]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
20f191bc933efc02e8e24d48b3b3a1e7e6d21f1e
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "qapi/error.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/sysemu.h"
48 #include "sysemu/kvm.h"
49 #include "hw/loader.h"
50 #include "exec/address-spaces.h"
51 #include "qemu/bitops.h"
52 #include "qemu/error-report.h"
53 #include "qemu/module.h"
54 #include "hw/pci-host/gpex.h"
55 #include "hw/arm/sysbus-fdt.h"
56 #include "hw/platform-bus.h"
57 #include "hw/arm/fdt.h"
58 #include "hw/intc/arm_gic.h"
59 #include "hw/intc/arm_gicv3_common.h"
60 #include "kvm_arm.h"
61 #include "hw/firmware/smbios.h"
62 #include "qapi/visitor.h"
63 #include "standard-headers/linux/input.h"
64 #include "hw/arm/smmuv3.h"
65 #include "hw/acpi/acpi.h"
66 #include "target/arm/internals.h"
67
68 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
69 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
70 void *data) \
71 { \
72 MachineClass *mc = MACHINE_CLASS(oc); \
73 virt_machine_##major##_##minor##_options(mc); \
74 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
75 if (latest) { \
76 mc->alias = "virt"; \
77 } \
78 } \
79 static const TypeInfo machvirt_##major##_##minor##_info = { \
80 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
81 .parent = TYPE_VIRT_MACHINE, \
82 .class_init = virt_##major##_##minor##_class_init, \
83 }; \
84 static void machvirt_machine_##major##_##minor##_init(void) \
85 { \
86 type_register_static(&machvirt_##major##_##minor##_info); \
87 } \
88 type_init(machvirt_machine_##major##_##minor##_init);
89
90 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
91 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
92 #define DEFINE_VIRT_MACHINE(major, minor) \
93 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
94
95
96 /* Number of external interrupt lines to configure the GIC with */
97 #define NUM_IRQS 256
98
99 #define PLATFORM_BUS_NUM_IRQS 64
100
101 /* Legacy RAM limit in GB (< version 4.0) */
102 #define LEGACY_RAMLIMIT_GB 255
103 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
104
105 /* Addresses and sizes of our components.
106 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
107 * 128MB..256MB is used for miscellaneous device I/O.
108 * 256MB..1GB is reserved for possible future PCI support (ie where the
109 * PCI memory window will go if we add a PCI host controller).
110 * 1GB and up is RAM (which may happily spill over into the
111 * high memory region beyond 4GB).
112 * This represents a compromise between how much RAM can be given to
113 * a 32 bit VM and leaving space for expansion and in particular for PCI.
114 * Note that devices should generally be placed at multiples of 0x10000,
115 * to accommodate guests using 64K pages.
116 */
117 static const MemMapEntry base_memmap[] = {
118 /* Space up to 0x8000000 is reserved for a boot ROM */
119 [VIRT_FLASH] = { 0, 0x08000000 },
120 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
121 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
122 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
123 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
124 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
125 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
126 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
127 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
128 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
129 /* This redistributor space allows up to 2*64kB*123 CPUs */
130 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
131 [VIRT_UART] = { 0x09000000, 0x00001000 },
132 [VIRT_RTC] = { 0x09010000, 0x00001000 },
133 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
134 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
135 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
136 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
137 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
138 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
139 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
140 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
141 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
142 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
143 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
144 /* Actual RAM size depends on initial RAM and device memory settings */
145 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
146 };
147
148 /*
149 * Highmem IO Regions: This memory map is floating, located after the RAM.
150 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
151 * top of the RAM, so that its base get the same alignment as the size,
152 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
153 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
154 * Note the extended_memmap is sized so that it eventually also includes the
155 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
156 * index of base_memmap).
157 */
158 static MemMapEntry extended_memmap[] = {
159 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
160 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
161 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
162 /* Second PCIe window */
163 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
164 };
165
166 static const int a15irqmap[] = {
167 [VIRT_UART] = 1,
168 [VIRT_RTC] = 2,
169 [VIRT_PCIE] = 3, /* ... to 6 */
170 [VIRT_GPIO] = 7,
171 [VIRT_SECURE_UART] = 8,
172 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
173 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
174 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
175 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
176 };
177
178 static const char *valid_cpus[] = {
179 ARM_CPU_TYPE_NAME("cortex-a7"),
180 ARM_CPU_TYPE_NAME("cortex-a15"),
181 ARM_CPU_TYPE_NAME("cortex-a53"),
182 ARM_CPU_TYPE_NAME("cortex-a57"),
183 ARM_CPU_TYPE_NAME("cortex-a72"),
184 ARM_CPU_TYPE_NAME("host"),
185 ARM_CPU_TYPE_NAME("max"),
186 };
187
188 static bool cpu_type_valid(const char *cpu)
189 {
190 int i;
191
192 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
193 if (strcmp(cpu, valid_cpus[i]) == 0) {
194 return true;
195 }
196 }
197 return false;
198 }
199
200 static void create_fdt(VirtMachineState *vms)
201 {
202 void *fdt = create_device_tree(&vms->fdt_size);
203
204 if (!fdt) {
205 error_report("create_device_tree() failed");
206 exit(1);
207 }
208
209 vms->fdt = fdt;
210
211 /* Header */
212 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
213 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
214 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
215
216 /* /chosen must exist for load_dtb to fill in necessary properties later */
217 qemu_fdt_add_subnode(fdt, "/chosen");
218
219 /* Clock node, for the benefit of the UART. The kernel device tree
220 * binding documentation claims the PL011 node clock properties are
221 * optional but in practice if you omit them the kernel refuses to
222 * probe for the device.
223 */
224 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
225 qemu_fdt_add_subnode(fdt, "/apb-pclk");
226 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
227 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
228 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
229 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
230 "clk24mhz");
231 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
232
233 if (have_numa_distance) {
234 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
235 uint32_t *matrix = g_malloc0(size);
236 int idx, i, j;
237
238 for (i = 0; i < nb_numa_nodes; i++) {
239 for (j = 0; j < nb_numa_nodes; j++) {
240 idx = (i * nb_numa_nodes + j) * 3;
241 matrix[idx + 0] = cpu_to_be32(i);
242 matrix[idx + 1] = cpu_to_be32(j);
243 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
244 }
245 }
246
247 qemu_fdt_add_subnode(fdt, "/distance-map");
248 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
249 "numa-distance-map-v1");
250 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
251 matrix, size);
252 g_free(matrix);
253 }
254 }
255
256 static void fdt_add_timer_nodes(const VirtMachineState *vms)
257 {
258 /* On real hardware these interrupts are level-triggered.
259 * On KVM they were edge-triggered before host kernel version 4.4,
260 * and level-triggered afterwards.
261 * On emulated QEMU they are level-triggered.
262 *
263 * Getting the DTB info about them wrong is awkward for some
264 * guest kernels:
265 * pre-4.8 ignore the DT and leave the interrupt configured
266 * with whatever the GIC reset value (or the bootloader) left it at
267 * 4.8 before rc6 honour the incorrect data by programming it back
268 * into the GIC, causing problems
269 * 4.8rc6 and later ignore the DT and always write "level triggered"
270 * into the GIC
271 *
272 * For backwards-compatibility, virt-2.8 and earlier will continue
273 * to say these are edge-triggered, but later machines will report
274 * the correct information.
275 */
276 ARMCPU *armcpu;
277 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
278 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
279
280 if (vmc->claim_edge_triggered_timers) {
281 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
282 }
283
284 if (vms->gic_version == 2) {
285 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
286 GIC_FDT_IRQ_PPI_CPU_WIDTH,
287 (1 << vms->smp_cpus) - 1);
288 }
289
290 qemu_fdt_add_subnode(vms->fdt, "/timer");
291
292 armcpu = ARM_CPU(qemu_get_cpu(0));
293 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
294 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
295 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
296 compat, sizeof(compat));
297 } else {
298 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
299 "arm,armv7-timer");
300 }
301 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
302 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
303 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
304 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
305 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
306 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
307 }
308
309 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
310 {
311 int cpu;
312 int addr_cells = 1;
313 const MachineState *ms = MACHINE(vms);
314
315 /*
316 * From Documentation/devicetree/bindings/arm/cpus.txt
317 * On ARM v8 64-bit systems value should be set to 2,
318 * that corresponds to the MPIDR_EL1 register size.
319 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
320 * in the system, #address-cells can be set to 1, since
321 * MPIDR_EL1[63:32] bits are not used for CPUs
322 * identification.
323 *
324 * Here we actually don't know whether our system is 32- or 64-bit one.
325 * The simplest way to go is to examine affinity IDs of all our CPUs. If
326 * at least one of them has Aff3 populated, we set #address-cells to 2.
327 */
328 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
329 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
330
331 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
332 addr_cells = 2;
333 break;
334 }
335 }
336
337 qemu_fdt_add_subnode(vms->fdt, "/cpus");
338 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
339 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
340
341 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
342 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
343 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
344 CPUState *cs = CPU(armcpu);
345
346 qemu_fdt_add_subnode(vms->fdt, nodename);
347 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
348 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
349 armcpu->dtb_compatible);
350
351 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
352 && vms->smp_cpus > 1) {
353 qemu_fdt_setprop_string(vms->fdt, nodename,
354 "enable-method", "psci");
355 }
356
357 if (addr_cells == 2) {
358 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
359 armcpu->mp_affinity);
360 } else {
361 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
362 armcpu->mp_affinity);
363 }
364
365 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
366 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
367 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
368 }
369
370 g_free(nodename);
371 }
372 }
373
374 static void fdt_add_its_gic_node(VirtMachineState *vms)
375 {
376 char *nodename;
377
378 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
379 nodename = g_strdup_printf("/intc/its@%" PRIx64,
380 vms->memmap[VIRT_GIC_ITS].base);
381 qemu_fdt_add_subnode(vms->fdt, nodename);
382 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
383 "arm,gic-v3-its");
384 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
385 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
386 2, vms->memmap[VIRT_GIC_ITS].base,
387 2, vms->memmap[VIRT_GIC_ITS].size);
388 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
389 g_free(nodename);
390 }
391
392 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
393 {
394 char *nodename;
395
396 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
397 vms->memmap[VIRT_GIC_V2M].base);
398 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
399 qemu_fdt_add_subnode(vms->fdt, nodename);
400 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
401 "arm,gic-v2m-frame");
402 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
403 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
404 2, vms->memmap[VIRT_GIC_V2M].base,
405 2, vms->memmap[VIRT_GIC_V2M].size);
406 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
407 g_free(nodename);
408 }
409
410 static void fdt_add_gic_node(VirtMachineState *vms)
411 {
412 char *nodename;
413
414 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
415 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
416
417 nodename = g_strdup_printf("/intc@%" PRIx64,
418 vms->memmap[VIRT_GIC_DIST].base);
419 qemu_fdt_add_subnode(vms->fdt, nodename);
420 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
421 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
422 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
423 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
424 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
425 if (vms->gic_version == 3) {
426 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
427
428 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
429 "arm,gic-v3");
430
431 qemu_fdt_setprop_cell(vms->fdt, nodename,
432 "#redistributor-regions", nb_redist_regions);
433
434 if (nb_redist_regions == 1) {
435 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
436 2, vms->memmap[VIRT_GIC_DIST].base,
437 2, vms->memmap[VIRT_GIC_DIST].size,
438 2, vms->memmap[VIRT_GIC_REDIST].base,
439 2, vms->memmap[VIRT_GIC_REDIST].size);
440 } else {
441 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
442 2, vms->memmap[VIRT_GIC_DIST].base,
443 2, vms->memmap[VIRT_GIC_DIST].size,
444 2, vms->memmap[VIRT_GIC_REDIST].base,
445 2, vms->memmap[VIRT_GIC_REDIST].size,
446 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
447 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
448 }
449
450 if (vms->virt) {
451 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
452 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
453 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
454 }
455 } else {
456 /* 'cortex-a15-gic' means 'GIC v2' */
457 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
458 "arm,cortex-a15-gic");
459 if (!vms->virt) {
460 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
461 2, vms->memmap[VIRT_GIC_DIST].base,
462 2, vms->memmap[VIRT_GIC_DIST].size,
463 2, vms->memmap[VIRT_GIC_CPU].base,
464 2, vms->memmap[VIRT_GIC_CPU].size);
465 } else {
466 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
467 2, vms->memmap[VIRT_GIC_DIST].base,
468 2, vms->memmap[VIRT_GIC_DIST].size,
469 2, vms->memmap[VIRT_GIC_CPU].base,
470 2, vms->memmap[VIRT_GIC_CPU].size,
471 2, vms->memmap[VIRT_GIC_HYP].base,
472 2, vms->memmap[VIRT_GIC_HYP].size,
473 2, vms->memmap[VIRT_GIC_VCPU].base,
474 2, vms->memmap[VIRT_GIC_VCPU].size);
475 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
476 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
477 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
478 }
479 }
480
481 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
482 g_free(nodename);
483 }
484
485 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
486 {
487 CPUState *cpu;
488 ARMCPU *armcpu;
489 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
490
491 CPU_FOREACH(cpu) {
492 armcpu = ARM_CPU(cpu);
493 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
494 return;
495 }
496 if (kvm_enabled()) {
497 if (kvm_irqchip_in_kernel()) {
498 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
499 }
500 kvm_arm_pmu_init(cpu);
501 }
502 }
503
504 if (vms->gic_version == 2) {
505 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
506 GIC_FDT_IRQ_PPI_CPU_WIDTH,
507 (1 << vms->smp_cpus) - 1);
508 }
509
510 armcpu = ARM_CPU(qemu_get_cpu(0));
511 qemu_fdt_add_subnode(vms->fdt, "/pmu");
512 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
513 const char compat[] = "arm,armv8-pmuv3";
514 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
515 compat, sizeof(compat));
516 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
517 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
518 }
519 }
520
521 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
522 {
523 const char *itsclass = its_class_name();
524 DeviceState *dev;
525
526 if (!itsclass) {
527 /* Do nothing if not supported */
528 return;
529 }
530
531 dev = qdev_create(NULL, itsclass);
532
533 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
534 &error_abort);
535 qdev_init_nofail(dev);
536 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
537
538 fdt_add_its_gic_node(vms);
539 }
540
541 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
542 {
543 int i;
544 int irq = vms->irqmap[VIRT_GIC_V2M];
545 DeviceState *dev;
546
547 dev = qdev_create(NULL, "arm-gicv2m");
548 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
549 qdev_prop_set_uint32(dev, "base-spi", irq);
550 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
551 qdev_init_nofail(dev);
552
553 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
554 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
555 }
556
557 fdt_add_v2m_gic_node(vms);
558 }
559
560 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
561 {
562 MachineState *ms = MACHINE(vms);
563 /* We create a standalone GIC */
564 DeviceState *gicdev;
565 SysBusDevice *gicbusdev;
566 const char *gictype;
567 int type = vms->gic_version, i;
568 unsigned int smp_cpus = ms->smp.cpus;
569 uint32_t nb_redist_regions = 0;
570
571 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
572
573 gicdev = qdev_create(NULL, gictype);
574 qdev_prop_set_uint32(gicdev, "revision", type);
575 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
576 /* Note that the num-irq property counts both internal and external
577 * interrupts; there are always 32 of the former (mandated by GIC spec).
578 */
579 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
580 if (!kvm_irqchip_in_kernel()) {
581 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
582 }
583
584 if (type == 3) {
585 uint32_t redist0_capacity =
586 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
587 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
588
589 nb_redist_regions = virt_gicv3_redist_region_count(vms);
590
591 qdev_prop_set_uint32(gicdev, "len-redist-region-count",
592 nb_redist_regions);
593 qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
594
595 if (nb_redist_regions == 2) {
596 uint32_t redist1_capacity =
597 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
598
599 qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
600 MIN(smp_cpus - redist0_count, redist1_capacity));
601 }
602 } else {
603 if (!kvm_irqchip_in_kernel()) {
604 qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
605 vms->virt);
606 }
607 }
608 qdev_init_nofail(gicdev);
609 gicbusdev = SYS_BUS_DEVICE(gicdev);
610 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
611 if (type == 3) {
612 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
613 if (nb_redist_regions == 2) {
614 sysbus_mmio_map(gicbusdev, 2,
615 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
616 }
617 } else {
618 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
619 if (vms->virt) {
620 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
621 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
622 }
623 }
624
625 /* Wire the outputs from each CPU's generic timer and the GICv3
626 * maintenance interrupt signal to the appropriate GIC PPI inputs,
627 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
628 */
629 for (i = 0; i < smp_cpus; i++) {
630 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
631 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
632 int irq;
633 /* Mapping from the output timer irq lines from the CPU to the
634 * GIC PPI inputs we use for the virt board.
635 */
636 const int timer_irq[] = {
637 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
638 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
639 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
640 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
641 };
642
643 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
644 qdev_connect_gpio_out(cpudev, irq,
645 qdev_get_gpio_in(gicdev,
646 ppibase + timer_irq[irq]));
647 }
648
649 if (type == 3) {
650 qemu_irq irq = qdev_get_gpio_in(gicdev,
651 ppibase + ARCH_GIC_MAINT_IRQ);
652 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
653 0, irq);
654 } else if (vms->virt) {
655 qemu_irq irq = qdev_get_gpio_in(gicdev,
656 ppibase + ARCH_GIC_MAINT_IRQ);
657 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
658 }
659
660 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
661 qdev_get_gpio_in(gicdev, ppibase
662 + VIRTUAL_PMU_IRQ));
663
664 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
665 sysbus_connect_irq(gicbusdev, i + smp_cpus,
666 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
667 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
668 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
669 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
670 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
671 }
672
673 for (i = 0; i < NUM_IRQS; i++) {
674 pic[i] = qdev_get_gpio_in(gicdev, i);
675 }
676
677 fdt_add_gic_node(vms);
678
679 if (type == 3 && vms->its) {
680 create_its(vms, gicdev);
681 } else if (type == 2) {
682 create_v2m(vms, pic);
683 }
684 }
685
686 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
687 MemoryRegion *mem, Chardev *chr)
688 {
689 char *nodename;
690 hwaddr base = vms->memmap[uart].base;
691 hwaddr size = vms->memmap[uart].size;
692 int irq = vms->irqmap[uart];
693 const char compat[] = "arm,pl011\0arm,primecell";
694 const char clocknames[] = "uartclk\0apb_pclk";
695 DeviceState *dev = qdev_create(NULL, "pl011");
696 SysBusDevice *s = SYS_BUS_DEVICE(dev);
697
698 qdev_prop_set_chr(dev, "chardev", chr);
699 qdev_init_nofail(dev);
700 memory_region_add_subregion(mem, base,
701 sysbus_mmio_get_region(s, 0));
702 sysbus_connect_irq(s, 0, pic[irq]);
703
704 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
705 qemu_fdt_add_subnode(vms->fdt, nodename);
706 /* Note that we can't use setprop_string because of the embedded NUL */
707 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
708 compat, sizeof(compat));
709 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
710 2, base, 2, size);
711 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
712 GIC_FDT_IRQ_TYPE_SPI, irq,
713 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
714 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
715 vms->clock_phandle, vms->clock_phandle);
716 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
717 clocknames, sizeof(clocknames));
718
719 if (uart == VIRT_UART) {
720 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
721 } else {
722 /* Mark as not usable by the normal world */
723 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
724 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
725
726 qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
727 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
728 nodename);
729 }
730
731 g_free(nodename);
732 }
733
734 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
735 {
736 char *nodename;
737 hwaddr base = vms->memmap[VIRT_RTC].base;
738 hwaddr size = vms->memmap[VIRT_RTC].size;
739 int irq = vms->irqmap[VIRT_RTC];
740 const char compat[] = "arm,pl031\0arm,primecell";
741
742 sysbus_create_simple("pl031", base, pic[irq]);
743
744 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
745 qemu_fdt_add_subnode(vms->fdt, nodename);
746 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
747 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
748 2, base, 2, size);
749 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
750 GIC_FDT_IRQ_TYPE_SPI, irq,
751 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
752 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
753 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
754 g_free(nodename);
755 }
756
757 static DeviceState *gpio_key_dev;
758 static void virt_powerdown_req(Notifier *n, void *opaque)
759 {
760 /* use gpio Pin 3 for power button event */
761 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
762 }
763
764 static Notifier virt_system_powerdown_notifier = {
765 .notify = virt_powerdown_req
766 };
767
768 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
769 {
770 char *nodename;
771 DeviceState *pl061_dev;
772 hwaddr base = vms->memmap[VIRT_GPIO].base;
773 hwaddr size = vms->memmap[VIRT_GPIO].size;
774 int irq = vms->irqmap[VIRT_GPIO];
775 const char compat[] = "arm,pl061\0arm,primecell";
776
777 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
778
779 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
780 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
781 qemu_fdt_add_subnode(vms->fdt, nodename);
782 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
783 2, base, 2, size);
784 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
785 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
786 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
787 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
788 GIC_FDT_IRQ_TYPE_SPI, irq,
789 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
790 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
791 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
792 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
793
794 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
795 qdev_get_gpio_in(pl061_dev, 3));
796 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
797 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
798 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
799 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
800
801 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
802 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
803 "label", "GPIO Key Poweroff");
804 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
805 KEY_POWER);
806 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
807 "gpios", phandle, 3, 0);
808
809 /* connect powerdown request */
810 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
811
812 g_free(nodename);
813 }
814
815 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
816 {
817 int i;
818 hwaddr size = vms->memmap[VIRT_MMIO].size;
819
820 /* We create the transports in forwards order. Since qbus_realize()
821 * prepends (not appends) new child buses, the incrementing loop below will
822 * create a list of virtio-mmio buses with decreasing base addresses.
823 *
824 * When a -device option is processed from the command line,
825 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
826 * order. The upshot is that -device options in increasing command line
827 * order are mapped to virtio-mmio buses with decreasing base addresses.
828 *
829 * When this code was originally written, that arrangement ensured that the
830 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
831 * the first -device on the command line. (The end-to-end order is a
832 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
833 * guest kernel's name-to-address assignment strategy.)
834 *
835 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
836 * the message, if not necessarily the code, of commit 70161ff336.
837 * Therefore the loop now establishes the inverse of the original intent.
838 *
839 * Unfortunately, we can't counteract the kernel change by reversing the
840 * loop; it would break existing command lines.
841 *
842 * In any case, the kernel makes no guarantee about the stability of
843 * enumeration order of virtio devices (as demonstrated by it changing
844 * between kernel versions). For reliable and stable identification
845 * of disks users must use UUIDs or similar mechanisms.
846 */
847 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
848 int irq = vms->irqmap[VIRT_MMIO] + i;
849 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
850
851 sysbus_create_simple("virtio-mmio", base, pic[irq]);
852 }
853
854 /* We add dtb nodes in reverse order so that they appear in the finished
855 * device tree lowest address first.
856 *
857 * Note that this mapping is independent of the loop above. The previous
858 * loop influences virtio device to virtio transport assignment, whereas
859 * this loop controls how virtio transports are laid out in the dtb.
860 */
861 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
862 char *nodename;
863 int irq = vms->irqmap[VIRT_MMIO] + i;
864 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
865
866 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
867 qemu_fdt_add_subnode(vms->fdt, nodename);
868 qemu_fdt_setprop_string(vms->fdt, nodename,
869 "compatible", "virtio,mmio");
870 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
871 2, base, 2, size);
872 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
873 GIC_FDT_IRQ_TYPE_SPI, irq,
874 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
875 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
876 g_free(nodename);
877 }
878 }
879
880 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
881
882 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
883 const char *name,
884 const char *alias_prop_name)
885 {
886 /*
887 * Create a single flash device. We use the same parameters as
888 * the flash devices on the Versatile Express board.
889 */
890 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
891
892 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
893 qdev_prop_set_uint8(dev, "width", 4);
894 qdev_prop_set_uint8(dev, "device-width", 2);
895 qdev_prop_set_bit(dev, "big-endian", false);
896 qdev_prop_set_uint16(dev, "id0", 0x89);
897 qdev_prop_set_uint16(dev, "id1", 0x18);
898 qdev_prop_set_uint16(dev, "id2", 0x00);
899 qdev_prop_set_uint16(dev, "id3", 0x00);
900 qdev_prop_set_string(dev, "name", name);
901 object_property_add_child(OBJECT(vms), name, OBJECT(dev),
902 &error_abort);
903 object_property_add_alias(OBJECT(vms), alias_prop_name,
904 OBJECT(dev), "drive", &error_abort);
905 return PFLASH_CFI01(dev);
906 }
907
908 static void virt_flash_create(VirtMachineState *vms)
909 {
910 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
911 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
912 }
913
914 static void virt_flash_map1(PFlashCFI01 *flash,
915 hwaddr base, hwaddr size,
916 MemoryRegion *sysmem)
917 {
918 DeviceState *dev = DEVICE(flash);
919
920 assert(size % VIRT_FLASH_SECTOR_SIZE == 0);
921 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
922 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
923 qdev_init_nofail(dev);
924
925 memory_region_add_subregion(sysmem, base,
926 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
927 0));
928 }
929
930 static void virt_flash_map(VirtMachineState *vms,
931 MemoryRegion *sysmem,
932 MemoryRegion *secure_sysmem)
933 {
934 /*
935 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
936 * sysmem is the system memory space. secure_sysmem is the secure view
937 * of the system, and the first flash device should be made visible only
938 * there. The second flash device is visible to both secure and nonsecure.
939 * If sysmem == secure_sysmem this means there is no separate Secure
940 * address space and both flash devices are generally visible.
941 */
942 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
943 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
944
945 virt_flash_map1(vms->flash[0], flashbase, flashsize,
946 secure_sysmem);
947 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
948 sysmem);
949 }
950
951 static void virt_flash_fdt(VirtMachineState *vms,
952 MemoryRegion *sysmem,
953 MemoryRegion *secure_sysmem)
954 {
955 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
956 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
957 char *nodename;
958
959 if (sysmem == secure_sysmem) {
960 /* Report both flash devices as a single node in the DT */
961 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
962 qemu_fdt_add_subnode(vms->fdt, nodename);
963 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
964 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
965 2, flashbase, 2, flashsize,
966 2, flashbase + flashsize, 2, flashsize);
967 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
968 g_free(nodename);
969 } else {
970 /*
971 * Report the devices as separate nodes so we can mark one as
972 * only visible to the secure world.
973 */
974 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
975 qemu_fdt_add_subnode(vms->fdt, nodename);
976 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
977 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
978 2, flashbase, 2, flashsize);
979 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
980 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
981 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
982 g_free(nodename);
983
984 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
985 qemu_fdt_add_subnode(vms->fdt, nodename);
986 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
987 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
988 2, flashbase + flashsize, 2, flashsize);
989 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
990 g_free(nodename);
991 }
992 }
993
994 static bool virt_firmware_init(VirtMachineState *vms,
995 MemoryRegion *sysmem,
996 MemoryRegion *secure_sysmem)
997 {
998 int i;
999 BlockBackend *pflash_blk0;
1000
1001 /* Map legacy -drive if=pflash to machine properties */
1002 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1003 pflash_cfi01_legacy_drive(vms->flash[i],
1004 drive_get(IF_PFLASH, 0, i));
1005 }
1006
1007 virt_flash_map(vms, sysmem, secure_sysmem);
1008
1009 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1010
1011 if (bios_name) {
1012 char *fname;
1013 MemoryRegion *mr;
1014 int image_size;
1015
1016 if (pflash_blk0) {
1017 error_report("The contents of the first flash device may be "
1018 "specified with -bios or with -drive if=pflash... "
1019 "but you cannot use both options at once");
1020 exit(1);
1021 }
1022
1023 /* Fall back to -bios */
1024
1025 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1026 if (!fname) {
1027 error_report("Could not find ROM image '%s'", bios_name);
1028 exit(1);
1029 }
1030 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1031 image_size = load_image_mr(fname, mr);
1032 g_free(fname);
1033 if (image_size < 0) {
1034 error_report("Could not load ROM image '%s'", bios_name);
1035 exit(1);
1036 }
1037 }
1038
1039 return pflash_blk0 || bios_name;
1040 }
1041
1042 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1043 {
1044 MachineState *ms = MACHINE(vms);
1045 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1046 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1047 FWCfgState *fw_cfg;
1048 char *nodename;
1049
1050 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1051 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1052
1053 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1054 qemu_fdt_add_subnode(vms->fdt, nodename);
1055 qemu_fdt_setprop_string(vms->fdt, nodename,
1056 "compatible", "qemu,fw-cfg-mmio");
1057 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1058 2, base, 2, size);
1059 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1060 g_free(nodename);
1061 return fw_cfg;
1062 }
1063
1064 static void create_pcie_irq_map(const VirtMachineState *vms,
1065 uint32_t gic_phandle,
1066 int first_irq, const char *nodename)
1067 {
1068 int devfn, pin;
1069 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1070 uint32_t *irq_map = full_irq_map;
1071
1072 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1073 for (pin = 0; pin < 4; pin++) {
1074 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1075 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1076 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1077 int i;
1078
1079 uint32_t map[] = {
1080 devfn << 8, 0, 0, /* devfn */
1081 pin + 1, /* PCI pin */
1082 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1083
1084 /* Convert map to big endian */
1085 for (i = 0; i < 10; i++) {
1086 irq_map[i] = cpu_to_be32(map[i]);
1087 }
1088 irq_map += 10;
1089 }
1090 }
1091
1092 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1093 full_irq_map, sizeof(full_irq_map));
1094
1095 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1096 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1097 0x7 /* PCI irq */);
1098 }
1099
1100 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1101 PCIBus *bus)
1102 {
1103 char *node;
1104 const char compat[] = "arm,smmu-v3";
1105 int irq = vms->irqmap[VIRT_SMMU];
1106 int i;
1107 hwaddr base = vms->memmap[VIRT_SMMU].base;
1108 hwaddr size = vms->memmap[VIRT_SMMU].size;
1109 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1110 DeviceState *dev;
1111
1112 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1113 return;
1114 }
1115
1116 dev = qdev_create(NULL, "arm-smmuv3");
1117
1118 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1119 &error_abort);
1120 qdev_init_nofail(dev);
1121 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1122 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1123 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1124 }
1125
1126 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1127 qemu_fdt_add_subnode(vms->fdt, node);
1128 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1129 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1130
1131 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1132 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1133 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1134 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1135 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1136
1137 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1138 sizeof(irq_names));
1139
1140 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1141 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1142 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1143
1144 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1145
1146 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1147 g_free(node);
1148 }
1149
1150 static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1151 {
1152 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1153 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1154 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1155 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1156 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1157 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1158 hwaddr base_ecam, size_ecam;
1159 hwaddr base = base_mmio;
1160 int nr_pcie_buses;
1161 int irq = vms->irqmap[VIRT_PCIE];
1162 MemoryRegion *mmio_alias;
1163 MemoryRegion *mmio_reg;
1164 MemoryRegion *ecam_alias;
1165 MemoryRegion *ecam_reg;
1166 DeviceState *dev;
1167 char *nodename;
1168 int i, ecam_id;
1169 PCIHostState *pci;
1170
1171 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1172 qdev_init_nofail(dev);
1173
1174 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1175 base_ecam = vms->memmap[ecam_id].base;
1176 size_ecam = vms->memmap[ecam_id].size;
1177 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1178 /* Map only the first size_ecam bytes of ECAM space */
1179 ecam_alias = g_new0(MemoryRegion, 1);
1180 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1181 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1182 ecam_reg, 0, size_ecam);
1183 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1184
1185 /* Map the MMIO window into system address space so as to expose
1186 * the section of PCI MMIO space which starts at the same base address
1187 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1188 * the window).
1189 */
1190 mmio_alias = g_new0(MemoryRegion, 1);
1191 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1192 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1193 mmio_reg, base_mmio, size_mmio);
1194 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1195
1196 if (vms->highmem) {
1197 /* Map high MMIO space */
1198 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1199
1200 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1201 mmio_reg, base_mmio_high, size_mmio_high);
1202 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1203 high_mmio_alias);
1204 }
1205
1206 /* Map IO port space */
1207 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1208
1209 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1210 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1211 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1212 }
1213
1214 pci = PCI_HOST_BRIDGE(dev);
1215 if (pci->bus) {
1216 for (i = 0; i < nb_nics; i++) {
1217 NICInfo *nd = &nd_table[i];
1218
1219 if (!nd->model) {
1220 nd->model = g_strdup("virtio");
1221 }
1222
1223 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1224 }
1225 }
1226
1227 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1228 qemu_fdt_add_subnode(vms->fdt, nodename);
1229 qemu_fdt_setprop_string(vms->fdt, nodename,
1230 "compatible", "pci-host-ecam-generic");
1231 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1232 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1233 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1234 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1235 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1236 nr_pcie_buses - 1);
1237 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1238
1239 if (vms->msi_phandle) {
1240 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1241 vms->msi_phandle);
1242 }
1243
1244 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1245 2, base_ecam, 2, size_ecam);
1246
1247 if (vms->highmem) {
1248 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1249 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1250 2, base_pio, 2, size_pio,
1251 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1252 2, base_mmio, 2, size_mmio,
1253 1, FDT_PCI_RANGE_MMIO_64BIT,
1254 2, base_mmio_high,
1255 2, base_mmio_high, 2, size_mmio_high);
1256 } else {
1257 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1258 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1259 2, base_pio, 2, size_pio,
1260 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1261 2, base_mmio, 2, size_mmio);
1262 }
1263
1264 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1265 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1266
1267 if (vms->iommu) {
1268 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1269
1270 create_smmu(vms, pic, pci->bus);
1271
1272 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1273 0x0, vms->iommu_phandle, 0x0, 0x10000);
1274 }
1275
1276 g_free(nodename);
1277 }
1278
1279 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1280 {
1281 DeviceState *dev;
1282 SysBusDevice *s;
1283 int i;
1284 MemoryRegion *sysmem = get_system_memory();
1285
1286 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1287 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1288 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1289 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1290 qdev_init_nofail(dev);
1291 vms->platform_bus_dev = dev;
1292
1293 s = SYS_BUS_DEVICE(dev);
1294 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1295 int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1296 sysbus_connect_irq(s, i, pic[irqn]);
1297 }
1298
1299 memory_region_add_subregion(sysmem,
1300 vms->memmap[VIRT_PLATFORM_BUS].base,
1301 sysbus_mmio_get_region(s, 0));
1302 }
1303
1304 static void create_secure_ram(VirtMachineState *vms,
1305 MemoryRegion *secure_sysmem)
1306 {
1307 MemoryRegion *secram = g_new(MemoryRegion, 1);
1308 char *nodename;
1309 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1310 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1311
1312 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1313 &error_fatal);
1314 memory_region_add_subregion(secure_sysmem, base, secram);
1315
1316 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1317 qemu_fdt_add_subnode(vms->fdt, nodename);
1318 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1319 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1320 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1321 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1322
1323 g_free(nodename);
1324 }
1325
1326 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1327 {
1328 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1329 bootinfo);
1330
1331 *fdt_size = board->fdt_size;
1332 return board->fdt;
1333 }
1334
1335 static void virt_build_smbios(VirtMachineState *vms)
1336 {
1337 MachineClass *mc = MACHINE_GET_CLASS(vms);
1338 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1339 uint8_t *smbios_tables, *smbios_anchor;
1340 size_t smbios_tables_len, smbios_anchor_len;
1341 const char *product = "QEMU Virtual Machine";
1342
1343 if (kvm_enabled()) {
1344 product = "KVM Virtual Machine";
1345 }
1346
1347 smbios_set_defaults("QEMU", product,
1348 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1349 true, SMBIOS_ENTRY_POINT_30);
1350
1351 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
1352 &smbios_anchor, &smbios_anchor_len);
1353
1354 if (smbios_anchor) {
1355 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1356 smbios_tables, smbios_tables_len);
1357 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1358 smbios_anchor, smbios_anchor_len);
1359 }
1360 }
1361
1362 static
1363 void virt_machine_done(Notifier *notifier, void *data)
1364 {
1365 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1366 machine_done);
1367 ARMCPU *cpu = ARM_CPU(first_cpu);
1368 struct arm_boot_info *info = &vms->bootinfo;
1369 AddressSpace *as = arm_boot_address_space(cpu, info);
1370
1371 /*
1372 * If the user provided a dtb, we assume the dynamic sysbus nodes
1373 * already are integrated there. This corresponds to a use case where
1374 * the dynamic sysbus nodes are complex and their generation is not yet
1375 * supported. In that case the user can take charge of the guest dt
1376 * while qemu takes charge of the qom stuff.
1377 */
1378 if (info->dtb_filename == NULL) {
1379 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1380 vms->memmap[VIRT_PLATFORM_BUS].base,
1381 vms->memmap[VIRT_PLATFORM_BUS].size,
1382 vms->irqmap[VIRT_PLATFORM_BUS]);
1383 }
1384 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1385 exit(1);
1386 }
1387
1388 virt_acpi_setup(vms);
1389 virt_build_smbios(vms);
1390 }
1391
1392 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1393 {
1394 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1395 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1396
1397 if (!vmc->disallow_affinity_adjustment) {
1398 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1399 * GIC's target-list limitations. 32-bit KVM hosts currently
1400 * always create clusters of 4 CPUs, but that is expected to
1401 * change when they gain support for gicv3. When KVM is enabled
1402 * it will override the changes we make here, therefore our
1403 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1404 * and to improve SGI efficiency.
1405 */
1406 if (vms->gic_version == 3) {
1407 clustersz = GICV3_TARGETLIST_BITS;
1408 } else {
1409 clustersz = GIC_TARGETLIST_BITS;
1410 }
1411 }
1412 return arm_cpu_mp_affinity(idx, clustersz);
1413 }
1414
1415 static void virt_set_memmap(VirtMachineState *vms)
1416 {
1417 MachineState *ms = MACHINE(vms);
1418 hwaddr base, device_memory_base, device_memory_size;
1419 int i;
1420
1421 vms->memmap = extended_memmap;
1422
1423 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1424 vms->memmap[i] = base_memmap[i];
1425 }
1426
1427 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1428 error_report("unsupported number of memory slots: %"PRIu64,
1429 ms->ram_slots);
1430 exit(EXIT_FAILURE);
1431 }
1432
1433 /*
1434 * We compute the base of the high IO region depending on the
1435 * amount of initial and device memory. The device memory start/size
1436 * is aligned on 1GiB. We never put the high IO region below 256GiB
1437 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1438 * The device region size assumes 1GiB page max alignment per slot.
1439 */
1440 device_memory_base =
1441 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1442 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1443
1444 /* Base address of the high IO region */
1445 base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1446 if (base < device_memory_base) {
1447 error_report("maxmem/slots too huge");
1448 exit(EXIT_FAILURE);
1449 }
1450 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1451 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1452 }
1453
1454 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1455 hwaddr size = extended_memmap[i].size;
1456
1457 base = ROUND_UP(base, size);
1458 vms->memmap[i].base = base;
1459 vms->memmap[i].size = size;
1460 base += size;
1461 }
1462 vms->highest_gpa = base - 1;
1463 if (device_memory_size > 0) {
1464 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1465 ms->device_memory->base = device_memory_base;
1466 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1467 "device-memory", device_memory_size);
1468 }
1469 }
1470
1471 static void machvirt_init(MachineState *machine)
1472 {
1473 VirtMachineState *vms = VIRT_MACHINE(machine);
1474 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1475 MachineClass *mc = MACHINE_GET_CLASS(machine);
1476 const CPUArchIdList *possible_cpus;
1477 qemu_irq pic[NUM_IRQS];
1478 MemoryRegion *sysmem = get_system_memory();
1479 MemoryRegion *secure_sysmem = NULL;
1480 int n, virt_max_cpus;
1481 MemoryRegion *ram = g_new(MemoryRegion, 1);
1482 bool firmware_loaded;
1483 bool aarch64 = true;
1484 unsigned int smp_cpus = machine->smp.cpus;
1485 unsigned int max_cpus = machine->smp.max_cpus;
1486
1487 /*
1488 * In accelerated mode, the memory map is computed earlier in kvm_type()
1489 * to create a VM with the right number of IPA bits.
1490 */
1491 if (!vms->memmap) {
1492 virt_set_memmap(vms);
1493 }
1494
1495 /* We can probe only here because during property set
1496 * KVM is not available yet
1497 */
1498 if (vms->gic_version <= 0) {
1499 /* "host" or "max" */
1500 if (!kvm_enabled()) {
1501 if (vms->gic_version == 0) {
1502 error_report("gic-version=host requires KVM");
1503 exit(1);
1504 } else {
1505 /* "max": currently means 3 for TCG */
1506 vms->gic_version = 3;
1507 }
1508 } else {
1509 vms->gic_version = kvm_arm_vgic_probe();
1510 if (!vms->gic_version) {
1511 error_report(
1512 "Unable to determine GIC version supported by host");
1513 exit(1);
1514 }
1515 }
1516 }
1517
1518 if (!cpu_type_valid(machine->cpu_type)) {
1519 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1520 exit(1);
1521 }
1522
1523 if (vms->secure) {
1524 if (kvm_enabled()) {
1525 error_report("mach-virt: KVM does not support Security extensions");
1526 exit(1);
1527 }
1528
1529 /*
1530 * The Secure view of the world is the same as the NonSecure,
1531 * but with a few extra devices. Create it as a container region
1532 * containing the system memory at low priority; any secure-only
1533 * devices go in at higher priority and take precedence.
1534 */
1535 secure_sysmem = g_new(MemoryRegion, 1);
1536 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1537 UINT64_MAX);
1538 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1539 }
1540
1541 firmware_loaded = virt_firmware_init(vms, sysmem,
1542 secure_sysmem ?: sysmem);
1543
1544 /* If we have an EL3 boot ROM then the assumption is that it will
1545 * implement PSCI itself, so disable QEMU's internal implementation
1546 * so it doesn't get in the way. Instead of starting secondary
1547 * CPUs in PSCI powerdown state we will start them all running and
1548 * let the boot ROM sort them out.
1549 * The usual case is that we do use QEMU's PSCI implementation;
1550 * if the guest has EL2 then we will use SMC as the conduit,
1551 * and otherwise we will use HVC (for backwards compatibility and
1552 * because if we're using KVM then we must use HVC).
1553 */
1554 if (vms->secure && firmware_loaded) {
1555 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1556 } else if (vms->virt) {
1557 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1558 } else {
1559 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1560 }
1561
1562 /* The maximum number of CPUs depends on the GIC version, or on how
1563 * many redistributors we can fit into the memory map.
1564 */
1565 if (vms->gic_version == 3) {
1566 virt_max_cpus =
1567 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1568 virt_max_cpus +=
1569 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1570 } else {
1571 virt_max_cpus = GIC_NCPU;
1572 }
1573
1574 if (max_cpus > virt_max_cpus) {
1575 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1576 "supported by machine 'mach-virt' (%d)",
1577 max_cpus, virt_max_cpus);
1578 exit(1);
1579 }
1580
1581 vms->smp_cpus = smp_cpus;
1582
1583 if (vms->virt && kvm_enabled()) {
1584 error_report("mach-virt: KVM does not support providing "
1585 "Virtualization extensions to the guest CPU");
1586 exit(1);
1587 }
1588
1589 create_fdt(vms);
1590
1591 possible_cpus = mc->possible_cpu_arch_ids(machine);
1592 for (n = 0; n < possible_cpus->len; n++) {
1593 Object *cpuobj;
1594 CPUState *cs;
1595
1596 if (n >= smp_cpus) {
1597 break;
1598 }
1599
1600 cpuobj = object_new(possible_cpus->cpus[n].type);
1601 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1602 "mp-affinity", NULL);
1603
1604 cs = CPU(cpuobj);
1605 cs->cpu_index = n;
1606
1607 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1608 &error_fatal);
1609
1610 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1611
1612 if (!vms->secure) {
1613 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1614 }
1615
1616 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1617 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1618 }
1619
1620 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1621 object_property_set_int(cpuobj, vms->psci_conduit,
1622 "psci-conduit", NULL);
1623
1624 /* Secondary CPUs start in PSCI powered-down state */
1625 if (n > 0) {
1626 object_property_set_bool(cpuobj, true,
1627 "start-powered-off", NULL);
1628 }
1629 }
1630
1631 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1632 object_property_set_bool(cpuobj, false, "pmu", NULL);
1633 }
1634
1635 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1636 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1637 "reset-cbar", &error_abort);
1638 }
1639
1640 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1641 &error_abort);
1642 if (vms->secure) {
1643 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1644 "secure-memory", &error_abort);
1645 }
1646
1647 object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1648 object_unref(cpuobj);
1649 }
1650 fdt_add_timer_nodes(vms);
1651 fdt_add_cpu_nodes(vms);
1652
1653 if (!kvm_enabled()) {
1654 ARMCPU *cpu = ARM_CPU(first_cpu);
1655 bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL);
1656
1657 if (aarch64 && vms->highmem) {
1658 int requested_pa_size, pamax = arm_pamax(cpu);
1659
1660 requested_pa_size = 64 - clz64(vms->highest_gpa);
1661 if (pamax < requested_pa_size) {
1662 error_report("VCPU supports less PA bits (%d) than requested "
1663 "by the memory map (%d)", pamax, requested_pa_size);
1664 exit(1);
1665 }
1666 }
1667 }
1668
1669 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1670 machine->ram_size);
1671 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1672 if (machine->device_memory) {
1673 memory_region_add_subregion(sysmem, machine->device_memory->base,
1674 &machine->device_memory->mr);
1675 }
1676
1677 virt_flash_fdt(vms, sysmem, secure_sysmem);
1678
1679 create_gic(vms, pic);
1680
1681 fdt_add_pmu_nodes(vms);
1682
1683 create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1684
1685 if (vms->secure) {
1686 create_secure_ram(vms, secure_sysmem);
1687 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1688 }
1689
1690 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1691
1692 create_rtc(vms, pic);
1693
1694 create_pcie(vms, pic);
1695
1696 create_gpio(vms, pic);
1697
1698 /* Create mmio transports, so the user can create virtio backends
1699 * (which will be automatically plugged in to the transports). If
1700 * no backend is created the transport will just sit harmlessly idle.
1701 */
1702 create_virtio_devices(vms, pic);
1703
1704 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1705 rom_set_fw(vms->fw_cfg);
1706
1707 create_platform_bus(vms, pic);
1708
1709 vms->bootinfo.ram_size = machine->ram_size;
1710 vms->bootinfo.kernel_filename = machine->kernel_filename;
1711 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1712 vms->bootinfo.initrd_filename = machine->initrd_filename;
1713 vms->bootinfo.nb_cpus = smp_cpus;
1714 vms->bootinfo.board_id = -1;
1715 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1716 vms->bootinfo.get_dtb = machvirt_dtb;
1717 vms->bootinfo.skip_dtb_autoload = true;
1718 vms->bootinfo.firmware_loaded = firmware_loaded;
1719 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1720
1721 vms->machine_done.notify = virt_machine_done;
1722 qemu_add_machine_init_done_notifier(&vms->machine_done);
1723 }
1724
1725 static bool virt_get_secure(Object *obj, Error **errp)
1726 {
1727 VirtMachineState *vms = VIRT_MACHINE(obj);
1728
1729 return vms->secure;
1730 }
1731
1732 static void virt_set_secure(Object *obj, bool value, Error **errp)
1733 {
1734 VirtMachineState *vms = VIRT_MACHINE(obj);
1735
1736 vms->secure = value;
1737 }
1738
1739 static bool virt_get_virt(Object *obj, Error **errp)
1740 {
1741 VirtMachineState *vms = VIRT_MACHINE(obj);
1742
1743 return vms->virt;
1744 }
1745
1746 static void virt_set_virt(Object *obj, bool value, Error **errp)
1747 {
1748 VirtMachineState *vms = VIRT_MACHINE(obj);
1749
1750 vms->virt = value;
1751 }
1752
1753 static bool virt_get_highmem(Object *obj, Error **errp)
1754 {
1755 VirtMachineState *vms = VIRT_MACHINE(obj);
1756
1757 return vms->highmem;
1758 }
1759
1760 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1761 {
1762 VirtMachineState *vms = VIRT_MACHINE(obj);
1763
1764 vms->highmem = value;
1765 }
1766
1767 static bool virt_get_its(Object *obj, Error **errp)
1768 {
1769 VirtMachineState *vms = VIRT_MACHINE(obj);
1770
1771 return vms->its;
1772 }
1773
1774 static void virt_set_its(Object *obj, bool value, Error **errp)
1775 {
1776 VirtMachineState *vms = VIRT_MACHINE(obj);
1777
1778 vms->its = value;
1779 }
1780
1781 static char *virt_get_gic_version(Object *obj, Error **errp)
1782 {
1783 VirtMachineState *vms = VIRT_MACHINE(obj);
1784 const char *val = vms->gic_version == 3 ? "3" : "2";
1785
1786 return g_strdup(val);
1787 }
1788
1789 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1790 {
1791 VirtMachineState *vms = VIRT_MACHINE(obj);
1792
1793 if (!strcmp(value, "3")) {
1794 vms->gic_version = 3;
1795 } else if (!strcmp(value, "2")) {
1796 vms->gic_version = 2;
1797 } else if (!strcmp(value, "host")) {
1798 vms->gic_version = 0; /* Will probe later */
1799 } else if (!strcmp(value, "max")) {
1800 vms->gic_version = -1; /* Will probe later */
1801 } else {
1802 error_setg(errp, "Invalid gic-version value");
1803 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1804 }
1805 }
1806
1807 static char *virt_get_iommu(Object *obj, Error **errp)
1808 {
1809 VirtMachineState *vms = VIRT_MACHINE(obj);
1810
1811 switch (vms->iommu) {
1812 case VIRT_IOMMU_NONE:
1813 return g_strdup("none");
1814 case VIRT_IOMMU_SMMUV3:
1815 return g_strdup("smmuv3");
1816 default:
1817 g_assert_not_reached();
1818 }
1819 }
1820
1821 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1822 {
1823 VirtMachineState *vms = VIRT_MACHINE(obj);
1824
1825 if (!strcmp(value, "smmuv3")) {
1826 vms->iommu = VIRT_IOMMU_SMMUV3;
1827 } else if (!strcmp(value, "none")) {
1828 vms->iommu = VIRT_IOMMU_NONE;
1829 } else {
1830 error_setg(errp, "Invalid iommu value");
1831 error_append_hint(errp, "Valid values are none, smmuv3.\n");
1832 }
1833 }
1834
1835 static CpuInstanceProperties
1836 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1837 {
1838 MachineClass *mc = MACHINE_GET_CLASS(ms);
1839 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1840
1841 assert(cpu_index < possible_cpus->len);
1842 return possible_cpus->cpus[cpu_index].props;
1843 }
1844
1845 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1846 {
1847 return idx % nb_numa_nodes;
1848 }
1849
1850 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1851 {
1852 int n;
1853 unsigned int max_cpus = ms->smp.max_cpus;
1854 VirtMachineState *vms = VIRT_MACHINE(ms);
1855
1856 if (ms->possible_cpus) {
1857 assert(ms->possible_cpus->len == max_cpus);
1858 return ms->possible_cpus;
1859 }
1860
1861 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1862 sizeof(CPUArchId) * max_cpus);
1863 ms->possible_cpus->len = max_cpus;
1864 for (n = 0; n < ms->possible_cpus->len; n++) {
1865 ms->possible_cpus->cpus[n].type = ms->cpu_type;
1866 ms->possible_cpus->cpus[n].arch_id =
1867 virt_cpu_mp_affinity(vms, n);
1868 ms->possible_cpus->cpus[n].props.has_thread_id = true;
1869 ms->possible_cpus->cpus[n].props.thread_id = n;
1870 }
1871 return ms->possible_cpus;
1872 }
1873
1874 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1875 DeviceState *dev, Error **errp)
1876 {
1877 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1878
1879 if (vms->platform_bus_dev) {
1880 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1881 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1882 SYS_BUS_DEVICE(dev));
1883 }
1884 }
1885 }
1886
1887 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1888 DeviceState *dev)
1889 {
1890 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1891 return HOTPLUG_HANDLER(machine);
1892 }
1893
1894 return NULL;
1895 }
1896
1897 /*
1898 * for arm64 kvm_type [7-0] encodes the requested number of bits
1899 * in the IPA address space
1900 */
1901 static int virt_kvm_type(MachineState *ms, const char *type_str)
1902 {
1903 VirtMachineState *vms = VIRT_MACHINE(ms);
1904 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
1905 int requested_pa_size;
1906
1907 /* we freeze the memory map to compute the highest gpa */
1908 virt_set_memmap(vms);
1909
1910 requested_pa_size = 64 - clz64(vms->highest_gpa);
1911
1912 if (requested_pa_size > max_vm_pa_size) {
1913 error_report("-m and ,maxmem option values "
1914 "require an IPA range (%d bits) larger than "
1915 "the one supported by the host (%d bits)",
1916 requested_pa_size, max_vm_pa_size);
1917 exit(1);
1918 }
1919 /*
1920 * By default we return 0 which corresponds to an implicit legacy
1921 * 40b IPA setting. Otherwise we return the actual requested PA
1922 * logsize
1923 */
1924 return requested_pa_size > 40 ? requested_pa_size : 0;
1925 }
1926
1927 static void virt_machine_class_init(ObjectClass *oc, void *data)
1928 {
1929 MachineClass *mc = MACHINE_CLASS(oc);
1930 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1931
1932 mc->init = machvirt_init;
1933 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1934 * The value may be reduced later when we have more information about the
1935 * configuration of the particular instance.
1936 */
1937 mc->max_cpus = 512;
1938 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1939 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1940 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1941 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
1942 mc->block_default_type = IF_VIRTIO;
1943 mc->no_cdrom = 1;
1944 mc->pci_allow_0_address = true;
1945 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1946 mc->minimum_page_bits = 12;
1947 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1948 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1949 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1950 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1951 mc->kvm_type = virt_kvm_type;
1952 assert(!mc->get_hotplug_handler);
1953 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1954 hc->plug = virt_machine_device_plug_cb;
1955 }
1956
1957 static void virt_instance_init(Object *obj)
1958 {
1959 VirtMachineState *vms = VIRT_MACHINE(obj);
1960 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1961
1962 /* EL3 is disabled by default on virt: this makes us consistent
1963 * between KVM and TCG for this board, and it also allows us to
1964 * boot UEFI blobs which assume no TrustZone support.
1965 */
1966 vms->secure = false;
1967 object_property_add_bool(obj, "secure", virt_get_secure,
1968 virt_set_secure, NULL);
1969 object_property_set_description(obj, "secure",
1970 "Set on/off to enable/disable the ARM "
1971 "Security Extensions (TrustZone)",
1972 NULL);
1973
1974 /* EL2 is also disabled by default, for similar reasons */
1975 vms->virt = false;
1976 object_property_add_bool(obj, "virtualization", virt_get_virt,
1977 virt_set_virt, NULL);
1978 object_property_set_description(obj, "virtualization",
1979 "Set on/off to enable/disable emulating a "
1980 "guest CPU which implements the ARM "
1981 "Virtualization Extensions",
1982 NULL);
1983
1984 /* High memory is enabled by default */
1985 vms->highmem = true;
1986 object_property_add_bool(obj, "highmem", virt_get_highmem,
1987 virt_set_highmem, NULL);
1988 object_property_set_description(obj, "highmem",
1989 "Set on/off to enable/disable using "
1990 "physical address space above 32 bits",
1991 NULL);
1992 /* Default GIC type is v2 */
1993 vms->gic_version = 2;
1994 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1995 virt_set_gic_version, NULL);
1996 object_property_set_description(obj, "gic-version",
1997 "Set GIC version. "
1998 "Valid values are 2, 3 and host", NULL);
1999
2000 vms->highmem_ecam = !vmc->no_highmem_ecam;
2001
2002 if (vmc->no_its) {
2003 vms->its = false;
2004 } else {
2005 /* Default allows ITS instantiation */
2006 vms->its = true;
2007 object_property_add_bool(obj, "its", virt_get_its,
2008 virt_set_its, NULL);
2009 object_property_set_description(obj, "its",
2010 "Set on/off to enable/disable "
2011 "ITS instantiation",
2012 NULL);
2013 }
2014
2015 /* Default disallows iommu instantiation */
2016 vms->iommu = VIRT_IOMMU_NONE;
2017 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
2018 object_property_set_description(obj, "iommu",
2019 "Set the IOMMU type. "
2020 "Valid values are none and smmuv3",
2021 NULL);
2022
2023 vms->irqmap = a15irqmap;
2024
2025 virt_flash_create(vms);
2026 }
2027
2028 static const TypeInfo virt_machine_info = {
2029 .name = TYPE_VIRT_MACHINE,
2030 .parent = TYPE_MACHINE,
2031 .abstract = true,
2032 .instance_size = sizeof(VirtMachineState),
2033 .class_size = sizeof(VirtMachineClass),
2034 .class_init = virt_machine_class_init,
2035 .instance_init = virt_instance_init,
2036 .interfaces = (InterfaceInfo[]) {
2037 { TYPE_HOTPLUG_HANDLER },
2038 { }
2039 },
2040 };
2041
2042 static void machvirt_machine_init(void)
2043 {
2044 type_register_static(&virt_machine_info);
2045 }
2046 type_init(machvirt_machine_init);
2047
2048 static void virt_machine_4_1_options(MachineClass *mc)
2049 {
2050 }
2051 DEFINE_VIRT_MACHINE_AS_LATEST(4, 1)
2052
2053 static void virt_machine_4_0_options(MachineClass *mc)
2054 {
2055 virt_machine_4_1_options(mc);
2056 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2057 }
2058 DEFINE_VIRT_MACHINE(4, 0)
2059
2060 static void virt_machine_3_1_options(MachineClass *mc)
2061 {
2062 virt_machine_4_0_options(mc);
2063 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2064 }
2065 DEFINE_VIRT_MACHINE(3, 1)
2066
2067 static void virt_machine_3_0_options(MachineClass *mc)
2068 {
2069 virt_machine_3_1_options(mc);
2070 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2071 }
2072 DEFINE_VIRT_MACHINE(3, 0)
2073
2074 static void virt_machine_2_12_options(MachineClass *mc)
2075 {
2076 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2077
2078 virt_machine_3_0_options(mc);
2079 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2080 vmc->no_highmem_ecam = true;
2081 mc->max_cpus = 255;
2082 }
2083 DEFINE_VIRT_MACHINE(2, 12)
2084
2085 static void virt_machine_2_11_options(MachineClass *mc)
2086 {
2087 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2088
2089 virt_machine_2_12_options(mc);
2090 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2091 vmc->smbios_old_sys_ver = true;
2092 }
2093 DEFINE_VIRT_MACHINE(2, 11)
2094
2095 static void virt_machine_2_10_options(MachineClass *mc)
2096 {
2097 virt_machine_2_11_options(mc);
2098 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2099 /* before 2.11 we never faulted accesses to bad addresses */
2100 mc->ignore_memory_transaction_failures = true;
2101 }
2102 DEFINE_VIRT_MACHINE(2, 10)
2103
2104 static void virt_machine_2_9_options(MachineClass *mc)
2105 {
2106 virt_machine_2_10_options(mc);
2107 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2108 }
2109 DEFINE_VIRT_MACHINE(2, 9)
2110
2111 static void virt_machine_2_8_options(MachineClass *mc)
2112 {
2113 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2114
2115 virt_machine_2_9_options(mc);
2116 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2117 /* For 2.8 and earlier we falsely claimed in the DT that
2118 * our timers were edge-triggered, not level-triggered.
2119 */
2120 vmc->claim_edge_triggered_timers = true;
2121 }
2122 DEFINE_VIRT_MACHINE(2, 8)
2123
2124 static void virt_machine_2_7_options(MachineClass *mc)
2125 {
2126 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2127
2128 virt_machine_2_8_options(mc);
2129 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2130 /* ITS was introduced with 2.8 */
2131 vmc->no_its = true;
2132 /* Stick with 1K pages for migration compatibility */
2133 mc->minimum_page_bits = 0;
2134 }
2135 DEFINE_VIRT_MACHINE(2, 7)
2136
2137 static void virt_machine_2_6_options(MachineClass *mc)
2138 {
2139 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2140
2141 virt_machine_2_7_options(mc);
2142 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2143 vmc->disallow_affinity_adjustment = true;
2144 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2145 vmc->no_pmu = true;
2146 }
2147 DEFINE_VIRT_MACHINE(2, 6)