]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
de66def51ea40965f8046f8349d998396b672e2e
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "qapi/error.h"
37 #include "hw/sysbus.h"
38 #include "hw/boards.h"
39 #include "hw/arm/boot.h"
40 #include "hw/arm/primecell.h"
41 #include "hw/arm/virt.h"
42 #include "hw/block/flash.h"
43 #include "hw/vfio/vfio-calxeda-xgmac.h"
44 #include "hw/vfio/vfio-amd-xgbe.h"
45 #include "hw/display/ramfb.h"
46 #include "net/net.h"
47 #include "sysemu/device_tree.h"
48 #include "sysemu/numa.h"
49 #include "sysemu/runstate.h"
50 #include "sysemu/sysemu.h"
51 #include "sysemu/tpm.h"
52 #include "sysemu/kvm.h"
53 #include "hw/loader.h"
54 #include "exec/address-spaces.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/arm/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/irq.h"
67 #include "kvm_arm.h"
68 #include "hw/firmware/smbios.h"
69 #include "qapi/visitor.h"
70 #include "qapi/qapi-visit-common.h"
71 #include "standard-headers/linux/input.h"
72 #include "hw/arm/smmuv3.h"
73 #include "hw/acpi/acpi.h"
74 #include "target/arm/internals.h"
75 #include "hw/mem/pc-dimm.h"
76 #include "hw/mem/nvdimm.h"
77 #include "hw/acpi/generic_event_device.h"
78 #include "hw/virtio/virtio-iommu.h"
79 #include "hw/char/pl011.h"
80 #include "qemu/guest-random.h"
81
82 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
83 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
84 void *data) \
85 { \
86 MachineClass *mc = MACHINE_CLASS(oc); \
87 virt_machine_##major##_##minor##_options(mc); \
88 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
89 if (latest) { \
90 mc->alias = "virt"; \
91 } \
92 } \
93 static const TypeInfo machvirt_##major##_##minor##_info = { \
94 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
95 .parent = TYPE_VIRT_MACHINE, \
96 .class_init = virt_##major##_##minor##_class_init, \
97 }; \
98 static void machvirt_machine_##major##_##minor##_init(void) \
99 { \
100 type_register_static(&machvirt_##major##_##minor##_info); \
101 } \
102 type_init(machvirt_machine_##major##_##minor##_init);
103
104 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
105 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
106 #define DEFINE_VIRT_MACHINE(major, minor) \
107 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
108
109
110 /* Number of external interrupt lines to configure the GIC with */
111 #define NUM_IRQS 256
112
113 #define PLATFORM_BUS_NUM_IRQS 64
114
115 /* Legacy RAM limit in GB (< version 4.0) */
116 #define LEGACY_RAMLIMIT_GB 255
117 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
118
119 /* Addresses and sizes of our components.
120 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
121 * 128MB..256MB is used for miscellaneous device I/O.
122 * 256MB..1GB is reserved for possible future PCI support (ie where the
123 * PCI memory window will go if we add a PCI host controller).
124 * 1GB and up is RAM (which may happily spill over into the
125 * high memory region beyond 4GB).
126 * This represents a compromise between how much RAM can be given to
127 * a 32 bit VM and leaving space for expansion and in particular for PCI.
128 * Note that devices should generally be placed at multiples of 0x10000,
129 * to accommodate guests using 64K pages.
130 */
131 static const MemMapEntry base_memmap[] = {
132 /* Space up to 0x8000000 is reserved for a boot ROM */
133 [VIRT_FLASH] = { 0, 0x08000000 },
134 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
135 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
136 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
137 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
138 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
139 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
140 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
141 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
142 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
143 /* This redistributor space allows up to 2*64kB*123 CPUs */
144 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
145 [VIRT_UART] = { 0x09000000, 0x00001000 },
146 [VIRT_RTC] = { 0x09010000, 0x00001000 },
147 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
148 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
149 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
150 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
151 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
152 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
153 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
154 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
155 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
156 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
157 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
158 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
159 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
160 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
161 /* Actual RAM size depends on initial RAM and device memory settings */
162 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
163 };
164
165 /*
166 * Highmem IO Regions: This memory map is floating, located after the RAM.
167 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
168 * top of the RAM, so that its base get the same alignment as the size,
169 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
170 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
171 * Note the extended_memmap is sized so that it eventually also includes the
172 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
173 * index of base_memmap).
174 */
175 static MemMapEntry extended_memmap[] = {
176 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
177 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
178 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
179 /* Second PCIe window */
180 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
181 };
182
183 static const int a15irqmap[] = {
184 [VIRT_UART] = 1,
185 [VIRT_RTC] = 2,
186 [VIRT_PCIE] = 3, /* ... to 6 */
187 [VIRT_GPIO] = 7,
188 [VIRT_SECURE_UART] = 8,
189 [VIRT_ACPI_GED] = 9,
190 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
191 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
192 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
193 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
194 };
195
196 static const char *valid_cpus[] = {
197 ARM_CPU_TYPE_NAME("cortex-a7"),
198 ARM_CPU_TYPE_NAME("cortex-a15"),
199 ARM_CPU_TYPE_NAME("cortex-a53"),
200 ARM_CPU_TYPE_NAME("cortex-a57"),
201 ARM_CPU_TYPE_NAME("cortex-a72"),
202 ARM_CPU_TYPE_NAME("host"),
203 ARM_CPU_TYPE_NAME("max"),
204 };
205
206 static bool cpu_type_valid(const char *cpu)
207 {
208 int i;
209
210 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
211 if (strcmp(cpu, valid_cpus[i]) == 0) {
212 return true;
213 }
214 }
215 return false;
216 }
217
218 static void create_kaslr_seed(VirtMachineState *vms, const char *node)
219 {
220 Error *err = NULL;
221 uint64_t seed;
222
223 if (qemu_guest_getrandom(&seed, sizeof(seed), &err)) {
224 error_free(err);
225 return;
226 }
227 qemu_fdt_setprop_u64(vms->fdt, node, "kaslr-seed", seed);
228 }
229
230 static void create_fdt(VirtMachineState *vms)
231 {
232 MachineState *ms = MACHINE(vms);
233 int nb_numa_nodes = ms->numa_state->num_nodes;
234 void *fdt = create_device_tree(&vms->fdt_size);
235
236 if (!fdt) {
237 error_report("create_device_tree() failed");
238 exit(1);
239 }
240
241 vms->fdt = fdt;
242
243 /* Header */
244 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
245 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
246 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
247
248 /* /chosen must exist for load_dtb to fill in necessary properties later */
249 qemu_fdt_add_subnode(fdt, "/chosen");
250 create_kaslr_seed(vms, "/chosen");
251
252 if (vms->secure) {
253 qemu_fdt_add_subnode(fdt, "/secure-chosen");
254 create_kaslr_seed(vms, "/secure-chosen");
255 }
256
257 /* Clock node, for the benefit of the UART. The kernel device tree
258 * binding documentation claims the PL011 node clock properties are
259 * optional but in practice if you omit them the kernel refuses to
260 * probe for the device.
261 */
262 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
263 qemu_fdt_add_subnode(fdt, "/apb-pclk");
264 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
265 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
266 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
267 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
268 "clk24mhz");
269 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
270
271 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
272 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
273 uint32_t *matrix = g_malloc0(size);
274 int idx, i, j;
275
276 for (i = 0; i < nb_numa_nodes; i++) {
277 for (j = 0; j < nb_numa_nodes; j++) {
278 idx = (i * nb_numa_nodes + j) * 3;
279 matrix[idx + 0] = cpu_to_be32(i);
280 matrix[idx + 1] = cpu_to_be32(j);
281 matrix[idx + 2] =
282 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
283 }
284 }
285
286 qemu_fdt_add_subnode(fdt, "/distance-map");
287 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
288 "numa-distance-map-v1");
289 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
290 matrix, size);
291 g_free(matrix);
292 }
293 }
294
295 static void fdt_add_timer_nodes(const VirtMachineState *vms)
296 {
297 /* On real hardware these interrupts are level-triggered.
298 * On KVM they were edge-triggered before host kernel version 4.4,
299 * and level-triggered afterwards.
300 * On emulated QEMU they are level-triggered.
301 *
302 * Getting the DTB info about them wrong is awkward for some
303 * guest kernels:
304 * pre-4.8 ignore the DT and leave the interrupt configured
305 * with whatever the GIC reset value (or the bootloader) left it at
306 * 4.8 before rc6 honour the incorrect data by programming it back
307 * into the GIC, causing problems
308 * 4.8rc6 and later ignore the DT and always write "level triggered"
309 * into the GIC
310 *
311 * For backwards-compatibility, virt-2.8 and earlier will continue
312 * to say these are edge-triggered, but later machines will report
313 * the correct information.
314 */
315 ARMCPU *armcpu;
316 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
317 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
318
319 if (vmc->claim_edge_triggered_timers) {
320 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
321 }
322
323 if (vms->gic_version == VIRT_GIC_VERSION_2) {
324 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
325 GIC_FDT_IRQ_PPI_CPU_WIDTH,
326 (1 << vms->smp_cpus) - 1);
327 }
328
329 qemu_fdt_add_subnode(vms->fdt, "/timer");
330
331 armcpu = ARM_CPU(qemu_get_cpu(0));
332 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
333 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
334 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
335 compat, sizeof(compat));
336 } else {
337 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
338 "arm,armv7-timer");
339 }
340 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
341 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
342 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
343 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
344 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
345 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
346 }
347
348 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
349 {
350 int cpu;
351 int addr_cells = 1;
352 const MachineState *ms = MACHINE(vms);
353
354 /*
355 * From Documentation/devicetree/bindings/arm/cpus.txt
356 * On ARM v8 64-bit systems value should be set to 2,
357 * that corresponds to the MPIDR_EL1 register size.
358 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
359 * in the system, #address-cells can be set to 1, since
360 * MPIDR_EL1[63:32] bits are not used for CPUs
361 * identification.
362 *
363 * Here we actually don't know whether our system is 32- or 64-bit one.
364 * The simplest way to go is to examine affinity IDs of all our CPUs. If
365 * at least one of them has Aff3 populated, we set #address-cells to 2.
366 */
367 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
368 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
369
370 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
371 addr_cells = 2;
372 break;
373 }
374 }
375
376 qemu_fdt_add_subnode(vms->fdt, "/cpus");
377 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
378 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
379
380 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
381 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
382 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
383 CPUState *cs = CPU(armcpu);
384
385 qemu_fdt_add_subnode(vms->fdt, nodename);
386 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
387 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
388 armcpu->dtb_compatible);
389
390 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
391 && vms->smp_cpus > 1) {
392 qemu_fdt_setprop_string(vms->fdt, nodename,
393 "enable-method", "psci");
394 }
395
396 if (addr_cells == 2) {
397 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
398 armcpu->mp_affinity);
399 } else {
400 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
401 armcpu->mp_affinity);
402 }
403
404 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
405 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
406 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
407 }
408
409 g_free(nodename);
410 }
411 }
412
413 static void fdt_add_its_gic_node(VirtMachineState *vms)
414 {
415 char *nodename;
416
417 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
418 nodename = g_strdup_printf("/intc/its@%" PRIx64,
419 vms->memmap[VIRT_GIC_ITS].base);
420 qemu_fdt_add_subnode(vms->fdt, nodename);
421 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
422 "arm,gic-v3-its");
423 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
424 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
425 2, vms->memmap[VIRT_GIC_ITS].base,
426 2, vms->memmap[VIRT_GIC_ITS].size);
427 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
428 g_free(nodename);
429 }
430
431 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
432 {
433 char *nodename;
434
435 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
436 vms->memmap[VIRT_GIC_V2M].base);
437 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
438 qemu_fdt_add_subnode(vms->fdt, nodename);
439 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
440 "arm,gic-v2m-frame");
441 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
442 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
443 2, vms->memmap[VIRT_GIC_V2M].base,
444 2, vms->memmap[VIRT_GIC_V2M].size);
445 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
446 g_free(nodename);
447 }
448
449 static void fdt_add_gic_node(VirtMachineState *vms)
450 {
451 char *nodename;
452
453 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
454 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
455
456 nodename = g_strdup_printf("/intc@%" PRIx64,
457 vms->memmap[VIRT_GIC_DIST].base);
458 qemu_fdt_add_subnode(vms->fdt, nodename);
459 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
460 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
461 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
462 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
463 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
464 if (vms->gic_version == VIRT_GIC_VERSION_3) {
465 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
466
467 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
468 "arm,gic-v3");
469
470 qemu_fdt_setprop_cell(vms->fdt, nodename,
471 "#redistributor-regions", nb_redist_regions);
472
473 if (nb_redist_regions == 1) {
474 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
475 2, vms->memmap[VIRT_GIC_DIST].base,
476 2, vms->memmap[VIRT_GIC_DIST].size,
477 2, vms->memmap[VIRT_GIC_REDIST].base,
478 2, vms->memmap[VIRT_GIC_REDIST].size);
479 } else {
480 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
481 2, vms->memmap[VIRT_GIC_DIST].base,
482 2, vms->memmap[VIRT_GIC_DIST].size,
483 2, vms->memmap[VIRT_GIC_REDIST].base,
484 2, vms->memmap[VIRT_GIC_REDIST].size,
485 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
486 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
487 }
488
489 if (vms->virt) {
490 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
491 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
492 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
493 }
494 } else {
495 /* 'cortex-a15-gic' means 'GIC v2' */
496 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
497 "arm,cortex-a15-gic");
498 if (!vms->virt) {
499 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
500 2, vms->memmap[VIRT_GIC_DIST].base,
501 2, vms->memmap[VIRT_GIC_DIST].size,
502 2, vms->memmap[VIRT_GIC_CPU].base,
503 2, vms->memmap[VIRT_GIC_CPU].size);
504 } else {
505 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
506 2, vms->memmap[VIRT_GIC_DIST].base,
507 2, vms->memmap[VIRT_GIC_DIST].size,
508 2, vms->memmap[VIRT_GIC_CPU].base,
509 2, vms->memmap[VIRT_GIC_CPU].size,
510 2, vms->memmap[VIRT_GIC_HYP].base,
511 2, vms->memmap[VIRT_GIC_HYP].size,
512 2, vms->memmap[VIRT_GIC_VCPU].base,
513 2, vms->memmap[VIRT_GIC_VCPU].size);
514 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
515 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
516 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
517 }
518 }
519
520 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
521 g_free(nodename);
522 }
523
524 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
525 {
526 CPUState *cpu;
527 ARMCPU *armcpu;
528 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
529
530 CPU_FOREACH(cpu) {
531 armcpu = ARM_CPU(cpu);
532 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
533 return;
534 }
535 if (kvm_enabled()) {
536 if (kvm_irqchip_in_kernel()) {
537 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
538 }
539 kvm_arm_pmu_init(cpu);
540 }
541 }
542
543 if (vms->gic_version == VIRT_GIC_VERSION_2) {
544 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
545 GIC_FDT_IRQ_PPI_CPU_WIDTH,
546 (1 << vms->smp_cpus) - 1);
547 }
548
549 armcpu = ARM_CPU(qemu_get_cpu(0));
550 qemu_fdt_add_subnode(vms->fdt, "/pmu");
551 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
552 const char compat[] = "arm,armv8-pmuv3";
553 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
554 compat, sizeof(compat));
555 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
556 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
557 }
558 }
559
560 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
561 {
562 DeviceState *dev;
563 MachineState *ms = MACHINE(vms);
564 int irq = vms->irqmap[VIRT_ACPI_GED];
565 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
566
567 if (ms->ram_slots) {
568 event |= ACPI_GED_MEM_HOTPLUG_EVT;
569 }
570
571 if (ms->nvdimms_state->is_enabled) {
572 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
573 }
574
575 dev = qdev_create(NULL, TYPE_ACPI_GED);
576 qdev_prop_set_uint32(dev, "ged-event", event);
577
578 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
579 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
580 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
581
582 qdev_init_nofail(dev);
583
584 return dev;
585 }
586
587 static void create_its(VirtMachineState *vms)
588 {
589 const char *itsclass = its_class_name();
590 DeviceState *dev;
591
592 if (!itsclass) {
593 /* Do nothing if not supported */
594 return;
595 }
596
597 dev = qdev_create(NULL, itsclass);
598
599 object_property_set_link(OBJECT(dev), OBJECT(vms->gic), "parent-gicv3",
600 &error_abort);
601 qdev_init_nofail(dev);
602 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
603
604 fdt_add_its_gic_node(vms);
605 }
606
607 static void create_v2m(VirtMachineState *vms)
608 {
609 int i;
610 int irq = vms->irqmap[VIRT_GIC_V2M];
611 DeviceState *dev;
612
613 dev = qdev_create(NULL, "arm-gicv2m");
614 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
615 qdev_prop_set_uint32(dev, "base-spi", irq);
616 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
617 qdev_init_nofail(dev);
618
619 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
620 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
621 qdev_get_gpio_in(vms->gic, irq + i));
622 }
623
624 fdt_add_v2m_gic_node(vms);
625 }
626
627 static void create_gic(VirtMachineState *vms)
628 {
629 MachineState *ms = MACHINE(vms);
630 /* We create a standalone GIC */
631 SysBusDevice *gicbusdev;
632 const char *gictype;
633 int type = vms->gic_version, i;
634 unsigned int smp_cpus = ms->smp.cpus;
635 uint32_t nb_redist_regions = 0;
636
637 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
638
639 vms->gic = qdev_create(NULL, gictype);
640 qdev_prop_set_uint32(vms->gic, "revision", type);
641 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
642 /* Note that the num-irq property counts both internal and external
643 * interrupts; there are always 32 of the former (mandated by GIC spec).
644 */
645 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
646 if (!kvm_irqchip_in_kernel()) {
647 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
648 }
649
650 if (type == 3) {
651 uint32_t redist0_capacity =
652 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
653 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
654
655 nb_redist_regions = virt_gicv3_redist_region_count(vms);
656
657 qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
658 nb_redist_regions);
659 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
660
661 if (nb_redist_regions == 2) {
662 uint32_t redist1_capacity =
663 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
664
665 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
666 MIN(smp_cpus - redist0_count, redist1_capacity));
667 }
668 } else {
669 if (!kvm_irqchip_in_kernel()) {
670 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
671 vms->virt);
672 }
673 }
674 qdev_init_nofail(vms->gic);
675 gicbusdev = SYS_BUS_DEVICE(vms->gic);
676 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
677 if (type == 3) {
678 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
679 if (nb_redist_regions == 2) {
680 sysbus_mmio_map(gicbusdev, 2,
681 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
682 }
683 } else {
684 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
685 if (vms->virt) {
686 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
687 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
688 }
689 }
690
691 /* Wire the outputs from each CPU's generic timer and the GICv3
692 * maintenance interrupt signal to the appropriate GIC PPI inputs,
693 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
694 */
695 for (i = 0; i < smp_cpus; i++) {
696 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
697 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
698 int irq;
699 /* Mapping from the output timer irq lines from the CPU to the
700 * GIC PPI inputs we use for the virt board.
701 */
702 const int timer_irq[] = {
703 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
704 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
705 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
706 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
707 };
708
709 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
710 qdev_connect_gpio_out(cpudev, irq,
711 qdev_get_gpio_in(vms->gic,
712 ppibase + timer_irq[irq]));
713 }
714
715 if (type == 3) {
716 qemu_irq irq = qdev_get_gpio_in(vms->gic,
717 ppibase + ARCH_GIC_MAINT_IRQ);
718 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
719 0, irq);
720 } else if (vms->virt) {
721 qemu_irq irq = qdev_get_gpio_in(vms->gic,
722 ppibase + ARCH_GIC_MAINT_IRQ);
723 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
724 }
725
726 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
727 qdev_get_gpio_in(vms->gic, ppibase
728 + VIRTUAL_PMU_IRQ));
729
730 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
731 sysbus_connect_irq(gicbusdev, i + smp_cpus,
732 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
733 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
734 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
735 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
736 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
737 }
738
739 fdt_add_gic_node(vms);
740
741 if (type == 3 && vms->its) {
742 create_its(vms);
743 } else if (type == 2) {
744 create_v2m(vms);
745 }
746 }
747
748 static void create_uart(const VirtMachineState *vms, int uart,
749 MemoryRegion *mem, Chardev *chr)
750 {
751 char *nodename;
752 hwaddr base = vms->memmap[uart].base;
753 hwaddr size = vms->memmap[uart].size;
754 int irq = vms->irqmap[uart];
755 const char compat[] = "arm,pl011\0arm,primecell";
756 const char clocknames[] = "uartclk\0apb_pclk";
757 DeviceState *dev = qdev_create(NULL, TYPE_PL011);
758 SysBusDevice *s = SYS_BUS_DEVICE(dev);
759
760 qdev_prop_set_chr(dev, "chardev", chr);
761 qdev_init_nofail(dev);
762 memory_region_add_subregion(mem, base,
763 sysbus_mmio_get_region(s, 0));
764 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
765
766 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
767 qemu_fdt_add_subnode(vms->fdt, nodename);
768 /* Note that we can't use setprop_string because of the embedded NUL */
769 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
770 compat, sizeof(compat));
771 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
772 2, base, 2, size);
773 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
774 GIC_FDT_IRQ_TYPE_SPI, irq,
775 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
776 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
777 vms->clock_phandle, vms->clock_phandle);
778 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
779 clocknames, sizeof(clocknames));
780
781 if (uart == VIRT_UART) {
782 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
783 } else {
784 /* Mark as not usable by the normal world */
785 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
786 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
787
788 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
789 nodename);
790 }
791
792 g_free(nodename);
793 }
794
795 static void create_rtc(const VirtMachineState *vms)
796 {
797 char *nodename;
798 hwaddr base = vms->memmap[VIRT_RTC].base;
799 hwaddr size = vms->memmap[VIRT_RTC].size;
800 int irq = vms->irqmap[VIRT_RTC];
801 const char compat[] = "arm,pl031\0arm,primecell";
802
803 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
804
805 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
806 qemu_fdt_add_subnode(vms->fdt, nodename);
807 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
808 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
809 2, base, 2, size);
810 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
811 GIC_FDT_IRQ_TYPE_SPI, irq,
812 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
813 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
814 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
815 g_free(nodename);
816 }
817
818 static DeviceState *gpio_key_dev;
819 static void virt_powerdown_req(Notifier *n, void *opaque)
820 {
821 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
822
823 if (s->acpi_dev) {
824 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
825 } else {
826 /* use gpio Pin 3 for power button event */
827 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
828 }
829 }
830
831 static void create_gpio(const VirtMachineState *vms)
832 {
833 char *nodename;
834 DeviceState *pl061_dev;
835 hwaddr base = vms->memmap[VIRT_GPIO].base;
836 hwaddr size = vms->memmap[VIRT_GPIO].size;
837 int irq = vms->irqmap[VIRT_GPIO];
838 const char compat[] = "arm,pl061\0arm,primecell";
839
840 pl061_dev = sysbus_create_simple("pl061", base,
841 qdev_get_gpio_in(vms->gic, irq));
842
843 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
844 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
845 qemu_fdt_add_subnode(vms->fdt, nodename);
846 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
847 2, base, 2, size);
848 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
849 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
850 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
851 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
852 GIC_FDT_IRQ_TYPE_SPI, irq,
853 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
854 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
855 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
856 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
857
858 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
859 qdev_get_gpio_in(pl061_dev, 3));
860 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
861 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
862 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
863 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
864
865 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
866 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
867 "label", "GPIO Key Poweroff");
868 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
869 KEY_POWER);
870 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
871 "gpios", phandle, 3, 0);
872 g_free(nodename);
873 }
874
875 static void create_virtio_devices(const VirtMachineState *vms)
876 {
877 int i;
878 hwaddr size = vms->memmap[VIRT_MMIO].size;
879
880 /* We create the transports in forwards order. Since qbus_realize()
881 * prepends (not appends) new child buses, the incrementing loop below will
882 * create a list of virtio-mmio buses with decreasing base addresses.
883 *
884 * When a -device option is processed from the command line,
885 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
886 * order. The upshot is that -device options in increasing command line
887 * order are mapped to virtio-mmio buses with decreasing base addresses.
888 *
889 * When this code was originally written, that arrangement ensured that the
890 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
891 * the first -device on the command line. (The end-to-end order is a
892 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
893 * guest kernel's name-to-address assignment strategy.)
894 *
895 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
896 * the message, if not necessarily the code, of commit 70161ff336.
897 * Therefore the loop now establishes the inverse of the original intent.
898 *
899 * Unfortunately, we can't counteract the kernel change by reversing the
900 * loop; it would break existing command lines.
901 *
902 * In any case, the kernel makes no guarantee about the stability of
903 * enumeration order of virtio devices (as demonstrated by it changing
904 * between kernel versions). For reliable and stable identification
905 * of disks users must use UUIDs or similar mechanisms.
906 */
907 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
908 int irq = vms->irqmap[VIRT_MMIO] + i;
909 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
910
911 sysbus_create_simple("virtio-mmio", base,
912 qdev_get_gpio_in(vms->gic, irq));
913 }
914
915 /* We add dtb nodes in reverse order so that they appear in the finished
916 * device tree lowest address first.
917 *
918 * Note that this mapping is independent of the loop above. The previous
919 * loop influences virtio device to virtio transport assignment, whereas
920 * this loop controls how virtio transports are laid out in the dtb.
921 */
922 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
923 char *nodename;
924 int irq = vms->irqmap[VIRT_MMIO] + i;
925 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
926
927 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
928 qemu_fdt_add_subnode(vms->fdt, nodename);
929 qemu_fdt_setprop_string(vms->fdt, nodename,
930 "compatible", "virtio,mmio");
931 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
932 2, base, 2, size);
933 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
934 GIC_FDT_IRQ_TYPE_SPI, irq,
935 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
936 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
937 g_free(nodename);
938 }
939 }
940
941 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
942
943 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
944 const char *name,
945 const char *alias_prop_name)
946 {
947 /*
948 * Create a single flash device. We use the same parameters as
949 * the flash devices on the Versatile Express board.
950 */
951 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
952
953 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
954 qdev_prop_set_uint8(dev, "width", 4);
955 qdev_prop_set_uint8(dev, "device-width", 2);
956 qdev_prop_set_bit(dev, "big-endian", false);
957 qdev_prop_set_uint16(dev, "id0", 0x89);
958 qdev_prop_set_uint16(dev, "id1", 0x18);
959 qdev_prop_set_uint16(dev, "id2", 0x00);
960 qdev_prop_set_uint16(dev, "id3", 0x00);
961 qdev_prop_set_string(dev, "name", name);
962 object_property_add_child(OBJECT(vms), name, OBJECT(dev),
963 &error_abort);
964 object_property_add_alias(OBJECT(vms), alias_prop_name,
965 OBJECT(dev), "drive", &error_abort);
966 return PFLASH_CFI01(dev);
967 }
968
969 static void virt_flash_create(VirtMachineState *vms)
970 {
971 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
972 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
973 }
974
975 static void virt_flash_map1(PFlashCFI01 *flash,
976 hwaddr base, hwaddr size,
977 MemoryRegion *sysmem)
978 {
979 DeviceState *dev = DEVICE(flash);
980
981 assert(size % VIRT_FLASH_SECTOR_SIZE == 0);
982 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
983 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
984 qdev_init_nofail(dev);
985
986 memory_region_add_subregion(sysmem, base,
987 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
988 0));
989 }
990
991 static void virt_flash_map(VirtMachineState *vms,
992 MemoryRegion *sysmem,
993 MemoryRegion *secure_sysmem)
994 {
995 /*
996 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
997 * sysmem is the system memory space. secure_sysmem is the secure view
998 * of the system, and the first flash device should be made visible only
999 * there. The second flash device is visible to both secure and nonsecure.
1000 * If sysmem == secure_sysmem this means there is no separate Secure
1001 * address space and both flash devices are generally visible.
1002 */
1003 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1004 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1005
1006 virt_flash_map1(vms->flash[0], flashbase, flashsize,
1007 secure_sysmem);
1008 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1009 sysmem);
1010 }
1011
1012 static void virt_flash_fdt(VirtMachineState *vms,
1013 MemoryRegion *sysmem,
1014 MemoryRegion *secure_sysmem)
1015 {
1016 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1017 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1018 char *nodename;
1019
1020 if (sysmem == secure_sysmem) {
1021 /* Report both flash devices as a single node in the DT */
1022 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1023 qemu_fdt_add_subnode(vms->fdt, nodename);
1024 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1025 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1026 2, flashbase, 2, flashsize,
1027 2, flashbase + flashsize, 2, flashsize);
1028 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1029 g_free(nodename);
1030 } else {
1031 /*
1032 * Report the devices as separate nodes so we can mark one as
1033 * only visible to the secure world.
1034 */
1035 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1036 qemu_fdt_add_subnode(vms->fdt, nodename);
1037 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1038 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1039 2, flashbase, 2, flashsize);
1040 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1041 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1042 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1043 g_free(nodename);
1044
1045 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1046 qemu_fdt_add_subnode(vms->fdt, nodename);
1047 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1048 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1049 2, flashbase + flashsize, 2, flashsize);
1050 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1051 g_free(nodename);
1052 }
1053 }
1054
1055 static bool virt_firmware_init(VirtMachineState *vms,
1056 MemoryRegion *sysmem,
1057 MemoryRegion *secure_sysmem)
1058 {
1059 int i;
1060 BlockBackend *pflash_blk0;
1061
1062 /* Map legacy -drive if=pflash to machine properties */
1063 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1064 pflash_cfi01_legacy_drive(vms->flash[i],
1065 drive_get(IF_PFLASH, 0, i));
1066 }
1067
1068 virt_flash_map(vms, sysmem, secure_sysmem);
1069
1070 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1071
1072 if (bios_name) {
1073 char *fname;
1074 MemoryRegion *mr;
1075 int image_size;
1076
1077 if (pflash_blk0) {
1078 error_report("The contents of the first flash device may be "
1079 "specified with -bios or with -drive if=pflash... "
1080 "but you cannot use both options at once");
1081 exit(1);
1082 }
1083
1084 /* Fall back to -bios */
1085
1086 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1087 if (!fname) {
1088 error_report("Could not find ROM image '%s'", bios_name);
1089 exit(1);
1090 }
1091 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1092 image_size = load_image_mr(fname, mr);
1093 g_free(fname);
1094 if (image_size < 0) {
1095 error_report("Could not load ROM image '%s'", bios_name);
1096 exit(1);
1097 }
1098 }
1099
1100 return pflash_blk0 || bios_name;
1101 }
1102
1103 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1104 {
1105 MachineState *ms = MACHINE(vms);
1106 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1107 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1108 FWCfgState *fw_cfg;
1109 char *nodename;
1110
1111 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1112 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1113
1114 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1115 qemu_fdt_add_subnode(vms->fdt, nodename);
1116 qemu_fdt_setprop_string(vms->fdt, nodename,
1117 "compatible", "qemu,fw-cfg-mmio");
1118 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1119 2, base, 2, size);
1120 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1121 g_free(nodename);
1122 return fw_cfg;
1123 }
1124
1125 static void create_pcie_irq_map(const VirtMachineState *vms,
1126 uint32_t gic_phandle,
1127 int first_irq, const char *nodename)
1128 {
1129 int devfn, pin;
1130 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1131 uint32_t *irq_map = full_irq_map;
1132
1133 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1134 for (pin = 0; pin < 4; pin++) {
1135 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1136 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1137 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1138 int i;
1139
1140 uint32_t map[] = {
1141 devfn << 8, 0, 0, /* devfn */
1142 pin + 1, /* PCI pin */
1143 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1144
1145 /* Convert map to big endian */
1146 for (i = 0; i < 10; i++) {
1147 irq_map[i] = cpu_to_be32(map[i]);
1148 }
1149 irq_map += 10;
1150 }
1151 }
1152
1153 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1154 full_irq_map, sizeof(full_irq_map));
1155
1156 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1157 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1158 0x7 /* PCI irq */);
1159 }
1160
1161 static void create_smmu(const VirtMachineState *vms,
1162 PCIBus *bus)
1163 {
1164 char *node;
1165 const char compat[] = "arm,smmu-v3";
1166 int irq = vms->irqmap[VIRT_SMMU];
1167 int i;
1168 hwaddr base = vms->memmap[VIRT_SMMU].base;
1169 hwaddr size = vms->memmap[VIRT_SMMU].size;
1170 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1171 DeviceState *dev;
1172
1173 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1174 return;
1175 }
1176
1177 dev = qdev_create(NULL, "arm-smmuv3");
1178
1179 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1180 &error_abort);
1181 qdev_init_nofail(dev);
1182 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1183 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1184 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1185 qdev_get_gpio_in(vms->gic, irq + i));
1186 }
1187
1188 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1189 qemu_fdt_add_subnode(vms->fdt, node);
1190 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1191 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1192
1193 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1194 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1195 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1196 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1197 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1198
1199 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1200 sizeof(irq_names));
1201
1202 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1203 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1204 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1205
1206 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1207
1208 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1209 g_free(node);
1210 }
1211
1212 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1213 {
1214 const char compat[] = "virtio,pci-iommu";
1215 uint16_t bdf = vms->virtio_iommu_bdf;
1216 char *node;
1217
1218 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1219
1220 node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf);
1221 qemu_fdt_add_subnode(vms->fdt, node);
1222 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1223 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg",
1224 1, bdf << 8, 1, 0, 1, 0,
1225 1, 0, 1, 0);
1226
1227 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1228 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1229 g_free(node);
1230
1231 qemu_fdt_setprop_cells(vms->fdt, vms->pciehb_nodename, "iommu-map",
1232 0x0, vms->iommu_phandle, 0x0, bdf,
1233 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1234 }
1235
1236 static void create_pcie(VirtMachineState *vms)
1237 {
1238 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1239 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1240 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1241 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1242 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1243 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1244 hwaddr base_ecam, size_ecam;
1245 hwaddr base = base_mmio;
1246 int nr_pcie_buses;
1247 int irq = vms->irqmap[VIRT_PCIE];
1248 MemoryRegion *mmio_alias;
1249 MemoryRegion *mmio_reg;
1250 MemoryRegion *ecam_alias;
1251 MemoryRegion *ecam_reg;
1252 DeviceState *dev;
1253 char *nodename;
1254 int i, ecam_id;
1255 PCIHostState *pci;
1256
1257 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1258 qdev_init_nofail(dev);
1259
1260 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1261 base_ecam = vms->memmap[ecam_id].base;
1262 size_ecam = vms->memmap[ecam_id].size;
1263 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1264 /* Map only the first size_ecam bytes of ECAM space */
1265 ecam_alias = g_new0(MemoryRegion, 1);
1266 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1267 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1268 ecam_reg, 0, size_ecam);
1269 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1270
1271 /* Map the MMIO window into system address space so as to expose
1272 * the section of PCI MMIO space which starts at the same base address
1273 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1274 * the window).
1275 */
1276 mmio_alias = g_new0(MemoryRegion, 1);
1277 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1278 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1279 mmio_reg, base_mmio, size_mmio);
1280 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1281
1282 if (vms->highmem) {
1283 /* Map high MMIO space */
1284 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1285
1286 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1287 mmio_reg, base_mmio_high, size_mmio_high);
1288 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1289 high_mmio_alias);
1290 }
1291
1292 /* Map IO port space */
1293 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1294
1295 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1296 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1297 qdev_get_gpio_in(vms->gic, irq + i));
1298 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1299 }
1300
1301 pci = PCI_HOST_BRIDGE(dev);
1302 if (pci->bus) {
1303 for (i = 0; i < nb_nics; i++) {
1304 NICInfo *nd = &nd_table[i];
1305
1306 if (!nd->model) {
1307 nd->model = g_strdup("virtio");
1308 }
1309
1310 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1311 }
1312 }
1313
1314 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1315 qemu_fdt_add_subnode(vms->fdt, nodename);
1316 qemu_fdt_setprop_string(vms->fdt, nodename,
1317 "compatible", "pci-host-ecam-generic");
1318 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1319 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1320 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1321 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1322 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1323 nr_pcie_buses - 1);
1324 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1325
1326 if (vms->msi_phandle) {
1327 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1328 vms->msi_phandle);
1329 }
1330
1331 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1332 2, base_ecam, 2, size_ecam);
1333
1334 if (vms->highmem) {
1335 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1336 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1337 2, base_pio, 2, size_pio,
1338 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1339 2, base_mmio, 2, size_mmio,
1340 1, FDT_PCI_RANGE_MMIO_64BIT,
1341 2, base_mmio_high,
1342 2, base_mmio_high, 2, size_mmio_high);
1343 } else {
1344 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1345 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1346 2, base_pio, 2, size_pio,
1347 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1348 2, base_mmio, 2, size_mmio);
1349 }
1350
1351 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1352 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1353
1354 if (vms->iommu) {
1355 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1356
1357 switch (vms->iommu) {
1358 case VIRT_IOMMU_SMMUV3:
1359 create_smmu(vms, pci->bus);
1360 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1361 0x0, vms->iommu_phandle, 0x0, 0x10000);
1362 break;
1363 default:
1364 g_assert_not_reached();
1365 }
1366 }
1367 }
1368
1369 static void create_platform_bus(VirtMachineState *vms)
1370 {
1371 DeviceState *dev;
1372 SysBusDevice *s;
1373 int i;
1374 MemoryRegion *sysmem = get_system_memory();
1375
1376 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1377 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1378 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1379 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1380 qdev_init_nofail(dev);
1381 vms->platform_bus_dev = dev;
1382
1383 s = SYS_BUS_DEVICE(dev);
1384 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1385 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1386 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1387 }
1388
1389 memory_region_add_subregion(sysmem,
1390 vms->memmap[VIRT_PLATFORM_BUS].base,
1391 sysbus_mmio_get_region(s, 0));
1392 }
1393
1394 static void create_secure_ram(VirtMachineState *vms,
1395 MemoryRegion *secure_sysmem)
1396 {
1397 MemoryRegion *secram = g_new(MemoryRegion, 1);
1398 char *nodename;
1399 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1400 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1401
1402 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1403 &error_fatal);
1404 memory_region_add_subregion(secure_sysmem, base, secram);
1405
1406 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1407 qemu_fdt_add_subnode(vms->fdt, nodename);
1408 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1409 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1410 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1411 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1412
1413 g_free(nodename);
1414 }
1415
1416 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1417 {
1418 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1419 bootinfo);
1420
1421 *fdt_size = board->fdt_size;
1422 return board->fdt;
1423 }
1424
1425 static void virt_build_smbios(VirtMachineState *vms)
1426 {
1427 MachineClass *mc = MACHINE_GET_CLASS(vms);
1428 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1429 uint8_t *smbios_tables, *smbios_anchor;
1430 size_t smbios_tables_len, smbios_anchor_len;
1431 const char *product = "QEMU Virtual Machine";
1432
1433 if (kvm_enabled()) {
1434 product = "KVM Virtual Machine";
1435 }
1436
1437 smbios_set_defaults("QEMU", product,
1438 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1439 true, SMBIOS_ENTRY_POINT_30);
1440
1441 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
1442 &smbios_anchor, &smbios_anchor_len);
1443
1444 if (smbios_anchor) {
1445 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1446 smbios_tables, smbios_tables_len);
1447 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1448 smbios_anchor, smbios_anchor_len);
1449 }
1450 }
1451
1452 static
1453 void virt_machine_done(Notifier *notifier, void *data)
1454 {
1455 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1456 machine_done);
1457 MachineState *ms = MACHINE(vms);
1458 ARMCPU *cpu = ARM_CPU(first_cpu);
1459 struct arm_boot_info *info = &vms->bootinfo;
1460 AddressSpace *as = arm_boot_address_space(cpu, info);
1461
1462 /*
1463 * If the user provided a dtb, we assume the dynamic sysbus nodes
1464 * already are integrated there. This corresponds to a use case where
1465 * the dynamic sysbus nodes are complex and their generation is not yet
1466 * supported. In that case the user can take charge of the guest dt
1467 * while qemu takes charge of the qom stuff.
1468 */
1469 if (info->dtb_filename == NULL) {
1470 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1471 vms->memmap[VIRT_PLATFORM_BUS].base,
1472 vms->memmap[VIRT_PLATFORM_BUS].size,
1473 vms->irqmap[VIRT_PLATFORM_BUS]);
1474 }
1475 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1476 exit(1);
1477 }
1478
1479 virt_acpi_setup(vms);
1480 virt_build_smbios(vms);
1481 }
1482
1483 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1484 {
1485 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1486 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1487
1488 if (!vmc->disallow_affinity_adjustment) {
1489 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1490 * GIC's target-list limitations. 32-bit KVM hosts currently
1491 * always create clusters of 4 CPUs, but that is expected to
1492 * change when they gain support for gicv3. When KVM is enabled
1493 * it will override the changes we make here, therefore our
1494 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1495 * and to improve SGI efficiency.
1496 */
1497 if (vms->gic_version == VIRT_GIC_VERSION_3) {
1498 clustersz = GICV3_TARGETLIST_BITS;
1499 } else {
1500 clustersz = GIC_TARGETLIST_BITS;
1501 }
1502 }
1503 return arm_cpu_mp_affinity(idx, clustersz);
1504 }
1505
1506 static void virt_set_memmap(VirtMachineState *vms)
1507 {
1508 MachineState *ms = MACHINE(vms);
1509 hwaddr base, device_memory_base, device_memory_size;
1510 int i;
1511
1512 vms->memmap = extended_memmap;
1513
1514 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1515 vms->memmap[i] = base_memmap[i];
1516 }
1517
1518 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1519 error_report("unsupported number of memory slots: %"PRIu64,
1520 ms->ram_slots);
1521 exit(EXIT_FAILURE);
1522 }
1523
1524 /*
1525 * We compute the base of the high IO region depending on the
1526 * amount of initial and device memory. The device memory start/size
1527 * is aligned on 1GiB. We never put the high IO region below 256GiB
1528 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1529 * The device region size assumes 1GiB page max alignment per slot.
1530 */
1531 device_memory_base =
1532 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1533 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1534
1535 /* Base address of the high IO region */
1536 base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1537 if (base < device_memory_base) {
1538 error_report("maxmem/slots too huge");
1539 exit(EXIT_FAILURE);
1540 }
1541 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1542 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1543 }
1544
1545 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1546 hwaddr size = extended_memmap[i].size;
1547
1548 base = ROUND_UP(base, size);
1549 vms->memmap[i].base = base;
1550 vms->memmap[i].size = size;
1551 base += size;
1552 }
1553 vms->highest_gpa = base - 1;
1554 if (device_memory_size > 0) {
1555 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1556 ms->device_memory->base = device_memory_base;
1557 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1558 "device-memory", device_memory_size);
1559 }
1560 }
1561
1562 /*
1563 * finalize_gic_version - Determines the final gic_version
1564 * according to the gic-version property
1565 *
1566 * Default GIC type is v2
1567 */
1568 static void finalize_gic_version(VirtMachineState *vms)
1569 {
1570 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1571
1572 if (kvm_enabled()) {
1573 int probe_bitmap;
1574
1575 if (!kvm_irqchip_in_kernel()) {
1576 switch (vms->gic_version) {
1577 case VIRT_GIC_VERSION_HOST:
1578 warn_report(
1579 "gic-version=host not relevant with kernel-irqchip=off "
1580 "as only userspace GICv2 is supported. Using v2 ...");
1581 return;
1582 case VIRT_GIC_VERSION_MAX:
1583 case VIRT_GIC_VERSION_NOSEL:
1584 vms->gic_version = VIRT_GIC_VERSION_2;
1585 return;
1586 case VIRT_GIC_VERSION_2:
1587 return;
1588 case VIRT_GIC_VERSION_3:
1589 error_report(
1590 "gic-version=3 is not supported with kernel-irqchip=off");
1591 exit(1);
1592 }
1593 }
1594
1595 probe_bitmap = kvm_arm_vgic_probe();
1596 if (!probe_bitmap) {
1597 error_report("Unable to determine GIC version supported by host");
1598 exit(1);
1599 }
1600
1601 switch (vms->gic_version) {
1602 case VIRT_GIC_VERSION_HOST:
1603 case VIRT_GIC_VERSION_MAX:
1604 if (probe_bitmap & KVM_ARM_VGIC_V3) {
1605 vms->gic_version = VIRT_GIC_VERSION_3;
1606 } else {
1607 vms->gic_version = VIRT_GIC_VERSION_2;
1608 }
1609 return;
1610 case VIRT_GIC_VERSION_NOSEL:
1611 if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
1612 vms->gic_version = VIRT_GIC_VERSION_2;
1613 } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
1614 /*
1615 * in case the host does not support v2 in-kernel emulation or
1616 * the end-user requested more than 8 VCPUs we now default
1617 * to v3. In any case defaulting to v2 would be broken.
1618 */
1619 vms->gic_version = VIRT_GIC_VERSION_3;
1620 } else if (max_cpus > GIC_NCPU) {
1621 error_report("host only supports in-kernel GICv2 emulation "
1622 "but more than 8 vcpus are requested");
1623 exit(1);
1624 }
1625 break;
1626 case VIRT_GIC_VERSION_2:
1627 case VIRT_GIC_VERSION_3:
1628 break;
1629 }
1630
1631 /* Check chosen version is effectively supported by the host */
1632 if (vms->gic_version == VIRT_GIC_VERSION_2 &&
1633 !(probe_bitmap & KVM_ARM_VGIC_V2)) {
1634 error_report("host does not support in-kernel GICv2 emulation");
1635 exit(1);
1636 } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
1637 !(probe_bitmap & KVM_ARM_VGIC_V3)) {
1638 error_report("host does not support in-kernel GICv3 emulation");
1639 exit(1);
1640 }
1641 return;
1642 }
1643
1644 /* TCG mode */
1645 switch (vms->gic_version) {
1646 case VIRT_GIC_VERSION_NOSEL:
1647 vms->gic_version = VIRT_GIC_VERSION_2;
1648 break;
1649 case VIRT_GIC_VERSION_MAX:
1650 vms->gic_version = VIRT_GIC_VERSION_3;
1651 break;
1652 case VIRT_GIC_VERSION_HOST:
1653 error_report("gic-version=host requires KVM");
1654 exit(1);
1655 case VIRT_GIC_VERSION_2:
1656 case VIRT_GIC_VERSION_3:
1657 break;
1658 }
1659 }
1660
1661 static void machvirt_init(MachineState *machine)
1662 {
1663 VirtMachineState *vms = VIRT_MACHINE(machine);
1664 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1665 MachineClass *mc = MACHINE_GET_CLASS(machine);
1666 const CPUArchIdList *possible_cpus;
1667 MemoryRegion *sysmem = get_system_memory();
1668 MemoryRegion *secure_sysmem = NULL;
1669 int n, virt_max_cpus;
1670 bool firmware_loaded;
1671 bool aarch64 = true;
1672 bool has_ged = !vmc->no_ged;
1673 unsigned int smp_cpus = machine->smp.cpus;
1674 unsigned int max_cpus = machine->smp.max_cpus;
1675
1676 /*
1677 * In accelerated mode, the memory map is computed earlier in kvm_type()
1678 * to create a VM with the right number of IPA bits.
1679 */
1680 if (!vms->memmap) {
1681 virt_set_memmap(vms);
1682 }
1683
1684 /* We can probe only here because during property set
1685 * KVM is not available yet
1686 */
1687 finalize_gic_version(vms);
1688
1689 if (!cpu_type_valid(machine->cpu_type)) {
1690 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1691 exit(1);
1692 }
1693
1694 if (vms->secure) {
1695 if (kvm_enabled()) {
1696 error_report("mach-virt: KVM does not support Security extensions");
1697 exit(1);
1698 }
1699
1700 /*
1701 * The Secure view of the world is the same as the NonSecure,
1702 * but with a few extra devices. Create it as a container region
1703 * containing the system memory at low priority; any secure-only
1704 * devices go in at higher priority and take precedence.
1705 */
1706 secure_sysmem = g_new(MemoryRegion, 1);
1707 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1708 UINT64_MAX);
1709 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1710 }
1711
1712 firmware_loaded = virt_firmware_init(vms, sysmem,
1713 secure_sysmem ?: sysmem);
1714
1715 /* If we have an EL3 boot ROM then the assumption is that it will
1716 * implement PSCI itself, so disable QEMU's internal implementation
1717 * so it doesn't get in the way. Instead of starting secondary
1718 * CPUs in PSCI powerdown state we will start them all running and
1719 * let the boot ROM sort them out.
1720 * The usual case is that we do use QEMU's PSCI implementation;
1721 * if the guest has EL2 then we will use SMC as the conduit,
1722 * and otherwise we will use HVC (for backwards compatibility and
1723 * because if we're using KVM then we must use HVC).
1724 */
1725 if (vms->secure && firmware_loaded) {
1726 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1727 } else if (vms->virt) {
1728 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1729 } else {
1730 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1731 }
1732
1733 /* The maximum number of CPUs depends on the GIC version, or on how
1734 * many redistributors we can fit into the memory map.
1735 */
1736 if (vms->gic_version == VIRT_GIC_VERSION_3) {
1737 virt_max_cpus =
1738 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1739 virt_max_cpus +=
1740 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1741 } else {
1742 virt_max_cpus = GIC_NCPU;
1743 }
1744
1745 if (max_cpus > virt_max_cpus) {
1746 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1747 "supported by machine 'mach-virt' (%d)",
1748 max_cpus, virt_max_cpus);
1749 exit(1);
1750 }
1751
1752 vms->smp_cpus = smp_cpus;
1753
1754 if (vms->virt && kvm_enabled()) {
1755 error_report("mach-virt: KVM does not support providing "
1756 "Virtualization extensions to the guest CPU");
1757 exit(1);
1758 }
1759
1760 create_fdt(vms);
1761
1762 possible_cpus = mc->possible_cpu_arch_ids(machine);
1763 for (n = 0; n < possible_cpus->len; n++) {
1764 Object *cpuobj;
1765 CPUState *cs;
1766
1767 if (n >= smp_cpus) {
1768 break;
1769 }
1770
1771 cpuobj = object_new(possible_cpus->cpus[n].type);
1772 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1773 "mp-affinity", NULL);
1774
1775 cs = CPU(cpuobj);
1776 cs->cpu_index = n;
1777
1778 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1779 &error_fatal);
1780
1781 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1782
1783 if (!vms->secure) {
1784 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1785 }
1786
1787 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1788 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1789 }
1790
1791 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1792 object_property_set_int(cpuobj, vms->psci_conduit,
1793 "psci-conduit", NULL);
1794
1795 /* Secondary CPUs start in PSCI powered-down state */
1796 if (n > 0) {
1797 object_property_set_bool(cpuobj, true,
1798 "start-powered-off", NULL);
1799 }
1800 }
1801
1802 if (vmc->kvm_no_adjvtime &&
1803 object_property_find(cpuobj, "kvm-no-adjvtime", NULL)) {
1804 object_property_set_bool(cpuobj, true, "kvm-no-adjvtime", NULL);
1805 }
1806
1807 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1808 object_property_set_bool(cpuobj, false, "pmu", NULL);
1809 }
1810
1811 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1812 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1813 "reset-cbar", &error_abort);
1814 }
1815
1816 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1817 &error_abort);
1818 if (vms->secure) {
1819 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1820 "secure-memory", &error_abort);
1821 }
1822
1823 object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1824 object_unref(cpuobj);
1825 }
1826 fdt_add_timer_nodes(vms);
1827 fdt_add_cpu_nodes(vms);
1828
1829 if (!kvm_enabled()) {
1830 ARMCPU *cpu = ARM_CPU(first_cpu);
1831 bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL);
1832
1833 if (aarch64 && vms->highmem) {
1834 int requested_pa_size, pamax = arm_pamax(cpu);
1835
1836 requested_pa_size = 64 - clz64(vms->highest_gpa);
1837 if (pamax < requested_pa_size) {
1838 error_report("VCPU supports less PA bits (%d) than requested "
1839 "by the memory map (%d)", pamax, requested_pa_size);
1840 exit(1);
1841 }
1842 }
1843 }
1844
1845 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
1846 machine->ram);
1847 if (machine->device_memory) {
1848 memory_region_add_subregion(sysmem, machine->device_memory->base,
1849 &machine->device_memory->mr);
1850 }
1851
1852 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
1853
1854 create_gic(vms);
1855
1856 fdt_add_pmu_nodes(vms);
1857
1858 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
1859
1860 if (vms->secure) {
1861 create_secure_ram(vms, secure_sysmem);
1862 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1863 }
1864
1865 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1866
1867 create_rtc(vms);
1868
1869 create_pcie(vms);
1870
1871 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
1872 vms->acpi_dev = create_acpi_ged(vms);
1873 } else {
1874 create_gpio(vms);
1875 }
1876
1877 /* connect powerdown request */
1878 vms->powerdown_notifier.notify = virt_powerdown_req;
1879 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
1880
1881 /* Create mmio transports, so the user can create virtio backends
1882 * (which will be automatically plugged in to the transports). If
1883 * no backend is created the transport will just sit harmlessly idle.
1884 */
1885 create_virtio_devices(vms);
1886
1887 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1888 rom_set_fw(vms->fw_cfg);
1889
1890 create_platform_bus(vms);
1891
1892 if (machine->nvdimms_state->is_enabled) {
1893 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
1894 .space_id = AML_AS_SYSTEM_MEMORY,
1895 .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
1896 .bit_width = NVDIMM_ACPI_IO_LEN << 3
1897 };
1898
1899 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
1900 arm_virt_nvdimm_acpi_dsmio,
1901 vms->fw_cfg, OBJECT(vms));
1902 }
1903
1904 vms->bootinfo.ram_size = machine->ram_size;
1905 vms->bootinfo.nb_cpus = smp_cpus;
1906 vms->bootinfo.board_id = -1;
1907 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1908 vms->bootinfo.get_dtb = machvirt_dtb;
1909 vms->bootinfo.skip_dtb_autoload = true;
1910 vms->bootinfo.firmware_loaded = firmware_loaded;
1911 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
1912
1913 vms->machine_done.notify = virt_machine_done;
1914 qemu_add_machine_init_done_notifier(&vms->machine_done);
1915 }
1916
1917 static bool virt_get_secure(Object *obj, Error **errp)
1918 {
1919 VirtMachineState *vms = VIRT_MACHINE(obj);
1920
1921 return vms->secure;
1922 }
1923
1924 static void virt_set_secure(Object *obj, bool value, Error **errp)
1925 {
1926 VirtMachineState *vms = VIRT_MACHINE(obj);
1927
1928 vms->secure = value;
1929 }
1930
1931 static bool virt_get_virt(Object *obj, Error **errp)
1932 {
1933 VirtMachineState *vms = VIRT_MACHINE(obj);
1934
1935 return vms->virt;
1936 }
1937
1938 static void virt_set_virt(Object *obj, bool value, Error **errp)
1939 {
1940 VirtMachineState *vms = VIRT_MACHINE(obj);
1941
1942 vms->virt = value;
1943 }
1944
1945 static bool virt_get_highmem(Object *obj, Error **errp)
1946 {
1947 VirtMachineState *vms = VIRT_MACHINE(obj);
1948
1949 return vms->highmem;
1950 }
1951
1952 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1953 {
1954 VirtMachineState *vms = VIRT_MACHINE(obj);
1955
1956 vms->highmem = value;
1957 }
1958
1959 static bool virt_get_its(Object *obj, Error **errp)
1960 {
1961 VirtMachineState *vms = VIRT_MACHINE(obj);
1962
1963 return vms->its;
1964 }
1965
1966 static void virt_set_its(Object *obj, bool value, Error **errp)
1967 {
1968 VirtMachineState *vms = VIRT_MACHINE(obj);
1969
1970 vms->its = value;
1971 }
1972
1973 bool virt_is_acpi_enabled(VirtMachineState *vms)
1974 {
1975 if (vms->acpi == ON_OFF_AUTO_OFF) {
1976 return false;
1977 }
1978 return true;
1979 }
1980
1981 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
1982 void *opaque, Error **errp)
1983 {
1984 VirtMachineState *vms = VIRT_MACHINE(obj);
1985 OnOffAuto acpi = vms->acpi;
1986
1987 visit_type_OnOffAuto(v, name, &acpi, errp);
1988 }
1989
1990 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
1991 void *opaque, Error **errp)
1992 {
1993 VirtMachineState *vms = VIRT_MACHINE(obj);
1994
1995 visit_type_OnOffAuto(v, name, &vms->acpi, errp);
1996 }
1997
1998 static bool virt_get_ras(Object *obj, Error **errp)
1999 {
2000 VirtMachineState *vms = VIRT_MACHINE(obj);
2001
2002 return vms->ras;
2003 }
2004
2005 static void virt_set_ras(Object *obj, bool value, Error **errp)
2006 {
2007 VirtMachineState *vms = VIRT_MACHINE(obj);
2008
2009 vms->ras = value;
2010 }
2011
2012 static char *virt_get_gic_version(Object *obj, Error **errp)
2013 {
2014 VirtMachineState *vms = VIRT_MACHINE(obj);
2015 const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2";
2016
2017 return g_strdup(val);
2018 }
2019
2020 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2021 {
2022 VirtMachineState *vms = VIRT_MACHINE(obj);
2023
2024 if (!strcmp(value, "3")) {
2025 vms->gic_version = VIRT_GIC_VERSION_3;
2026 } else if (!strcmp(value, "2")) {
2027 vms->gic_version = VIRT_GIC_VERSION_2;
2028 } else if (!strcmp(value, "host")) {
2029 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2030 } else if (!strcmp(value, "max")) {
2031 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2032 } else {
2033 error_setg(errp, "Invalid gic-version value");
2034 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2035 }
2036 }
2037
2038 static char *virt_get_iommu(Object *obj, Error **errp)
2039 {
2040 VirtMachineState *vms = VIRT_MACHINE(obj);
2041
2042 switch (vms->iommu) {
2043 case VIRT_IOMMU_NONE:
2044 return g_strdup("none");
2045 case VIRT_IOMMU_SMMUV3:
2046 return g_strdup("smmuv3");
2047 default:
2048 g_assert_not_reached();
2049 }
2050 }
2051
2052 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2053 {
2054 VirtMachineState *vms = VIRT_MACHINE(obj);
2055
2056 if (!strcmp(value, "smmuv3")) {
2057 vms->iommu = VIRT_IOMMU_SMMUV3;
2058 } else if (!strcmp(value, "none")) {
2059 vms->iommu = VIRT_IOMMU_NONE;
2060 } else {
2061 error_setg(errp, "Invalid iommu value");
2062 error_append_hint(errp, "Valid values are none, smmuv3.\n");
2063 }
2064 }
2065
2066 static CpuInstanceProperties
2067 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2068 {
2069 MachineClass *mc = MACHINE_GET_CLASS(ms);
2070 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2071
2072 assert(cpu_index < possible_cpus->len);
2073 return possible_cpus->cpus[cpu_index].props;
2074 }
2075
2076 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2077 {
2078 return idx % ms->numa_state->num_nodes;
2079 }
2080
2081 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2082 {
2083 int n;
2084 unsigned int max_cpus = ms->smp.max_cpus;
2085 VirtMachineState *vms = VIRT_MACHINE(ms);
2086
2087 if (ms->possible_cpus) {
2088 assert(ms->possible_cpus->len == max_cpus);
2089 return ms->possible_cpus;
2090 }
2091
2092 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2093 sizeof(CPUArchId) * max_cpus);
2094 ms->possible_cpus->len = max_cpus;
2095 for (n = 0; n < ms->possible_cpus->len; n++) {
2096 ms->possible_cpus->cpus[n].type = ms->cpu_type;
2097 ms->possible_cpus->cpus[n].arch_id =
2098 virt_cpu_mp_affinity(vms, n);
2099 ms->possible_cpus->cpus[n].props.has_thread_id = true;
2100 ms->possible_cpus->cpus[n].props.thread_id = n;
2101 }
2102 return ms->possible_cpus;
2103 }
2104
2105 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2106 Error **errp)
2107 {
2108 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2109 const MachineState *ms = MACHINE(hotplug_dev);
2110 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2111
2112 if (!vms->acpi_dev) {
2113 error_setg(errp,
2114 "memory hotplug is not enabled: missing acpi-ged device");
2115 return;
2116 }
2117
2118 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2119 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2120 return;
2121 }
2122
2123 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2124 }
2125
2126 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2127 DeviceState *dev, Error **errp)
2128 {
2129 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2130 MachineState *ms = MACHINE(hotplug_dev);
2131 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2132 Error *local_err = NULL;
2133
2134 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms), &local_err);
2135 if (local_err) {
2136 goto out;
2137 }
2138
2139 if (is_nvdimm) {
2140 nvdimm_plug(ms->nvdimms_state);
2141 }
2142
2143 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2144 dev, &error_abort);
2145
2146 out:
2147 error_propagate(errp, local_err);
2148 }
2149
2150 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2151 DeviceState *dev, Error **errp)
2152 {
2153 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2154 virt_memory_pre_plug(hotplug_dev, dev, errp);
2155 }
2156 }
2157
2158 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2159 DeviceState *dev, Error **errp)
2160 {
2161 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2162
2163 if (vms->platform_bus_dev) {
2164 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
2165 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2166 SYS_BUS_DEVICE(dev));
2167 }
2168 }
2169 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2170 virt_memory_plug(hotplug_dev, dev, errp);
2171 }
2172 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2173 PCIDevice *pdev = PCI_DEVICE(dev);
2174
2175 vms->iommu = VIRT_IOMMU_VIRTIO;
2176 vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2177 create_virtio_iommu_dt_bindings(vms);
2178 }
2179 }
2180
2181 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2182 DeviceState *dev, Error **errp)
2183 {
2184 error_setg(errp, "device unplug request for unsupported device"
2185 " type: %s", object_get_typename(OBJECT(dev)));
2186 }
2187
2188 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2189 DeviceState *dev)
2190 {
2191 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE) ||
2192 (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) {
2193 return HOTPLUG_HANDLER(machine);
2194 }
2195 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2196 VirtMachineState *vms = VIRT_MACHINE(machine);
2197
2198 if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) {
2199 return HOTPLUG_HANDLER(machine);
2200 }
2201 }
2202 return NULL;
2203 }
2204
2205 /*
2206 * for arm64 kvm_type [7-0] encodes the requested number of bits
2207 * in the IPA address space
2208 */
2209 static int virt_kvm_type(MachineState *ms, const char *type_str)
2210 {
2211 VirtMachineState *vms = VIRT_MACHINE(ms);
2212 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
2213 int requested_pa_size;
2214
2215 /* we freeze the memory map to compute the highest gpa */
2216 virt_set_memmap(vms);
2217
2218 requested_pa_size = 64 - clz64(vms->highest_gpa);
2219
2220 if (requested_pa_size > max_vm_pa_size) {
2221 error_report("-m and ,maxmem option values "
2222 "require an IPA range (%d bits) larger than "
2223 "the one supported by the host (%d bits)",
2224 requested_pa_size, max_vm_pa_size);
2225 exit(1);
2226 }
2227 /*
2228 * By default we return 0 which corresponds to an implicit legacy
2229 * 40b IPA setting. Otherwise we return the actual requested PA
2230 * logsize
2231 */
2232 return requested_pa_size > 40 ? requested_pa_size : 0;
2233 }
2234
2235 static void virt_machine_class_init(ObjectClass *oc, void *data)
2236 {
2237 MachineClass *mc = MACHINE_CLASS(oc);
2238 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2239
2240 mc->init = machvirt_init;
2241 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2242 * The value may be reduced later when we have more information about the
2243 * configuration of the particular instance.
2244 */
2245 mc->max_cpus = 512;
2246 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2247 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2248 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2249 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2250 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2251 mc->block_default_type = IF_VIRTIO;
2252 mc->no_cdrom = 1;
2253 mc->pci_allow_0_address = true;
2254 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2255 mc->minimum_page_bits = 12;
2256 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2257 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2258 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2259 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2260 mc->kvm_type = virt_kvm_type;
2261 assert(!mc->get_hotplug_handler);
2262 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2263 hc->pre_plug = virt_machine_device_pre_plug_cb;
2264 hc->plug = virt_machine_device_plug_cb;
2265 hc->unplug_request = virt_machine_device_unplug_request_cb;
2266 mc->numa_mem_supported = true;
2267 mc->nvdimm_supported = true;
2268 mc->auto_enable_numa_with_memhp = true;
2269 mc->default_ram_id = "mach-virt.ram";
2270
2271 object_class_property_add(oc, "acpi", "OnOffAuto",
2272 virt_get_acpi, virt_set_acpi,
2273 NULL, NULL, &error_abort);
2274 object_class_property_set_description(oc, "acpi",
2275 "Enable ACPI");
2276 }
2277
2278 static void virt_instance_init(Object *obj)
2279 {
2280 VirtMachineState *vms = VIRT_MACHINE(obj);
2281 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
2282
2283 /* EL3 is disabled by default on virt: this makes us consistent
2284 * between KVM and TCG for this board, and it also allows us to
2285 * boot UEFI blobs which assume no TrustZone support.
2286 */
2287 vms->secure = false;
2288 object_property_add_bool(obj, "secure", virt_get_secure,
2289 virt_set_secure, NULL);
2290 object_property_set_description(obj, "secure",
2291 "Set on/off to enable/disable the ARM "
2292 "Security Extensions (TrustZone)");
2293
2294 /* EL2 is also disabled by default, for similar reasons */
2295 vms->virt = false;
2296 object_property_add_bool(obj, "virtualization", virt_get_virt,
2297 virt_set_virt, NULL);
2298 object_property_set_description(obj, "virtualization",
2299 "Set on/off to enable/disable emulating a "
2300 "guest CPU which implements the ARM "
2301 "Virtualization Extensions");
2302
2303 /* High memory is enabled by default */
2304 vms->highmem = true;
2305 object_property_add_bool(obj, "highmem", virt_get_highmem,
2306 virt_set_highmem, NULL);
2307 object_property_set_description(obj, "highmem",
2308 "Set on/off to enable/disable using "
2309 "physical address space above 32 bits");
2310 vms->gic_version = VIRT_GIC_VERSION_NOSEL;
2311 object_property_add_str(obj, "gic-version", virt_get_gic_version,
2312 virt_set_gic_version, NULL);
2313 object_property_set_description(obj, "gic-version",
2314 "Set GIC version. "
2315 "Valid values are 2, 3, host and max");
2316
2317 vms->highmem_ecam = !vmc->no_highmem_ecam;
2318
2319 if (vmc->no_its) {
2320 vms->its = false;
2321 } else {
2322 /* Default allows ITS instantiation */
2323 vms->its = true;
2324 object_property_add_bool(obj, "its", virt_get_its,
2325 virt_set_its, NULL);
2326 object_property_set_description(obj, "its",
2327 "Set on/off to enable/disable "
2328 "ITS instantiation");
2329 }
2330
2331 /* Default disallows iommu instantiation */
2332 vms->iommu = VIRT_IOMMU_NONE;
2333 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
2334 object_property_set_description(obj, "iommu",
2335 "Set the IOMMU type. "
2336 "Valid values are none and smmuv3");
2337
2338 /* Default disallows RAS instantiation */
2339 vms->ras = false;
2340 object_property_add_bool(obj, "ras", virt_get_ras,
2341 virt_set_ras, NULL);
2342 object_property_set_description(obj, "ras",
2343 "Set on/off to enable/disable reporting host memory errors "
2344 "to a KVM guest using ACPI and guest external abort exceptions");
2345
2346 vms->irqmap = a15irqmap;
2347
2348 virt_flash_create(vms);
2349 }
2350
2351 static const TypeInfo virt_machine_info = {
2352 .name = TYPE_VIRT_MACHINE,
2353 .parent = TYPE_MACHINE,
2354 .abstract = true,
2355 .instance_size = sizeof(VirtMachineState),
2356 .class_size = sizeof(VirtMachineClass),
2357 .class_init = virt_machine_class_init,
2358 .instance_init = virt_instance_init,
2359 .interfaces = (InterfaceInfo[]) {
2360 { TYPE_HOTPLUG_HANDLER },
2361 { }
2362 },
2363 };
2364
2365 static void machvirt_machine_init(void)
2366 {
2367 type_register_static(&virt_machine_info);
2368 }
2369 type_init(machvirt_machine_init);
2370
2371 static void virt_machine_5_1_options(MachineClass *mc)
2372 {
2373 }
2374 DEFINE_VIRT_MACHINE_AS_LATEST(5, 1)
2375
2376 static void virt_machine_5_0_options(MachineClass *mc)
2377 {
2378 virt_machine_5_1_options(mc);
2379 }
2380 DEFINE_VIRT_MACHINE(5, 0)
2381
2382 static void virt_machine_4_2_options(MachineClass *mc)
2383 {
2384 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2385
2386 virt_machine_5_0_options(mc);
2387 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
2388 vmc->kvm_no_adjvtime = true;
2389 }
2390 DEFINE_VIRT_MACHINE(4, 2)
2391
2392 static void virt_machine_4_1_options(MachineClass *mc)
2393 {
2394 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2395
2396 virt_machine_4_2_options(mc);
2397 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
2398 vmc->no_ged = true;
2399 mc->auto_enable_numa_with_memhp = false;
2400 }
2401 DEFINE_VIRT_MACHINE(4, 1)
2402
2403 static void virt_machine_4_0_options(MachineClass *mc)
2404 {
2405 virt_machine_4_1_options(mc);
2406 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2407 }
2408 DEFINE_VIRT_MACHINE(4, 0)
2409
2410 static void virt_machine_3_1_options(MachineClass *mc)
2411 {
2412 virt_machine_4_0_options(mc);
2413 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2414 }
2415 DEFINE_VIRT_MACHINE(3, 1)
2416
2417 static void virt_machine_3_0_options(MachineClass *mc)
2418 {
2419 virt_machine_3_1_options(mc);
2420 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2421 }
2422 DEFINE_VIRT_MACHINE(3, 0)
2423
2424 static void virt_machine_2_12_options(MachineClass *mc)
2425 {
2426 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2427
2428 virt_machine_3_0_options(mc);
2429 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2430 vmc->no_highmem_ecam = true;
2431 mc->max_cpus = 255;
2432 }
2433 DEFINE_VIRT_MACHINE(2, 12)
2434
2435 static void virt_machine_2_11_options(MachineClass *mc)
2436 {
2437 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2438
2439 virt_machine_2_12_options(mc);
2440 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2441 vmc->smbios_old_sys_ver = true;
2442 }
2443 DEFINE_VIRT_MACHINE(2, 11)
2444
2445 static void virt_machine_2_10_options(MachineClass *mc)
2446 {
2447 virt_machine_2_11_options(mc);
2448 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2449 /* before 2.11 we never faulted accesses to bad addresses */
2450 mc->ignore_memory_transaction_failures = true;
2451 }
2452 DEFINE_VIRT_MACHINE(2, 10)
2453
2454 static void virt_machine_2_9_options(MachineClass *mc)
2455 {
2456 virt_machine_2_10_options(mc);
2457 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2458 }
2459 DEFINE_VIRT_MACHINE(2, 9)
2460
2461 static void virt_machine_2_8_options(MachineClass *mc)
2462 {
2463 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2464
2465 virt_machine_2_9_options(mc);
2466 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2467 /* For 2.8 and earlier we falsely claimed in the DT that
2468 * our timers were edge-triggered, not level-triggered.
2469 */
2470 vmc->claim_edge_triggered_timers = true;
2471 }
2472 DEFINE_VIRT_MACHINE(2, 8)
2473
2474 static void virt_machine_2_7_options(MachineClass *mc)
2475 {
2476 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2477
2478 virt_machine_2_8_options(mc);
2479 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2480 /* ITS was introduced with 2.8 */
2481 vmc->no_its = true;
2482 /* Stick with 1K pages for migration compatibility */
2483 mc->minimum_page_bits = 0;
2484 }
2485 DEFINE_VIRT_MACHINE(2, 7)
2486
2487 static void virt_machine_2_6_options(MachineClass *mc)
2488 {
2489 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2490
2491 virt_machine_2_7_options(mc);
2492 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2493 vmc->disallow_affinity_adjustment = true;
2494 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2495 vmc->no_pmu = true;
2496 }
2497 DEFINE_VIRT_MACHINE(2, 6)