]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/strongarm.c
884242b2dc333909784435126736004561116e67
[mirror_qemu.git] / hw / arm / strongarm.c
1 /*
2 * StrongARM SA-1100/SA-1110 emulation
3 *
4 * Copyright (C) 2011 Dmitry Eremin-Solenikov
5 *
6 * Largely based on StrongARM emulation:
7 * Copyright (c) 2006 Openedhand Ltd.
8 * Written by Andrzej Zaborowski <balrog@zabor.org>
9 *
10 * UART code based on QEMU 16550A UART emulation
11 * Copyright (c) 2003-2004 Fabrice Bellard
12 * Copyright (c) 2008 Citrix Systems, Inc.
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License along
24 * with this program; if not, see <http://www.gnu.org/licenses/>.
25 *
26 * Contributions after 2012-01-13 are licensed under the terms of the
27 * GNU GPL, version 2 or (at your option) any later version.
28 */
29
30 #include "qemu/osdep.h"
31 #include "cpu.h"
32 #include "hw/boards.h"
33 #include "hw/sysbus.h"
34 #include "strongarm.h"
35 #include "qemu/error-report.h"
36 #include "hw/arm/arm.h"
37 #include "chardev/char-fe.h"
38 #include "chardev/char-serial.h"
39 #include "sysemu/sysemu.h"
40 #include "hw/ssi/ssi.h"
41 #include "qemu/cutils.h"
42 #include "qemu/log.h"
43
44 //#define DEBUG
45
46 /*
47 TODO
48 - Implement cp15, c14 ?
49 - Implement cp15, c15 !!! (idle used in L)
50 - Implement idle mode handling/DIM
51 - Implement sleep mode/Wake sources
52 - Implement reset control
53 - Implement memory control regs
54 - PCMCIA handling
55 - Maybe support MBGNT/MBREQ
56 - DMA channels
57 - GPCLK
58 - IrDA
59 - MCP
60 - Enhance UART with modem signals
61 */
62
63 #ifdef DEBUG
64 # define DPRINTF(format, ...) printf(format , ## __VA_ARGS__)
65 #else
66 # define DPRINTF(format, ...) do { } while (0)
67 #endif
68
69 static struct {
70 hwaddr io_base;
71 int irq;
72 } sa_serial[] = {
73 { 0x80010000, SA_PIC_UART1 },
74 { 0x80030000, SA_PIC_UART2 },
75 { 0x80050000, SA_PIC_UART3 },
76 { 0, 0 }
77 };
78
79 /* Interrupt Controller */
80
81 #define TYPE_STRONGARM_PIC "strongarm_pic"
82 #define STRONGARM_PIC(obj) \
83 OBJECT_CHECK(StrongARMPICState, (obj), TYPE_STRONGARM_PIC)
84
85 typedef struct StrongARMPICState {
86 SysBusDevice parent_obj;
87
88 MemoryRegion iomem;
89 qemu_irq irq;
90 qemu_irq fiq;
91
92 uint32_t pending;
93 uint32_t enabled;
94 uint32_t is_fiq;
95 uint32_t int_idle;
96 } StrongARMPICState;
97
98 #define ICIP 0x00
99 #define ICMR 0x04
100 #define ICLR 0x08
101 #define ICFP 0x10
102 #define ICPR 0x20
103 #define ICCR 0x0c
104
105 #define SA_PIC_SRCS 32
106
107
108 static void strongarm_pic_update(void *opaque)
109 {
110 StrongARMPICState *s = opaque;
111
112 /* FIXME: reflect DIM */
113 qemu_set_irq(s->fiq, s->pending & s->enabled & s->is_fiq);
114 qemu_set_irq(s->irq, s->pending & s->enabled & ~s->is_fiq);
115 }
116
117 static void strongarm_pic_set_irq(void *opaque, int irq, int level)
118 {
119 StrongARMPICState *s = opaque;
120
121 if (level) {
122 s->pending |= 1 << irq;
123 } else {
124 s->pending &= ~(1 << irq);
125 }
126
127 strongarm_pic_update(s);
128 }
129
130 static uint64_t strongarm_pic_mem_read(void *opaque, hwaddr offset,
131 unsigned size)
132 {
133 StrongARMPICState *s = opaque;
134
135 switch (offset) {
136 case ICIP:
137 return s->pending & ~s->is_fiq & s->enabled;
138 case ICMR:
139 return s->enabled;
140 case ICLR:
141 return s->is_fiq;
142 case ICCR:
143 return s->int_idle == 0;
144 case ICFP:
145 return s->pending & s->is_fiq & s->enabled;
146 case ICPR:
147 return s->pending;
148 default:
149 printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n",
150 __func__, offset);
151 return 0;
152 }
153 }
154
155 static void strongarm_pic_mem_write(void *opaque, hwaddr offset,
156 uint64_t value, unsigned size)
157 {
158 StrongARMPICState *s = opaque;
159
160 switch (offset) {
161 case ICMR:
162 s->enabled = value;
163 break;
164 case ICLR:
165 s->is_fiq = value;
166 break;
167 case ICCR:
168 s->int_idle = (value & 1) ? 0 : ~0;
169 break;
170 default:
171 printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n",
172 __func__, offset);
173 break;
174 }
175 strongarm_pic_update(s);
176 }
177
178 static const MemoryRegionOps strongarm_pic_ops = {
179 .read = strongarm_pic_mem_read,
180 .write = strongarm_pic_mem_write,
181 .endianness = DEVICE_NATIVE_ENDIAN,
182 };
183
184 static void strongarm_pic_initfn(Object *obj)
185 {
186 DeviceState *dev = DEVICE(obj);
187 StrongARMPICState *s = STRONGARM_PIC(obj);
188 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
189
190 qdev_init_gpio_in(dev, strongarm_pic_set_irq, SA_PIC_SRCS);
191 memory_region_init_io(&s->iomem, obj, &strongarm_pic_ops, s,
192 "pic", 0x1000);
193 sysbus_init_mmio(sbd, &s->iomem);
194 sysbus_init_irq(sbd, &s->irq);
195 sysbus_init_irq(sbd, &s->fiq);
196 }
197
198 static int strongarm_pic_post_load(void *opaque, int version_id)
199 {
200 strongarm_pic_update(opaque);
201 return 0;
202 }
203
204 static VMStateDescription vmstate_strongarm_pic_regs = {
205 .name = "strongarm_pic",
206 .version_id = 0,
207 .minimum_version_id = 0,
208 .post_load = strongarm_pic_post_load,
209 .fields = (VMStateField[]) {
210 VMSTATE_UINT32(pending, StrongARMPICState),
211 VMSTATE_UINT32(enabled, StrongARMPICState),
212 VMSTATE_UINT32(is_fiq, StrongARMPICState),
213 VMSTATE_UINT32(int_idle, StrongARMPICState),
214 VMSTATE_END_OF_LIST(),
215 },
216 };
217
218 static void strongarm_pic_class_init(ObjectClass *klass, void *data)
219 {
220 DeviceClass *dc = DEVICE_CLASS(klass);
221
222 dc->desc = "StrongARM PIC";
223 dc->vmsd = &vmstate_strongarm_pic_regs;
224 }
225
226 static const TypeInfo strongarm_pic_info = {
227 .name = TYPE_STRONGARM_PIC,
228 .parent = TYPE_SYS_BUS_DEVICE,
229 .instance_size = sizeof(StrongARMPICState),
230 .instance_init = strongarm_pic_initfn,
231 .class_init = strongarm_pic_class_init,
232 };
233
234 /* Real-Time Clock */
235 #define RTAR 0x00 /* RTC Alarm register */
236 #define RCNR 0x04 /* RTC Counter register */
237 #define RTTR 0x08 /* RTC Timer Trim register */
238 #define RTSR 0x10 /* RTC Status register */
239
240 #define RTSR_AL (1 << 0) /* RTC Alarm detected */
241 #define RTSR_HZ (1 << 1) /* RTC 1Hz detected */
242 #define RTSR_ALE (1 << 2) /* RTC Alarm enable */
243 #define RTSR_HZE (1 << 3) /* RTC 1Hz enable */
244
245 /* 16 LSB of RTTR are clockdiv for internal trim logic,
246 * trim delete isn't emulated, so
247 * f = 32 768 / (RTTR_trim + 1) */
248
249 #define TYPE_STRONGARM_RTC "strongarm-rtc"
250 #define STRONGARM_RTC(obj) \
251 OBJECT_CHECK(StrongARMRTCState, (obj), TYPE_STRONGARM_RTC)
252
253 typedef struct StrongARMRTCState {
254 SysBusDevice parent_obj;
255
256 MemoryRegion iomem;
257 uint32_t rttr;
258 uint32_t rtsr;
259 uint32_t rtar;
260 uint32_t last_rcnr;
261 int64_t last_hz;
262 QEMUTimer *rtc_alarm;
263 QEMUTimer *rtc_hz;
264 qemu_irq rtc_irq;
265 qemu_irq rtc_hz_irq;
266 } StrongARMRTCState;
267
268 static inline void strongarm_rtc_int_update(StrongARMRTCState *s)
269 {
270 qemu_set_irq(s->rtc_irq, s->rtsr & RTSR_AL);
271 qemu_set_irq(s->rtc_hz_irq, s->rtsr & RTSR_HZ);
272 }
273
274 static void strongarm_rtc_hzupdate(StrongARMRTCState *s)
275 {
276 int64_t rt = qemu_clock_get_ms(rtc_clock);
277 s->last_rcnr += ((rt - s->last_hz) << 15) /
278 (1000 * ((s->rttr & 0xffff) + 1));
279 s->last_hz = rt;
280 }
281
282 static inline void strongarm_rtc_timer_update(StrongARMRTCState *s)
283 {
284 if ((s->rtsr & RTSR_HZE) && !(s->rtsr & RTSR_HZ)) {
285 timer_mod(s->rtc_hz, s->last_hz + 1000);
286 } else {
287 timer_del(s->rtc_hz);
288 }
289
290 if ((s->rtsr & RTSR_ALE) && !(s->rtsr & RTSR_AL)) {
291 timer_mod(s->rtc_alarm, s->last_hz +
292 (((s->rtar - s->last_rcnr) * 1000 *
293 ((s->rttr & 0xffff) + 1)) >> 15));
294 } else {
295 timer_del(s->rtc_alarm);
296 }
297 }
298
299 static inline void strongarm_rtc_alarm_tick(void *opaque)
300 {
301 StrongARMRTCState *s = opaque;
302 s->rtsr |= RTSR_AL;
303 strongarm_rtc_timer_update(s);
304 strongarm_rtc_int_update(s);
305 }
306
307 static inline void strongarm_rtc_hz_tick(void *opaque)
308 {
309 StrongARMRTCState *s = opaque;
310 s->rtsr |= RTSR_HZ;
311 strongarm_rtc_timer_update(s);
312 strongarm_rtc_int_update(s);
313 }
314
315 static uint64_t strongarm_rtc_read(void *opaque, hwaddr addr,
316 unsigned size)
317 {
318 StrongARMRTCState *s = opaque;
319
320 switch (addr) {
321 case RTTR:
322 return s->rttr;
323 case RTSR:
324 return s->rtsr;
325 case RTAR:
326 return s->rtar;
327 case RCNR:
328 return s->last_rcnr +
329 ((qemu_clock_get_ms(rtc_clock) - s->last_hz) << 15) /
330 (1000 * ((s->rttr & 0xffff) + 1));
331 default:
332 printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
333 return 0;
334 }
335 }
336
337 static void strongarm_rtc_write(void *opaque, hwaddr addr,
338 uint64_t value, unsigned size)
339 {
340 StrongARMRTCState *s = opaque;
341 uint32_t old_rtsr;
342
343 switch (addr) {
344 case RTTR:
345 strongarm_rtc_hzupdate(s);
346 s->rttr = value;
347 strongarm_rtc_timer_update(s);
348 break;
349
350 case RTSR:
351 old_rtsr = s->rtsr;
352 s->rtsr = (value & (RTSR_ALE | RTSR_HZE)) |
353 (s->rtsr & ~(value & (RTSR_AL | RTSR_HZ)));
354
355 if (s->rtsr != old_rtsr) {
356 strongarm_rtc_timer_update(s);
357 }
358
359 strongarm_rtc_int_update(s);
360 break;
361
362 case RTAR:
363 s->rtar = value;
364 strongarm_rtc_timer_update(s);
365 break;
366
367 case RCNR:
368 strongarm_rtc_hzupdate(s);
369 s->last_rcnr = value;
370 strongarm_rtc_timer_update(s);
371 break;
372
373 default:
374 printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
375 }
376 }
377
378 static const MemoryRegionOps strongarm_rtc_ops = {
379 .read = strongarm_rtc_read,
380 .write = strongarm_rtc_write,
381 .endianness = DEVICE_NATIVE_ENDIAN,
382 };
383
384 static void strongarm_rtc_init(Object *obj)
385 {
386 StrongARMRTCState *s = STRONGARM_RTC(obj);
387 SysBusDevice *dev = SYS_BUS_DEVICE(obj);
388 struct tm tm;
389
390 s->rttr = 0x0;
391 s->rtsr = 0;
392
393 qemu_get_timedate(&tm, 0);
394
395 s->last_rcnr = (uint32_t) mktimegm(&tm);
396 s->last_hz = qemu_clock_get_ms(rtc_clock);
397
398 s->rtc_alarm = timer_new_ms(rtc_clock, strongarm_rtc_alarm_tick, s);
399 s->rtc_hz = timer_new_ms(rtc_clock, strongarm_rtc_hz_tick, s);
400
401 sysbus_init_irq(dev, &s->rtc_irq);
402 sysbus_init_irq(dev, &s->rtc_hz_irq);
403
404 memory_region_init_io(&s->iomem, obj, &strongarm_rtc_ops, s,
405 "rtc", 0x10000);
406 sysbus_init_mmio(dev, &s->iomem);
407 }
408
409 static void strongarm_rtc_pre_save(void *opaque)
410 {
411 StrongARMRTCState *s = opaque;
412
413 strongarm_rtc_hzupdate(s);
414 }
415
416 static int strongarm_rtc_post_load(void *opaque, int version_id)
417 {
418 StrongARMRTCState *s = opaque;
419
420 strongarm_rtc_timer_update(s);
421 strongarm_rtc_int_update(s);
422
423 return 0;
424 }
425
426 static const VMStateDescription vmstate_strongarm_rtc_regs = {
427 .name = "strongarm-rtc",
428 .version_id = 0,
429 .minimum_version_id = 0,
430 .pre_save = strongarm_rtc_pre_save,
431 .post_load = strongarm_rtc_post_load,
432 .fields = (VMStateField[]) {
433 VMSTATE_UINT32(rttr, StrongARMRTCState),
434 VMSTATE_UINT32(rtsr, StrongARMRTCState),
435 VMSTATE_UINT32(rtar, StrongARMRTCState),
436 VMSTATE_UINT32(last_rcnr, StrongARMRTCState),
437 VMSTATE_INT64(last_hz, StrongARMRTCState),
438 VMSTATE_END_OF_LIST(),
439 },
440 };
441
442 static void strongarm_rtc_sysbus_class_init(ObjectClass *klass, void *data)
443 {
444 DeviceClass *dc = DEVICE_CLASS(klass);
445
446 dc->desc = "StrongARM RTC Controller";
447 dc->vmsd = &vmstate_strongarm_rtc_regs;
448 }
449
450 static const TypeInfo strongarm_rtc_sysbus_info = {
451 .name = TYPE_STRONGARM_RTC,
452 .parent = TYPE_SYS_BUS_DEVICE,
453 .instance_size = sizeof(StrongARMRTCState),
454 .instance_init = strongarm_rtc_init,
455 .class_init = strongarm_rtc_sysbus_class_init,
456 };
457
458 /* GPIO */
459 #define GPLR 0x00
460 #define GPDR 0x04
461 #define GPSR 0x08
462 #define GPCR 0x0c
463 #define GRER 0x10
464 #define GFER 0x14
465 #define GEDR 0x18
466 #define GAFR 0x1c
467
468 #define TYPE_STRONGARM_GPIO "strongarm-gpio"
469 #define STRONGARM_GPIO(obj) \
470 OBJECT_CHECK(StrongARMGPIOInfo, (obj), TYPE_STRONGARM_GPIO)
471
472 typedef struct StrongARMGPIOInfo StrongARMGPIOInfo;
473 struct StrongARMGPIOInfo {
474 SysBusDevice busdev;
475 MemoryRegion iomem;
476 qemu_irq handler[28];
477 qemu_irq irqs[11];
478 qemu_irq irqX;
479
480 uint32_t ilevel;
481 uint32_t olevel;
482 uint32_t dir;
483 uint32_t rising;
484 uint32_t falling;
485 uint32_t status;
486 uint32_t gafr;
487
488 uint32_t prev_level;
489 };
490
491
492 static void strongarm_gpio_irq_update(StrongARMGPIOInfo *s)
493 {
494 int i;
495 for (i = 0; i < 11; i++) {
496 qemu_set_irq(s->irqs[i], s->status & (1 << i));
497 }
498
499 qemu_set_irq(s->irqX, (s->status & ~0x7ff));
500 }
501
502 static void strongarm_gpio_set(void *opaque, int line, int level)
503 {
504 StrongARMGPIOInfo *s = opaque;
505 uint32_t mask;
506
507 mask = 1 << line;
508
509 if (level) {
510 s->status |= s->rising & mask &
511 ~s->ilevel & ~s->dir;
512 s->ilevel |= mask;
513 } else {
514 s->status |= s->falling & mask &
515 s->ilevel & ~s->dir;
516 s->ilevel &= ~mask;
517 }
518
519 if (s->status & mask) {
520 strongarm_gpio_irq_update(s);
521 }
522 }
523
524 static void strongarm_gpio_handler_update(StrongARMGPIOInfo *s)
525 {
526 uint32_t level, diff;
527 int bit;
528
529 level = s->olevel & s->dir;
530
531 for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
532 bit = ctz32(diff);
533 qemu_set_irq(s->handler[bit], (level >> bit) & 1);
534 }
535
536 s->prev_level = level;
537 }
538
539 static uint64_t strongarm_gpio_read(void *opaque, hwaddr offset,
540 unsigned size)
541 {
542 StrongARMGPIOInfo *s = opaque;
543
544 switch (offset) {
545 case GPDR: /* GPIO Pin-Direction registers */
546 return s->dir;
547
548 case GPSR: /* GPIO Pin-Output Set registers */
549 qemu_log_mask(LOG_GUEST_ERROR,
550 "strongarm GPIO: read from write only register GPSR\n");
551 return 0;
552
553 case GPCR: /* GPIO Pin-Output Clear registers */
554 qemu_log_mask(LOG_GUEST_ERROR,
555 "strongarm GPIO: read from write only register GPCR\n");
556 return 0;
557
558 case GRER: /* GPIO Rising-Edge Detect Enable registers */
559 return s->rising;
560
561 case GFER: /* GPIO Falling-Edge Detect Enable registers */
562 return s->falling;
563
564 case GAFR: /* GPIO Alternate Function registers */
565 return s->gafr;
566
567 case GPLR: /* GPIO Pin-Level registers */
568 return (s->olevel & s->dir) |
569 (s->ilevel & ~s->dir);
570
571 case GEDR: /* GPIO Edge Detect Status registers */
572 return s->status;
573
574 default:
575 printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
576 }
577
578 return 0;
579 }
580
581 static void strongarm_gpio_write(void *opaque, hwaddr offset,
582 uint64_t value, unsigned size)
583 {
584 StrongARMGPIOInfo *s = opaque;
585
586 switch (offset) {
587 case GPDR: /* GPIO Pin-Direction registers */
588 s->dir = value;
589 strongarm_gpio_handler_update(s);
590 break;
591
592 case GPSR: /* GPIO Pin-Output Set registers */
593 s->olevel |= value;
594 strongarm_gpio_handler_update(s);
595 break;
596
597 case GPCR: /* GPIO Pin-Output Clear registers */
598 s->olevel &= ~value;
599 strongarm_gpio_handler_update(s);
600 break;
601
602 case GRER: /* GPIO Rising-Edge Detect Enable registers */
603 s->rising = value;
604 break;
605
606 case GFER: /* GPIO Falling-Edge Detect Enable registers */
607 s->falling = value;
608 break;
609
610 case GAFR: /* GPIO Alternate Function registers */
611 s->gafr = value;
612 break;
613
614 case GEDR: /* GPIO Edge Detect Status registers */
615 s->status &= ~value;
616 strongarm_gpio_irq_update(s);
617 break;
618
619 default:
620 printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
621 }
622 }
623
624 static const MemoryRegionOps strongarm_gpio_ops = {
625 .read = strongarm_gpio_read,
626 .write = strongarm_gpio_write,
627 .endianness = DEVICE_NATIVE_ENDIAN,
628 };
629
630 static DeviceState *strongarm_gpio_init(hwaddr base,
631 DeviceState *pic)
632 {
633 DeviceState *dev;
634 int i;
635
636 dev = qdev_create(NULL, TYPE_STRONGARM_GPIO);
637 qdev_init_nofail(dev);
638
639 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
640 for (i = 0; i < 12; i++)
641 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
642 qdev_get_gpio_in(pic, SA_PIC_GPIO0_EDGE + i));
643
644 return dev;
645 }
646
647 static void strongarm_gpio_initfn(Object *obj)
648 {
649 DeviceState *dev = DEVICE(obj);
650 StrongARMGPIOInfo *s = STRONGARM_GPIO(obj);
651 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
652 int i;
653
654 qdev_init_gpio_in(dev, strongarm_gpio_set, 28);
655 qdev_init_gpio_out(dev, s->handler, 28);
656
657 memory_region_init_io(&s->iomem, obj, &strongarm_gpio_ops, s,
658 "gpio", 0x1000);
659
660 sysbus_init_mmio(sbd, &s->iomem);
661 for (i = 0; i < 11; i++) {
662 sysbus_init_irq(sbd, &s->irqs[i]);
663 }
664 sysbus_init_irq(sbd, &s->irqX);
665 }
666
667 static const VMStateDescription vmstate_strongarm_gpio_regs = {
668 .name = "strongarm-gpio",
669 .version_id = 0,
670 .minimum_version_id = 0,
671 .fields = (VMStateField[]) {
672 VMSTATE_UINT32(ilevel, StrongARMGPIOInfo),
673 VMSTATE_UINT32(olevel, StrongARMGPIOInfo),
674 VMSTATE_UINT32(dir, StrongARMGPIOInfo),
675 VMSTATE_UINT32(rising, StrongARMGPIOInfo),
676 VMSTATE_UINT32(falling, StrongARMGPIOInfo),
677 VMSTATE_UINT32(status, StrongARMGPIOInfo),
678 VMSTATE_UINT32(gafr, StrongARMGPIOInfo),
679 VMSTATE_UINT32(prev_level, StrongARMGPIOInfo),
680 VMSTATE_END_OF_LIST(),
681 },
682 };
683
684 static void strongarm_gpio_class_init(ObjectClass *klass, void *data)
685 {
686 DeviceClass *dc = DEVICE_CLASS(klass);
687
688 dc->desc = "StrongARM GPIO controller";
689 dc->vmsd = &vmstate_strongarm_gpio_regs;
690 }
691
692 static const TypeInfo strongarm_gpio_info = {
693 .name = TYPE_STRONGARM_GPIO,
694 .parent = TYPE_SYS_BUS_DEVICE,
695 .instance_size = sizeof(StrongARMGPIOInfo),
696 .instance_init = strongarm_gpio_initfn,
697 .class_init = strongarm_gpio_class_init,
698 };
699
700 /* Peripheral Pin Controller */
701 #define PPDR 0x00
702 #define PPSR 0x04
703 #define PPAR 0x08
704 #define PSDR 0x0c
705 #define PPFR 0x10
706
707 #define TYPE_STRONGARM_PPC "strongarm-ppc"
708 #define STRONGARM_PPC(obj) \
709 OBJECT_CHECK(StrongARMPPCInfo, (obj), TYPE_STRONGARM_PPC)
710
711 typedef struct StrongARMPPCInfo StrongARMPPCInfo;
712 struct StrongARMPPCInfo {
713 SysBusDevice parent_obj;
714
715 MemoryRegion iomem;
716 qemu_irq handler[28];
717
718 uint32_t ilevel;
719 uint32_t olevel;
720 uint32_t dir;
721 uint32_t ppar;
722 uint32_t psdr;
723 uint32_t ppfr;
724
725 uint32_t prev_level;
726 };
727
728 static void strongarm_ppc_set(void *opaque, int line, int level)
729 {
730 StrongARMPPCInfo *s = opaque;
731
732 if (level) {
733 s->ilevel |= 1 << line;
734 } else {
735 s->ilevel &= ~(1 << line);
736 }
737 }
738
739 static void strongarm_ppc_handler_update(StrongARMPPCInfo *s)
740 {
741 uint32_t level, diff;
742 int bit;
743
744 level = s->olevel & s->dir;
745
746 for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
747 bit = ctz32(diff);
748 qemu_set_irq(s->handler[bit], (level >> bit) & 1);
749 }
750
751 s->prev_level = level;
752 }
753
754 static uint64_t strongarm_ppc_read(void *opaque, hwaddr offset,
755 unsigned size)
756 {
757 StrongARMPPCInfo *s = opaque;
758
759 switch (offset) {
760 case PPDR: /* PPC Pin Direction registers */
761 return s->dir | ~0x3fffff;
762
763 case PPSR: /* PPC Pin State registers */
764 return (s->olevel & s->dir) |
765 (s->ilevel & ~s->dir) |
766 ~0x3fffff;
767
768 case PPAR:
769 return s->ppar | ~0x41000;
770
771 case PSDR:
772 return s->psdr;
773
774 case PPFR:
775 return s->ppfr | ~0x7f001;
776
777 default:
778 printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
779 }
780
781 return 0;
782 }
783
784 static void strongarm_ppc_write(void *opaque, hwaddr offset,
785 uint64_t value, unsigned size)
786 {
787 StrongARMPPCInfo *s = opaque;
788
789 switch (offset) {
790 case PPDR: /* PPC Pin Direction registers */
791 s->dir = value & 0x3fffff;
792 strongarm_ppc_handler_update(s);
793 break;
794
795 case PPSR: /* PPC Pin State registers */
796 s->olevel = value & s->dir & 0x3fffff;
797 strongarm_ppc_handler_update(s);
798 break;
799
800 case PPAR:
801 s->ppar = value & 0x41000;
802 break;
803
804 case PSDR:
805 s->psdr = value & 0x3fffff;
806 break;
807
808 case PPFR:
809 s->ppfr = value & 0x7f001;
810 break;
811
812 default:
813 printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
814 }
815 }
816
817 static const MemoryRegionOps strongarm_ppc_ops = {
818 .read = strongarm_ppc_read,
819 .write = strongarm_ppc_write,
820 .endianness = DEVICE_NATIVE_ENDIAN,
821 };
822
823 static void strongarm_ppc_init(Object *obj)
824 {
825 DeviceState *dev = DEVICE(obj);
826 StrongARMPPCInfo *s = STRONGARM_PPC(obj);
827 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
828
829 qdev_init_gpio_in(dev, strongarm_ppc_set, 22);
830 qdev_init_gpio_out(dev, s->handler, 22);
831
832 memory_region_init_io(&s->iomem, obj, &strongarm_ppc_ops, s,
833 "ppc", 0x1000);
834
835 sysbus_init_mmio(sbd, &s->iomem);
836 }
837
838 static const VMStateDescription vmstate_strongarm_ppc_regs = {
839 .name = "strongarm-ppc",
840 .version_id = 0,
841 .minimum_version_id = 0,
842 .fields = (VMStateField[]) {
843 VMSTATE_UINT32(ilevel, StrongARMPPCInfo),
844 VMSTATE_UINT32(olevel, StrongARMPPCInfo),
845 VMSTATE_UINT32(dir, StrongARMPPCInfo),
846 VMSTATE_UINT32(ppar, StrongARMPPCInfo),
847 VMSTATE_UINT32(psdr, StrongARMPPCInfo),
848 VMSTATE_UINT32(ppfr, StrongARMPPCInfo),
849 VMSTATE_UINT32(prev_level, StrongARMPPCInfo),
850 VMSTATE_END_OF_LIST(),
851 },
852 };
853
854 static void strongarm_ppc_class_init(ObjectClass *klass, void *data)
855 {
856 DeviceClass *dc = DEVICE_CLASS(klass);
857
858 dc->desc = "StrongARM PPC controller";
859 dc->vmsd = &vmstate_strongarm_ppc_regs;
860 }
861
862 static const TypeInfo strongarm_ppc_info = {
863 .name = TYPE_STRONGARM_PPC,
864 .parent = TYPE_SYS_BUS_DEVICE,
865 .instance_size = sizeof(StrongARMPPCInfo),
866 .instance_init = strongarm_ppc_init,
867 .class_init = strongarm_ppc_class_init,
868 };
869
870 /* UART Ports */
871 #define UTCR0 0x00
872 #define UTCR1 0x04
873 #define UTCR2 0x08
874 #define UTCR3 0x0c
875 #define UTDR 0x14
876 #define UTSR0 0x1c
877 #define UTSR1 0x20
878
879 #define UTCR0_PE (1 << 0) /* Parity enable */
880 #define UTCR0_OES (1 << 1) /* Even parity */
881 #define UTCR0_SBS (1 << 2) /* 2 stop bits */
882 #define UTCR0_DSS (1 << 3) /* 8-bit data */
883
884 #define UTCR3_RXE (1 << 0) /* Rx enable */
885 #define UTCR3_TXE (1 << 1) /* Tx enable */
886 #define UTCR3_BRK (1 << 2) /* Force Break */
887 #define UTCR3_RIE (1 << 3) /* Rx int enable */
888 #define UTCR3_TIE (1 << 4) /* Tx int enable */
889 #define UTCR3_LBM (1 << 5) /* Loopback */
890
891 #define UTSR0_TFS (1 << 0) /* Tx FIFO nearly empty */
892 #define UTSR0_RFS (1 << 1) /* Rx FIFO nearly full */
893 #define UTSR0_RID (1 << 2) /* Receiver Idle */
894 #define UTSR0_RBB (1 << 3) /* Receiver begin break */
895 #define UTSR0_REB (1 << 4) /* Receiver end break */
896 #define UTSR0_EIF (1 << 5) /* Error in FIFO */
897
898 #define UTSR1_RNE (1 << 1) /* Receive FIFO not empty */
899 #define UTSR1_TNF (1 << 2) /* Transmit FIFO not full */
900 #define UTSR1_PRE (1 << 3) /* Parity error */
901 #define UTSR1_FRE (1 << 4) /* Frame error */
902 #define UTSR1_ROR (1 << 5) /* Receive Over Run */
903
904 #define RX_FIFO_PRE (1 << 8)
905 #define RX_FIFO_FRE (1 << 9)
906 #define RX_FIFO_ROR (1 << 10)
907
908 #define TYPE_STRONGARM_UART "strongarm-uart"
909 #define STRONGARM_UART(obj) \
910 OBJECT_CHECK(StrongARMUARTState, (obj), TYPE_STRONGARM_UART)
911
912 typedef struct StrongARMUARTState {
913 SysBusDevice parent_obj;
914
915 MemoryRegion iomem;
916 CharBackend chr;
917 qemu_irq irq;
918
919 uint8_t utcr0;
920 uint16_t brd;
921 uint8_t utcr3;
922 uint8_t utsr0;
923 uint8_t utsr1;
924
925 uint8_t tx_fifo[8];
926 uint8_t tx_start;
927 uint8_t tx_len;
928 uint16_t rx_fifo[12]; /* value + error flags in high bits */
929 uint8_t rx_start;
930 uint8_t rx_len;
931
932 uint64_t char_transmit_time; /* time to transmit a char in ticks*/
933 bool wait_break_end;
934 QEMUTimer *rx_timeout_timer;
935 QEMUTimer *tx_timer;
936 } StrongARMUARTState;
937
938 static void strongarm_uart_update_status(StrongARMUARTState *s)
939 {
940 uint16_t utsr1 = 0;
941
942 if (s->tx_len != 8) {
943 utsr1 |= UTSR1_TNF;
944 }
945
946 if (s->rx_len != 0) {
947 uint16_t ent = s->rx_fifo[s->rx_start];
948
949 utsr1 |= UTSR1_RNE;
950 if (ent & RX_FIFO_PRE) {
951 s->utsr1 |= UTSR1_PRE;
952 }
953 if (ent & RX_FIFO_FRE) {
954 s->utsr1 |= UTSR1_FRE;
955 }
956 if (ent & RX_FIFO_ROR) {
957 s->utsr1 |= UTSR1_ROR;
958 }
959 }
960
961 s->utsr1 = utsr1;
962 }
963
964 static void strongarm_uart_update_int_status(StrongARMUARTState *s)
965 {
966 uint16_t utsr0 = s->utsr0 &
967 (UTSR0_REB | UTSR0_RBB | UTSR0_RID);
968 int i;
969
970 if ((s->utcr3 & UTCR3_TXE) &&
971 (s->utcr3 & UTCR3_TIE) &&
972 s->tx_len <= 4) {
973 utsr0 |= UTSR0_TFS;
974 }
975
976 if ((s->utcr3 & UTCR3_RXE) &&
977 (s->utcr3 & UTCR3_RIE) &&
978 s->rx_len > 4) {
979 utsr0 |= UTSR0_RFS;
980 }
981
982 for (i = 0; i < s->rx_len && i < 4; i++)
983 if (s->rx_fifo[(s->rx_start + i) % 12] & ~0xff) {
984 utsr0 |= UTSR0_EIF;
985 break;
986 }
987
988 s->utsr0 = utsr0;
989 qemu_set_irq(s->irq, utsr0);
990 }
991
992 static void strongarm_uart_update_parameters(StrongARMUARTState *s)
993 {
994 int speed, parity, data_bits, stop_bits, frame_size;
995 QEMUSerialSetParams ssp;
996
997 /* Start bit. */
998 frame_size = 1;
999 if (s->utcr0 & UTCR0_PE) {
1000 /* Parity bit. */
1001 frame_size++;
1002 if (s->utcr0 & UTCR0_OES) {
1003 parity = 'E';
1004 } else {
1005 parity = 'O';
1006 }
1007 } else {
1008 parity = 'N';
1009 }
1010 if (s->utcr0 & UTCR0_SBS) {
1011 stop_bits = 2;
1012 } else {
1013 stop_bits = 1;
1014 }
1015
1016 data_bits = (s->utcr0 & UTCR0_DSS) ? 8 : 7;
1017 frame_size += data_bits + stop_bits;
1018 speed = 3686400 / 16 / (s->brd + 1);
1019 ssp.speed = speed;
1020 ssp.parity = parity;
1021 ssp.data_bits = data_bits;
1022 ssp.stop_bits = stop_bits;
1023 s->char_transmit_time = (NANOSECONDS_PER_SECOND / speed) * frame_size;
1024 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
1025
1026 DPRINTF(stderr, "%s speed=%d parity=%c data=%d stop=%d\n", s->chr->label,
1027 speed, parity, data_bits, stop_bits);
1028 }
1029
1030 static void strongarm_uart_rx_to(void *opaque)
1031 {
1032 StrongARMUARTState *s = opaque;
1033
1034 if (s->rx_len) {
1035 s->utsr0 |= UTSR0_RID;
1036 strongarm_uart_update_int_status(s);
1037 }
1038 }
1039
1040 static void strongarm_uart_rx_push(StrongARMUARTState *s, uint16_t c)
1041 {
1042 if ((s->utcr3 & UTCR3_RXE) == 0) {
1043 /* rx disabled */
1044 return;
1045 }
1046
1047 if (s->wait_break_end) {
1048 s->utsr0 |= UTSR0_REB;
1049 s->wait_break_end = false;
1050 }
1051
1052 if (s->rx_len < 12) {
1053 s->rx_fifo[(s->rx_start + s->rx_len) % 12] = c;
1054 s->rx_len++;
1055 } else
1056 s->rx_fifo[(s->rx_start + 11) % 12] |= RX_FIFO_ROR;
1057 }
1058
1059 static int strongarm_uart_can_receive(void *opaque)
1060 {
1061 StrongARMUARTState *s = opaque;
1062
1063 if (s->rx_len == 12) {
1064 return 0;
1065 }
1066 /* It's best not to get more than 2/3 of RX FIFO, so advertise that much */
1067 if (s->rx_len < 8) {
1068 return 8 - s->rx_len;
1069 }
1070 return 1;
1071 }
1072
1073 static void strongarm_uart_receive(void *opaque, const uint8_t *buf, int size)
1074 {
1075 StrongARMUARTState *s = opaque;
1076 int i;
1077
1078 for (i = 0; i < size; i++) {
1079 strongarm_uart_rx_push(s, buf[i]);
1080 }
1081
1082 /* call the timeout receive callback in 3 char transmit time */
1083 timer_mod(s->rx_timeout_timer,
1084 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 3);
1085
1086 strongarm_uart_update_status(s);
1087 strongarm_uart_update_int_status(s);
1088 }
1089
1090 static void strongarm_uart_event(void *opaque, int event)
1091 {
1092 StrongARMUARTState *s = opaque;
1093 if (event == CHR_EVENT_BREAK) {
1094 s->utsr0 |= UTSR0_RBB;
1095 strongarm_uart_rx_push(s, RX_FIFO_FRE);
1096 s->wait_break_end = true;
1097 strongarm_uart_update_status(s);
1098 strongarm_uart_update_int_status(s);
1099 }
1100 }
1101
1102 static void strongarm_uart_tx(void *opaque)
1103 {
1104 StrongARMUARTState *s = opaque;
1105 uint64_t new_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1106
1107 if (s->utcr3 & UTCR3_LBM) /* loopback */ {
1108 strongarm_uart_receive(s, &s->tx_fifo[s->tx_start], 1);
1109 } else if (qemu_chr_fe_backend_connected(&s->chr)) {
1110 /* XXX this blocks entire thread. Rewrite to use
1111 * qemu_chr_fe_write and background I/O callbacks */
1112 qemu_chr_fe_write_all(&s->chr, &s->tx_fifo[s->tx_start], 1);
1113 }
1114
1115 s->tx_start = (s->tx_start + 1) % 8;
1116 s->tx_len--;
1117 if (s->tx_len) {
1118 timer_mod(s->tx_timer, new_xmit_ts + s->char_transmit_time);
1119 }
1120 strongarm_uart_update_status(s);
1121 strongarm_uart_update_int_status(s);
1122 }
1123
1124 static uint64_t strongarm_uart_read(void *opaque, hwaddr addr,
1125 unsigned size)
1126 {
1127 StrongARMUARTState *s = opaque;
1128 uint16_t ret;
1129
1130 switch (addr) {
1131 case UTCR0:
1132 return s->utcr0;
1133
1134 case UTCR1:
1135 return s->brd >> 8;
1136
1137 case UTCR2:
1138 return s->brd & 0xff;
1139
1140 case UTCR3:
1141 return s->utcr3;
1142
1143 case UTDR:
1144 if (s->rx_len != 0) {
1145 ret = s->rx_fifo[s->rx_start];
1146 s->rx_start = (s->rx_start + 1) % 12;
1147 s->rx_len--;
1148 strongarm_uart_update_status(s);
1149 strongarm_uart_update_int_status(s);
1150 return ret;
1151 }
1152 return 0;
1153
1154 case UTSR0:
1155 return s->utsr0;
1156
1157 case UTSR1:
1158 return s->utsr1;
1159
1160 default:
1161 printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1162 return 0;
1163 }
1164 }
1165
1166 static void strongarm_uart_write(void *opaque, hwaddr addr,
1167 uint64_t value, unsigned size)
1168 {
1169 StrongARMUARTState *s = opaque;
1170
1171 switch (addr) {
1172 case UTCR0:
1173 s->utcr0 = value & 0x7f;
1174 strongarm_uart_update_parameters(s);
1175 break;
1176
1177 case UTCR1:
1178 s->brd = (s->brd & 0xff) | ((value & 0xf) << 8);
1179 strongarm_uart_update_parameters(s);
1180 break;
1181
1182 case UTCR2:
1183 s->brd = (s->brd & 0xf00) | (value & 0xff);
1184 strongarm_uart_update_parameters(s);
1185 break;
1186
1187 case UTCR3:
1188 s->utcr3 = value & 0x3f;
1189 if ((s->utcr3 & UTCR3_RXE) == 0) {
1190 s->rx_len = 0;
1191 }
1192 if ((s->utcr3 & UTCR3_TXE) == 0) {
1193 s->tx_len = 0;
1194 }
1195 strongarm_uart_update_status(s);
1196 strongarm_uart_update_int_status(s);
1197 break;
1198
1199 case UTDR:
1200 if ((s->utcr3 & UTCR3_TXE) && s->tx_len != 8) {
1201 s->tx_fifo[(s->tx_start + s->tx_len) % 8] = value;
1202 s->tx_len++;
1203 strongarm_uart_update_status(s);
1204 strongarm_uart_update_int_status(s);
1205 if (s->tx_len == 1) {
1206 strongarm_uart_tx(s);
1207 }
1208 }
1209 break;
1210
1211 case UTSR0:
1212 s->utsr0 = s->utsr0 & ~(value &
1213 (UTSR0_REB | UTSR0_RBB | UTSR0_RID));
1214 strongarm_uart_update_int_status(s);
1215 break;
1216
1217 default:
1218 printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1219 }
1220 }
1221
1222 static const MemoryRegionOps strongarm_uart_ops = {
1223 .read = strongarm_uart_read,
1224 .write = strongarm_uart_write,
1225 .endianness = DEVICE_NATIVE_ENDIAN,
1226 };
1227
1228 static void strongarm_uart_init(Object *obj)
1229 {
1230 StrongARMUARTState *s = STRONGARM_UART(obj);
1231 SysBusDevice *dev = SYS_BUS_DEVICE(obj);
1232
1233 memory_region_init_io(&s->iomem, obj, &strongarm_uart_ops, s,
1234 "uart", 0x10000);
1235 sysbus_init_mmio(dev, &s->iomem);
1236 sysbus_init_irq(dev, &s->irq);
1237
1238 s->rx_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, strongarm_uart_rx_to, s);
1239 s->tx_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, strongarm_uart_tx, s);
1240 }
1241
1242 static void strongarm_uart_realize(DeviceState *dev, Error **errp)
1243 {
1244 StrongARMUARTState *s = STRONGARM_UART(dev);
1245
1246 qemu_chr_fe_set_handlers(&s->chr,
1247 strongarm_uart_can_receive,
1248 strongarm_uart_receive,
1249 strongarm_uart_event,
1250 NULL, s, NULL, true);
1251 }
1252
1253 static void strongarm_uart_reset(DeviceState *dev)
1254 {
1255 StrongARMUARTState *s = STRONGARM_UART(dev);
1256
1257 s->utcr0 = UTCR0_DSS; /* 8 data, no parity */
1258 s->brd = 23; /* 9600 */
1259 /* enable send & recv - this actually violates spec */
1260 s->utcr3 = UTCR3_TXE | UTCR3_RXE;
1261
1262 s->rx_len = s->tx_len = 0;
1263
1264 strongarm_uart_update_parameters(s);
1265 strongarm_uart_update_status(s);
1266 strongarm_uart_update_int_status(s);
1267 }
1268
1269 static int strongarm_uart_post_load(void *opaque, int version_id)
1270 {
1271 StrongARMUARTState *s = opaque;
1272
1273 strongarm_uart_update_parameters(s);
1274 strongarm_uart_update_status(s);
1275 strongarm_uart_update_int_status(s);
1276
1277 /* tx and restart timer */
1278 if (s->tx_len) {
1279 strongarm_uart_tx(s);
1280 }
1281
1282 /* restart rx timeout timer */
1283 if (s->rx_len) {
1284 timer_mod(s->rx_timeout_timer,
1285 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 3);
1286 }
1287
1288 return 0;
1289 }
1290
1291 static const VMStateDescription vmstate_strongarm_uart_regs = {
1292 .name = "strongarm-uart",
1293 .version_id = 0,
1294 .minimum_version_id = 0,
1295 .post_load = strongarm_uart_post_load,
1296 .fields = (VMStateField[]) {
1297 VMSTATE_UINT8(utcr0, StrongARMUARTState),
1298 VMSTATE_UINT16(brd, StrongARMUARTState),
1299 VMSTATE_UINT8(utcr3, StrongARMUARTState),
1300 VMSTATE_UINT8(utsr0, StrongARMUARTState),
1301 VMSTATE_UINT8_ARRAY(tx_fifo, StrongARMUARTState, 8),
1302 VMSTATE_UINT8(tx_start, StrongARMUARTState),
1303 VMSTATE_UINT8(tx_len, StrongARMUARTState),
1304 VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMUARTState, 12),
1305 VMSTATE_UINT8(rx_start, StrongARMUARTState),
1306 VMSTATE_UINT8(rx_len, StrongARMUARTState),
1307 VMSTATE_BOOL(wait_break_end, StrongARMUARTState),
1308 VMSTATE_END_OF_LIST(),
1309 },
1310 };
1311
1312 static Property strongarm_uart_properties[] = {
1313 DEFINE_PROP_CHR("chardev", StrongARMUARTState, chr),
1314 DEFINE_PROP_END_OF_LIST(),
1315 };
1316
1317 static void strongarm_uart_class_init(ObjectClass *klass, void *data)
1318 {
1319 DeviceClass *dc = DEVICE_CLASS(klass);
1320
1321 dc->desc = "StrongARM UART controller";
1322 dc->reset = strongarm_uart_reset;
1323 dc->vmsd = &vmstate_strongarm_uart_regs;
1324 dc->props = strongarm_uart_properties;
1325 dc->realize = strongarm_uart_realize;
1326 }
1327
1328 static const TypeInfo strongarm_uart_info = {
1329 .name = TYPE_STRONGARM_UART,
1330 .parent = TYPE_SYS_BUS_DEVICE,
1331 .instance_size = sizeof(StrongARMUARTState),
1332 .instance_init = strongarm_uart_init,
1333 .class_init = strongarm_uart_class_init,
1334 };
1335
1336 /* Synchronous Serial Ports */
1337
1338 #define TYPE_STRONGARM_SSP "strongarm-ssp"
1339 #define STRONGARM_SSP(obj) \
1340 OBJECT_CHECK(StrongARMSSPState, (obj), TYPE_STRONGARM_SSP)
1341
1342 typedef struct StrongARMSSPState {
1343 SysBusDevice parent_obj;
1344
1345 MemoryRegion iomem;
1346 qemu_irq irq;
1347 SSIBus *bus;
1348
1349 uint16_t sscr[2];
1350 uint16_t sssr;
1351
1352 uint16_t rx_fifo[8];
1353 uint8_t rx_level;
1354 uint8_t rx_start;
1355 } StrongARMSSPState;
1356
1357 #define SSCR0 0x60 /* SSP Control register 0 */
1358 #define SSCR1 0x64 /* SSP Control register 1 */
1359 #define SSDR 0x6c /* SSP Data register */
1360 #define SSSR 0x74 /* SSP Status register */
1361
1362 /* Bitfields for above registers */
1363 #define SSCR0_SPI(x) (((x) & 0x30) == 0x00)
1364 #define SSCR0_SSP(x) (((x) & 0x30) == 0x10)
1365 #define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20)
1366 #define SSCR0_PSP(x) (((x) & 0x30) == 0x30)
1367 #define SSCR0_SSE (1 << 7)
1368 #define SSCR0_DSS(x) (((x) & 0xf) + 1)
1369 #define SSCR1_RIE (1 << 0)
1370 #define SSCR1_TIE (1 << 1)
1371 #define SSCR1_LBM (1 << 2)
1372 #define SSSR_TNF (1 << 2)
1373 #define SSSR_RNE (1 << 3)
1374 #define SSSR_TFS (1 << 5)
1375 #define SSSR_RFS (1 << 6)
1376 #define SSSR_ROR (1 << 7)
1377 #define SSSR_RW 0x0080
1378
1379 static void strongarm_ssp_int_update(StrongARMSSPState *s)
1380 {
1381 int level = 0;
1382
1383 level |= (s->sssr & SSSR_ROR);
1384 level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE);
1385 level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE);
1386 qemu_set_irq(s->irq, level);
1387 }
1388
1389 static void strongarm_ssp_fifo_update(StrongARMSSPState *s)
1390 {
1391 s->sssr &= ~SSSR_TFS;
1392 s->sssr &= ~SSSR_TNF;
1393 if (s->sscr[0] & SSCR0_SSE) {
1394 if (s->rx_level >= 4) {
1395 s->sssr |= SSSR_RFS;
1396 } else {
1397 s->sssr &= ~SSSR_RFS;
1398 }
1399 if (s->rx_level) {
1400 s->sssr |= SSSR_RNE;
1401 } else {
1402 s->sssr &= ~SSSR_RNE;
1403 }
1404 /* TX FIFO is never filled, so it is always in underrun
1405 condition if SSP is enabled */
1406 s->sssr |= SSSR_TFS;
1407 s->sssr |= SSSR_TNF;
1408 }
1409
1410 strongarm_ssp_int_update(s);
1411 }
1412
1413 static uint64_t strongarm_ssp_read(void *opaque, hwaddr addr,
1414 unsigned size)
1415 {
1416 StrongARMSSPState *s = opaque;
1417 uint32_t retval;
1418
1419 switch (addr) {
1420 case SSCR0:
1421 return s->sscr[0];
1422 case SSCR1:
1423 return s->sscr[1];
1424 case SSSR:
1425 return s->sssr;
1426 case SSDR:
1427 if (~s->sscr[0] & SSCR0_SSE) {
1428 return 0xffffffff;
1429 }
1430 if (s->rx_level < 1) {
1431 printf("%s: SSP Rx Underrun\n", __func__);
1432 return 0xffffffff;
1433 }
1434 s->rx_level--;
1435 retval = s->rx_fifo[s->rx_start++];
1436 s->rx_start &= 0x7;
1437 strongarm_ssp_fifo_update(s);
1438 return retval;
1439 default:
1440 printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1441 break;
1442 }
1443 return 0;
1444 }
1445
1446 static void strongarm_ssp_write(void *opaque, hwaddr addr,
1447 uint64_t value, unsigned size)
1448 {
1449 StrongARMSSPState *s = opaque;
1450
1451 switch (addr) {
1452 case SSCR0:
1453 s->sscr[0] = value & 0xffbf;
1454 if ((s->sscr[0] & SSCR0_SSE) && SSCR0_DSS(value) < 4) {
1455 printf("%s: Wrong data size: %i bits\n", __func__,
1456 (int)SSCR0_DSS(value));
1457 }
1458 if (!(value & SSCR0_SSE)) {
1459 s->sssr = 0;
1460 s->rx_level = 0;
1461 }
1462 strongarm_ssp_fifo_update(s);
1463 break;
1464
1465 case SSCR1:
1466 s->sscr[1] = value & 0x2f;
1467 if (value & SSCR1_LBM) {
1468 printf("%s: Attempt to use SSP LBM mode\n", __func__);
1469 }
1470 strongarm_ssp_fifo_update(s);
1471 break;
1472
1473 case SSSR:
1474 s->sssr &= ~(value & SSSR_RW);
1475 strongarm_ssp_int_update(s);
1476 break;
1477
1478 case SSDR:
1479 if (SSCR0_UWIRE(s->sscr[0])) {
1480 value &= 0xff;
1481 } else
1482 /* Note how 32bits overflow does no harm here */
1483 value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
1484
1485 /* Data goes from here to the Tx FIFO and is shifted out from
1486 * there directly to the slave, no need to buffer it.
1487 */
1488 if (s->sscr[0] & SSCR0_SSE) {
1489 uint32_t readval;
1490 if (s->sscr[1] & SSCR1_LBM) {
1491 readval = value;
1492 } else {
1493 readval = ssi_transfer(s->bus, value);
1494 }
1495
1496 if (s->rx_level < 0x08) {
1497 s->rx_fifo[(s->rx_start + s->rx_level++) & 0x7] = readval;
1498 } else {
1499 s->sssr |= SSSR_ROR;
1500 }
1501 }
1502 strongarm_ssp_fifo_update(s);
1503 break;
1504
1505 default:
1506 printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1507 break;
1508 }
1509 }
1510
1511 static const MemoryRegionOps strongarm_ssp_ops = {
1512 .read = strongarm_ssp_read,
1513 .write = strongarm_ssp_write,
1514 .endianness = DEVICE_NATIVE_ENDIAN,
1515 };
1516
1517 static int strongarm_ssp_post_load(void *opaque, int version_id)
1518 {
1519 StrongARMSSPState *s = opaque;
1520
1521 strongarm_ssp_fifo_update(s);
1522
1523 return 0;
1524 }
1525
1526 static void strongarm_ssp_init(Object *obj)
1527 {
1528 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1529 DeviceState *dev = DEVICE(sbd);
1530 StrongARMSSPState *s = STRONGARM_SSP(dev);
1531
1532 sysbus_init_irq(sbd, &s->irq);
1533
1534 memory_region_init_io(&s->iomem, obj, &strongarm_ssp_ops, s,
1535 "ssp", 0x1000);
1536 sysbus_init_mmio(sbd, &s->iomem);
1537
1538 s->bus = ssi_create_bus(dev, "ssi");
1539 }
1540
1541 static void strongarm_ssp_reset(DeviceState *dev)
1542 {
1543 StrongARMSSPState *s = STRONGARM_SSP(dev);
1544
1545 s->sssr = 0x03; /* 3 bit data, SPI, disabled */
1546 s->rx_start = 0;
1547 s->rx_level = 0;
1548 }
1549
1550 static const VMStateDescription vmstate_strongarm_ssp_regs = {
1551 .name = "strongarm-ssp",
1552 .version_id = 0,
1553 .minimum_version_id = 0,
1554 .post_load = strongarm_ssp_post_load,
1555 .fields = (VMStateField[]) {
1556 VMSTATE_UINT16_ARRAY(sscr, StrongARMSSPState, 2),
1557 VMSTATE_UINT16(sssr, StrongARMSSPState),
1558 VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMSSPState, 8),
1559 VMSTATE_UINT8(rx_start, StrongARMSSPState),
1560 VMSTATE_UINT8(rx_level, StrongARMSSPState),
1561 VMSTATE_END_OF_LIST(),
1562 },
1563 };
1564
1565 static void strongarm_ssp_class_init(ObjectClass *klass, void *data)
1566 {
1567 DeviceClass *dc = DEVICE_CLASS(klass);
1568
1569 dc->desc = "StrongARM SSP controller";
1570 dc->reset = strongarm_ssp_reset;
1571 dc->vmsd = &vmstate_strongarm_ssp_regs;
1572 }
1573
1574 static const TypeInfo strongarm_ssp_info = {
1575 .name = TYPE_STRONGARM_SSP,
1576 .parent = TYPE_SYS_BUS_DEVICE,
1577 .instance_size = sizeof(StrongARMSSPState),
1578 .instance_init = strongarm_ssp_init,
1579 .class_init = strongarm_ssp_class_init,
1580 };
1581
1582 /* Main CPU functions */
1583 StrongARMState *sa1110_init(MemoryRegion *sysmem,
1584 unsigned int sdram_size, const char *rev)
1585 {
1586 StrongARMState *s;
1587 int i;
1588
1589 s = g_new0(StrongARMState, 1);
1590
1591 if (!rev) {
1592 rev = "sa1110-b5";
1593 }
1594
1595 if (strncmp(rev, "sa1110", 6)) {
1596 error_report("Machine requires a SA1110 processor.");
1597 exit(1);
1598 }
1599
1600 s->cpu = ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, rev));
1601
1602 if (!s->cpu) {
1603 error_report("Unable to find CPU definition");
1604 exit(1);
1605 }
1606
1607 memory_region_allocate_system_memory(&s->sdram, NULL, "strongarm.sdram",
1608 sdram_size);
1609 memory_region_add_subregion(sysmem, SA_SDCS0, &s->sdram);
1610
1611 s->pic = sysbus_create_varargs("strongarm_pic", 0x90050000,
1612 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ),
1613 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ),
1614 NULL);
1615
1616 sysbus_create_varargs("pxa25x-timer", 0x90000000,
1617 qdev_get_gpio_in(s->pic, SA_PIC_OSTC0),
1618 qdev_get_gpio_in(s->pic, SA_PIC_OSTC1),
1619 qdev_get_gpio_in(s->pic, SA_PIC_OSTC2),
1620 qdev_get_gpio_in(s->pic, SA_PIC_OSTC3),
1621 NULL);
1622
1623 sysbus_create_simple(TYPE_STRONGARM_RTC, 0x90010000,
1624 qdev_get_gpio_in(s->pic, SA_PIC_RTC_ALARM));
1625
1626 s->gpio = strongarm_gpio_init(0x90040000, s->pic);
1627
1628 s->ppc = sysbus_create_varargs(TYPE_STRONGARM_PPC, 0x90060000, NULL);
1629
1630 for (i = 0; sa_serial[i].io_base; i++) {
1631 DeviceState *dev = qdev_create(NULL, TYPE_STRONGARM_UART);
1632 qdev_prop_set_chr(dev, "chardev", serial_hds[i]);
1633 qdev_init_nofail(dev);
1634 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0,
1635 sa_serial[i].io_base);
1636 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0,
1637 qdev_get_gpio_in(s->pic, sa_serial[i].irq));
1638 }
1639
1640 s->ssp = sysbus_create_varargs(TYPE_STRONGARM_SSP, 0x80070000,
1641 qdev_get_gpio_in(s->pic, SA_PIC_SSP), NULL);
1642 s->ssp_bus = (SSIBus *)qdev_get_child_bus(s->ssp, "ssi");
1643
1644 return s;
1645 }
1646
1647 static void strongarm_register_types(void)
1648 {
1649 type_register_static(&strongarm_pic_info);
1650 type_register_static(&strongarm_rtc_sysbus_info);
1651 type_register_static(&strongarm_gpio_info);
1652 type_register_static(&strongarm_ppc_info);
1653 type_register_static(&strongarm_uart_info);
1654 type_register_static(&strongarm_ssp_info);
1655 }
1656
1657 type_init(strongarm_register_types)