]> git.proxmox.com Git - mirror_qemu.git/blob - hw/core/loader.c
Remove qemu-common.h include from most units
[mirror_qemu.git] / hw / core / loader.c
1 /*
2 * QEMU Executable loader
3 *
4 * Copyright (c) 2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 *
24 * Gunzip functionality in this file is derived from u-boot:
25 *
26 * (C) Copyright 2008 Semihalf
27 *
28 * (C) Copyright 2000-2005
29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
30 *
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License as
33 * published by the Free Software Foundation; either version 2 of
34 * the License, or (at your option) any later version.
35 *
36 * This program is distributed in the hope that it will be useful,
37 * but WITHOUT ANY WARRANTY; without even the implied warranty of
38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
39 * GNU General Public License for more details.
40 *
41 * You should have received a copy of the GNU General Public License along
42 * with this program; if not, see <http://www.gnu.org/licenses/>.
43 */
44
45 #include "qemu/osdep.h"
46 #include "qemu/datadir.h"
47 #include "qapi/error.h"
48 #include "qapi/qapi-commands-machine.h"
49 #include "qapi/type-helpers.h"
50 #include "trace.h"
51 #include "hw/hw.h"
52 #include "disas/disas.h"
53 #include "migration/vmstate.h"
54 #include "monitor/monitor.h"
55 #include "sysemu/reset.h"
56 #include "sysemu/sysemu.h"
57 #include "uboot_image.h"
58 #include "hw/loader.h"
59 #include "hw/nvram/fw_cfg.h"
60 #include "exec/memory.h"
61 #include "hw/boards.h"
62 #include "qemu/cutils.h"
63 #include "sysemu/runstate.h"
64
65 #include <zlib.h>
66
67 static int roms_loaded;
68
69 /* return the size or -1 if error */
70 int64_t get_image_size(const char *filename)
71 {
72 int fd;
73 int64_t size;
74 fd = open(filename, O_RDONLY | O_BINARY);
75 if (fd < 0)
76 return -1;
77 size = lseek(fd, 0, SEEK_END);
78 close(fd);
79 return size;
80 }
81
82 /* return the size or -1 if error */
83 ssize_t load_image_size(const char *filename, void *addr, size_t size)
84 {
85 int fd;
86 ssize_t actsize, l = 0;
87
88 fd = open(filename, O_RDONLY | O_BINARY);
89 if (fd < 0) {
90 return -1;
91 }
92
93 while ((actsize = read(fd, addr + l, size - l)) > 0) {
94 l += actsize;
95 }
96
97 close(fd);
98
99 return actsize < 0 ? -1 : l;
100 }
101
102 /* read()-like version */
103 ssize_t read_targphys(const char *name,
104 int fd, hwaddr dst_addr, size_t nbytes)
105 {
106 uint8_t *buf;
107 ssize_t did;
108
109 buf = g_malloc(nbytes);
110 did = read(fd, buf, nbytes);
111 if (did > 0)
112 rom_add_blob_fixed("read", buf, did, dst_addr);
113 g_free(buf);
114 return did;
115 }
116
117 int load_image_targphys(const char *filename,
118 hwaddr addr, uint64_t max_sz)
119 {
120 return load_image_targphys_as(filename, addr, max_sz, NULL);
121 }
122
123 /* return the size or -1 if error */
124 int load_image_targphys_as(const char *filename,
125 hwaddr addr, uint64_t max_sz, AddressSpace *as)
126 {
127 int size;
128
129 size = get_image_size(filename);
130 if (size < 0 || size > max_sz) {
131 return -1;
132 }
133 if (size > 0) {
134 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
135 return -1;
136 }
137 }
138 return size;
139 }
140
141 int load_image_mr(const char *filename, MemoryRegion *mr)
142 {
143 int size;
144
145 if (!memory_access_is_direct(mr, false)) {
146 /* Can only load an image into RAM or ROM */
147 return -1;
148 }
149
150 size = get_image_size(filename);
151
152 if (size < 0 || size > memory_region_size(mr)) {
153 return -1;
154 }
155 if (size > 0) {
156 if (rom_add_file_mr(filename, mr, -1) < 0) {
157 return -1;
158 }
159 }
160 return size;
161 }
162
163 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
164 const char *source)
165 {
166 const char *nulp;
167 char *ptr;
168
169 if (buf_size <= 0) return;
170 nulp = memchr(source, 0, buf_size);
171 if (nulp) {
172 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
173 } else {
174 rom_add_blob_fixed(name, source, buf_size, dest);
175 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
176 *ptr = 0;
177 }
178 }
179
180 /* A.OUT loader */
181
182 struct exec
183 {
184 uint32_t a_info; /* Use macros N_MAGIC, etc for access */
185 uint32_t a_text; /* length of text, in bytes */
186 uint32_t a_data; /* length of data, in bytes */
187 uint32_t a_bss; /* length of uninitialized data area, in bytes */
188 uint32_t a_syms; /* length of symbol table data in file, in bytes */
189 uint32_t a_entry; /* start address */
190 uint32_t a_trsize; /* length of relocation info for text, in bytes */
191 uint32_t a_drsize; /* length of relocation info for data, in bytes */
192 };
193
194 static void bswap_ahdr(struct exec *e)
195 {
196 bswap32s(&e->a_info);
197 bswap32s(&e->a_text);
198 bswap32s(&e->a_data);
199 bswap32s(&e->a_bss);
200 bswap32s(&e->a_syms);
201 bswap32s(&e->a_entry);
202 bswap32s(&e->a_trsize);
203 bswap32s(&e->a_drsize);
204 }
205
206 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
207 #define OMAGIC 0407
208 #define NMAGIC 0410
209 #define ZMAGIC 0413
210 #define QMAGIC 0314
211 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
212 #define N_TXTOFF(x) \
213 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \
214 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
215 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
216 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
217
218 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
219
220 #define N_DATADDR(x, target_page_size) \
221 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
222 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
223
224
225 int load_aout(const char *filename, hwaddr addr, int max_sz,
226 int bswap_needed, hwaddr target_page_size)
227 {
228 int fd;
229 ssize_t size, ret;
230 struct exec e;
231 uint32_t magic;
232
233 fd = open(filename, O_RDONLY | O_BINARY);
234 if (fd < 0)
235 return -1;
236
237 size = read(fd, &e, sizeof(e));
238 if (size < 0)
239 goto fail;
240
241 if (bswap_needed) {
242 bswap_ahdr(&e);
243 }
244
245 magic = N_MAGIC(e);
246 switch (magic) {
247 case ZMAGIC:
248 case QMAGIC:
249 case OMAGIC:
250 if (e.a_text + e.a_data > max_sz)
251 goto fail;
252 lseek(fd, N_TXTOFF(e), SEEK_SET);
253 size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
254 if (size < 0)
255 goto fail;
256 break;
257 case NMAGIC:
258 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
259 goto fail;
260 lseek(fd, N_TXTOFF(e), SEEK_SET);
261 size = read_targphys(filename, fd, addr, e.a_text);
262 if (size < 0)
263 goto fail;
264 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
265 e.a_data);
266 if (ret < 0)
267 goto fail;
268 size += ret;
269 break;
270 default:
271 goto fail;
272 }
273 close(fd);
274 return size;
275 fail:
276 close(fd);
277 return -1;
278 }
279
280 /* ELF loader */
281
282 static void *load_at(int fd, off_t offset, size_t size)
283 {
284 void *ptr;
285 if (lseek(fd, offset, SEEK_SET) < 0)
286 return NULL;
287 ptr = g_malloc(size);
288 if (read(fd, ptr, size) != size) {
289 g_free(ptr);
290 return NULL;
291 }
292 return ptr;
293 }
294
295 #ifdef ELF_CLASS
296 #undef ELF_CLASS
297 #endif
298
299 #define ELF_CLASS ELFCLASS32
300 #include "elf.h"
301
302 #define SZ 32
303 #define elf_word uint32_t
304 #define elf_sword int32_t
305 #define bswapSZs bswap32s
306 #include "hw/elf_ops.h"
307
308 #undef elfhdr
309 #undef elf_phdr
310 #undef elf_shdr
311 #undef elf_sym
312 #undef elf_rela
313 #undef elf_note
314 #undef elf_word
315 #undef elf_sword
316 #undef bswapSZs
317 #undef SZ
318 #define elfhdr elf64_hdr
319 #define elf_phdr elf64_phdr
320 #define elf_note elf64_note
321 #define elf_shdr elf64_shdr
322 #define elf_sym elf64_sym
323 #define elf_rela elf64_rela
324 #define elf_word uint64_t
325 #define elf_sword int64_t
326 #define bswapSZs bswap64s
327 #define SZ 64
328 #include "hw/elf_ops.h"
329
330 const char *load_elf_strerror(ssize_t error)
331 {
332 switch (error) {
333 case 0:
334 return "No error";
335 case ELF_LOAD_FAILED:
336 return "Failed to load ELF";
337 case ELF_LOAD_NOT_ELF:
338 return "The image is not ELF";
339 case ELF_LOAD_WRONG_ARCH:
340 return "The image is from incompatible architecture";
341 case ELF_LOAD_WRONG_ENDIAN:
342 return "The image has incorrect endianness";
343 case ELF_LOAD_TOO_BIG:
344 return "The image segments are too big to load";
345 default:
346 return "Unknown error";
347 }
348 }
349
350 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
351 {
352 int fd;
353 uint8_t e_ident_local[EI_NIDENT];
354 uint8_t *e_ident;
355 size_t hdr_size, off;
356 bool is64l;
357
358 if (!hdr) {
359 hdr = e_ident_local;
360 }
361 e_ident = hdr;
362
363 fd = open(filename, O_RDONLY | O_BINARY);
364 if (fd < 0) {
365 error_setg_errno(errp, errno, "Failed to open file: %s", filename);
366 return;
367 }
368 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
369 error_setg_errno(errp, errno, "Failed to read file: %s", filename);
370 goto fail;
371 }
372 if (e_ident[0] != ELFMAG0 ||
373 e_ident[1] != ELFMAG1 ||
374 e_ident[2] != ELFMAG2 ||
375 e_ident[3] != ELFMAG3) {
376 error_setg(errp, "Bad ELF magic");
377 goto fail;
378 }
379
380 is64l = e_ident[EI_CLASS] == ELFCLASS64;
381 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
382 if (is64) {
383 *is64 = is64l;
384 }
385
386 off = EI_NIDENT;
387 while (hdr != e_ident_local && off < hdr_size) {
388 size_t br = read(fd, hdr + off, hdr_size - off);
389 switch (br) {
390 case 0:
391 error_setg(errp, "File too short: %s", filename);
392 goto fail;
393 case -1:
394 error_setg_errno(errp, errno, "Failed to read file: %s",
395 filename);
396 goto fail;
397 }
398 off += br;
399 }
400
401 fail:
402 close(fd);
403 }
404
405 /* return < 0 if error, otherwise the number of bytes loaded in memory */
406 ssize_t load_elf(const char *filename,
407 uint64_t (*elf_note_fn)(void *, void *, bool),
408 uint64_t (*translate_fn)(void *, uint64_t),
409 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
410 uint64_t *highaddr, uint32_t *pflags, int big_endian,
411 int elf_machine, int clear_lsb, int data_swab)
412 {
413 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
414 pentry, lowaddr, highaddr, pflags, big_endian,
415 elf_machine, clear_lsb, data_swab, NULL);
416 }
417
418 /* return < 0 if error, otherwise the number of bytes loaded in memory */
419 ssize_t load_elf_as(const char *filename,
420 uint64_t (*elf_note_fn)(void *, void *, bool),
421 uint64_t (*translate_fn)(void *, uint64_t),
422 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
423 uint64_t *highaddr, uint32_t *pflags, int big_endian,
424 int elf_machine, int clear_lsb, int data_swab,
425 AddressSpace *as)
426 {
427 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
428 pentry, lowaddr, highaddr, pflags, big_endian,
429 elf_machine, clear_lsb, data_swab, as, true);
430 }
431
432 /* return < 0 if error, otherwise the number of bytes loaded in memory */
433 ssize_t load_elf_ram(const char *filename,
434 uint64_t (*elf_note_fn)(void *, void *, bool),
435 uint64_t (*translate_fn)(void *, uint64_t),
436 void *translate_opaque, uint64_t *pentry,
437 uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags,
438 int big_endian, int elf_machine, int clear_lsb,
439 int data_swab, AddressSpace *as, bool load_rom)
440 {
441 return load_elf_ram_sym(filename, elf_note_fn,
442 translate_fn, translate_opaque,
443 pentry, lowaddr, highaddr, pflags, big_endian,
444 elf_machine, clear_lsb, data_swab, as,
445 load_rom, NULL);
446 }
447
448 /* return < 0 if error, otherwise the number of bytes loaded in memory */
449 ssize_t load_elf_ram_sym(const char *filename,
450 uint64_t (*elf_note_fn)(void *, void *, bool),
451 uint64_t (*translate_fn)(void *, uint64_t),
452 void *translate_opaque, uint64_t *pentry,
453 uint64_t *lowaddr, uint64_t *highaddr,
454 uint32_t *pflags, int big_endian, int elf_machine,
455 int clear_lsb, int data_swab,
456 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
457 {
458 int fd, data_order, target_data_order, must_swab;
459 ssize_t ret = ELF_LOAD_FAILED;
460 uint8_t e_ident[EI_NIDENT];
461
462 fd = open(filename, O_RDONLY | O_BINARY);
463 if (fd < 0) {
464 perror(filename);
465 return -1;
466 }
467 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
468 goto fail;
469 if (e_ident[0] != ELFMAG0 ||
470 e_ident[1] != ELFMAG1 ||
471 e_ident[2] != ELFMAG2 ||
472 e_ident[3] != ELFMAG3) {
473 ret = ELF_LOAD_NOT_ELF;
474 goto fail;
475 }
476 #if HOST_BIG_ENDIAN
477 data_order = ELFDATA2MSB;
478 #else
479 data_order = ELFDATA2LSB;
480 #endif
481 must_swab = data_order != e_ident[EI_DATA];
482 if (big_endian) {
483 target_data_order = ELFDATA2MSB;
484 } else {
485 target_data_order = ELFDATA2LSB;
486 }
487
488 if (target_data_order != e_ident[EI_DATA]) {
489 ret = ELF_LOAD_WRONG_ENDIAN;
490 goto fail;
491 }
492
493 lseek(fd, 0, SEEK_SET);
494 if (e_ident[EI_CLASS] == ELFCLASS64) {
495 ret = load_elf64(filename, fd, elf_note_fn,
496 translate_fn, translate_opaque, must_swab,
497 pentry, lowaddr, highaddr, pflags, elf_machine,
498 clear_lsb, data_swab, as, load_rom, sym_cb);
499 } else {
500 ret = load_elf32(filename, fd, elf_note_fn,
501 translate_fn, translate_opaque, must_swab,
502 pentry, lowaddr, highaddr, pflags, elf_machine,
503 clear_lsb, data_swab, as, load_rom, sym_cb);
504 }
505
506 fail:
507 close(fd);
508 return ret;
509 }
510
511 static void bswap_uboot_header(uboot_image_header_t *hdr)
512 {
513 #if !HOST_BIG_ENDIAN
514 bswap32s(&hdr->ih_magic);
515 bswap32s(&hdr->ih_hcrc);
516 bswap32s(&hdr->ih_time);
517 bswap32s(&hdr->ih_size);
518 bswap32s(&hdr->ih_load);
519 bswap32s(&hdr->ih_ep);
520 bswap32s(&hdr->ih_dcrc);
521 #endif
522 }
523
524
525 #define ZALLOC_ALIGNMENT 16
526
527 static void *zalloc(void *x, unsigned items, unsigned size)
528 {
529 void *p;
530
531 size *= items;
532 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
533
534 p = g_malloc(size);
535
536 return (p);
537 }
538
539 static void zfree(void *x, void *addr)
540 {
541 g_free(addr);
542 }
543
544
545 #define HEAD_CRC 2
546 #define EXTRA_FIELD 4
547 #define ORIG_NAME 8
548 #define COMMENT 0x10
549 #define RESERVED 0xe0
550
551 #define DEFLATED 8
552
553 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
554 {
555 z_stream s;
556 ssize_t dstbytes;
557 int r, i, flags;
558
559 /* skip header */
560 i = 10;
561 if (srclen < 4) {
562 goto toosmall;
563 }
564 flags = src[3];
565 if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
566 puts ("Error: Bad gzipped data\n");
567 return -1;
568 }
569 if ((flags & EXTRA_FIELD) != 0) {
570 if (srclen < 12) {
571 goto toosmall;
572 }
573 i = 12 + src[10] + (src[11] << 8);
574 }
575 if ((flags & ORIG_NAME) != 0) {
576 while (i < srclen && src[i++] != 0) {
577 /* do nothing */
578 }
579 }
580 if ((flags & COMMENT) != 0) {
581 while (i < srclen && src[i++] != 0) {
582 /* do nothing */
583 }
584 }
585 if ((flags & HEAD_CRC) != 0) {
586 i += 2;
587 }
588 if (i >= srclen) {
589 goto toosmall;
590 }
591
592 s.zalloc = zalloc;
593 s.zfree = zfree;
594
595 r = inflateInit2(&s, -MAX_WBITS);
596 if (r != Z_OK) {
597 printf ("Error: inflateInit2() returned %d\n", r);
598 return (-1);
599 }
600 s.next_in = src + i;
601 s.avail_in = srclen - i;
602 s.next_out = dst;
603 s.avail_out = dstlen;
604 r = inflate(&s, Z_FINISH);
605 if (r != Z_OK && r != Z_STREAM_END) {
606 printf ("Error: inflate() returned %d\n", r);
607 return -1;
608 }
609 dstbytes = s.next_out - (unsigned char *) dst;
610 inflateEnd(&s);
611
612 return dstbytes;
613
614 toosmall:
615 puts("Error: gunzip out of data in header\n");
616 return -1;
617 }
618
619 /* Load a U-Boot image. */
620 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr,
621 int *is_linux, uint8_t image_type,
622 uint64_t (*translate_fn)(void *, uint64_t),
623 void *translate_opaque, AddressSpace *as)
624 {
625 int fd;
626 int size;
627 hwaddr address;
628 uboot_image_header_t h;
629 uboot_image_header_t *hdr = &h;
630 uint8_t *data = NULL;
631 int ret = -1;
632 int do_uncompress = 0;
633
634 fd = open(filename, O_RDONLY | O_BINARY);
635 if (fd < 0)
636 return -1;
637
638 size = read(fd, hdr, sizeof(uboot_image_header_t));
639 if (size < sizeof(uboot_image_header_t)) {
640 goto out;
641 }
642
643 bswap_uboot_header(hdr);
644
645 if (hdr->ih_magic != IH_MAGIC)
646 goto out;
647
648 if (hdr->ih_type != image_type) {
649 if (!(image_type == IH_TYPE_KERNEL &&
650 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
651 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
652 image_type);
653 goto out;
654 }
655 }
656
657 /* TODO: Implement other image types. */
658 switch (hdr->ih_type) {
659 case IH_TYPE_KERNEL_NOLOAD:
660 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
661 fprintf(stderr, "this image format (kernel_noload) cannot be "
662 "loaded on this machine type");
663 goto out;
664 }
665
666 hdr->ih_load = *loadaddr + sizeof(*hdr);
667 hdr->ih_ep += hdr->ih_load;
668 /* fall through */
669 case IH_TYPE_KERNEL:
670 address = hdr->ih_load;
671 if (translate_fn) {
672 address = translate_fn(translate_opaque, address);
673 }
674 if (loadaddr) {
675 *loadaddr = hdr->ih_load;
676 }
677
678 switch (hdr->ih_comp) {
679 case IH_COMP_NONE:
680 break;
681 case IH_COMP_GZIP:
682 do_uncompress = 1;
683 break;
684 default:
685 fprintf(stderr,
686 "Unable to load u-boot images with compression type %d\n",
687 hdr->ih_comp);
688 goto out;
689 }
690
691 if (ep) {
692 *ep = hdr->ih_ep;
693 }
694
695 /* TODO: Check CPU type. */
696 if (is_linux) {
697 if (hdr->ih_os == IH_OS_LINUX) {
698 *is_linux = 1;
699 } else {
700 *is_linux = 0;
701 }
702 }
703
704 break;
705 case IH_TYPE_RAMDISK:
706 address = *loadaddr;
707 break;
708 default:
709 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
710 goto out;
711 }
712
713 data = g_malloc(hdr->ih_size);
714
715 if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
716 fprintf(stderr, "Error reading file\n");
717 goto out;
718 }
719
720 if (do_uncompress) {
721 uint8_t *compressed_data;
722 size_t max_bytes;
723 ssize_t bytes;
724
725 compressed_data = data;
726 max_bytes = UBOOT_MAX_GUNZIP_BYTES;
727 data = g_malloc(max_bytes);
728
729 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
730 g_free(compressed_data);
731 if (bytes < 0) {
732 fprintf(stderr, "Unable to decompress gzipped image!\n");
733 goto out;
734 }
735 hdr->ih_size = bytes;
736 }
737
738 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
739
740 ret = hdr->ih_size;
741
742 out:
743 g_free(data);
744 close(fd);
745 return ret;
746 }
747
748 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
749 int *is_linux,
750 uint64_t (*translate_fn)(void *, uint64_t),
751 void *translate_opaque)
752 {
753 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
754 translate_fn, translate_opaque, NULL);
755 }
756
757 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
758 int *is_linux,
759 uint64_t (*translate_fn)(void *, uint64_t),
760 void *translate_opaque, AddressSpace *as)
761 {
762 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
763 translate_fn, translate_opaque, as);
764 }
765
766 /* Load a ramdisk. */
767 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
768 {
769 return load_ramdisk_as(filename, addr, max_sz, NULL);
770 }
771
772 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
773 AddressSpace *as)
774 {
775 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
776 NULL, NULL, as);
777 }
778
779 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
780 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
781 uint8_t **buffer)
782 {
783 uint8_t *compressed_data = NULL;
784 uint8_t *data = NULL;
785 gsize len;
786 ssize_t bytes;
787 int ret = -1;
788
789 if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
790 NULL)) {
791 goto out;
792 }
793
794 /* Is it a gzip-compressed file? */
795 if (len < 2 ||
796 compressed_data[0] != 0x1f ||
797 compressed_data[1] != 0x8b) {
798 goto out;
799 }
800
801 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
802 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
803 }
804
805 data = g_malloc(max_sz);
806 bytes = gunzip(data, max_sz, compressed_data, len);
807 if (bytes < 0) {
808 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
809 filename);
810 goto out;
811 }
812
813 /* trim to actual size and return to caller */
814 *buffer = g_realloc(data, bytes);
815 ret = bytes;
816 /* ownership has been transferred to caller */
817 data = NULL;
818
819 out:
820 g_free(compressed_data);
821 g_free(data);
822 return ret;
823 }
824
825 /* Load a gzip-compressed kernel. */
826 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
827 {
828 int bytes;
829 uint8_t *data;
830
831 bytes = load_image_gzipped_buffer(filename, max_sz, &data);
832 if (bytes != -1) {
833 rom_add_blob_fixed(filename, data, bytes, addr);
834 g_free(data);
835 }
836 return bytes;
837 }
838
839 /*
840 * Functions for reboot-persistent memory regions.
841 * - used for vga bios and option roms.
842 * - also linux kernel (-kernel / -initrd).
843 */
844
845 typedef struct Rom Rom;
846
847 struct Rom {
848 char *name;
849 char *path;
850
851 /* datasize is the amount of memory allocated in "data". If datasize is less
852 * than romsize, it means that the area from datasize to romsize is filled
853 * with zeros.
854 */
855 size_t romsize;
856 size_t datasize;
857
858 uint8_t *data;
859 MemoryRegion *mr;
860 AddressSpace *as;
861 int isrom;
862 char *fw_dir;
863 char *fw_file;
864 GMappedFile *mapped_file;
865
866 bool committed;
867
868 hwaddr addr;
869 QTAILQ_ENTRY(Rom) next;
870 };
871
872 static FWCfgState *fw_cfg;
873 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
874
875 /*
876 * rom->data can be heap-allocated or memory-mapped (e.g. when added with
877 * rom_add_elf_program())
878 */
879 static void rom_free_data(Rom *rom)
880 {
881 if (rom->mapped_file) {
882 g_mapped_file_unref(rom->mapped_file);
883 rom->mapped_file = NULL;
884 } else {
885 g_free(rom->data);
886 }
887
888 rom->data = NULL;
889 }
890
891 static void rom_free(Rom *rom)
892 {
893 rom_free_data(rom);
894 g_free(rom->path);
895 g_free(rom->name);
896 g_free(rom->fw_dir);
897 g_free(rom->fw_file);
898 g_free(rom);
899 }
900
901 static inline bool rom_order_compare(Rom *rom, Rom *item)
902 {
903 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
904 (rom->as == item->as && rom->addr >= item->addr);
905 }
906
907 static void rom_insert(Rom *rom)
908 {
909 Rom *item;
910
911 if (roms_loaded) {
912 hw_error ("ROM images must be loaded at startup\n");
913 }
914
915 /* The user didn't specify an address space, this is the default */
916 if (!rom->as) {
917 rom->as = &address_space_memory;
918 }
919
920 rom->committed = false;
921
922 /* List is ordered by load address in the same address space */
923 QTAILQ_FOREACH(item, &roms, next) {
924 if (rom_order_compare(rom, item)) {
925 continue;
926 }
927 QTAILQ_INSERT_BEFORE(item, rom, next);
928 return;
929 }
930 QTAILQ_INSERT_TAIL(&roms, rom, next);
931 }
932
933 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
934 {
935 if (fw_cfg) {
936 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
937 }
938 }
939
940 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
941 {
942 void *data;
943
944 rom->mr = g_malloc(sizeof(*rom->mr));
945 memory_region_init_resizeable_ram(rom->mr, owner, name,
946 rom->datasize, rom->romsize,
947 fw_cfg_resized,
948 &error_fatal);
949 memory_region_set_readonly(rom->mr, ro);
950 vmstate_register_ram_global(rom->mr);
951
952 data = memory_region_get_ram_ptr(rom->mr);
953 memcpy(data, rom->data, rom->datasize);
954
955 return data;
956 }
957
958 int rom_add_file(const char *file, const char *fw_dir,
959 hwaddr addr, int32_t bootindex,
960 bool option_rom, MemoryRegion *mr,
961 AddressSpace *as)
962 {
963 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
964 Rom *rom;
965 int rc, fd = -1;
966 char devpath[100];
967
968 if (as && mr) {
969 fprintf(stderr, "Specifying an Address Space and Memory Region is " \
970 "not valid when loading a rom\n");
971 /* We haven't allocated anything so we don't need any cleanup */
972 return -1;
973 }
974
975 rom = g_malloc0(sizeof(*rom));
976 rom->name = g_strdup(file);
977 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
978 rom->as = as;
979 if (rom->path == NULL) {
980 rom->path = g_strdup(file);
981 }
982
983 fd = open(rom->path, O_RDONLY | O_BINARY);
984 if (fd == -1) {
985 fprintf(stderr, "Could not open option rom '%s': %s\n",
986 rom->path, strerror(errno));
987 goto err;
988 }
989
990 if (fw_dir) {
991 rom->fw_dir = g_strdup(fw_dir);
992 rom->fw_file = g_strdup(file);
993 }
994 rom->addr = addr;
995 rom->romsize = lseek(fd, 0, SEEK_END);
996 if (rom->romsize == -1) {
997 fprintf(stderr, "rom: file %-20s: get size error: %s\n",
998 rom->name, strerror(errno));
999 goto err;
1000 }
1001
1002 rom->datasize = rom->romsize;
1003 rom->data = g_malloc0(rom->datasize);
1004 lseek(fd, 0, SEEK_SET);
1005 rc = read(fd, rom->data, rom->datasize);
1006 if (rc != rom->datasize) {
1007 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n",
1008 rom->name, rc, rom->datasize);
1009 goto err;
1010 }
1011 close(fd);
1012 rom_insert(rom);
1013 if (rom->fw_file && fw_cfg) {
1014 const char *basename;
1015 char fw_file_name[FW_CFG_MAX_FILE_PATH];
1016 void *data;
1017
1018 basename = strrchr(rom->fw_file, '/');
1019 if (basename) {
1020 basename++;
1021 } else {
1022 basename = rom->fw_file;
1023 }
1024 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
1025 basename);
1026 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1027
1028 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
1029 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
1030 } else {
1031 data = rom->data;
1032 }
1033
1034 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
1035 } else {
1036 if (mr) {
1037 rom->mr = mr;
1038 snprintf(devpath, sizeof(devpath), "/rom@%s", file);
1039 } else {
1040 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
1041 }
1042 }
1043
1044 add_boot_device_path(bootindex, NULL, devpath);
1045 return 0;
1046
1047 err:
1048 if (fd != -1)
1049 close(fd);
1050
1051 rom_free(rom);
1052 return -1;
1053 }
1054
1055 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1056 size_t max_len, hwaddr addr, const char *fw_file_name,
1057 FWCfgCallback fw_callback, void *callback_opaque,
1058 AddressSpace *as, bool read_only)
1059 {
1060 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1061 Rom *rom;
1062 MemoryRegion *mr = NULL;
1063
1064 rom = g_malloc0(sizeof(*rom));
1065 rom->name = g_strdup(name);
1066 rom->as = as;
1067 rom->addr = addr;
1068 rom->romsize = max_len ? max_len : len;
1069 rom->datasize = len;
1070 g_assert(rom->romsize >= rom->datasize);
1071 rom->data = g_malloc0(rom->datasize);
1072 memcpy(rom->data, blob, len);
1073 rom_insert(rom);
1074 if (fw_file_name && fw_cfg) {
1075 char devpath[100];
1076 void *data;
1077
1078 if (read_only) {
1079 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1080 } else {
1081 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1082 }
1083
1084 if (mc->rom_file_has_mr) {
1085 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1086 mr = rom->mr;
1087 } else {
1088 data = rom->data;
1089 }
1090
1091 fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1092 fw_callback, NULL, callback_opaque,
1093 data, rom->datasize, read_only);
1094 }
1095 return mr;
1096 }
1097
1098 /* This function is specific for elf program because we don't need to allocate
1099 * all the rom. We just allocate the first part and the rest is just zeros. This
1100 * is why romsize and datasize are different. Also, this function takes its own
1101 * reference to "mapped_file", so we don't have to allocate and copy the buffer.
1102 */
1103 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data,
1104 size_t datasize, size_t romsize, hwaddr addr,
1105 AddressSpace *as)
1106 {
1107 Rom *rom;
1108
1109 rom = g_malloc0(sizeof(*rom));
1110 rom->name = g_strdup(name);
1111 rom->addr = addr;
1112 rom->datasize = datasize;
1113 rom->romsize = romsize;
1114 rom->data = data;
1115 rom->as = as;
1116
1117 if (mapped_file && data) {
1118 g_mapped_file_ref(mapped_file);
1119 rom->mapped_file = mapped_file;
1120 }
1121
1122 rom_insert(rom);
1123 return 0;
1124 }
1125
1126 int rom_add_vga(const char *file)
1127 {
1128 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1129 }
1130
1131 int rom_add_option(const char *file, int32_t bootindex)
1132 {
1133 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1134 }
1135
1136 static void rom_reset(void *unused)
1137 {
1138 Rom *rom;
1139
1140 QTAILQ_FOREACH(rom, &roms, next) {
1141 if (rom->fw_file) {
1142 continue;
1143 }
1144 /*
1145 * We don't need to fill in the RAM with ROM data because we'll fill
1146 * the data in during the next incoming migration in all cases. Note
1147 * that some of those RAMs can actually be modified by the guest.
1148 */
1149 if (runstate_check(RUN_STATE_INMIGRATE)) {
1150 if (rom->data && rom->isrom) {
1151 /*
1152 * Free it so that a rom_reset after migration doesn't
1153 * overwrite a potentially modified 'rom'.
1154 */
1155 rom_free_data(rom);
1156 }
1157 continue;
1158 }
1159
1160 if (rom->data == NULL) {
1161 continue;
1162 }
1163 if (rom->mr) {
1164 void *host = memory_region_get_ram_ptr(rom->mr);
1165 memcpy(host, rom->data, rom->datasize);
1166 memset(host + rom->datasize, 0, rom->romsize - rom->datasize);
1167 } else {
1168 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1169 rom->data, rom->datasize);
1170 address_space_set(rom->as, rom->addr + rom->datasize, 0,
1171 rom->romsize - rom->datasize,
1172 MEMTXATTRS_UNSPECIFIED);
1173 }
1174 if (rom->isrom) {
1175 /* rom needs to be written only once */
1176 rom_free_data(rom);
1177 }
1178 /*
1179 * The rom loader is really on the same level as firmware in the guest
1180 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1181 * that the instruction cache for that new region is clear, so that the
1182 * CPU definitely fetches its instructions from the just written data.
1183 */
1184 cpu_flush_icache_range(rom->addr, rom->datasize);
1185
1186 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom);
1187 }
1188 }
1189
1190 /* Return true if two consecutive ROMs in the ROM list overlap */
1191 static bool roms_overlap(Rom *last_rom, Rom *this_rom)
1192 {
1193 if (!last_rom) {
1194 return false;
1195 }
1196 return last_rom->as == this_rom->as &&
1197 last_rom->addr + last_rom->romsize > this_rom->addr;
1198 }
1199
1200 static const char *rom_as_name(Rom *rom)
1201 {
1202 const char *name = rom->as ? rom->as->name : NULL;
1203 return name ?: "anonymous";
1204 }
1205
1206 static void rom_print_overlap_error_header(void)
1207 {
1208 error_report("Some ROM regions are overlapping");
1209 error_printf(
1210 "These ROM regions might have been loaded by "
1211 "direct user request or by default.\n"
1212 "They could be BIOS/firmware images, a guest kernel, "
1213 "initrd or some other file loaded into guest memory.\n"
1214 "Check whether you intended to load all this guest code, and "
1215 "whether it has been built to load to the correct addresses.\n");
1216 }
1217
1218 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom)
1219 {
1220 error_printf(
1221 "\nThe following two regions overlap (in the %s address space):\n",
1222 rom_as_name(rom));
1223 error_printf(
1224 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1225 last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize);
1226 error_printf(
1227 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1228 rom->name, rom->addr, rom->addr + rom->romsize);
1229 }
1230
1231 int rom_check_and_register_reset(void)
1232 {
1233 MemoryRegionSection section;
1234 Rom *rom, *last_rom = NULL;
1235 bool found_overlap = false;
1236
1237 QTAILQ_FOREACH(rom, &roms, next) {
1238 if (rom->fw_file) {
1239 continue;
1240 }
1241 if (!rom->mr) {
1242 if (roms_overlap(last_rom, rom)) {
1243 if (!found_overlap) {
1244 found_overlap = true;
1245 rom_print_overlap_error_header();
1246 }
1247 rom_print_one_overlap_error(last_rom, rom);
1248 /* Keep going through the list so we report all overlaps */
1249 }
1250 last_rom = rom;
1251 }
1252 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1253 rom->addr, 1);
1254 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1255 memory_region_unref(section.mr);
1256 }
1257 if (found_overlap) {
1258 return -1;
1259 }
1260
1261 qemu_register_reset(rom_reset, NULL);
1262 roms_loaded = 1;
1263 return 0;
1264 }
1265
1266 void rom_set_fw(FWCfgState *f)
1267 {
1268 fw_cfg = f;
1269 }
1270
1271 void rom_set_order_override(int order)
1272 {
1273 if (!fw_cfg)
1274 return;
1275 fw_cfg_set_order_override(fw_cfg, order);
1276 }
1277
1278 void rom_reset_order_override(void)
1279 {
1280 if (!fw_cfg)
1281 return;
1282 fw_cfg_reset_order_override(fw_cfg);
1283 }
1284
1285 void rom_transaction_begin(void)
1286 {
1287 Rom *rom;
1288
1289 /* Ignore ROMs added without the transaction API */
1290 QTAILQ_FOREACH(rom, &roms, next) {
1291 rom->committed = true;
1292 }
1293 }
1294
1295 void rom_transaction_end(bool commit)
1296 {
1297 Rom *rom;
1298 Rom *tmp;
1299
1300 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1301 if (rom->committed) {
1302 continue;
1303 }
1304 if (commit) {
1305 rom->committed = true;
1306 } else {
1307 QTAILQ_REMOVE(&roms, rom, next);
1308 rom_free(rom);
1309 }
1310 }
1311 }
1312
1313 static Rom *find_rom(hwaddr addr, size_t size)
1314 {
1315 Rom *rom;
1316
1317 QTAILQ_FOREACH(rom, &roms, next) {
1318 if (rom->fw_file) {
1319 continue;
1320 }
1321 if (rom->mr) {
1322 continue;
1323 }
1324 if (rom->addr > addr) {
1325 continue;
1326 }
1327 if (rom->addr + rom->romsize < addr + size) {
1328 continue;
1329 }
1330 return rom;
1331 }
1332 return NULL;
1333 }
1334
1335 typedef struct RomSec {
1336 hwaddr base;
1337 int se; /* start/end flag */
1338 } RomSec;
1339
1340
1341 /*
1342 * Sort into address order. We break ties between rom-startpoints
1343 * and rom-endpoints in favour of the startpoint, by sorting the 0->1
1344 * transition before the 1->0 transition. Either way round would
1345 * work, but this way saves a little work later by avoiding
1346 * dealing with "gaps" of 0 length.
1347 */
1348 static gint sort_secs(gconstpointer a, gconstpointer b)
1349 {
1350 RomSec *ra = (RomSec *) a;
1351 RomSec *rb = (RomSec *) b;
1352
1353 if (ra->base == rb->base) {
1354 return ra->se - rb->se;
1355 }
1356 return ra->base > rb->base ? 1 : -1;
1357 }
1358
1359 static GList *add_romsec_to_list(GList *secs, hwaddr base, int se)
1360 {
1361 RomSec *cand = g_new(RomSec, 1);
1362 cand->base = base;
1363 cand->se = se;
1364 return g_list_prepend(secs, cand);
1365 }
1366
1367 RomGap rom_find_largest_gap_between(hwaddr base, size_t size)
1368 {
1369 Rom *rom;
1370 RomSec *cand;
1371 RomGap res = {0, 0};
1372 hwaddr gapstart = base;
1373 GList *it, *secs = NULL;
1374 int count = 0;
1375
1376 QTAILQ_FOREACH(rom, &roms, next) {
1377 /* Ignore blobs being loaded to special places */
1378 if (rom->mr || rom->fw_file) {
1379 continue;
1380 }
1381 /* ignore anything finishing bellow base */
1382 if (rom->addr + rom->romsize <= base) {
1383 continue;
1384 }
1385 /* ignore anything starting above the region */
1386 if (rom->addr >= base + size) {
1387 continue;
1388 }
1389
1390 /* Save the start and end of each relevant ROM */
1391 secs = add_romsec_to_list(secs, rom->addr, 1);
1392
1393 if (rom->addr + rom->romsize < base + size) {
1394 secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1);
1395 }
1396 }
1397
1398 /* sentinel */
1399 secs = add_romsec_to_list(secs, base + size, 1);
1400
1401 secs = g_list_sort(secs, sort_secs);
1402
1403 for (it = g_list_first(secs); it; it = g_list_next(it)) {
1404 cand = (RomSec *) it->data;
1405 if (count == 0 && count + cand->se == 1) {
1406 size_t gap = cand->base - gapstart;
1407 if (gap > res.size) {
1408 res.base = gapstart;
1409 res.size = gap;
1410 }
1411 } else if (count == 1 && count + cand->se == 0) {
1412 gapstart = cand->base;
1413 }
1414 count += cand->se;
1415 }
1416
1417 g_list_free_full(secs, g_free);
1418 return res;
1419 }
1420
1421 /*
1422 * Copies memory from registered ROMs to dest. Any memory that is contained in
1423 * a ROM between addr and addr + size is copied. Note that this can involve
1424 * multiple ROMs, which need not start at addr and need not end at addr + size.
1425 */
1426 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1427 {
1428 hwaddr end = addr + size;
1429 uint8_t *s, *d = dest;
1430 size_t l = 0;
1431 Rom *rom;
1432
1433 QTAILQ_FOREACH(rom, &roms, next) {
1434 if (rom->fw_file) {
1435 continue;
1436 }
1437 if (rom->mr) {
1438 continue;
1439 }
1440 if (rom->addr + rom->romsize < addr) {
1441 continue;
1442 }
1443 if (rom->addr > end || rom->addr < addr) {
1444 break;
1445 }
1446
1447 d = dest + (rom->addr - addr);
1448 s = rom->data;
1449 l = rom->datasize;
1450
1451 if ((d + l) > (dest + size)) {
1452 l = dest - d;
1453 }
1454
1455 if (l > 0) {
1456 memcpy(d, s, l);
1457 }
1458
1459 if (rom->romsize > rom->datasize) {
1460 /* If datasize is less than romsize, it means that we didn't
1461 * allocate all the ROM because the trailing data are only zeros.
1462 */
1463
1464 d += l;
1465 l = rom->romsize - rom->datasize;
1466
1467 if ((d + l) > (dest + size)) {
1468 /* Rom size doesn't fit in the destination area. Adjust to avoid
1469 * overflow.
1470 */
1471 l = dest - d;
1472 }
1473
1474 if (l > 0) {
1475 memset(d, 0x0, l);
1476 }
1477 }
1478 }
1479
1480 return (d + l) - dest;
1481 }
1482
1483 void *rom_ptr(hwaddr addr, size_t size)
1484 {
1485 Rom *rom;
1486
1487 rom = find_rom(addr, size);
1488 if (!rom || !rom->data)
1489 return NULL;
1490 return rom->data + (addr - rom->addr);
1491 }
1492
1493 typedef struct FindRomCBData {
1494 size_t size; /* Amount of data we want from ROM, in bytes */
1495 MemoryRegion *mr; /* MR at the unaliased guest addr */
1496 hwaddr xlat; /* Offset of addr within mr */
1497 void *rom; /* Output: rom data pointer, if found */
1498 } FindRomCBData;
1499
1500 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr,
1501 hwaddr offset_in_region, void *opaque)
1502 {
1503 FindRomCBData *cbdata = opaque;
1504 hwaddr alias_addr;
1505
1506 if (mr != cbdata->mr) {
1507 return false;
1508 }
1509
1510 alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region;
1511 cbdata->rom = rom_ptr(alias_addr, cbdata->size);
1512 if (!cbdata->rom) {
1513 return false;
1514 }
1515 /* Found a match, stop iterating */
1516 return true;
1517 }
1518
1519 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size)
1520 {
1521 /*
1522 * Find any ROM data for the given guest address range. If there
1523 * is a ROM blob then return a pointer to the host memory
1524 * corresponding to 'addr'; otherwise return NULL.
1525 *
1526 * We look not only for ROM blobs that were loaded directly to
1527 * addr, but also for ROM blobs that were loaded to aliases of
1528 * that memory at other addresses within the AddressSpace.
1529 *
1530 * Note that we do not check @as against the 'as' member in the
1531 * 'struct Rom' returned by rom_ptr(). The Rom::as is the
1532 * AddressSpace which the rom blob should be written to, whereas
1533 * our @as argument is the AddressSpace which we are (effectively)
1534 * reading from, and the same underlying RAM will often be visible
1535 * in multiple AddressSpaces. (A common example is a ROM blob
1536 * written to the 'system' address space but then read back via a
1537 * CPU's cpu->as pointer.) This does mean we might potentially
1538 * return a false-positive match if a ROM blob was loaded into an
1539 * AS which is entirely separate and distinct from the one we're
1540 * querying, but this issue exists also for rom_ptr() and hasn't
1541 * caused any problems in practice.
1542 */
1543 FlatView *fv;
1544 void *rom;
1545 hwaddr len_unused;
1546 FindRomCBData cbdata = {};
1547
1548 /* Easy case: there's data at the actual address */
1549 rom = rom_ptr(addr, size);
1550 if (rom) {
1551 return rom;
1552 }
1553
1554 RCU_READ_LOCK_GUARD();
1555
1556 fv = address_space_to_flatview(as);
1557 cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused,
1558 false, MEMTXATTRS_UNSPECIFIED);
1559 if (!cbdata.mr) {
1560 /* Nothing at this address, so there can't be any aliasing */
1561 return NULL;
1562 }
1563 cbdata.size = size;
1564 flatview_for_each_range(fv, find_rom_cb, &cbdata);
1565 return cbdata.rom;
1566 }
1567
1568 HumanReadableText *qmp_x_query_roms(Error **errp)
1569 {
1570 Rom *rom;
1571 g_autoptr(GString) buf = g_string_new("");
1572
1573 QTAILQ_FOREACH(rom, &roms, next) {
1574 if (rom->mr) {
1575 g_string_append_printf(buf, "%s"
1576 " size=0x%06zx name=\"%s\"\n",
1577 memory_region_name(rom->mr),
1578 rom->romsize,
1579 rom->name);
1580 } else if (!rom->fw_file) {
1581 g_string_append_printf(buf, "addr=" TARGET_FMT_plx
1582 " size=0x%06zx mem=%s name=\"%s\"\n",
1583 rom->addr, rom->romsize,
1584 rom->isrom ? "rom" : "ram",
1585 rom->name);
1586 } else {
1587 g_string_append_printf(buf, "fw=%s/%s"
1588 " size=0x%06zx name=\"%s\"\n",
1589 rom->fw_dir,
1590 rom->fw_file,
1591 rom->romsize,
1592 rom->name);
1593 }
1594 }
1595
1596 return human_readable_text_from_str(buf);
1597 }
1598
1599 typedef enum HexRecord HexRecord;
1600 enum HexRecord {
1601 DATA_RECORD = 0,
1602 EOF_RECORD,
1603 EXT_SEG_ADDR_RECORD,
1604 START_SEG_ADDR_RECORD,
1605 EXT_LINEAR_ADDR_RECORD,
1606 START_LINEAR_ADDR_RECORD,
1607 };
1608
1609 /* Each record contains a 16-bit address which is combined with the upper 16
1610 * bits of the implicit "next address" to form a 32-bit address.
1611 */
1612 #define NEXT_ADDR_MASK 0xffff0000
1613
1614 #define DATA_FIELD_MAX_LEN 0xff
1615 #define LEN_EXCEPT_DATA 0x5
1616 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1617 * sizeof(checksum) */
1618 typedef struct {
1619 uint8_t byte_count;
1620 uint16_t address;
1621 uint8_t record_type;
1622 uint8_t data[DATA_FIELD_MAX_LEN];
1623 uint8_t checksum;
1624 } HexLine;
1625
1626 /* return 0 or -1 if error */
1627 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1628 uint32_t *index, const bool in_process)
1629 {
1630 /* +-------+---------------+-------+---------------------+--------+
1631 * | byte | |record | | |
1632 * | count | address | type | data |checksum|
1633 * +-------+---------------+-------+---------------------+--------+
1634 * ^ ^ ^ ^ ^ ^
1635 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte |
1636 */
1637 uint8_t value = 0;
1638 uint32_t idx = *index;
1639 /* ignore space */
1640 if (g_ascii_isspace(c)) {
1641 return true;
1642 }
1643 if (!g_ascii_isxdigit(c) || !in_process) {
1644 return false;
1645 }
1646 value = g_ascii_xdigit_value(c);
1647 value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1648 if (idx < 2) {
1649 line->byte_count |= value;
1650 } else if (2 <= idx && idx < 6) {
1651 line->address <<= 4;
1652 line->address += g_ascii_xdigit_value(c);
1653 } else if (6 <= idx && idx < 8) {
1654 line->record_type |= value;
1655 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1656 line->data[(idx - 8) >> 1] |= value;
1657 } else if (8 + 2 * line->byte_count <= idx &&
1658 idx < 10 + 2 * line->byte_count) {
1659 line->checksum |= value;
1660 } else {
1661 return false;
1662 }
1663 *our_checksum += value;
1664 ++(*index);
1665 return true;
1666 }
1667
1668 typedef struct {
1669 const char *filename;
1670 HexLine line;
1671 uint8_t *bin_buf;
1672 hwaddr *start_addr;
1673 int total_size;
1674 uint32_t next_address_to_write;
1675 uint32_t current_address;
1676 uint32_t current_rom_index;
1677 uint32_t rom_start_address;
1678 AddressSpace *as;
1679 bool complete;
1680 } HexParser;
1681
1682 /* return size or -1 if error */
1683 static int handle_record_type(HexParser *parser)
1684 {
1685 HexLine *line = &(parser->line);
1686 switch (line->record_type) {
1687 case DATA_RECORD:
1688 parser->current_address =
1689 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1690 /* verify this is a contiguous block of memory */
1691 if (parser->current_address != parser->next_address_to_write) {
1692 if (parser->current_rom_index != 0) {
1693 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1694 parser->current_rom_index,
1695 parser->rom_start_address, parser->as);
1696 }
1697 parser->rom_start_address = parser->current_address;
1698 parser->current_rom_index = 0;
1699 }
1700
1701 /* copy from line buffer to output bin_buf */
1702 memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1703 line->byte_count);
1704 parser->current_rom_index += line->byte_count;
1705 parser->total_size += line->byte_count;
1706 /* save next address to write */
1707 parser->next_address_to_write =
1708 parser->current_address + line->byte_count;
1709 break;
1710
1711 case EOF_RECORD:
1712 if (parser->current_rom_index != 0) {
1713 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1714 parser->current_rom_index,
1715 parser->rom_start_address, parser->as);
1716 }
1717 parser->complete = true;
1718 return parser->total_size;
1719 case EXT_SEG_ADDR_RECORD:
1720 case EXT_LINEAR_ADDR_RECORD:
1721 if (line->byte_count != 2 && line->address != 0) {
1722 return -1;
1723 }
1724
1725 if (parser->current_rom_index != 0) {
1726 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1727 parser->current_rom_index,
1728 parser->rom_start_address, parser->as);
1729 }
1730
1731 /* save next address to write,
1732 * in case of non-contiguous block of memory */
1733 parser->next_address_to_write = (line->data[0] << 12) |
1734 (line->data[1] << 4);
1735 if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1736 parser->next_address_to_write <<= 12;
1737 }
1738
1739 parser->rom_start_address = parser->next_address_to_write;
1740 parser->current_rom_index = 0;
1741 break;
1742
1743 case START_SEG_ADDR_RECORD:
1744 if (line->byte_count != 4 && line->address != 0) {
1745 return -1;
1746 }
1747
1748 /* x86 16-bit CS:IP segmented addressing */
1749 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1750 ((line->data[2] << 8) | line->data[3]);
1751 break;
1752
1753 case START_LINEAR_ADDR_RECORD:
1754 if (line->byte_count != 4 && line->address != 0) {
1755 return -1;
1756 }
1757
1758 *(parser->start_addr) = ldl_be_p(line->data);
1759 break;
1760
1761 default:
1762 return -1;
1763 }
1764
1765 return parser->total_size;
1766 }
1767
1768 /* return size or -1 if error */
1769 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1770 size_t hex_blob_size, AddressSpace *as)
1771 {
1772 bool in_process = false; /* avoid re-enter and
1773 * check whether record begin with ':' */
1774 uint8_t *end = hex_blob + hex_blob_size;
1775 uint8_t our_checksum = 0;
1776 uint32_t record_index = 0;
1777 HexParser parser = {
1778 .filename = filename,
1779 .bin_buf = g_malloc(hex_blob_size),
1780 .start_addr = addr,
1781 .as = as,
1782 .complete = false
1783 };
1784
1785 rom_transaction_begin();
1786
1787 for (; hex_blob < end && !parser.complete; ++hex_blob) {
1788 switch (*hex_blob) {
1789 case '\r':
1790 case '\n':
1791 if (!in_process) {
1792 break;
1793 }
1794
1795 in_process = false;
1796 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1797 record_index ||
1798 our_checksum != 0) {
1799 parser.total_size = -1;
1800 goto out;
1801 }
1802
1803 if (handle_record_type(&parser) == -1) {
1804 parser.total_size = -1;
1805 goto out;
1806 }
1807 break;
1808
1809 /* start of a new record. */
1810 case ':':
1811 memset(&parser.line, 0, sizeof(HexLine));
1812 in_process = true;
1813 record_index = 0;
1814 break;
1815
1816 /* decoding lines */
1817 default:
1818 if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1819 &record_index, in_process)) {
1820 parser.total_size = -1;
1821 goto out;
1822 }
1823 break;
1824 }
1825 }
1826
1827 out:
1828 g_free(parser.bin_buf);
1829 rom_transaction_end(parser.total_size != -1);
1830 return parser.total_size;
1831 }
1832
1833 /* return size or -1 if error */
1834 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as)
1835 {
1836 gsize hex_blob_size;
1837 gchar *hex_blob;
1838 int total_size = 0;
1839
1840 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1841 return -1;
1842 }
1843
1844 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1845 hex_blob_size, as);
1846
1847 g_free(hex_blob);
1848 return total_size;
1849 }