]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/sbsa-ref.c
target/arm: Rename arm_cpu_mp_affinity
[mirror_qemu.git] / hw / arm / sbsa-ref.c
1 /*
2 * ARM SBSA Reference Platform emulation
3 *
4 * Copyright (c) 2018 Linaro Limited
5 * Copyright (c) 2023 Qualcomm Innovation Center, Inc. All rights reserved.
6 * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2 or later, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/datadir.h"
23 #include "qapi/error.h"
24 #include "qemu/error-report.h"
25 #include "qemu/units.h"
26 #include "sysemu/device_tree.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/numa.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/sysemu.h"
31 #include "exec/hwaddr.h"
32 #include "kvm_arm.h"
33 #include "hw/arm/boot.h"
34 #include "hw/arm/bsa.h"
35 #include "hw/arm/fdt.h"
36 #include "hw/arm/smmuv3.h"
37 #include "hw/block/flash.h"
38 #include "hw/boards.h"
39 #include "hw/ide/internal.h"
40 #include "hw/ide/ahci_internal.h"
41 #include "hw/intc/arm_gicv3_common.h"
42 #include "hw/intc/arm_gicv3_its_common.h"
43 #include "hw/loader.h"
44 #include "hw/pci-host/gpex.h"
45 #include "hw/qdev-properties.h"
46 #include "hw/usb.h"
47 #include "hw/usb/xhci.h"
48 #include "hw/char/pl011.h"
49 #include "hw/watchdog/sbsa_gwdt.h"
50 #include "net/net.h"
51 #include "qapi/qmp/qlist.h"
52 #include "qom/object.h"
53
54 #define RAMLIMIT_GB 8192
55 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
56
57 #define NUM_IRQS 256
58 #define NUM_SMMU_IRQS 4
59 #define NUM_SATA_PORTS 6
60
61 enum {
62 SBSA_FLASH,
63 SBSA_MEM,
64 SBSA_CPUPERIPHS,
65 SBSA_GIC_DIST,
66 SBSA_GIC_REDIST,
67 SBSA_GIC_ITS,
68 SBSA_SECURE_EC,
69 SBSA_GWDT_WS0,
70 SBSA_GWDT_REFRESH,
71 SBSA_GWDT_CONTROL,
72 SBSA_SMMU,
73 SBSA_UART,
74 SBSA_RTC,
75 SBSA_PCIE,
76 SBSA_PCIE_MMIO,
77 SBSA_PCIE_MMIO_HIGH,
78 SBSA_PCIE_PIO,
79 SBSA_PCIE_ECAM,
80 SBSA_GPIO,
81 SBSA_SECURE_UART,
82 SBSA_SECURE_UART_MM,
83 SBSA_SECURE_MEM,
84 SBSA_AHCI,
85 SBSA_XHCI,
86 };
87
88 struct SBSAMachineState {
89 MachineState parent;
90 struct arm_boot_info bootinfo;
91 int smp_cpus;
92 void *fdt;
93 int fdt_size;
94 int psci_conduit;
95 DeviceState *gic;
96 PFlashCFI01 *flash[2];
97 };
98
99 #define TYPE_SBSA_MACHINE MACHINE_TYPE_NAME("sbsa-ref")
100 OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE)
101
102 static const MemMapEntry sbsa_ref_memmap[] = {
103 /* 512M boot ROM */
104 [SBSA_FLASH] = { 0, 0x20000000 },
105 /* 512M secure memory */
106 [SBSA_SECURE_MEM] = { 0x20000000, 0x20000000 },
107 /* Space reserved for CPU peripheral devices */
108 [SBSA_CPUPERIPHS] = { 0x40000000, 0x00040000 },
109 [SBSA_GIC_DIST] = { 0x40060000, 0x00010000 },
110 [SBSA_GIC_REDIST] = { 0x40080000, 0x04000000 },
111 [SBSA_GIC_ITS] = { 0x44081000, 0x00020000 },
112 [SBSA_SECURE_EC] = { 0x50000000, 0x00001000 },
113 [SBSA_GWDT_REFRESH] = { 0x50010000, 0x00001000 },
114 [SBSA_GWDT_CONTROL] = { 0x50011000, 0x00001000 },
115 [SBSA_UART] = { 0x60000000, 0x00001000 },
116 [SBSA_RTC] = { 0x60010000, 0x00001000 },
117 [SBSA_GPIO] = { 0x60020000, 0x00001000 },
118 [SBSA_SECURE_UART] = { 0x60030000, 0x00001000 },
119 [SBSA_SECURE_UART_MM] = { 0x60040000, 0x00001000 },
120 [SBSA_SMMU] = { 0x60050000, 0x00020000 },
121 /* Space here reserved for more SMMUs */
122 [SBSA_AHCI] = { 0x60100000, 0x00010000 },
123 [SBSA_XHCI] = { 0x60110000, 0x00010000 },
124 /* Space here reserved for other devices */
125 [SBSA_PCIE_PIO] = { 0x7fff0000, 0x00010000 },
126 /* 32-bit address PCIE MMIO space */
127 [SBSA_PCIE_MMIO] = { 0x80000000, 0x70000000 },
128 /* 256M PCIE ECAM space */
129 [SBSA_PCIE_ECAM] = { 0xf0000000, 0x10000000 },
130 /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
131 [SBSA_PCIE_MMIO_HIGH] = { 0x100000000ULL, 0xFF00000000ULL },
132 [SBSA_MEM] = { 0x10000000000ULL, RAMLIMIT_BYTES },
133 };
134
135 static const int sbsa_ref_irqmap[] = {
136 [SBSA_UART] = 1,
137 [SBSA_RTC] = 2,
138 [SBSA_PCIE] = 3, /* ... to 6 */
139 [SBSA_GPIO] = 7,
140 [SBSA_SECURE_UART] = 8,
141 [SBSA_SECURE_UART_MM] = 9,
142 [SBSA_AHCI] = 10,
143 [SBSA_XHCI] = 11,
144 [SBSA_SMMU] = 12, /* ... to 15 */
145 [SBSA_GWDT_WS0] = 16,
146 };
147
148 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
149 {
150 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
151 return arm_build_mp_affinity(idx, clustersz);
152 }
153
154 static void sbsa_fdt_add_gic_node(SBSAMachineState *sms)
155 {
156 char *nodename;
157
158 nodename = g_strdup_printf("/intc");
159 qemu_fdt_add_subnode(sms->fdt, nodename);
160 qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
161 2, sbsa_ref_memmap[SBSA_GIC_DIST].base,
162 2, sbsa_ref_memmap[SBSA_GIC_DIST].size,
163 2, sbsa_ref_memmap[SBSA_GIC_REDIST].base,
164 2, sbsa_ref_memmap[SBSA_GIC_REDIST].size);
165
166 nodename = g_strdup_printf("/intc/its");
167 qemu_fdt_add_subnode(sms->fdt, nodename);
168 qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
169 2, sbsa_ref_memmap[SBSA_GIC_ITS].base,
170 2, sbsa_ref_memmap[SBSA_GIC_ITS].size);
171
172 g_free(nodename);
173 }
174
175 /*
176 * Firmware on this machine only uses ACPI table to load OS, these limited
177 * device tree nodes are just to let firmware know the info which varies from
178 * command line parameters, so it is not necessary to be fully compatible
179 * with the kernel CPU and NUMA binding rules.
180 */
181 static void create_fdt(SBSAMachineState *sms)
182 {
183 void *fdt = create_device_tree(&sms->fdt_size);
184 const MachineState *ms = MACHINE(sms);
185 int nb_numa_nodes = ms->numa_state->num_nodes;
186 int cpu;
187
188 if (!fdt) {
189 error_report("create_device_tree() failed");
190 exit(1);
191 }
192
193 sms->fdt = fdt;
194
195 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
196 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
197 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
198
199 /*
200 * This versioning scheme is for informing platform fw only. It is neither:
201 * - A QEMU versioned machine type; a given version of QEMU will emulate
202 * a given version of the platform.
203 * - A reflection of level of SBSA (now SystemReady SR) support provided.
204 *
205 * machine-version-major: updated when changes breaking fw compatibility
206 * are introduced.
207 * machine-version-minor: updated when features are added that don't break
208 * fw compatibility.
209 */
210 qemu_fdt_setprop_cell(fdt, "/", "machine-version-major", 0);
211 qemu_fdt_setprop_cell(fdt, "/", "machine-version-minor", 3);
212
213 if (ms->numa_state->have_numa_distance) {
214 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
215 uint32_t *matrix = g_malloc0(size);
216 int idx, i, j;
217
218 for (i = 0; i < nb_numa_nodes; i++) {
219 for (j = 0; j < nb_numa_nodes; j++) {
220 idx = (i * nb_numa_nodes + j) * 3;
221 matrix[idx + 0] = cpu_to_be32(i);
222 matrix[idx + 1] = cpu_to_be32(j);
223 matrix[idx + 2] =
224 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
225 }
226 }
227
228 qemu_fdt_add_subnode(fdt, "/distance-map");
229 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
230 matrix, size);
231 g_free(matrix);
232 }
233
234 /*
235 * From Documentation/devicetree/bindings/arm/cpus.yaml
236 * On ARM v8 64-bit systems this property is required
237 * and matches the MPIDR_EL1 register affinity bits.
238 *
239 * * If cpus node's #address-cells property is set to 2
240 *
241 * The first reg cell bits [7:0] must be set to
242 * bits [39:32] of MPIDR_EL1.
243 *
244 * The second reg cell bits [23:0] must be set to
245 * bits [23:0] of MPIDR_EL1.
246 */
247 qemu_fdt_add_subnode(sms->fdt, "/cpus");
248 qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2);
249 qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0);
250
251 for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
252 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
253 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
254 CPUState *cs = CPU(armcpu);
255 uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu);
256
257 qemu_fdt_add_subnode(sms->fdt, nodename);
258 qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr);
259
260 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
261 qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
262 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
263 }
264
265 g_free(nodename);
266 }
267
268 sbsa_fdt_add_gic_node(sms);
269 }
270
271 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
272
273 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
274 const char *name,
275 const char *alias_prop_name)
276 {
277 /*
278 * Create a single flash device. We use the same parameters as
279 * the flash devices on the Versatile Express board.
280 */
281 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
282
283 qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
284 qdev_prop_set_uint8(dev, "width", 4);
285 qdev_prop_set_uint8(dev, "device-width", 2);
286 qdev_prop_set_bit(dev, "big-endian", false);
287 qdev_prop_set_uint16(dev, "id0", 0x89);
288 qdev_prop_set_uint16(dev, "id1", 0x18);
289 qdev_prop_set_uint16(dev, "id2", 0x00);
290 qdev_prop_set_uint16(dev, "id3", 0x00);
291 qdev_prop_set_string(dev, "name", name);
292 object_property_add_child(OBJECT(sms), name, OBJECT(dev));
293 object_property_add_alias(OBJECT(sms), alias_prop_name,
294 OBJECT(dev), "drive");
295 return PFLASH_CFI01(dev);
296 }
297
298 static void sbsa_flash_create(SBSAMachineState *sms)
299 {
300 sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
301 sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
302 }
303
304 static void sbsa_flash_map1(PFlashCFI01 *flash,
305 hwaddr base, hwaddr size,
306 MemoryRegion *sysmem)
307 {
308 DeviceState *dev = DEVICE(flash);
309
310 assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE));
311 assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
312 qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
313 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
314
315 memory_region_add_subregion(sysmem, base,
316 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
317 0));
318 }
319
320 static void sbsa_flash_map(SBSAMachineState *sms,
321 MemoryRegion *sysmem,
322 MemoryRegion *secure_sysmem)
323 {
324 /*
325 * Map two flash devices to fill the SBSA_FLASH space in the memmap.
326 * sysmem is the system memory space. secure_sysmem is the secure view
327 * of the system, and the first flash device should be made visible only
328 * there. The second flash device is visible to both secure and nonsecure.
329 */
330 hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
331 hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
332
333 sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
334 secure_sysmem);
335 sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
336 sysmem);
337 }
338
339 static bool sbsa_firmware_init(SBSAMachineState *sms,
340 MemoryRegion *sysmem,
341 MemoryRegion *secure_sysmem)
342 {
343 const char *bios_name;
344 int i;
345 BlockBackend *pflash_blk0;
346
347 /* Map legacy -drive if=pflash to machine properties */
348 for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
349 pflash_cfi01_legacy_drive(sms->flash[i],
350 drive_get(IF_PFLASH, 0, i));
351 }
352
353 sbsa_flash_map(sms, sysmem, secure_sysmem);
354
355 pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
356
357 bios_name = MACHINE(sms)->firmware;
358 if (bios_name) {
359 char *fname;
360 MemoryRegion *mr;
361 int image_size;
362
363 if (pflash_blk0) {
364 error_report("The contents of the first flash device may be "
365 "specified with -bios or with -drive if=pflash... "
366 "but you cannot use both options at once");
367 exit(1);
368 }
369
370 /* Fall back to -bios */
371
372 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
373 if (!fname) {
374 error_report("Could not find ROM image '%s'", bios_name);
375 exit(1);
376 }
377 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
378 image_size = load_image_mr(fname, mr);
379 g_free(fname);
380 if (image_size < 0) {
381 error_report("Could not load ROM image '%s'", bios_name);
382 exit(1);
383 }
384 }
385
386 return pflash_blk0 || bios_name;
387 }
388
389 static void create_secure_ram(SBSAMachineState *sms,
390 MemoryRegion *secure_sysmem)
391 {
392 MemoryRegion *secram = g_new(MemoryRegion, 1);
393 hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
394 hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
395
396 memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
397 &error_fatal);
398 memory_region_add_subregion(secure_sysmem, base, secram);
399 }
400
401 static void create_its(SBSAMachineState *sms)
402 {
403 const char *itsclass = its_class_name();
404 DeviceState *dev;
405
406 dev = qdev_new(itsclass);
407
408 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(sms->gic),
409 &error_abort);
410 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
411 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, sbsa_ref_memmap[SBSA_GIC_ITS].base);
412 }
413
414 static void create_gic(SBSAMachineState *sms, MemoryRegion *mem)
415 {
416 unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
417 SysBusDevice *gicbusdev;
418 const char *gictype;
419 uint32_t redist0_capacity, redist0_count;
420 QList *redist_region_count;
421 int i;
422
423 gictype = gicv3_class_name();
424
425 sms->gic = qdev_new(gictype);
426 qdev_prop_set_uint32(sms->gic, "revision", 3);
427 qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
428 /*
429 * Note that the num-irq property counts both internal and external
430 * interrupts; there are always 32 of the former (mandated by GIC spec).
431 */
432 qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
433 qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
434
435 redist0_capacity =
436 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
437 redist0_count = MIN(smp_cpus, redist0_capacity);
438
439 redist_region_count = qlist_new();
440 qlist_append_int(redist_region_count, redist0_count);
441 qdev_prop_set_array(sms->gic, "redist-region-count", redist_region_count);
442
443 object_property_set_link(OBJECT(sms->gic), "sysmem",
444 OBJECT(mem), &error_fatal);
445 qdev_prop_set_bit(sms->gic, "has-lpi", true);
446
447 gicbusdev = SYS_BUS_DEVICE(sms->gic);
448 sysbus_realize_and_unref(gicbusdev, &error_fatal);
449 sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
450 sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
451
452 /*
453 * Wire the outputs from each CPU's generic timer and the GICv3
454 * maintenance interrupt signal to the appropriate GIC PPI inputs,
455 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
456 */
457 for (i = 0; i < smp_cpus; i++) {
458 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
459 int intidbase = NUM_IRQS + i * GIC_INTERNAL;
460 int irq;
461 /*
462 * Mapping from the output timer irq lines from the CPU to the
463 * GIC PPI inputs used for this board.
464 */
465 const int timer_irq[] = {
466 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
467 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
468 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
469 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
470 [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ,
471 };
472
473 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
474 qdev_connect_gpio_out(cpudev, irq,
475 qdev_get_gpio_in(sms->gic,
476 intidbase + timer_irq[irq]));
477 }
478
479 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
480 qdev_get_gpio_in(sms->gic,
481 intidbase
482 + ARCH_GIC_MAINT_IRQ));
483
484 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
485 qdev_get_gpio_in(sms->gic,
486 intidbase
487 + VIRTUAL_PMU_IRQ));
488
489 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
490 sysbus_connect_irq(gicbusdev, i + smp_cpus,
491 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
492 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
493 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
494 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
495 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
496 }
497 create_its(sms);
498 }
499
500 static void create_uart(const SBSAMachineState *sms, int uart,
501 MemoryRegion *mem, Chardev *chr)
502 {
503 hwaddr base = sbsa_ref_memmap[uart].base;
504 int irq = sbsa_ref_irqmap[uart];
505 DeviceState *dev = qdev_new(TYPE_PL011);
506 SysBusDevice *s = SYS_BUS_DEVICE(dev);
507
508 qdev_prop_set_chr(dev, "chardev", chr);
509 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
510 memory_region_add_subregion(mem, base,
511 sysbus_mmio_get_region(s, 0));
512 sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
513 }
514
515 static void create_rtc(const SBSAMachineState *sms)
516 {
517 hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
518 int irq = sbsa_ref_irqmap[SBSA_RTC];
519
520 sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
521 }
522
523 static void create_wdt(const SBSAMachineState *sms)
524 {
525 hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base;
526 hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base;
527 DeviceState *dev = qdev_new(TYPE_WDT_SBSA);
528 SysBusDevice *s = SYS_BUS_DEVICE(dev);
529 int irq = sbsa_ref_irqmap[SBSA_GWDT_WS0];
530
531 sysbus_realize_and_unref(s, &error_fatal);
532 sysbus_mmio_map(s, 0, rbase);
533 sysbus_mmio_map(s, 1, cbase);
534 sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
535 }
536
537 static DeviceState *gpio_key_dev;
538 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
539 {
540 /* use gpio Pin 3 for power button event */
541 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
542 }
543
544 static Notifier sbsa_ref_powerdown_notifier = {
545 .notify = sbsa_ref_powerdown_req
546 };
547
548 static void create_gpio(const SBSAMachineState *sms)
549 {
550 DeviceState *pl061_dev;
551 hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
552 int irq = sbsa_ref_irqmap[SBSA_GPIO];
553
554 pl061_dev = sysbus_create_simple("pl061", base,
555 qdev_get_gpio_in(sms->gic, irq));
556
557 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
558 qdev_get_gpio_in(pl061_dev, 3));
559
560 /* connect powerdown request */
561 qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
562 }
563
564 static void create_ahci(const SBSAMachineState *sms)
565 {
566 hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
567 int irq = sbsa_ref_irqmap[SBSA_AHCI];
568 DeviceState *dev;
569 DriveInfo *hd[NUM_SATA_PORTS];
570 SysbusAHCIState *sysahci;
571 AHCIState *ahci;
572 int i;
573
574 dev = qdev_new("sysbus-ahci");
575 qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
576 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
577 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
578 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
579
580 sysahci = SYSBUS_AHCI(dev);
581 ahci = &sysahci->ahci;
582 ide_drive_get(hd, ARRAY_SIZE(hd));
583 for (i = 0; i < ahci->ports; i++) {
584 if (hd[i] == NULL) {
585 continue;
586 }
587 ide_bus_create_drive(&ahci->dev[i].port, 0, hd[i]);
588 }
589 }
590
591 static void create_xhci(const SBSAMachineState *sms)
592 {
593 hwaddr base = sbsa_ref_memmap[SBSA_XHCI].base;
594 int irq = sbsa_ref_irqmap[SBSA_XHCI];
595 DeviceState *dev = qdev_new(TYPE_XHCI_SYSBUS);
596 qdev_prop_set_uint32(dev, "slots", XHCI_MAXSLOTS);
597
598 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
599 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
600 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
601 }
602
603 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
604 {
605 hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
606 int irq = sbsa_ref_irqmap[SBSA_SMMU];
607 DeviceState *dev;
608 int i;
609
610 dev = qdev_new(TYPE_ARM_SMMUV3);
611
612 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
613 &error_abort);
614 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
615 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
616 for (i = 0; i < NUM_SMMU_IRQS; i++) {
617 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
618 qdev_get_gpio_in(sms->gic, irq + i));
619 }
620 }
621
622 static void create_pcie(SBSAMachineState *sms)
623 {
624 hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
625 hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
626 hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
627 hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
628 hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
629 hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
630 hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
631 int irq = sbsa_ref_irqmap[SBSA_PCIE];
632 MachineClass *mc = MACHINE_GET_CLASS(sms);
633 MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
634 MemoryRegion *ecam_alias, *ecam_reg;
635 DeviceState *dev;
636 PCIHostState *pci;
637 int i;
638
639 dev = qdev_new(TYPE_GPEX_HOST);
640 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
641
642 /* Map ECAM space */
643 ecam_alias = g_new0(MemoryRegion, 1);
644 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
645 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
646 ecam_reg, 0, size_ecam);
647 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
648
649 /* Map the MMIO space */
650 mmio_alias = g_new0(MemoryRegion, 1);
651 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
652 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
653 mmio_reg, base_mmio, size_mmio);
654 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
655
656 /* Map the MMIO_HIGH space */
657 mmio_alias_high = g_new0(MemoryRegion, 1);
658 memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
659 mmio_reg, base_mmio_high, size_mmio_high);
660 memory_region_add_subregion(get_system_memory(), base_mmio_high,
661 mmio_alias_high);
662
663 /* Map IO port space */
664 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
665
666 for (i = 0; i < GPEX_NUM_IRQS; i++) {
667 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
668 qdev_get_gpio_in(sms->gic, irq + i));
669 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
670 }
671
672 pci = PCI_HOST_BRIDGE(dev);
673 if (pci->bus) {
674 for (i = 0; i < nb_nics; i++) {
675 pci_nic_init_nofail(&nd_table[i], pci->bus, mc->default_nic, NULL);
676 }
677 }
678
679 pci_create_simple(pci->bus, -1, "bochs-display");
680
681 create_smmu(sms, pci->bus);
682 }
683
684 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
685 {
686 const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
687 bootinfo);
688
689 *fdt_size = board->fdt_size;
690 return board->fdt;
691 }
692
693 static void create_secure_ec(MemoryRegion *mem)
694 {
695 hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base;
696 DeviceState *dev = qdev_new("sbsa-ec");
697 SysBusDevice *s = SYS_BUS_DEVICE(dev);
698
699 memory_region_add_subregion(mem, base,
700 sysbus_mmio_get_region(s, 0));
701 }
702
703 static void sbsa_ref_init(MachineState *machine)
704 {
705 unsigned int smp_cpus = machine->smp.cpus;
706 unsigned int max_cpus = machine->smp.max_cpus;
707 SBSAMachineState *sms = SBSA_MACHINE(machine);
708 MachineClass *mc = MACHINE_GET_CLASS(machine);
709 MemoryRegion *sysmem = get_system_memory();
710 MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
711 bool firmware_loaded;
712 const CPUArchIdList *possible_cpus;
713 int n, sbsa_max_cpus;
714
715 if (kvm_enabled()) {
716 error_report("sbsa-ref: KVM is not supported for this machine");
717 exit(1);
718 }
719
720 /*
721 * The Secure view of the world is the same as the NonSecure,
722 * but with a few extra devices. Create it as a container region
723 * containing the system memory at low priority; any secure-only
724 * devices go in at higher priority and take precedence.
725 */
726 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
727 UINT64_MAX);
728 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
729
730 firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
731
732 /*
733 * This machine has EL3 enabled, external firmware should supply PSCI
734 * implementation, so the QEMU's internal PSCI is disabled.
735 */
736 sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
737
738 sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
739
740 if (max_cpus > sbsa_max_cpus) {
741 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
742 "supported by machine 'sbsa-ref' (%d)",
743 max_cpus, sbsa_max_cpus);
744 exit(1);
745 }
746
747 sms->smp_cpus = smp_cpus;
748
749 if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
750 error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
751 exit(1);
752 }
753
754 possible_cpus = mc->possible_cpu_arch_ids(machine);
755 for (n = 0; n < possible_cpus->len; n++) {
756 Object *cpuobj;
757 CPUState *cs;
758
759 if (n >= smp_cpus) {
760 break;
761 }
762
763 cpuobj = object_new(possible_cpus->cpus[n].type);
764 object_property_set_int(cpuobj, "mp-affinity",
765 possible_cpus->cpus[n].arch_id, NULL);
766
767 cs = CPU(cpuobj);
768 cs->cpu_index = n;
769
770 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
771 &error_fatal);
772
773 if (object_property_find(cpuobj, "reset-cbar")) {
774 object_property_set_int(cpuobj, "reset-cbar",
775 sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
776 &error_abort);
777 }
778
779 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
780 &error_abort);
781
782 object_property_set_link(cpuobj, "secure-memory",
783 OBJECT(secure_sysmem), &error_abort);
784
785 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
786 object_unref(cpuobj);
787 }
788
789 memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
790 machine->ram);
791
792 create_fdt(sms);
793
794 create_secure_ram(sms, secure_sysmem);
795
796 create_gic(sms, sysmem);
797
798 create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
799 create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
800 /* Second secure UART for RAS and MM from EL0 */
801 create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
802
803 create_rtc(sms);
804
805 create_wdt(sms);
806
807 create_gpio(sms);
808
809 create_ahci(sms);
810
811 create_xhci(sms);
812
813 create_pcie(sms);
814
815 create_secure_ec(secure_sysmem);
816
817 sms->bootinfo.ram_size = machine->ram_size;
818 sms->bootinfo.board_id = -1;
819 sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
820 sms->bootinfo.get_dtb = sbsa_ref_dtb;
821 sms->bootinfo.firmware_loaded = firmware_loaded;
822 arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
823 }
824
825 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
826 {
827 unsigned int max_cpus = ms->smp.max_cpus;
828 SBSAMachineState *sms = SBSA_MACHINE(ms);
829 int n;
830
831 if (ms->possible_cpus) {
832 assert(ms->possible_cpus->len == max_cpus);
833 return ms->possible_cpus;
834 }
835
836 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
837 sizeof(CPUArchId) * max_cpus);
838 ms->possible_cpus->len = max_cpus;
839 for (n = 0; n < ms->possible_cpus->len; n++) {
840 ms->possible_cpus->cpus[n].type = ms->cpu_type;
841 ms->possible_cpus->cpus[n].arch_id =
842 sbsa_ref_cpu_mp_affinity(sms, n);
843 ms->possible_cpus->cpus[n].props.has_thread_id = true;
844 ms->possible_cpus->cpus[n].props.thread_id = n;
845 }
846 return ms->possible_cpus;
847 }
848
849 static CpuInstanceProperties
850 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
851 {
852 MachineClass *mc = MACHINE_GET_CLASS(ms);
853 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
854
855 assert(cpu_index < possible_cpus->len);
856 return possible_cpus->cpus[cpu_index].props;
857 }
858
859 static int64_t
860 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
861 {
862 return idx % ms->numa_state->num_nodes;
863 }
864
865 static void sbsa_ref_instance_init(Object *obj)
866 {
867 SBSAMachineState *sms = SBSA_MACHINE(obj);
868
869 sbsa_flash_create(sms);
870 }
871
872 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
873 {
874 MachineClass *mc = MACHINE_CLASS(oc);
875 static const char * const valid_cpu_types[] = {
876 ARM_CPU_TYPE_NAME("cortex-a57"),
877 ARM_CPU_TYPE_NAME("cortex-a72"),
878 ARM_CPU_TYPE_NAME("neoverse-n1"),
879 ARM_CPU_TYPE_NAME("neoverse-v1"),
880 ARM_CPU_TYPE_NAME("neoverse-n2"),
881 ARM_CPU_TYPE_NAME("max"),
882 NULL,
883 };
884
885 mc->init = sbsa_ref_init;
886 mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
887 mc->default_cpu_type = ARM_CPU_TYPE_NAME("neoverse-n1");
888 mc->valid_cpu_types = valid_cpu_types;
889 mc->max_cpus = 512;
890 mc->pci_allow_0_address = true;
891 mc->minimum_page_bits = 12;
892 mc->block_default_type = IF_IDE;
893 mc->no_cdrom = 1;
894 mc->default_nic = "e1000e";
895 mc->default_ram_size = 1 * GiB;
896 mc->default_ram_id = "sbsa-ref.ram";
897 mc->default_cpus = 4;
898 mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
899 mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
900 mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
901 /* platform instead of architectural choice */
902 mc->cpu_cluster_has_numa_boundary = true;
903 }
904
905 static const TypeInfo sbsa_ref_info = {
906 .name = TYPE_SBSA_MACHINE,
907 .parent = TYPE_MACHINE,
908 .instance_init = sbsa_ref_instance_init,
909 .class_init = sbsa_ref_class_init,
910 .instance_size = sizeof(SBSAMachineState),
911 };
912
913 static void sbsa_ref_machine_init(void)
914 {
915 type_register_static(&sbsa_ref_info);
916 }
917
918 type_init(sbsa_ref_machine_init);