]> git.proxmox.com Git - mirror_qemu.git/blob - hw/cadence_uart.c
softmmu: move remaining include files to include/ subdirectories
[mirror_qemu.git] / hw / cadence_uart.c
1 /*
2 * Device model for Cadence UART
3 *
4 * Copyright (c) 2010 Xilinx Inc.
5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6 * Copyright (c) 2012 PetaLogix Pty Ltd.
7 * Written by Haibing Ma
8 * M.Habib
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #include "sysbus.h"
20 #include "char/char.h"
21 #include "qemu/timer.h"
22
23 #ifdef CADENCE_UART_ERR_DEBUG
24 #define DB_PRINT(...) do { \
25 fprintf(stderr, ": %s: ", __func__); \
26 fprintf(stderr, ## __VA_ARGS__); \
27 } while (0);
28 #else
29 #define DB_PRINT(...)
30 #endif
31
32 #define UART_SR_INTR_RTRIG 0x00000001
33 #define UART_SR_INTR_REMPTY 0x00000002
34 #define UART_SR_INTR_RFUL 0x00000004
35 #define UART_SR_INTR_TEMPTY 0x00000008
36 #define UART_SR_INTR_TFUL 0x00000010
37 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
38 * SR, then the same bit in CISR is set high too */
39 #define UART_SR_TO_CISR_MASK 0x0000001F
40
41 #define UART_INTR_ROVR 0x00000020
42 #define UART_INTR_FRAME 0x00000040
43 #define UART_INTR_PARE 0x00000080
44 #define UART_INTR_TIMEOUT 0x00000100
45 #define UART_INTR_DMSI 0x00000200
46
47 #define UART_SR_RACTIVE 0x00000400
48 #define UART_SR_TACTIVE 0x00000800
49 #define UART_SR_FDELT 0x00001000
50
51 #define UART_CR_RXRST 0x00000001
52 #define UART_CR_TXRST 0x00000002
53 #define UART_CR_RX_EN 0x00000004
54 #define UART_CR_RX_DIS 0x00000008
55 #define UART_CR_TX_EN 0x00000010
56 #define UART_CR_TX_DIS 0x00000020
57 #define UART_CR_RST_TO 0x00000040
58 #define UART_CR_STARTBRK 0x00000080
59 #define UART_CR_STOPBRK 0x00000100
60
61 #define UART_MR_CLKS 0x00000001
62 #define UART_MR_CHRL 0x00000006
63 #define UART_MR_CHRL_SH 1
64 #define UART_MR_PAR 0x00000038
65 #define UART_MR_PAR_SH 3
66 #define UART_MR_NBSTOP 0x000000C0
67 #define UART_MR_NBSTOP_SH 6
68 #define UART_MR_CHMODE 0x00000300
69 #define UART_MR_CHMODE_SH 8
70 #define UART_MR_UCLKEN 0x00000400
71 #define UART_MR_IRMODE 0x00000800
72
73 #define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
74 #define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
75 #define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
76 #define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
77 #define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
78 #define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
79 #define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
80 #define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
81 #define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
82 #define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
83
84 #define RX_FIFO_SIZE 16
85 #define TX_FIFO_SIZE 16
86 #define UART_INPUT_CLK 50000000
87
88 #define R_CR (0x00/4)
89 #define R_MR (0x04/4)
90 #define R_IER (0x08/4)
91 #define R_IDR (0x0C/4)
92 #define R_IMR (0x10/4)
93 #define R_CISR (0x14/4)
94 #define R_BRGR (0x18/4)
95 #define R_RTOR (0x1C/4)
96 #define R_RTRIG (0x20/4)
97 #define R_MCR (0x24/4)
98 #define R_MSR (0x28/4)
99 #define R_SR (0x2C/4)
100 #define R_TX_RX (0x30/4)
101 #define R_BDIV (0x34/4)
102 #define R_FDEL (0x38/4)
103 #define R_PMIN (0x3C/4)
104 #define R_PWID (0x40/4)
105 #define R_TTRIG (0x44/4)
106
107 #define R_MAX (R_TTRIG + 1)
108
109 typedef struct {
110 SysBusDevice busdev;
111 MemoryRegion iomem;
112 uint32_t r[R_MAX];
113 uint8_t r_fifo[RX_FIFO_SIZE];
114 uint32_t rx_wpos;
115 uint32_t rx_count;
116 uint64_t char_tx_time;
117 CharDriverState *chr;
118 qemu_irq irq;
119 struct QEMUTimer *fifo_trigger_handle;
120 struct QEMUTimer *tx_time_handle;
121 } UartState;
122
123 static void uart_update_status(UartState *s)
124 {
125 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
126 qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
127 }
128
129 static void fifo_trigger_update(void *opaque)
130 {
131 UartState *s = (UartState *)opaque;
132
133 s->r[R_CISR] |= UART_INTR_TIMEOUT;
134
135 uart_update_status(s);
136 }
137
138 static void uart_tx_redo(UartState *s)
139 {
140 uint64_t new_tx_time = qemu_get_clock_ns(vm_clock);
141
142 qemu_mod_timer(s->tx_time_handle, new_tx_time + s->char_tx_time);
143
144 s->r[R_SR] |= UART_SR_INTR_TEMPTY;
145
146 uart_update_status(s);
147 }
148
149 static void uart_tx_write(void *opaque)
150 {
151 UartState *s = (UartState *)opaque;
152
153 uart_tx_redo(s);
154 }
155
156 static void uart_rx_reset(UartState *s)
157 {
158 s->rx_wpos = 0;
159 s->rx_count = 0;
160
161 s->r[R_SR] |= UART_SR_INTR_REMPTY;
162 s->r[R_SR] &= ~UART_SR_INTR_RFUL;
163 }
164
165 static void uart_tx_reset(UartState *s)
166 {
167 s->r[R_SR] |= UART_SR_INTR_TEMPTY;
168 s->r[R_SR] &= ~UART_SR_INTR_TFUL;
169 }
170
171 static void uart_send_breaks(UartState *s)
172 {
173 int break_enabled = 1;
174
175 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
176 &break_enabled);
177 }
178
179 static void uart_parameters_setup(UartState *s)
180 {
181 QEMUSerialSetParams ssp;
182 unsigned int baud_rate, packet_size;
183
184 baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
185 UART_INPUT_CLK / 8 : UART_INPUT_CLK;
186
187 ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
188 packet_size = 1;
189
190 switch (s->r[R_MR] & UART_MR_PAR) {
191 case UART_PARITY_EVEN:
192 ssp.parity = 'E';
193 packet_size++;
194 break;
195 case UART_PARITY_ODD:
196 ssp.parity = 'O';
197 packet_size++;
198 break;
199 default:
200 ssp.parity = 'N';
201 break;
202 }
203
204 switch (s->r[R_MR] & UART_MR_CHRL) {
205 case UART_DATA_BITS_6:
206 ssp.data_bits = 6;
207 break;
208 case UART_DATA_BITS_7:
209 ssp.data_bits = 7;
210 break;
211 default:
212 ssp.data_bits = 8;
213 break;
214 }
215
216 switch (s->r[R_MR] & UART_MR_NBSTOP) {
217 case UART_STOP_BITS_1:
218 ssp.stop_bits = 1;
219 break;
220 default:
221 ssp.stop_bits = 2;
222 break;
223 }
224
225 packet_size += ssp.data_bits + ssp.stop_bits;
226 s->char_tx_time = (get_ticks_per_sec() / ssp.speed) * packet_size;
227 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
228 }
229
230 static int uart_can_receive(void *opaque)
231 {
232 UartState *s = (UartState *)opaque;
233
234 return RX_FIFO_SIZE - s->rx_count;
235 }
236
237 static void uart_ctrl_update(UartState *s)
238 {
239 if (s->r[R_CR] & UART_CR_TXRST) {
240 uart_tx_reset(s);
241 }
242
243 if (s->r[R_CR] & UART_CR_RXRST) {
244 uart_rx_reset(s);
245 }
246
247 s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
248
249 if ((s->r[R_CR] & UART_CR_TX_EN) && !(s->r[R_CR] & UART_CR_TX_DIS)) {
250 uart_tx_redo(s);
251 }
252
253 if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
254 uart_send_breaks(s);
255 }
256 }
257
258 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
259 {
260 UartState *s = (UartState *)opaque;
261 uint64_t new_rx_time = qemu_get_clock_ns(vm_clock);
262 int i;
263
264 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
265 return;
266 }
267
268 s->r[R_SR] &= ~UART_SR_INTR_REMPTY;
269
270 if (s->rx_count == RX_FIFO_SIZE) {
271 s->r[R_CISR] |= UART_INTR_ROVR;
272 } else {
273 for (i = 0; i < size; i++) {
274 s->r_fifo[s->rx_wpos] = buf[i];
275 s->rx_wpos = (s->rx_wpos + 1) % RX_FIFO_SIZE;
276 s->rx_count++;
277
278 if (s->rx_count == RX_FIFO_SIZE) {
279 s->r[R_SR] |= UART_SR_INTR_RFUL;
280 break;
281 }
282
283 if (s->rx_count >= s->r[R_RTRIG]) {
284 s->r[R_SR] |= UART_SR_INTR_RTRIG;
285 }
286 }
287 qemu_mod_timer(s->fifo_trigger_handle, new_rx_time +
288 (s->char_tx_time * 4));
289 }
290 uart_update_status(s);
291 }
292
293 static void uart_write_tx_fifo(UartState *s, const uint8_t *buf, int size)
294 {
295 if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
296 return;
297 }
298
299 while (size) {
300 size -= qemu_chr_fe_write(s->chr, buf, size);
301 }
302 }
303
304 static void uart_receive(void *opaque, const uint8_t *buf, int size)
305 {
306 UartState *s = (UartState *)opaque;
307 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
308
309 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
310 uart_write_rx_fifo(opaque, buf, size);
311 }
312 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
313 uart_write_tx_fifo(s, buf, size);
314 }
315 }
316
317 static void uart_event(void *opaque, int event)
318 {
319 UartState *s = (UartState *)opaque;
320 uint8_t buf = '\0';
321
322 if (event == CHR_EVENT_BREAK) {
323 uart_write_rx_fifo(opaque, &buf, 1);
324 }
325
326 uart_update_status(s);
327 }
328
329 static void uart_read_rx_fifo(UartState *s, uint32_t *c)
330 {
331 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
332 return;
333 }
334
335 s->r[R_SR] &= ~UART_SR_INTR_RFUL;
336
337 if (s->rx_count) {
338 uint32_t rx_rpos =
339 (RX_FIFO_SIZE + s->rx_wpos - s->rx_count) % RX_FIFO_SIZE;
340 *c = s->r_fifo[rx_rpos];
341 s->rx_count--;
342
343 if (!s->rx_count) {
344 s->r[R_SR] |= UART_SR_INTR_REMPTY;
345 }
346 } else {
347 *c = 0;
348 s->r[R_SR] |= UART_SR_INTR_REMPTY;
349 }
350
351 if (s->rx_count < s->r[R_RTRIG]) {
352 s->r[R_SR] &= ~UART_SR_INTR_RTRIG;
353 }
354 uart_update_status(s);
355 }
356
357 static void uart_write(void *opaque, hwaddr offset,
358 uint64_t value, unsigned size)
359 {
360 UartState *s = (UartState *)opaque;
361
362 DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
363 offset >>= 2;
364 switch (offset) {
365 case R_IER: /* ier (wts imr) */
366 s->r[R_IMR] |= value;
367 break;
368 case R_IDR: /* idr (wtc imr) */
369 s->r[R_IMR] &= ~value;
370 break;
371 case R_IMR: /* imr (read only) */
372 break;
373 case R_CISR: /* cisr (wtc) */
374 s->r[R_CISR] &= ~value;
375 break;
376 case R_TX_RX: /* UARTDR */
377 switch (s->r[R_MR] & UART_MR_CHMODE) {
378 case NORMAL_MODE:
379 uart_write_tx_fifo(s, (uint8_t *) &value, 1);
380 break;
381 case LOCAL_LOOPBACK:
382 uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
383 break;
384 }
385 break;
386 default:
387 s->r[offset] = value;
388 }
389
390 switch (offset) {
391 case R_CR:
392 uart_ctrl_update(s);
393 break;
394 case R_MR:
395 uart_parameters_setup(s);
396 break;
397 }
398 }
399
400 static uint64_t uart_read(void *opaque, hwaddr offset,
401 unsigned size)
402 {
403 UartState *s = (UartState *)opaque;
404 uint32_t c = 0;
405
406 offset >>= 2;
407 if (offset >= R_MAX) {
408 c = 0;
409 } else if (offset == R_TX_RX) {
410 uart_read_rx_fifo(s, &c);
411 } else {
412 c = s->r[offset];
413 }
414
415 DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
416 return c;
417 }
418
419 static const MemoryRegionOps uart_ops = {
420 .read = uart_read,
421 .write = uart_write,
422 .endianness = DEVICE_NATIVE_ENDIAN,
423 };
424
425 static void cadence_uart_reset(UartState *s)
426 {
427 s->r[R_CR] = 0x00000128;
428 s->r[R_IMR] = 0;
429 s->r[R_CISR] = 0;
430 s->r[R_RTRIG] = 0x00000020;
431 s->r[R_BRGR] = 0x0000000F;
432 s->r[R_TTRIG] = 0x00000020;
433
434 uart_rx_reset(s);
435 uart_tx_reset(s);
436
437 s->rx_count = 0;
438 s->rx_wpos = 0;
439 }
440
441 static int cadence_uart_init(SysBusDevice *dev)
442 {
443 UartState *s = FROM_SYSBUS(UartState, dev);
444
445 memory_region_init_io(&s->iomem, &uart_ops, s, "uart", 0x1000);
446 sysbus_init_mmio(dev, &s->iomem);
447 sysbus_init_irq(dev, &s->irq);
448
449 s->fifo_trigger_handle = qemu_new_timer_ns(vm_clock,
450 (QEMUTimerCB *)fifo_trigger_update, s);
451
452 s->tx_time_handle = qemu_new_timer_ns(vm_clock,
453 (QEMUTimerCB *)uart_tx_write, s);
454
455 s->char_tx_time = (get_ticks_per_sec() / 9600) * 10;
456
457 s->chr = qemu_char_get_next_serial();
458
459 cadence_uart_reset(s);
460
461 if (s->chr) {
462 qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive,
463 uart_event, s);
464 }
465
466 return 0;
467 }
468
469 static int cadence_uart_post_load(void *opaque, int version_id)
470 {
471 UartState *s = opaque;
472
473 uart_parameters_setup(s);
474 uart_update_status(s);
475 return 0;
476 }
477
478 static const VMStateDescription vmstate_cadence_uart = {
479 .name = "cadence_uart",
480 .version_id = 1,
481 .minimum_version_id = 1,
482 .minimum_version_id_old = 1,
483 .post_load = cadence_uart_post_load,
484 .fields = (VMStateField[]) {
485 VMSTATE_UINT32_ARRAY(r, UartState, R_MAX),
486 VMSTATE_UINT8_ARRAY(r_fifo, UartState, RX_FIFO_SIZE),
487 VMSTATE_UINT32(rx_count, UartState),
488 VMSTATE_UINT32(rx_wpos, UartState),
489 VMSTATE_TIMER(fifo_trigger_handle, UartState),
490 VMSTATE_TIMER(tx_time_handle, UartState),
491 VMSTATE_END_OF_LIST()
492 }
493 };
494
495 static void cadence_uart_class_init(ObjectClass *klass, void *data)
496 {
497 DeviceClass *dc = DEVICE_CLASS(klass);
498 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
499
500 sdc->init = cadence_uart_init;
501 dc->vmsd = &vmstate_cadence_uart;
502 }
503
504 static TypeInfo cadence_uart_info = {
505 .name = "cadence_uart",
506 .parent = TYPE_SYS_BUS_DEVICE,
507 .instance_size = sizeof(UartState),
508 .class_init = cadence_uart_class_init,
509 };
510
511 static void cadence_uart_register_types(void)
512 {
513 type_register_static(&cadence_uart_info);
514 }
515
516 type_init(cadence_uart_register_types)