REG(addr);
3655 return 0;
3656 }
3657
3658 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3659 uint64_t value, unsigned size)
3660 {
3661 /* FIXME: infinite loop */
3662 omap_badwidth_write16(opaque, addr, value);
3663 }
3664
3665 static const MemoryRegionOps omap_mpui_io_ops = {
3666 .read = omap_mpui_io_read,
3667 .write = omap_mpui_io_write,
3668 .endianness = DEVICE_NATIVE_ENDIAN,
3669 };
3670
3671 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3672 struct omap_mpu_state_s *mpu)
3673 {
3674 memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3675 "omap-mpui-io", 0x7fff);
3676 memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3677 &mpu->mpui_io_iomem);
3678 }
3679
3680 /* General chip reset */
3681 static void omap1_mpu_reset(void *opaque)
3682 {
3683 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3684
3685 omap_dma_reset(mpu->dma);
3686 omap_mpu_timer_reset(mpu->timer[0]);
3687 omap_mpu_timer_reset(mpu->timer[1]);
3688 omap_mpu_timer_reset(mpu->timer[2]);
3689 omap_wd_timer_reset(mpu->wdt);
3690 omap_os_timer_reset(mpu->os_timer);
3691 omap_lcdc_reset(mpu->lcd);
3692 omap_ulpd_pm_reset(mpu);
3693 omap_pin_cfg_reset(mpu);
3694 omap_mpui_reset(mpu);
3695 omap_tipb_bridge_reset(mpu->private_tipb);
3696 omap_tipb_bridge_reset(mpu->public_tipb);
3697 omap_dpll_reset(mpu->dpll[0]);
3698 omap_dpll_reset(mpu->dpll[1]);
3699 omap_dpll_reset(mpu->dpll[2]);
3700 omap_uart_reset(mpu->uart[0]);
3701 omap_uart_reset(mpu->uart[1]);
3702 omap_uart_reset(mpu->uart[2]);
3703 omap_mmc_reset(mpu->mmc);
3704 omap_mpuio_reset(mpu->mpuio);
3705 omap_uwire_reset(mpu->microwire);
3706 omap_pwl_reset(mpu->pwl);
3707 omap_pwt_reset(mpu->pwt);
3708 omap_rtc_reset(mpu->rtc);
3709 omap_mcbsp_reset(mpu->mcbsp1);
3710 omap_mcbsp_reset(mpu->mcbsp2);
3711 omap_mcbsp_reset(mpu->mcbsp3);
3712 omap_lpg_reset(mpu->led[0]);
3713 omap_lpg_reset(mpu->led[1]);
3714 omap_clkm_reset(mpu);
3715 cpu_reset(CPU(mpu->cpu));
3716 }
3717
3718 static const struct omap_map_s {
3719 hwaddr phys_dsp;
3720 hwaddr phys_mpu;
3721 uint32_t size;
3722 const char *name;
3723 } omap15xx_dsp_mm[] = {
3724 /* Strobe 0 */
3725 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
3726 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
3727 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
3728 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
3729 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
3730 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
3731 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
3732 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
3733 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
3734 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
3735 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
3736 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
3737 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
3738 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
3739 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
3740 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
3741 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
3742 /* Strobe 1 */
3743 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
3744
3745 { 0 }
3746 };
3747
3748 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3749 const struct omap_map_s *map)
3750 {
3751 MemoryRegion *io;
3752
3753 for (; map->phys_dsp; map ++) {
3754 io = g_new(MemoryRegion, 1);
3755 memory_region_init_alias(io, NULL, map->name,
3756 system_memory, map->phys_mpu, map->size);
3757 memory_region_add_subregion(system_memory, map->phys_dsp, io);
3758 }
3759 }
3760
3761 void omap_mpu_wakeup(void *opaque, int irq, int req)
3762 {
3763 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3764 CPUState *cpu = CPU(mpu->cpu);
3765
3766 if (cpu->halted) {
3767 cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3768 }
3769 }
3770
3771 static const struct dma_irq_map omap1_dma_irq_map[] = {
3772 { 0, OMAP_INT_DMA_CH0_6 },
3773 { 0, OMAP_INT_DMA_CH1_7 },
3774 { 0, OMAP_INT_DMA_CH2_8 },
3775 { 0, OMAP_INT_DMA_CH3 },
3776 { 0, OMAP_INT_DMA_CH4 },
3777 { 0, OMAP_INT_DMA_CH5 },
3778 { 1, OMAP_INT_1610_DMA_CH6 },
3779 { 1, OMAP_INT_1610_DMA_CH7 },
3780 { 1, OMAP_INT_1610_DMA_CH8 },
3781 { 1, OMAP_INT_1610_DMA_CH9 },
3782 { 1, OMAP_INT_1610_DMA_CH10 },
3783 { 1, OMAP_INT_1610_DMA_CH11 },
3784 { 1, OMAP_INT_1610_DMA_CH12 },
3785 { 1, OMAP_INT_1610_DMA_CH13 },
3786 { 1, OMAP_INT_1610_DMA_CH14 },
3787 { 1, OMAP_INT_1610_DMA_CH15 }
3788 };
3789
3790 /* DMA ports for OMAP1 */
3791 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3792 hwaddr addr)
3793 {
3794 return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3795 }
3796
3797 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3798 hwaddr addr)
3799 {
3800 return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3801 addr);
3802 }
3803
3804 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3805 hwaddr addr)
3806 {
3807 return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3808 }
3809
3810 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3811 hwaddr addr)
3812 {
3813 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3814 }
3815
3816 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3817 hwaddr addr)
3818 {
3819 return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3820 }
3821
3822 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3823 hwaddr addr)
3824 {
3825 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3826 }
3827
3828 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3829 unsigned long sdram_size,
3830 const char *core)
3831 {
3832 int i;
3833 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
3834 g_malloc0(sizeof(struct omap_mpu_state_s));
3835 qemu_irq dma_irqs[6];
3836 DriveInfo *dinfo;
3837 SysBusDevice *busdev;
3838
3839 if (!core)
3840 core = "ti925t";
3841
3842 /* Core */
3843 s->mpu_model = omap310;
3844 s->cpu = cpu_arm_init(core);
3845 if (s->cpu == NULL) {
3846 fprintf(stderr, "Unable to find CPU definition\n");
3847 exit(1);
3848 }
3849 s->sdram_size = sdram_size;
3850 s->sram_size = OMAP15XX_SRAM_SIZE;
3851
3852 s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3853
3854 /* Clocks */
3855 omap_clk_init(s);
3856
3857 /* Memory-mapped stuff */
3858 memory_region_init_ram(&s->emiff_ram, NULL, "omap1.dram", s->sdram_size,
3859 &error_abort);
3860 vmstate_register_ram_global(&s->emiff_ram);
3861 memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3862 memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3863 &error_abort);
3864 vmstate_register_ram_global(&s->imif_ram);
3865 memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3866
3867 omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3868
3869 s->ih[0] = qdev_create(NULL, "omap-intc");
3870 qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3871 qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3872 qdev_init_nofail(s->ih[0]);
3873 busdev = SYS_BUS_DEVICE(s->ih[0]);
3874 sysbus_connect_irq(busdev, 0,
3875 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3876 sysbus_connect_irq(busdev, 1,
3877 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3878 sysbus_mmio_map(busdev, 0, 0xfffecb00);
3879 s->ih[1] = qdev_create(NULL, "omap-intc");
3880 qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3881 qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3882 qdev_init_nofail(s->ih[1]);
3883 busdev = SYS_BUS_DEVICE(s->ih[1]);
3884 sysbus_connect_irq(busdev, 0,
3885 qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3886 /* The second interrupt controller's FIQ output is not wired up */
3887 sysbus_mmio_map(busdev, 0, 0xfffe0000);
3888
3889 for (i = 0; i < 6; i++) {
3890 dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3891 omap1_dma_irq_map[i].intr);
3892 }
3893 s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3894 qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3895 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3896
3897 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
3898 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
3899 s->port[imif ].addr_valid = omap_validate_imif_addr;
3900 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
3901 s->port[local ].addr_valid = omap_validate_local_addr;
3902 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3903
3904 /* Register SDRAM and SRAM DMA ports for fast transfers. */
3905 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3906 OMAP_EMIFF_BASE, s->sdram_size);
3907 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3908 OMAP_IMIF_BASE, s->sram_size);
3909
3910 s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3911 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3912 omap_findclk(s, "mputim_ck"));
3913 s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3914 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3915 omap_findclk(s, "mputim_ck"));
3916 s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3917 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3918 omap_findclk(s, "mputim_ck"));
3919
3920 s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3921 qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3922 omap_findclk(s, "armwdt_ck"));
3923
3924 s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3925 qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3926 omap_findclk(s, "clk32-kHz"));
3927
3928 s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3929 qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3930 omap_dma_get_lcdch(s->dma),
3931 omap_findclk(s, "lcd_ck"));
3932
3933 omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3934 omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3935 omap_id_init(system_memory, s);
3936
3937 omap_mpui_init(system_memory, 0xfffec900, s);
3938
3939 s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3940 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3941 omap_findclk(s, "tipb_ck"));
3942 s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3943 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3944 omap_findclk(s, "tipb_ck"));
3945
3946 omap_tcmi_init(system_memory, 0xfffecc00, s);
3947
3948 s->uart[0] = omap_uart_init(0xfffb0000,
3949 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3950 omap_findclk(s, "uart1_ck"),
3951 omap_findclk(s, "uart1_ck"),
3952 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3953 "uart1",
3954 serial_hds[0]);
3955 s->uart[1] = omap_uart_init(0xfffb0800,
3956 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3957 omap_findclk(s, "uart2_ck"),
3958 omap_findclk(s, "uart2_ck"),
3959 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3960 "uart2",
3961 serial_hds[0] ? serial_hds[1] : NULL);
3962 s->uart[2] = omap_uart_init(0xfffb9800,
3963 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3964 omap_findclk(s, "uart3_ck"),
3965 omap_findclk(s, "uart3_ck"),
3966 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3967 "uart3",
3968 serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3969
3970 s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3971 omap_findclk(s, "dpll1"));
3972 s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3973 omap_findclk(s, "dpll2"));
3974 s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3975 omap_findclk(s, "dpll3"));
3976
3977 dinfo = drive_get(IF_SD, 0, 0);
3978 if (!dinfo) {
3979 fprintf(stderr, "qemu: missing SecureDigital device\n");
3980 exit(1);
3981 }
3982 s->mmc = omap_mmc_init(0xfffb7800, system_memory,
3983 blk_bs(blk_by_legacy_dinfo(dinfo)),
3984 qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
3985 &s->drq[OMAP_DMA_MMC_TX],
3986 omap_findclk(s, "mmc_ck"));
3987
3988 s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
3989 qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
3990 qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
3991 s->wakeup, omap_findclk(s, "clk32-kHz"));
3992
3993 s->gpio = qdev_create(NULL, "omap-gpio");
3994 qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
3995 qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
3996 qdev_init_nofail(s->gpio);
3997 sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
3998 qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
3999 sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4000
4001 s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4002 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4003 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4004 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4005
4006 s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4007 omap_findclk(s, "armxor_ck"));
4008 s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4009 omap_findclk(s, "armxor_ck"));
4010
4011 s->i2c[0] = qdev_create(NULL, "omap_i2c");
4012 qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4013 qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4014 qdev_init_nofail(s->i2c[0]);
4015 busdev = SYS_BUS_DEVICE(s->i2c[0]);
4016 sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4017 sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4018 sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4019 sysbus_mmio_map(busdev, 0, 0xfffb3800);
4020
4021 s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4022 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4023 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4024 omap_findclk(s, "clk32-kHz"));
4025
4026 s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4027 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4028 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4029 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4030 s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4031 qdev_get_gpio_in(s->ih[0],
4032 OMAP_INT_310_McBSP2_TX),
4033 qdev_get_gpio_in(s->ih[0],
4034 OMAP_INT_310_McBSP2_RX),
4035 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4036 s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4037 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4038 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4039 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4040
4041 s->led[0] = omap_lpg_init(system_memory,
4042 0xfffbd000, omap_findclk(s, "clk32-kHz"));
4043 s->led[1] = omap_lpg_init(system_memory,
4044 0xfffbd800, omap_findclk(s, "clk32-kHz"));
4045
4046 /* Register mappings not currenlty implemented:
4047 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4048 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4049 * USB W2FC fffb4000 - fffb47ff
4050 * Camera Interface fffb6800 - fffb6fff
4051 * USB Host fffba000 - fffba7ff
4052 * FAC fffba800 - fffbafff
4053 * HDQ/1-Wire fffbc000 - fffbc7ff
4054 * TIPB switches fffbc800 - fffbcfff
4055 * Mailbox fffcf000 - fffcf7ff
4056 * Local bus IF fffec100 - fffec1ff
4057 * Local bus MMU fffec200 - fffec2ff
4058 * DSP MMU fffed200 - fffed2ff
4059 */
4060
4061 omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4062 omap_setup_mpui_io(system_memory, s);
4063
4064 qemu_register_reset(omap1_mpu_reset, s);
4065
4066 return s;
4067 }