]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/sbsa-ref.c
d6081bfc41f043302416ae8f25425a06089fbd84
[mirror_qemu.git] / hw / arm / sbsa-ref.c
1 /*
2 * ARM SBSA Reference Platform emulation
3 *
4 * Copyright (c) 2018 Linaro Limited
5 * Copyright (c) 2023 Qualcomm Innovation Center, Inc. All rights reserved.
6 * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2 or later, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/datadir.h"
23 #include "qapi/error.h"
24 #include "qemu/error-report.h"
25 #include "qemu/units.h"
26 #include "sysemu/device_tree.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/numa.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/sysemu.h"
31 #include "exec/hwaddr.h"
32 #include "kvm_arm.h"
33 #include "hw/arm/boot.h"
34 #include "hw/arm/bsa.h"
35 #include "hw/arm/fdt.h"
36 #include "hw/arm/smmuv3.h"
37 #include "hw/block/flash.h"
38 #include "hw/boards.h"
39 #include "hw/ide/internal.h"
40 #include "hw/ide/ahci_internal.h"
41 #include "hw/intc/arm_gicv3_common.h"
42 #include "hw/intc/arm_gicv3_its_common.h"
43 #include "hw/loader.h"
44 #include "hw/pci-host/gpex.h"
45 #include "hw/qdev-properties.h"
46 #include "hw/usb.h"
47 #include "hw/usb/xhci.h"
48 #include "hw/char/pl011.h"
49 #include "hw/watchdog/sbsa_gwdt.h"
50 #include "net/net.h"
51 #include "qapi/qmp/qlist.h"
52 #include "qom/object.h"
53 #include "target/arm/cpu-qom.h"
54
55 #define RAMLIMIT_GB 8192
56 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
57
58 #define NUM_IRQS 256
59 #define NUM_SMMU_IRQS 4
60 #define NUM_SATA_PORTS 6
61
62 enum {
63 SBSA_FLASH,
64 SBSA_MEM,
65 SBSA_CPUPERIPHS,
66 SBSA_GIC_DIST,
67 SBSA_GIC_REDIST,
68 SBSA_GIC_ITS,
69 SBSA_SECURE_EC,
70 SBSA_GWDT_WS0,
71 SBSA_GWDT_REFRESH,
72 SBSA_GWDT_CONTROL,
73 SBSA_SMMU,
74 SBSA_UART,
75 SBSA_RTC,
76 SBSA_PCIE,
77 SBSA_PCIE_MMIO,
78 SBSA_PCIE_MMIO_HIGH,
79 SBSA_PCIE_PIO,
80 SBSA_PCIE_ECAM,
81 SBSA_GPIO,
82 SBSA_SECURE_UART,
83 SBSA_SECURE_UART_MM,
84 SBSA_SECURE_MEM,
85 SBSA_AHCI,
86 SBSA_XHCI,
87 };
88
89 struct SBSAMachineState {
90 MachineState parent;
91 struct arm_boot_info bootinfo;
92 int smp_cpus;
93 void *fdt;
94 int fdt_size;
95 int psci_conduit;
96 DeviceState *gic;
97 PFlashCFI01 *flash[2];
98 };
99
100 #define TYPE_SBSA_MACHINE MACHINE_TYPE_NAME("sbsa-ref")
101 OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE)
102
103 static const MemMapEntry sbsa_ref_memmap[] = {
104 /* 512M boot ROM */
105 [SBSA_FLASH] = { 0, 0x20000000 },
106 /* 512M secure memory */
107 [SBSA_SECURE_MEM] = { 0x20000000, 0x20000000 },
108 /* Space reserved for CPU peripheral devices */
109 [SBSA_CPUPERIPHS] = { 0x40000000, 0x00040000 },
110 [SBSA_GIC_DIST] = { 0x40060000, 0x00010000 },
111 [SBSA_GIC_REDIST] = { 0x40080000, 0x04000000 },
112 [SBSA_GIC_ITS] = { 0x44081000, 0x00020000 },
113 [SBSA_SECURE_EC] = { 0x50000000, 0x00001000 },
114 [SBSA_GWDT_REFRESH] = { 0x50010000, 0x00001000 },
115 [SBSA_GWDT_CONTROL] = { 0x50011000, 0x00001000 },
116 [SBSA_UART] = { 0x60000000, 0x00001000 },
117 [SBSA_RTC] = { 0x60010000, 0x00001000 },
118 [SBSA_GPIO] = { 0x60020000, 0x00001000 },
119 [SBSA_SECURE_UART] = { 0x60030000, 0x00001000 },
120 [SBSA_SECURE_UART_MM] = { 0x60040000, 0x00001000 },
121 [SBSA_SMMU] = { 0x60050000, 0x00020000 },
122 /* Space here reserved for more SMMUs */
123 [SBSA_AHCI] = { 0x60100000, 0x00010000 },
124 [SBSA_XHCI] = { 0x60110000, 0x00010000 },
125 /* Space here reserved for other devices */
126 [SBSA_PCIE_PIO] = { 0x7fff0000, 0x00010000 },
127 /* 32-bit address PCIE MMIO space */
128 [SBSA_PCIE_MMIO] = { 0x80000000, 0x70000000 },
129 /* 256M PCIE ECAM space */
130 [SBSA_PCIE_ECAM] = { 0xf0000000, 0x10000000 },
131 /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
132 [SBSA_PCIE_MMIO_HIGH] = { 0x100000000ULL, 0xFF00000000ULL },
133 [SBSA_MEM] = { 0x10000000000ULL, RAMLIMIT_BYTES },
134 };
135
136 static const int sbsa_ref_irqmap[] = {
137 [SBSA_UART] = 1,
138 [SBSA_RTC] = 2,
139 [SBSA_PCIE] = 3, /* ... to 6 */
140 [SBSA_GPIO] = 7,
141 [SBSA_SECURE_UART] = 8,
142 [SBSA_SECURE_UART_MM] = 9,
143 [SBSA_AHCI] = 10,
144 [SBSA_XHCI] = 11,
145 [SBSA_SMMU] = 12, /* ... to 15 */
146 [SBSA_GWDT_WS0] = 16,
147 };
148
149 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
150 {
151 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
152 return arm_build_mp_affinity(idx, clustersz);
153 }
154
155 static void sbsa_fdt_add_gic_node(SBSAMachineState *sms)
156 {
157 char *nodename;
158
159 nodename = g_strdup_printf("/intc");
160 qemu_fdt_add_subnode(sms->fdt, nodename);
161 qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
162 2, sbsa_ref_memmap[SBSA_GIC_DIST].base,
163 2, sbsa_ref_memmap[SBSA_GIC_DIST].size,
164 2, sbsa_ref_memmap[SBSA_GIC_REDIST].base,
165 2, sbsa_ref_memmap[SBSA_GIC_REDIST].size);
166
167 nodename = g_strdup_printf("/intc/its");
168 qemu_fdt_add_subnode(sms->fdt, nodename);
169 qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
170 2, sbsa_ref_memmap[SBSA_GIC_ITS].base,
171 2, sbsa_ref_memmap[SBSA_GIC_ITS].size);
172
173 g_free(nodename);
174 }
175
176 /*
177 * Firmware on this machine only uses ACPI table to load OS, these limited
178 * device tree nodes are just to let firmware know the info which varies from
179 * command line parameters, so it is not necessary to be fully compatible
180 * with the kernel CPU and NUMA binding rules.
181 */
182 static void create_fdt(SBSAMachineState *sms)
183 {
184 void *fdt = create_device_tree(&sms->fdt_size);
185 const MachineState *ms = MACHINE(sms);
186 int nb_numa_nodes = ms->numa_state->num_nodes;
187 int cpu;
188
189 if (!fdt) {
190 error_report("create_device_tree() failed");
191 exit(1);
192 }
193
194 sms->fdt = fdt;
195
196 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
197 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
198 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
199
200 /*
201 * This versioning scheme is for informing platform fw only. It is neither:
202 * - A QEMU versioned machine type; a given version of QEMU will emulate
203 * a given version of the platform.
204 * - A reflection of level of SBSA (now SystemReady SR) support provided.
205 *
206 * machine-version-major: updated when changes breaking fw compatibility
207 * are introduced.
208 * machine-version-minor: updated when features are added that don't break
209 * fw compatibility.
210 */
211 qemu_fdt_setprop_cell(fdt, "/", "machine-version-major", 0);
212 qemu_fdt_setprop_cell(fdt, "/", "machine-version-minor", 3);
213
214 if (ms->numa_state->have_numa_distance) {
215 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
216 uint32_t *matrix = g_malloc0(size);
217 int idx, i, j;
218
219 for (i = 0; i < nb_numa_nodes; i++) {
220 for (j = 0; j < nb_numa_nodes; j++) {
221 idx = (i * nb_numa_nodes + j) * 3;
222 matrix[idx + 0] = cpu_to_be32(i);
223 matrix[idx + 1] = cpu_to_be32(j);
224 matrix[idx + 2] =
225 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
226 }
227 }
228
229 qemu_fdt_add_subnode(fdt, "/distance-map");
230 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
231 matrix, size);
232 g_free(matrix);
233 }
234
235 /*
236 * From Documentation/devicetree/bindings/arm/cpus.yaml
237 * On ARM v8 64-bit systems this property is required
238 * and matches the MPIDR_EL1 register affinity bits.
239 *
240 * * If cpus node's #address-cells property is set to 2
241 *
242 * The first reg cell bits [7:0] must be set to
243 * bits [39:32] of MPIDR_EL1.
244 *
245 * The second reg cell bits [23:0] must be set to
246 * bits [23:0] of MPIDR_EL1.
247 */
248 qemu_fdt_add_subnode(sms->fdt, "/cpus");
249 qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2);
250 qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0);
251
252 for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
253 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
254 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
255 CPUState *cs = CPU(armcpu);
256 uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu);
257
258 qemu_fdt_add_subnode(sms->fdt, nodename);
259 qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr);
260
261 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
262 qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
263 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
264 }
265
266 g_free(nodename);
267 }
268
269 sbsa_fdt_add_gic_node(sms);
270 }
271
272 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
273
274 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
275 const char *name,
276 const char *alias_prop_name)
277 {
278 /*
279 * Create a single flash device. We use the same parameters as
280 * the flash devices on the Versatile Express board.
281 */
282 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
283
284 qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
285 qdev_prop_set_uint8(dev, "width", 4);
286 qdev_prop_set_uint8(dev, "device-width", 2);
287 qdev_prop_set_bit(dev, "big-endian", false);
288 qdev_prop_set_uint16(dev, "id0", 0x89);
289 qdev_prop_set_uint16(dev, "id1", 0x18);
290 qdev_prop_set_uint16(dev, "id2", 0x00);
291 qdev_prop_set_uint16(dev, "id3", 0x00);
292 qdev_prop_set_string(dev, "name", name);
293 object_property_add_child(OBJECT(sms), name, OBJECT(dev));
294 object_property_add_alias(OBJECT(sms), alias_prop_name,
295 OBJECT(dev), "drive");
296 return PFLASH_CFI01(dev);
297 }
298
299 static void sbsa_flash_create(SBSAMachineState *sms)
300 {
301 sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
302 sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
303 }
304
305 static void sbsa_flash_map1(PFlashCFI01 *flash,
306 hwaddr base, hwaddr size,
307 MemoryRegion *sysmem)
308 {
309 DeviceState *dev = DEVICE(flash);
310
311 assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE));
312 assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
313 qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
314 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
315
316 memory_region_add_subregion(sysmem, base,
317 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
318 0));
319 }
320
321 static void sbsa_flash_map(SBSAMachineState *sms,
322 MemoryRegion *sysmem,
323 MemoryRegion *secure_sysmem)
324 {
325 /*
326 * Map two flash devices to fill the SBSA_FLASH space in the memmap.
327 * sysmem is the system memory space. secure_sysmem is the secure view
328 * of the system, and the first flash device should be made visible only
329 * there. The second flash device is visible to both secure and nonsecure.
330 */
331 hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
332 hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
333
334 sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
335 secure_sysmem);
336 sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
337 sysmem);
338 }
339
340 static bool sbsa_firmware_init(SBSAMachineState *sms,
341 MemoryRegion *sysmem,
342 MemoryRegion *secure_sysmem)
343 {
344 const char *bios_name;
345 int i;
346 BlockBackend *pflash_blk0;
347
348 /* Map legacy -drive if=pflash to machine properties */
349 for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
350 pflash_cfi01_legacy_drive(sms->flash[i],
351 drive_get(IF_PFLASH, 0, i));
352 }
353
354 sbsa_flash_map(sms, sysmem, secure_sysmem);
355
356 pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
357
358 bios_name = MACHINE(sms)->firmware;
359 if (bios_name) {
360 char *fname;
361 MemoryRegion *mr;
362 int image_size;
363
364 if (pflash_blk0) {
365 error_report("The contents of the first flash device may be "
366 "specified with -bios or with -drive if=pflash... "
367 "but you cannot use both options at once");
368 exit(1);
369 }
370
371 /* Fall back to -bios */
372
373 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
374 if (!fname) {
375 error_report("Could not find ROM image '%s'", bios_name);
376 exit(1);
377 }
378 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
379 image_size = load_image_mr(fname, mr);
380 g_free(fname);
381 if (image_size < 0) {
382 error_report("Could not load ROM image '%s'", bios_name);
383 exit(1);
384 }
385 }
386
387 return pflash_blk0 || bios_name;
388 }
389
390 static void create_secure_ram(SBSAMachineState *sms,
391 MemoryRegion *secure_sysmem)
392 {
393 MemoryRegion *secram = g_new(MemoryRegion, 1);
394 hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
395 hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
396
397 memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
398 &error_fatal);
399 memory_region_add_subregion(secure_sysmem, base, secram);
400 }
401
402 static void create_its(SBSAMachineState *sms)
403 {
404 const char *itsclass = its_class_name();
405 DeviceState *dev;
406
407 dev = qdev_new(itsclass);
408
409 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(sms->gic),
410 &error_abort);
411 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
412 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, sbsa_ref_memmap[SBSA_GIC_ITS].base);
413 }
414
415 static void create_gic(SBSAMachineState *sms, MemoryRegion *mem)
416 {
417 unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
418 SysBusDevice *gicbusdev;
419 const char *gictype;
420 uint32_t redist0_capacity, redist0_count;
421 QList *redist_region_count;
422 int i;
423
424 gictype = gicv3_class_name();
425
426 sms->gic = qdev_new(gictype);
427 qdev_prop_set_uint32(sms->gic, "revision", 3);
428 qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
429 /*
430 * Note that the num-irq property counts both internal and external
431 * interrupts; there are always 32 of the former (mandated by GIC spec).
432 */
433 qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
434 qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
435
436 redist0_capacity =
437 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
438 redist0_count = MIN(smp_cpus, redist0_capacity);
439
440 redist_region_count = qlist_new();
441 qlist_append_int(redist_region_count, redist0_count);
442 qdev_prop_set_array(sms->gic, "redist-region-count", redist_region_count);
443
444 object_property_set_link(OBJECT(sms->gic), "sysmem",
445 OBJECT(mem), &error_fatal);
446 qdev_prop_set_bit(sms->gic, "has-lpi", true);
447
448 gicbusdev = SYS_BUS_DEVICE(sms->gic);
449 sysbus_realize_and_unref(gicbusdev, &error_fatal);
450 sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
451 sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
452
453 /*
454 * Wire the outputs from each CPU's generic timer and the GICv3
455 * maintenance interrupt signal to the appropriate GIC PPI inputs,
456 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
457 */
458 for (i = 0; i < smp_cpus; i++) {
459 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
460 int intidbase = NUM_IRQS + i * GIC_INTERNAL;
461 int irq;
462 /*
463 * Mapping from the output timer irq lines from the CPU to the
464 * GIC PPI inputs used for this board.
465 */
466 const int timer_irq[] = {
467 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
468 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
469 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
470 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
471 [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ,
472 };
473
474 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
475 qdev_connect_gpio_out(cpudev, irq,
476 qdev_get_gpio_in(sms->gic,
477 intidbase + timer_irq[irq]));
478 }
479
480 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
481 qdev_get_gpio_in(sms->gic,
482 intidbase
483 + ARCH_GIC_MAINT_IRQ));
484
485 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
486 qdev_get_gpio_in(sms->gic,
487 intidbase
488 + VIRTUAL_PMU_IRQ));
489
490 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
491 sysbus_connect_irq(gicbusdev, i + smp_cpus,
492 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
493 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
494 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
495 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
496 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
497 }
498 create_its(sms);
499 }
500
501 static void create_uart(const SBSAMachineState *sms, int uart,
502 MemoryRegion *mem, Chardev *chr)
503 {
504 hwaddr base = sbsa_ref_memmap[uart].base;
505 int irq = sbsa_ref_irqmap[uart];
506 DeviceState *dev = qdev_new(TYPE_PL011);
507 SysBusDevice *s = SYS_BUS_DEVICE(dev);
508
509 qdev_prop_set_chr(dev, "chardev", chr);
510 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
511 memory_region_add_subregion(mem, base,
512 sysbus_mmio_get_region(s, 0));
513 sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
514 }
515
516 static void create_rtc(const SBSAMachineState *sms)
517 {
518 hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
519 int irq = sbsa_ref_irqmap[SBSA_RTC];
520
521 sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
522 }
523
524 static void create_wdt(const SBSAMachineState *sms)
525 {
526 hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base;
527 hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base;
528 DeviceState *dev = qdev_new(TYPE_WDT_SBSA);
529 SysBusDevice *s = SYS_BUS_DEVICE(dev);
530 int irq = sbsa_ref_irqmap[SBSA_GWDT_WS0];
531
532 sysbus_realize_and_unref(s, &error_fatal);
533 sysbus_mmio_map(s, 0, rbase);
534 sysbus_mmio_map(s, 1, cbase);
535 sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
536 }
537
538 static DeviceState *gpio_key_dev;
539 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
540 {
541 /* use gpio Pin 3 for power button event */
542 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
543 }
544
545 static Notifier sbsa_ref_powerdown_notifier = {
546 .notify = sbsa_ref_powerdown_req
547 };
548
549 static void create_gpio(const SBSAMachineState *sms)
550 {
551 DeviceState *pl061_dev;
552 hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
553 int irq = sbsa_ref_irqmap[SBSA_GPIO];
554
555 pl061_dev = sysbus_create_simple("pl061", base,
556 qdev_get_gpio_in(sms->gic, irq));
557
558 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
559 qdev_get_gpio_in(pl061_dev, 3));
560
561 /* connect powerdown request */
562 qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
563 }
564
565 static void create_ahci(const SBSAMachineState *sms)
566 {
567 hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
568 int irq = sbsa_ref_irqmap[SBSA_AHCI];
569 DeviceState *dev;
570 DriveInfo *hd[NUM_SATA_PORTS];
571 SysbusAHCIState *sysahci;
572 AHCIState *ahci;
573 int i;
574
575 dev = qdev_new("sysbus-ahci");
576 qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
577 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
578 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
579 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
580
581 sysahci = SYSBUS_AHCI(dev);
582 ahci = &sysahci->ahci;
583 ide_drive_get(hd, ARRAY_SIZE(hd));
584 for (i = 0; i < ahci->ports; i++) {
585 if (hd[i] == NULL) {
586 continue;
587 }
588 ide_bus_create_drive(&ahci->dev[i].port, 0, hd[i]);
589 }
590 }
591
592 static void create_xhci(const SBSAMachineState *sms)
593 {
594 hwaddr base = sbsa_ref_memmap[SBSA_XHCI].base;
595 int irq = sbsa_ref_irqmap[SBSA_XHCI];
596 DeviceState *dev = qdev_new(TYPE_XHCI_SYSBUS);
597 qdev_prop_set_uint32(dev, "slots", XHCI_MAXSLOTS);
598
599 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
600 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
601 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
602 }
603
604 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
605 {
606 hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
607 int irq = sbsa_ref_irqmap[SBSA_SMMU];
608 DeviceState *dev;
609 int i;
610
611 dev = qdev_new(TYPE_ARM_SMMUV3);
612
613 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
614 &error_abort);
615 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
616 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
617 for (i = 0; i < NUM_SMMU_IRQS; i++) {
618 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
619 qdev_get_gpio_in(sms->gic, irq + i));
620 }
621 }
622
623 static void create_pcie(SBSAMachineState *sms)
624 {
625 hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
626 hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
627 hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
628 hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
629 hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
630 hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
631 hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
632 int irq = sbsa_ref_irqmap[SBSA_PCIE];
633 MachineClass *mc = MACHINE_GET_CLASS(sms);
634 MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
635 MemoryRegion *ecam_alias, *ecam_reg;
636 DeviceState *dev;
637 PCIHostState *pci;
638 int i;
639
640 dev = qdev_new(TYPE_GPEX_HOST);
641 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
642
643 /* Map ECAM space */
644 ecam_alias = g_new0(MemoryRegion, 1);
645 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
646 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
647 ecam_reg, 0, size_ecam);
648 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
649
650 /* Map the MMIO space */
651 mmio_alias = g_new0(MemoryRegion, 1);
652 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
653 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
654 mmio_reg, base_mmio, size_mmio);
655 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
656
657 /* Map the MMIO_HIGH space */
658 mmio_alias_high = g_new0(MemoryRegion, 1);
659 memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
660 mmio_reg, base_mmio_high, size_mmio_high);
661 memory_region_add_subregion(get_system_memory(), base_mmio_high,
662 mmio_alias_high);
663
664 /* Map IO port space */
665 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
666
667 for (i = 0; i < GPEX_NUM_IRQS; i++) {
668 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
669 qdev_get_gpio_in(sms->gic, irq + i));
670 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
671 }
672
673 pci = PCI_HOST_BRIDGE(dev);
674 if (pci->bus) {
675 for (i = 0; i < nb_nics; i++) {
676 pci_nic_init_nofail(&nd_table[i], pci->bus, mc->default_nic, NULL);
677 }
678 }
679
680 pci_create_simple(pci->bus, -1, "bochs-display");
681
682 create_smmu(sms, pci->bus);
683 }
684
685 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
686 {
687 const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
688 bootinfo);
689
690 *fdt_size = board->fdt_size;
691 return board->fdt;
692 }
693
694 static void create_secure_ec(MemoryRegion *mem)
695 {
696 hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base;
697 DeviceState *dev = qdev_new("sbsa-ec");
698 SysBusDevice *s = SYS_BUS_DEVICE(dev);
699
700 memory_region_add_subregion(mem, base,
701 sysbus_mmio_get_region(s, 0));
702 }
703
704 static void sbsa_ref_init(MachineState *machine)
705 {
706 unsigned int smp_cpus = machine->smp.cpus;
707 unsigned int max_cpus = machine->smp.max_cpus;
708 SBSAMachineState *sms = SBSA_MACHINE(machine);
709 MachineClass *mc = MACHINE_GET_CLASS(machine);
710 MemoryRegion *sysmem = get_system_memory();
711 MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
712 bool firmware_loaded;
713 const CPUArchIdList *possible_cpus;
714 int n, sbsa_max_cpus;
715
716 if (kvm_enabled()) {
717 error_report("sbsa-ref: KVM is not supported for this machine");
718 exit(1);
719 }
720
721 /*
722 * The Secure view of the world is the same as the NonSecure,
723 * but with a few extra devices. Create it as a container region
724 * containing the system memory at low priority; any secure-only
725 * devices go in at higher priority and take precedence.
726 */
727 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
728 UINT64_MAX);
729 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
730
731 firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
732
733 /*
734 * This machine has EL3 enabled, external firmware should supply PSCI
735 * implementation, so the QEMU's internal PSCI is disabled.
736 */
737 sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
738
739 sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
740
741 if (max_cpus > sbsa_max_cpus) {
742 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
743 "supported by machine 'sbsa-ref' (%d)",
744 max_cpus, sbsa_max_cpus);
745 exit(1);
746 }
747
748 sms->smp_cpus = smp_cpus;
749
750 if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
751 error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
752 exit(1);
753 }
754
755 possible_cpus = mc->possible_cpu_arch_ids(machine);
756 for (n = 0; n < possible_cpus->len; n++) {
757 Object *cpuobj;
758 CPUState *cs;
759
760 if (n >= smp_cpus) {
761 break;
762 }
763
764 cpuobj = object_new(possible_cpus->cpus[n].type);
765 object_property_set_int(cpuobj, "mp-affinity",
766 possible_cpus->cpus[n].arch_id, NULL);
767
768 cs = CPU(cpuobj);
769 cs->cpu_index = n;
770
771 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
772 &error_fatal);
773
774 if (object_property_find(cpuobj, "reset-cbar")) {
775 object_property_set_int(cpuobj, "reset-cbar",
776 sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
777 &error_abort);
778 }
779
780 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
781 &error_abort);
782
783 object_property_set_link(cpuobj, "secure-memory",
784 OBJECT(secure_sysmem), &error_abort);
785
786 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
787 object_unref(cpuobj);
788 }
789
790 memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
791 machine->ram);
792
793 create_fdt(sms);
794
795 create_secure_ram(sms, secure_sysmem);
796
797 create_gic(sms, sysmem);
798
799 create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
800 create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
801 /* Second secure UART for RAS and MM from EL0 */
802 create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
803
804 create_rtc(sms);
805
806 create_wdt(sms);
807
808 create_gpio(sms);
809
810 create_ahci(sms);
811
812 create_xhci(sms);
813
814 create_pcie(sms);
815
816 create_secure_ec(secure_sysmem);
817
818 sms->bootinfo.ram_size = machine->ram_size;
819 sms->bootinfo.board_id = -1;
820 sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
821 sms->bootinfo.get_dtb = sbsa_ref_dtb;
822 sms->bootinfo.firmware_loaded = firmware_loaded;
823 arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
824 }
825
826 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
827 {
828 unsigned int max_cpus = ms->smp.max_cpus;
829 SBSAMachineState *sms = SBSA_MACHINE(ms);
830 int n;
831
832 if (ms->possible_cpus) {
833 assert(ms->possible_cpus->len == max_cpus);
834 return ms->possible_cpus;
835 }
836
837 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
838 sizeof(CPUArchId) * max_cpus);
839 ms->possible_cpus->len = max_cpus;
840 for (n = 0; n < ms->possible_cpus->len; n++) {
841 ms->possible_cpus->cpus[n].type = ms->cpu_type;
842 ms->possible_cpus->cpus[n].arch_id =
843 sbsa_ref_cpu_mp_affinity(sms, n);
844 ms->possible_cpus->cpus[n].props.has_thread_id = true;
845 ms->possible_cpus->cpus[n].props.thread_id = n;
846 }
847 return ms->possible_cpus;
848 }
849
850 static CpuInstanceProperties
851 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
852 {
853 MachineClass *mc = MACHINE_GET_CLASS(ms);
854 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
855
856 assert(cpu_index < possible_cpus->len);
857 return possible_cpus->cpus[cpu_index].props;
858 }
859
860 static int64_t
861 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
862 {
863 return idx % ms->numa_state->num_nodes;
864 }
865
866 static void sbsa_ref_instance_init(Object *obj)
867 {
868 SBSAMachineState *sms = SBSA_MACHINE(obj);
869
870 sbsa_flash_create(sms);
871 }
872
873 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
874 {
875 MachineClass *mc = MACHINE_CLASS(oc);
876 static const char * const valid_cpu_types[] = {
877 ARM_CPU_TYPE_NAME("cortex-a57"),
878 ARM_CPU_TYPE_NAME("cortex-a72"),
879 ARM_CPU_TYPE_NAME("neoverse-n1"),
880 ARM_CPU_TYPE_NAME("neoverse-v1"),
881 ARM_CPU_TYPE_NAME("neoverse-n2"),
882 ARM_CPU_TYPE_NAME("max"),
883 NULL,
884 };
885
886 mc->init = sbsa_ref_init;
887 mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
888 mc->default_cpu_type = ARM_CPU_TYPE_NAME("neoverse-n1");
889 mc->valid_cpu_types = valid_cpu_types;
890 mc->max_cpus = 512;
891 mc->pci_allow_0_address = true;
892 mc->minimum_page_bits = 12;
893 mc->block_default_type = IF_IDE;
894 mc->no_cdrom = 1;
895 mc->default_nic = "e1000e";
896 mc->default_ram_size = 1 * GiB;
897 mc->default_ram_id = "sbsa-ref.ram";
898 mc->default_cpus = 4;
899 mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
900 mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
901 mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
902 /* platform instead of architectural choice */
903 mc->cpu_cluster_has_numa_boundary = true;
904 }
905
906 static const TypeInfo sbsa_ref_info = {
907 .name = TYPE_SBSA_MACHINE,
908 .parent = TYPE_MACHINE,
909 .instance_init = sbsa_ref_instance_init,
910 .class_init = sbsa_ref_class_init,
911 .instance_size = sizeof(SBSAMachineState),
912 };
913
914 static void sbsa_ref_machine_init(void)
915 {
916 type_register_static(&sbsa_ref_info);
917 }
918
919 type_init(sbsa_ref_machine_init);